Energy Efficient Network Memory for Ubiquitous Devices

Joshua B. Fryman, Chad M. Huneycutt, Hsien-Hsin S. Lee
Kenneth M. Mackenzie, David E. Schimmel
Center for Experimental Research in Computer Systems (CERCS)
Georgia Institute of Technology
Atlanta, GA 30332-0280
{ fryman, chadh, leehs, kenmac, schimmel } @cercs.gatech.edu

Abstract

This paper explores the energy and delay issues that occur when
some or all of the local storage is moved out of the embedded de-
vice, and into a remote network server. We demonstrate using the
network to access remote storage in lieu of local DRAM results in
significant power savings. Mobile applications continually demand
additional memory, with traditional designs increasing DRAM to
address this problem. Modern devices also incorporate low-power
network links to support connected ubiquitous environments. Engi-
neers then attempt to minimize utilization of the network due to its
perceived large power consumption. This perception is misleading.
For 1KB application “pages,” network memory is more power effi-
cient than one 2MB DRAM part when the mean time between page
transfers exceeds 0.69s. During each transfer the application delay
to the user is only 16ms.

1. INTRODUCTION

This paper explores the energy and delay issues that occur when
some or all of the local storage is moved out of the embedded device,
and into a remote network server. Contrary to designer intuition, we
demonstrate that this is more power efficient than local storage.

Embedded consumer systems continue to add more features while
shrinking their physical device size. Current 2.5/3G cell phones in-
corporate 144kbps or better network links [5], offering customers
not only phone services but also e-mail, web surfing, digital camera
features, and video on demand. With feature expansion demanding
additional storage and memory in all computing devices, densities
of DRAM and Flash are increasing in an attempt to keep pace. This
continuous storage expansion translates to a growing power dissipa-
tion and battery drain.

To reduce energy effects and increase battery life, designers use
the smallest parts and lowest part count possible. This has the added
benefit of keeping manufacturing cost down. This effort at minimiz-
ing available resources works against application feature expansion
as well as the need for device flexibility for dynamic upgrades.

In an attempt to address some of these problems, companies like
NTT Japan are investing time and research effort in solutions that
allow for Mobile Computing — dynamically migrating application
code between the remote device and other network connected sys-
tems [16]. Research efforts in academia are investigating alternate
designs [28].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Other examples of ubiquitous network computing environments
in the wild can be seen in the ZebraNet project [17] and similar an-
imal or habitat monitoring systems [20, 8], houses with computer
awareness integrated [23], urban traffic or location monitoring cam-
eras, or similar widespread devices [26].

One avenue for power savings has not been fully considered, how-
ever. Many embedded devices, and all mobile devices, have a net-
work link (GSM, Bluetooth, Ethernet, etc.) into a larger distributed
environment. After designers incorporate sufficient power to sup-
port a network link, they then attempt to minimize use of the link
due to its excessive energy needs during activity. Products therefore
incorporate all the needed local storage in the device, buffering as
much as possible to avoid retransmission. This ignores the fact that
the remote server has an unrestricted power budget, and can be made
arbitrarily fast to handle requests quickly.

For ubiquitous always-on devices like 3G cell phones, there is the
potential to use the network link as a means for accessing applica-
tions remotely. This could reduce local storage space, thereby reduc-
ing energy demands on the mobile platform. This remote memory
could lie in a remote server, or simply be cached within the network
infrastructure.

Utilizing the network link to access remote memory provides a
more energy efficient solution than traditional local memory. Tra-
ditional designs assume that the additional cost of utilizing the net-
work link for moving code and data will far outweigh any benefit
of removing or reducing local storage. As we will demonstrate, the
best low-power mobile DRAM available today is 100 times less ex-
pensive to access in terms of energy per bit than a very low-power
Bluetooth network. However, the sleep-mode current of the same
Bluetooth network module is 10 times less expensive than the same
DRAM part. Given sufficient time between accesses, the network
link will always be more power efficient than local DRAM. As net-
work links continue to increase in speed, this required time between
accesses continues to fall.

The rest of this paper is organized as follows: Section 2 explores
the three fundamental embedded platform models that we analyze
for energy and delay impacts. In section 3 we present the analytical
results for each model. Section 4 provides a brief overview of some
related work, and section 5 presents our conclusions.

2. DEVICE MODELS

To investigate the possible performance effect of using a network
as a mechanism for accessing remote storage, different device mod-
els and characteristics must be considered. There are three funda-
mental models of embedded computing devices that we examine:
Legacy, Pull, and Push. Each model is characterized by the type
of network link and communications model incorporated. We as-
sume that the applications exhibit sufficient locality such that there
are well-defined “working sets” that change infrequently [1, 4].

Each model is considered independently. While general compar-
isons can be made across models, each has different design-time

‘ Network Module ‘ ‘ Network Module
DRA RA DRA RAM
DRAM DRAM DRAM
CPU Flash CPU
Flash

Figure 1. Basic 3G cell phone or other ubiquitous networked device.
On the left is part (A) a typical mobile embedded device. Part (B) on the
right shows the small reduction proposed in this work.

characteristics which make direct comparison difficult. The under-
lying hardware design behind each model is the same, however, and
is shown in Figure 1A.

The basic operation of such a device is that the necessary program
and data values are copied from Flash to local DRAM for perfor-
mance issues. The Flash components draw little current when not
in use, and as well could be Vpp gated to draw zero current when
idle. This copying requires a large amount of DRAM for holding all
or part of the Flash contents.

We propose that by utilizing the network link to access the equiv-
alent contents of Flash from a remote server, a more energy efficient
model is constructed at a lower cost. This is achieved by reducing
the Flash component to just a boot-block sized unit, and removing
some part of DRAM from the local storage. The DRAM removed
would normally contain the contents of Flash copied on boot-up or
during application mode change.

Instead, we propose only a space large enough to hold the work-
ing set is reserved in the local DRAM, along with sufficient space
for all local data. This concept for reduction is shown in Figure 1B.

In the following sections, we introduce each of the three embed-
ded models and the notation we use to analyze the energy and delay
issues inherent in each. Full analysis of each equation will be dis-
cussed in Section 3. Table 1 is provided for a quick reference on the
primary variable types introduced below, as well as the subscripts
used.

2.1 Legacy

The “legacy” device was originally conceived and constructed
without expectation for ever needing communication. We examine
the issues of energy and delay if a network link is added and local
storage is reduced. The legacy application remains unchanged, but
the code and data now come from network memory.

The original design expected a certain amount of normal energy
consumption. To see how adding a network link impacts this, we
model the extra energy incurred by not only using the network link
to fetch new code and data, but also the energy consumed by the
network link when in a sleep state. We assume the network link
is only used for fetching new code and data, and that the legacy
application itself is not attempting to communicate to other devices.

In order to “request” new code or data, a message must be gen-
erated and sent to the remote server. This transmission time, Trx,
will consume power Prx as determined by the type of network link.
Once the request is received at the remote server, there will be some
interval of time processing the request, T's, during which there will
be additional power consumption on the local device monitoring the
network, Ps. Once processed, the server will reply with the nec-

Subscript | Meaning
TX Network transmit
S Remote server processing
Variable | Meaning RX Network receive
Nslp Network sleep state
P Power (Watts)
- N Network total
T Time (seconds)
E Energy (Joules) L Local storage access
9y Lslp Local storage sleep state
Idle CPU Idle
Busy CPU Busy
C Application computing

Table 1: Variables and subscript terms in model equations.

essary information, which takes time to receive, Trx, consuming
power Prx . The “payload” of the transmission will consist of some
number of bits, By . In comparison, local storage only incurs a very
minor time to access, T, with a correspondingly small power use,
Pr,. Whether transferred by network or from local storage, the CPU
will be idle during these transfers, consuming some power Prge.

Regardless of which method is used — network or local storage
— after transferring the payload By, some amount of time is spent
in computation, T¢, before the next request is generated. During
this time, the CPU will consume power while busy, Pgusy, and the
backing store can be put into a powered-down state or sleep mode.
Thus, during the work period T¢, the network link will consume
sleep power Py sip, and the local storage will consume sleep power,
Plep-

The total energy consumed by the network link in the legacy
model is

Erx = Trx-(Prx + Prae) 1)
Es = Ts-(Prx + Prai))
Erx = Trx - (Prx + Pidie) 3
Ec = Tco-(Pnsp+ Pusy) 4)
Ex = Erx+ Es+ Erx + Ec (5)

and the total energy in the local storage model is
EL:TL'(PL +PIdle)+TC'(Plep+PBusy) (6)

In terms of energy, the network model is equivalent to the local stor-
age model when Exy = Ep, but to consider the delay impact on
application performance, we construct the energy-delay product:

En - (Trx +Ts+Trx +Tc) =EL - (T +Tc) (7)

Solving this equation for T provides the energy-delay equilibrium
point where using a network backing store is equivalent to using
local storage. When T¢ is greater than this equilibrium value, the
network link is more efficient from a total system perspective.

2.2 Pull

Unlike the isolated model, the pull model assumes a network link
has been incorporated in the embedded device since creation. The
characterization “pull” comes from how the network is used: the
local device, only at its own direction, pulls information from the
network. External network devices can not arbitrarily send informa-
tion to a device operating in a “pull” mode.

Using the same notation as the legacy model, however, there are
only minor differences in the energy analysis. In the pull model,
the original design engineers already budgeted power for a network
link. The link, however, was expected to be in a power-down sleep

state during normal operation except when the program requested
remote activity. We only need to calculate the impact of new be-
havior (additional traffic) over the original expected behavior (sleep
state). Therefore, we need to account for the difference between the
network link being in sleep state as opposed to actively sending and
receiving messages.

The result is that the original equations 1 through 4 are replaced
with

Erx = Trx-(Prx + Prae — Pnsip) (8
Es = Ts-(Prx + Pidie — Pnsip) 9)
Erx = Tgrx - (Prx + Prdaie — Pnsip) (10)
Ec = Tc- Ppusy (11)

The equations for local energy 6 and the energy- delay product 7
are otherwise the same.

2.3 Push

Similar to the pull model, the push model also assumes a net-
work link was built-in originally. The difference between the pull
and push model lies in how the network link is used. With the pull
model, only the local device could initiate connections to other net-
work services. In the push model, the network link is always “on”
so that if not actively transmitting, it is in receive-listen mode. Thus
external network services can immediately “push” information to
the local device, such as email notices, software upgrades, etc.

As the pull model reduced the energy drain to store information in
the network compared to the legacy model, the push model reduces
the drain further. Since the device was designed assuming an always
active receive mode network, the original design expected to have a
large power dissipation for this purpose. Therefore, we subtract the
power term for normal receive-mode network links, Prx, rather
than the smaller power term for a sleep-mode link as in the pull
model. That is, we again replace equations 1 through 4 by

Erx = Trx-(Prx + Prae — Prx) (12)
Es = Ts-(Prx + Prqic — Prx) (13)
Erx = Trx - Praie (14)
Ec = Tc- Ppusy (15)

As with the pull model, the local energy and energy-delay product
equations remain the same.

3. ANALYSIS

We now analyze in detail both the energy equilibrium point as
well as the energy-delay product for each of the three modes dis-
cussed in Section 2. In order to have a quantitative analysis, we ob-
tained technical data on various low-power current market products
for both DRAM and Flash memory.

Using data sheets available from vendors including Elpida, Fu-
jitsu, Intel, Micron, NEC, and Samsung, we selected low-power or
“mobile” parts to represent typical market performance. We calcu-
late the energy consumption in terms of pJ per bit by computing
the best-case power consumption listed in the electrical characteris-
tics of each product. This gives us a relative measure of how much
energy is used in a best-case situation to read or write to the local
storage device. During sleep mode, these devices consume very low
current but still require some power for refresh functions. These
calculations are shown for DRAM in Table 2, and Flash in Table 3.

Similarly, we calculate energy information from the data sheets
published by several network link vendors. In a similar manner
as for the DRAM, we determine the worst-case power per bit con-
sumed, and the standby or sleep-mode power. In this situation, the

transmit (TX) and receive (RX) currents are considered separately,
as some links display different needs by operating state. We re-
stricted our search to monolithic, fully-integrated network modules
to ensure valid power measurements. Using multiple chip solutions
requires external components and glue logic which make power cal-
culation difficult if not impossible. The components we considered
and their power calculations are shown in Table 4.

For our analysis, we demonstrate a conservative extreme: best-
case local storage vs. worst-case network links for remote storage.
While neither of these models is generally realistic, they demon-
strate the extreme bounds where network links are more effective
than local storage. Thus in actual application, network links should
be more efficient than we demonstrate here.

3.1 Simplifications

To reduce the complexity of analysis, we make several simplify-
ing assumptions:

First, we assume that the local device will not transfer user data
(dirty data) into the network for storage, but will keep it all locally.
The bulk of transfers we consider to be code, unalterable items such
a video streams, or one-time user-centric data such as email. While
email could be buffered on a remote server and not stored locally, it
still represents this model in that reading email is no different than
receiving a new program to run.

Second, we assume that the “request” for code or data to a re-
mote server can be encapsulated in a 64-byte packet. This could
be reduced or expanded based on the network topology and error
handling needs, but has sufficient storage space for simple requests.

Third, we assume that the “response” packet being a variable-
payload version of the “request” packet will consist of 20 bytes for
control information followed by the actual payload of size By bits.

Fourth, we simplify what “local storage” means. Since Flash is
substantially slower than DRAM, we assume that the application is
copied from Flash to DRAM for faster execution, and then Flash is
placed in deep-sleep mode. Therefore, we ignore the contribution
of Flash to the total energy for the best-case memory analysis.

Finally, we assume that for the total count of DRAM chips, at
least one is for mirroring Flash. However, based on the working set
principle [6], only a small fraction of this space is actually needed
at any given moment. Rather than store an entire mirror image,
only sufficient space for the working set should be reserved in local
DRAM, with excess DRAM then removed. By using the network
link to access applications, we can also shrink the Flash such that
it contains only a boot image, and not all applications that could
ever be run. Since steady-state mode changes occur relatively infre-
quently [1, 4], the need to load new code and data from the network
will also occur infrequently.

Therefore, our analysis uses the assumption that one DRAM chip
is removed, although it could include reducing Flash as well. For
the local storage comparison, we ignore the effects of initiating and
waiting for memory access, and assume all accesses begin instanta-
neously at the maximum supported rate of the DRAM device. More-
over, we assume transition from idle- or sleep-mode to active- mode
is also instantaneous. We assume minimal Vpp and current con-
sumption at all times, while ignoring refresh operations. This con-
stitutes a best-case memory model.

The worst-case network model uses typical Vp p with worst-case
current consumption in all cases. With slower transfer rates, higher
current consumption, and a long duration of remote server process-
ing T’s, the network appears unattractive for energy savings at first
glance. We will now demonstrate that this is not the case.

For analysis arguments, we use for the DRAM device a Fujitsu
FCRAM model MB82D01171A, a 2MB part with the lowest power

1024

Tc time (s)

Ts=1s —e—
Ts = 100ms —a—

Ts=1ms —8—
01 I I I I I I 1)
1 2 4 8 16 32 64 128 256

Data Transferred (KBytes)

Figure2: LEGACY: Duration of computation T required for the net-
work link to more energy efficient, where T's and By vary.

consumption of all devices measured in pJ/bit. Our network link
model is the CSR BC2-Ea, a fully integrated Bluetooth module. Our
CPU model is the DEC SA-110, a 0.5W processor during high com-
putation and 0.02W during idle periods [22].

3.2 Legacy

The legacy model presents the worst energy-delay product result.
We have added a network link to a design that did not expect it. For
the network link to be more efficient than local DRAM, it requires
a significant amount of time spent in computation, T¢. Figure 2
illustrates the energy-delay solution of Equation 7 for T¢ such that
the network link is as effective as the local DRAM, using different
values for server processing time T's. Times beyond this T are a
“win” for using remote storage instead of local storage.

As the figure illustrates, when T's is large it dominates the energy-
delay product. Given sufficiently large sizes to transfer, however,
the network becomes the limiting factor in the result. This presents
the strong argument that optimization of the remote server for rapid
response times will have a more significant impact on the energy
efficiency of the local device than any other network characteristic.

3.3 Pull

The pull model provides better energy-delay results than the iso-
lated model, as can be expected from subtracting the sleep mode
power. However, the improvement turns out to be small compared
to the energy costs associated with transferring the data as well as
the remote server processing time T's. Figure 3 shows a very similar
energy-delay solution to that of Figure 2.

The difference between legacy and pull models is approximately
8%. While this is an improvement, the dominating factor in the
energy-delay product is not the sleep mode energy consumed.

This analysis does indicate, however, that adding a network link
to a legacy system when using a pull-based communications model
will have a small impact when compared to the energy consumed by
local storage devices.

3.4 Push

The push model uses the least additional energy and thereby ben-
efits most from using remote storage. Since the network link is al-
ready expected to be in a receive-mode state at all times, the only
extra energy used to access remote storage is the energy of the trans-
mit operations. Figure 4 demonstrates an energy-delay savings that
is substantial compared to a pull model.

1024 -

Tc time (s)

Ts=1s —e—
Ts =100ms —a—

Ts=1ms —8—
01 I I I I I I 1)
1 2 4 8 16 32 64 128 256

Data Transferred (KBytes)

Figure 3: PULL: Duration of computation 7c that must pass for the
network link to be more energy efficient, where T's and By vary.

1024

64 4/,/

Tc time (s)

Ts=1s —e—
Ts =100ms —a&—

) Ts—lrrl§ —-

0.1 1 1 1 1 1
1 2 4 8 16 32 64 128 256

Data Transferred (KBytes)

Figure 4: PUSH: Duration of computation Tc that must pass for the
network link to more energy efficient, where T's and By vary.

The energy-delay benefit for a 1KB “page” change with T's of
10ms in the legacy model required 4.3s as a minimum change inter-
val. With the push model, this time is reduced to 0.69s. In relative
comparison, this same 1KB “page” of code loaded across the net-
work with T's = 10ms will present an application delay of 0.016s
to the user while accessing the network.

A larger “page” size to transfer may be more realistic to consider,
however. For a 32KB change with T's = 10ms, the legacy model
requires 26.6s. The push model reduces this time to 4.24s. The delay
the user experiences while the network transfer occurs is 0.185s.

4. RELATED WORK

Utilization of the network as a mechanism for accessing backing
store as a low-power mechanism is novel. Prior work concentrated
on using remote memories for high-performance reasons, avoiding
accesses to slow disks or to expand memory for working sets of
code or data [7, 25, 10, 21, 15, 14, 11]. Other work examining the
network in power-limited devices has concentrated and minimizing
the usage [12] and optimizing protocols.

A significant amount of effort is being spent to find ways of im-
proving the overall energy efficiency of networks. WLANS can im-
prove their efficiency by using ad-hoc relaying [19]. Other efforts
have looked at tying battery level with ad-hoc routing methods to in-

crease network robustness as well as node run-times [18], or trying
to characterize the energy usage in wireless devices [9].

Using the availability of low-power short-range devices such as
Bluetooth, others are building larger networks in an energy-efficient
manner. These new systems compete with other, more traditional,
network options [2]. Such efforts strengthen the viability of using
otherwise limited hardware.

Other efforts are focusing on expanding CPU on-die storage with
addressable memory [24, 3, 27] to reduce energy consumption and
improve performance. One group has proposed to reduce or elim-
inate local storage by using a client-server network storage model
[13].

With each generation of network technology, data rates increase
and power consumption decreases (see Table 4 for examples). Next-
generation technology such as Ultra-Wideband is anticipated to be
higher data rate and lower power than current Bluetooth devices,
with improved range. As network links approach the performance
characteristics in bandwidth and power of local DRAM, the argu-
ment for moving to network-based storage becomes more evident.

5. CONCLUSION

Typical designs for embedded platforms include multiple low-
power local storage parts such as DRAM and Flash. Many con-
temporary devices also include a network link of some type. Design
efforts focus on minimizing the energy consumption of the network
by adding sufficient local storage to hold all possible programs and
data that users need. We have shown that the underlying assumption
is misleading, and that using remote servers to store information
can be more energy-efficient than using local storage. Accounting
for processing times, protocol overheads, and using best-case lo-
cal storage behavior versus worst-case network link behavior, we
demonstrated that networks are more efficient when transfer times
exceed a small threshold.

For a reasonable, average working set of 32KB transferred via the
network, the link is more efficient than local DRAM if transfers oc-
cur no more frequently than every 4.24s, using a push model. This
assumes the network link replaces one local 2MB DRAM chip. Re-
moval of larger or multiple components makes network usage even
more efficient.

Today, network links use 100 times the energy of DRAM during
accesses, but consume 10 times less energy during sleep. Network
devices continue to approach low-power DRAM performance char-
acteristics in terms of speed and power, making network memory
increasingly attractive. The reduction in part count, and thus price,
can aid in the marketing of disposable devices such as cell phones.
This model where applications are downloaded on demand also pro-
vides a mechanism for pay-per-use services, such as custom games
or video players. We are currently working on detailed simulations
to study the impact of this network memory model on overall net-
work congestion.

6. ACKNOWLEDGEMENTS

This work was funded in part by the National Science Foundation
under grants CCR-98-76180, CCR-01-21638, and EIA-99-72872.

7. REFERENCES

[1] Gheith A. Abandah and Edward S. Davidson. Configuration
Independent Analysis for Characterizing Shared-Memory
Applications. Technical report, EECS Department, Univerisity of
Michigan, CSE-TR-357-98 1998.

[2] Simon Baatz, Christoph Bieschke, Matthias Frank, Karmen Kiihl,
Peter Martini, and Christoph Scholz. Building Efficient Bluetooth
Scatternet Topologies from 1-Factors. In Proceedings of the IASTED

International Conference on Wireless and Optical Communications,
July 2002.

[3] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan,
and Peter Marwedel. Scratchpad Memory: A Design Alternative for
Cache On-chip memory in Embedded Systems. In Proceedings of the
10th International Workshop on Hardware/Software Codesign, May
2002.

[4] Ravi Batchu, Saul Levy, and Miles Murdocca. A Study of Program
Behavior to Establish Temporal Locality at the Function Level.
Technical report, Rutgers University, DCS TR-475 2001.

[5] J. Blecher. Cell Phone Carrier Technology Chart. CNet Wireless
Watch (htt p: / / ww. cnet . cont wi r el ess), September 2001.

[6] Peter J. Denning. Virtual Memory. In Computing Surveys, volume 2,
No. 3, pages 153-189, September 1970.

[7] Sandhya Dwarkadas, Nikolaos Hardavellas, Leonidas Kontothanassis,
Rishiyur Nikhil, and Robert Stets. Cashmere-VLM: Remote Memory
Paging for Software Distributed Shared Memory. In Proceedings of
the International Parallel Processing Symposium and the Symposium
on Parallel and Distributed Processing, pages 153—159, 1999.

[8] Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme.
Connecting the Physical World with Pervasive Networks. In Pervasive
Computing, Jan 2002.

[9] Laura Marie Feeney and Martin Nilsson. Investigating the energy
consumption of a wireless network interface in an ad hoc networking
environment. In IEEE INFOCOM, 2001.

[10] Michail D. Flouris and Evangelos P. Markatos. The Network
RamDisk: Using Remote Memory on Heterogeneous NOWS. In
Cluster Computing, volume 2, pages 281-293, 1999.

[11] Kieran Hart and David R. Cheriton. Application-Controlled Physical
Memory using External Page-Cache Management. In ASPLOS pages
187-197, 1992.

[12] Paul J.M. Havinga and Gerard J.M. Smit. Energy-effi cient Wireless
Networking for Multimedia Applications. 2000.

[13] Chad M. Huneycutt, Joshua B. Fryman, and Kenneth M. Mackenzie.
Software Caching using Dynamic Binary Rewriting for Embedded
Devices. In International Conference on Parallel Processing, 2002.

[14] Liviu Iftode, Kai Li, and Karin Petersen. Memory Servers for
Multicomputers. In Proceedings of the | EEE International Computer
Conference, pages 543-547, 1993.

[15] Sotiris loannidis, Evangelos P. Markatos, and Julia Sevaslidou. On
Using Network Memory to Improve the Performance of
Transaction-Based Systems. In International Conference on Parallel
and Distributed Processing Techniques and Applications, 1998.

[16] NTT Japan. BLUEBIRD Project. 2003.
http://ww. ntts.co.jp/javal bluegrid/en/.

[17] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi,
Li-Shiuan Peh, and Daniel Rubenstein. Energy-Efficient Computing
for Wildlife Tracking: Design Tradeoffs and Early Experiments with
ZebraNet. In Proceesings of ASPLOS-X, October 2002.

[18] D. Kim, J.J. Garcia-Luna-Aceves, K. Obraczka, J. Cano, and
P. Manzoni. Power-Aware Routing Based on The Energy Drain Rate
for Mobile Ad Hoc Networks. In Proceedings of the IEEE
International Conference on Computer Communication and
Networks, October 2002.

[19] M. Kubisch, S. Mengesha, D. Hollos, H. Karl, and A. Wolisz.
Applying ad-hoc relaying to improve capacity, energy efficiency, and
immission in infrastructure-based WLANS. Technical report,
Technical University Berlin, July 2002.

[20] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler,
and John Anderson. Wireless Sensor Networks for Habitat
Monitoring. In ACM International Workshop on Wreless Sensor
Networks and Applications, September 2002.

[21] Evangelos P. Markatos and George Dramitinos. Implementation of a
Reliable Remote Memory Pager. In USENIX, pages 177-190, 1996.

[22] James Montanaro and et al. A 160-MHz, 32-b, 0.5-W CMOS RISC
Microprocessor. In IEEE Journal of Solid-Sate Circuits, volume 31,
No. 11, pages 1703—1714, November 1996.

[23] Georgia Institute of Technology. The Aware Home Project.
1999-2003. ht t p: / / www. cc. gat ech. edu/ fce/ ahri /-
publications/index. htm .

[24] Preeti Ranjan Panda and Nikil D. Dutt. Memory Architectures for

[25]

[26]

[27]

[28]

Embedded Systems-On-Chip. In Proceedings of High Performance
Computing, December 2002.

Dionisios Pnevmatikatos and Evangelos P. Markatos. On Using
Network RAM as a non-volatile Buffer. In Cluster Computing,
volume 4, pages 295-303, 1999.

Sameer Tilak, Nael Abu-Ghazaleh, and Wendi Heinzelman. A
Taxonomy of Wireless Micro-Sensor Network Models. In Mobile
Computing and Communication Review, April 2002.

Manish Verma, Stefan Steinke, and Peter Marwedel. Data Partitioning
for Maximal Scratchpad Usage. In Proceedings of Asia South Pacifi ¢
Design Automated Conference, January 2003.

Dong Zhou, Santosh Pande, and Karsten Schwan. Method Partitioning
- Runtime Customization of Pervasive Programs without Design-time
Application Knowledge. In International Conference on Distributed
Computing Systems, May 2003.

Vendor Model MB | width | MHz | Vpp | access mA | sleep mA | pl/bit | pJ/bittMB
Elpida EDL1216AASA 16 16 133 | 2.3-2.7 80 15 86.5 5.4
Fujitsu MB82D01171A-80 2 16 125 | 2.3-2.7 20 0.2 23.0 115
Micron MT48V4M32-10 16 32 100 | 2.3-2.7 100 0.35 71.9 45
Micron MT48V16M16-10 | 32 16 100 | 2.3-2.7 80 0.35 115.0 3.6
NEC pPD4664312 8 16 150 | 2.7-3.3 45 0.1 49.6 6.2
Samsung K4S643233-75 8 32 100 | 2.3-2.7 85 5 61.1 7.6
Samsung K4S283233-75 16 32 100 | 2.7-3.6 220 6 185.6 11.6
Samsung K4S561633-1H 32 16 100 | 2.7-3.6 130 6 219.4 6.9

Table 2: Mobile DRAM characteristics: size, bit-width, speed, voltage, best-case access current, best-case sleep-mode, current use, pJ per bit in
accessing, and a normalized pJ per bit per megabyte of memory. Refresh impact not included.

Vendor Model MB | width | MHz | Vpp | access mA | sleep mA | pJ/bit | pd/bit/MB
Fujitsu MBM29LV320xE 32 16 125 2 7 0.005 70.0 2.19
Fujitsu MBM29DS163xE 16 16 10 18 8 0.005 90.0 5.63
Intel 28F256K3 32 16 75 2.7 24 0.030 54.0 1.69
Intel 28F640W30 8 16 40 1.7 8 0.007 21.3 2.66
Intel 28F320W18 4 16 66 17 7 0.008 11.3 2.82
Micron MT28S2M32B1LC 8 32 66 3 130 0.300 91.6 11.45
Micron MT28F642D18 8 16 54 1.7 10 0.025 19.7 2.46
NEC pPD29F032203AL-X 4 16 12,5 2.7 16 0.005 216.0 54
NEC MPD29F064115-X 8 16 125 18 15 0.025 135.0 16.88
Samsung K9F2816x0C 16 16 20 1.65 8 0.010 41.3 2.58
Samsung K9F2808x0B 16 8 20 1.7 5 0.010 53.1 3.32
Samsung K9F6408x0C 8 8 20 1.65 5 0.010 51.6 6.45

Table 3: Low-power Flash characteristics: size, bit-width, speed, voltage, best-case access current, best-case sleep-mode, current use, pJ per bit in
accessing, and a normalized pJ per bit per megabyte of memory.

Vendor Type Range Model kbps | Vbp | TXmA | RXmA | sleepuA | TX pdbit | RX pd/bit
AMI Semi SpreadS | 300m ASTRX1 40 3.3 14 25.0 10.0 1.155 2.063
AMI Semi Modem n/a A519HRT 1.2 5.0 0.6 0.6 n/a 2.500 2.500

CSR Bluetooth | 100m BC2-Ea 1500 1.8 53 53.0 20.0 0.064 0.064

MuRata Bluetooth | 100m LMBTBO027 1000 1.8 60 58.0 30.0 0.108 0.104

NovaTel Wireless nla Expedite 38.4 3.3 175 130.0 5.0 15.039 11.172
OKI Semi Bluetooth | 100m MK70 921.6 3.3 115 72.0 nfa 0.412 0.258

Option GSM n/a GlobeTrotter 116 3.3 550 50.0 50.0 15.647 1.422
Radiometrix UHF 30m BiM-UHF 40 5.0 21 16.0 1.0 2.625 2.000

Siemens Bluetooth 20m SieMo S50037 | 1500 3.3 120 120.0 120.0 0.264 0.264

UTMC Bus n/a UT63M1xx 1000 5.0 190 40.0 nfa 0.950 0.200

Vishay IrDA Varies TFBS560x 1152 5.0 120 0.9 1.0 0.521 0.004

Wireless Futures | Bluetooth | 100m BlueWAVE 1 | 115.2 3.3 60.9 60.9 50.0 1.745 1.745

Table 4: Link characteristics: speed, voltage, current draw in various states, and worst-case uJ per bit power consumption for TX and RX.

