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NOMENCLATURE 

A A matrix having the dimension n x n, unless otherwise noted. 

a A vector having n components. 

a. . A scalar, the i * component of the i row of the matrix A. 
ij a 

a A scalar, the i component of the vector a_. 
i 

¥- To be read as "for all'". 

- To be read as "has the same rank as". 

E To be read as "on the". 
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SUMMARY 

The objective of this thesis is to present a statement of 

conditions for the observability of quadratic systems. A quadratic system 

is a system having dynamics represented by linear, stationary, and 

deterministic differential equations and an output composed of a summation 

of the quadratic functions of the components of the state vector. In order 

to facilitate the investigation of this nonlinear system, an extended 

definition of observability is presented along with a general theorem 

for the investigation of system observability. The extended definition 

and the general observability theorem are used to develop conditions of 

observability for quadratic systems. Finally, a brief discussion is 

given on the relationship between system observability and system state 

reconstruction. A method of state reconstruction for the quadratic system 

is given. 
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CHAPTER I 

INTRODUCTION 

Definition of the Problem 

Modern control theory has, in recent years, led system analysts 

to formulate their problems in terms of the state-space notation. Some 

advantages of this notational convention are: (1) a simplification of the 

mathematical analysis of the system operation, and (2) an improved 

understanding of the interaction of the individual system components in 

the creation of the overall system's response. The development of the 

theories of observability and controllability is an example of this 

increased understanding of system operation. 

The present work is concerned with the application of the notion 

of "observability" to the class of nonlinear systems represented by: 

x = A x. + b_ u(t), and (1.1) 

y(t) = x Q x- (1.2) 

This system has a dynamical representation as a linear, stationary, 

deterministic, and ordinary differential equation. The output relationship 

is a summation of the quadratic functions of components of the state 

vector. This system will be referred to as a "quadratic" system. 

Historically, a system is termed "observable" if the state vector 
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of the system can be reconstructed from a knowledge of the system's 

inputs, outputs, and mathematical structure. For example, Kriendler and 

Sarachik^ ' have defined "observability" in the following manner: 

Definition 1: An unforced system is said to be completely 
observable on I t ,tr| if given t and tr every state x(t ) 

O f O f I— 0 1 

in X can be determined from the knowledge of y(t) on [tQ,tf J . 

The usual approach in determining conditions of observability is 

to solve for the system's response in terms of an undetermined initial 

condition, x(t ) == x , as: 
— o —o 

y_(t) «• £(x , t), (1.3) 
o 

and then attempt a straightforward solution of Equation 1.3 for the 

unknown initial condition, x . Conditions which allow such a solution 
~~o 

are the conditions of observability. 

If an unspecified input, ju(t), is included in the response 

relationship, the problem may be viewed as one of determining under what 

conditions Equation 1.4 may be solved for the unknown value x : 
-± j —o 

X(t) -£.(<, u(t), t). (1.4) 

For completely linear systems, the addition of the unspecified 

input, _u(t) , does not complicate the procedure just described. However, 

in the case of a nonlinear system, the difficulty of finding an analytic 

solution for the initial state, x , of an unforced system, Equation 1.3 



3 

may become exceedingly difficult by the inclusion of an unspecified input, 

u.(t) , as in Equation 1.4. 

Since observability is a system property, conditions of observability 

must be determinable without specifying a particular method of solving 

the problem represented by Equation 1.4. A direct approach for solving 

this problem for the quadratic system (Equations 1.1 and 1.2) has not 

produced an analytic solution for x . Therefore, an additional aspect of 
—T3 

the problem for determining the observability of the quadratic system 

will be to develop a new means of investigating system observability 

independent of a straightforward solution for the unknown initial condition. 

Purpose of the Research 

The specific purpose of this research was to determine under what 

conditions the state of the quadratic system (Equations 1.1 and 1.2) may 

be reconstructed. Consider the system of Figure 1, in which the output or 

observed response of the system, the quantity y(t), is proportional to the 

power dissipated by the viscous damper. Such a system is a quadratic system 

of the form of Equations 1.1 and 1.2. If such a system were observable, 

it would then be possible to reconstruct both the displacement and velocity 

histories of the two masses, M1 and M«. Under certain conditions such a 

system is observable. 

An additional purpose of this work was to provide a general frame

work for the investigation of nonlinear systems. In order to accomplish 

this, it has been necessary to investigate the basic notion involved in 

defining observability. This problem has resulted in the proposal of an 

Extended Definition of Observability. Furthermore, A General Observability 
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t x2(t) 
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Figure 1. Example of a System Possessing Linear Dynamics 
and Non-linear Output y(t). ( y(t)=Power 
Dissipated by Viscous Damper C) 



5 

Theorem based upon the Extended Definition will be stated and proved. 

These investigating tools will first be applied to the completely linear 

system to demonstrate their usefulness. Secondly, the quadratic system 

will be investigated for its conditions of observability. 

Literature Review 

(2) 
The notion of observability, originally introduced by Kalmanv y, 

was presented as a mathematical dual to the notion of controllability 

developed in the same reference. Kalman^ ^ later expanded the understanding 

of observability by developing an explanation independent of the 

dualization process. This concept was further discussed by Kriendler and 

Sarachik and others. Wonham and Johnson ' are among those who have 

shown the relationship of controllability and observability to the problem 

of optimizing quadratic cost functions for linear dynamical systems. 

(5) 
Kalman, Falb and Arbib present a concise review of the conditions of 

observability for linear systems. 

Kalman, Falb, and Arbib also discuss a method of reconstructing 

the state of a system by means of an asymptotic state estimator. The output 

of this state reconstructor approaches that of the system being observed 

asymptotically with respect to the independent variable. Luenberger 

gives a more detailed discussion of the same topic. Another method of 

(9) 
state reconstruction is presented by Gilchrist in which information 

on the inputs and outputs of the system is collected at discrete values 

of the independent variable. Once sufficient information is collected, 

the present state of the system is calculated by direct substitution of 

the collected data into the system equations of motion. Al'brekt and 



6 

Krasoviskii^^^ have considered the problem of observing a nonlinear 

system when the motion of the system is in the neighborhood of a given 

motion. Roitenberg^lj-~l- ' has developed an indirect method of calculating 

the state of both linear and nonlinear systems based upon information of 

the system's inputs and outputs. The quadratic system being discussed 

in the present work has not been previously analyzed with respect to its 

quality of observability. However, McClamrock and Aggarwal^ ' have 

discussed the invariance of the quadratic system to changes in the state 

description. 

Contribution 

In the present work, the definition of observability has been 

restated in order to facilitate its usefulness in analyzing non-linear 

systems. The extended definition and its associated observability theorem 

allow nonlinear systems to be investigated without linearizing the non

linear system or otherwise approximating its reponse. Unlike most previous 

non-linear observability work, this thesis treats observability in-the-

large rather than for small deviations from a specified state trajectory. 

As an example of their usefulness, the extended definition and general 

theorem are used to develop necessary and sufficient conditions for the 

observability of quadratic systems. Conditions for the observability of 

quadratic systems have not been previously defined. 

Organization of the Work 

The organization of this work is reduced to three main topics. 

The first topic is the subject of general system observability, covered 



7 

in Chapter II. Here, motivation will be given for an extended definition 

of observability. Also, a general observability theorem will be stated 

and proven. This theorem will facilitate the investigation of observa

bility of nonlinear systems. In Chapter III, using the proposed general 

observability theorem,conditions for the observability of quadratic 

systems will be stated and proven. In addition, it will be shown that under 

certain conditions the state of the quadratic system may be uniquely 

observed. Also, a straightforward calculatory method of determining 

observability will be presented. In Chapter IV, a discussion will be 

presented showing the relationship between system observability and 

state reconstruction. A numerical example of the system shown in Figure 1 

will be presented, demonstrating that the state of a quadratic system 

can be uniquely reconstructed. 

The Bibliography is divided into two parts. The first contains 

references which have been cited in the text of this work; the second 

contains those references which have not been specifically noted in the 

text but which have been useful in developing a background and basis for 

this work. 
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CHAPTER II 

SYSTEM OBSERVABILITY 

Qbj ̂ cti\ •.' 

The objective of this chapter is to present a precise definition 

of observability, consistent with the present definition but extending 

the applicability of the observability notion to nonlinear systems while 

allowing for a clear distinction between observability and state reconstruct

ion. In addition, this new definition will allow all systems to be 

compared as to their degree or quality of observability,regardless of 

their degree of linearity. 

A general observability theorem will be stated and proved.based 

upon the Extended Definition of Observability. Because of the vast 

numbers of different systems which may be encountered, the General 

Observability Theorem will not specify a specific test to be applied to 

every system, but, rather, will indicate a general approach to determining 

whether or not a system is observable. 

The conditions necessary for a linear system to be observable are 

well established in the literature. In an effort to demonstrate the 

usefulness of the Extended Definition of Observability and the General 

Observability Theorem, these ideas will be applied to a completely 

linear system. Such an analysis does not reveal new results but does 

demonstrate the distinct difference between a system which is observable 

and a system which is state reconstructable. 
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g-Point Observability 

Figure 2 presents a block diagram of a dynamical system for 

which it is necessary to design a state reconstruction device. The 

output of the state reconstruction device is a state vector, x*(t), 

which, if the process of reconstruction is "perfect11, will satisfy: 

x*(t) - x(t) (2.1) 

for all time on the interval [ t ,t | . If the system of Figure 2 

were observable, then the system state could be reconstructed by some 

technique. Conditions of observability do not necessarily indicate a 

method of state reconstruction, but, rather, only assure that the state 

may be forma:ly reconstructed; that is, the stale may be reconstructed 

only in mathematical form. 

Consider the system of Figure 2 having a dynamic plant represented 

by the differential equation (Equation 2.2) and an output relationship 

given by Equation 2.3: 

i(t) " l[x(t),u(t),t j, and (2.2) 

y_(t) = _g_[x(t),u(t),t ] . (2.3) 

where: 

x.(t) represents an n-dimensional vector, termed the 
"state of the system"; 



*o = i(t0) 

Inputs 
J 
] «(t) 

Plant 

x. = _f( x, _u,t) 

x(t) Output 

X = &< 2£> u- t) 

Z(t) 

u(t) 

I v(t) Desired Feedback 
Control 

V = K(x*,t) 

x*(t) State Reconstruction 
Device 

x* = G( y_, £.t) 

Figure 2, Dynamic System with State-Reconstruction Device. 
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u_(t) an r-dimensional vector, representing the input to the 
system; 

y_(t) an m-dimensional vector (m < n), representing the output 
of the sys tern. 

Assume that the unique solution of Equation 2.2 may be written as: 

x(t) = X [ x}J u(t), t ] . (2.4) 

By direct substitution of Equation 2„4 into Equation 2.3, the output 

of the system may be found as: 

y_(t) = F [ x ^ u(t), t ] . (2.5) 

Traditionally, the system composed of Equations 2.2-2.3 would 

be termed "observable", if given the structure of the system (i.e., 

Equations 2.2-2.3), the input, _u(t) , and output, y_(t) , as explicit 

functions of t on the interval [t ,tx]j it is possible to determine 

the value of the initial state x(t = t ) = x , which is consistent with 
— o —o 

the input-output relationship, Equation 2.5. 

The procedure is very straightforward. Given the structure of 

the system, find the functional form of Equation 2.5. Then, knowing the 

responses, _y_(t) , as a result of some known input, _u(t), and an unknown 

initial condition, x , find the initial condition, x , which satisfies 
~~o —o 

Equation 2.5. With this information in hand, the state of the system may 

be reconstructed by direct substitution of u(t) and x into Equation 2.4 
— ~~o 

to yield: 
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x(t) = X(t). (2.6) 

The solution of Equation 2.5 may or may not be simple or even 

straightforward. However, an important comment on Equation 2.5 is that 

several distinct results may occur in attempting to solve for x . First, 
o 

it may be possible to find a single value for x_ which satisfies the 
o 

equality. Secondly, there may be several values for x_ which satisfy the 
o 

equality; and, finally, it: may turn out that there are an infinite number 

of initial conditions for x which satisfy the equality. 

If there is oily a single condition for x that satisfies Equation 
~~o 

2.5, then the system may be declared observable; if there are an infinite 

number of values for x_ that solve Equation 2.5, then the system may be 

declared unobservable. However, if there are several values for x 
—o 

which satisfy Equation 2.5 it is certainly true the system is not observ

able in the traditional sense, although it is more observable than if there 

were an infinite number of such values for x . It is this quality of the 
—o 

nonlinear system which the following definition is designed to take into 

account: 

Definition 2: Extended Definition of Observability 
(q-Point Observability) 

A system having an n-dimensional state vector, x_(t) and 
input u(t), will be said to be q-point observable on the 
interval (_ t , t J if there, are q and only q distinct values 
of the initial conditions, x , consistent with the system's 
input-output relationship. 
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The only difference between this definition and that given earlier 

(Definition 1, page 2) lies in the possibility of defining as observable 

those systems having a finite number of multiplicities of initial conditions 

consistent with the input-output relationship. The reasons for wishing 

to define such systems as observable rest on the knowledge that in almost 

all cases the control engineer knows more about the system and its operation 

than that which is expressed in Equation 2.2 and 2.3. This additional 

knowledge may help in eliminating some of the candidate initial conditions 

from consideration. Failing to reduce the possible number of candidate 

initial conditions to one, a trial-and-error procedure might be used. 

At the very least the uncertainty as to the correct initial conditions 

is bounded to a finite seta 

General Observability Theorem 

The definition of q-point observability given in the previous 

section suggests a very simple theorem for determining the degree of 

observability of a system. The basic premise of this theorem is that if 

the structure of a system is known, then, for any specific input-output 

pair, u(t) and y(t), there must exist at least one value of x that — -o 

satisfies Equation 2.5. An additional question is: How many solutions for 

x„ are there to Equation 2.5? —o L 

A straightforward attempt to solve the input-output relation 

(Equation 2.5) for x in terms of an unspecified input, _u(t), may lead 

to conditions of observability. For problems such as the completely 

linear system for which Equation 2.5 has the form: 
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Z(t) = lx (x^, t) + F2 (u(t)), (2.7) 

this straightforward procedure may yield results. More complicated 

problems, however, make the straightforward solution difficult if not 

impossible to achieve. 

Another approach is implied by the Extended Definition. Two 

distinct initial conditions, x and x1 can be related as: x1 = x„ + gx^, 
—o —o —o —° —° 

where the vector, 6x , is given as: 5x = x1 - x . The responses of a 
—o —;o —o —o 

system to each of these initial conditions and the same unspecified 

input, _u(t), may be written as: 

^l(t) - I [2S0»u(
t)»t J » x(t0) = XQ, and (2.8) 

i«(t) = F [x + 6x ,u(t),t] ,x(t ) • x + 6x . (2,9) 
^-L — —O —o — — O —O —O 

In general, the response (Equation 2.9) is different from that of Equation 

2.8. For convenience, this difference shall be defined as a vector,A^(t): 

Ay_(t) = I [x. + 6x ,u(t),t! - F[ x ,u(t),t ] (2.10) 
^~o ~o ~ o — 

Therefore, Ay_(t) is a measure of the difference in y_ (t) and ^(t) 

resulting from a variation of the initial conditions. Using the definitions 

just stated, the following theorem is proposed: 

Theorem I: A General Theorem of System Observability 

A system having state x/t) e n-dimensional state space 
Xn and output y_(t) E m-dimensional output spaoe Ym (m <_ n), 
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will be q-point observable on the finite interval [tQ, tf] if 
there are (q-1) and only (q-1) nonzero and distinct vectors, 
fix , for each x , such that: —o o 

A£(0 = F [x + 5x ,u(t),t] - F^yuCt)] = 0. (2.11) 

everywhere on [ t , tf] . 

Proof: (Sufficiency) Assume there are (q-1) distinct nonzero 
values,6x , such that ŷ_(t) = 0 ¥• t £ [t ,.tJ. Then, there are 
q and only q values, x_(t ), which may satisfy the output 
relationship, namely: x ( t ) = x , x + xf , x + x , . . ., 
x + x (q-1). ° -° ~° ~° "* ^ 
-D -O 

(Necessity) Assume the system to be q-point observable and let 
there be more {fewer} than (q-1) distinct nonzero values, <5x , 
which satisfy Ay_(t) = 0 •¥" t e [t ,tf]. If this were so then 
there would be more { fewer } than q values of x_(t ) which could 
create the same output response y_(t) = J_(x , u_(t), t) , hence 
the system would not be q-point observable. 

Q.E.D. 

The theorem just stated and proved is not a direct method of 

approaching the problem of observability, That is, when the value of 

has been determined there is no explicit guarantee that the unknown initial 

condition(s) will have been found .The theorem only states that property 

of the system response the investigator is striving to uncover and leaves 

the development of an algorithm to accomplish the reconstruction as a 

later problem. 

Observability of the Linear Systems 

In the previous sections a new definition of observability was 

proposed and a general theorem for determining the degree of observability 

was stated and proven. Before discussing the solution to the problem of 
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quadratic system observability, it will be useful to demonstrate the 

application of the new definition and general theorem to the problem of 

linear system observability. This treatment will not produce new results, 

but will demonstrate the technique of investigation to be used on the 

quadratic system. 

The following linear system having an n-dimensional state, x(t), 

an m-dimensional output, J_{t) (m 1_ n) » anc* a n input, _u(t) , will be 

considered: 

x(t) - A(t) x(t) + |L<t) ju(t), and (2.12) 

X(t) * £(t) x(t) + 31(t) u(t). (2.13) 

Following the procedure outlined in Theorem I, three steps will 

be necessary in order to investigate the quality of observability of 

this system. First, it will be necessary to write the solution to 

Equations 2.12-2.13 in terms of the input, _u(t), and initial condition, 

x.(t ). Secondly, Equation 2.11 will be formed in terms of the system 

parameters and the two initial conditions: x(t ) = x and x(t ) = x + ^x . 
— o — 0 — o -o — 0 

Finally, the quality of observability will be determined from an 

investigation of the equation: Ay_(t) = 0. 

The state, x(t), may be written as: 

x(t) = 4(t,tQ) [x(tQ) J + i(t,tQ). (2.14) 

where i(t,t ) represents the state-transition matrix satisfying the 

relationship: 
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s(t,t ) = A(t) £(t,t ), (2.15) 
o o 

£(t0,tQ) == 1, (2.16) 

and the vector function, f(t,t ), is given by: 
o 

f(t,t ) - / 1 (t~T, t )B(l)u(T)dT, 
o t0 o - -

¥ t E [ 1: ,t ] . (2.17) 
o f J 

Substituting Equation 2.14 into Equation 2.13 gives: 

X(t) = £(t) i(t,t ) x(t ) + C(t)f(t,t ) +D(t)u(t). (2.18) 
J- — — o — o — ~~ o — — 

The result, Equation 2.18, can now be. used to find A _y_(t) = 0 as: 

A^(t) = £(t) £ (t,t0) 6X Q = 0, 

V- t e [t ,t J . (2.19) 
o f, 

The problem is now reduced to one of finding what if any values of 

6x may satisfy Equation 2.19 for all t on the interval [ t ,t . 

Two possibilities present themselves; The columns of the matrix 

£(t) ^(tjt ) may or may not be linearly independent of each other. 
o 

If this matrix does not have linearly independent columns then there 

exists an infinite number of constant vectors, 6x , such that Equation 
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2.19 is satisfied. On the other hand, if the columns of C(t) $ (t,t ) 
o 

are linearly independent, there is one and only one value of <5_x which 
o 

satisfies Equation 2.19, namely: 6x - 0. If Sx = 0 is the only value 
~~o — o 

to satisfy Equation 2.19, then the degree of observability is q = 1. 

In accordance with the foregoing discussion, it is possible to 

postulate the following theorem for linear systems of the form Equations 

2.12-2.13. 

Theorem II: Observability of the Linear Systems 

The linear system, Equations 2.12-2.13, having state transition 
matrix |L(t,t ) defined by Equations 2.15-2.16 is one point 
observable if and only if the columns of the matrix £L(t)£(t,t ) 
are linearly independent on [t , t f ] . 

A direct result of Theorem II is Corollary II-l. 

Corollary II-l: If a linear system is observable, it is one-
point observable, That is, an observable linear system possesses 
the minimal degree of observability. 

These results are not new and are well documented in the 

literature: Kriendler and Sarachik, , Chen and Desoer, ' Athens 

(15) (16) 
and Falb, DeRusso, Roy and Close. It is well known that the 

observability property of linear systems is independent of the system 

input, _u(t) . However, this result does not extend to all systems. That 

is, there are systems wherein the conditions of observability may be 

dependent upon the system's inputs. However, even if the conditions 

of observability are input independent, as in the case of the linear 
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systems, it is never possible to reconstruct the state of any system 

without explicit knowledge of the system's input. This calculation will 

be dealt with in Chapter IV. 

Finally, the result of Theorem II may be restated for the special 

case in which the system matrices A, and £L of Equations 2.12-2.13 are 

time invariant. 

Corollary II-2: Observability of Linear Time Invariant Systems 

The linear system, Equations 2.12-2.13 having constant 
coefficient matrices A an^ £=* is one-point observable if and 
only if the composite matrix, K, has rank, n, equal to the 
dimension of the system state. 

M = [ i I 4TcJ ; (AT)2 Cj ; I (Aj)n-1 £T ] 

This extension of the results of Theorem TI is also well 

documented in the literature,^ * > ̂  ' 1°) 

Summary 

In summary, this chapter has been devoted to the statement of an 

Extended Definition of Observability, the proposal and proof of a general 

theorem based upon the Extended Definition, and finally, a demonstration 

of the use of the general observability theorem by a brief investigation 

of linear system observability. The Extended Definition is based upon the 

observability criterion proposed by Kalman but has been modified to aid 

the investigation of observability of nonlinear systems. Although the 

investigation of linear system observability did not produce new results, 

it did demonstrate the procedure which will be used in the investigation 

of the nonlinear quadratic system. 
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CHAPTER III 

QUADRATIC SYSTEM OBSERVABILITY 

Objective 

This chapter will be devoted to a detailed investigation of the 

quality of observability of a general quadratic system. The discussion 

will also demonstrate how both the Extended Definition of Observability 

and the General Observability Theorem of the previous chapter may be 

applied to a nonlinear system. 

Although the quadratic system defined here possesses a convenient 

mathematical form, the resulting algebraic problem does not admit to 

a completely tractable solution as in the case of the totally linear system. 

For this reason, the results of this investigation will be presented in 

three parts. The first will discuss a necessary condition for q-point 

observability applicable to all quadratic systems; the second result is a 

necessary and sufficient condition for q-point observability applicable 

to a restricted class of quadratic systems; finally, a method will be 

demonstrated whereby the quality of observability of any quadratic system 

may be determined by means of a straightforward solution to Equation 2.11, 

Page 20 . 

Problem Definition 

The quadratic system is defined as a system having a linear, 
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stationary, and deterministic dynamical plant and having a nonlinear 

output relationship: 

x(t) = _4 x + b u(t) , and (3.1) 

y(t) = xT£ x. (3#2) 

The state of the system, x(t), is an n-dimensional vector; u(t), 

the system input is a scalar function of the independent variable,t; and 

y(t) is the system output, also a scalar. The matrix A is of dimension 

n x n, the column vector _b_ is of dimension n, and the matrix}=Q, is 

symmetric and positive semidefinite, n x n in dimension, and may always 

T be written as Q = Ji H., where H is also an n x n matrix. The quadratic 

system of Equations 3.1-3.2 is defined for all t's on the finite interval 

[t , t J . Furthermore, the. initial state of the system is x(t=t ) and 
o f o 

the final state of the system is 5c(t=t ) . 

Using Theorem I, Page 14, the problem of determining under what 

conditions the quadratic system (Equations 3.1-3.2) is observable and to 

what degree of multiplicity the system may be observed is reduced to finding 

the solution or solutions to Equation 2.11, Page 15. Restating the procedure: 

For every input-output pair, u(t) and y(t), related by Equations 3.1-3.2, 

there must be an initial state, x(t=:t ) , which satisfies the output 
— o 

relationship. By convention, the as-yet-undetermined initial state, x.(t=t ) 

will be assigned the designation x . The proposition put forth by Theorem 
o 

I is: Knowing x to exist, are there other values for the initial state 
~o 
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which satisfy the input-output relation. The remainder of this section 

will be devoted to laying the groundwork for answering this question. 

In terms of an arbitrary initial condition, x.(t ), and an 

unspecified but known input, u(t), the solution of Equation 3.1 for the 

state, _x(t) » may D e written as: 

x(t) = £(t,tQ) [ x(tQ) + f(t,t ) ] V- t e(to,tf), (3.3) 

where i(t,t ) represents ths state transition matrix satisfying: 

(t,t ) = 4 1(t,t ), (3.4) 
o o 

i(t ,t ) = X, (3.5) 
o' o 

and where f(t, t ), the forcing function is defined by: 
o 

f(t,t ) - / V 1 (T)bu(x)dT, 
-- o t " 

o 

* t e I- ̂ ^ f 3 ' (3.6) 

Equations 3.6 tacitly assumes that u(t) is a continuous function of t 

on [t »tf]. Using the result of Equation 3.3, the response or output 

of the system, y(t), is given as: 

y(t) = [x(tQ) + f.<t,tQ) ] V (t,tQ) J,i(t,to) [x(tQ) +f(t,to) ] , 

t t E (t ,tf). (3.7) 
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By the use of Equation 2.11, Page 15, the function, Ay(t), may be found 

in terms of x and x + 5x , as: 
~~o "o ~~° 

Ay(t) = [6x +2x +2f(t,t)] $T(t,t )ai.Ct,t )«* (3.8) 
—u —o — o — — o —o 

The essence of the remainder of this chapter is to find all 

possible values of 6_x which make Ay(t) ~ 0 •¥• t e [t ,t f]. 

By inspection, it can be seen that 5x = 0 will satisfy the 
—o 

condition Ay(t) = 0 everywhere on the interval. However, this solution 

is discussed as being trivial since, by hypothesis, it has been assumed 

there is an initial state for the system, namely, x . Solving Equation 
~o 

3.8 for nonzero values of 6x which make Ay(t) = 0 everywhere on the 
—o 

interval, will tell whether or not the system is observable and if 

observable to what degree of multiplicity this observability may be 

determined. 

As previously stated, the determination of the quality of observa

bility for the quadratic system has been reduced to a straightforward 

algebraic problem. For any particular numerical example, this algebraic 

problem may be quite simple. However, it should be remembered that, al

though the problem may be straightforward this does not guarantee that 

the solution is simple„ 

Conditions for Quadratic System Observability 

A Necessary Condition of q-Point Observabllity 

T 
Making use of the relationship Ĉ  ~ H IL» Equation 3.8 may be 

equated to zero and written as: 
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"6x + 2x + 2f(t,t ) 'IT $T(tst ) H
TH $(t,t ) 6x =0. (3.9) 

. —0 —0 — O J - = o i=: — — o ^ 

This expression can be written as the inner product of two vectors 

f H $(t,t ) ( 6K + 2x + 2f(t,t yi [ H $(t,t ) 6x | =0. (3.10) 
L- :— — Q — Q —O — U J L- = = O O -1 

Recognizing that the system, Equations 3.1-3.2, Page 21, will be unobserv-

able if Equation 3.10 possesses an infinite number of nontrivial solutions 

for <5x (Via viz Theorem I, Page 14),the following theorem may be proven: 
o 

Theorem III: Necessary Condition for q-Point Observability 
of a Quadratic System 

The quadratic system, Equations 3.1-3.2, is q-point 
observable only if the composite matrix, ̂ L, has rank, n, 
equal to the dimension of the system state, or: 

^ =L IT ! ATHT \ (AT)2 / I ' (A1)11"1 HT ] (3.11) 

Proof: Assume the system, Equations 3.1-3.2, to be q-point 
observable with matrix, £1, having rank, m < n. Then, by Theorem 
II, Page 18, the matrix, E JL (t,t ), does not have n-linearly 
independent columns; hence, there are an infinite number of 
nontrivial vectors, 6x , such that: 

E £<t»to) 6X Q = 0, (3.12) 

for all t's on the interval. Therefore, there are an infinite 
number of nontrivial values, 6XQ, which satisfy Equation 3.10 
everywhere on the interval, implying that the system, Equations 
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3.1-3.2, is not q-point observable, contrary to the hypothesis. 

Q. E. D. 

The test stated by Equation 3.11 is very similiar to the corre

sponding test for linear systems. It can be noted that if Q_ is positive 

definite then the matrix |£ (Equation 3.11) will have rank n regardless of 

the form of A. Therefore positive definiteness of Q is sufficient to 

satisfy the necessary condition of Theorem III. It is, however, necessary 

to evaluate the rank of |£ (Equation 3.11) for cases in which the quadratic 

T form 2C OJK is zero for some value of x 4 0_. 

Furthermore, this entire discussion, beginning with page 23, is 

T equally valid for quadratic systems in which the quadratic form _x Qx. ^-s 

negative semi-definite. Therefore, Theorem III applies to all quadratic 

systems in which the output equation is semi-definite or definite. 

Observability of Unforced Quadratic Systems 

By applying the General Observability Theorem of Chapter II to the 

quadratic system, Equations 3.1-3.2., page 21, it has been possible to 

develop a necessary condition for the quadratic system to be q-point 

observable (Theorem III). An observability criterion will now be developed 

for a quadratic system having zero input everywhere on the interval. 

The unforced quadratic system presents a situation in which it is 

not possible to observe the system uniquely. That is, there are always 

a multiplicity of possible initial conditions which may have created any 

given response. This situation can be easily seen by inspecting Equation 

3.9 which, for the unforced case, becomes: 

T T m 

[ 6^ + 2XJ £ (t,tQ) H i ( t , t 0 ) 6X0 = 0. (3.13) 
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By inspection there are always at least two values of the vector, 

6x , which satisfy Equation 3.13, namely: the trivial solution 6x =0, 

and 6x = -2x . Therefore, if the initial state, x(t ) = x , is a candi-
—o ~o — o —o 

date initial condition then the initial state, x_(t ) = -x , will equally 

well satisfy the system output relationship. Within the definition of 

multipoint observability, the unforced quadratic system can at best be 

two-point observable. 

For a restricted class of unforced quadratic systems, namely those 

for which the system matrix, 4^ n a s distinct eigen-values, the following 

theorem and corollaries may be proved: 

Theorem IV: Observability of Unforced Quadratic Systems 

The quadratic system, Equations 3.1-3.2, having input u(t)=0 
¥• t e [t ,tf] and having matrix jLwith distinct eigen-values, 
will be observable to q-possible initial states if and only 
if the pair (AjH) is observable in the sense of Theorem II. 

Proof: (Necessity) The proof of necessity has already been 
given in Theorem III. 

(Sufficiency) By hypothesis, the matrix 4= °f the system 
Equation 3.1-3.2, has distinct eigen-values; therefore, there 
exists a unique transformation x_ = 1L z_, such that Equation 
3.1-3.2 may be written: 

A(t) = X 1 A r ^ ( t ) =AAz^(t), and (3.14) 

y(t) = z1 (t) | TIz(t), (3.15) 

where | = | 1 and the matrix, A, = 3L 4 3L> is a diagonal 
matrix. Therefore, Equation 3.9 may be written as: 



27 

(fix + 2x ) T $T(t,t ) K K $_(t,t ) 6x^ = 0 
—Q —0 o O —u 

(3.16) 

Defining the columns of the matrix, K, as vectors, k_̂ : 

& = tti k2 k ]. 

and the d iagonal elements of iL a s : 

k° 

h° 
o x2 
I 
I 
I 
I 

0- - -

- - - - 0 

0 

The expansion of Equation 3.16 can then be written as: 

n 
Z 5x. (fix. + 2x. 1 (k k.) 

10 10 10 —1 —1 
i=l 

T, , 2A- (t-t ) 
k.) e i oJ + 

n-1 n 
E E [~6x (6x + 2x ) + 

i=l j=i+l
 i0 °̂ J° 

-, r T i (X.+X.) (t-t ) 
fix. (fix. + 2x. )1 k.k. e i 3 o = 0 . (3.17) 

TO 10 10 J L—i -jJ 

Equation 3.17 containa all the information as to the number 
of vectors, fix , which satisfy Equation 3.17. The more terms 
which appear in Equation 3.17,the more restricted will be the 
number of 5x 's satisfying the equality. Likewise, the maximum 
number of 52£o's satisfying the equality will occur when the 
equality, Equation 3.17, has a minimal number of terms. Assuming 
the system satisfies the conditions of the theorem, a minimal 
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number of terms will appear in Equation 3.17 if all columns 
of K are mutually orthogonal. Under these conditions, Equation 
3.17 becomes: 

ri 
I fix. (6x. + 2x. ) (k.Tk. ) e^i^^o^O. 

*io ^ 10 io' L-i -iJ (3.18) 
i=l 

Since this equation is composed of n linearly independent 
functions of t, it will only be satisfied by equating each 
of the coefficients to zero. That is: 

5x10(6x10+2x10) = 0, 

Sx20(6x20+2x20) = 0, 

1 

I 

t 

Sx n(6x +2x A) = 0. ,, 1Qx 
nO nO nO (3.19) 

Since the vector, &x , is composed of n-elements (6X-.Q, fix 
. . ., fix -1 there are a total of q = 2n distinct choices ' 
of fix satisfying Equation 3.19. Therefore, the system is 
q-point observable. 

Q.E.D. 

Equation 3.17 has been written as two summations, the first involv

ing products of fix and ( fix + 62x.n), the second involving what will 

10 iO iu 

be called the "cross-product" terms. If the vector components of the 

T matrix K are not mutually orthogonal, that is k. k. 4 0, i 4 j, then 

the cross-product terms of Equation 3.17 must be satisfied along with 

those already noted in Equation 3.18. Since the set (Equation 3.19) allows 
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a total of q = 2n possible solutions for 5x , the further restriction n —o 

of satisfying any cross-product requirements can only reduce the number 

of values of 6x that satisfy Equation 3.17. This relationship can easily o 

be shown by the following example. 

Example: 

Given a system defined by Equations 3.14-3.15, where n = 3: 

A 0 0 

1 

o i2 o 
0 A 

3-1 

and 

T 

hX 
k T k 
-3 -3 

= a 

= b 

= c 

T 
k k 
- 1 - 2 

= 0 

k„ T k 
- 1 - 3 

= d 

k T k 
- 2 - 3 

= 0 

and t h e c o n s t a n t s a , b , c , d ^ 0 . E q u a t i o n 3 .17 may be expanded as 

a ( 6 x 1 0 ) C 6 x 1 0 + 2 x 1 0 ) e 2 X
1

C t ~ t
o ^ + 

b ( 6 x 2 0 ) ( 6 x 2 0 + 2 x 2 0 ) e 2 X 2 ( : t : " t o ) + 

c ( 6 x 3 0 ) ( 6 x 3 0 + 2 x 3 0 ) e 2 A 3 ( t " t o ) + 

d [ o x 1 0 ( 6 x 3 0 + 2 x 3 0 ) + 6 x 3 0 ( 6 x 1 0 + 2 x 1 0 ) ] e ( A l + V ( t ~V = 0. (3.20) 

Since the values X„. Xn, and A „ are distinct, the first three terms of 
1 2 ' 3 

Equation 3.20 are linearly independent functions of t everywhere on [tQ,tf] 
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CA1+A3) Ct-tQ) 
The function e 1 J ° may or may not be linearly independent of 

the other functions in Equation 3.20; however, this possibility does 

not change the nature of the results previously mentioned. To show this, 

two cases will be discussed. 

Case 1: Assume An + A 4- 2A . 
• 1 3 2 

In this instance the four linearly independent functions of t 

must sum to zero for the entire interval [t ,t ] . This result 

is only true if the coefficients of the functions e l ° , 

2A2(t-t0) 2A (t-t ) (A1+A3)(t-to) ' 
e ^ , e 3 o , and e i J ° are identically zero 

that is: 

6x10(6X10 + 2x10) = 0, 

6x20(<5x20 + 2x20) = 0, 

fix30(6x30 + 2x30j = 0, and 

5x10(6x30 + 2x3Q) + 6x,0(6X10 + 2x1Q) =0 

[3.21-1) 

[3.21-2) 

(3.21-3) 

(3.21-4) 

By inspection of Equations 3.21-1, 2, 3, there are eight choices 

of x which simultaneously satisfy these three equations: 
o 

fix = 
"~0 

"o" * "o " 

0 0 

0 ) -2x 
1- 30J 

7 

0 

-2x 

0 

20 
•2x 

20 

-2x 
30 
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-2x 

0 

0 

10 
-2x„ 

10 
0 

* ~-2x "] 
10 

-2x 
20 

_ 
> -2x 

.. 3 0 j 
j 

0 , and 

• 2x 
10 

•2x 
20 

-2x 
'30 (3.22) 

The cross-product relationship (Equation 3.21-4) will only be 

satisfied by four of these eight choices of the vector, 6x , 

namely: those having an asterisk above them. 

Case 2: Assume A-̂  + A„ = 2A . 

Equations 3.21-1, 2, 3, then becomes: 

6 X 1 0 ( 6 X 1 0 + 2 X 1 Q ) - 0, 

b5x-,0(6x2o
+2x2o)

 + dfixio (.6x30+2x30) 

d.6x3Q (.6xio+2xio) = 0, 

5x (6x30+2x30) = °-

(3.23-1) 

(3.23-2) 

(3.23-3) 

By inspection, it can be noted that four values of 6x marked 
—o 

by an asterj.sk in Equation 3.22 also satisfy Equations 3.23. There 

are, however, at most four additional values of 6x which also 
-o 

satisfy Equations 3.23. These are: 

•x2o ± (x20
 + 4F Wac^ 

1/2 

• < X 

30 

-2x 10 

- " 2 0 ± < X 2 0 + 4 F X 1 0 X 3 0 ) 1 / 2 

asterj.sk


3: 

As a consequence of Theorem IV, Page 26, the following corollary 

can be stated: 

Corollary IV-1: If the unforced quadratic system of Equations 3.14-
3.15, having state vector _x(t) of dimension n, satisfies the con
ditions of Theorem IV, then the system will be q-point observable 
where 2n > q ^ 2. 

Justification for this corollary can be made by noting that there are 

always at least two values of <5x which satisfy Equation 3.16. Likewise, 

upon expanding Equation 3.16, it can be noted that there are at most 2 

values of <5:x which satisfy the set of equations designated as Equation 
o 

3.19, Page 28. 

From the example it can be noted that if one independent cross-

product term exists, the basic set of possible solutions is reduced by a 

factor of 2. If the matrix, Q, is defined as: 

£ = KTK (3.24) 

the number of independent cross-product terms which are present in the 

expansion of Equation 3.17 can be determined as R. The number R is fully 

defined in Appendix I. 

Corollary IV-2: Given the quadratic system: 

k_ = K x_, and (3.25) 

y = xT£21> (3.26) 
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having matrix A with n-distinct eigen-values, a nonsingular 
transformation, x = 1 z, exists such that Equation 3.25-3.26 
become : 

A = iL ZL» and- (3.27) 

y = z_ £ z_s (3.28) 

where: 

=A 
-1 T 

= T. A I, and £ =_ T g T. 

The system, Equation 3.25-3.26, will be q-point observable if 
and only if the diagonal terras of Q are all nonzero. Furthermore, 
the value of q is given by: 

,n-R n-R > 1 

n-R < 1 (3.29) 

where: 

n represents the dimension of the system state vector, 
_x(t), and 

R the total number of independent cross-product terms 
as defined in Appendix I. 

The inequality in Equation 3.29 holds in those instances when 

there are repeated solutions for the candidate values, XQ• In order 
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to show the usefulness of Theorem IV and its corollaries, an example 

will be worked to demonstrate these results. 

Example 3-B: 

Given the system: 

1 0 Q 0 

- 2 3 0 0 

- 5 2 2 2 

•4 1 Q k 

x = x , and 

(3.30) 

y = x 

k 0 - 2 - 2 

0 1 - 1 0 

-2 - 1 2 1 

• 2 0 1 3 
( 3 . 3 1 ) 

determine if the system is q-point observable by means of Theorem IV. 

From Theorem IV, the system, Equations 3.30-3.31, will be q-point 

observable if and only if it satisfies the necessary condition of Theorem 

III. That is, the matrix, M, must have rank n = 4. 

[HT ! ATHT | [AW ; (AW] , (3.32) 

where A is the system matrix of Equation 3.30 and H is the matrix such 
T 

that £ = | I . From Equation 3.31, the matrix, Q̂ , may be written as: 
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a 

4 0 - 2 - 2 

0 1 - 1 0 

- 2 - 1 2 I 

-2 0 1 3 j 

0 0 0 1 

0 -1 1 0 

0 0 0 1 

2 0 1 1 

0 0 0 1 

0 - 1 1 0 

0 0 0 1 

- 2 0 1 1 (3.33) 

Performing the i n d i c a t e d opera t ion in Equation 3 .32: 

M= 

0 0 0 -2 -4 -3 -4 -11 -22 • -19-22 -5 -100 -93 -100 -221 

0 -1 0 0 1 -1 1 3 7 3 7 19 37 29 37 93 

0 1 0 1 0 L 0 2 0 4 0 4 0 8 0 8 

1 0 1 1 4 2 4 6 16 12 16 28 64 56 64 120 

which has the same rank as: 

M = 

0 0 0 4 

0 0 2 0 

0 1 0 0 

1 0 0 0 rank n 

Therefore, it can be stated that the system is q-point observable where 

16 >_ q ̂_ 2. To deteirmine the value of q, the system must be put in the 

canonical form indicated by Equation 3.27-3.28 of Corollary IV-2. Using 

the transformation: 
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L -

1 0 0 0 

1 0 - 1 0 

1 1 0 1 

1 0 1 1 

the system of Equations 3 .30-3 .31 can be w r i t t e n a s : 

(3.34) 

z = 

1 0 0 0 

0 2 0 0 

0 0 3 0 

0 0 0 k 

z_, and 

(3.35) 

T 
J = «. 

2 0 2 2 

0 2 2 3 

2 2 h 5 

2 3 5 7 (3.36) 

As discussed in Appendix I, for this example R = 2. The degree of observa

bility can now be calculated as: 

q = (2) n"R = 24"2 = 4. (3.37) 

Therefore, the system is four-point observable. The validity of this 

result can be shown by a direct expansion of Equation 3.16 and solving the 

resulting set of simultaneously nonlinear equations for all possible 

values of 6x which satisfy the equality. In the canonical form (Equations 
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3.35-3.36), Equation 3.16 becomes: 

2 ( 6 z i : ) ) ( 6 z 1 0 + 2 z 1 0 ) e 2 t + 2 (Sz 2 0 ) ( 6 z 2 0 + 2 z 2 0 ) e 4 t + 

4 (5z 3 0) (5z 3 0+2z 3 0 ) e 6 l : + 7 (5z 4 0 ) ( 6 z 4 0 + 2 z 4 0 ) e 8 1 + 

2[ (5z1 005z3 0+2z30) + *z3 0C5z1 0+2z1 0)]e t + 

2 p ; z 1 0 ( 6 z 4 0 + 2 z 4 0 ) + ^ ' 4 0 ( 5 z 1 0 + 2 z 1 0 ) > 5 t + 

2 [ 5 z 2 0 ( ^ 3 0 + 2z 3 0 ) + < s z 3 Q («z 2 0 + 2z 2 0 i l e 5 t + 

3 [6z 2 0 (5z 4 0 +2z 4 0 ) + <5z40(6z20 + 2z20)]e 1' + 

5[oz 3 Q C5z 4 0 + 2z 4 0 ) + S z 4 0 ( 6 z 3 0 + 2z 3 0 ) ]e 7 t = °-
(3.38) 

Col lec t ing l i k e terms: 

?t 2 [ ( 6 z 1 0 ) ( 6 z 1 0 + 2 z 1 0 ) ] e 

2[C6z20)Cf::z20 + 2z 2 C ) + 5z 1 0 ( f i z 3 0 + 2 z 3 0 ) + 6 z 3 0 ( 5 z 1 0 + 2 z 1 0 ) ] e 4 t + 

2l(&z10)(&Uo+2*4Oy*«H0t*hQ*^ 
4 [ 4 ( 6 z 3 0 K 6 z 3 0 + 2 z 3 0 ) > 3 5 z 2 0 f 6 z 4 0 + 2 z 4 0 ) + 3 6 z 4 0 ( 6 z 2 0 + 2 z 2 0 ) ] e 6 t + 

5 [ ( 6 z 3 0 ) ( 6 z 4 0 + 2 z 4 C ) + 1 S z 4 0 ( 6 z 3 0 + 2 z 3 0 ) ] e ^ + 

7 [ ( 6 z 4 0 ) ( 6 z 4 0 + 2z 4 C ) ] e8 t . 0. ^ ^ 

Since Equation 3.39 is the summation of six linearly independent 

functions of t, the equality can only be maintained if the set of Equations 

3.40 are all simultaneously satisfied: 

6Z1O(<5Z 1Q+2Z 1 0) = 0, 

&Z2o(^z2o+2z20)+Szld{6z3Q+2z30)+Sz3Q{5zlo+2zlo) «* 0, 

fizio(6ztto+2zit0) + <5z 0(6z10+2z10) + 5z20(6z30+2z30) + 6z30^6z20+2z20)= 0, 
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^ 6 z 3 0 ( 6 z Q - * - 2 z . )+3<5z ( 5 z , + 2 z J + 3 5 z ( 6 z +2z ) = 0 , 
30 30 20 40 40 40 20 20 

5 z 3 o ( 6 z 4 0 + 2ztt;, )+€z J + 0 (6z 3 0+2z 3 0 ) = 0 , and 

z 4 0 ( 6 z 4 0 + 2 z 4 0 = 0. (3.40) 

There are only four distinct values of the vector,Sz , which 
~~o 

will satisfy these six equations: 

)Z = 

-o 

6 z 1 0 ;:" 

<5z20 C 

6 z 3 0 0 

- 6 z 4 0 -
0 3 

-2z 

-2z 

10 

20 

2z30 

2Z40 

-2x 

0 

0 

0 

.0 

*30=° 
%0 = °' 

0 

-2x 

-2x 

r_ -I 

s a 

X 1+0 = 0 (3.41) 

In this example, it has been shown that by the use of Theorem IV 

and its corollaries, it is not only possible to determine whether or not 

a system is q-point observable, but it is also possible to determine the 

degree of observability. Finally, it has been shown that a straightforward 

if not difficult solution of the basic equation (Equation 3.9) resulting 

from the General Observability Theorem, will also yield the desired results. 

q-Point Observability - A Direct Method 

All conditions for the observability of quadratic systems thus 

far have made use of mathematical insight into what conditions are necessary 

and/or sufficient to solve Equation 3.9. There is, of course, a more 

direct method of determining quadratic system observability, namely, solve 

Equation 3.9 for <$x. 

The procedure is to expand the equation into a summation of scalar 
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terms, each term containing a function of the independent variable, t, 

which is linearly independent of all other functions in the summation. 

The coefficient of each of the functions of t will itself be a function 

of the unknown Sx,-'s. Since the summation must be identically zero for 

the entire interval, [t , t ] , each coefficient may be set equal to 

zero, thereby forming a set of nonlinear algebraic equations in the un

known 5x 's. Solving this set of equations will determine not only the 

degree of observability but will also give the relationship between all 

the candidate initial conditions. 

To demonstrate the technique just described, a detailed example 

will be worked: 

Example 3-C: 

1 0 0 0 

2 3 0 0 

• 5 2 2 2 

- 4 1 0 4 

x + 
Cl " C3 

cl + C2 + C4 

Cl + C3 + C4 

u(t), and 

(3.42) 

y(t) = x 

4 • : • 

0 :_ L 0 

2 - l 2 1 

2 0 . 3 

,1 

(3.43) 

This system has the same structure as the system of the previous example 
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except that the system now has a scalar input, u(t), and a column vector 

composed of combinations of constants c , c , c and c . It is possible 
1 2 J 4 

to calculate the state transition matrix, £j(t,t ), and the forcing 
- o 

functions, f(t,t ) associated with Equations 3.42-3.43, by substituting 
~ o 

these values directly into Equation 3.9, and proceeding with the solution 

of the problem. Howaver, the complexity of the resulting algebraic problem 

is more burdensome than need be. If, instead, the system is transformed 

to that canonical representation in which the system .matrix is diagonal, 

the complexity in solving the problem is greatly reduced. Let: 

x = T 

1 0 0 0 

1 0 - 1 0 

1 1 0 1 

1 0 1 1 (3.44) 

Then, by direct substitution of Equation 3.44 into Equations 3.42-3.43, 

the system is presented in terms of the state vector z, as: 

z = 

1 0 0 0 

0 2 0 0 

0 0 3 0 

0 0 0 4 

z + 

L 4_l 

u(t), and 

(3.45) 
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y = z 

2 0 2 2 

0 2 2 3 

2 2 4 5 

2 3 5 7 
(3.46) 

The forcing function, f(t), is found from Equation 3.5 as 

f ( t , t ) 
1 * o 

f 9 ( t , t ) 
2 o 

f ( t , t ) * 
~ o f ( t , t ) 

3 o 

f ( t , t ) 
u 4 o -

-T 
/ c e u(T)dT 
t, 

•t - 2 T , . , 
j c e u(T)dT 

to 

t -3T 
/ c e u(T)dT 

to 

t -4T 
-t/

 c
4
e "u(T)dT 

o (3.47) 

It was determined in the previous example that the system satisfied the 

necessary condition for q-point observability. It is the purpose of this 

example to show that the degree of system observability may be determined 

by a straightforward, if not difficult, solution to Equation 3.9, page 24 

That is: 

T T 
[sx + 2x + 2f(t,t )] $ [t,t ) Q_ $(t,t ) 6x 
L -n -O - O J = O O -O (3.48) 

By direct substitution the state transition matrix, £(t,t ), of the system 

represented by Equation 3.45, the forcing function given by Equation 

3.47 and the matrix, Qt from Equation 3.46, Equation 3.48 becomes: 
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5 x 1 0 + 2 x 1 0 + 2 f 1 ( t , t o ) 

5x 2 0 +2x20+2f o ( t , t ) 
1 o 

6 X 3 0 + 2 x 3 0 + 2 f 3 ( t , t o ) 

_6x 4 0 + 2x 4 0 + 2f 4 ( t , t o )_ j 

-T r 2 e 2 ( t ~ t 0 ) o 2 e 4 ( t - t
0 ) 2 e 5 ( t " t 0 ) ] 

0 2 e 4 ^ - t o ) 2 e 5 ( t - t 0 ) 3 e 6 C t - t o ) 

2 e 4 ( t - t o ^ 2e5Ct:-to) 4 e 6 ( t - t
0 ) Se7(t-tQ) 

2 e 5 ( t - t
0

) S e 6 C t - t o ) 5 e 7 C t - t o ) 7e 8 Ct- t Q ) 

10 

6X 

6X 

20 

30 

= 0 

L6X40. 

(3.49) 

In order to s impl i fy the problem, assume t h a t c =c~=c =0 and c,^0 

Then expanding Equation 3.49 g i v e s : 

6X1 0(6X1 0+2x1 0) [ 2 e 2 C t " t o ) ] ^ X 2 o ( 6 x 2 0 + 2 x 2 o ) [ 2 e 4 C t > t o ) ] 

[6X30 (6X30 + 2x30)^,5x40 ( 6 x 4 0 + 2 x 4 o ) ] [ 7 e 4 ( : t " t o ^ + 

[5 x lo (5X3 0 + 2x3o) + 6X3o(6X10+2x10)] f e ^ ' V ] + 

[6 x 1 0 ( 6 x 4 0 + 2 x 4 0 ) + «sx4 0(6X1 0+2x1 0)+6X2 0(6x3 0 + 2x 3 0) + 

5 x30(5 x20+ 2 x20^] [2 e ° ] + 

[ 6x2 0 (6X40+2x40)+6x40(6x20 + 2x 2 0 )J [3e ^ " V ] + 

[6X30(5x40 + 2x40)+ 5x40(5x30 + 2x30)] p e ^ ' V ] + 

4 6 x 1 0 f ( t , t ) e 2 ( t " V + 4 6 x 3 0 f Ct , t ) e 4 ( t _ t o : ) + 

46x 4 0 f ( t , t ) e S ( t " t o ] = 0. 
o (3.50) 

Collect ing terms, Equation 3.50 may be w r i t t e n a s : 

[6x 1 0 (5x 1 0 +2x 1 0 ) J [ 2 e 2 O t o ) J + [6x2o(5x20+2x2o) + 

5x 1 0 (6x3 0 + 2x30) + 6x 3 0 ( f ix 1 0 + 2x 1 0 ) ] Q ^ O ^ O ] + 

[5x1 0(5x4 0+2x4o) + 5x4 0(6x1o+2x1o) + 6x 2 0 (5x3o+2x30) + 

6x30(6x20+2x20)] [ 2 e 5 ( t - t o } ] + [46x30(6x30+2x30) + 

36x 2 0 (5x 4 0 +2x 4 0 ) + 36x 4 0 (6x 2 0 +2x 2 0 ) ] ^ ( t - O ] + 
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[6x30C6x40+2x40) +6x40(6x30+2x30)j [ 5e? (t-t^)] + 

[6x40C6x40+2x40)] [7e8(t-to)J + Uxln^ (t"V f ̂  (t, tQ) + 

46x30e4(t-to)fi(t,to) + 46x40e5 (t-tQ) f^t,^) = 0. (3.51) 

It can be immediately recognized that Equation 3.51 is made up of a sum

mation of nine functions of t, linearly independent of each other every

where on the interval [t , t-]. If the summation is to equal zero every

where on the interval, each coefficient of the linearly independent func

tions must be identically zero. That is: 

6x10(5x10+2x10) = 0, (3.52-1) 

5x20(5x20 + 2x20)+6xlo(6x30+2x3O) + 6X30(<Sx10+2x10) = 0, (3.52-2) 

<Sx10(6x40 + 2x^0)+6x40(6x10+2x10)+6x20(6x30+2x30) + 

6x30(6x20+2x20) = 0, (3.52-3) 

46x30(6x30+2x30)436x20(6x40+2x40)+36x40(6x20+2x20) =0, (3.52-4) 

5x30(6x40+2x40)+6x40(6x30+2x30) = 0, (3.52-5) 

6x40((Sx40 + 2 x4C : ) = °> (3.52-6) 

45x10 = °> (3.52-7) 

46x20 = 0, and (3.52-8) 

4Sx40 = 0. (3.52-9) 

This set of equations must all be simultaneously satisfied in order to 

satisfy the conditions implied by assuming that the same output trajec

tory may be created by more than one initial condition. Relationships 

3.52-7, 8, 9, restrict <5xir., ̂
x
0n »

 an^ ^x/n to ^ e e a c n identically zero,. 
JO 30 40 
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leaving only the determination of 6x to specify the degree of observa

bility of the system. By direct substitution of Sx.. = ^x = <5x, = 0, 

the 3.52 Equations become: 

.:^20(6x20 + 2x20) = 0, (3.53-1) 

•5x20( 2x3Q) = 0, and (3.53-2 

6x20( 2x4Q) = 0. (3.53-3) 

The only value of 6x which simultaneously satisfies all these relation-
20 

ships is 6x = 0. Therefore, it can be concluded that the only vector 

of 6x which satisfies the 3.52 Equations is 5x = 0 , thereby showing 
—O —Q 

the system to be uniquely observable. 

It should be noted that this example system does satisfy the 

conditions stated in Appendix II. That is, the pair (A,H) is observable 

in the sense of Theorem II. Likewise, it should be noted that the linear 

portion of the system is not controllable. As pointed out in Appendix II, 

the condition that u(t) 4 0 for all t on the interval of observation implies 

that the system have at least one controllable state. If the system had 

no controllable states it would be tantamount to having no input. The 

example system has one controllable state. 

Summary 

A number of important results pertaining to quadratic systems have 

been discussed .in this chapter. The primary result is that quadratic systems 

may be uniquely observable. In addition, very simple tests have been stated 
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for determining the degree of observability for quadratic systems having 

a zero forcing function. Also, a necessary and sufficient condition for 

unique observability has been proven. Finally, a direct method for 

determining observability has been given in an example by directly solving 

the equation Ay(t) = 0. 
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CHAPTER IV 

STATE RECONSTRUCTION 

Objective 

In this chapter, a discussion will be presented which shows 

the relationship between the observability theory and reconstruction of 

the system state. A detailed example of the unique reconstruction of 

the state of a quadratic system will be used to illustrate the discussion. 

A distinction will be drawn between formal reconstruction of a system 

state and practical or on-line methods discussed in the literature. 

Observability and State Reconstruction 

Throughout this work, a distinction has been maintained between 

observability and state reconstruction. Observability is a system property; 

state reconstruction is a technique or mathematical algorithm by which 

the state of an observable system may be reconstructed. If a system is 

determined to be uniquely observable, this does not imply that just any 

reconstruction algorithm may be used to reconstruct the state. Usually, 

implementation of a particular reconstruction technique places require

ments on the system: in addition to those of observability stated by 

Theorem I, page 14. 

This situation has been discussed by Luenberger ^ » » °', 

and Gilchrist. * ' In the case of the former, the system state may 

be reconstructed on-line,with precision, only if the system structure, 
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system input, system output, and the initial state of the system are 

known. If the initial state of the system is unknown, the reconstructed 

state of the system approaches the real value of the system state in an 

asymptotic fashion. Likewise, with the method of state reconstruction 

suggested by Gilchrist, the investigator must be very sensitive to the 

manner in which data are collected and manipulated. As a result of this 

restriction on data collection, it is necessary to define observability 

in order to satisfy the conditions necessary for implementing the 

reconstruction technique. 

The Extended Definition of Observability and the General 

Observability Theorem stated in Chapter II suggest a reconstruction 

technique which may be implemented to produce the exact state of the 

system. Unfortunately,, the mathematical precision or knowledge of the 

system structure, its inputs and its outputs necessary to implement 

the technique, may only be achieved formally. Such mathematical insight 

into the system and its behavior nearly precludes the use of this method 

of reconstruction in the implementation of a control strategy. The value 

of formal state reconstruction lies in its use as a tool in determining 

the observability of ;:. system without confusing the issue with restrictions 

associated with on-line or practical reconstruction techniques. 

Formal Reconstruction of the State of a Quadratic System 

Formal state reconstruction will be demonstrated by an example in 

which the dynamics of the system are linear but the output of the system 

is of quadratic form. Such a system is shown in Figure 3. The basic question 

being asked in this problem is: Is the system state observable if the 



F(t) 

y(t)= dT 
dt 

Mx = 8(lb-sec
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M2 = 5(lb-sec
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T(t) 
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o 
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! * x i 

• • $ 

z^/ t 
C ^Ji' 

Figure 3. A Quadratic System 
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power dissipated by the viscous damper is monitored? For the purpose of 

illustration, numerical values will be assigned to the physical parameters 

of the system. 

If it is assumed that the operation of the viscous damper is 

adiabatic, the work done on the damper simply causes an increase in its 

internal energy. That is 

Aw = AE . (4.1) 

But, the change in internal energy of the damper results in a change in 

its temperature, T. That is: 

AE = KAT. (4.2) 

The time rate of change of work done on the damper is a measure of the 

power being dissipated by it. That is; 

Aw _ AE „ K _AT (4.3) 
At At At 

In the limit (i.e., as At -»• 0) , Equation 4.3 becomes: 

dw _ K dT 
dt dt , or (4.4) 

dT m 1 dw 
dt K dt (4.5) 
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Also: 

x9(t] ? 

dw _ d_ f z Cx2(t)dx (t) = Cxz
2 (t). 

dt dt o 
(4.6) 

Referring to Figure 3, the transducer output, y(t), may be written in 

terms of the velocity of the mass, M , as: 

y(t) = C kl (t). 
K 

Using the state-space notation, the equations of motion for the 

system are: 

(4.7) 

z = 

0 1 0 0 

±1 ° Jil 0 
mi mi 

0 0 0 1 

kj 0 k_2 -C_ 
mi m2 m2 

z + 

0 

l_ 
mi 

0 

0 

F(t), and 

L J (4.8) 

yCt) = 

0 n 0 0 

T 0 z 0 0 
£ (t) 

0 z 0 0 

0 c 0 c 
K 

z(t), 

(4.9) 

where: 
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z(t) 

~21(t) "xiCtj" 

z 2 ( t ) x i ( t ) 

23 ( t ) x 2 ( t ) 

_z4 ( t ) _ x 2 ( t ) _ 
(4.10) 

Evaluating, numerically, the algebraic coefficients of Equations 4.8-

4.9 gives: 

a 1 0 D 

5 0 5 0 

0 : 0 1 

3 0 13 -6 

z + F(t), and 

(4.11) 

yOO 

0 0 0 0 

T 
z_ l(t) 

0 0 0 0 

0 0 0 0 

0 0 0 1 

z(t) 

(4.12) 

Before proceeding with the reconstruction of the state vector, it will 

be useful to determine the degree of observability of the system. The 

System 4.11-4.12 is of the form given by Equations 3.1-3.2, Page 21 



where: 

A = 

0 1. 0 0 

5 0 5 0 

0 0 0 1 

8 0 13 -6 

, H = 

0 0 0 0 0 

0 0 0 0 

> k = 

1 

8" 

0 0 0 0 0 

0 0 0 1_ _0_ (4 

The requirements of a uniquely observable quadratic system are that 

the pair (4>S) be observable in the sense of Theorem II. 

The pair (A,,H) is observable if and only if the partitioned 

matrix, M, is of rank n = 4. 

M = ET i A V ' (AT)2fiT T 3 T 
(A ) H (4 

By direct substitution from Equation 4.13, K is: 

M = 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 1 

3 0 0 8 

0 0 0 0 

0 0 0 13 

0 0 0-6 

0 0 0 0 

0 0 0 8 

0 0 0 -78 

0 0 0 -23 

0 0 0 -224" 

0 0 0 -48 

0 0 0 -259 

0 0 0 60 

, or 

(4 

M E 

0 8 -48 -224 

0 0 8 - 4 8 

0 13 -78 -259 

1 6 -23 60 (4 
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The matrix of Equation 4.16 has rank a •= 4; therefore, the pair (4>S) 

is observable. 

The process of formally reconstructing the state of the quadratic 

system requires three pieces of information: First, the input of the 

system as an explicit function of time must be known. This information 

is not a requirement peculiar to the quadratic system, but is required 

whenever the state of any system is reconstructed. 

Secondly, it is necessary to know the exact mathematical structure 

of the system. In this instance, Equations 4.11-4.12 supply this information. 

However, there is an assumption implicit with the knowledge of the 

system input and its structure, namely that these two pieces of information 

allow the investigator to write an explicit function of the form: 

y(t) = gCt.a^), (4.17) 

where y(t) is the system output ( in this case a scalar function), t is 

the independent variable, and x is the initial value of the state of the 
—o 

system, i.e. x(t=t ) = x . The value of the initial state is not known — o —-o 

as a numerical quantity but rather is included in g(t,x ) as an algebraic 

quantity. 

The third piece of necessary information is the output of the 

system. The system output must also be known as an explicit function of 

the independent variable, t. Such information must be consistent with 

the unknown initial condition of the system and the system input, F(t). 

These data may be thought of as having originated by means of an 

experiment performed on the mathematical system; however, such an 
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experiment should not be confused with a laboratory test which may 

require approximations in modeling, or assumptions about instrumentation, 

or exactness in the fitting of a mathematical form to the data collected. 

For example, assume that a mathematical experiment has been 

performed on the system represented by Equations 4.11-4.12 and the response, 

y(t), was found to be: 

y(t) = — ["576e~4t cos2t - 3936e"4t cos t sin t + 
25 
2064e"3t cos t sin 2t - 1152e"3t cos t cos 2t + 

6724e"4t sin2t - 7052e"3t sin t sin 2t + 

3936e"3t sin t cos 2t + 1849e"2t sin22t -

2064e"2t cos 2t sin 2t + 576e"2t cos22t 1 P (t). 
J (4.18) 

Likewise, knowing t h a t the system input i s a s t ep func t ion , as shown 

in Figure 4, the funct ion g ( ' ) of Equation 4.17 may be c a l c u l a t e d a s : 

( t , x ) = [ ( i - 4 X l 0 + 4 x 3 0 + 2 x 4 0 ) 2 e - 4 t c o s 2 t + 

4 - 8 X 1 0 + 8 X 3 0 + 4 X 4 0 K - \ + 8 x 1 0 - 1 8 x 3 0 - 4 x 4 ( ) ] e " 4 t c O S * S i n t + 

4-8^^8x3^4x^)0- f - ^ o ^ o ^ o -*40)e-3tcos t sin 2t+ 

C|-8X10+8X30+4X40)C- T+4x10-4x30-X40)e"3tc°S l C ° S " + 

4+8xio-4x:!0-18x30-4x40 )2e"4ts in2 t + 



F(t) 

4 
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(lb) FCt) - 8u(t) 

Figure 4, System Input F(t) 
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- 2 t „ , C 4 + I 6 x 1 0 - 8 X 2 0 - 3 V - 8 X 4 0 ) ( - I -2x 1 0 + 2x2 0 + 9 x 3 0 - x 4 0 ) e - " s i n t s i n 2t+ 

C i | + 1 6 x 1 0 - 8 x 2 0 - 3 6 3 0 - 8 x 4 0 ) ( - i + 4 x 1 Q - 4 x 3 0 - x 4 0 ) e - 2 t cos 2t s i n 2 f 

^ " | - - 2 X 1 0 + 2 X 2 0 + 9 x 3 0 ~ W 2 e " 2 t s i T , 2 2 t + 

C- J - 4 * m + 4 x 2 0 + 1 8 x 3 0 - 2 x 4 0 ^ | ^ 1 0 - 4 x 3 0 - X 4 0 ^ - 2 t c ° S 2 t » l n 2 t + 

[ - i - 4 x 1 0 - 4 x 3 0 - x 4 ( ) ) 2 e - 2 t c o s 2 2t ] V ( t ) . ( A . 1 9 ) 

The "experimental" data of Equation 4.18 may be equated to the analytical 

expression for g(t,x ) given by Equation 4.19. Since both sides of that 
"o 

equality are composed of like, linearly independent functions of t, the 

equality may be satisfied by equating the coefficients of like terms to 

yield: 

^ | = AS ̂ xioMxsflrfMftJ2 . ^- 2 0-« 

3936 ,8 
25 

= ( f - & c 1 0 + 8 x 3 0 + 4 x 4 0 K f + 8 X 1 0 - 4 X 2 0 - 1 8 X 3 O - 4 X 4 0 ) C4-20-2) 

2064 , 8 
25 

= ( 5 - - 8 x 1 0 + 8 x 3 0 + 4 x 4 0 ) ( - 5 - - 2 x 1 0 + 2 x 2 0 + 9 x 3 0 - x 4 0 ) , (4.20-3) 

= t | - 8 x l o + 8 x 3 0 + 4 x 4 0 ) ( 4 + 4 x . l 0 - 4 x 3 0 - x 4 0 ) > (4.20-4) 
25 ~ v 5 
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6 7 2 4 r 8 o A 10 A \ 2 

- 7 5 = I 5" + 8 x 1 0 - 4 x 2 0 - 1 8 x 3 0 ~ 4 x 4 o ) ' 
[4 .20-5 ] 

7^TS=(1T + 1 6 * 1 0 - 8 x 2 0 - 3 6 x 3 0 - 8 x 4 0 ) ( - 4 -2x 1 0 + 2x 2 0 + 9x 3 0 -x 4 0 ) (4 .20 -6 ) 

3936 / 16 
25 

( - ^ + 1 6 x l c - 8 x 2 0 - 3 6 x 3 0 - 8 x 4 ( ) ( - J ^^Q-^^O^AO ) (4.20-7) 

1849 / 2 ,2 
~~"25 = ( " l r 2 x 1 0 + 2 x 2 0 + 9 x 3 0 - x 4 0 ; , 

(4.20-8) 

206J_ 
25 

= (- 5 -4x 1 0 + 4x 2 0 + 18x 3 0 -2x 4 0 ) ( - I ^ 4 x 1 0 - 4 x 3 0 - x 4 0 ) (4.20-9) 

576 / 4 A . »2 
"25 = I " 5 + 4 x 1 0 " 4 x 3 0 - x40) * 

C4.20-10) 

These ten equations relate four unknown quantities, namely: 

the four unknown components of the initial state of the system. An 

acceptable solution to the set is one which satisfies all ten of the 

equalities. By trial and error it can be seen that the solution: 

x = 

x 1 0 "0 " 

x 2 0 0 

x 3 0 0 

_ x 4 0 _ 0 (4.21) 
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does satisfy Equation 4.20. Further study reveals that this solution 

is the only solution to the equality. 

Having determined the initial condition of the system and having 

been assured that the solution is a unique one, it is now a simple task 

to reconstruct the state of the system by direct substitution of x into 
' —o 

Equation 4.11, page 51 . Therefore: 

z(t) = §Xt) + f f(t-i) 
o 

8yCOdT 

(4.22) 

where the state transition matrix is given by 

(t) - e At (4.23) 

and the matrix A i£; given by Equation 4.13, page 52 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The basic conclusion of this work is that quadratic systems may 

be observable. As shown by example in Chapter III conditions do exist 

which, if satisfied, allow the state of a quadratic system to be uniquely 

observed. Unlike the linear system, however, the quadratic system may 

be observed in a multipoint sense. That is, by making use of the Extended 

Definition of Observability it is possible to state conditions for which 

there are a finite number of distinct trajectories which may produce the 

same output or response. 

The Extended Definition of Observability and the General 

Observability Theorem have proved to be useful in the investigation of 

the quadratic systemand should prove equally useful in the investigation 

of other nonlinear systems. 

Finally, it may be concluded that the quality of observability 

is indeed a system property. If a system is observable, then its state 

may be reconstructed by means of a "formal" state reconstruction. Actual 

state reconstruction is not guaranteed by conditions of observability. 

Recommendations 

Having determined that forced quadratic systems frequently are 

uniquely observable, there is now a basis for proposing further investi

gations. The first of these concerns the task of practical state 
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reconstruction. Although practical state reconstruction has not been 

discussed in this work, it is evident, that once a system is determined 

to be observable, the usefulness of the system output for control purposes 

must depend upon the quality of the state reconstructor. Two different 

techniques have already been cited in the literature: asymptotic state 

reconstruction and discrete point reconstruction. Both methods may 

be applicable to nonlinear systems. The former method, discussed by 

((\ 1 R} 
Luenberger, ' ' may not be practical for all nonlinear systems. 

(9 17) The latter method, discussed by Gilchrist, * should be applicable 

to most problems. However, the algebraic problem of solving large 

numbers of nonlinear equations for n-unknowns most certainly will 

present problems. 

If a state reconstruction device can be developed for the 

quadratic system, then quadratic output instruments may be put to more 

purposeful uses. For example, radar systems are most accurate in 

determining the radial distance to the objective and are less accurate 

in determining the relative direction cosines of the objective. With the 

development of a state reconstructor for quadratic systems, it may well 

be possible to improve the accuracy of such radar systems. 

A second example is an omnidirectional strain gauge. This instrument 

produces a voltage output without respect to the direction of the strain 

imparted to the object to which the gauge is attached. The usefulness of 

the device is in its high-frequency response which, in conjunction with 

a state reconstructor, may allow the directional strain components to be 

resolved. 

A third means of instrumentation is the measurement of power, as 
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in the example in the text. Although the text example may seem to be 

contrived, it does demonstrate that a single power measurement of 

one element in a dynamic network may be sufficient for control purposes. 

Since power is oftentimes the cost function used in optimization, an 

additional savings may be experienced by using the same instrumentation 

for both cost-evaluation and state-variable feedback. 

Finally, it is recommended that additional work may be done on 

the observability of systems having nonlinear differential equations 

and quadratic outputs. One such system has already been discussed in the 

(19 201 literature by Kostyukovskii.v ' ; 

Summary 

In this chapter it has been shown that for systems which are 

observable the state may be reconstructed. However, the method of 

reconstruction is at best a difficult procedure to implement and in 

many cases may not be applicable as a practical means of reconstructing 

a system state. 
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APPENDIX I 

COUNTING OF CROSS-PRODUCT TERMS 

The number R necessary to predict: the degree of observability by 

means of Corollary IV-2, page 32, is found by counting the number of 

independent cross-product terms which will be found in the expansion of 

Equation 3.17, page 27. 

Using the matrices of Example 3-B, page 34, 

R = r - k 

where: 

r the number of non-zero terms above the diagonal 
of the matrix Q_ 

the number of eigen-value combinations (A., A.) 
corresponding to the non-zero terms q.. ( i ̂  j) 
such that: 

A. + A. = A, + L 
I j k 1 

except for {i,j} = {k,l} 

With reference to Equation 3.36, page 36, it can be noted that r = 5 

From Equation 3.35, define A- = 1, A2
 := 2, Ao = 3, and A^ = 4. Since 

the terms q-.̂  = 0> the cross-product terms involving the summation of 
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A., and A~ will not appear in the expansion of Equation 3.17; therefore 

A, + A2 is not considered in determining the value k. 

Therefore, 

Al + A3 " A2 + A2 

\2 + A4 - A3 + A3 

An + Ao = î "*" ^4 

The value of k is the three (3) since all three sets of eigen

values are present in the system's response. The total number of indepen

dent cross-products is: 

R = r - k 

= 5 - 3 
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APPENDIX II 

A PROPOSED OBSERVABILITY THEOREM 

The purpose of this Appendix is to present several of the author's 

views on the observability of forced quadratic systems. It has been shown 

that quadratic systems having a zero input on the interval of observation 

may never be uniquely observable, At best, such a system may be two-point 

observable. Furthermore, it has been shown that some quadratic systems, 

having non—zero inputs on the interval of observation, may be uniquely 

observable. Although it has not been possible to prove conditions both 

necessary and sufficient for unique observability, it is the author's 

opinion that such conditions do exist. 

(18} L. B. Rail has presented necessary and sufficient conditions 

for the unique solution of quadratic equations. Unfortunately, the techni

que does not produce usable results for systems formulated in terms of 

an orthogonal state space such as that used in this work. 

Observability of quadratic systems with non-zero inputs is dependent 

upon the input of the system. This can be seen from the form of Equation 

3.9, Page 24, 

<5x $_ (t,t ) HTH $(t,t )[5x +2f(t,t )] = 0. (A-1) 
—0 — ' o — — — o —o — o 

Since ĵ (t,t ) is a function of the system input, the system's 

input must play a role in creating situations in which non-zero values 

of 6x will or will not satisfy Equation (A-1) everywhere on the interval 
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of observation. Furthermore, conditions o.f controllability may well play 

an important part in the problem. 

By working example problems it is possible to show that quadratic 

systems which satisfy the conditions of Theorem III, have non-zero inputs 

on the interval of observation and which have at least one controllable 

state are almost always uniquely observable. Heuristically the reason 

can be seen by re-writing Equation (A-l) as: 

S* T $_THTH ?6x + 2 6x i fl Hjfc,(x + f(t,t )) = 0. (A-2) 
—o o —o ~ o — o 

If the system is at least one state controllable then the second 

term in Equation (A-2) will contribute a linear term (Sx for each i = 1, 

2, . . ., n. Under such conditions,it appears unlikely that a single 

non-zero set of values <$x , i = 1, 2, . . ., n could be found which 
10 

satisfy the equality throughout the interval [t , tf]. This can be seen 

in Example 3-C, Page 14 and the example problem discussed in Chapter IV. 

This heuristic argument may be re-stated as a Theorem: 

Proposed Theorem for Unique Observability 

A quadratic system of the form of Equations 3.1-3.2, 
page 21, satisfying the conditions of Theorem III, page 
25, will be uniquely observable on the interval [tn>tf] 
if and only if the forcing function ĵ (t,t ) ̂  0 for all 
t on [tQ,tf]. 

For systems having a scalar input the requirement that jj_(t,t ) 4 0 
o 

-V-t on [t ,t [ is equivalent to requiring that the system have at least 



66 

one controllable state. Although this work has not been concerned with 

systems having multi-dimensional inputs, the Proposed Theorem should be 

equally applicable to the multi-dimensional input system. 



67 

LITERATURE CITED 

1.) E. Kriendler and P.E.Sarachik, "On the Concepts of Controllability 
and Observability of Linear Systems," I.E.E.E.Transactions on 
Automatic Control, Vol. AC-9, April 1964, pp. 129-136; 
Corrections: Vol. AC-10, January 1965, p. 118. 

2.) R. E. Kalman, "On the General Theory of Control Systems," 
Proceedings of the First Congress of the International 
Federation of Automatic Contro 1~I. F. A.C.) , 1960, Vol. 1, 
1961, pp. 481-492. 

3.) R. E. Kalman, "Mathematical Description of Linear Dynamical 
Systems," Journal of the Society for Industrial and Applied 
Mathematics (J.S.I.A.M.), Control., Series A, Vol. 1, No. 2, 
1963, pp. 152-192. 

4.) W. M. Wonham and C. D. Johnson, "Optimal Bang-Bang Control 
With Quadratic Performance Index," Trans.A.S.M.E. Journal of 
Basic Eng., Vol. 86, Series D, March 1965, pp. 107-115. 

5.) R. E. Kalman, P. L. Falb and M.A. Arbib, Topics in Mathematical 
System Theory, McGraw-Hill Book Company, 1969, pp. 50-60, 
pp. 174-179. 

6.) D. G. Luenberger, Determining the State of a Linear System 
with Observers of Low Dynamic Order, Ph. D. Dissertation, 
Department of Electrical Engineering, Stanford University, 
California, 1963. 

7.) D. G. Luenberger, "Observing the State of a Linear System," 
I.E.E.E.Trans. on Military Electronics, Vol. MIL-8, April 1964, 
pp. 74-80. 

8.) D. G. Luenberger, "Observers for Multivariable Systems," I.E.E.E. 
Trans, on Auto. Control, Vol. AC-11, No. 2, April 1966, 
pp. 190-197. 

9.) J. D. Gilchrist, "n-Observability for Linear Systems," I.E.E.E. 
Trans, on Auto. Control, Vol. AC-11, July 1966, pp. 388-395. 

10.) E. G. Al'brekt and N. N. Krasovskii, "The Observability of a 
Non-Linear Controlled System in the Neighborhood of a Given 
Motion," Automation and Remote Control, Vol. 25, No. 7, 1964, 
pp. 934-941" ' 



68 

11.) Ja. N. Roitenberg,"On Some Indirect Methods of Obtaining 
Information on the Position of a Controlled System in Phase 
Space,'1 Applied Mathematics and Mechanics, Vol. 25, 1961, 
pp. 654-660, 

12.) Ja. N. Roitenberg, "The Determination of a Nonlinear Controlled 
System in Phase Space," Applied Mathematics and Mechanics, 
Vol. 26, 1962, pp. 880-891. 

13.) N. H. McClamrock and J. K. Aggarwal, "Quadratic Invariance in 
Linear Systems," Allerton Conference on Circuit and System 
Theory, October 1967, pp. 451-4587 

14.) Chi-Tsong Chen and C. A. Desoer, "Controllability and 
Observability of Composite Systems,"'I.E.E.E.Trans. on Auto. 
Control, Vol'. AC-12, No. 7, August 1967, pp. 402-409. 

15.) M. Athens and P. L. Fa lb, Optimal Control, McGraw-Hill Book 
Company, 1966. 

16.) P. M. De Russo, R. J. Roy and C M . Close, State Variable 
for Engineers, John Wiley and Sons, Incorporated, 1965. 

17.) J. D. Gilchrist, State Reconstruction Synthesis of Feedback 
Controllers, Ph. D. Dissertation, University of Minnesota, 1965. 

18.) L. B. Rail, "On the Uniqueness of Solutions of Quadratic 
Equations," Report U.S.Army Mathematics Research Center, 
University of Wisconsin, AD662 729, 1967. 

19.) Yu. M.-L. Kostyukovskii, "Observability of Nonlinear Controlled 
Systems," Automation and Remote Control, Vol. 28, 1968, 
pp. 1384-139~T~ 

20.) Yu.M.-L. Kostyukovskii, "Simple Conditions of Observability 
of Nonlinear Controlled Systems," Automation and Remote 
Control, Vol. 28, 1968, pp. 1575-1584"! 

21.) L. A. Zadeh and C. A. Desoer, Linear System Theory, McGraw-Hill 
Book Company, 1963. 



69 

ADDITIONAL REFERENCES 

Balakrishnan, A. V., MOn the Controllability of a Nonlinear System," 
Proceedings of the National Academy of Sciences, Vol. 55, No. 3, 
March 1966, pp. 465-468. 

Bass, R. W. and Gura, I., "High Order System Design Via State Space 
Considerations," Journal of Joint Automatic Control Conference, 
1965, pp. 311-318" ~~ 

Bellman, R., Kagiwada, KL , and Kulaba, R., "Quasilinearization System 
Identification and Prediction," International Journal of 
Engineering Science, Vol. 3, 1965, pp. 327-334. 

Brockett, R. W., "Poles, Zeroes and Feedback: State Space Interpretation," 
Institute of Electronics and Electrical Engineers Transactions on 
Automatic Control, Vol. AC-10, April 1965, pp. 129-135. 

Brule, J. D., "A Note on the Vandermonde Determinent," I.E.E.E. Trans. 
on Auto. Control, Vol. AC-9, July 1964, pp. 314. 

Bryson, A. E.,Jr. and Johanses, D. E.,, "Linear Filtering for Time-
Varying Systems Using Measurements Containing Colored Noise," I.E.E.E. 
Trans, on Auto. Control, Vol. AC-10, January 1965, pp. 4-10. 

Butman, S. and Siva, R., "On Cancellations, Controllability and 
Observability,"I.E..E.E. Trans, on Auto. Control, Vol. AC-9, July 
1964, pp. 317-318. 

Chen, C. T., Desoer, C. A. and Neiderlinski, A., "Simplified Condition 
for Controllability and Observability of Linear Time-Invariant 
Systems," I.E.E.E.Trans. on Auto. Control, Vol. AC-11, July 1966, 
pp. 613-614. 

Chen, C. T. and Desoer, C. A., "A Proof of Controllability of Jordan 
Form State Equations," 1.E.E,E.Trans.on Auto. Control, Vol. AC-13, 
April 1968, pp. 195-196" 

Chen, C. T. and Desoer, C. A., "Controllability and Observability 
of Composite Systems," Allerton Conference of Circuit and System 
Theory, 1966, pp. 785-793. 

Cox, H., "Estimation of State Variables Via Dynamic Programming," 
1964 Joint Automatic Control Conference (Preprint), 1964, pp.376-381. 

Cruz, J. R., Jr. and Perkins, W. R., "Conditions for Signal and 
Parameter Invariance in Dynamical Systems," I.E.E.E.Trans. on 
Auto. Control, Vol. AC-11, July 1966, pp. 614-615. 



70 

Dosoer, C. A. and Chen, Chi-Tsong, "Controllability and Observability 
of Feedback Systems," I.E.E.E.Trans. on Auto. Control, Vol. AC-12, 
August 1967, pp. 474-4 75. 

Falb, P. L. and Athens, M., "A Direct Constructive Proof of the 
Criterion for Complete Controllability of Time-Invariant Linear 
Systems," I.E.E.E.Trans, on Auto. Control, Vol. AC-9, April 1964, 
pp. 189-19(T ' ' 

Fischer, E. E.,"The Identification of Linear Systems," J.A.C.C., 1965 
(Preprint), pp. 473-475. 

Florentin, J. J. "Partial Observability and Optimal Control," Journal 
of Electronics and Control, Vol. 13, No. 3, September 1962, pp.263-279. 

Fowler, W. T., "A Simplified Controllability Test for Constant 
Linear Dynamical Systems," I.E.E.E.Trans. on Auto. Control, Vol. AC-11, 
1966, p. 749. 

Frame, J. S.,"Matrix Functions and Applications-Part I-Matrix 
Operations and Generalized Inverses," I.E.E.E.Spectrum, March 1964, 
pp. 209-220. 

Frame, J. S., "Matrix Functions and Applications-Part II-Functions 
of a Matrix," I.E.E,E.Spectrum, April 1964, pp. 102-108. 

Frame, J. S. and Koenig, H. E., "Matrix Functions and Applications-
Part Ill-Applications of Matrices to System Analysis, "I. E . E . E.Spectrum, 
May 1964, pp. 100-109, 

Frame, J. S., "Matrix Functions and Applications-Part IV-Matrix 
Functions and Constituent Matrices," I.E.E.E.Spectrum, June 1964, 
pp. 123-131. 

Frame, J. S., "Matrix Functions and Applications-Part V-Similarity 
Reductions by Rational or Orthogonal Matrices," I.E.E.E.Spectrum, 
July 1964, pp. 103-109. 

Gadnez, R. N. and Li, C. C , "On Positive Definiteness of Quartic 
Forms of Two Variables," I.E.E.E.Trans. on Auto. Control, Vol. AC-9, 
April 1964, pp. 187-188. 

Gilbert, E. G., "Controllability and Observability in Multivariable 
Control Systems," Society of Industrial and Applied Mathematics, 
Series A, On Control, Vol. 2, 1963, pp. 128-151. 

Grammaticos, A. and Epstein, M. I., "A New Test for Rank of Controllability-
Observability Matrix," Allerton Conference of Circuit and System 
Theory, 1967, pp. 97-103^ 



71 

Hahn, Wolgang, "Theory and Applications of Liapunov's Direct Method," 
Translation, Hosenthien and Lehnigk, Prentice-Ha11, Englewood 
Cliffs, New Jersey, 1963. 

Hamza, M. H., "Extremum Control of Continuous Systems," I.E.E.E. 
Trans, on Auto. Control, Vol. AC-11, No, 2, April 1966, pp. 182-189. 

Hermes, H., "Controllability and the Singular Problem," Journal 
S.I.A.M., On Control. Series A., Vol. 2, No. 2, 1965, pp. 241-260. 

Ho, Y.C.,"What Constitutes a Controllable System,"I.R.E.Trans.on 
Auto. Control(correspondence),Vol. AC--7,April 1962, p. 76. 

Ho, B. L. and Kalman, R. E., "Effective Construction of Linear 
State-Variable Models from Input/Outout Data," Allerton Conference 
on Circuit and System Theory, 1965, pp. 449-459" 

Johnson, C. D. and Wonham, W. M., "A Note on the Transformation to 
Canonical (Phase-Variable) Form," I.E.E.E.Trans. on Auto. Control, 
Vol. AC-9, July 1964, p. 312. 

Kalman, R. E., "A New Approach to Linear Filtering and Prediction 
Theory," Journal of Basic Engineering Transactions, A.S.M.E., 
Vol. 82, Series D, March 1960, pp. 35̂ 45"! 

Kalman, R. E., "Canonical Structure of Linear Dynamical Systems," 
Proceedings of National Academy of Sciences, Vol. 48, 1962, 
pp. 596-600. 

Kalman,R.E., "When is a Linear Control System Optimal?"Transactions 
of A.S.M.E. Journal of Basic Engineering, Vol. 86, Series D, March 
1964, pp. 51-60. " 

Kalman, R. E., "Irreducible Realizations and the Degree of a Rational 
Matrix," Journal S.I.A.M., Vol. 13, No. 2, June 1965, pp. 520-544. 

Kalman, R. E., Ho. Y. C. and Narenda, K. S., "Controllability of 
Linear Dynamic Systems," Contributions to the Theory of 
Differential Equations, Vol. 1, NbTTT 1965, pp. 189-213 
(Interseience Publishers, New York). 

Kulebakin, V. S., "The Theory of Invariance of Regulating and Control 
Systems," Proceedings of the First I.F..A.C. Moscow Congress, 1960, 
Vol. 1, pp7^L06-116 (Butterworth's of London, 1961). 

Lefschets, S., "Some Mathematical Considerations on Nonlinear 
Automatic Control," Contributions to Differential Equations, Vol. 1, 
No. 1, pp. 1-28. 



72 

Mufti, I. H., "On the Reduction of a System to Canonical (Phase-
Variable) Form," I.E.E.E.Trans. on Auto. Control, Vol. AC-10, 
April 1965, p. 206. 

Petrov, B. N., "The Fnvariance Principle and the Conditions for 
its Appliaation During the Calculation of Linear and Nonlinear 
Systems," Proceedings of the First I.F.A.C.Moscow Congress. I960, 
Vol. 1, pp. 117-125 (Butterworth's of London, 1961). 

Rekasius, Z. V., "De-Coupling of Multi-Variable Systems by Means 
of State Variable Feedback," Allerton Conference of Circuit and 
System Theory, 1965, pp. 439-448. 

Rozonoer, L. I., "A Variational Approach to the Problem of Invariance," 
Automation and Remote Control, Vol. 24, No. 6, November 1963, 
pp. 680-691. 

Rozonoer, L. I., "A Variational Approach to the Problem of Invariance, 
II," Automation and Remote Control, Vol. 24, No. 7, December 1963, 
pp. 793-800. 

Sridhar, R., Bellman, R. E. and Kalaba, R. E., Sensitivity Analysis 
and Invariant Imbedding, Rand Memorandum, RM-4039-PR, March 1964. 

Tomovic, R., "Controllability, Invariance and Sensitivity," Allerton 
Conference of Circuit and System Theory, 1965, pp. 17-25. 

Tou, J. T., "Determination of the Inverse Vandermonde Matrix," 
I.E.E.E.Trans. on Auto. Control, Vol. AC-9, July 1964, pp, 314. 

Weiss, L., "The Concepts of Differential Controllability and 
Differential Observability," S.I.A.M. Journal of Mathematical 
Analysis and Applications, Vol. 10/1965, pp. 442-449. 

Wong, P. K. C , "Invariance, Uncontrollability and Unobservability 
in Dynamical Systems," I.E.E.E.Trans. on Auto. Control, Vol. AC-10, 
July 1965, pp. 366-367.~ 



73 

VITA 

Craig Alan Depken was born December 3,1942 in Chicago, Illinois. 

He attended Hialeah Elementary School, Hialeah,Florida and completed 

junior high school at Hialeah High School. He finished his preparatory 

education at Sewanee Military Academy, Sewanee, Tennessee,graduating 

Honor Cadet in 1960. He received his baccalaureate degree in Mechanical 

Engineering from Purdue University in 1964, graduating with honors. He 

received his Master of Science in Mechanical Engineering from Georgia 

Institute of Technology, Atlanta, Georgia, in 1966. He is a member of Pi 

Tau Sigma and Tau Beta Pi engineering honorary fraternities. 

In May 1964 he married the former Miss Geraldine Wotasek of 

Somerville, New Jersey. They have a son, Craig Alan, II, born August 22, 

1969. 

Mr. Depken has worked as a Warranty Engineer for Ford Motor 

Company, Dearborn, Michigan and as an independent consultant in Atlanta, 

Georgia. From 1968 to 1971 he was employed as Development Specialist 

at the Oak Ridge Y-12 Plant of Union Carbide Corporation's Nuclear 

Division in Oak Ridge, Tennessee. Since August of 1971 Mr. Depken has 

held the position of President of Development Engineering Associates, Inc. 

of Atlanta, Georgia. 


