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SUMMARY 

 

High strength wastewater (HSWW) generated in food processing industries is 

characterized by high organic carbon and nitrogen content, and thus high oxygen 

demand. Biological nitrogen removal (BNR) is a technology widely used for the 

treatment of HSWW. Food processing facilities practice sanitation to keep food contact 

surfaces clean and pathogen-free. Benzalkonium chlorides (BACs) are cationic 

quaternary ammonium antimicrobial compounds (QACs) common in industrial 

antimicrobial formulations. BAC-bearing wastewater generated during sanitation 

applications in food processing facilities is combined with other wastewater streams and 

typically treated in BNR systems. The poor selectivity and target specificity of the 

antimicrobial BACs negatively impact the performance of BNR systems due to the 

susceptibility of BNR microbial populations to BAC.  

The objectives of the research were: a) assessment and quantification of the 

inhibitory effect of QACs on the microbial groups, which mediate BNR in HSWW 

treatment systems while treating QAC-bearing HSWW; b) evaluation of the degree and 

extent of the contribution of QAC adsorption, inhibition, and biotransformation on the 

fate and effect of QACs in BNR systems. A laboratory-scale, multi-stage BNR system 

was continuously fed with real poultry processing wastewater amended with a mixture of 

three benzalkonium chlorides. The nitrogen removal efficiency initially deteriorated at a 

BAC feed concentration of 5 mg/L due to complete inhibition of nitrification. However, 

the system recovered after 27 days of operation achieving high nitrogen removal 

efficiency, even after the feed BAC concentration was stepwise increased up to120 mg/L. 
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Batch assays performed using the mixed liquors of the BNR system reactors, before, 

during, and post BAC exposure, showed that the development of BAC biotransformation 

capacity and the acquisition of resistance to BAC contributed to the recovery of 

nitrification and nitrogen removal. Kinetic analysis based on sub-models representing 

BNR processes showed that BAC inhibition of denitrification and nitrification is 

correlated with BAC liquid-phase and solid-phase concentrations, respectively. 

Simulations using a comprehensive mathematical BNR model developed for this research 

showed that BAC degradation and the level of nitrification inhibition by BAC were 

dynamic, brought about by acclimation and enrichment of the heterotrophic and nitrifying 

microbial populations, respectively. The fate and effect of BACs in the BNR system were 

accurately described when the interactions between adsorption, inhibition, and 

resistance/biotransformation were considered within the conditions prevailing in each 

reactor of the BNR system. Adsorption determines the level of the inhibitory effect of 

BAC, while BAC biotransformation and resistance determine the extent of exposure of 

the microbial communities to BAC. Finally, the inhibitory effect of BAC is reduced, if 

not completely removed, by the development of BAC resistance and biotransformation 

capacity.  

This work is the first study on the fate and effect of antimicrobial compounds, 

such as BACs, in a continuous-flow, multi-stage BNR system, and the first study to 

quantify and report parameter values related to BAC inhibition of nitrification and 

denitrification. The results of this study enable the rational design and operation of BNR 

systems for the efficient treatment of QAC-bearing wastewater. The outcome of this 

research provides information presently lacking, supporting the continuous use of QACs 
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as antimicrobial agents in food processing facilities, when and where needed, while 

avoiding any negative impacts on biological treatment systems and the environment.  
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CHAPTER 1 

INTRODUCTION 

 
 
 

1.1. Preface 

High strength wastewaters (HSWW) generated by food industries, such as poultry 

and beef processing, are characterized by high organic carbon and nitrogen content. 

Biological nitrogen removal (BNR) is a technology widely employed for the treatment of 

high strength wastewater (Casani et al., 2005). BNR is achieved by two processes 

mediated by two distinct microbial populations: nitrification, where ammonia  is oxidized 

to nitrate in the presence of oxygen by autotrophic nitrifying bacteria, and denitrification, 

where nitrate is reduced to nitrogen gas, with sufficient carbon and energy sources, under 

anoxic conditions by facultative heterotrophic denitrifying bacteria (Rittmann and 

McCarty, 2001; Madigan and Martinko, 2006). Achieving efficient BNR is only possible 

through sustaining the two aforementioned microbial populations and biological 

processes at their optimum physiological and environmental conditions. 

Food processing facilities practice sanitation to clean food contact surfaces. 

Quaternary ammonium compounds (QACs) are surface active organic compounds 

common in industrial sanitation formulations, which are widely used in various sanitation 

applications. While acting as effective biocides against a wide range of pathogenic 

microorganisms, QACs lack selective toxicity and often have poor target specificity, 

which when carried over with the wastewater to the treatment plant may have adverse 

effects. QACs negatively impact the physiological groups responsible for wastewater 

treatment and thus the performance of the biological treatment systems. 
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The fate and effect of QACs on different biological processes utilized in HSWW 

treatment systems (nitrification, denitrification, fermentation, and methanogenesis) have 

been studied (Shcherbakova et al., 1999; Tezel et al., 2006; Kreuzinger et al., 2007; 

Sutterlin et al., 2007; Yang, 2007; Pavlostathis et al., 2008; Tezel et al., 2008). However, 

all previous studies were conducted on individual biological processes within the 

confinement of a single environmental condition (anaerobic, anoxic, or aerobic) and did 

not assess the effect of QACs on multiple reactions under typically encountered 

conditions (e.g., sequence of nitrification/denitrification). The latter is typical in 

engineered wastewater treatment systems in which multiple environmental conditions are 

specifically created to sustain different groups of microorganisms, which biologically 

mediate the overall treatment process.  

Relative to modeling and simulation of the fate and effect of QACs on BNR 

systems, although the International Water Association Activated Sludge Model 1 

(ASM1) is considered an excellent benchmark for nitrogen-removing activated sludge 

systems (Henze et al., 2000), it does not deal with inhibitory substances such as QACs. In 

addition, a QAC inhibition model that can predict the degree and extent of QAC effect on 

nitrification and denitrification is currently lacking.       

1.2. Research Objectives 

The overall objective of the research was to systematically assess the fate and 

effect of QACs, mainly benzalkonium chloride (BAC), on the efficiency of biological 

nitrogen removal within poultry processing wastewater (categorized as HSWW) systems. 

A thorough understanding of the fate and effect of QACs will provide effective, practical 

solutions towards maintaining the system’s high nitrogen removal capacity while treating 
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QACs-bearing poultry processing wastewater. The specific objectives of the research 

were:  

1. Assessment and quantification of the inhibitory effect of QACs on the microbial 

groups, which mediate BNR in poultry processing wastewater treatment systems 

(fermentative, carbon-oxidizing aerobic, nitrifying and denitrifying bacteria), 

independently and collectively, while treating QAC-bearing poultry processing 

wastewater. 

2. Evaluation of the degree and extent of contribution of adsorption, inhibition, and 

biotransformation/biodegradation on the fate and effect of QACs in a BNR 

system in order to maintain system resiliency and high nitrogen removal capacity 

while treating QACs-bearing poultry processing wastewater. 

1.3. Significance 

QACs have unique characteristics (partitioning/sorption, potency/inhibition, and 

bioavailability/biodegradation), which vary under different conditions. Therefore, 

information derived solely from studies on a single environmental condition, while 

important, fails to accurately describe the fate and effect of QACs in multi-stage, 

engineered treatment systems, as is the case in real-world applications. How a sequential 

change in prevailing conditions would influence the fate and effect of QACs is crucial 

information that is currently lacking. Such information is imperative to support the 

continuous usage of QACs as sanitizing agents, where and if needed, without any 

negative implications on the biological treatment systems and through them to the 

environment. Recent studies have connected QACs and antimicrobial resistance, a 

consequence of their high-volume use and discharge into the environment. A well 
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engineered system will not only insure adequate performance in terms of QACs-bearing 

wastewater treatment, but will also facilitate their management prior to discharge in order 

to avoid unwanted consequences. The present research enhances our understanding 

relative to the fate and effect of QACs in HSWW treatment systems and thus contributes 

to the effective management of QACs-bearing wastewaters. 

1.4. Thesis Organization 

The overall objective of this work was to assess the effect of QACs, mainly the 

antimicrobial benzalkonium chloride (BAC), on the efficiency of BNR within poultry 

processing wastewater treatment systems, by developing convenient and practical 

solutions to maintain the system’s resiliency and high nitrogen removal efficiency while 

treating QACs-bearing poultry processing wastewater. In order to satisfy the objectives of 

this work, the research was divided into two parts.  

The first part of the research focused on experimentally assessing the effects of 

BAC physical and chemical interactions (sorption, inhibition, and biotransformation) 

within a multi-stage BNR system treating real poultry processing wastewater.  For the 

experimental part, a laboratory-scale, continuous-flow BNR system which simulated 

three environmental conditions typically encountered in BNR systems (i.e., anaerobic, 

anoxic, and aerobic), was constructed (Chapter 4). The system nitrogen removal 

performance was examined while treating real BAC-free poultry processing wastewater 

(Chapter 4), and BAC-bearing poultry processing wastewater (Chapter 5). Bioassays 

were conducted using the mixed liquors of the laboratory-scale BNR reactors before 

(Chapter 4) and after (Chapter 5) BAC exposure to independently assess the fate and 

effect of BAC on nitrification and denitrification, as well as quantifying BAC adsorption, 
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inhibition, and biotransformation/biodegradation (Chapter 5). An additional bioassay was 

conducted to assess the effect of BAC on fermentation, hydrolysis, and ammonification 

of poultry processing wastewater (Chapter 5).    

The second part of the research focused on constructing a mathematical model 

which simulates the BNR operation and performance while treating BAC-free and BAC-

bearing poultry processing wastewater. Time series data resulting from the bioassays 

conducted before and after BAC exposure were used to evaluate kinetic parameters for 

sub-models which simulate fermentation/hydrolysis/ammonification, nitrification, and 

denitrification (Chapter 6). BAC biotransformation kinetics and inhibition sub-models 

were also evaluated (Chapter 6). The sub-models were then integrated in a 

comprehensive, ASM1-based model which simulates the BNR system operation and 

performance (Chapter 6). A sensitivity analysis was performed on the model parameters 

to identify how each parameter affects the overall model outcome (Chapter 6).  

Finally, it is recommended that the work presented here be expanded to consider 

the effect of temperature resulting from seasonal variations, the evolution of 

antimicrobial resistance and its effect on the proliferation of antibiotic resistance genes, 

as well as the use of the mathematical model developed in this study to further optimize 

the design and operation of BNR systems treating QAC-bearing wastewater (Chapter 7).    
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CHAPTER 2 

BACKGROUND 

 
 
 

2.1 High Strength Wastewater 

High strength wastewaters (HSWWs) are characterized by high levels of chemical 

oxygen demand (COD) and nitrogenous compounds (mainly ammoniac nitrogen), with 

specific characteristics depending on the wastewater source. Food and agro-industries, 

such as livestock operations, poultry processing, canning and slaughterhouses, consume a 

substantial amount of water and are considered among the main sources of HSWWs 

(Mosquera-Corral et al., 2003; Salminen and Rintala, 2003; Choi et al., 2004; Tezel et al., 

2007). Meat processing  facilities use water up to 1700 L/ton of meat for chiller showers 

(Casani et al., 2005) and poultry processing facilities use water between 26.5 and 150 

L/bird (Northcutt, 2007; Avula et al., 2009). A substantial increase in water consumption 

came with the implementation of Hazard Analysis and Critical Control Point (HACCP) in 

1998, when poultry processing facilities doubled, and in some cases tripled water 

consumption  (Northcutt and Jones, 2004; Northcutt, 2007). HACCP was developed by 

the National Advisory Committee on Microbiological Criteria for Foods (NACMCF) and 

imposed by the U. S. Food and Drug Administration (USFDA) (USFDA, 1997). HACCP 

is widely employed as a method for hazards control and risk reduction in poultry 

processing facilities (Mul and Koenraadt, 2009).  

HSWW COD levels can reach up to 8000 mg COD/L for waste slurries generated 

by livestock operations (Anceno et al., 2009), 1300-1500 mg COD/L for tannery waste 

(Carrera et al., 2003), 400-1600 mg COD/L for poultry slaughterhouse waste (after 
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recovery of blood and viscera to lower the organic load) (Del-Pozo and Diez, 2003), 

while nitrogen levels can be between  200-500 mg ammonia-N/L for tanneries waste 

(Carrera et al., 2003), and 105-320 mg ammonia-N/L for poultry slaughterhouse 

wastewater (Del-Pozo and Diez, 2003). 

2.2 Biological Nitrogen Removal (BNR) 

Despite high levels of COD and nitrogen, biological processes are successfully 

employed for HSWW treatment, achieving both COD and nitrogen removal levels that 

satisfy effluent discharge limits (Casani et al., 2005). In these treatment systems, 

emphasis is placed on biological nitrogen removal (BNR), which is achieved through a 

combination of sequential nitrification and denitrification processes. The BNR process is 

part of the naturally occurring nitrogen cycle (Figure 2.1)  

2.2.1 Nitrification 

Biological nitrification is considered the controlling factor in BNR, and its 

stability will affect the entire operation (Del-Pozo and Diez, 2003). Nitrification is an 

aerobic process carried out by two separate groups of chemolithotrophic bacteria. The 

first group (nitrosifiers) oxidizes ammonia (NH4
+) to hydroxylamine (NH2OH) by the 

membrane-bound enzyme ammonium monooxygenase (AMO). NH2OH is then further 

oxidized by the periplasmic enzyme hydroxylamine oxidoreductase (HAO) to nitrite 

(NO2
-). This group is usually called ammonia-oxidizing bacteria (AOB). The second 

bacterial group (nitrifiers), which oxidizes nitrite to nitrate (NO3
-) by means of nitrite 

oxidoreductase (Madigan and Martinko, 2006), is called nitrite-oxidizing bacteria (NOB). 

Among the two aforementioned steps, ammonia oxidation is considered the rate-limiting  
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Figure 2.1. The natural nitrogen cycle within oxic (aerobic) and anoxic environments 
(Madigan and Martinko, 2006). 
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step (Zhang et al., 2010).  Figure 2.2 shows the location of nitrification enzymes as well 

as the electron transport within AOB and NOB.  

The most commonly recognized genus of bacteria among the first bacterial group 

is Nitrosomonas; however Nitrosococcus, Nitrosovibro, and Nitrosolobus posses the 

ability to nitrosify. Nitrobacter is the most common genus among the second bacterial 

group. In addition, Nitrospira, Nitrospina, Nitrococcus, and Nitrocystis can use nitrite as 

an electron donor (Rittmann and McCarty, 2001). Furthermore, until now, no autotrophic 

bacteria that can mediate both nitrification reactions (i.e., ammonia to nitrate) have been 

identified (Kowalchuk and Stephen, 2001; Costa et al., 2006). 

Ammonia can also be oxidized under anoxic conditions in a process known as 

ANAMMOX (anaerobic ammonia oxidation). Brocadia anammoxidans, the organism 

which catalyzes the process, is a prokaryotic autotroph that utilizes a membrane-enclosed 

structure, called the anammoxosome, to perform the oxidation of ammonia with nitrite as 

an electron acceptor, yielding gaseous dinitrogen (N2) (Madigan and Martinko, 2006). 

2.2.2 Denitrification 

In denitrification (i.e., dissimilatory nitrate reduction to nitrogen gas, DNRN), 

nitrate (NO3
-) is reduced to dinitrogen gas in the absence of oxygen. This process consists 

of four reaction steps catalyzed by four enzymes: the molybdenum-containing, 

membrane-integrated, nitrate reductase (NAR) reduces nitrate to nitrite (NO2
-), nitrite 

reductase (NIR) reduces nitrite to nitric oxide (NO), nitric oxide reductase (NOR) 

reduces nitric oxide to nitrous oxide (N2O), and finally nitrous oxide reductase (N2OR) 

reduces nitrous oxide to dinitrogen gas. Denitrifiers are prokaryotic facultative aerobes, 

metabolically diverse in terms of alternative energy generating mechanisms. In addition  
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Figure 2.2. Placement of nitrification enzymes in AOB (A) and NOB (B) and electron 
flow (AMO, ammonium monooxygenase; HAO, hydroxylamine oxidoreductase)(Costa 
et al., 2006). 
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to nitrate reduction, aerobic respiration is favored when oxygen is present, and other 

electron acceptors (such as ferric iron, Fe3
+) are reduced under anoxic/anaerobic 

conditions. Many denitrifiers can also grow by fermentation (Madigan and Martinko, 

2006). The most common denitrifiers are members of Proteobacteria, and include the 

genera Pseudomonas, Alcaligenes, Paracoccus, and Thiobacillus (Rittmann and 

McCarty, 2001). Figure 2.3 shows the location of denitrification enzymes relative to the 

cell membrane and the electron transport during denitrification. 

Most denitrifying bacteria have all four reductases (i.e., nitrate, nitrite, nitric 

oxide, and nitrous oxide reductase) and thus can mediate all four N-oxides reduction 

steps. Such bacteria include Pseudomonas stutzeri, Paracoccus denitrificans, and 

Sinorhizobium meliloti (Zumft, 1997). On the other hand, some bacteria have only one or 

two of the four enzymes. For example Achromobacter and Alcaligenes odorans lack 

nitrate reductase (termed as nitrite dependant), while Escherichia coli and 

Hyphomicrobium vulgare are only capable of nitrate reduction (Knowles, 1982).  

In addition to denitrification, nitrate reduction is possible through dissimilatory 

nitrate reduction to ammonia (DNRA) (Madigan and Martinko, 2006). In DNRA, 

ammonia is produced by reducing nitrate and/or nitrite via membrane-bound nitrate and 

nitrite reductases (Brunet and Garcia-Gil, 1996). DNRA occurs at very low redox 

potential values, in the presence of sulfide, and in extremely carbon-rich environments 

(Christensen et al., 2000). DNRA takes place in anaerobic environments, such as the 

rumen, anaerobic sludge digesters, anoxic sediments and soils and is carried out primarily 

by anaerobic, fermentative microorganisms (Morkved et al., 2005). DNRA is used to  
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Figure 2.3. Location of denitrification enzymes relative to the bacterial cell membrane 
and electron flow (Pseudomonas stutzeri (A) and Escherichia coli (B))(Madigan and 
Martinko, 2006). 
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detoxify accumulated nitrite, serves as an electron sink oxidizing NADH, while its energy 

production is through electron transport phosphorylation (Tiedje, 1988).   

2.3 HSWW Biological Nitrogen Removal (BNR) Systems 

Wastewater treatment is a combination of unit operations and processes that target 

the removal of harmful constituents, ensuring the protection of public health in 

conjunction with environmental, economic, social, and political concerns 

(Tchobanoglous et al., 2007).  

For HSWW, anaerobic pretreatment is widely employed to reduce organic loads 

resulting from high COD levels, overcoming complications that will otherwise arise in 

aerobic units when degrading the high COD waste, such as oxygen limitation, high 

heterotrophic growth, and elevation of the reactor temperature, all of which can inhibit 

nitrification (Mosquera-Corral et al., 2003; Choi et al., 2004; Kim et al., 2004; Botrous et 

al., 2004). In addition, free ammonia (NH3) in the range of 0.1–1.0 mg N/L and 10–150 

mg N/L inhibits AOB and NOB, respectively, resulting in nitrite or even ammonium 

(NH4
+) accumulation (Terada et al., 2003; Kim et al., 2006). On the other hand, 

denitrification is sensitive to the carbon to nitrogen ratio (C/N), a factor critical for 

complete denitrification, and values of 3.5 - 4.5 are recommended (Henze, 1996; 

Choubert et al., 2009). High nitrogen levels can lower this ratio resulting in N2O 

emissions during the treatment process as a result of incomplete denitrification (Itokawa 

et al., 2001; Kishida et al., 2004). 

Different biological systems have been used for the efficient treatment of 

HSWWs, all of which utilize anoxic and aerobic steps, separated either temporally 

(sequencing batch reactor, SBR), or spatially (separate bioreactors with recycle), to 
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achieve both nitrogen and COD removal. To achieve the objective of nitrogen removal, 

both nitrification and denitrification must be favored, while ammonia removal alone 

requires favoring only the former process. Three treatment schemes are found to achieve 

nitrogen removal from wastewater streams (Sharma and Ahlert, 1977), as follows: 

A) Three-stage process scheme. Stage 1 is used mainly for carbon oxidation to 

decrease the carbon-to-nitrogen ratio and the organic loading to values favorable for 

nitrification.  In stage 2, oxidation of ammonia to nitrate takes place. In stage 3 reduction 

of nitrate to nitrogen gas takes place. The main drawback of such scheme is the difficulty 

of maintaining a nitrifying biomass inventory due to the very low biomass yields at low 

COD/N ratios. In addition, such systems produce biomass with poor settling 

characteristics. 

B) Two-step, combined process schemes for nitrogen removal, where both carbon 

oxidation and nitrification are carried out in the same reactor, i.e., simultaneous carbon 

oxidation and nitrification in one stage and denitrification in a second stage. The 

denitrification step could be performed before the carbon and ammonia oxidation step, 

thus utilizing the organic content of the wastewater as carbon source.  Shortcomings of 

such scheme are the production of relatively high amounts of waste sludge and the higher 

vulnerability of the combined carbon oxidation and nitrification to variations in organic 

loading and toxicants. 

C) Single-stage process scheme, where both nitrification and denitrification take 

place in the same reactor. Physical (baffles) or temporal (on and off aeration) separation 

ensures that both processes take place. The organic content of the wastewater can be 
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utilized as a carbon source for denitrification. The main concern in this scheme is sludge 

bulking in the final clarifier, especially during winter.   

Different nitrogen and ammonia removal efficiencies have been reported for 

HSWWs BNR systems. The SHARON (Single reactor system for High activity 

Ammonia Removal Over Nitrite) process, which operates at a high temperature (30-

40oC) and pH (7-8), was developed to treat centrifuged digested sludge effluent (up to 

800 mg COD/L and 1000 mg ammonia-N/L). The higher temperature increases the 

specific growth rate of AOB compared to NOB, which eliminates the need for sludge 

retention and favors the prevention of nitrite oxidation. Denitrification is used to control 

the pH and up to 85% ammonium conversion is achievable (Hellinga et al., 1998). Pilot 

and full-scale results by a study which targeted nitrogen removal via nitrite for digester 

supernatant in a sequencing batch reactor (SBR) and a SHARON system, reported a 

nitrogen removal efficiency of over 90% with a C/N ratio of just  2.2, but resulted in N2O 

emissions (Fux et al., 2003).  

The Bardenpho process is a process in which pre- and post-denitrification is used 

in separate reactors. A study conducted using four stages in total (anoxic-aerobic-anoxic-

aerobic), with external carbon and pH control, achieved 90% nitrogen removal from real 

waste containing up to 2200 mg ammonia-N/L (Ilies and Mavinic, 2001).  

A combination of two fixed-film bioreactors (FFB), the first anaerobic and the 

second aerobic, connected in series with recirculation achieved 92% organic removal 

under 390 g COD/m3·day loading and 95% nitrogen removal under 0.064 kg 

TKN/m3·day loading (TKN, Total Kjeldahl Nitrogen) (Del-Pozo and Diez, 2003). 

Nitrogen and organic matter removal efficiencies up to 92% were obtained with an 
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aerobic, fixed-film bioreactor treating poultry slaughterhouse wastewater at loading rates 

up to 200 g TKN/m3·day and 800 g COD/m3·day (Del Pozo et al., 2004).  

Two up-flow anaerobic sludge blanket (UASB) reactors were used to treat 

slaughterhouse wastewater, achieving total and soluble COD removal of 67% and 85%, 

respectively, but nutrients levels in the effluent were high and required further advanced 

treatment (Del Nery et al., 2007). A full-scale application of partial nitritation and 

anammox in a single, suspended-growth sequencing batch reactor (SBR) was used to 

remove nitrogen from an ammonium-rich wastewater with low concentrations of COD 

and suspended solids, achieving over 90% nitrogen conversion to N2 while treating 200 

mg ammonia-N/L, but high N2O emissions were observed (Joss et al., 2009). 

2.4 Quaternary Ammonium Compounds (QACs) 

QACs are produced by a nucleophilic substitution reaction of -olefins or tertiary 

amines by an alkyl halide or benzyl halide (Boethling, 1984). QACs can be classified in 

three major groups, depending on the type of the functional groups: monoalkonium, 

dialkonium and benzalkonium halides (Tezel, 2009). QACs are used in a multitude of 

applications, such as antimicrobials, cosmetics, pharmaceuticals, fabric softeners, and 

binding agents (Cross and Singer, 1994). The focus of this work is antimicrobial QACs. 

2.4.1 QACs structure and properties 

QACs are organic compounds that contain a central nitrogen atom covalently 

attached to four functional groups (R4N+). At least one group (R) is a long-chain alkyl 

and the other groups are either methyl or a benzyl group (Cross and Singer, 1994). Figure 
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2.4 shows the chemical structure of commonly used QACs. Both structure and chain 

length of the functional groups varies. 

QACs are large molecules (molecular weights between 300 and 400 g/mole); they 

are odorless and have a benign effect on synthetic materials including plastics, rubber, 

ceramic, and stainless steel. QACs may be freely soluble or insoluble in water. The 

aqueous solubility of QACs decreases as the hydrophobicity or the alkyl chain length of 

the molecule increases (Boethling, 1984). Due to their structure, QACs are composed of 

two distinctly different moieties (Figure 2.5): hydrophobic alkyl groups and a 

hydrophilic, positively charged central N atom, which retains its cationic character at any 

pH value. The two moieties affect the physical/chemical properties of QACs (Cross and 

Singer, 1994) and explain the bioactivity of these compounds.  

2.4.2 QACs as antimicrobial agents 

QACs have a broad spectrum antimicrobial activity over a wide range of pH 

against a variety of bacteria, fungi and viruses (Sundheim et al., 1998). QACs have 

several advantages over other commonly used disinfectants, such as no corrosiveness, 

relatively low toxicity and high surface activity (Langsrud and Sundheim, 1997). QACs 

have three targets on viable bacterial cells: cell wall, cytoplasmic membrane and 

cytoplasm. The cytoplasmic membrane is where QACs are usually more bioactive 

(Ioannou et al., 2007). Figure 2.6 shows the three mechanisms of biocidal action of 

QACs, which are: physical disruption of the membrane, dissipation of the proton motive 

force, and inhibition of membrane-associated enzyme activity. The structural 

functionality of QACs, especially the role of the alkyl chain length, has an effect on their 

bioactivity. QACs with a hydrophobic tail (C16) affect the outer membrane of gram- 
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Figure 2.4. Chemical structure of QACs. Benzalkonium chloride (A) and Alkyl (R1, R2) 
dimethyl ammonium chloride (B).  

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.5. Hydrophobic and hydrophilic regions of a QAC (Example shown is 
benzalkonium chloride). 
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Figure 2.6. Modes of biocidal action of QACs: inhibition of membrane-associated 
enzyme activity (A), dissipation of the proton motive force (B), physical disruption of the 
membrane  resulting in cell lysis (C). 
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negative bacteria more extensively than shorter-chain compounds, possibly due to strong 

interaction between the long chain and the fatty acid portion of lipids. In contrast, mono-

alkyl QACs bind by ionic and hydrophobic interactions to microbial membrane surfaces, 

with the cationic head group facing outwards and the hydrophobic tails inserted into the 

lipid bi-layer, causing rearrangement of the membrane and subsequent leakage of 

intracellular constituents (Ioannou et al., 2007). 

The most commonly used antimicrobial QACs are dialkonium and benzalkonium 

chlorides (BAC) (Tiedink, 2001). It has been reported that a mixture of three 

benzalkonium chloride homologues (C12, C14, and C16) caused loss of membrane integrity 

of Staphylococcus aureus ��	�������������	�	�����	�������	���"	�
	����
�#	��	$�
�	

�'���	*�<	�����	����>?�	���	�@	#�#���	#����\��	��������	\����de (DDAC). A 

catastrophic membrane collapse by both BAC and DDAC occurred above concentrations 

�@	><	�����	����*^?	���	��#	>�	�����	����?^�	���"	��
��������	�Ioannou et al., 2007). 

In addition, at relatively lower concentrations disruption of the cytoplasmic membrane 

can lead to potassium ion leakage thereby affecting intracellular homeostasis, which may 

initiate autolysis through activation of latent ribonucleases (Denyer and Stewart, 1998; 

Ioannou et al., 2007). Autolysis is an intracellular event where the cell enters a self-

destruct state and becomes committed to death.  

2.4.3 QACs adsorption 

QACs adsorb strongly to suspended solids such as biomass and inorganic 

particles leading to their accumulation in wastewater biosolids, soil, and aquatic 

sediments (Cross and Singer, 1994). The adsorption affinity and characteristics differ 

based on the structure of the QAC, yet can be determined by adsorption isotherms, which 



21 
 

may also provide information on the availability of target sites (Giles et al., 1974; 

Ioannou et al., 2007). Equilibrium adsorption behavior of QAC antimicrobials is mostly 

expressed by the Freundlich isotherm, i.e., qe = KF×Ce
n, where qe is the QAC 

concentration on the adsorbent at equilibrium (mg QAC/g sorbent), Ce is the QAC 

concentration in the liquid-phase at equilibrium (mg QAC/L), Kf  is the adsorption 

capacity factor ((mg QAC/g adsorbent)(L/mg QAC)n), and n is the Freundlich intensity 

parameter (exponent). Table 2.1 shows the Freundlich isotherm parameters of a group of 

BACs with different adsorbents.  

Relative to adsorption to biomass, QACs with a longer alkyl chain have a higher 

adsorption capacity compared to QACs with a shorter alkyl chain. The presence of a 

benzyl group enhances QACs adsorption, but this effect diminishes as the alkyl chain 

length increases. In addition, the extent of adsorption of QACs with relatively lower 

adsorption affinity decreases in binary mixtures of QACs with higher adsorption affinity, 

even at relatively low concentrations of the latter (Ismail et al., 2010). Temperature has a 

detrimental effect on QACs adsorption to biomass. For example, C14 BAC adsorption 

was more favored at low temperature (Ren et al., 2011), suggesting that QACs adsorption 

is an exothermic process. The adsorption behavior of QACs is also affected by the 

presence of electrolytes due to the presence of the positively charged nitrogen atom. The 

presence of sodium chloride and sodium sulfate in QACs aqueous solutions increased the 

hydrophobicity of QACs, resulting in higher adsorption capacity on activated carbon 

(Pahari and Sharma, 1993). 

One aspect where adsorption could play an important, and some time critical, role 

is QACs bioavailability. In aqueous systems, the liquid-phase QACs concentration is  
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Table 2.1. Literature Freundlich isotherm parameters for different BACs. 
  

QAC Adsorbent Kf n Reference 

BTEAa Course Activated Carbon 0.009 0.63 Pahari and 
Sharma, 1993 Fine Activated Carbon 0.011 0.69 

C12-C14-C16BDMAb Activated Sludge 42.1 0.25 Zhang et al., 2011 
C12BDMA Primary sludge 4.73 0.83 

Ismail et al., 2010 

C16BDMA 20.73 0.76 
C12BDMA Waste activated sludge 3.81 0.86 
C16BDMA 18.89 0.74 
C12BDMA Mesophilic digested sludge 10.76 0.58 
C16BDMA 82.03 0.56 
C12BDMA Thermophilic digested 

sludge 
9.76 0.63 

C16BDMA 99.66 0.48 
C14BDMA Activated Sludge 70.2 0.39 Ren et al., 2011 
a BTEA, benzyl triethyl ammonium chloride 
b BDMA, benzyl dimethyl ammonium chloride 
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controlled by the extent of adsorption. At high adsorbent concentrations the QACs liquid-

phase concentration will decrease dramatically, reducing their bioavailability, potency, 

and ultimately their effect on the system. Zhang et al. (2010) studied the adsorption 

behavior of a BAC mixture in activated sludge systems and found that increased biomass 

concentration (the adsorbent) reduced the QACs liquid-phase concentration resulting in 

lower toxicity.  

2.4.4 QACs biotransformation 

 The alkyl chain length of QACs not only determines their physical/chemical 

properties, but also affects the fate and effect of these compounds in the environment. 

Under aerobic conditions, the biotransformation of QACs generally decreases as the 

number of the alkyl groups with more than one carbon increases. Substitution of a methyl 

group with a benzyl group further decreases QAC biotransformation potential (Ying, 

2006; van Ginkel and Kolvenbach, 1991; Sutterlin et al., 2008a).  

The general pathway of aerobic QAC biodegradation is a combination of hydrocarbon 

and N-methylamine biotransformation. Monooxygenase-catalyzed C-N bond cleavages 

take place resulting in dealkylation and demethylation, followed by -oxidation, TCA 

cycle and final mineralization (Figure 2.7) (van Ginkel et al., 1992; Nishiyama et al., 

1995; Kim et al., 2001). On the other hand, benzalkonium chloride C-N bond fission in 

aerobic biodegradation is believed to require an oxygen independent dehydrogenase 

(Figure 2.8) (Patrauchan and Oriel, 2003). 

QACs are recalcitrant under anoxic and anaerobic conditions as previously 

reported (Garcia et al., 2006; Tezel et al., 2006; Tezel et al., 2007; Tezel et al., 2008).  
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Figure 2.7. Monooxygenase-catalyzed C-N bond cleavages in QACs degradation 

(adapted from van Ginkel et al., 1992) 
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Figure 2.8. Dehydrogenase-catalyzed C-N bond cleavages in BAC degradation (adapted 

from Patrauchan and Oriel, 2003) 

  



26 
 

BAC transformation under anoxic/anaerobic (nitrate reducing) conditions was 

only recently reported by means of an abiotic (yet biologically initiated) reaction. This 

BAC transformation followed the modified Hofmann degradation pathway, producing 

alkyl dimethyl amines (tertiary amines) at equimolar levels to BAC transformed, which 

were not further degraded under the conditions of this previous study (Tezel and 

Pavlostathis, 2009). 

2.4.5 QACs interaction with BNR systems 

The main sources of HSWWs are industries which require a high level of 

sanitation during their production stages (food industries, slaughterhouses, poultry 

processing, and caning). Federal and state regulations require that equipment and 

facilities used for the first processing of all animal products prepared for human 

consumption be completely cleaned after every 8 hours of operation to maintain sanitary 

conditions (USEPA, 2004). Sanitary conditions are established within such 

establishments by using industrial sanitizers. The use of sanitizers is likely to increase as 

poultry processing plant operators face more stringent regulations related to water 

consumption and conservation, while complying with more strict sanitation rules and 

wastewater regulations (USEPA, 2004). QAC antimicrobial compounds, mainly BAC, 

are among the most widely used active ingredients in industrial sanitizers (Langsrud and 

Sundheim, 1997; Denyer and Stewart, 1998; Mullapudi et al., 2008; Sutterlin et al., 

2008b). 

Wastewater generated by QACs-using industries present a challenge to biological 

treatment systems, mainly because QACs, as potent biocides, lack selective toxicity and 

target specificity (Ioannou et al., 2007). Therefore, the bioactivity of QACs is carried 
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over with the wastewater targeting different microbial groups employed in biological 

treatment systems, thus affecting the key biological processes in the treatment system. 

 In anaerobic treatment, inhibition of methanogenesis by QACs is of great 

concern (Shcherbakova et al., 1999), where QACs at 25 mg/L or higher totally inhibited 

methanogenesis (Tezel et al., 2006). Nitrifying bacteria are severely affected by QACs 

(Kreuzinger et al., 2007; Yang, 2007), potentially by affecting the specific uptake 

mechanism for ammonium (Sutterlin et al., 2008a). BAC concentrations of 2 mg/L 

resulted in total inhibition of nitrification (Sutterlin et al., 2008a).  In addition, the QACs 

inhibitory effect on nitrification is long-lasting. Pavlostathis et al. (2008) reported a long-

term nitrification inhibition in the aerobic mixed liquor of a BAC-exposed BNR plant 

treating poultry processing wastewater, and that nitrification recovery was only possible 

after 30 days of the initial BAC exposure in the affected plant. Taking into account that 

nitrification is considered as the controlling process in BNR (Del-Pozo and Diez, 2003), 

QACs may have a pronounced, devastating effect on the overall BNR process 

performance.  

QACs also inhibit denitrification. The effect of QACs on denitrification was 

previously investigated and was reported that QACs at and above 50 mg/L inhibited 

DNRA and caused incomplete denitrification resulting in the accumulation of nitrous 

oxide (Tezel et al., 2008). Regulations require low levels of total effluent nitrogen 

(USEPA, 2004), a goal achieved by maintaining a complete and efficient denitrification 

process in BNR systems. Furthermore, incomplete denitrification can result in nitrous 

oxide production rather than dinitrogen (Otte et al., 1996). Nitrous oxide is a potent 

greenhouse gas (Czepiel et al., 1995), and its emissions are strictly regulated (USEPA, 
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2010). Therefore, maintaining an efficient denitrification process during wastewater 

treatment is of paramount importance. 

2.5 Kinetics and Modeling of BNR Processes 

Kinetics of microbially-mediated reactions are generally modeled with one 

fundamental assumption: the microbial growth rate of a specific population (X) is 

stoichiometrically dependent on the utilization rate of a growth-limiting substrate(s): 

dt
dS

Y
dt

dS
Y

dt
dS

Y
dt

dX n
n

a ...2
2

1
1

                                    
(Equation 2.1) 

where Xa and S1 to Sn are the active microbial population and the limiting substrate(s) 

concentration in the system, respectively, and Y1 to Yn are the stoichiometric microbial 

yield coefficients for each substrate. Modeling of nitrification and denitrification kinetics 

follows the same approach. 

2.5.1 Kinetics of nitrification 

 As discussed in section 2.2.1 above, biological autotrophic nitrification is 

achieved through a two-step process, NH4
+_	`{2

- and NO2
-_	`{3

-, mediated by two 

distinct microbial groups. For the first step of nitrification, mediated by AOB, both 

ammonia (Hellinga et al., 1999; Van Hulle et al., 2007) and ammonium (Hao et al., 2002; 

Moussa et al., 2005; Kampschreur et al., 2008) have been used as the initial substrate for 

AOB. In either case, the Monod equation is used to describe the substrate limitation on 

growth (Sin et al., 2008).  Additional terms are also used for the first step, mainly to 

account for total ammonia and nitrous acid inhibition, pH effect on growth, and oxygen 
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and inorganic nitrogen limitation (Sin et al., 2008). Maximum specific growth rates for 

AOB values range between 1 and 2.1 d-1 (Hellinga et al., 1999; Moussa et al., 2005; Van 

Hulle et al., 2007), while half-saturation constant values range between 0.42 and 1.0 mg 

N/L (Hellinga et al., 1998; Henze et al., 2000; Sin et al., 2008; Fang et al., 2009) 

In the second step of nitrification, mediated by NOB, both nitrite (Hao et al., 

2002; Moussa et al., 2005) and nitrous acid (Hellinga et al., 1999; Pambrun et al., 2006) 

have been used as the initial substrate. Again, similar to the first step, the Monod 

equation is used to describe the substrate limitation on growth (Sin et al., 2008). 

Maximum specific growth rates for NOB values range between 0.56 and 1.05 d-1 

(Hellinga et al., 1999; Moussa et al., 2005; Van Hulle et al., 2007), while half-saturation 

constant values range between 0.05 and 2.0 mg N/L (Hellinga et al., 1998; Henze et al., 

2000; Sin et al., 2008; Fang et al., 2009). The wide variation of the reported parameter 

values is related to different conditions and factors, such as process characteristics and 

history, experimental technique, substrate diffusion, biomass adaptation, and finally 

model structure (Sin et al., 2008). 

2.5.2 Kinetics of denitrification 

As discussed in section 2.2.2 above, at the enzymatic level, denitrification is a 

four-step process, i.e., NO3
-  NO2

-  NO  N2O  N2. However, denitrification may 

be carried out entirely by one group of denitrifying heterotrophic microorganisms leading 

to complete denitrification or by the activity of more than one group of denitrifying 

heterotrophic microorganisms leading to partial denitrification, i.e. different steps carried 

out by different organisms (Knowles, 1982; Zumft, 1997; Sin et al., 2008). As a result, in 

mixed culture systems, complete denitrification relies on several bacterial species.   
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Mathematically, denitrification can be described as if the reduction steps are 

carried out sequentially (i.e., by the use of mixed-substrate expressions) or 

simultaneously (i.e., by the use of single-substrate expressions). In either case, the Monod 

equation is commonly used to describe the substrate limitation on growth (Sin et al., 

2008). A common assumption in denitrification models is that the last two steps of the 

denitrification process occur faster than the former two steps; hence, the kinetic 

description of nitric oxide (NO) and nitrous oxide (N2O) formation/consumption is 

neglected. 

As in the case of nitrification, denitrification models assume that the microbial 

growth rate is limited by the substrate utilization rate. Moreover, organic carbon 

utilization is included in the models to reflect the dependency of facultative denitrifiers 

on carbon. Finally, an anoxic growth factor is introduced alongside the substrate 

utilization rate to account for the reduction of growth rate under anoxic conditions (Sin et 

al., 2008). Not doing so may result in an overall denitrification rate that is higher than the 

aerobic respiration rate. Reported values for the maximum specific growth rate on nitrate 

range between 1.5 and 3 d-1, while half-saturation constant values range between 0.14 and 

0.5 mg N/L (Hellinga et al., 1999; Sin et al., 2008; Kaelin et al., 2009). Anoxic growth 

factor values range between 0.25 and 0.8. For nitrite, reported maximum specific growth 

rate values range between 1.5 and 3 d-1, while half-saturation constant values range 

between 0.12 and 0.5 mg N/L (Hellinga et al., 1999; Sin et al., 2008; Kaelin et al., 2009). 

Discrepancies in reported values are related to process characteristics and history, type of 

organic carbon source, substrate diffusion, biomass adaptation, and finally model 

structure (Sin et al., 2008). 
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2.5.3 Modeling of BNR systems 

BNR processes are generally modeled within activated sludge models. The 

benchmark for activated sludge models is the International Water Association (IWA) 

Activated Sludge Model (ASM), with its four variations: ASM1, ASM2, ASM2d, and 

ASM3. The ASM1 was initially developed to be a platform that can be used for future 

development of models for nitrogen-removing activated sludge processes (Henze et al., 

2000).  After its initial introduction, many development steps resulted in different 

variations of the ASM: ASM1, includes nitrogen removal processes, ASM2 includes 

biological phosphorus removal processes, ASM2d includes denitrifying,  phosphate-

accumulating organisms (PAOs), and ASM3, is based on the concept of internal storage 

of compounds, which in turn affect the metabolism of the organisms in activated sludge 

processes (Henze et al., 2000).  Regarding nitrogen removal, activated sludge models are 

built to model single-step nitrification and denitrification. In reality, as mentioned above, 

both the nitrification and denitrification processes have multiple steps. The new aspects 

brought about by the newer ASM models, have yet to be fully embraced by the 

international community. Despite the limitations of ASM1, its universal appeal and 

practical verification overshadow its limitations (Alex et al., 2003). 

 The main structure of the ASM models is based upon utilizing multiple rate 

processes which connects a group of variables and parameters in a structured model. The 

processes mainly reflect microbial growth/decay, substrate utilization, and inhibition. 

Figure 2.9 shows how the different variables are connected in the ASM1 model. The 

processes included in the ASM1 are: 
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1. Aerobic growth of heterotrophs utilizing organic carbon, oxygen, and ammonia 

2. Anoxic growth of heterotrophs utilizing organic carbon, nitrate, and ammonia 

3. Aerobic growth of autotrophs utilizing oxygen and ammonia 

4. Decay of heterotrophs 

5. Decay of autotrophs 

6. Ammonification of soluble organic nitrogen 

7. Hydrolysis of entrapped organics 

8. Hydrolysis of entrapped organic nitrogen 

Both microbial growth and substrate utilization rates are modeled after Monod-

type equations, while the remaining processes are modeled as first-order processes. All of 

the eight processes are taking place at the same time.  

The ASM1 has some restrictions and limitations. The model assumes constant 

temperature, neutral pH, rate coefficients and parameters do not depend on concentration 

(i.e., they are constant), and there are no nutrient limitations (i.e., nitrogen, phosphorus, 

vitamins, and trace minerals are in excess relative to stoichiometry). Because of the 

above limitations, direct use of the ASM1 is almost non-existent, but ASM1 has been 

used as the core of numerous models with various modifications to fit almost every case 

(Henze et al., 2000). 
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Figure 2.9. ASM1 general overview. Variables are encircled while arrows represent the 
different processes (Alex et al., 2008). 
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2.6 Problem Identification 

QAC antimicrobial compounds present a challenge to BNR operation because of 

the inhibitory effect on both nitrification and denitrification. As discussed above, QACs 

is unlikely to inhibit municipal wastewater treatment at the levels normally expected in 

such systems. However, the extensive use of QACs in food-processing facilities, mainly 

poultry and meat processing plants, results in relatively high concentrations of QACs in 

the HSWW generated in such facilities. Moreover, sudden discharges of QACs resulting 

from accidental spills could upset the BNR plant function. 

Previous studies related to the effect of QACs on BNR processes (i.e., 

nitrification and denitrification) were conducted on individual biological processes within 

the confinement of a single environmental condition (aerobic or anoxic) and did not 

assess the effect of QACs on multiple reactions under alternating conditions (e.g., 

sequence of nitrification/denitrification). The latter is typical in engineered BNR systems 

in which multiple environmental conditions are specifically created to sustain different 

microbial groups which mediate the continuous treatment process. Moreover, different 

physiological groups participate in the biological nitrogen removal from poultry 

processing wastewater, and the response of each species to QAC inhibition is expected to 

be different in terms of both degree and extent. 

As shown in Figure 2.10, the fate and effect of QACs in a continuous-flow, multi-

stage BNR system can be divided into three main sub-processes: adsorption, inhibition, 

and biotransformation. The contribution of each sub-process will differ depending on the 

prevailing environmental conditions. Having a clear understanding of the degree and 

extent of QACs chemical and physical interactions is of vital importance when faced with 
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the challenge of maintaining an adequate treatment capacity while handling QACs-

bearing HSWW (the poultry processing wastewater). This information is currently 

lacking, which became the impetus of the present research. 
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Figure 2.10. A schematic representation of three sub-processes related to the fate and 
effect of QACs in a biological treatment system. Circles represent the three sub-processes 
and arrows represent the sequential change of environmental conditions in the BNR 
system (anaerobic-anoxic-aerobic). 
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CHAPTER 3 

MATERIALS AND METHODS 

 
 
 

3.1 General Analytical Methods 

3.1.1 pH 

All pH measurements were performed using the potentiometric method with a 

ATI Orion Model 370 digital pH meter (Orion Research Inc., Boston, MA) and a gel-

filled combination pH electrode (VWR International, West Chester, PA). The meter was 

calibrated weekly with pH 4.0, 7.0, and 10.0 standard buffer solutions (Fisher Scientific, 

Pittsburg, PA).   

3.1.2 Ammonia 

Ammonia was measured using the distillation method described in Standard 

Methods (Eaton et al., 2005). The samples were centrifuged at 10,000 rpm for 15 minutes 

��#	@������#	�\����\	�	���	��	�����������
�	���'����	@�����	�|�
\��	}�����@�"	

Pittsburgh, PA). Ammonia distillation was performed using a distillation apparatus 

(Labconco Corp., Kansas City, MO). The distillate was then titrated with 0.2 N H2SO4 

and the ammonia was quantified.   

3.1.3 Total and Soluble Chemical Oxygen Demand (tCOD and sCOD)  

COD was measured using the closed reflux, colorimetric method as described in 

Standard Methods (Eaton et al., 2005). An aliquot of 3 mL digestion solution composed 

of 4.9 g K2Cr2O7, 6 g HgSO4, 6 g Ag2SO4 
and 500 mL H2SO4 was transferred to HACH® 



38 
 

COD digestion vials (HACH® Company, Loveland, CO) and then 2 mL of sample was 

added to the vial. After tumbling the vial 4 to 8 times, the vial content was digested at 

150oC for 2 hours and then cooled down to room temperature. The absorbance was 

measured at 620 nm with a Hewlett-Packard Model 8453 UV/Visible spectrophotometer 

(Hewlett-Packard Co., Palo Alto, CA) equipped with a diode array detector, deuterium 

and tungsten lamps and a 1 cm path length. Samples were centrifuged and filtered 

�\����\	�	���	��	�����������
�	���'����	@�����	�@	�\�	
~{�	��
	���
���#�	��\����
�"	

well-mixed samples were used after appropriate dilution for tCOD measurements. All 

samples were prepared in triplicate and a calibration curve was prepared using 1 g/L 

standard solution of potassium hydrogen phthalate (KHP). 

3.1.4 Total and Volatile Suspended Solids (TSS and VSS)  

TSS and VSS were determined according to procedures described in Standard 

Methods (Eaton et al., 2005). Whatman GF/C glass fiber filters (47 mm diameter and 1.2 

��	�������	����	
����	�\�����"	|���\��	����"	`��	����	��
\�#	���\	#�-ionized (DI) 

water and ignited at 550oC for 20 minutes in a Fisher Isotemp Model 550-126 muffle 

furnace before use. The filters were then cooled in a desiccator and weighed. Samples of 

known volume were filtered through the glass fiber filters. The filters were then rinsed 

with 10 mL DI water to remove dissolved organics and inorganic salts. The filters 

containing the samples were dried at 105oC for 90 minutes. After cooling in a desiccator, 

the dry weight was recorded and the filters containing the dry samples were ignited at 

550oC for 20 minutes. After ignition, the samples were cooled down in a desiccator and 

the weight was measured. TSS and VSS concentrations were then calculated using the 

equations below. 
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TSS (mg/L) =
Filter weight after 105oC (mg) � Filter tare weight (mg)

Sample volume (L)
 

VSS (mg/L) =
Filter weight after 105oC (mg) � Filter weight after 550oC (mg)

Sample volume (L)
 

3.1.5 Total Gas Production  

Total gas production in closed assay bottles and large volume reactors was 

measured by either the gas-water displacement method or with a VWR Pressure/Vacuum 

transducer (resolution –1 atm to 1.974 atm with an accuracy of 0.002 atm). 

3.1.6 Gas Composition  

The gas composition was determined by a gas chromatography (GC) unit (Agilent 

Technologies, Model 6890N; Agilent Technologies, Inc., Palo Alto, CA) equipped with 

two columns and two thermal conductivity detectors. Dinitrogen (N2) was separated with 

a 15 m HP-Molesieve fused silica, 0.53 mm i.d. column (Agilent Technologies, Inc.). 

Carbon dioxide (CO2), nitric oxide (NO) and nitrous oxide (N2O) were separated with a 

25 m Chrompac PoraPLOT Q fused silica, 0.53 mm i.d. column (Varian, Inc., Palo Alto, 

CA). Helium was used as the carrier gas at a constant flow rate of 6 mL/min. The 10:1 

split injector was maintained at 150oC, the oven was set at 40oC and the detector 

temperature was set at 150o~�	���	��
	�����
�
	����	���@����#	'�	��$�����	�	>��	��	��
	

sample. The minimum detection limit for CO2, NO, N2O and N2 
was, 800, 500, 7 and 50 

ppmv, respectively. 

3.1.7 Volatile Fatty Acids (VFAs)  

VFAs (C2 
to C7, i.e., acetic, propionic, iso-butyric, n-butyric, iso-valeric, n-

valeric, iso-caproic, n-caproic and heptanoic acids) were measured after acidification of 
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filtered samples with a 2.5% H3PO4 
solution containing 1.5 g/L acetoin as the internal 

standard (sample:acid, 2:1 volume ratio) using an Agilent 6890 Series GC unit equipped 

with a flame ionization detector and a 35-m Stabilwax-DA, 0.53-mm I.D. column 

(Restek, Bellefonte, PA). Samples used for the measurement of VFAs were prepared by 

centrifugation at 10,000 rpm for 30 minutes and filtration through 0.22-��	���|	

membrane filters before acidification. The minimum detection limit for each acid 

mentioned above was 0.25, 0.10, 0.03, 0.02, 0.10, 0.08, 0.02, 0.02, 0.05 mM, 

respectively. 

3.1.8 Nitrite and Nitrate 

 Nitrite (NO2
-) and nitrate (NO3

-) concentrations were determined using a Dionex 

DX-100 ion chromatography unit (Dionex Coorporation, Sunnyvale, CA) equipped with 

a suppressed conductivity detector, a Dionex IonPac AG14A (4x50mm) precolumn, and 

a Dionex IonPac AS14A (4x250 mm) analytical column. The unit was operated in 

autosupression mode with 1 mM NaHCO3/8 mM Na2CO3 
eluent and a flow rate of 1 

�������	���	 
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The minimum detection limit for nitrite and nitrate was 0.02 and 0.04 mM, respectively.   

3.1.9 Dissolved Oxygen (DO) 

The DO concentration of the cultures used in this study was measured using the 

polarographic method (Eaton et al., 2005) with a YSI Model 58 oxygen meter in 

conjunction with a YSI 5750 oxygen probe (Yellow Springs Instrument, Yellow Springs, 

OH). The instrument was calibrated to water-saturated air (at a given temperature) before 

each use and the probe electrolytic solution and membrane were changed periodically. 
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3.1.10 Total Nitrogen (TN) 

Total nitrogen was measured using the alkaline persulphate digestion method 

(HACH method NO. 10072). The nitrogen of 0.5 mL sample aliquot was digested and 

oxidized to nitrate in an alkaline persulphate solution at 104oC in glass digestion vials for 

30 minutes. Nitrate was then reduced to nitrite in an alkaline hydrazine sulphate solution, 

containing copper as a catalyst. The resulting nitrite was reacted with sulphanilamine 

under acidic conditions to form a diazo compound, coupling with 

naphthylethylenediamine forming an azo dye. The resulting color intensity was 

proportional to the sample nitrogen concentration. Absorbance was measured at 410 nm 

with a Hewlett-Packard Model 8453 UV/Visible spectrophotometer (Hewlett-Packard 

Co., Palo Alto, CA) equipped with a diode array detector, deuterium and tungsten lamps 

and a 1 cm path length. Well-mixed samples were used after appropriate dilution for TN 

measurements. All samples were prepared in triplicate and a calibration curve was 

prepared using 1 g/L standard solution of ammonium chloride. Figure 3.1 shows the 

calibration curve.  

3.1.11 Total Carbohydrates 

Total carbohydrates were measured using the anthrone method (Morris, 1948). The 

anthrone solution was prepared by dissolving 1 g of anthrone (Sigma Aldrich) in 500 mL 

98% H2SO4. Each sample was digested in glass digestion vials with the 0.2% anthrone 

solution for 15 minute in a boiling water bath. Absorbance was measured at 620 nm with 

a Hewlett-Packard Model 8453 UV/Visible spectrophotometer (Hewlett-Packard Co., 

Palo Alto, CA) equipped with a diode array detector, deuterium and tungsten lamps and a 

1 cm path length. Well-mixed samples were used after appropriate dilution for total 
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carbohydrates measurements. All samples were prepared in triplicates and a calibration 

curve was prepared using 1 g/L standard solution of glucose. Figure 3.2 shows the 

calibration curve.  

3.1.12 Total Lipids 

Total lipids were measured using a gravimetric method after liquid-liquid 

extraction with chloroform and methanol (Pavlostathis, 1985). A sample aliquot was pre-

acidified using 1.0 N hydrochloric acid to pH  3, and then mixed with 40 and 100 mL 

chloroform and methanol, respectively, in a blender for 1 minute. An additional 60 and 

40 mL of chloroform and methanol was added with further mixing. The blender contents 

were then filtered through a No.40 Whatman® filter, and the filtrate transferred into an 

extraction funnel and allowed to separate overnight. The chloroform bottom layer was 

transferred to a pre-weighed Erlenmeyer flask (initial flask weight) and the chloroform 

was evaporated by placing the flask on a heating plate set at 80oC. The flask was then 

placed in a 100oC oven in order to dry the remaining solvent. After being cooled in a 

desiccator, the flask was weighed again (final flask weight) and the total lipids 

concentration was calculated by the equation below.      

Total Lipids (mg/L) =
Final flask weight  (mg) � Initial flask weight (mg)

Sample volume (L)
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Figure 3.1. Calibration curve for the total nitrogen analysis by the alkaline persulphate 
digestion method. 

 

 

 

 

Figure 3.2. Calibration curve for the total carbohydrates analysis by the anthrone method.   
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3.2 Analysis of BACs 

3.2.1 Disulfine Blue Pair-Ion Extraction Method (DSB-PIX) 

The BACs concentration in whole and centrifuged culture samples was measured 

using a previously reported and modified disulfine blue pair-ion extraction (DSB-PIX) 

method (HMSO, 1981; Tezel et al., 2006). According to this method, an anionic dye-

QAC ion pair is formed, which is then solvent extracted, and the color intensity in the 

solvent phase is measured spectrophotometrically. Analyses were carried out in 25-mL 

test tubes by adding 5 mL of acetate buffer, 2 mL of dye solution and 2 mL of the 

sample. The acetate buffer included 115 g anhydrous sodium acetate and 35 mL glacial 

acetic acid in 1 L DI water. The dye solution was prepared by dissolving 0.16 g of Patent 

Blue VF (Acros Organics, N.J., USA) in 2 mL ethanol and diluting to 250 mL with DI 

water. Addition of 10 mL of methylene chloride to the 25-mL test tube resulted in the 

formation of a biphasic solution that was tumbled for 24 hours in order to achieve 

complete transfer of the dye-QAC ion pair into the solvent phase. A portion of the bottom 

solvent layer was then transferred into 2-mL clear glass vials and the color intensity 

measured with a UV/Vis HP model 8453 spectrophotometer equipped with a diode array 

detector (Hewlett-Packard Co., Palo Alto, CA, USA). The QAC concentration was 

quantified based on sample absorbance at the characteristic maximum wavelength of 628 

nm and previously prepared calibration curves for BAC at a concentration range 0 to 30 

mg/L (Figure 3.3). Methylene chloride was used as the blank for all spectrophotometric 

analyses. The minimum method detection limit was 0.2 mg/L. Major BAC transformation 

products reported so far include tertiary and secondary amines which are positively 
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charged at neutral pH. Interference of these compounds with the quantification of BACs 

with the DSB-PIX method is insignificant (Tezel, 2009). 

 

 

 

Figure 3.3. Calibration curve for the BAC analysis by the DSB-PIX method.   
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3.2.2 High Performance Liquid Chromatography (HPLC) 

Benzalkonium chlorides as well as benzyl dimethyl amine (BDMA), benzyl 

methyl amine (BMA) and benzyl amine (BA), which are possible BAC transformation 

products, were measured using HPLC (Tezel, 2009). The method used a HP 1100 Series 

HPLC (Hewlett Packard, Palo Alto, CA) unit equipped with a Phenomenex Luna SCX 

�����	��<�	�	*�^	��"	<��	��\��������"	���"	�������"	~��	@������#	'�	�	������
	~18 

A column (50 × 4.6 mm, 3.2 ��	�����~\��	��\�������
	���"	�������"	~���	�	

Phenomenex SCX SecurityGuard cartridge (4 × 3.0 mm) was used as a precolumn. A 

60:40 (v/v) mixture of acetonitrile and 50 mM phosphate buffer (pH 2.5) was used as the 

mobile phase at a flow rate of 1.0 ml/min and the columns were maintained at 35oC. 

Detection was achieved with a HP 1100 series UV-Vis diode array detector at a 

wavelength of 210 nm. The minimum detection limit for C12BDMA-Cl, C14BDMA-Cl, 

C16BDMA-~�"	��"	���"	��#	����	��
	>�<�"	��<<"	*�?^"	>�>?"	>�*^	��#	>��>	��"	

respectively. Prior to the HPLC analysis, 2.5 mL sample was extracted with a mixture of 

1 mL of 100 mM AgNO3, 1.5 mL of acetonitrile and 2.5 mL of ethylacetate (Tezel, 2009) 

and the extract used for the HPLC analysis. 

3.3 General Procedures 

3.3.1 Denitrifying Culture Media 

 A mixed denitrifying culture used in this study was maintained with media that 

provided nutrients, trace metals, and vitamins. The composition of the culture media is 

shown in Table 3.1.  Culture media was prepared by adding the first five ingredients in 

Table 3.1 to 8 L DI water in a 9 L Pyrex bottle. The bottle was then autoclaved at 121oC 
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and 21 psi (1.43 atm) for 45 minutes. After autoclaving, the bottle contents were purged 

with helium for 1.5 hours in order to strip oxygen from the media. After purging, and 

while the media were still warm, the rest of the ingredients listed in Table 3.1were added. 
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Table 3.1. Composition of media for the mixed denitrifying culture used in this study 

Compound/Solution Concentration g/L 
K2HPO4 0.9 
KH2PO4 0.5 
NH4Cl 0.5 
MgCl2·6H2O 0.2 
Trace metal stock solution 1 mL/L 
Vitamin stock solution 1 mL/L 
CaCl2·2H2O 0.1 
FeCl2·4H2O 0.1 
NaHCO3 3.5 
Trace metal stock solution Concentration g/L 
ZnCl2 0.5 
MnCl2·4H2O 0.3 
H3BO3 3.0 
CoCl2·6H2O 2.0 
CuCl2·2H2O 0.1 
NiSO4·6H2O 0.2 
Na2MoO4·2H2O 0.3 
Vitamin stock solution Concentration g/L 
Biotin 0.2 
Folic Acid 0.2 
Pyridoxine hydrochloride 1.0 
Riboflavin 0.5 
Thiamine 0.5 
Nicotinic Acid 0.5 
Pantothenic Acid 0.5 
Vitamin B12 0.01 
p-Aminobenzoic Acid 0.5 
Thioctic Acid 0.5 
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CHAPTER 4 

BIOLOGICAL NITROGEN REMOVAL SYSTEM – 

DEVELOPMENT AND BASELINE OPERATION 

 
 
 

4.1 Introduction 

Biological nitrogen removal (BNR) is widely employed for the treatment of high-

strength wastewater as discussed in Chapter 2. Two distinct biological processes, 

mediated by two microbial populations, are responsible for BNR reactions: nitrification 

(ammonia oxidation to nitrate by nitrifying autotrophic population) and denitrification 

(nitrate reduction to dinitrogen by facultative heterotrophic denitrifying population), 

under aerobic and anoxic conditions, respectively. In engineered BNR systems 

compartmentalization is utilized to achieve the two aforementioned environmental 

conditions, either temporally (sequencing batch reactor), or spatially (multi-stage, 

separate bioreactors with recycle). BNR systems are ideally designed to provide complete 

nitrogen removal for a specific wastewater stream.  Wastewater characteristics, such as 

flow rate, organic carbon and nitrogen content, and the existence of toxicants, determine 

the design criteria of the BNR system, including reactor mixed liquor concentration, 

solids and hydraulic retention times, supplementary organic carbon, dissolved oxygen 

concentration, and pH control. 

As discussed in Chapter 2, the presence of QAC antimicrobials in HSWW 

streams presents a challenge to BNR by impacting the microbial populations responsible 
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for the treatment process, and ultimately resulting in reducing nitrogen removal 

efficiency of the BNR system. A QAC mixture of three benzalkonium chlorides (BACs) 

homologs widely used in industrial sanitizer formulations was chosen as the target QACs 

for this study. BACs were chosen because, as discussed in Chapter 2, they are the most 

commonly used antimicrobial QACs (Tiedink, 2001).  

A modified pre-denitrification, one-sludge system, based upon the Barnard 

process (Rittmann and McCarty, 2001), was chosen as a model BNR system. Figure 4.1 

shows the system schematic. The system was operated fed with real high-strength poultry 

processing wastewater. In the chosen BNR system, the wastewater is first utilized as a 

source of organic carbon for denitrification in an anoxic reactor, thus the designation pre-

denitrification. Nitrification is performed in a subsequent aerobic reactor, while nitrate is 

recycled from the aerobic reactor to the anoxic reactor. The multi-stage system setup was 

specifically chosen for this study for two main reasons. The spatial separation allowed for 

a relatively fast establishment of stable BNR process, along with ease of maintenance and 

operation. In addition, it facilitated the examination of the fate and effect of QACs on the 

two main BNR processes independently, and eventually, collectively. 

The main objective of the research presented in this chapter was to independently 

delineate the fate and effect of initial BAC exposure on the two main processes in a BNR 

system, nitrification and denitrification. In order to achieve this objective, a laboratory-

scale, continuous-flow, multi-stage BNR system, treating BAC-free real wastewater was 

constructed and operated.  Additionally, a mixed denitrifying culture, which was 

developed to study the effect of BAC on denitrification, was also used. 
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Figure 4.1. Schematic diagram of the continuous-flow, multi-stage, laboratory-scale BNR 
system (R1, anaerobic; R2, anoxic; and R3, aerobic). 
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4.2 Materials and Methods 

4.2.1 Theoretical BNR System Design 

 A modified, conservative, stoichiometrically-controlled approach was used in 

order to design the BNR system. This approach is based on establishing a stable and 

continuous nitrification. In a conservative design, kinetics do not control the overall 

performance in terms of nitrogen removal (stoichiometry does), as long as the solids 

retention time is sufficiently long (Rittmann and McCarty, 2001). The design assumes a 

one-step nitrification and denitrification reaction scheme, i.e., ammonia to nitrate and 

nitrate to dinitrogen, respectively, with complete ammonia oxidation in the aerobic 

reactor and complete nitrate reduction in the anoxic reactor. While being unrealistic, the 

one-step reaction scheme is widely used in the design of wastewater treatment systems 

(Henze et al., 2000; Alex et al., 2008; Sin et al., 2008). At steady-state, the synthesis rate 

of nitrifiers in the system is: 

VSSg
Ng

t
X

t
XTNQY

t
X

denaer
feednitn

nit
124.0)(

        
(Equation 4.1) 

where 
nitt

X , 
aert

X ,
dent

X are the net mass production rate of nitrifiers, aerobic 

heterotrophs, and anoxic heterotrophic denitrifiers (g VSS/day), )(nitnY is the nitrifiers 

observed yield (g VSS/g NH4
+-N), Q is the feed flow rate (L/day), and TNfeed is the feed 

total nitrogen concentration. Aerobic heterotrophs grow utilizing the COD escaping the 

anoxic reactor: 

anoxaern
aer

CODrQY
t
X 1)(                                                (Equation 4.2) 
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where )(aernY is the aerobic heterotrophs observed yield (g VSS/g COD), CODanox is the 

anoxic reactor effluent COD (g COD/L), and r is the nitrate mixed liquor recycle ratio 

relative to the feed flow rate. Anoxic heterotrophic denitrifiers grow utilizing the COD in 

the feed to a degree determined by available nitrate: 

anoxfeeddenn
den

CODrCODQY
t
X )1()(                             (Equation 4.3) 

where )(dennY is the anoxic heterotrophic denitrifiers observed yield (g VSS/g COD), and 

CODfeed  is the feed COD concentration (g COD/L). Based on stoichiometry for the 

complete aerobic nitrification, complete anoxic denitrification, and aerobic growth of 

heterotrophs, the observed yield coefficients for each of the aforementioned microbial 

groups can be evaluated (Rittmann and McCarty, 2001): 

)
1

1(
c

cdo
ss b

bfff
                                                                  

(Equation 4.4a) 

s

s
nitn f

fY
5.2
07.8

)(
                                                                         

(Equation 4.4b) 

8
65.5

)(
s

denn
fY                                                                         (Equation 4.4c) 

saern fY 65.5)(                                                                          (Equation 4.4d) 

where o
sf and sf are the true and net fractions of electron donor (based on electron 

equivalents) utilized in cell synthesis, df is the net biodegradable fraction of the biomass, 

and b is the microbial decay coefficient (day-1). 
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Assuming total nitrogen oxidation in the aerobic reactor, the resulting nitrate 

concentration in the anoxic reactor effluent ( anoxic
noS 3 ) will be: 

)1(

124.0

3 rQ
VSSg

Ng
t
X

t
X

t
XTNQ

S nitdenaer
feed

anoxic
no

      
(Equation 4.5) 

 Finally, CODanox is calculated by performing a mass balance on the anoxic 

reactor, and utilizing the stoichiometric carbon to nitrogen ratio )  / ( 3 NNOgCODg : 

)1(
)/( 33

r
NNOgCODgSrCOD

COD
anoxic
nofeed

anox
                       

(Equation 4.6) 

Solving Equations 4.1 to 4.6 simultaneously for a predefined feed flow rate, both feed 

COD (CODfeed) and total nitrogen (TNfeed) concentrations, and recycle ratio (r), will yield 

the overall growth rate in the system (
tott

X ): 

nitdenaertot t
X

t
X

t
X

t
X

                                              
(Equation 4.7) 

At steady-state, the overall growth rate in the system equals the sludge waste rate. 

Thus, this fact can be used to connect the total mixed liquor concentration (Xtot) and 

combined anoxic and aerobic solids (�c) and hydraulic (�h) retention times: 

tottot

c
h t

X
QX                                                                         

(Equation 4.8) 

 

The previous analysis allows for choosing a solids retention time based on the 

volatile suspended solids concentrations.  Equations 4.1 to 4.6 were solved 
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simultaneously for various solids retention times values and each iteration resulted in 

different volatile suspended solids concentrations in the system.  

4.2.2 Oxygen Uptake Rate (OUR) 

OUR measurements were conducted to establish the activity of nitrifying bacteria 

in the aerobic reactor mixed liquor. By selectively inhibiting individual bacterial groups 

responsible for nitrification, the ratio of nitrifying bacteria within the community can be 

estimated. Ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) 

biomass concentration can be correlated with the OUR of each bacterial group. Assuming 

that ammonia, nitrite, and organic carbon are not the rate-limiting substrate, and biomass 

decay is negligible during the test period, the OUR for AOB, NOB, and the heterotrophic 

bacteria can be represented as:  

AOB
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NOB
ano

SO
SAT
O

SAT
O

ano

no
NOB X

KS
SOUR    

Y 2
22

2

2

,
2                                              (Equation 4.10) 

hh
SO

SAT
O

SAT
O

h

h
h X

KS
SOUR    

Y 22

2
,

                                                        (Equation 4.11) 

h

AOB
a

h
SO

SAT
O

SAT
O

h

h

nh
SO

SAT
O

SAT
O

nh

nh

h

AOB

X
X

KS
S

KS
S

OUR
OUR

   
Y

   
Y

22

2
,

3
22

2

3

,
3

                                          (Equation 4.12a) 

AOB

nh
SO

SAT
O

SAT
O

nh

nh

h
SO

SAT
O

SAT
O

h

h

h

AOB

h

AOB
a R

KS
S

KS
S

OUR
OUR

X
X

3
22

2

3

,
3

22

2
,

                               (Equation 4.12b) 



56 
 

h

NOB
a

h
SO

SAT
O

SAT
O

h

h

no
SO

SAT
O

SAT
O

ano

no

h

NOB

X
X

KS
S

KS
S

OUR
OUR

   
Y

   
Y

22

2
,

2
22

2

2

,
2

                                     (Equation 4.13a) 

NOB

no
SO

SAT
O

SAT
O

ano

no

h
SO

SAT
O

SAT
O

h

h

h

NOB

h

NOB
a R

KS
S

KS
S

OUR
OUR

X
X

2
22

2

2

,
2

22

2
,

                          (Equation 4.13b) 
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)1( NOBAOBhhhNOBhAOB
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)1( NOBAOB

T
aNOBNOB

a RR
XRX                                                             (Equation 4.14d) 

where OURAOB, OURNOB, and OURh are the oxygen uptake rate for AOB, NOB and 

heterotrophic bacteria while utilizing ammonia, nitrate, and organic carbon, respectively; 

�� (day-1) and Y (mg N/mg COD and mg COD/mg COD for nitrifiers and heterotrophs, 

respectively) are the maximum growth rate and yield coefficient, respectively; SAT
OS 2 and 

2SOK are dissolved oxygen (DO) saturation concentration and oxygen half-saturation 

coefficient (mg/L), respectively; and AOB
aX , NOB

aX  , hX , and T
aX are AOB, NOB, 

heterotrophic bacteria, and total biomass concentrations (mg VSS/L), respectively. Table 

4.1 summarizes literature values used for ��� Y, SAT
OS 2 , and 2SOK . 
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Table 4.1. Parameter values used in the theoretical BNR system design. 

 
  

Parameter Value (Units) Reference 
,

3nh  2.0 (day-1) Sin et al., 2008 
,

2no  1.05 (day-1) Sin et al., 2008 
,
h  6.0 (day-1) Henze et al., 2000 

3Ynh  0.15 (mg COD/mg N) Sin et al., 2008 
2Yano  0.04 (mg COD/mg N) Sin et al., 2008 

hY  0.67 (mg COD/mg COD) Henze et al., 2000 
3
2

nh
SOK  1.45 (mg N/L) Sin et al., 2008 

2
2

no
SOK  1.1 (mg N/L) Sin et al., 2008 
h
SOK 2  0.2 (mg COD/L) Henze et al., 2000 
SAT
OS 2   8 (mg/L) Rittmann and McCarty, 2001 
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 For OUR measurements, a 200 mL mixed liquor aliquot was collected at the end 

of the recycle cycle during the daily mixed liquor waste time.  The mixed liquor was 

aerated for about 5 minutes to achieve oxygen saturation while mixing with a stirring bar 

and a magnetic stirrer. Meanwhile, 20 mL of wastewater was introduced to a 50 mL 

tapered-neck Erlenmeyer flask which was pre-baked at 350oC to remove all organic 

carbon. Then, 2.5 mL of each ammonia and nitrite (for OUR1), or ammonia and sodium 

azide (NaN3) (for OUR2), or NaN3 and allylthiourea (ATU) (for OUR3) stock solutions 

were added to the flask, bringing the flask liquid volume to 25 mL. The flask contents 

were then mixed with a stirring bar and a magnetic stirrer. Finally, 25 mL of aerated 

mixed liquor was introduced into the flask, the DO probe was inserted, and the DO 

concentration over time was recorded. The OUR was estimated by linear regression 

analysis performed using SigmaPlot, Version 10 software (Systat Software Inc., San Jose, 

CA, USA) using the DO concentration-time data. 

The OUR1 was measured with aerobic reactor mixed liquor sample amended with 

acetate (the predominant FVA in the anaerobic reactor effluent), ammonia, and nitrite; 

OUR2 was measured with the same mixed liquor amended with wastewater, ammonia, 

and NaN3 as an inhibitor to NOB (Ginestet et al., 1998); and OUR3 was measured with 

the same mixed liquor amended with wastewater, NaN3
  and ATU as an inhibitor to AOB 

and NOB, respectively (Surmacz-Gorska et al., 1996). Figure 4.2 illustrates the action of 

NaN3 and ATU on the mixed liquor activity and OUR. The OUR for AOB and NOB was 

calculated as follows: 

32 OUROUROURAOB                                                                     (Equation 4.15) 

21 OUROUROURNOB                                                                     (Equation 4.16) 
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Figure 4.2. Schematic representation illustrating the action of NaN3 and ATU on the 
mixed liquor activity and resulting OUR (Adapted from Surmacz-Gorska et al., 1996). 
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Using Equations 4.15 and 4.16 RAOB and RNOB were evaluated based on Equations 

4.12a and 4.15b, and their values used in Equations 4.14c and 4.14d to evaluate the AOB 

and NOB biomass concentration. 

4.2.3 Laboratory-Scale BNR System 

The BNR system consisted of an anaerobic reactor (R1), used to provide readily 

degradable organic carbon to be used in denitrification, an anoxic reactor (R2) for the 

purpose of denitrification, and an aerobic reactor (R3) for nitrification, with an internal 

biomass settler (Figure 4.1). Mixed liquor was recycled between R3 and R2 to provide 

nitrate to the anoxic reactor. R1 and R2 were 4-L sealed glass bottles mixed with magnetic 

stirrers. R3 and its internal settler were made from Plexiglas with working volume of 5 

and 1.5 L, respectively. Mixing was achieved by an overhead, variable speed mechanical 

mixer.  

Aeration of R3 was achieved with pre-humidified compressed air passed through a 

flow meter with a flow rate between 2 and 4 standard cubic feet per minute (scfm) 

through a fine pore stone diffuser, insuring a dissolved oxygen concentration between 3 

and 5 mg/L. The mixed liquor pH was controlled at a value of 7 ± 0.5 using a pH 

controller (Type HD PH-P, Barnant Company, Barrington, Illinois, USA) and a 42 g/L 

NaHCO3 solution. Feeding and wasting of R1, recycle from R3 to R2 and back to R3 was 

achieved with three Masterflex® peristaltic pumps (Cole-Parmer, Vernon Hills, Illinois, 

USA) controlled by a model XT, table top, electronic timer (Chrontrol Corporation, San 

Diego, California, USA). The clarified effluent was removed by gravity.  
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The seed used for the three reactors was mixed liquor samples collected from a 

poultry processing wastewater treatment plants as follows: for R1 the seed was from an 

anaerobic reactor mixed liquor; for R2 the seed was from an anoxic reactor mixed liquor; 

and for R3 the seed was from sequencing batch reactor (SBR) mixed liquor. Both seeds 

used of R1 and R2 were collected from a multi-stage treatment plant (anaerobic-aerobic-

anoxic), while the seed for R3 was collected from an SBR based treatment plant. Table 

4.2 summarizes the characteristics of seed used in the BNR system reactors. To provide a 

continuous wastewater source, a 5-L glass bottle was filled with 4 L wastewater every 

two days.  The glass bottle was housed in a refrigerator at 4oC and its contents were 

continuously mixed with a stirring bar and magnetic stirrer.  

In order to establish continuous-flow conditions for system operation, an 

electronic timer was used to activate and deactivate the three pumps for a specific 

duration of time every hour. The sequence of events was as follows: pump A (dual heads) 

was turned on to recycle mixed liquor between the anoxic (R2) and the aerobic reactor 

(R3) providing nitrate for the anoxic reactor and ammonia to the aerobic reactor. Pump B 

(dual heads) was then turned on and anaerobic reactor (R1) effluent with readily 

degradable organics was pumped to the anoxic reactor (R2) to supply the organic carbon 

required for denitrification (first pump head). At the same time, an equal volume of 

anoxic reactor mixed liquor was pumped to the aerobic reactor (second pump head), thus 

maintaining a constant anoxic reactor liquid volume, and overfilling the aerobic reactor to 

trigger the gravity effluent discharge. Finally, pump C (single head) was turned on to 

pump the feed from the refrigerated feed reservoir to the anaerobic reactor. Waste 

biomass was manually removed directly from the aerobic reactor, daily, after the settler 
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baffle was lifted and the mixed liquor in both the reactor and the bottom of the settler was 

allowed to mix for 30 minutes.  

 

 

Table 4.2. Characteristics of the seed mixed liquors (ML) used in the continuous-flow, 
multi-stage, laboratory-scale BNR system. 

 
 

 

4.2.4 Poultry Processing High-Strength Wastewater (HSWW) 

Poultry processing HSWW contains suspended materials, mainly fat, oil and 

grease, which are removed by dissolved air flotation (DAF). DAF is a solid/liquid 

separation process where air is dissolved into water under pressure, forcing the formation 

of micro-bubbles as air escapes from the solution (Avula et al., 2009). DAF efficiency is 

typically enhanced by the addition of chemicals such as polyelectrolytes, which improve 

the removal of colloidal organic particles by charge neutralization (Tezel et al., 2007). 

The resulting solids (i.e., DAF skimmings) are commonly used by the rendering industry 

for the recovery of secondary processing nutrients (SPN), such as protein and lipids. The 

Parameter Units Anaerobic ML Anoxic ML Aerobic ML 
pH  - 6.65  6.87  6.61  
TSS  mg/L 1023 ± 12a 2164 ± 53  1408 ± 12  
VSS  mg/L 740 ± 10  1916 ± 50  993 ± 5  
Total COD  mg COD/L 1504 ± 91  3583 ± 49  1833 ± 54  
Soluble COD  mg COD/L 308 ± 208  218 ± 16  626 ± 38  
VFAs  mg COD/L NDb  27 ± 5.5  0.67 ± 0.6  
NH3   mg N/L 18 ± 1.6  4.7 ± 1.6  3.2 ± 0.8  
NO-

3  mg N/L 0.4  0.9  9.6  
NO-

2 mg N/L ND  ND  ND  
TNc mg N/L 79 ± 10  148 ± 3.5  102 ± 3  
a Mean ± standard deviation (n = 6); b ND, not detected; c Total nitrogen, i.e., sum of 
organic, ammonia, nitrite, and nitrate nitrogen. 
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liquid DAF underflow is usually treated using biological processes. DAF underflow 

wastewater was collected periodically from a local poultry processing wastewater 

treatment plant in 5 gallon plastic buckets, which were stored at 4oC in an environmental 

chamber.  

4.2.5 Benzalkonium Chloride 

A mixture of three BAC homologues (Barquat MB-80TM) obtained from Lonza 

Inc. (Williamsport, Pennsylvania, USA) was used in this study. The BAC mixture is 

composed of (%, w/w): C12BAC, 32; C14BAC, 40; C16BAC, 8; ethanol, 10; and water, 

10. Figure 4.3 shows the structure and Table 4.3 summarizes the main physical and 

chemical properties of the three BAC homologs. A 10 g/L BAC stock solution in de-

ionized water (DI) was prepared, and used as needed throughout the study. 

 

 

 

 

Figure 4.3. Molecular structure of the three BAC homologs used in this study: C12-BAC 
(A), C14-BAC (B), and C16-BAC (C). 
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Table 4.3. Summary of physical and chemical properties of the three BAC homologs, 
used in this study (Tezel, 2009;Yang, 2007). 

 

 

4.2.6 Nitrification Batch Assay 

 A batch assay was performed to investigate the effect of the BAC mixture on the 

nitrification activity of the mixed liquor of the aerobic reactor (R3) during the BNR 

system BAC-free operation. The BAC mixture (see section 4.2.5, above) was used at 

initial concentrations up to 100 mg/L (0, 5, 10, 15, 25, 50, 75, 100 mg/L). The seven 

BAC-amended and BAC-free culture series were prepared in 250-mL Erlenmeyer flasks 

(200 mL liquid volume). R3 mixed liquor (100 mL), collected during the daily waste time 

(TSS and VSS of 1640±20 and 1273±32 mg/L, respectively), followed by 100 mL of 

BAC-amended poultry processing wastewater to arrive at the above-mentioned initial 

BAC concentrations were then added to the Erlenmeyer flasks. The poultry processing 

wastewater was the only source of ammonia and organic carbon in order to simulate the 

operational conditions of the aerobic reactor. The assay was conducted at room 

temperature (22 to 23oC) and the culture series were aerated with compressed, pre-

humidified air, while continuous mixing was provided by an orbital shaker. Ammonia, 

nitrite, and nitrate were monitored throughout the incubation period. The pH was 

monitored throughout the assay, and manually adjusted to between 6.5 and 7.5 by the 

Parameter C12 BAC   C14 BAC C16 BAC 
Boiling point (ºC) 537.6 560.8 584.0 
Melting point (ºC) 230.2 241.0 251.9 
Vapor pressure (mm Hg) 1.9E-11 3.53E-12 9.28E-11 
Water solubility (g/L at 25 ºC)  22.5 2.203 0.215 
Soil adsorption  coefficient (KOC, mL/g solid) 
Octanol/water partition coefficient (log Kow) 
Critical micelle concentration (mM) 

8.4E+05 
0.59 ± 0.04 

3.8 

2.865E+06 
1.67 ± 0.02 

1.72 

9.747E+06 
2.97 ± 0.03 

0.58 
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addition of NaHCO3.  Initial, intermediate, and final BAC total concentrations were 

measured to evaluate BAC degradation. The initial specific ammonia removal rate 

(SARR) was calculated by performing a linear regression of the initial ammonia 

concentration data, and normalizing the resulting rate to the mean value of the initial and 

final VSS concentrations of each culture series. 

 4.2.7 BAC-Free Denitrifying Culture 

A denitrifying culture, which was used to test the fate and effect of BAC on 

denitrification, was developed with a seed obtained from the anoxic reactor mixed liquor 

of a poultry processing wastewater treatment plant (same seed used for the BNR anoxic 

reactor). The culture was maintained with a hydraulic retention time of 3 days and a 

solids retention time of 12 days in a 5.5-L glass reactor, mixed with a stirring bar and a 

magnetic stirrer. The total liquid volume of the culture was 4 L. The culture was fed daily 

with culture media, 600 mg nitrate-N and 3,600 mg glucose (as electron donor and 

carbon source) resulting in an initial concentration of 150 mg nitrate-N/L and 900 mg 

glucose/L. The culture media contained (in mg/L): K2HPO4, 900; KH2PO4, 500; NH4Cl, 

500; MgCl2·6H2O, 200; CaCl2·2H2O, 100; and FeCl2·4H2O, 100. In addition, 1.0 ml/L 

each of vitamin and trace metal stock solutions was added. The culture was maintained at 

22±1oC. Table 4.4 summarizes the culture characteristics.  

4.2.8 Denitrification Batch Assay 

A batch assay was performed to evaluate the inhibitory effect of BAC on 

denitrification. The assay was conducted in 160-mL serum bottles (100 mL liquid 

volume) sealed with rubber stoppers and aluminum crimps, flushed with helium gas for 

15 min before any liquid addition. The assay included five culture series that were 
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amended with the BAC solution resulting in initial total BAC concentrations of 10, 25, 

50, 75 and 100 mg/L. Two additional BAC-free culture series were prepared: seed blank 

and reference which consisted of seed, culture media and DI water, and seed, culture 

media, DI water, nitrate and glucose, respectively. Samples of 80 mL of the denitrifying 

culture were anaerobically transferred to each serum bottle along with 11 mL of culture 

media. Nitrate was then added, followed by the BAC mixture. Finally, a glucose solution, 

which served as carbon/energy source, was added and the total liquid volume was 

adjusted to 100 mL with DI water. The initial glucose and nitrate concentrations were 

960 mg COD/L and 160 mg NO-
3 N/L, which resulted in a COD/N ratio of 6/1. Each 

culture series, including the seed blank and reference, was prepared in duplicate bottles, 

one used for liquid analyses and the other for gas analyses. All culture series were 

incubated in the dark at 22oC and the bottles were agitated daily by hand. Throughout the 

incubation period, the headspace pressure and the nitric oxide, nitrous oxide, dinitrogen, 

and carbon dioxide content were measured. Nitrate and nitrite measurements were carried 

out by removing liquid samples from the bottles at the same time intervals with the gas 

measurements. At the end of the incubation period, nitrate, nitrite, pH, ammonia, soluble 

COD, TSS and VSS, as well as total and liquid-phase BAC concentrations were 

measured. The initial specific nitrate removal rate (SNRR) was calculated by performing 

a linear regression of the initial nitrate concentration data, and normalizing the resulting 

rate to the mean value of the initial and final VSS concentrations of each culture series. 
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Table 4.4. BAC-free denitrifying culture characteristics. 

Parameter  Units Value 
pH  - 7.0 ± 0.5  
TSS  mg/L 2294 ± 17a  
VSS  mg/L 1561 ± 13a  
NH3  mg N/L 239 ± 29b  
NO3

- mg N/L  NDc 
NO2

-  mg N/L  ND  
Nitrate Removal Rate mg N/L · day 166 ± 6d 
a Mean ± standard deviation (n �	���	b Mean ± standard deviation (n �	^��	c ND, not 
detected at the end of the feeding cycle; d Based on the initial and final nitrate 
concentration during the feeding cycle 
 
 
 
 

 Table 4.5. Characteristics of the poultry processing DAF underflow poultry processing 
wastewater used as feed to the continuous-flow, multi-stage, laboratory-scale BNR 
system. 

 

  

Parameter Units Value 
pH - 6.9 ± 0.2a 
TSS/VSS  mg/L 125 ± 20/120 ± 23 
Total/Soluble COD mg COD/L 1275 ± 16/919 ± 111 
Carbohydrates mg/L (mg COD/L)b 24 ± 5 (26 ± 6)   
Lipids mg/L (mg COD/L)c  37 ± 10 (680 ± 28) 
NH3  mg N/L 46.4 ± 3 
NO3

-/ NO2
- mg N/L NDd 

TNe mg N/L 103 ± 4.5 
BAC  mg/L ND 
a Mean ± standard deviation (n  �3); b As glucose c As palmitic acid; d ND, not 
detected; e Total nitrogen, i.e., sum of organic, ammonia, nitrite, and nitrate nitrogen.  
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4.3 Results and Discussion 

4.3.1 Poultry Processing Wastewater Characterization 

 DAF underflow wastewater was collected eight times during the course of this 

study. Each time, the collected poultry processing wastewater was characterized and 

Table 4.5 summarizes the characteristics of the poultry processing wastewater. As 

discussed above, solids are reclaimed from the raw poultry processing wastewater via 

DAF, which explains the low solids content in the DAF underflow wastewater. 

Both the COD and nitrogen levels in the collected poultry processing wastewater 

were comparable to previously reported HSWW (Chapter 2). Most COD was soluble (at 

least 72%), with 96% of the suspended solids being volatile. The solids were comprised 

mainly of lipids (28%), carbohydrates (18%) and crude protein (54%). Most of the total 

nitrogen content was soluble, 63% crude protein, and 37% ammonia. Nitrate and nitrite 

were not detected. BAC was never detected in any of the collected poultry processing 

wastewater, which made it ideal for use in this study, since BAC can be introduced at any 

desired concentration in the feed. The poultry processing wastewater characteristics were 

comparable to previously reported values (Pierson and Pavlostathis, 2000; Tezel et al., 

2007; Avula et al., 2009), with some variation related to sampling time and poultry 

processing plant operation.  

 As seen above, the feed solids are mainly composed of lipids, carbohydrates and 

proteins, which based on their ionic and hydrophobic properties, provide perfect media 

for BAC adsorption. BAC has a high affinity to accumulate on solids via both ionic and 

hydrophobic interactions (Ren et al., 2011), rendering the poultry processing wastewater 

a “perfect medium” by which BAC is introduced into the BNR treatment system. 
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Ultimately, these interactions define the fate of BACs in engineered and natural 

biological systems. 

4.3.2 BNR Design 

Information provided in section 4.2.1 above, was used to design the laboratory-

scale BNR system. The volume of the anoxic and aerobic reactors (4 and 5 L 

respectively) was chosen based upon available equipment, with a chosen feed flow rate of 

2 L/day. Utilizing the poultry processing wastewater COD and total nitrogen 

concentrations and a stoichiometric carbon to nitrogen ratio )  / ( 3 NNOgCODg of 5.2, 

Microsoft Excel Solver was used to solve Equations 4.1 to 4.6 at various solids retention 

time values, yielding different volatile suspended solids concentrations. The end goal was 

a volatile suspended solids concentration of 1200 mg/L, an average value of both 

reactors’ seed. A solids retention time of 25 days was chosen, giving Xtot concentration of 

1196 mg/L. The theoretical effluent nitrate concentration was 18.2 mg N/L, while the net 

mass production rates were 280.9, 27.3, 122.3 (mg VSS/day) for aerobic, autotrophic, 

and anoxic growth, respectively. Figure 4.4 shows how the theoretical design variables 

changed with the overall solids retention time. The resulting values (���c in days) were: 

2/2, 2/11, and 2.5/14 for R1, R2, and R3, respectively. The mixed liquor was wasted daily 

from R3 at a rate of 0.35 L/day to establish the desired �c value.  

4.3.3 BNR Startup and Baseline Performance 

The BNR system was operated continuously for 30 days, treating BAC-free 

poultry processing wastewater. During the first 9 days of operation, a refrigerated 6-

month old poultry processing wastewater was used as feed. Afterwards, fresh wastewater 

was used for the remainder of the study. Figure 4.5 illustrates the system performance 
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during the first 30 days of continuous, BAC-free, operation, while Table 4.6 summarizes 

the reactors’ characteristics during the BAC-free continuous operation period. The actual 

solids retention time in the anoxic and aerobic reactors was recalculated after taking into 

account the solids lost in the effluent. The actual �c for the anoxic and aerobic reactors 

was 10.1 and 12.6 days, respectively. The recycle ratio between R2 and R3 was initially 

set at 4 and then reduced to 3; however, the nitrate concentration in R3 increased. 

Subsequently, the recycle ratio was set back to 4 on day 14 and remained constant for the 

duration of this study. Volatile fatty acids (VFAs) were detected in the R1 effluent at a 

concentration of 175.1±4.6 mg COD/L, which accounted for 19% of the reactor’s 

effluent soluble COD concentration. 

 

 

Table 4.6. Performance of the BNR system during continuous, BAC-free operation (Data 
from day 10 to 30). 

 

Parameter  R1  R2  R3  Effluent  
pH  6.7 ± 0.1a  7.5 ± 0.3  7.1 ± 0.4  7.1 ± 0.4  
TSS (mg/L)  171 ± 29  1428 ± 336  1557 ± 342  33 ± 22  
VSS (mg/L)  155 ± 14  1157 ± 236  1251 ± 242  25 ± 20  
Soluble COD (mg/L)  650 ± 248  485 ± 144  289 ± 179  273 ± 169  
VFAs (mg COD/L)  168 ± 107  ND  ND  ND  
NH3 (mg N/L)  94 ± 34  28 ± 9  ND  ND  
NO3

- (mg N/L)  NDb  ND  28.3 ± 7.2  26.9 ± 3.3  
NO2

- (mg N/L)  ND  ND  ND  ND  
a Mean ± standard deviation (n = 6); b ND, not detected; 
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Figure 4.4. Effect of solids retention time on theoretical design variables for the BNR 
system: (A) total mixed liquor concentration and effluent nitrate; (B) net growth rates 
(B).  
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Figure 4.5. Nitrogen species and pH in the BNR system during the first 30 days of 
continuous, BAC-free operation (A, R2; B, R3; and C, Effluent). 
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The ammonia concentration in the R1 effluent was 95.7±10.6 mg N/L, almost 

double the feed’s ammonia concentration, and accounted for 93% of its total nitrogen 

content. As for the BNR reactors, the R2 ammonia concentration was 26.1±7.4 mg N/L 

and nitrate was never detected. On the other hand, the R3 nitrate concentration was 

26.4±4.5 mg N/L and ammonia was never detected. Nitrite was never detected in both R2 

and R3 during the BAC-free operation. The effluent nitrate concentration was 26.4±3.5 

mg N/L, while ammonia was never detected. Overall, during the BAC-free operation 

period the system achieved 100% ammonia removal efficiency. In terms of nitrogen 

balance, 206 mg N/day was fed into the system, of which 109 mg N/day was removed as 

dinitrogen from the anoxic reactor, 54 mg N/day was removed with the mixed liquor 

waste from the aerobic reactor, and 50 mg N/day in the effluent (nitrate and escaping 

biomass), yielding a total nitrogen removal of 75.9%. The total nitrogen removal was less 

than the 90% removal efficiency reported for the Barnard process (Rittmann and 

McCarty, 2001). Unlike the original Barnard process, which uses two denitrification 

stages, one denitrification stage was used in the laboratory-scale BNR system, which 

resulted in lower total nitrogen removal efficiency. Nevertheless, the BNR operation was 

stable and provided  a baseline system performance against which the performance of the 

BNR system treating a BAC-bearing poultry processing wastewater can be compared 

with. 

OUR analysis on the aerobic reactor mixed liquor performed at the 25th day of 

operation resulted in OUR1 18.6 ± 0.4, OUR2 17.5 ± 0.4, and OUR3 15.7 ±0.4 mg O2/h 

(Figure 4.6). Based on these OUR values, the corresponding AOB and NOB biomass 

fractions in the aerobic reactor population were 2.8% and 2.2%, respectively. A wide 
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variation in AOB and NOB fractions in similar microbial communities has been reported. 

These fractions varied between 0.34% in activated sludge, 6.2–2.5% in an SBR, and 6–

18% in combined activated sludge and rotating biological contactor (Li et al., 2007). The 

wide variation could be attributed mainly to wastewater type, system configuration, and 

operational conditions.  

4.3.4 Preliminary BAC Effect on Nitrification and Denitrification 

 As discussed in Chapter 2, biological nitrification and denitrification are both 

inhibited by BAC, but with a varying degree of susceptibility. Among the two processes, 

nitrification is more susceptible to the inhibitory effect of QACs. BNR efficiency 

deterioration can result from an adverse impact on either nitrification or denitrification. 

The two batch assays discussed below aimed to identify the effect of BAC on these 

processes. 

The assay testing the effect of BAC on nitrification lasted for 82 hours. Figure 4.7 

shows the time course of the nitrogen species and pH variation during the batch 

incubation period for all eight culture series. For all BAC-amended culture series a 

decrease in the final biomass concentration was observed with increasing BAC 

concentration, resulting from BAC-induced growth inhibition and cell lysis (Figure 4.8) 

brought about by the BAC antimicrobial effect (Cross and Singer, 1994).  

4.3.4.1 Nitrification batch assay 
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Figure 4.6. OUR measurements for the aerobic reactor mixed liquor conducted with 
acetate, ammonia, and nitrite (A), acetate and ammonia (B), and acetate (C).  
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Figure 4.7. Time course of nitrogen species and pH variation during the batch 
nitrification assay conducted with BAC-free mixed liquor collected from the aerobic 
reactor (R3). Initial BAC concentrations of 0 (A), 5 (B), 10 (C), 15 (D), 25 (E), 50 (F), 75 
(G), and 100 mg/L (H). 
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Figure 4.8. Total and volatile suspended solids (TSS and VSS) at the end of the 
incubation period for the culture series used in the batch nitrification assay conducted 
with BAC-free mixed liquor collected from the aerobic reactor (R3). Error bars represent 
one standard deviation of the means (n = 3). 

  

INITIAL BAC (mg/L)

0 5 10 15 25 50 75 100

TS
S

 &
 V

S
S

 (m
g/

L)

0

500

1000

1500

2000

2500

3000 TSS
VSS



78 
 

 Figure 4.9A shows the extent of ammonia removal in all culture series at the end 

of the incubation period. Among all culture series used in this assay, only the BAC-free 

and the 5 mg/L BAC-amended culture series achieved complete ammonia removal and 

oxidation to nitrate within 24 and 60 h, respectively. The initial SARR for both culture 

series was 75.3±4.5 and 46.1±11.8 mg N/g VSS · day for the BAC-free and 5 mg/L 

BAC-amended culture series, respectively. The 10 and 15 mg/L BAC-amended culture 

series achieved 43 and 28% ammonia removal by the end of the incubation period, with 

an initial SARR of 4.7±1.2 mg N/g VSS · day for both culture series. For the remaining 

BAC-amended culture series (25 to 100 mg/L BAC), complete inhibition of nitrification 

was observed (  5% ammonia removal) with an initial SARR  1.4±0.1 mg N/g VSS · 

day. Nitrite was never detected in any culture series, i.e., all removed ammonia was fully 

oxidized to nitrate. Figure 4.9B shows the relative SARR (i.e., SARR normalized to the 

BAC-free culture series) for all culture series. 

Based on total BAC measurements, at 60 h of incubation,  90% of the initially 

added BAC was removed in all culture series, except in the 100 mg/L BAC-amended 

culture series, where only 14% BAC removal was observed. Further BAC removal was 

not observed by the end of the incubation period (82 h). Figure 4.10 shows the recovered 

BAC at the end of the incubation period. BAC was degraded by the heterotrophic 

population which constituted a large fraction of the mixed liquor used in this assay 

(almost 95% based upon OUR analysis). However, further ammonia removal was not 

observed in the inhibited culture series (10 to 100 mg/L) despite the observed BAC 

degradation, which indicates that the inhibitory effect of BAC on nitrification was 

irreversible within the duration of the batch assay.  
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Figure 4.9. Extent of ammonia removal (A) and relative specific ammonia removal rate 
(RSARR) (B) for the culture series used in the batch nitrification assay conducted with 
BAC-free mixed liquor collected from the aerobic reactor (R3). 
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Figure 4.10. BAC recovery at the end of the incubation period in the culture series of the 
batch nitrification assay conducted with BAC-free mixed liquor collected from the 
aerobic reactor (R3). Error bars represent one standard deviation of the means (n = 3). 
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The assay testing the effect of BAC on denitrification lasted for 9 days.  Figure 

4.11 shows the time course of nitrogen species in all five culture series. All added nitrate 

was fully reduced to either dinitrogen gas (�90%) or ammonia, which indicates that the 

DNRA process was also active in these culture series. Neither nitric oxide nor nitrous 

oxide was detected in any culture series. Figure 4.12A shows the nitrogen species 

distribution at the end of the incubation period. Similar to the nitrification assay, a 

decrease in the final biomass concentration was observed with increasing BAC 

concentration, which resulted from BAC-induced growth inhibition and cell lysis (Figure 

4.13).  

4.3.4.2 Denitrification batch assay 

The initial SNRR of the BAC-free culture series was 117.9 ± 4.8 mg N/g VSS · day, 

while BAC decreased the initial SNRR in the BAC-amended culture series to 106.1±4.0, 

90.0±11.5, 83.5±16.2, 78.4±11.7, and 16.0±0.6 mg N/g VSS · day at an initial BAC 

concentration of 10, 25, 50, 75, and 100 mg/L, respectively. Figure 4.12B shows the 

relative SNRR in all culture series used in the denitrification assay. At BAC 

concentrations of 50 mg/L and above, a substantial decrease in the nitrate reduction rate 

was observed (Figure 4.12B). However, this decrease was less than the one observed for 

nitrite reduction, where, compared to the BAC-free culture series, transient accumulation 

of nitrite was apparent as the BAC concentration increased. The highest measured nitrite 

concentrations were 9.6, 120, and 123 mg NO2
--N/L in the cultures amended with 50, 75, 

and 100 mg BAC/L. Transient accumulation of nitrite suggests that the nitrite reduction 

was inhibited by BAC and nitrite reduction is more sensitive to BAC compared to nitrate 

reduction.  
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Figure 4.11. Time course of nitrogen species during the batch denitrification assay 
conducted with BAC-unexposed mixed denitrifying culture and initial BAC 
concentrations of 0 (A), 10 (B), 25 (C), 50 (D), 75 (E) and 100 mg/L (F). 
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Figure 4.12. Distribution of the nitrogen species at the end of the incubation period (A) 
and relative specific nitrate removal rate (RSNRR) (B) in the batch denitrification assay 
conducted with BAC-unexposed mixed denitrifying culture. 
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Figure 4.13. Total and volatile suspended solids (TSS and VSS) at the end of the 
incubation period in the batch denitrification assay conducted with BAC-unexposed 
mixed denitrifying culture. Error bars represent one standard deviation of the means (n = 
3). 
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modified Hofmann reaction (Tezel and Pavlostathis, 2009). The researchers also found 

that BAC transformation required elevated nitrite concentrations (70 mg N/L). More 

importantly, the BAC liquid-phase concentration was the limiting factor for the abiotic 

transformation, as the BAC transformation did not occur at liquid-phase concentrations 

below a range of 7.8-10.8 mg/L (Tezel and Pavlostathis, 2009). 

 
 
 
 
 
 
 
 

 
 
 
Figure 4.14. BAC recovery at the end of the incubation period in the batch denitrification 
assay conducted with BAC-unexposed mixed denitrifying culture. Error bars represent 
one standard deviation of the means (n = 3). 
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  In the denitrification assay of the present study nitrite concentrations exceeded 70 

mg N/L at initial BAC concentrations of 75 and 100 mg/L. Nevertheless, the BAC liquid-

phase concentration in all culture series was below the above-mentioned concentration 

required for the abiotic transformation. In fact, the highest measured BAC liquid-phase 

concentration was 11.8 ± 0.3 mg/L in the 100 mg/L culture series, which was comparable 

to the BAC concentration that did not facilitate the abiotic transformation reaction to take 

place as reported by Tezel and Pavlostathis (2009). 

Between nitrification and denitrification, the former is by far the process most 

susceptible to BAC. Denitrification was inhibited by BAC, but complete nitrate reduction 

was achieved in all denitrification culture series. On the other hand, inhibition of 

nitrification by BAC was persistent, despite the fact that BAC was largely removed from 

most of the nitrification culture series by the end of the incubation period. This result 

leads to the conclusion that nitrogen removal in BNR systems will dramatically and 

irreversibly deteriorate when treating BAC-bearing poultry processing wastewater. The 

validity of this conclusion was further investigated and results are reported in Chapter 5, 

below.  

4.3.4.3 Nitrification vs. Denitrification 

4.4 Summary 

A laboratory-scale, continuous-flow, multi-stage BNR system treating poultry 

processing DAF underflow wastewater was constructed and tested. The system achieved 

100 and 75% ammonia and total nitrogen removal efficiency, respectively, during 30 

days of continuous operation, treating real poultry processing wastewater that was 
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comprised mainly of protein, lipids, and carbohydrates. Nitrifiers accounted for 5.1% of 

the aerobic reactor population, with 2.8% AOB and 2.2% NOB.  

The effect of BAC was independently tested on both nitrification and 

denitrification up to a concentration of 100 mg/L, using nitrifying and denitrifying 

microbial populations unexposed to BAC. BAC substantially decreased the  nitrification 

removal rate by 39, 94, and 94% at an initial BAC concentration of 5, 10, and 15 mg/L 

and the ammonia removal was completely inhibited at BAC concentrations equal to and 

higher than 10 mg/L. In the BAC-amended culture series,  90% of the initially added 

BAC was removed in all culture series, except in the 100 mg/L BAC-amended culture 

series, where only 14% BAC removal was observed. Nitrification did not recover despite 

the apparent BAC degradation in the BAC-amended culture series, which indicates acute, 

irreversible nitrification inhibition. 

BAC led to a significant decrease in the nitrate reduction rate, but did not affect 

the extent of nitrate removal, where nitrate was mostly and completely reduced to 

dinitrogen in all BAC-amended culture series in the denitrification assay. On the other 

hand, BAC inhibited denitrification at a concentration equal to and higher than 50 mg/L. 

Nitrite reduction was more susceptible to BAC compared to nitrate reduction, evident by 

transient accumulation of nitrite. No other denitrification intermediates were detected 

during the incubation period. The initially added BAC was fully recovered at the end of 

the incubation period of the denitrification assay, indicating that BAC was not degraded 

under the anoxic conditions of the assay.  

Overall, BAC was detrimental to the BNR process, affecting nitrification and 

denitrification at a varying degree of severity. Nitrogen removal efficiency will 
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deteriorate while treating BAC-bearing poultry processing wastewater as a result of long-

lasting inhibition of the nitrifying population. Moreover, it could be deduced that treating 

BAC-bearing poultry processing wastewater could irreversibly deteriorate the BNR 

system performance depending on the extent of BAC exposure (concentration) in the 

aerobic reactor.  

  



89 
 

CHAPTER 5 

BIOLOGICAL NITROGEN REMOVAL SYSTEM – OPERATION 

WITH BENZALKONIUM CHLORIDE 

 
 
 

5.1 Introduction 

As discussed in Chapter 2, the fate and effect of QACs (mainly BAC 

antimicrobial compounds) on different biological processes utilized in HSWW treatment 

systems (nitrification, denitrification, fermentation, and methanogenesis) have been 

studied (Shcherbakova et al., 1999; Tezel et al., 2006; Kreuzinger et al., 2007; Sutterlin et 

al., 2007; Yang, 2007; Pavlostathis et al., 2008; Tezel et al., 2008). However, all previous 

studies were conducted on individual biological processes within the confinement of a 

single environmental condition (anaerobic, anoxic, or aerobic) and did not assess the 

effect of BAC on multiple reactions under typically encountered conditions (e.g., 

sequence of nitrification/denitrification). The latter condition is typical in continuous-

flow, engineered wastewater treatment systems in which multiple environmental 

conditions are specifically created to sustain different groups of microorganisms which 

biologically mediate the overall treatment process.  

As for any QAC, the fate and effect of BAC in BNR systems, as well as in natural 

systems, is determined by three processes: adsorption, inhibition, and biotransformation. 

The BAC phase distribution in the continuous-flow BNR system will constantly change 

because of continuous solubilization/aggregation of new particulate matter as a result of 
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hydrolysis, substrate utilization, and growth/decay of biomass coupled with mixing and 

dilution effects throughout the system. BAC biotransformation is possible under aerobic 

conditions (assuming the presence of competent microbes), while it is not possible under 

either anoxic or anaerobic conditions. An exception is the abiotic, yet biologically 

initiated, nucleophilic substitution reaction with BAC in a modified Hofmann reaction 

under very specific conditions regarding nitrite and liquid BAC concentrations, as 

previously reported by (Tezel and Pavlostathis, 2009). Finally, the two main biological 

processes in BNR systems (i.e., nitrification and denitrification) are susceptible to BAC, 

but the degree and extent of BAC inhibition differ between the two processes. 

Nitrification was completely inhibited at relatively low BAC concentrations, while 

denitrification was transiently inhibited at relatively higher BAC concentrations (see 

Chapter 4, above). 

From what has been discussed above, the fate and effect of BAC in a continuous-

flow BNR system can only be understood by following the three aforementioned 

processes (i.e., adsorption, biotransformation, and inhibition) throughout the entire 

system. Therefore, the objective of the research reported in this chapter was to investigate 

the performance of a continuous-flow BNR system (Chapter 4) while treating BAC-

bearing wastewater. This objective was attained through evaluation of the interactions 

between BAC adsorption, inhibition, and biotransformation in the four BNR system 

components: feed wastewater, and the anaerobic, anoxic, and aerobic reactors.  
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5.2 Materials and Methods 

5.2.1 Batch Anaerobic Assay 

A batch assay utilizing the mixed liquor of the anaerobic reactor was performed to 

examine the fate and effect of the BAC mixture on feed hydrolysis, volatile fatty acids 

(VFAs) production, and ammonia release from the feed organic nitrogen 

(ammonification). The assay was conducted in 160-mL serum bottles (100 mL liquid 

volume) sealed with rubber stoppers and aluminum crimps, and flushed with helium gas 

for 15 min before any liquid addition. An aliquot of 45 mL of the anaerobic reactor 

mixed liquor was introduced into each bottle, followed by 50 mL of poultry processing 

DAF underflow wastewater. Then, 5 mL of BAC stock solution were introduced to reach 

a final BAC concentration of 5, 15, 30, 45, and 60 mg/L in the BAC-amended culture 

series. Two more culture series were prepared: seed blank and reference, which consisted 

of seed and DI water, and seed, poultry processing wastewater, and DI water, 

respectively. The initial sCOD and VFAs concentration was 388 ± 55 and 174 ± 36 mg 

COD/L, respectively. Each culture series, including the seed blank and the reference, was 

prepared in duplicate. Throughout the incubation period, the bottle contents were mixed 

using an orbital shaker. sCOD, VFAs, pH, and ammonia concentrations were measured 

throughout the incubation period. At the end of the incubation, pH, ammonia, sCOD, 

VFAs, TSS/VSS, as well as total and liquid-phase BAC concentrations were measured. 

5.2.2 Batch Nitrification Assays 

Two batch nitrification assays were performed to investigate the effect of the 

BAC mixture on the nitrifying activity of the aerobic reactor (R3) mixed liquor during 

and after the BNR system operation with BAC-bearing poultry processing wastewater. 
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 The assay conducted during the BNR operation with BAC-bearing poultry 

processing wastewater used the BAC mixture (Chapter 4) at initial BAC concentrations 

up to 45 mg/L (0, 5, 15, 20, 25, 30, and 45 mg/L), while the assay conducted after the 

BNR operation with BAC-bearing poultry processing wastewater used the BAC mixture 

at initial BAC concentrations of 0, 5, 10, and 15 mg/L. In both assays, BAC-amended and 

BAC-free culture series were prepared in 250-mL Erlenmeyer flasks (200 mL liquid 

volume). Aliquots of 100 mL of R3 mixed liquor (collected during the daily wasting time) 

were introduced to each flask, followed by 100 mL of BAC-amended poultry processing 

wastewater to arrive at the above-mentioned initial BAC concentrations. The poultry 

processing wastewater was the only source of ammonia and organic carbon in order to 

simulate the operational conditions of the aerobic reactor. The assay was conducted at 

room temperature (22 to 23oC) and the cultures were aerated with compressed, pre-

humidified air, and continuous mixing was provided by an orbital shaker. sCOD, 

ammonia, nitrite, and nitrate were monitored throughout the incubation period. The pH 

was monitored throughout the assay, and manually adjusted to between 6.5 and 7.5 by the 

addition of NaHCO3.  Total and liquid-phase BAC concentrations were measured to 

evaluate BAC phase distribution and degradation. The initial specific ammonia removal 

rate (SARR) and initial specific sCOD utilization rate (SCUR) were calculated by 

performing a linear regression of the initial time course ammonia and sCOD 

concentrations data, respectively, and normalizing the resulting rates to the mean value of 

the initial and final VSS concentrations of each culture series. 
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5.2.3 Batch Denitrification Assay 

A batch assay was performed to evaluate the fate and effect of BAC on 

denitrification in the anoxic reactor (R2). The assay was conducted in 160-mL serum 

bottles (100 mL liquid volume) sealed with rubber stoppers and aluminum crimps, 

flushed with helium gas for 15 min before any liquid addition. The carbon source for this 

assay was the effluent of a BAC-unexposed anaerobic reactor with a sCOD and VFAs 

concentrations of 745 ± 134 and 297 ± 38 mg COD/L, respectively. The assay included 

seven culture series amended with the BAC mixture solution resulting in initial total 

BAC concentrations of 5, 10, 15, 20, 25, 30, and 45 mg/L. Two additional BAC-free 

culture series were prepared: seed blank and reference, which consisted of seed, treated, 

and DI water, and seed, treated poultry processing wastewater, DI water, and nitrate, 

respectively. Aliquots of 100 mL of R2 mixed liquor (collected during the daily wasting 

time) were introduced to each bottle, followed by 50 mL of treated poultry processing 

wastewater. Nitrate was then added (35 mg N/L) followed by the BAC mixture, and the 

total liquid volume was adjusted to 100 mL with DI water.  Each culture series, including 

the seed blank and the reference, was prepared in duplicate bottles, one used for liquid 

analyses and the other for gas analyses. All culture series were incubated in the dark at 

22oC and the bottles were agitated daily by hand. Throughout the incubation period, the 

headspace pressure and the nitric oxide, nitrous oxide, dinitrogen, and carbon dioxide 

content were measured. Nitrate and nitrite measurements were carried out by removing 

liquid samples from the bottles at the same time intervals with the gas measurements. At 

the end of the incubation period, nitrate, nitrite, pH, ammonia, sCOD, TSS and VSS, as 

well as total and liquid-phase BAC concentrations were measured. The initial specific 
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nitrate removal rate (SNRR) was calculated by performing a linear regression of the 

initial ammonia concentration data, and normalizing the resulting rate to the mean value 

of the initial and final VSS concentrations of each culture series. 

5.2.4 BAC Biotransformation Assay 

 A batch assay was performed to investigate the biotransformation of BAC using 

mixed liquor of the aerobic reactor (R3) during the BNR system operation with BAC-

bearing poultry processing wastewater. The assay used the BAC mixture at an initial 

BAC concentrat���	�@	>�	��	�<�^	�����. The assay was conducted using 250-mL 

Erlenmeyer flasks (200 mL liquid volume). An aliquot of 150 mL R3 mixed liquor was 

collected during the daily wasting time, introduced into the flask, and then aerated for 24 

hours to remove any residual BAC and possible metabolites. Then, BAC was introduced 

into the flask at the aforementioned initial concentration. The extraction and HPLC 

analysis mentioned in section 3.2.2, above, were used to follow the concentration of BAC 

and four possible BAC metabolites: benzyl trimethyl amine (BTMA), dimethyl amine 

(BDMA), benzyl methyl amine (BMA), and benzyl amine (BA).  

5.2.5 BAC Adsorption Assay  

The equilibrium adsorption behavior of BAC in the poultry processing 

wastewater, anaerobic, anoxic, and aerobic reactors mixed liquors was tested by 24-hour 

equilibration assays. The adsorption assays were performed at a BAC concentration range 

between 5 and 60 mg/L and a fixed initial solids concentration. Triplicate series were 

prepared in 250-mL Erlenmeyer flasks with azide-amended wastewater and mixed liquor 

aliquots (1 g NaN3/L), amended with the BAC mixture at initial concentrations of 5, 10, 
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15, 30, 45, 60, 75 and 60 mg/L. The flasks were sealed with stoppers and agitated with an 

orbital shaker for 24 h at 22oC. The phase distribution of BAC was determined at the end 

of each batch adsorption assay by quantifying both the total and liquid-phase BAC 

concentration, and then the BAC mass adsorbed on the solids was calculated by 

difference.  

The Freundlich isotherm was used to describe the BAC adsorption equilibrium 

data. The Freundlich model, which was originally developed as an empirical expression 

that accounts for surface heterogeneity and exponential distribution of sites and their 

energies, is an appropriate model when more than one sorption mechanism apply (Ismail 

et al., 2010), which is the case with BAC (Ren et al., 2011). The Freundlich isotherm 

equation is as follows: 

 qe = KF Ce
n        (Equation 5.1)  

where qe is BAC concentration on the biomass at equilibrium (mg/g VSS); Ce is BAC 

concentration in the liquid-phase at equilibrium (mg/L); KF is the adsorption capacity 

factor ((mg/g VSS)(L/mg)n); and n is the Freundlich intensity parameter. The BAC 

concentration data were fitted to the Freundlich isotherm equation and both adsorption 

parameter values (KF and n) were estimated by non-linear regression analysis performed 

using SigmaPlot, Version 10 software (Systat Software Inc., San Jose, CA, USA). 
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5.3 Results and Discussion 

5.3.1 BNR Operation with BAC-bearing poultry processing wastewater 

After establishing stable BNR system operation regarding nitrogen removal (see Chapter 

4), BAC was introduced into the system’s poultry processing wastewater feed at a 

concentration of 5 mg/L. This concentration was chosen based on observations gathered 

from the nitrification assay discussed in Chapter 4, where complete nitrification took 

place at a BAC concentration of 5 mg/L, albeit with reduced SARR, at a mixed liquor 

VSS concentration comparable to that of the BNR system.  Figure 5.1 shows the nitrogen 

species concentration in the BNR system while treating the BAC-bearing poultry 

processing wastewater at a feed BAC concentration of 5 mg/L.  

5.3.1.1 Initial BAC exposure 

Six days after BAC introduction to the poultry processing wastewater feed, the 

ammonia concentration in R3 gradually increased and reached a maximum of 53 mg N/L 

(Figure 5.1). The simultaneous drop of the nitrate concentration in the aerobic reactor 

rather than the accumulation of nitrite, suggests that the ammonia oxidizing bacteria, not 

the nitrite oxidizing bacteria, were inhibited by BAC. The aerobic reactor VSS 

concentration dropped from 1250±242 to 1098±21 mg VSS/L. At the highest 

concentration of ammonia in the aerobic reactor the total nitrogen removal of the system 

dropped from 75.9% to 35.3%, the latter achieved by the daily waste of the aerobic 

reactor mixed liquor. 
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Figure 5.1. Nitrogen species and pH in the BNR system while treating the BAC-bearing 
poultry processing wastewater at a feed BAC concentration of 5 mg/L (A, R2; B, R3; and 
C, Effluent). 
  

0

20

40

60

80

100

1

2

3

4

5

6

7

8

9A

N
IT

R
O

G
E

N
 (m

gN
/L

)

0

20

40

60

80

100

pH

1

2

3

4

5

6

7

8

9B

TIME (Days)

30 33 36 39 42 45 48 51 54 57 60 63 66 69 72
0

20

40

60

80

100

1

2

3

4

5

6

7

8

9C

NO2
- NO3

- pHNH4
+



98 
 

On the other hand, nitrate was never detected in the effluent of R2, which suggests 

that BAC did not affect denitrification at the 1.1±0.2 mg/L BAC concentration detected 

in this reactor. Nevertheless, similarly to R3, the VSS concentration in R2 dropped from 

1157±236 to 859±53 mg VSS/L. The drop in VSS concentration in both reactors is 

attributed to decreased microbial growth as well as to induced cell lysis associated with 

the antimicrobial action of BAC (Cross and Singer, 1994). As discussed in Chapter 4, 

nitrification is more susceptible to BAC compared to denitrification, which explains the 

previous observations regarding nitrification and denitrification. Nevertheless, the 

observed nitrification inhibition occurred at a far less BAC concentration compared to the 

batch assay, i.e., 0.8 vs. 5 mg/L BAC in the aerobic reactor and nitrification batch assay, 

respectively.  

After 8 days of operation with a feed BAC concentration of 5 mg/L, the BAC 

concentration reached 5.1±0.1 mg/L in R1, while in the R2, R3 and effluent reached a 

maximum of 1.1±0.2, 0.8±0.2, and 0.5±0.1 mg BAC/L, respectively. After 15 days of 

operation with the BAC-bearing wastewater at a feed BAC concentration of 5 mg/L (45 

days continuous operation), the BAC concentration in both the aerobic reactor and 

effluent decreased to non detectable levels, indicating complete BAC biotransformation 

by the heterotrophic population in the aerobic reactor. Figure 5.2 shows the BAC 

concentration in the BNR system while treating the BAC-bearing poultry processing 

wastewater at a feed concentration of 5 mg/L. 

After the complete biotransformation of BAC, the ammonia concentration in R3 

gradually decreased (Figure 5.1). The subsequent transient increase in nitrite 

concentration suggests that the ammonia oxidizing bacteria (AOB) were the first to 
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recover from the initial BAC inhibition. After 27 days of operation with BAC-bearing 

poultry processing wastewater feed at 5 mg/L, the system performance stabilized to 

nitrogen removal levels similar to those achieved during the BAC-free operation, 

reaching an ammonia and nitrogen  removal efficiency ����	��#	�*�	(on day 57 and 

onward; see Figure 5.1). OUR analysis of the aerobic reactor mixed liquor performed at 

the 100th day of operation resulted in OUR1, OUR2, and OUR3 values of 16.6 ± 0.7, 15.3 

± 0.8, and 14.2 ±0.2 mg O2/h, respectively. The three OUR values were marginally less 

than those measured during the BAC-free operation, which is attributed to a low BAC 

inhibitory effect on the respiratory enzymes of the aerobic reactor microbial population 

(Zhang et al., 2011). The above reported OUR values corresponded to AOB and NOB 

biomass fractions of 2.0 and 3.1%, respectively, in the aerobic reactor population.  

 
 
 
 

 
 
 
Figure 5.2. Total BAC concentration in the BNR system while treating the BAC-bearing 
poultry processing wastewater at a feed BAC concentration of 5 mg/L. 
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These AOB and NOB biomass fractions are similar to the values obtained during 

the BAC-free operation period.  

Table 5.1 summarizes the performance of the BNR system operated with BAC-

bearing poultry processing wastewater at a feed concentration of 5 mg /L, after 

recovering from the initial inhibitory effect of BAC. The recovery of nitrifiers more 

likely resulted from BAC removal in R3 through aerobic biotransformation by the 

heterotrophic population as previously documented (Nishihara et al., 2000; Patrauchan 

and Oriel, 2003; Tezel, 2009; Zhang et al., 2011). BAC was recalcitrant under the anoxic 

conditions of the anoxic reactor (R2) as discussed in Chapter 4. In addition, the BAC-

bearing R1 effluent is diluted as it is mixed with R2 mixed liquor (i.e., CSTR effect), thus 

resulting in a significantly lower BAC concentration in both R2 and R3, which in turn 

results in reducing the extent of BAC exposure of the microbial populations in these 

reactors. 

An increase in ammonia and sCOD concentrations was detected in the anaerobic 

reactor effluent while the BNR system feed was maintained at 5 mg/L. As discussed in 

Chapter 2, the surface active properties of BACs favor their adsorption to organic 

particulates found in the anaerobic reactor, resulting in enhanced lysis and particulate 

matter solubilization, which in turn causes the release of organic nitrogen (as ammonia) 

and soluble organics (detected as sCOD). 

In order to assess the BNR system’s response to a range of BAC concentrations, 

the poultry processing wastewater feed BAC concentration was increased stepwise to 10, 

15, 30, 45, and 60 mg/L. Figure 5.3 shows the nitrogen species throughout the BNR 

5.3.1.2 Operation at increasing feed BAC concentrations 
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System while treating the BAC-bearing poultry processing wastewater at stepwise 

increased feed BAC concentrations from 5 to 60 mg/L and Table 5.2 summarizes the 

BNR system performance during the same period. 

 

 

Table 5.1. Performance of the BNR system during continuous operation with BAC-
bearing poultry processing wastewater at a feed BAC concentration of 5 mg /L (Data 
from day 58 to 72). 
 
Parameter  R1  R2  R3  Effluent  
pH  6.6 ± 0.2a  7.2 ± 0.1  6.8 ± 0.3  6.5 ± 0.5  
TSS (mg/L)  156 ± 56  1140 ± 167  1324 ± 8  81 ± 71  
VSS (mg/L)  144 ± 36  859 ± 53  1098 ± 21  58 ± 39  
Soluble COD (mg/L)  772 ± 144  408 ± 40  381 ± 38  211 ± 54  
VFAs (mg COD/L)  268 ± 99  ND  ND  ND  
NH3 (mg N/L)  100 ± 5  24 ± 4  0.5 ± 0.8  2 ± 1  
NO3

- (mg N/L)  NDb  ND  17 ± 5 20 ± 0.7  
NO2

- (mg N/L)  ND  ND  0.9 ± 0.7  0.8 ± 0.6 
a Mean ± standard deviation (n  3); b ND, not detected; 
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Figure 5.3. Nitrogen species and pH in the BNR system while treating the BAC-bearing 
poultry processing wastewater at stepwise increased feed BAC concentrations from 5 to 
60 mg/L (A, R2; B, R3; and C, Effluent). 
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During the stepwise increased poultry processing wastewater feed BAC 

concentration, a high nitrification efficiency was sustained at all BAC concentrations 

tested indicated by nitrogen species levels in the R3 similar to those achieved during the 

BAC-free operation (Figure 5.3). The sustained high nitrification efficiency is attributed 

to an increased BAC degradation rate by the heterotrophic population in the aerobic 

reactor, which in turn reduced the extent of nitrifying population exposure to BAC.  

OUR analysis showed that the AOB and NOB biomass fractions of the aerobic reactor 

population were comparable to those found after the system recovery from the initial 

BAC exposure (2.21 ± 0.2 % and 2.85 ± 0.3 % for AOB and NOB, respectively; mean ± 

standard deviation, n = 3). Table 5.3 shows the steady-state BAC concentration 

throughout the BNR system during the 530 days of operation with the BAC-bearing 

poultry processing wastewater, and Figure 5.4 shows the BAC concentration throughout 

the BNR system during the same period. As seen in Table 5.3, beginning at a poultry 

processing wastewater feed BAC concentration of 30 mg/L, the BAC concentration in R3 

was higher than that observed during the initial exposure to BAC (1.5 ± 0.4 to 1.8±0.2 

mg/L vs. 0.8±0.2 mg/L). In spite of the higher BAC concentration, nitrification was not 

affected, which indicates that the nitrifiers in the aerobic reactor became more resistant to 

BAC over time. This hypothesis was later examined as discussed in section 5.4.2.3 

below. Moreover, the effluent BAC concentration never exceeded 1.2±0.5 mg/L at a 

poultry processing wastewater feed BAC concentration of 60 mg/L, thus achieving a 

continuous BAC removal efficiency � 98% at all feed BAC concentrations. 
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Table 5.2. Performance of the BNR system during continuous operation with BAC-
bearing poultry processing wastewater at a feed BAC concentration from 10 to 60 mg/L 
(Data from day 87 to day 342). 
 
Parameter  R1  R2  R3  Effluent  
pH  6.7 ± 0.1a  7.0 ± 0.1  7.0 ± 0.4  7.0 ± 0.4 
TSS (mg/L)  167 ± 60  1187 ± 32  1309 ± 124 52 ± 2 
VSS (mg/L)  154 ± 48  994 ± 54  1073 ± 80 42 ± 2 
Soluble COD (mg/L)  668 ± 258  295 ± 138  273 ± 74 282 ± 15 
VFAs (mg COD/L)  279 ± 21  ND  ND ND 
NH3 (mg N/L)  90 ± 7  19 ± 3  0.9 ± 0.2 1 ± 0.5 
NO3

- (mg N/L)  ND b  1 ± 0.9  23 ± 5 20 ± 7 
NO2

- (mg N/L)  ND  ND  1.9 ± 0.9 1 ± 4 
a Mean ± standard deviation (n  6); b ND, not detected; 
 
 
 
 
 
Table 5.3. Steady-state BAC concentration (mg/L) throughout the BNR system during 
operation with stepwise increased poultry processing wastewater feed BAC 
concentrations (Data from day 33 to day 381). 
 

Feed R1 R2  R3 Effluent 
5 
10 
15 
30 
45 
60 

4.8 ± 0.1a 
10.5 ± 0.3 
15.2 ± 0.5 
46.1 ± 1.6 
46.1 ± 1.5 
59.8 ± 2.1 

0.5 ± 0.4 
0.5 ± 0.4 
1.7 ± 0.3 
2.4 ± 0.6 
6.7 ± 1.5 
9.7 ± 0.6 

0.4 ± 0.3 
0.4 ± 0.3 
0.6 ± 0.2 
1.8 ± 1.1 
1.5 ± 0.4 
1.8 ± 0.2 

0.3 ± 0.3 
0.3 ± 0.3 
0.6 ± 0.2 
1.1 ± 0.4 
0.5 ± 0.2 
0.4 ± 0.3 

a Mean ± standard deviation, n � 8 
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Figure 5.4. Total BAC concentration in the BNR system while treating the BAC-bearing 
poultry processing wastewater at stepwise increased feed BAC concentrations from 5 to 
60 mg/L. 
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To further examine the BNR operation and performance while treating a BAC-

bearing wastewater, a step increase in the poultry processing wastewater feed BAC 

concentration was made to simulate an accidental spill in a poultry processing plant. This 

scenario is more likely to happen during upstream cleaning procedures in food processing 

facilities. 

5.3.1.3 BNR system resiliency test 

The poultry processing wastewater feed BAC concentration was increased from 

60 to 120 mg/L, then back to 0 in 6.5 days, which is equal to one hydraulic retention time 

of the system. Figure 5.5 shows the BAC concentration throughout the BNR system 

during operation at a feed BAC concentration of 120 mg/L and the subsequent BAC-free 

feed period. The highest BAC concentrations, detected in the BNR system were after 

seven days from the time the feed BAC concentration was increased to 120 mg/L, were 

22.6 ± 1.9, 2.2 ± 0.3, and 1.2 ± 0.5 mg/L in the R2 and R3 reactors, and the effluent, 

respectively. The BNR system performance remained identical to that attained before the 

step change in the feed BAC concentration, achieving � 97% ammonia removal. The 

BAC concentration in R3 was less than the previously identified limit for efficient 

nitrification (only reached 2.2±0.3 mg/L vs. 15 mg/L), which may explain the sustained 

nitrogen removal efficiency even at such a high BAC concentration in the poultry 

processing wastewater feed.  
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Figure 5.5. Total BAC concentration in the BNR system while treating the BAC-bearing 
poultry processing wastewater at a stepwise increase of the feed BAC concentrations 
from 60 to 120 mg/L. 
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5.3.2 Effect of BAC on the Performance of BNR System Components 

 In order to understand the degree and extent of BAC’s (or QACs in general) fate 

and effect on the BNR performance, a series of batch assays were conducted using the 

mixed liquor of the laboratory-scale BNR system. The batch assays allow for 

independent examination of the performance of each BNR system component in the 

presence of BAC, thus contributing to a better understanding of the fate and effect of 

BAC in a BNR system. 

 The assay testing the fate and effect of BAC in the anaerobic reactor (R1) lasted 

for 25 hours. Three processes were followed in this assay: organic carbon solubilization, 

VFAs production, and ammonia release (ammonification). Figures 5.6 and 5.7 show the 

time course of sCOD and VFAs production and ammonia release (corrected for the seed 

culture series), respectively. The sCOD concentration increased by 70, 81, 75, 77, 81, and 

79 % for the culture series at 0, 5, 15, 30, 45, and 60 mg/L BAC, respectively, while the 

VFAs concentration increased by 30, 29, 24, 24, 27, and 29% for the same culture series. 

Acetate was the predominant VFA, followed by propionate and i- and n-butyric acid. The 

ammonia release in all BAC-amended culture series was higher than in the BAC-free 

culture series. The final ammonia concentration in the BAC-amended culture series was 

relatively the same, reaching 19.7 ± 0.4 mg N/L (mean ± standard deviation, n = 5), while 

the ammonia concentration in the BAC-free culture series was 16.9 mg N/L. The 

ammonia release in all culture series followed the same trend of sCOD production. 

5.3.2.1 Anaerobic batch assay 
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Figure 5.6. Time course of sCOD and VFAs concentrations during the anaerobic batch 
assay conducted with the anaerobic reactor mixed liquor and poultry processing 
wastewater at initial BAC concentration of 0 (A), 5 (B), 15 (C), 30 (D), 45 (E), and 60 
(F) mg/L. 
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Figure 5.7. Time course of ammonia concentration and pH during the anaerobic batch 
assay conducted with the anaerobic reactor mixed liquor and poultry processing 
wastewater at initial BAC concentration of 0 (A), 5 (B), 15 (C), 30 (D), 45 (E), and 60 
(F) mg/L. 
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Under anaerobic conditions, the release of organic material and nitrogen from 

particulate matter is achieved through two solubilization steps: disintegration (non-

biological) and hydrolysis by extracellular enzymes (Batstone et al., 2002). The increased 

sCOD production and ammonia release in the BAC-amended culture series is attributed 

to enhanced solubilization through BAC induced lysis. On the other hand, as previously 

reported (Tezel et al., 2006; Tezel et al., 2007), the production of VFAs in the BAC-

amended culture series was not inhibited by BAC. The uninhibited VFAs production in 

the anaerobic reactor more likely resulted from metabolic activities unaffected by BAC. 

The BAC inhibitory effect is associated with inhibition of respiratory enzymes present in 

microbial cellular membranes (Zhang et al., 2011). However, VFAs are produced through 

fermentative, non-respiratory activities (Rittmann and McCarty, 2001; Madigan and 

Martinko, 2006), which explains the observed lack of inhibition of the VFAs production.  

BAC was completely recovered in all BAC-amended culture series at the end of 

the incubation period as shown in Figure 5.8. Therefore, BAC did not degrade under the 

fermentative conditions of reactor R1. BAC is considered to be recalcitrant under anoxic 

and anaerobic conditions, as previously reported (Garcia et al., 2006; Tezel et al., 2006; 

Tezel et al., 2007; Tezel et al., 2008). Two exceptions are the modified Hofmann 

nucleophilic substitution reaction and the activation reaction by fumarate addition (Tezel 

and Pavlostathis, 2009; Tezel, 2009). 
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Figure 5.8. BAC phase distribution at the end of the anaerobic batch assay. 
 

 

 

Using mixed liquor from the aerobic reactor (R3) after 370 days of continuous 

operation when the poultry processing wastewater feed BAC concentration was 60 mg/L, 

a second batch assay was performed to assess the effect of BAC on nitrification.  

5.3.2.2 Batch nitrification assay 

The assay lasted for 33 hours. Figure 5.9 shows the time course of the nitrogen 

species and pH variation during the batch incubation period for all seven culture series. 

Similarly to the previous nitrification assay (see Chapter 4), a decrease in the final 

biomass concentration was observed in all BAC-amended culture series with increasing 

BAC concentration resulting from BAC-induced growth inhibition and cell lysis (Figure 

5.10) brought about by the BAC effect as an antimicrobial agent (Cross and Singer, 
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Figure 5.11A shows the extent of ammonia removal in all culture series at the end 

of the incubation period. Among all the culture series, the BAC-free, and the 5 and 15 

mg/L BAC-amended culture series achieved complete ammonia removal and oxidation to 

nitrate within 21 h of incubation. The initial SARR was 60.2 ± 1.9, 58.9 ± 6.2, and 49.9 ± 

7.4 mg N/g VSS · day for the BAC-free, and the 5 and 15 mg/L BAC-amended culture 

series, respectively. Complete inhibition of nitrification (  2.5% ammonia removal) and a 

low initial SARR (  4.4±5.2 mg N/g VSS · day) was observed in the remaining four 

BAC-amended culture series (20 to 45 mg/L BAC). Similarly to the previous nitrification 

assay, nitrite was never detected in any of the culture series. Figure 5.11B shows the 

relative SARR (i.e., SARR normalized to the BAC-free culture series) for all culture 

series. Overall, after a long-term acclimation period, efficient nitrification was sustained 

in a BNR system while treating BAC-bearing poultry processing wastewater as long as 

the BAC concentration in the aerobic reactor was kept below 15 mg/L. Yang (2007) 

found that an acclimated, fed-batch aerobic reactor, treating a synthetic wastewater 

(dextrin and peptone) was capable of efficient nitrification at an initial BAC 

concentration of 20 mg/L.  
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Figure 5.9. Time course of nitrogen species and pH variation during the batch 
nitrification assay conducted with the aerobic reactor (R3) mixed liquor collected at day 
370 and initial BAC concentrations of 0 (A), 5 (B), 15 (C), 20 (D), 25 (E), 30 (F), and 45 
(G) mg/L. 
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Figure 5.10. Total and volatile suspended solids (TSS and VSS) in the culture series at 
the end of the incubation period of the batch nitrification assay conducted with the 
aerobic reactor (R3) mixed liquor collected at day 370 and a range of initial BAC 
concentration 0 – 45 mg/L. Error bars represent one standard deviation of the means (n = 
3). 
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Figure 5.11. Extent of ammonia removal (A) and relative specific ammonia removal rate 
(RSARR) (B) for the culture series in the batch nitrification assay conducted with the 
aerobic reactor (R3) mixed liquor collected at day 370 and a range of initial BAC 
concentration 0 – 45 mg/L. 
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Figure 5.12 shows the time course of sCOD concentration during the batch 

incubation period for all seven culture series. An increase in the sCOD concentration was 

observed in the BAC-amended culture series at an initial BAC concentration  20 mg/L. 

Similarly to the anaerobic assay (see section 5.4.2.1, above), the increase in the sCOD is 

attributed to BAC-induced inhibition of cell growth and cell lysis. Figure 5.13 shows the 

relative SCUR (i.e., SCUR normalized to the BAC-free culture series) for all culture 

series. BAC inhibited sCOD utilization by the heterotrophic population in all BAC-

amended culture series. The BAC inhibitory effect on the organic carbon utilization by 

activated sludge mixed cultures was previously reported (Sutterlin et al., 2008; Zhang et 

al., 2011). 

 Based on total BAC measurements performed at 20 h of incubation, more than 95% of 

the initially added BAC was removed and further BAC removal was not detected by the 

end of the incubation period. Figure 5.14 shows the time course of total and liquid-phase 

BAC concentrations during the batch incubation period for all six BAC-amended culture 

series. Similar to the previous nitrification assay, nitrification did not recover in the 

inhibited culture series after BAC removal during the last 10 h of incubation. BAC 

biotransformation rates in the BAC-exposed mixed liquor were much higher than those 

observed with the unexposed aerobic reactor mixed liquor (i.e.,  95% BAC removal 

within 20 h vs. 60 h), which confirms that the heterotrophic population indeed achieved 

high BAC biotransformation rates after a long-term exposure to BAC, which is attributed 

to both acclimation and enrichment.  
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Figure 5.12. Time course of sCOD concentration during the batch nitrification assay 
conducted with the aerobic reactor (R3) mixed liquor collected at day 370 and initial BAC 
concentrations of  0 (A), 5 (B), 15 (C), 20 (D), 25 (E), 30 (F), and 45 (G) mg/L. Error 
bars represent one standard deviation of the means (n = 3). 
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Figure 5.13. Relative specific sCOD utilization rate (RSCUR) for the seven culture series 
used in the batch nitrification assay conducted with the aerobic reactor (R3) mixed liquor 
collected at day 370 and a range of initial BAC concentration 0 – 45 mg/L. 
 

 

As a result of fast BAC biotransformation, the extent of nitrification inhibition by 

BAC in the 5 and 15 mg/L BAC-amended culture series was limited, evident by the 

complete ammonia removal and the higher SARR values obtained as compared to those 

achieved in the first batch nitrification assay. However, the higher BAC removal rates did 

not prevent nitrification inhibition at initial BAC concentrations  20 mg/L. 
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Figure 5.14. Time course of total and liquid-phase BAC concentration during the batch 
nitrification assay conducted with the aerobic reactor (R3) mixed liquor collected at day 
370 and at initial BAC concentrations of  5 (A), 15 (B), 20 (C), 25 (D), 30 (E), and 45 (F) 
mg/L. Error bars represent one standard deviation of the means (n = 3). 
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As discussed in the previous section, after an acclimation period, efficient 

nitrification was sustained in the BNR system while treating the BAC-bearing 

wastewater. High BAC biotransformation rates in the aerobic reactor only indicate an 

acclimated and enriched heterotrophic population in the system. Until this point, the only 

indication that the nitrifying population was also acclimated, perhaps by acquiring 

resistance to BAC, is the fact that nitrification took place even at BAC concentrations in 

the aerobic reactor higher than those observed during the initial exposure to BAC (1.5 ± 

0.4 to 1.8±0.2 mg/L vs. 0.8±0.2 mg/L). In order to confirm this observation, a batch 

nitrification assay was conducted using the mixed liquor of the aerobic reactor collected 

at day 660 of continuous operation, when the BNR system was treating BAC-free poultry 

processing wastewater for 100 days. 

5.3.2.3 Post BAC exposure batch nitrification assay  

The assay lasted for 28 hours. Figure 5.15 shows the time course of nitrogen 

species in the BAC-free and BAC-amended cultures series and Figure 5.16A shows the 

extent of ammonia removal in all culture series. Similarly to the nitrification batch assay 

conducted during the system operation with BAC-bearing poultry processing wastewater, 

the BAC-free and the 5 and 15 mg/L BAC-amended culture series achieved complete 

ammonia removal and oxidation to nitrate within 28 hours of incubation. The initial 

SARR was 40.7 ± 6.2, 37.3 ± 1.1, 33.6 ± 2.1, and 22.7 ± 3.3 mg N/g VSS · day for the 

BAC-free and the 5, 10 and 15 mg/L BAC-amended culture series, respectively.  
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Figure 5.15. Time course of nitrogen species and pH variation during the batch 
nitrification assay conducted with the aerobic reactor (R3) mixed liquor collected at day 
660 and at initial BAC concentrations of 0 (A), 5 (B), 10 (C), and 15 (D) mg/L. 
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Figure 5.16. Extent of ammonia removal (A) and relative specific ammonia removal rate 
(RSARR) (B) for the culture series in the batch nitrification assay conducted with the 
aerobic reactor (R3) mixed liquor collected at day 660 and a range of initial BAC 
concentration 0 – 15 mg/L. 
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Figure 5.16B shows the relative SARR (i.e., SARR normalized to the BAC-free 

culture series) for all culture series. What was different in this batch assay is the rate of 

BAC biotransformation, which was drastically reduced as shown in Figure 5.17 and was 

comparable to the initial BAC biotransformation rates obtained with the BAC-unexposed 

aerobic reactor mixed liquor (see Chapter 4). Moreover, the 10 and 15 mg/L BAC-

amended culture series in this assay achieved 100% ammonia removal in the presence of 

BAC, while the 10 and 15 mg/L BAC-amended culture series in the previous assay (see 

Chapter 4) achieved only 43 and 28% ammonia removal, respectively, in spite the fact 

that BAC was completely removed in these culture series. 

This last observation indicates that the nitrifying population in the aerobic reactor 

did indeed acquire BAC resistance as a result of prolonged exposure to BAC in the BNR 

system. Additionally, although BAC exposure was terminated, the nitrifiers remained 

acclimated to BAC longer than the heterotrophs.  

The assay testing the effect of BAC on denitrification lasted for 1.8 days (42 hours).  

Figure 5.18 shows the time course of nitrogen species in all eight culture series. All 

added nitrate was fully reduced to either dinitrogen gas (��<��	��	�������"	�\�\	

indicates that the DNRA process was also active in these cultures. Neither nitric oxide 

nor nitrous oxide was detected in any culture series. Figure 5.19A shows the nitrogen 

species distribution at the end of the incubation period. As observed in the nitrification 

assay, for all BAC-amended culture series a decrease in the final biomass concentration 

was observed with increasing BAC concentration, resulting from BAC-induced microbial 

growth inhibition and cell lysis (Figure 5.20).  

5.3.2.4 Denitrification batch assay 
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Figure 5.17. Time course of total BAC concentration during the batch nitrification assay 
conducted with the aerobic reactor (R3) mixed liquor collected at day 600 and at initial 
BAC concentrations of  5 (A), 10 (B), and 15 (C) mg/L. Error bars represent one standard 
deviation of the means (n = 3). 
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Figure 5.18. Time course of nitrogen species mass per bottle during the batch 
denitrification assay conducted with the anoxic reactor (R2) mixed liquor collected at day 
400 and at initial BAC concentrations of  0 (A), 5 (B), 10 (C), 15 (D), 20 (E), 25 (F), 30 
(G), and 45 (H)  mg/L.  
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Figure 5.19. Nitrogen species distribution at the end of the incubation period (A) and 
relative specific nitrate removal rate (RSNRR) (B) in the batch denitrification assay 
conducted with anoxic reactor (R2) mixed liquor collected at day 400 and a range of 
initial BAC concentration 0 – 45 mg/L. 
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The initial SNRR of the BAC-free culture series was 198.1 ± 5.1 mg N/g VSS-

day, while BAC decreased the initial SNRR in the BAC-amended culture series to 195.6 

± 5.3, 185.0 ± 9.1, 92.8 ± 0.2, 73.3 ± 11.6, 67.7 ± 11.2, 64.9 ± 6.4, and 54.1 ± 15.0 mg 

N/g VSS-day at an initial BAC concentration of 5, 10, 15, 20, 25, 30, and 45 mg/L, 

respectively. Figure 5.19B shows the relative SNRR of the culture series in this assay. At 

BAC concentrations of 15 mg/L and above, the decrease in the nitrate reduction rate was 

substantial (Figure 5.19B). Similarly to the initial denitrification assay (i.e., before 

exposure to BAC; see Chapter 4), transient accumulation of nitrite was observed at initial 

BAC concentrations  25 mg/L. The SNRR values of the BAC-exposed denitrifying 

mixed liquor were higher than the SNRR values of the BAC-unexposed denitrifying 

culture (discussed in Chapter 4) at BAC concentrations  20 mg/L, and the remaining 

culture series had marginally lower SNRR values.  

Similarly to the previous denitrifying assay, all added BAC was fully recovered 

at the end of the incubation period, which indicates that BAC did not degrade under the 

conditions of the denitrification assay.  
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Figure 5.20. Total and volatile suspended solids (TSS and VSS) at the end of the 
incubation period in the batch denitrification assay conducted with anoxic reactor (R2) 
mixed liquor collected at day 400. Error bars represent one standard deviation of the 
means (n = 3). 
 

 

 

The assay examining BAC biotransformation under aerobic conditions lasted for 2 days. 

At the time this assay was conducted, the BNR system was operating with BAC-bearing 

poultry processing wastewater at a feed BAC concentration of 60 mg/L (day 373). The 

collected aerobic reactor mixed liquor was aerated for 24 hours to fully remove any 

residual BAC and/or possible BAC metabolites present before BAC was reintroduced 

and sample collection for BAC metabolites analysis commenced. Figure 5.21 shows the 

time course of BAC and detected BAC metabolites during the course of the assay. 

5.3.2.5 BAC biotransformation assay 
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BAC was transformed without lag yielding benzyl dimethyl amine (BDMA), 

benzyl methyl amine (BMA), and benzyl amine (BA), while benzyl trimethyl amine 

(BTMA) was not detected in any of the collected samples. The detected simultaneous 

production and transformation of BAC and the three intermediates suggests that the BAC 

biotransformation reactions were taking place simultaneously. Based upon previous 

observations, the BAC biotransformation followed the pathway reported by Patrauchan 

and Oriel (2003) (see Chapter 2 above), where BAC biotransformation begins by the 

fission of the central Calkyl-N bond resulting in BDMA, which in turn undergoes 

successive N-demethylations to yield BMA and BA. Tezel (2009) reported a different 

pathway for BAC aerobic biotransformation, where tetradecyl benzyl dimethyl 

ammonium (C14BDMA) underwent a dealkylation reaction resulting in tetradecanoate 

and BDMA, which was further transformed to dimethyl amine and benzoic acid by a 

debenzylation reaction. It should be noted that BAC biotransformation reported by Tezel 

(2009) was achieved with a highly-enriched culture which was sustained fed-batch with 

BAC as the sole carbon and energy source for over two years, supplemented with 

stoichiometric levels of NH4NO3. Figure 5.22A shows the proposed pathways for BAC in 

the BNR system aerobic reactor, while Figure 5.22B shows the other reported pathway 

for BAC (Tezel, 2009). 
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Figure 5.21. Time course of BAC and detected BAC metabolites during the BAC 
biotransformation assay conducted with aerobic reactor (R3) mixed liquor collected at 
day 373. 
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Figure 5.22. Proposed BAC biotransformation pathways as observed in the BNR system 
aerobic reactor (A) and reported by Tezel (2009) for a highly enriched BAC-degrading 
culture (B). 
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 BAC phase distribution data from the adsorption assays conducted with the 

poultry processing wastewater feed and the anaerobic, anoxic and aerobic reactors mixed 

liquors are shown in Figure 5.23. The BAC phase distribution at the end of the anaerobic 

assay was used to assess the BAC phase distribution in the anaerobic reactor (R1). The 

biomass concentration was not altered for the adsorption assay in order to simulate the 

operational conditions in the BNR system. The VSS concentrations were 92 ± 20, 406 ± 

17, 938 ± 71, and 1073 ± 94 mg/L (mean ± standard deviation, n  6) for the poultry 

processing wastewater feed and the anaerobic, anoxic, and aerobic reactors mixed liquor, 

respectively. The poultry processing wastewater feed had the highest liquid-phase BAC 

concentration because it had the lowest VSS concentration. On the other hand, the 

anaerobic reactor mixed liquor had a liquid-phase BAC concentration similar to that in 

the anoxic and aerobic reactors despite the much lower VSS concentration in the 

anaerobic reactor, a result that indicates a much higher sorption capacity of the anaerobic 

reactor biomass.  

5.4.2.6 BAC phase distribution 

BAC phase distribution data were fitted to the Freundlich isotherm and the values 

of both the adsorption capacity (KF) and intensity parameter (exponent; n) are listed in 

Table 5.4, while Figure 5.24 shows the BAC phase distribution in the four BNR system 

components. The values of both the adsorption capacity and exponent are comparable to 

previously reported values for BAC adsorption (Tezel, 2009; Ismail et al., 2010), and 

differ from others (Zhang et al., 2011; Ren et al., 2011). The BAC used in this study 

contained three homologs with different alkyl chain length (see Chapter 4).  
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Figure 5.23 BAC phase distribution in the poultry processing wastewater feed (A), and 
the anaerobic reactor (B), anoxic reactor (C), and aerobic reactor (D) mixed liquors at 
VSS concentrations of 92 ± 20, 406 ± 17, 938 ± 71, and 1073 ± 94 mg/L (mean ± 
standard deviation, n  6) after 24-hours equilibration. Error bars represent one standard 
deviation of the means (n = 3). 
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Table 5.4. Freundlich isotherm equation coefficientsa. 
 

Adsorbent KF 
((mg/g VSS)(L/mg)n) 

n 
(-) 

r2 
(-) 

 Feed 
R1 Mixed Liquor 
R2 Mixed Liquor  
R3 Mixed Liquor 

63.9 ± 9.0a 
125.3 ± 22 
11.4 ± 2.4 
11.0 ± 1.8 

0.54 ± 0.05 
0.42 ± 0.09 
0.69 ± 0.09 
0.69 ± 0.07 

0.968 
0.931 
0.989 
0.975 

a Best fit ± standard error; number of data points  5. 

 
 
 

 
 
Figure 5.24 Solid- and liquid-phase BAC concentration in the poultry processing 
wastewater feed (A), and the anaerobic reactor (B), anoxic reactor (C), and aerobic 
reactor (D) mixed liquors after 24-hours equilibration. Error bars represent one standard 
deviation of the means (n = 3). Broken lines represent 95% confidence intervals. 
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The adsorption behavior of the BAC mixture is expected to be different than that 

of individual BAC homologs because of interactions between the three homologs.  

The difference in BAC adsorption behavior between the poultry processing 

wastewater feed and the anaerobic, anoxic, and aerobic reactors mixed liquors is evident 

from the values of both the adsorption capacity (KF) and intensity parameter (exponent; 

n). The adsorption capacity for the anaerobic reactor mixed liquor is almost double that 

obtained with the poultry processing wastewater feed, which indicates that the anaerobic 

reactor biomass was more heterogeneous than the surface of the poultry processing 

wastewater feed solids (Aksu et al., 2002). On the other hand, the intensity parameter was 

slightly lower for the anaerobic reactor compared to the poultry processing wastewater 

feed indicating that adsorption to the anaerobic reactor biomass is more favorable 

compared to the poultry processing wastewater feed solids (Aksu et al., 2002; 

Babakhouya et al., 2010). 

For the anoxic and aerobic reactors, both the adsorption capacity and exponent 

values were almost identical because both reactors share the same mixed liquor and 

supernatant, albeit under different environmental conditions. Compared to the poultry 

processing wastewater feed and anaerobic reactor, the anoxic/aerobic biomass surface is 

more homogenous, indicated by a lower Freundlich adsorption capacity. The largest 

fraction of solids in the anoxic/aerobic reactors is comprised of microbial biomass, which 

explains the higher surface homogeneity. On the other hand, the higher value of the 

Freundlich exponent for the anoxic/aerobic reactors indicates that BAC adsorption is less 

favorable to the reactors biomass compared to the poultry processing wastewater feed 

solids and anaerobic reactor biomass. 
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While not evident at this point, BAC adsorption plays an important role in the 

degree and extent of BAC inhibition. The adsorption behavior determines the distribution 

of BAC in the system between the solid and liquid phases, changing the microbial 

population exposure level and ultimately their susceptibility to BAC. Further analysis is 

required to clearly define the relationship between adsorption and inhibition by BAC, an 

area that is explored in Chapter 6.  

5.4 Summary 

The nitrogen removal efficiency of the BNR system was examined while treating 

BAC-bearing poultry processing wastewater at a range of BAC concentrations. The 

laboratory-scale, multi-stage BNR system was continuously fed with real poultry 

processing wastewater amended with a mixture of three benzalkonium chlorides. The 

nitrogen removal efficiency initially deteriorated at a poultry processing wastewater feed 

BAC concentration of 5 mg/L due to complete inhibition of nitrification. However, the 

system recovered after 27 days of operation achieving high nitrogen removal efficiency, 

even after the feed BAC concentration was stepwise increased up to120 mg/L.  

Batch assays performed using the mixed liquors of the BNR system reactors, 

during and post BAC exposure, showed that microbial biotransformation, 

acclimation/enrichment, and acquisition of resistance to BAC limited the extent and 

degree of BAC inhibition in the system. Compared to the unexposed BNR system, 

nitrifiers achieved higher SARR and complete nitrification at higher BAC concentrations 

and acquired resistance to BAC, while denitrifiers achieved higher SNRR with lower 
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transient nitrite accumulation. BAC was also found to be inhibitory to sCOD utilization 

by the heterotrophic population in the aerobic reactor.  

BAC biotransformation occurred only in the aerobic reactor and began by the 

fission of the central Calkyl-N bond resulting in BDMA, which in turn underwent 

successive N-demethylations to yield BMA and BA. Time course data of the three 

intermediates indicated that these biotransformation reactions took place simultaneously. 

BAC phase distribution data with the poultry processing wastewater feed and the 

anaerobic, anoxic, and aerobic reactor mixed liquors was fitted to the Freundlich isotherm 

equation. BAC adsorption to the biomass of the four aforementioned BNR system 

components was found to be favorable, but with the following descending order:  

anaerobic reactor biomass  poultry processing wastewater feed  anoxic/aerobic reactors 

biomass.  
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CHAPTER 6 

MODELING THE FATE AND EFFECT OF BENZALKONIUM 

CHLORIDES IN A BNR SYSTEM  

 
 
 

6.1 Introduction 

In contrast to available information regarding the fate and effect of BAC on 

nitrification and denitrification (Chapter 2), little or no information exists regarding BAC 

nitrification and denitrification inhibition kinetics. Results obtained in both Chapters 4 

and 5 showed that BAC has an adverse effect on the BNR system, specifically on the two 

biological processes responsible for nitrogen removal, i.e., nitrification and 

denitrification. Three processes contribute to the overall fate of BAC: adsorption, 

inhibition, and biotransformation.  The extent of BAC effect on nitrification and 

denitrification was influenced by its biotransformation and inhibition. The BAC 

equilibrium phase distribution (i.e., adsorption) differed in the various components of the 

BNR system (i.e., feed, anaerobic, anoxic, and aerobic reactors), thus altering the degree 

and extent of BAC exposure throughout the system.  Kinetic modeling of the biological 

processes in the BNR system reactors (anaerobic, anoxic, and aerobic) with and without 

BAC exposure will contribute to a better understanding of the interactions between the 

three system components relative to BAC fate and effect in terms of adsorption, 

inhibition, and biotransformation. In addition, the incorporation of BAC nitrification and 

denitrification inhibition kinetics in a comprehensive BNR model will allow the 

simulation of BAC fate and effect on a BNR system under different operational 
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conditions, which in turn can guide both the design and operation of BNR systems 

treating BAC-bearing poultry processing wastewater.   

The objectives of the research reported here were to: (a) develop kinetic sub-

models for the biological processes occurring in the three reactors in the BNR system; (b) 

develop BAC inhibition kinetics for nitrification and denitrification; and (c) develop and 

validate a comprehensive BNR system dynamic model that combines the kinetic sub-

models and BAC inhibition kinetics. 

6.2 Model Development 

6.2.1 Anaerobic Reactor sub-Models 

The main processes taking place in the anaerobic reactor are hydrolysis and 

fermentation (i.e., VFAs production) of particulate organic matter, and the resulting 

ammonia release (ammonification). Assuming first-order kinetics and no inhibition, the 

three reactions in the anaerobic reactor are described by three ordinary differential 

equations (ODEs) as follows: 

shd Xk
dt

dXs

                                          
Equation (6.1) 

shdvfa
vfa Xkf

dt
dS

                                          
Equation (6.2) 

shd
nh Xfk

dt
dS 3

                                           
Equation (6.3) 

 

where XS, SS, Svfa are particulate organic matter, readily degradable organics, and VFAs 

concentration (mg COD/L), respectively; t is time (days); hdk  is the first-order 

hydrolysis rate constant (day-1); Snh3 is ammonia concentration (mg N/L); fvfa and f are the 
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fractional VFAs (mg COD/mg COD) and ammonia stoichiometric factors (mg N/mg 

COD), respectively.  

6.2.2 Anoxic Reactor sub-Models 

 The main biological processes taking place in the anoxic reactor are 

denitrification, utilization of readily degradable organics, and related anoxic microbial 

heterotrophic growth and decay. Nitrate is assumed to be reduced in a two-step reaction, 

yielding nitrite as an intermediate and dinitrogen as a final product. Reduction of nitric 

and nitrous oxides is assumed to be non growth-limiting, and faster than nitrate and 

nitrite reduction. Readily degradable organics (SS; mg COD/L) are the source of carbon 

and electron donor for denitrification. The nitrate and nitrite reduction follows Monod, 

mixed- or double-substrate kinetics (Rittmann and McCarty, 2001; Sin et al., 2008), 

where the reduction reactions are further limited by the heterotrophic utilization of the 

readably degradable organics. Assuming a two-step nitrate reduction rate, and no pH, 

oxygen, or nitric acid inhibition, the following ODEs describe nitrate reduction in the 

anoxic reactor: 
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h
sss

s

nosno

nonon X
SK

S
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Sk
dt

dS

22

222                   

Equation (6.6) 

where Sno3 , Sno2, and Sn2 are nitrate, nitrite, and dinitrogen concentration (mg N/L) 

normalized to the reactor liquid volume, respectively; kno3 and kno2 are the maximum 

specific reduction rate for nitrate and nitrite (mg N/mg VSS·day); Ksno3 , Ksno2 , and Kss 

are the half-saturation constants for nitrate and nitrite reduction (mg N/L) and readily 

degradable substrate utilization (mg COD/L), respectively;  is the dimensionless 

anoxic microbial growth correction factor; and Xh is the VSS concentration of 

heterotrophic denitrifiers (mg VSS/L). Heterotrophic anoxic microbial growth is 

described using Monod kinetics, and assumes to be limited by nitrate, nitrite, and readily 

degradable organics utilization as follows: 

X
SK

SkXk
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where ks is the maximum specific readily degradable organics utilization rate (mg 

COD/mg VSS·day); Yh, Yno3,  and Yno2,  are the heterotrophic yield coefficients for readily 

degradable substrate (mg VSS/mg COD), nitrate and nitrite reduction (mg VSS/mg N), 

and bh is the microbial decay coefficient (day-1).  In addition, 80% (fp) of decayed 

biomass is assumed to be degradable, yielding additional readily degradable organics and 
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ammonia. Finally, ammonia is assumed to be the nitrogen source for microbial growth in 

the anoxic reactor, utilized by a factor (iX) which equals the nitrogen fraction in biomass: 

hhpShd
S XbfXk

dt
dX

                                                                    Equation (6.9) 

growthanoxic

h
Shd

nh

dt
dXiXfXk

dt
dS 3

                                           Equation (6.10) 

6.2.3 Aerobic Reactor sub-Models 

 The main biological processes taking place in the aerobic reactor are nitrification, 

aerobic utilization of readily degradable organics linked to heterotrophic microbial 

growth, and decay of both nitrifiers and heterotrophs. Nitrification is assumed to be a 

two-step reaction yielding nitrite as an intermediate, and nitrate as a final product. 

Autotrophic nitrifiers utilize ammonia and nitrate as the only limiting substrates for 

microbial growth, and Monod kinetics are used to describe the substrate utilization. 

Similarly to the anoxic reactor, ammonia is the nitrogen source for microbial growth in 

the aerobic reactor. Assuming no oxygen limitations, no ammonia inhibition, and 

constant neutral pH, the following ODEs are used to describe nitrification in the aerobic 

reactor: 

 
growth

ha
a

nhsnh

nhnhnh

dt
dX

dt
dXiXX

SK
Sk

dt
dS

 
33

333
                       Equation (6.11) 

a
no

a
sno

no
a
no

nhsnh

nhnhno X
SK

Sk
SK

Sk
dt

dS

22

22

33

332
                                   Equation (6.12) 



144 
 

a
no

a
sno

no
a
nono X

SK
Sk

dt
dS

22

223
                                                                    Equation (6.13) 

where 3nhk and a
nok 2 are the maximum specific oxidation rate for ammonia and nitrite 

(mg N/mg VSS·day); Ksnh3 and a
snoK 2 are the half-saturation constants for ammonia and 

nitrate oxidation (mg N/L); and Xa is the VSS concentration of active autotrophic 

nitrifiers in the aerobic reactor (mg VSS/L). The growth of heterotrophs and autotrophs in 

the aerobic reactor is also limited by the readily degradable organics and ammonia/nitrite 

utilization, respectively: 
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where Yno3  and a
noY 2   are the autotrophic yield coefficients for ammonia and nitrate (mg 

VSS/mg N), and b is the microbial decay coefficient (day-1).  Similarly to the anoxic 

reactor, 80% of decayed biomass is assumed to be degradable (Equation 6.9). 

6.2.4 BAC Fate and Effect sub-Models 

6.2.4.1 BAC in the Feed Poultry Processing Wastewater and Anaerobic Reactor 
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Experimental results discussed in Chapter 5 and literature data show that BAC 

biotransformation is not possible under the conditions of the anaerobic reactor. Moreover, 

the effect of BAC on the biological processes in the anaerobic reactor was marginal 

compared to the anoxic and aerobic reactors. The same argument could be extended to 

the feed poultry processing wastewater. Therefore, the effect of BAC was assumed to be 

negligible in both the feed and the anaerobic reactor. Nevertheless, because the solids 

concentration in the feed poultry processing wastewater and the anaerobic reactor are 

different, the only change that BAC undergoes between these two compartments is its 

equilibrium phase distribution. Values of KF and n (Chapter 5) clearly showed a 

difference in adsorption extent and affinity between the poultry processing wastewater, 

the anaerobic reactor, and the anoxic/aerobic reactors. In order to accommodate this 

difference in BAC phase distribution in the BNR system model, the adsorption behavior 

of BAC must be included in the sub-models.  In addition, the nonlinear Freundlich 

adsorption isotherm will result in an implicit equation when the liquid and solid phase 

BAC concentrations are correlated with the total BAC concentration. On the other hand, 

a linear adsorption relationship will result in an explicit equation, which can be easily 

incorporated in the simulation of the BNR system model. BAC phase distribution for the 

poultry processing wastewater feed and the anaerobic reactor was assumed to be linear as 

shown in the following equation: 

ePe CKq                                                                                         Equation (6.17) 

where KP is the linear partition coefficient ((mg/g VSS)(L/mg)). Figure 6.1 shows the 

linearized adsorption isotherms and the resulting partition coefficient values. As seen in 
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Figure 6.1 and Figures 5.26A and B, the linear adsorption model did not affect the 

predicted liquid- and solid-phase BAC concentration, and successfully represented the 

adsorption behavior of BAC in the first two BNR components (i.e., feed and anaerobic 

reactor). 
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Figure 6.1. BAC linearized adsorption isotherms and partition coefficient values for the 
feed poultry processing wastewater (A) and the anaerobic reactor mixed liquor (B) 
(Broken lines are 95% confidence intervals).  
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BAC affected the denitrification rates in the anoxic reactor (Chapters 4 and 5), but 

similarly to the anaerobic reactor, biotransformation of BAC was not observed. BAC 

inhibits respiratory enzymes by a mechanism best described by the competitive inhibition 

model (Zhang et al., 2010), where the inhibitor binds with the enzyme(s) at the active site. 

In the case of competitive inhibition, the apparent half-saturation constant in Monod-type 

kinetics increases with increasing inhibitor concentration (Rittmann and McCarty, 2001), 

as shown in the following Equation: 

6.2.4.2 BAC in the Anoxic Reactor 

)1('

I
ss K

IKK

                
Equation (6.18A) 

SK
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k

s

s

'
              

Equation (6.18B) 

where '
sK  and Ks are the apparent and un-inhibited half-saturation constants (mg N/L); 

KI is the inhibition coefficient (mg BAC/L); I is the inhibitor concentration (mg BAC/L); 

� is the specific microbial growth rate (day-1); ks is the maximum specific utilization rate 

(mg substrate/ mg VSS �	#����	S is the rate-limiting substrate concentration (mg/L); and 

Y is the microbial yield coefficient (mg VSS/mg substrate). Figure 6.2 shows how the 

competitive inhibition affects the specific growth rate in Monod-type kinetics at different 

inhibitor concentrations (Equation 6.18B).  

BAC affected the nitrification rate and extent and the sCOD utilization in the 

aerobic reactor (Chapters 4 and 5). In addition, BAC was biodegraded under the 

conditions of the aerobic reactor (Chapter 5).  

6.2.4.3 BAC in the Aerobic Reactor 
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Figure 6.2. Competitive inhibition effects on the specific growth rate (�) in a Monod-
type, kinetic equation at different inhibitor concentrations. sk  = 1 (mg N/mg VSS.day-1); 
Y = 0.5 (mg VSS/mg N) KS

 = 2 (mg N/L); and KI = 1 mg N/L. 
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The inhibitory effect of BAC on nitrification is better described by a non-

competitive model (Rittmann and McCarty, 2001; Yang, 2007), where the inhibitor binds 

with the enzyme(s) at a place other than the active site for substrate binding. As a result, 

the enzyme(s) becomes less reactive towards the substrate(s). In the case of non-

competitive inhibition, the apparent maximum specific utilization rate decreases in 

Monod-type kinetics with increasing inhibitor concentration (Rittmann and McCarty, 

2001), as shown in the following Equation: 
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Equation (6.19B) 

 

where ��s and ks are the apparent and un-inhibited maximum specific utilization rate (mg 

N/mg VSS�	#����	KI is the inhibition coefficient (mg BAC/L); and I is the inhibitor 

concentration (mg BAC/L). Figure 6.3 shows how the competitive inhibition affects the 

specific growth rate in Monod-type kinetics at different inhibitor concentrations 

(Equation 6.19B). As seen in Figure 6.3, a non-competitive inhibitor decreases the 

growth rate at concentrations far less than a competitive inhibitor; therefore, a non-

competitive inhibitor will have a greater effect than a competitive inhibitor at the same 

concentration. For heterotrophic sCOD utilization, BAC inhibition is best described by 

the competitive inhibition model, similar to denitrification. 
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 BAC degradation was found to follow mixed-substrate, Monod kinetics, where 

BAC degradation is competing with readily degradable organic substrate  (Zhang et al., 

2010), as shown in the following Equation: 

h
SS

S

SBAC
T
BAC

T
BACBAC

T
BAC X

KS
K

KS
Sk

dt
dS

                                      
Equation (6.20) 

where T
BACS  is the total BAC concentration in the system (mg/L); BACk  is the total BAC 

maximum specific utilization rate (mg BAC/mg VSS �	#����	��#	 SBACK  is the BAC 

degradation half-saturation constant (mg BAC/L). 
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Figure 6.3.  Non-competitive inhibition effects on the specific utilization rate (�) in a 
Monod-type, kinetic equation at different inhibitor concentrations; sk  = 1 (mg N/mg 
VSS.day-1); Y = 0.5 (mg VSS/mg N) KS

 = 2 (mg N/L); and KI = 1 mg N/L. 
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As discussed in Chapter 5, the BAC equilibrium phase distribution was similar in 

both the anoxic and aerobic reactor. Therefore, the linearization of BAC adsorption 

behavior (Equation 6.17) was assumed to be the same for both reactors. Figure 6.4 shows 

the linearized adsorption isotherms and resulting partition coefficient values. Similar to 

the linear model used for the feed and the anaerobic reactor, the linear BAC adsorption 

model for the anoxic and aerobic reactors successfully predicted the adsorption behavior 

of BAC in the latter two BNR components (i.e., anoxic and aerobic reactors) (Figure 

5.26C and D). 

6.2.4.4 BAC Phase Distribution in the Anoxic and Aerobic Reactors 

 

Figure 6.4. Linearized BAC adsorption isotherms and partition coefficient values for the 
anoxic and aerobic reactors (Broken lines are 95% confidence intervals).  
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6.2.5. BNR Model 

 The sub-models discussed above were combined in a comprehensive model, 

which describes the performance of the BNR system. Figure 6.5 shows an overview of 

the relationships between the different variables in the BNR model, while Table 6.1 

shows the matrix with the BNR model processes and variables. 

 Mass balance equations on the soluble and particulate variables within the BNR 

system reactors resulted in the following ODEs: 

(A) Anaerobic reactor: 

a. Soluble: 

rateSS
V
Q

dt
dS

AnaerobicHSWW )(
                                    

Equation (6.21A) 

b. Particulate: 

rateXX
V
Q

dt
dX

AnaerobicHSWW )(
                                    

Equation (6.21B) 

where S and X are the soluble and constituents concentration, respectively (Mass/L); Q is 

the poultry processing wastewater feed flow rate (L/day); V is the reactor volume (L); 

and the rate corresponds to the appropriate sub-model in the anaerobic reactor. 
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Figure 6.5. An overview of the relationships between the BNR model variables (Yellow, 
soluble; green, particulate; blue, aerobic; orange, anoxic; red, anoxic and aerobic). 
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 Mass balance equations on the soluble and particulate variables within the BNR 

system reactors resulted in the following ODEs: 

(B) Anoxic reactor: 

a. Soluble: 

rateSS
V

rQ
dt
dS

AnoxicAnaerobic )()1(

                                              
Equation (6.22A) 

b. Particulate: 

rateXX
V

rQ
dt
dX

AnoxicAnaerobic )()1(

                                  
Equation (6.22B) 

where r is the mixed liquor recycle ratio, )/(
 )/( Recycle

dLQ
dL

 , and the rate corresponds to the 

appropriate sub-model in the anoxic reactor. 

(C) Aerobic reactor: 

a. Soluble: 

rateSS
V

rQ
dt
dS

AerobicAnoxic )(1

                                              
Equation (6.23A) 

b. Particulate: 

rate
V

rfQ
XX

V
rQ

dt
dX eff

AerobicAnoxic
)()1(

                      
Equation (6.24B) 

where feff  is the fraction of solids in the final effluent, i.e., XEffluent��Aerobic. The value of  

feff was calculated from the system steady-state operation VSS data to be 7.4%.  
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 Because of the change in BAC phase distribution in the BNR system, the total 

BAC concentration was followed rather than its liquid- and solid-associated 

concentrations. Both concentrations are related to the total BAC concentration as follows: 

XqCS eeBAC
T

                                                                                  
Equation (6.24A) 

ePe CKq
                                                                                                

Equation (6.24B) 

1XK
SC

P

BAC
T

e

                                                                                           
Equation (6.24C) 

P

BAC
T

e

K
X

Sq
1

                                                                                             
Equation (6.24D) 

where KP is the linear partition coefficient in each reactor. 

6.3 Methods 

6.3.1 Parameter Estimation 

 The equations in the sub-models discussed above were fitted to time series data 

obtained from the batch assays presented in Chapters 4 and 5 as follows: 

1) The sCOD, VFAs, and ammonia concentration data obtained from the aerobic 

assays were fitted to Equations 6.1 to 6.3 to estimate the values of khd, fvfa, and 

f. 



159 
 

2) The nitrate, nitrite, dinitrogen, and initial/final biomass data obtained from the 

denitrification assays were fitted to Equations 6.4 to 6.10 to estimate the 

values of kno3, KSno3, kno2, KSno2. 

3) The ammonia, nitrate, nitrite, sCOD, and initial/final biomass data obtained 

from the nitrification assays were fitted to Equations 6.11 to 6.16 to estimate 

the values of knh3, KSnh3, ka
no2, Ka

Sno2, ks, and KSS. In addition, the nitrifying 

population was assumed to comprise 5% of the total biomass in each assay 

(see Chapter 4 for details).  

Values for the remaining parameters where obtained from literature and are 

summarized in Table 6.2.  

 
 
 
 
Table 6.2. Literature values used in the BNR system model. 

 

 

 

Parameter Value (Units) Reference 
3Ynh  0.15 (mg COD/mg N) Sin et al., 2008 
2Yano  0.04 (mg COD/mg N) Sin et al., 2008 

hY  0.67 (mg COD/mg Henze et al., 2000 
3Yno  0.79 (mg COD/mg N) Sin et al., 2008 
2Yno  0.55 (mg COD/mg N) Sin et al., 2008 

fP 0.8 Henze et al., 2000; Rittmann and McCarty, 2001 
iXB 0.08 Henze et al., 2000; Rittmann and McCarty, 2001 

hb  0.15 (day-1) Rittmann and McCarty, 2001; Sin et al., 2008 
ab  0.11 (day-1) Rittmann and McCarty, 2001; Sin et al., 2008 
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Two software packages were used for parameter estimation for the 

aforementioned sub-models. First, Berkeley Madonna Software Version 8.3 (Macey and 

Oster, 2006) was used and the values of the parameters used in each sub-model were 

estimated by minimizing the deviation between the model output and the experimental 

data set. A fixed-step size integration method, Runge-Kutta 4, with a step size of 0.01 

day was used in all simulations. The root mean square deviation (RMSD) was used as a 

measure of the goodness of fit in each simulation. Second, the Fit ODE toolbox in Igor 

Professional v.5.057 (WaveMetrics, Inc., Lake Oswego, OR) was used to calculate the 

standard deviation values for the evaluated parameters. Figure 6.6 illustrates the 

algorithm used for parameter estimation. 

  6.3.2 Sensitivity and Identifiability Analysis 

The sensitivity analysis for the model parameters was performed using the 

Berkeley Madonna Software Version 8.3 (Macey et al., 2000). Berkeley Madonna 

provides the sensitivity as the partial derivative of the state variable relative to the 

parameter (Gujer, 2008): 

p
pyppy

p
y

py
)()(

,                                                                       Equation (6.21) 

where 	y,p is the local sensitivity parameter of the variable (y�	��������	��	�	\����	���	��	

the parameter (p). Values of each parameter were changed by 1%.  The local sensitivity 

parameter is plotted as a function of time in order to generate a sensitivity curve for the 

associated variable (y). In order to obtain an improved visualization of the form of the 

sensitivity curves, the absolute-relative sensitivity function (��,�
�,� ) was then evaluated  by 

normalizing the local sensitivity by the parameter value as follows:  
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p
pyppypra

py
)()(,

,                                                                             Equation (6.22) 

 

The identifiability of each estimated parameter was determined by visual inspection of 

the relative local sensitivity curves. Parameters that have a relative local sensitivity curve 

with a unique shape are considered uniquely identifiable from the data set used for the 

parameter estimation. On the other hand, parameters with similar/proportional relative 

local sensitivity curves are not uniquely identifiable, i.e., the change in one parameter can 

be compensated by an appropriate adjustment of another parameter value (Gujer, 2008). 
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Figure 6.6. An overview of the algorithm used for parameter estimation for the different 
sub-models. 
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6.4 Results and Discussion 

Results regarding data fitting and parameter estimation are discussed first as they 

provide more insight regarding the effect of BAC on the BNR system. 

6.4.1 Parameter Estimation and Identification  

 Table 6.3 summarizes  the estimated parameters for hydrolysis, VFAs production, 

and ammonification, while Figures 6.7, 6.8, and 6.9 show the measured and simulated 

ammonia, VFAs, and sCOD concentrations in the anaerobic assay. The model simulation 

for ammonia and VFAs concentrations was better than that for the sCOD concentration. 

Nevertheless, the estimated hydrolysis rate value (0.45 ± 0.10 mg COD/mg VSS �	#���	is 

comparable to literature values. For example, Masse et al. (2003) evaluated the 

hydrolysis rate for slaughterhouse wastewater and reported a value of 0.63 ± 0.07 (mg 

COD/mg COD �	#����	 

6.4.1.1 Anaerobic Reactor 

 Figure 6.10 shows the absolute-relative sensitivity function curve for the 

anaerobic reactor sub-model. The ammonia concentration was mostly sensitive to the 

ammonia stoichiometric factor followed by the hydrolysis rate. The production of sCOD 

was sensitive only to the hydrolysis rate. The production of VFAs was sensitive to the 

VFAs stoichiometric factor followed by the hydrolysis rate. By far, the hydrolysis rate is 

the parameter that has the most sensitivity, and judging by the shape of the absolute-

relative sensitivity function, this rate was uniquely identifiable. 
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Table 6.3. Estimated parameter values for hydrolysis, VFAs production, and 
ammonification in the anaerobic reactor. 

 
 
 

Parameter Value (Units) RMSDa 
khd

 0.45 ± 0.10b (mg COD/mg VSS �	#��� 
79.9 fP 0.13 ± 0.01 (mg N/mg COD) 

fVFA 0.19 ± 0.10 (mg COD/mg COD) 
a Root mean square deviation =	
(measured value � estimated value)2  
b Best estimate ± standard deviation 
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Figure 6.7. Measured (data points) and simulated (lines) ammonia concentration in the 
anaerobic assay. Culture series at initial BAC concentration of 0 (A), 5 (B), 15 (C), 
30(D), 45 (E), and 60 mg/L.  
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Figure 6.8. Measured (data points) and simulated (lines) VFAs concentration in the 
anaerobic assay. Culture series at initial BAC concentration of 0 (A), 5 (B), 15 (C), 
30(D), 45 (E), and 60 mg/L. Error bars represent one standard deviation from the mean. 
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Figure 6.9. Measured (data points) and simulated (lines) sCOD concentration in the 
anaerobic assay. Culture series at initial BAC concentration of 0 (A), 5 (B), 15 (C), 
30(D), 45 (E), and 60 mg/L. Error bars represent one standard deviation from the mean. 
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Figure 6.10. Absolute-��������	
��
�������	����
	��ar) showing the sensitivity of the 
anaerobic reactor sub-model parameters to ammonia (A), sCOD (B), and VFAs (C) 
concentration. 
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Figures 6.11 and 6.12 show the measured and simulated nitrogen species in 

denitrification batch assays conducted with the unexposed denitrifying culture and the 

anoxic reactor mixed liquor. Table 6.4 summarizes the estimated parameters for nitrate 

and nitrite reduction before and during BAC exposure for the BAC-free culture series.  

6.4.1.2 Anoxic Reactor 

In both assays, the nitrite reduction rate was faster than the nitrate reduction rate, 

which agrees with literature reports (Wett and Rauch, 2003; Sin et al., 2008). Moreover, 

rates in the assay conducted with the denitrifying culture were faster than the rates of the 

assay conducted with the anoxic reactor mixed liquor. The difference could be attributed 

to the carbon source used in each assay: glucose in the former and anaerobically 

processed poultry processing wastewater in the latter. Despite the differences, the effect 

of BAC on denitrification could be established by comparing the BAC-free culture series 

in each assay to the BAC-amended culture series in the same assay. 

In each of the previous assays, the inhibitory effect of BAC was evaluated by 

fitting the values of the apparent half-saturation constants for all culture series to the 

competitive inhibition model, considering the total, liquid phase, and solid-associated 

BAC concentration in the same culture series as the inhibitor (Figure 6.13). The data was 

fitted by non-linear regression analysis performed using SigmaPlot.  
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Figure 6.11. Measured (data points) and simulated (lines) nitrogen species in the 
denitrifying batch assay performed with the BAC-unexposed culture. Culture series at 
initial BAC concentration of 0 (A), 10 (B), 25 (C), 50 (D), 75 (E), and 100 mg/L. 
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Figure 6.12. Measured (data points) and simulated (lines) nitrogen species in the 
denitrifying batch assay performed with the BAC-exposed anoxic reactor mixed liquor. 
Culture series at initial BAC concentration of 0 (A), 5 (B), 10 (C), 15 (D), 20 (E), 25 (F), 
30 (G), and 45 mg/L (H). 
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Table 6.4. Estimated parameter values for denitrification before and during BAC 
exposure. 

 

  

Parameter Value (Units) RMSDa 

Before 
BAC 
Exposure 

kno3
 0.87 ± 0.08b (mg N/mg VSS �	#��� 

17.3 
Ksno 4.2 ± 1.2 (mg N/L) 
kno2

 1.32 ± 0.7 (mg N/mg VSS �	#��� 
Ksno 10.2 ± 1.9 (mg N/L) 

During 
BAC 
Exposure 

kno3
 0.23 ± 0.02 (mg N/mg VSS · day) 

12.6 
Ksno 2.3 ± 0.7 (mg N/L) 
kno2

 0.34 ± 0.08 (mg N/mg VSS �	#��� 
Ksno 7.5 ± 0.9 (mg N/L) 

a Root mean square deviation =	
(measured value � estimated value)2  
b Best estimate ± standard deviation 
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Figure 6.13. Apparent half-saturation constant for nitrate (A) and nitrite (B) reduction in 
the denitrification assay with the BAC-unexposed denitrifying culture (1) and the BNR 
anoxic reactor mixed liquor (2) while treating BAC-bearing poultry processing 
wastewater. [r2 = 0.987 (A1), 0.987 (B1), 0.867 (A1), and 0.954 (B2)]. (Broken lines are 
95% confidence intervals). 
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Among the three aforementioned BAC concentrations, the liquid-phase BAC 

concentration had the best fit, i.e., had the highest r2 value. Zhang et al. (2011) reported 

that BAC biodegradation by acclimated heterotrophic bacteria is taking place 

simultaneously in both the liquid-phase and biomass-adsorbed solid-phase BAC, where 

biotransformation of the solid-phase BAC takes place while it is migrating through the 

cell membrane. Such a biotransformation mechanism results in the riddance of biomass-

associated, solid-phase BAC. Consequently, the liquid-phase BAC fraction is the more 

bioavailable and inhibits the denitrifying facultative heterotrophs. As a result, it is the 

liquid-phase BAC concentration which correlates with the observed inhibition of 

denitrification by BAC (Figure 6.13). 

The highest apparent half-saturation constant values were for nitrite reduction 

evaluated based on the assay conducted before BAC exposure, which had the highest 

BAC inhibitory effect. In contrast, the apparent half-saturation constant values for the 

assay conducted during BAC exposure were the lowest, indicating a much lower BAC 

inhibitory effect. The same observation is extended to nitrate reduction. The competitive 

inhibition coefficients evaluated based on the assay conducted before BAC exposure 

were 0.27 ± 0.01 and 0.19 ± 0.01 mg BAC/L for nitrate and nitrite reduction, 

respectively, and 0.29 ± 0.01 and 0.21 ± 0.10 mg BAC/L for nitrate and nitrite reduction 

, respectively (estimate ± standard error) for the assay conducted during BAC exposure. 

Nitrate reduction was less susceptible to BAC compared to nitrite reduction in the assay 

conducted before BAC exposure. These results explain the nitrite accumulation observed 

with the initial introduction of BAC. The nitrate reductase is believed to be associated 

with the inner face of the cell membrane, while most of nitrite reductases is believed to 
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be in the periplasmic space (Knowles, 1982; Hochstein and Tomlinson, 1988). The 

spatial arrangement of the reductase enzymes renders nitrite reductase more vulnerable 

to BAC compared to the nitrate reductases. 

Figure 6.14 shows the absolute-relative sensitivity function curve for the anoxic 

reactor sub-model. The nitrate concentration was mostly sensitive to the nitrate maximum 

specific reduction rate followed by nitrate BAC inhibition coefficient and BAC partition 

coefficient, while it had a very low sensitivity to the remaining parameters, such as nitrite 

maximum specific reduction rate, nitrate/nitrite half saturation constant, and nitrite BAC 

inhibition coefficient. The nitrite concentration was mostly sensitive to nitrate maximum 

specific rate followed by nitrite maximum specific reduction rate. In addition, the nitrite 

concentration was sensitive to the nitrite and nitrate reduction BAC inhibition coefficient, 

as well as to BAC partition coefficient. The dinitrogen concentration was mostly 

sensitive to nitrate maximum specific reduction rate followed by nitrite maximum 

specific reduction rate and nitrate reduction BAC inhibition coefficient. Overall, the 

parameter that has the highest sensitivity level is the nitrate maximum specific reduction 

rate, which is followed by the nitrite maximum specific reduction rate, nitrate reduction 

BAC inhibition coefficient, and BAC partition coefficient. Moreover, the shape of the 

absolute-relative sensitivity function for the two maximum reduction rates indicates that 

both rates were uniquely identifiable. The same argument could not be extended to the 

other parameters 
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Figure 6.14. Absolute-��������	
��
�������	����
	��ar) showing the sensitivity of the 
anoxic reactor sub-model parameters to nitrate (A), nitrite (B), and dinitrogen (C) 
concentration; (1) denitrification parameters, and (2) BAC-related parameters. 
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The BAC phase distribution determined the level of the observed BAC inhibitory 

effect on denitrification. This observation can be explained by the following two points: 

1) Higher liquid-phase BAC concentrations will result in a higher denitrification 

inhibitory effect; therefore, it could be deduced that decreasing the BAC liquid-phase 

concentration will reduce its inhibitory effect on denitrification; and 2) For all the 

nitrogen species, the shape of the absolute-relative sensitivity function curve for the BAC 

inhibition coefficients and partition coefficient were almost identical, which indicates that 

the two parameters are related, i.e., the value of one depends on the other. Consequently, 

the level of BAC inhibition in the anoxic reactor could be controlled by its adsorption 

behavior, i.e., a different adsorption affinity could result in a different inhibition level.  

Figures 6.15, 6.16 and 6.17 show the measured and simulated nitrogen species in 

the nitrification batch assays conducted with the aerobic reactor mixed liquor before, and 

during BAC introduction into the BNR system, and after BAC amendment of the system 

feed was terminated, respectively. Table 6.5 summarizes the estimated parameter values 

for ammonia and nitrite oxidation.  

6.4.1.3 Aerobic Reactor 

The BAC-free culture series in the three aforementioned assays was used to 

evaluate the maximum specific oxidation rates for ammonia and nitrite as well as the 

half-saturation constants. The half saturation constant values were found to be similar in 

the three assays. On the other hand, the maximum specific oxidation rates for ammonia 

and nitrite were marginally different. The highest specific rates were determined in the 

assay conducted during BAC exposure, followed by those determined in the assay 
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conducted before BAC exposure, and then those determined in the assay conducted after 

BAC exposure was terminated. The estimated values for the specific ammonia and nitrite 

oxidation rates were lower than values reported in the literature (as presented in Chapter 

2), but the half-saturation constant values for ammonia and nitrite oxidation were 

comparable.  

Figure 6.18 shows the measured and simulated sCOD concentration in the assay 

conducted during BAC exposure. The estimated value of the maximum specific readily 

degradable organics utilization rate was 0.49 ± 0.19 mg COD/mg VSS · day, and the 

value of the half saturation constant was 11.8 ± 0.2 mg COD/L. Brenner (2000) reported 

a maximum specific readily degradable organics utilization rate of 6.0 mg COD/mg VSS 

day, and values for the half saturation constant in the range of 3-15 mg COD/L for a SBR 

nitrogen removal system treating concentrated municipal wastewater . Zhang et al. (2011) 

reported a maximum specific glucose utilization rate of 0.4 ± 0.06 mg COD/mg VSS · 

day, and a value for the half saturation constant of 22 ± 19.8 mg COD/L. Ni and Yu  

(2008) reported a maximum specific readily degradable organics utilization rate of 1.74 

mg COD/mg VSS · day, and a value for the half saturation constant of 2 mg COD/L for 

an activated sludge system. The reported variation in the values of the maximum specific 

readily degradable organics utilization rate and the half saturation constant is related to 

the system design and history as well as the type of treated wastewater. 
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Figure 6.15. Measured (data points) and simulated (lines) nitrogen species in the 
nitrifying batch assay performed with the aerobic reactor mixed liquor before treating 
BAC-bearing poultry processing wastewater. Culture series at initial BAC concentration 
of 0 (A), 5 (B), 10 (C), 15 (D), 25 (E), 50 (F), 75 (G) and 100 mg/L (H).  

0 1 2 3
0

30

60

90

120

150 A

0 1 2 3

B

0 1 2 3

D

0 1 2 3
0

30

60

90

120

150 C

0 1 2 3

N
IT

R
O

G
E

N
 (m

g 
N

/L
)

0

30

60

90

120

150 E

0 1 2 3

F

0 1 2 3

H

TIME (Days)

0 1 2 3
0

30

60

90

120

150 G

NO2
- 

NH4
+

NO3
- 



180 
 

 
 
Figure 6.16. Measured (data points) and simulated (lines) nitrogen species in the 
nitrifying batch assay performed with the aerobic reactor mixed liquor while treating 
BAC-bearing poultry processing wastewater. Culture series at initial BAC concentration 
of 0 (A), 5 (B), 15 (C), 20 (D), 25 (E), 30 (F), and 45 mg/L (G). 
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Figure 6.17. Measured (data points) and simulated (lines) nitrogen species in the 
nitrifying batch assay performed with the aerobic reactor mixed liquor after treating 
BAC-bearing poultry processing wastewater was terminated for over 100 days. Culture 
series at initial BAC concentration of 0 (A), 5 (B), 10 (C), and 15 mg/L (D).  
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Table 6.5. Estimated parameter values for nitrification before, during, and after BAC 
exposure. 

 

Parameter Value (Unit) RMSDa 

Before 

knh3
 1.08 ± 0.21b (mg N/mg VSS · day) 

26.3 
Ksnh3

 2.38 ± 1.5 (mg N/L) 
kano2

 0.97 ± 0.12 (mg N/mg VSS · day) 
Ksnao2

 0.019 ± 0.005 (mg N/L) 

During 

knh3
 1.56 ± 0.81(mg N/mg VSS · day) 

82.4 

Ksnh3
 2.38 ± 1.5 (mg N/L) 

kano2
 0.75 ± 0.11 (mg N/mg VSS · day) 

Ksnao2
 0.019 ± 0.005 (mg N/L) 

ks
 0.49 ± 0.19 (mg COD/mg VSS · day) 

Kss
 11.8 ± 0.2 (mg COD/L) 

After 

knh3
 0.88 ± 0.16 (mg N/mg VSS · day) 

72.6 
Ksnh3

 2.38 ± 1.5 (mg N/L) 
kano2

 0.005 ± 0.002 (mg N/mg VSS · day) 
Ksnao2

 0.63 ± 0.22 (mg N/L) 
a Root mean square deviation =	
(measured value � estimated value)2  
b Best estimate ± standard deviation 
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Figure 6.18. Measured (data points) and simulated (lines) sCOD concentration in the 
nitrifying batch assay performed with the aerobic reactor mixed liquor while treating 
BAC-bearing poultry processing wastewater. Culture series at initial BAC concentration 
of 0 (A), 5 (B), 15 (C), 20 (D), 25 (E), 30 (F), and 45 mg/L (G). Error bars represent one 
standard deviation from the mean. 
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Figures 6.19 and 6.20 show the measured and simulated total BAC concentration 

in the batch assays conducted during and after BAC exposure was terminated. As 

discussed in Chapter 5, it was deduced that the BAC biotransformation rate by the 

heterotrophic microbial population in the BNR system increased rapidly during the 

system operation with the BAC-bearing poultry processing wastewater. The estimated 

values for the total BAC maximum specific utilization rate were 0.49 ± 0.19 and 0.005 

±.002 mg BAC/mg VSS · day during and after BAC exposure was terminated, 

respectively, while the half-saturation constant was estimated to be 0.63±0.22 mg 

BAC/L. The BNR system was operated with a BAC-free poultry processing wastewater 

feed for 100 days prior to the time of the batch assay. As a consequence, it can be 

deduced that the BAC biotransformation rate in the BNR system (i.e., in the aerobic 

reactor) was dynamic, with a value which increased with the duration of BAC exposure. 

In the previously mentioned nitrification assays, BAC inhibited the extent of 

ammonia oxidation. Therefore, it was not possible to use all the data obtained from the 

BAC-amended culture series. Instead, data from culture series which achieved ammonia 

removal were used to evaluate the inhibitory effect of BAC. The culture series used were 

those with an initial BAC concentration of 5, 10, 15, and 20 mg/L of the batch assay 

conducted before BAC exposure, the 5, 15, and 20 mg/L culture series of the batch assay 

conducted during BAC exposure, and the 5, 10, and 15 mg/L culture series of the batch 

assay conducted after BAC exposure was terminated. 
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Figure 6.19. Measured (data points) and simulated (lines) total BAC concentration in the 
nitrifying batch assay performed with the aerobic reactor mixed liquor while treating 
BAC-bearing poultry processing wastewater. Culture series at initial BAC concentration 
of 5 (A), 15 (B), 20 (C), 25 (D), 30 (E), and 45 mg/L (F). Error bars represent one 
standard deviation from the mean. 
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Figure 6.20. Measured (data points) and simulated (lines) total BAC concentration in the 
nitrifying batch assay performed with the aerobic reactor mixed liquor after treating 
BAC-bearing poultry processing wastewater was terminated for over 100 days. Culture 
series at initial BAC concentration of 5 (A), 10 (B), and 15 mg/L (C). Error bars 
represent one standard deviation from the mean. 
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The inhibitory effect of BAC was evaluated by fitting the apparent half-saturation 

constant values for the aforementioned BAC-amended culture series to the non-

competitive inhibition model, considering the total, liquid-phase, and autotrophic solid-

associated BAC concentration in the same culture series as the inhibitor (Figure 6.21). 

The autotrophic solid-associated BAC concentration was assumed to be 5% of the solid 

associated BAC concentration, reflecting that the autotrophic population comprised 5% 

of the total microbial population in the aerobic reactor mixed liquor. The data was fitted 

by non-linear regression analysis performed using SigmaPlot. Among the three 

aforementioned BAC concentrations, regression against the autotrophic solid-associated 

BAC concentration had the best fit, i.e., had the highest r2 value. In contrast to the 

heterotrophic, BAC-degrading population, metabolically, the autotrophic nitrifying 

microbial population is incapable of BAC biodegradation. Therefore, the biomass-

associated, solid-phase BAC fraction is more bioavailable to inhibit the nitrifiers. 

Consequently, the autotrophic solid-associated BAC concentration had the best 

correlation with the observed inhibition of nitrification by BAC (Figure 6.21). 

The BAC inhibition coefficient values for ammonia and nitrite oxidation differed 

when the batch assay was performed before, during, and after BAC exposure. The 

estimated coefficient values were 0.11 ± 0.01 and 0.20 ± 0.01 mg/g VSS for ammonia 

and nitrite oxidation, respectively, before BAC exposure; 5.41 ± 0.5 and 4.14 ± 0.85 

mg/g VSS for ammonia and nitrite oxidation, respectively, during BAC exposure; and 

0.55 ± 0.06 and 3.64 ± 1.05 mg/g VSS for ammonia and nitrite oxidation, respectively, 

after BAC exposure had been terminated for over 100 days.  



188

 

 
Figure 6.21. Apparent maximum specific oxidation rate for ammonia (A) and nitrite (B) 
before (1), during (2), and after (3) BAC exposure. [r2 = 0.994 (A1), 0.991 (B1), 0.981 
(A1), 0.914 (B2), 0.951 (A3), and 0.841 (B3)]. (Broken lines are 95% confidence 
intervals). 
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The aforementioned values show that both ammonia and nitrite oxidation were 

less susceptible to BAC during the BNR system operation with BAC-bearing poultry 

processing wastewater, indicating that the nitrifying population did acquire resistance to 

BAC. The higher competitive inhibition coefficients obtained after BAC exposure was 

terminated shows that BAC resistance was retained, albeit to a lesser level.  Nitrite 

oxidizers were more successful in maintaining the acquired resistance to BAC compared 

to ammonia oxidizers. The discussion above leads to the conclusion that the nitrifiers’ 

resistance to BAC is dynamic, and depends on the duration of the exposure to BAC. The 

dynamic change in BAC resistance can be modeled as a dynamic change in the non-

competitive inhibition coefficient for ammonia and nitrite oxidation. 

BAC inhibition of the heterotrophic sCOD utilization was modeled as a 

competitive inhibition and the half-saturation constants for sCOD utilization for the 

BAC-amended culture series were correlated with the total BAC concentration. Figure 

6.22 shows the effect of the total BAC concentration on the apparent half-saturation 

constant for sCOD utilization. The competitive inhibition coefficient was evaluated as 

14.9 ±1.5 mg BAC/L. BAC biodegradation by the heterotrophic population competes 

with the utilization of sCOD contributed by organic compounds other than BAC and 

BAC is more bioavailable at relatively low sCOD concentrations (Zhang et al., 2011). 

However, sCOD utilization is also inhibited by BAC. This intertwining relation between 

BAC inhibition and sCOD utilization is more likely the reason behind the observed 

correlation between sCOD utilization and the total BAC concentration (Figure 6.22). 

Figures 6.23 and 6.24 show the absolute-relative sensitivity function curves for 

the aerobic reactor sub-model. The ammonia concentration was by far more sensitive to 
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the heterotrophic population fraction, followed by the maximum specific ammonia 

oxidation rate. The nitrite concentration on the other hand was equally sensitive to the 

heterotrophic population fraction and the maximum specific ammonia oxidation rate, 

followed by the maximum specific nitrite oxidation rate. The sensitivity of the nitrite 

concentration was similar to the sensitivity of ammonia concentration, very high to the 

heterotrophic population fraction, followed by the maximum specific ammonia oxidation 

rate. Overall, the heterotrophic population fraction and the maximum specific ammonia 

oxidation rate were the parameters that had the most sensitivity in the aerobic reactor sub-

model. For the BAC-related parameters (Figure 6.24), the ammonia and nitrite 

concentrations were sensitive to the ammonia oxidation BAC inhibition coefficient, but 

the nitrite concentration was also sensitive to the nitrite oxidation BAC inhibition 

coefficient as well. Related to BAC, all the nitrogen species concentrations were sensitive 

to the BAC partition coefficient, albeit at a lesser degree compared to the other 

parameters. Analyzing the absolute-relative sensitivity function curves for the BAC 

biotransformation reveals that the BAC biotransformation rate impacted the nitrogen 

species concentrations to an extent similar to the inhibition coefficients (i.e., resulted in 

the same sensitivity). The last observation indicates that the BAC inhibition coefficient 

values are as important as the BAC biotransformation rate. Finally, the shape of the 

absolute relative sensitivity curves showed that neither of the two maximum specific 

oxidation rates was uniquely identifiable, but the BAC inhibition coefficients were. The 

total BAC maximum specific utilization rate and the half-saturation constant were also 

not uniquely identifiable. 
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Figure 6.22. Apparent half-saturation constant for heterotrophic sCOD utilization for the 
assay conducted during BAC exposure (r2 = 0.994). (Broken lines are 95% confidence 
intervals). 
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Figure 6.23. Absolute-��������	
��
�������	����
	��ar) showing the sensitivity of the 
aerobic reactor sub-model parameters to ammonia (A), nitrite (B), and nitrate (C) 
concentration. 
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Figure 6.24. Absolute-��������	
��
�������	����
	��ar) showing the sensitivity of the 
aerobic reactor sub-model parameters to ammonia (A), nitrite (B), and nitrate (C) 
concentration; (1) BAC inhibition parameters , and (2) BAC biotransformation 
parameters. 
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6.4.2 BNR System Model  

 As discussed above, both the BAC biotransformation rate and the nitrification 

non-competitive inhibition were dynamic, which most probably was brought about by 

acclimation and enrichment of the heterotrophic and nitrifying populations, respectively, 

in the BNR system aerobic reactor. For nitrate reduction, the change in the competitive 

inhibition coefficients over time was small and therefore assumed negligible. The 

dynamic change in both BAC biotransformation rate and nitrifiers resistance to BAC is 

also related to the operation of the BNR system. The dynamic step-wise increase in the 

BAC concentration of the poultry processing wastewater (from 5 to 60 mg/L in the period 

of 505 days) acted as an increasing selective pressure that resulted in an incremental 

enrichment of the aerobic reactor microbial community. In contrast, operating the BNR 

with poultry processing wastewater at a single concentration would have more likely 

resulted in a static selective pressure in the aerobic reactor, and consequently a fixed level 

of BAC biotransformation rate and nitrifiers resistance to BAC, i.e., both rates would 

have reached steady-state values. 

To account for that the observed enhancement of the BAC biotransformation, the 

change in the total BAC maximum specific utilization rate was fitted to the data obtained 

with the assays conducted during and after BAC exposure, assuming that the rate 

obtained in the latter assay equals the rate achieved before BAC exposure. The change in 

the ammonia and the nitrite non-competitive inhibition coefficients was fitted to the data 

obtained with the assays conducted before and during BAC exposure (i.e., for system run 

time between 30 and 370 days), corresponding to the time these assays were conducted. 

The following equations were used: 



195 
 

tMkk BAC
i

BAC 1

                                                                                 
Equation (6.25A) 

tMKK Inh
i

Inh 233

                                                                               
Equation (6.25B) 

tMKK Iano
i

Iano 322

                                                                            
Equation (6.25C) 

where  BAC
ik is the BAC maximum specific utilization rate (mg BAC/mg VSS · day) 

evaluated in the assay before BAC exposure; 3Inh
iK  and 2Iano

iK  are ammonia and nitrite 

non-competitive inhibition coefficients (mg BAC/g VSS), respectively, evaluated in the 

assay before BAC exposure; M1, is the acclimation/enrichment coefficient for BAC 

biotransformation (mg BAC/mg VSS · day2 ); M2 and M3 are the acclimation/enrichment 

coefficients for ammonia and nitrite non-competitive inhibition, respectively (mg BAC/g 

VSS · day).  The acclimation/enrichment coefficient values were 0.0013 mg BAC/mg 

VSS · day2, 0.015 mg BAC/g VSS · day, and 0.011 mg BAC/g VSS · day for BAC 

biotransformation and ammonia and nitrite non-competitive inhibition, respectively. 

Taking into account 505 days operation of the BNR system with the BAC-bearing feed 

and above-mentioned M1, M2, and M3 values, the BAC maximum specific utilization rate 

increased by 44.1%, while the ammonia and nitrite non-competitive inhibition 

coefficients increased by 43.7% and 42.5%, respectively. The nearly identical change in 

the BAC maximum specific utilization rate and the ammonia and nitrite non-competitive 

inhibition coefficients indicates that both the BAC-degrading, heterotrophic and the 

nitrifying microbial populations in the aerobic reactor were enriched to the same degree. 

 It should be noted that the aforementioned analysis relative to microbial 

acclimation/enrichment is purely an empirical representation of the behavior of the 

heterotrophic and nitrifying populations in the aerobic reactor. In reality, changes in the 
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BAC biotransformation rate and the nitrification non-competitive inhibition resulted from 

an increase in both BAC-degrading and BAC-resisting microbial species. A more 

accurate representation of the development of BAC degradation and resistance could be 

obtained through microbial community analysis of the aerobic reactor’s microbial 

population. Nevertheless, the above presented empirical relationships could serve the 

goal of simulating the behavior of the heterotrophic and nitrifying populations, albeit 

with limited applicability to the conditions of BNR system used in this study. 

 In order to simulate the BNR system operation, the poultry processing wastewater 

characteristics must be incorporated into the model. Based on COD and sCOD data, the 

readily degradable organics and particulate organics concentration was considered to be 

990 and 300 mg COD/L, respectively.  The ammonia concentration was considered to be 

45 mg N/L, which was assumed to be the dissolved fraction of the poultry processing 

wastewater total nitrogen content. The remaining 55 mg N/L were assumed to be part of 

the particulate organics. The physical characteristics of the BNR system, described in 

Chapter 4, were used for the simulations discussed in this section. 

6.4.2.1 Simulation of BAC-free BNR System Operation and Performance 

The BNR system simulation combined the mass balance ODEs discussed in 

section 6.2.4, above, along with the rate expressions included in the three sub-models. 

The BNR system BAC-free operation with recycle ratios of 2, 4, and 6Q (where Q is the 

poultry processing wastewater feed flow rate) were used to benchmark the model output. 

The BNR performance during the three recycle ratios was obtained from operating a 

duplicate BNR system, identical to the one which was operated with BAC-amended feed 
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poultry processing wastewater. The duplicate system was fed with the same poultry 

processing wastewater, but without any BAC.  

Model simulation results along with experimental data are shown in Figure 6.25. 

The model simulated the performance of the BNR system to a good degree, although 

some differences in the time trend of nitrogen species were observed.  

The steady-state biomass concentration was predicted to be 1023 and 1115 mg 

VSS/L in the anoxic and aerobic reactors, respectively, compared to the measured values 

of 1157 and 1251 mg VSS/L. The steady-state model values for the sCOD (mg COD/L), 

VFAs (mg COD/L), and ammonia (mg N/L) concentrations in the anaerobic reactor were 

980, 195, and 93, respectively, compared to 650, 168, and 94, respectively, measured in 

the BNR system. The model was also able to accurately simulate the trend and magnitude 

of the change in nitrogen species for the three recycle ratios tested.  
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Figure 6.25. Measured (data points) and simulated (lines) nitrogen species in the anoxic 
(A) and the aerobic (B) reactors of the BNR system during operation with BAC-free 
poultry processing wastewater feed at different recycle ratios (r) between the aerobic and 
anoxic reactors. 
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 Figure 6.26 shows the model simulation and experimental data for the BNR 

system operation period while treating the BAC-bearing poultry processing wastewater at 

5 mg BAC/L. The model was not able to predict the exact magnitude of nitrate and 

ammonia concentrations in the anoxic and aerobic reactors. Nevertheless, the model 

simulated well the initial response of the BNR system to the BAC-bearing poultry 

processing wastewater. Figure 6.27 shows the total BAC concentration in the BNR 

system. The model marginally underestimated the system’s ability to degrade BAC and 

the BAC concentrations were higher in the anoxic and aerobic reactors. Nevertheless, the 

model was successful in simulating the ensuing rapid BAC degradation. The discrepancy 

in ammonia, nitrate, and BAC concentrations could be related to the approach used to 

model the change in BAC biotransformation rate and nitrification inhibition over time. In 

addition, the reactors’ flow regime is assumed to follow that of an ideal continuous-flow 

stirred tank reactor (CFSTR), but in reality mixing in the system may not have reached 

ideal levels.   

6.4.2.2 Simulation of the BNR System Operation and Performance with BAC-bearing 

Poultry Processing Wastewater at 5 mg BAC/L 
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Figure 6.26. Measured (data points) and simulated (lines) nitrogen species in the anoxic 
(A) and the aerobic (B) reactors of the BNR system during operation with BAC-bearing 
poultry processing wastewater at 5 mg BAC/L. 
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Figure 6.27. Measured (data points) and simulated (lines) total BAC concentrations in the 
BNR system during operation with BAC-bearing poultry processing wastewater at 5 
mg/L 

If the model excluded the ensuing increase in BAC biotransformation and 

decrease in nitrification inhibition, simulation could not match the system’s performance 

while treating the 5 mg/L BAC-bearing poultry processing wastewater. Figure 6.28 

shows the simulation results for the BNR system model with BAC biotransformation and 

nitrification competitive inhibition coefficient values obtained before the system was 

exposed to BAC and kept constant.  The simulation results show that nitrification would 

never have recovered resulting in a very high ammonia concentration in the aerobic 

reactor. In addition, the BAC concentration would have reached much higher values in 

the BNR reactors. Therefore, accounting for the progressive increase in the BAC 

biotransformation rate and decrease in nitrification inhibition is very important.  
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Figure 6.28. Measured (data points) and simulated (lines) nitrogen species in the anoxic 
(A) and the aerobic (B) reactors and BAC concentration (C) in the BNR system during 
operation with BAC-bearing poultry processing wastewater at 5 mg BAC/L with 
parameter values obtained before BAC exposure and system acclimation/enrichment. 
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 Figures 6.29, 6.30, and 6.31 show the model simulation and experimental data for 

the BNR system operation period while treating the BAC-bearing poultry processing 

wastewater at step-increased BAC concentrations from 10 to 120 mg/L. Despite 

underestimating the ammonia concentration in the anoxic reactor and the nitrate 

concentration in the aerobic reactor, the model was very successful in simulating the 

BNR system’s performance relative to the nitrogen species.  

6.4.2.3 Simulation of the BNR System Operation and Performance with BAC-bearing 

poultry processing wastewater at 10 to 120 mg BAC/L 

 One consequence that results from BAC high adsorption affinity and its 

persistence in the anoxic reactor is BAC accumulation in the system. If BAC was not 

degraded in the aerobic reactor at high rates, the BAC concentration would have reached 

high levels in both the anoxic and aerobic reactor. In this case, the BAC concentration 

would have reached levels higher than those found in the poultry processing wastewater 

feed as shown in Figure 6.32.  
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Figure 6.29. Measured (data points) and simulated (lines) nitrogen species in the anoxic 
(A) and the aerobic (B) reactors of the BNR system during operation with BAC-bearing 
poultry processing wastewater at step-increased feed BAC concentrations from 10 to 120 
mg BAC/L. 
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Figure 6.30. Measured (data points) and simulated (lines) total BAC concentrations in the 
BNR system during operation with BAC-bearing poultry processing wastewater at step-
increased feed BAC concentrations from 10 to 60 mg/L. 
 
 
 

 
 
 
Figure 6.31. Measured (data points) and simulated (lines) total BAC concentrations in the 
BNR system during operation with BAC-bearing poultry processing wastewater with a 
step-increase in the feed BAC concentration from 60 to 120 mg/L. 
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Figure 6.32. Simulated nitrogen species in the anoxic (A) and the aerobic (B) reactors and 
BAC concentration (C) in the BNR system during operation with BAC-bearing poultry 
processing wastewater at step-increased feed BAC concentrations of 5, 10, 15, 30, 45, 60, 
and 120 mg/L without BAC biotransformation and nitrification resistance. 
 
 



207 
 

6.5 Summary 

Kinetic sub-models for the three reactors of the BNR system were successfully 

developed. The anaerobic reactor sub-model simulated sCOD release, VFAs production, 

and ammonification. The anoxic reactor sub-model simulated heterotrophic growth and 

denitrification in a two-step reaction scheme, while the aerobic reactor sub-model 

simulated heterotrophic growth, and autotrophic, two-step nitrification. Kinetic 

parameters for the three sub-models were evaluated using the excremental data which 

resulted from independent batch assays discussed in Chapters 4 and 5. 

BAC degradation was modeled with a mixed-substrate Monod equation. The 

inhibitory effect of BAC was modeled by a competitive inhibition equation for readily 

degradable COD utilization and denitrification, and a non-competitive inhibition equation 

for nitrification.  The inhibitory effect of BAC was correlated with its total concentration, 

liquid-phase concentration, and solids-associated concentration for heterotrophic COD 

utilization, denitrification, and nitrification, respectively. Competitive and non-

competitive inhibition coefficients were also evaluated. 

Sensitivity analysis on the three sub-models showed that the hydrolysis rate is the 

parameter that had the most sensitivity in the anaerobic sub-model, while nitrate and 

nitrite maximum specific reduction rates were the parameters that had the most sensitivity 

in the anoxic reactor sub-model. The heterotrophic population fraction and the maximum 

specific ammonia oxidation rate were the parameters that had the most sensitivity in the 

aerobic reactor sub-model.  Kinetic analysis of the sub-models showed that the rate of 

BAC removal and the level of nitrification inhibition by BAC were dynamic and 

depended on the duration of BAC exposure of the BNR system.  
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The three sub-models were combined in a comprehensive ASM1-based model. 

The model simulated the BNR system performance treating a poultry processing 

wastewater with and without BAC. Model simulations showed that the dynamic behavior 

of BAC degradation and the level of nitrification inhibition by BAC needed to be 

incorporated in the model in order to reflect the observed acclimation/enrichment of 

microbial population over time. Additionally, the model showed that reduced BAC 

degradation rates will result in BAC accumulation in the BNR system to concentrations 

much higher than those in the BAC-amended poultry processing wastewater influent. 

Overall, the developed BNR system model was capable of simulating the 

performance of the laboratory-scale BNR system. The predictive power of the model 

could be used to further explore the effect of operational and environmental conditions on 

the performance of BNR systems treating QAC-bearing wastewater and guide both the 

rational design and operation of such systems.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 
 
 

7.1 Conclusions 

The study presented here assessed the fate and effect of benzalkonium chloride, a 

quaternary ammonium antimicrobial compound, within a laboratory-scale, multi-stage, 

continuous-flow, high strength wastewater biological nitrogen removal system. 

Nitrification inhibition and low BAC removal rates resulted in the initial deterioration of 

the BNR system nitrogen removal efficiency, while treating BAC-bearing HSWW. 

Enhancement of the BAC removal rate and the acquisition of resistance to BAC by the 

heterotrophic and nitrifying microbial populations, respectively, ensured stable nitrogen 

and ammonia removal efficiencies while treating BAC-bearing HSWW with BAC 

influent concentrations up to 120 mg/L. Batch assays conducted with BNR system 

reactors mixed liquor showed that the inhibitory effect of BAC varied between the 

microbially mediated reactions in the system. The extent of BAC inhibition in the BNR 

system was affected by the phase distribution of BAC between liquid- and solid-phase, 

which significantly differed between the HSWW feed, the anaerobic, anoxic and aerobic 

reactors. Three sub-models, which represent the three reactors of the BNR system, along 

with rate expressions related to the fate and effect of BAC were developed, and their 

parameters were evaluated using batch assays. The sub-models were then combined in a 

comprehensive model that was able to simulate the performance of the BNR system fed 
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with poultry processing wastewater without and with BAC amendment up to 120 mg 

BAC/L. 

The following specific conclusions can be drawn based on the results of this 

study: 

1. The deterioration of nitrogen removal of the BNR system while treating the BAC-

bearing HSWW when first introduced at 5 mg BAC/L in the influent was the direct 

result the BAC inhibitory effect on nitrification. The susceptibility of the microbially-

mediated reactions to BAC decreased according to the following series: nitrification  

> denitrification  > readily degradable organics utilization  > fermentation.  

2. BAC levels in the aerobic reactor exceeding a specific limit (15 mg/L in this study) 

result in inhibition of nitrification leading to low ammonia removal rate and 

incomplete nitrification (i.e., accumulation of nitrite). In contrast, complete 

denitrification takes place even at high BAC levels in the anoxic reactor (up to 100 

mg/L in this study). 

3. The inhibition of nitrification by BAC was non-competitive and depended on the 

solid-phase BAC concentration associated with the nitrifying biomass, while the 

inhibition of the heterotrophic sCOD utilization by BAC was competitive and 

depended on the total BAC concentration in the aerobic reactor. Similarly, the 

inhibition of denitrification by BAC was competitive and depended on the liquid-

phase BAC concentration in the anoxic reactor. 

4.  BAC biotransformation took place only under aerobic conditions, and resulted in the 

simultaneous production and further biodegradation of benzyldimethylamine, 

benzylmethylamine, and benzylamine.  



211 
 

5. The equilibrium phase distribution of BAC between liquid- and solid-phase in the 

HSWW feed and the anaerobic, anoxic, and aerobic reactors mixed liquors was 

accurately described by the Freundlich adsorption isotherm. The BAC sorption 

capacity of the system decreased according to the following series: anaerobic reactor 

mixed liquor  > HSWW  > anoxic/aerobic reactors mixed liquors. 

6. Treatment of BAC-bearing HSWW in the BNR system resulted in the development of 

BAC biodegradation capacity by the heterotrophic microbial population and BAC 

resistance by the nitrifying population in the aerobic reactor. The BAC 

biotransformation capacity and the acquisition of BAC resistance were modeled and 

simulated as dynamic increase of the BAC specific utilization rate and the non-

competitive inhibition coefficients for ammonia and nitrite oxidation, respectively.  

The decrease in the BAC biotransformation capacity of the heterotrophic population 

and the sustained resistance to BAC by the nitrifying population after BAC was 

removed from the HSWW feed show that the acquired resistance to BAC by the 

nitrifying population lasted longer than the enhanced BAC biodegradation capacity 

by the heterotrophic population. 

7. Modeling of the BNR system showed that simulation of a system treating BAC-

bearing wastewater is only possible if the dynamic changes in BAC biodegradation 

capacity by the heterotrophic population as well as acquisition of BAC resistance by 

the nitrifying population are included in the model. 

Overall it is deduced that the fate and effect of BAC in the BNR system can be 

accurately described if the interactions between BAC adsorption, inhibition, and 

resistance/biotransformation are considered within the conditions prevailing in each 
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reactor of the BNR system. Figure 7.1 shows how the aforementioned three interactions 

affect the fate and effect of BAC within the BNR system. BAC adsorption (phase 

distribution) determines the level of its inhibitory effect (potency), while BAC 

biotransformation and resistance define the extent of exposure of the microbial 

communities to BAC (bioavailability). Finally, the inhibitory effect of BAC is reduced, if 

not completely removed (i.e., riddance), by the development of BAC resistance and 

biotransformation capacity.  

The integration between the BNR processes in this work showed that the fate and 

effect of QACs goes beyond their inhibitory effect, which was previously reported based 

on studies conducted on individual BNR processes and single redox conditions. The 

difference in BAC phase distribution within the four BNR system components (i.e., feed, 

anaerobic, anoxic, and aerobic reactors) showed that the BAC exposure levels differ 

significantly throughout the system, consequently changing the inhibitory effect. 

Biodegradation of BAC in the aerobic reactor not only resulted in its removal from this 

reactor, but also succeeded in keeping its concentration very low in the anoxic reactor as 

a result of mixed liquor recycle. Therefore, BAC did not accumulate in the anoxic reactor 

to levels that otherwise would have inhibited denitrification. Furthermore, values of the 

inhibition coefficients indicated that nitrifiers were capable of developing resistance to 

BAC while denitrifiers did not, causing a shift in the susceptibility to BAC between the 

two BNR processes. Additionally, the selective pressure of BAC not only resulted in the 

development of the aforementioned nitrifiers’ resistance to BAC but also resulted in the 

development of enhanced BAC biotransformation rates. After BAC was removed from 

the BNR system feed poultry processing wastewater, the resistance of nitrifiers to BAC 
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was retained over a significant time compared to the enhanced BAC biotransformation 

rate. 

The experimental work and modeling approach followed in this work present a 

framework that allows a better understanding of the fate and effect of BAC in engineered 

systems. The results of this study enable the rational design and operation of BNR 

systems for the efficient treatment of QAC-bearing wastewater. The outcome of this 

research provides information presently lacking, supporting the continuous use of QACs 

as antimicrobial agents in food processing facilities, when and where needed, while 

avoiding any negative impacts on biological treatment systems and the environment. 

7.2 Recommendations for Future Work 

Most, if not all, BNR systems used by the food processing industry are extensive, 

open systems, and thus under the direct influence of seasonal temperature variations. Low 

temperature values during cold seasons will lower microbial growth rate and ultimately 

the rate of the biotransformation reactions, which might alter the response of such 

systems to the presence of QACs. Additionally, adsorption of QACs is an exothermic 

process, which will be affected by temperature. Consequently, the phase distribution of 

QACs will vary as a function of temperature, thus altering their inhibitory effect. 

Therefore, assessing the fate and effect of quaternary ammonium antimicrobial 

compounds in BNR systems at low temperature values is critical and requires further 

study.      
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Figure 7.1. Interactions of BAC adsorption, inhibition, and biotransformation/resistance 
in the BNR system. 
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The acquisition and retention of resistance to BAC by the nitrifying population 

played an important role in establishing a stable nitrogen removal performance in the 

BNR system while treating BAC-bearing HSWW. The conditions and mechanism(s) 

which lead to the development of such resistance are not clear. Delineating the exact 

conditions and mechanism(s) which lead to resistance to BAC could help in facilitating 

the fast recovery of biological treatment systems in facilities which heavily depend on the 

use of quaternary ammonium antimicrobial compounds in sanitation practices. Recent 

studies have connected resistance to quaternary ammonium antimicrobial compounds to 

antibiotic resistance, a consequence of their discharge into the environment. 

Understanding the acquisition of resistance to QACs could help in the mitigation of 

antimicrobial resistance problem.  

Finally, the mathematical model developed in this study can be used to design as 

well as optimize the operation of BNR systems treating wastewater with or without 

QACs, and to identify the best operational conditions by simulation within short periods 

of time. Such task can be performed by using multi-objective optimization techniques. 

7.3 Recommendations for Improved Applications 

The inhibitory effect of QACs on nitrification was the main factor that caused the 

deterioration of the BNR system nitrogen removal, which more likely will be the main 

concern for real world applications. Additionally, as discussed in section 7.2, above, low 

temperature values will lower the biological activity in the BNR system, thus 

exacerbating the inhibitory effect of QACs. 

Results presented in this work show that continuous exposure (505 days) to QACs 

leads to the development of enhanced QACs biotransformation rate and nitrifiers 
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resistance to QACs. In real world applications, QACs are used intermittently; thus, 

exposure of the BNR processes to QACs is limited, which in turn limits the enrichment 

process that leads to the development of the enhanced QACs biotransformation rates and 

resistance of nitrifiers to QACs. Continuous usage of QACs will insure the development 

of the aforementioned enrichment and will insure BNR system resiliency towards QACs.  

The initial exposure of the BNR system to QACs resulted in deterioration of the 

BNR system performance, primarily due to inhibition of nitrification, and lasted for 15 

days in this work. Such upset to the BNR system could be avoided by manipulating the 

QACs phase distribution in the BNR system components. Results from this work show 

that the fate and effect of QACs is closely related to their phase distribution. Modifying 

the liquid- and solid-phase QACs concentration by the use of effective adsorbents (e.g., 

granular or powdered activated carbon) is an attractive technique that could limit the 

inhibitory effect of QACs by either preventing or mitigating such an effect. Additionally, 

the VSS concentration in the BNR system could be increased by extending the solids 

residence time, allowing for the development of higher biomass concentration that could 

act as an effective adsorbent against QACs. Furthermore, higher solids retention times 

will accelerate the QACs enrichment process within the BNR system, resulting in 

enhanced microbial resistance and biodegradation rates. 

The aforementioned suggested practices could support the continuous use of 

QACs as antimicrobial agents by the food processing industry when their usage is 

unavoidable, without any adverse operational or environmental consequences. 
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