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4.1 High-level illustration of approach and main result: Top-Left: An illus-
tration of a single sensory cascade, originating at the primary visual cortex
(VISp). The yellow edges show anatomical connections that participate in
the cascade. The ROIs at the upper layer reside on the cortical surface while
the ROIs at the lower layer are deeper in the brain. The edges between the
two layers are dashed. To simplify the visualization, we only include 20
ROIs at this cascade (the complete cascade includes 67 ROIs). The cascade
forms a Directed Acyclic Graph (DAG), and it is produced by applying the
Asynchronous Linear Threshold (ALT) model on the cerebral cortex por-
tion of the mouse connectome – starting the cascade at VISp. Bottom and
Right: The two most important core ROIs at the hourglass waist – Claus-
trum (CLA) and Posterior Parietal (PTLp) cortex – jointly cover 40% of all
activation paths in the ten sensory cascades we consider. Each cascade is
represented by a different color. We include two circular disks (pie charts),
one for each of these two core ROIs. The proportion of activation paths in
each cascade is shown by the corresponding color. The protruded portion of
each circular section represents those paths that traverse the corresponding
core ROI. For example, the activation paths in the auditory cascase account
for about 8.5% of the total number of paths – and about 36% of those paths
traverse CLA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 The location of the ten primary sensory regions: Three coronal slices from
the Allen Mouse Brain Atlas with the cerebral cortex regions tinted by
green and the source regions identified by an arrow. The somatosensory re-
gion includes six different sub-regions for lower limbs, upper limbs, trunk,
mouth, nose and whiskers. The remaining four sensory sources are: visual
(VISp), auditory (AUDp), gustatory (GU) and olfactory (MOB). . . . . . . 66

4.3 Illustration of ALT model and τ -core analysis: (a) A toy example of a 5-
node network on which we run the ALT model. Each edge is marked with
a communication delay, followed by a weight. The activation threshold is
θ=1. The black edges represent the underlying structural network while the
red unidirectional edges represent the activation cascade as it unfolds over
time. (b) The activation cascade directed acyclic graph for the previous toy
example. The source of the cascade is n1. (c) A toy example with three
activation cascades (the sources are nodes u, v and y). The total number of
source-target paths is 11 (4 at the left, 3 at the middle, and 4 at the right).
Node w has the highest path centrality (P (w)=9/11). If τ ≤ 9/11, the
τ -core consists of only that node. . . . . . . . . . . . . . . . . . . . . . . 68
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4.4 VSD data processing pipeline: (a) Lower: The Allen Reference Atlas (ARA).
Upper-left: A sample VSD image covering most of the left cortical surface
five frames after visual stimulation. Upper-right: The ROIs at the left ARA
cortical surface mapped to the native cortical surface of an animal. (b) The
activation time of a pixel is defined as the frame of maximum post-stimulus
VSD signal at that pixel. (c) The activation time of an ROI is defined as the
activation time of most pixels in that ROI. (d) The output of this pipeline is
an activation time for each ROI, depicted here with a grey-scale map (black
for the first ROI activation and white for the last). . . . . . . . . . . . . . . 71

4.5 Effect of parameter θ on cascade size, and similarity between the ten cas-
cades: (a) Each row of the heat map shows the fraction of activated nodes
after the stimulation of a single source, for different values of the thresh-
old θ. The selected threshold is marked with the dashed vertical line. (b)
Similarity between the ten sensory cascades using the average-linkage hi-
erarchical clustering method. . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 The visual activation cascade, accoring to ALT: The source for this cascade
is the primary visual cortex (VISp). The red edges form the activation
cascade, while the underlying grey edges show anatomical connections that
do not participate in this cascade – those connections may be present in
other sensory cascades or they may play a role in feedback (or second-
order) interactions that are not captured by the “first ripple” scope of the
ALT model. To help with the visualization, we place the nodes in eight
layers, so that cascade edges only point from a layer to a higher layer (never
to the same or lower layer). The vertical position of each node is slightly
“jittered” to avoid cluttering due to anatomical connections between nodes
of the same layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Comparison between model-based and experimental temporal ordering of
ROI activations: a) The y-axis shows the percentage of (X, Y ) ROI pairs
that show temporal agreement (green), temporal disagreement (red), and
insufficient temporal resolution (blue) between the activation order of X
and Y in the modeling results and the mouse experiments. The plot shows
results for five animals and for five sensory stimulations (a touch at the
whiskers, forelimb, and hindlimb, as well as an auditory and a visual stim-
ulation). b) The same comparison but here we have randomized the ROIs
that are active during each frame, preserving the number of ROI activations
in each frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Path centrality and τ -core analysis: (a) Path Centrality (PC) histogram
for the 67 regions in Nc, considering all source-target paths across the ten
activation cascades. (b) Cumulative path coverage by the top-X core nodes
for X=1· · · 67. Nine regions are sufficient to cover τ = 90% of all paths. . . 81
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4.9 Illustration of hourglass architecture: A hypothetical network with feedfor-
ward, feedback and lateral connections between regions at different levels
of the cortical hierarchy. Input information is provided at sensory-specific
modules (left), while high-level cognitive tasks are performed by associ-
ation regions at the other end of the hierarchy (right). The “hourglass
feature refers to the fact that the high-dimensional input information is
first integrated through through a relatively small number of highly central
intermediate-level regions, before it is re-used at high-level cortical regions
and tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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one hop, while black denotes the maximum distance for that cascade. Rows
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Summary

Recent advances in neuroimaging have enabled major progress in the field of brain con-

nectomics, i.e., constructing maps of connections between brain regions at different scales.

Diffusion MRI (dMRI) and probabilistic tractography algorithms are state of the art meth-

ods to map the structural connectome of the brain non-invasively and in vivo. Although

probabilistic tractography can detect many major connections in the brain, it also reports

some spurious ones. We propose and evaluate a method, referred to as MANIA (Minimum

Asymmetry Network Inference Algorithm) that can infer the structural brain network that

interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data

in a threshold-free manner. Given that diffusion MRI is unable to detect the direction of

each connection, we formulate the network inference process as an optimization problem

that minimizes the (appropriately normalized) asymmetry of the observed network.

The most fundamental property of the human connectome, its density, is still elusive and

debated. MANIA is well-positioned to address this open question because it does not de-

pend on an arbitrary weight threshold. We use MANIA to infer the human cortico-cortical

connectome from the data published by Human Connectome Project (HCP). MANIA re-

ports connectomes that are highly consistent across individuals at a density of approxi-

mately 3.2%. We validate the accuracy of these connectomes by comparing the connections

inferred using MANIA at 3T MRI acquisitions with 7T high-resolution MRI acquisitions

of the same subjects.

Having a structural network is instrumental in analyzing communication dynamics and

information processing in the brain. The last research problem, we focus on relates to multi-

sensory integration in the cortex. We model this process on the mouse cortical connectome

(provided by the Allen Institute) by employing an Asynchronous Linear Threshold (ALT)

diffusion model on that connectome. The ALT model captures how evoked activity that

originates at a primary sensory region of the cortex ripples through other cortical regions.

We validate the ALT model using Voltage Sensitive Dye (VSD) imaging data. Our results

xvii



show that a small number of cortical regions (including the Claustrum) integrate almost all

sensory information streams, suggesting that the cortex uses an hourglass architecture to

integrate and compress multi-sensory information.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Complex systems comprised of a large number of components have intricate inter-connected

structural and functional couplings [1]. A new approach to analyze these de facto “giant

graphs” has emerged and evolved over the last two decades under the unifying umbrella

of network science [2]. Network science provides powerful tools for use across different

disciplines, from biology [3] to social networks [4] to the study of climate [5], etc. One

of the most important frontiers (if not the most important) in which network scientists are

actively pushing the envelopes is neuroscience, whose ultimate goal is to understand the

human brain at both the structural and functional level [6].

The study of the brain as a complex network is called connectomics [7], and involves the

mapping of neuronal inter-connections at different spatial and temporal scales and across

multiple modalities and species. It is now established in the field of neuroscience that

studying the brain by isolating and examining each of its individual parts in isolation has

served its purpose but cannot explain the mechanism by which the brain receives, stores,

retrieves, processes and integrates information [8]. Connectomics is believed to be the path

forward in understanding the brain, given that the interplay of anatomical underpinning and

neuronal dynamical processes is taken into consideration [9].

Analyzing the brain by focusing on its connectome (i.e., connectomics) has already

proven to be a pivotal force in our understanding of various mental disorders [10]. Most

of the implications of mental disorders such as the Alzheimers disease, schizophrenia, de-

pression, and so on, are network-wide and not localized. Aside from brain diseases, the

importance of the connectome has also been shown in other cognitive and psychologi-

cal domains. For instance, intelligence, personality and various other psychometrics of a

person are correlated with his or her connectome [11]. What is more, understanding the
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brain by focusing on its connectome is also invaluable for those working on technologi-

cal advances, since obtaining and analyzing intelligent connectomes, particularly those of

the human brain, allows for the best blueprint and roadmap on our path to better AI and

computer architecture.

1.1 The problem of inferring human brain anatomical connectome

Connectome maps can be generated in different species and at varying resolutions, from

the neuronal level (microscale) to the large, population-level macroscale (approx. 1mm

cubes and larger). While microscale analysis provides details of connections between all

neurons, macroscale network neuroscience conceptualizes brain function as emerging from

the collective action of neuronal populations, each clustered together to form homogeneous

functional modules. These spatially contiguous and functionally homogeneous modules

are known as Regions of Interest (ROI). The micro- and macroscale analyses both provide

valuable and sometimes correlated insights [12].

To this day, C. elegans is the only organism that has had its complete connectome

mapped [13]. C. elegans nervous system comprises only 302 neurons and 7,000 con-

nections, compared to the 86 billion neurons and trillions of connections in the human

brain. This maybe paints a pessimistic view of the current state of the technology when

mapping more complicated brains, but the technology is developing quickly, and whole-

brain connectomes are becoming plausible at the macroscale across a number of different

species [14].

One of the most rapidly advancing technologies serving connectomics is Magnetic Res-

onance Imaging (MRI). The last two decades have seen tremendous advances in MRI

which now offers the most promising technology for characterizing the connectivity of

human brain non-invasivly and at the macroscale. MRI technology has been used widely

in both functional and structural connectome projects, such as the Human Connectome

Project (HCP) [15] in the USA, and the Human Brain Project (HBP) in the European
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Union [16]. Diffusion MRI (dMRI) and tractography are often bundled together as the

preferred pipeline for inferring the brain structural wiring (connectome) at the macroscale.

Starting from the observational data obtained using dMRI, tractography is employed to

quantify inter-ROI connection probabilities and, sometimes, their strengths.

In this thesis, we propose and describe a new approach, dubbed the Minimum Asym-

metry Network Inference Algorithm (MANIA), to measure connectivity threshold. It is

extracted from probabilistic tractography algorithm. The main tenet is based on the fact

that tractography does not provide any information about the polarity of fiber tracts. As

such, we developed a method that aims to minimize the apparent (artifactual) asymmetry

observed in structural connectivity matrices.

The proposed method leverages the symmetric nature of dMRI to improve the accu-

racy in determining an adjacency matrix from a set of probabilistic tractography results.

Leveraging our method eliminates the need for subjective thresholding in the inferring of

brain connectomes. Having subjective thresholds in network inference to remove spuri-

ous edges results in networks with differing densities or differing number spurious edges

in the brain graphs of different subjects. This, consequently, confounds and biases the

cross-comparisons between both individual connectomes and connectomes across studies.

MANIA solves this issue by finding a threshold tuned for optimally of network inference

for each individual dMRI dataset.

1.2 Case studies for inferring human brain anatomical connectivity: Major depres-

sion disorder network and cortical network

In this thesis, we apply MANIA to infer anatomical brain networks in two case studies.

First, we apply MANIA to Diffusion Tensor Imaging (DTI) data collected in an earlier

study: “Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques

(Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural

changes” [17]. Twenty-eight healthy, right-handed females between the ages of 18 and
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22 were selected from this study to form a network of 18 ROIs that are known to play a

significant and important role in a number of mental disorders. These 18 ROIs were curated

from multiple studies [18, 19, 20, 21].

Interestingly, inferred MANIA network showed that the connection between the sub-

cortical limbic system and the frontal lobe of the cortex (the connection between BA25 and

the Nucleus Accumbens) is a major anatomical pathway. The same connection pathway

is used in deep brain stimulation (DBS) of patients with major depression disorder. In

DBS, electrodes are used to deliver a small amount of electrical current to this region of the

brain, which is overactive in people with depression. The region serves as a junction box,

so adjusting its activity affects the entire depression circuitry.

We also applied MANIA to a more recent dataset from HCP [15]. We used 37 female

subjects, aged between 31-35 years old, to infer cortico-cortical networks 1. In doing so,

instead of relying on more crude, and classical parcellations, e.g. that of [22], we opted to

use multi-modal and high resolution parcellation, details of which was recently published

by authors in [23] and which is known as HCP-MMP parcellation. Thus, our published

cortical connectome is one of the first connectomes available on HCP data with HCP-MMP

resolution. Leveraging these 37 cortical connectomes, we show that the human cortical

network, as inferred by probabilistic tractography, has a density of approximately 3.2%.

The previous studies were conducted on data acquired by 3T MRI scanners. The HCP

announced in late 2016 that a first release of MRI data from 7T scanners is available. We

used three sample subject of this release to build a cortical network in 7T, and compared the

network to that derived using the 3T technology (on the same subjects). We had multiple

observations from this case study. Notably, we showed that using the connections and

absence of connections, implied strongly by 7T data, as a proxy for ground-truth, MANIA

accuracy is close to that of an optimum estimator which tries to maximize the F-measure.

1We use cortico-cortical network and cortical network interchangeably in this thesis
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1.3 The dynamics of multi-sensory integration over anatomical connectivity

The study of the brain neither ends, nor is complete at the structural level. While the

anatomy and the physical wiring of the brain is the site in which functional behaviour

emerges, the connectome by itself however is not sufficient to analyze communication dy-

namics and information processing. Thus, new approaches are needed that combine struc-

tural connectivity with models of network dynamics, such as diffusion and communication.

Understanding the path from structural constraints to functional behaviour is a new

trend that needs better computational models [9] at this stage. The link from a structural

to functional connectome is not direct, and goes through the neuronal dynamics at both the

micro- and macroscale level [24]. For instance considering global communication dynam-

ics, it has been shown that there are hubs with many anatomical connections that exhibit a

topologically central position in the overall network [25]. Demystifying the communica-

tion dynamics in the brain is pivotal to understanding how multiple sensory streams from

the environment are merged in the brain of animals for a unified perception of the world

around them.

In this thesis, we make steps towards understanding multi-sensory information process-

ing using a network diffusion modeling approach. To make these steps, we first searched

for a suitable anatomical brain model. Unfortunately, the human brain networks inferred

by DTI and tractography are not directed. Thus, we focused our search on the brains of

other mammalians. In parallel to advances in MRI used in macroscale analysis, technolo-

gies for mapping brain networks at the mesoscale (i.e. between macro and micro) and the

microscale have advanced (and continue to advance) in non-human mammalians. These

technologies are invasive and not suitable for study of the human brain; thus they are ac-

tively used to study the brains of other animals. Tracer studies are among the most widely

adopted; tracer chemicals are injected in the brain and then tracked using microscopy. They

also provide directional connectome, which are necessary to study communication dynam-
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ics. Of the connectomes available using tracer studies, we opted to use the connectome

by [26]. We did so because of its public availability, resolution and the reputation for

accuracy it has within the community.

We use the Asynchronous Linear Threshold (ALT) diffusion model to trace activity

propagation across a network on the cortical mouse connectome of [26]. We do so to

uncover the topological features facilitating Multi-Sensory Integration (MSI). In the simu-

lation, primary sensory areas are stimulated and the activation flows of all subsequent nodes

(all nodes were participating in all the cascades) were used to construct a Directed Acyclic

Graph (DAG), referred by Activation DAG (ADAG). In order to validate the ALT model,

we use Voltage Sensitive Dye (VSD) imaging data from [27]. VSD data were collected

from mice while five different sensory stimuli were introduced to evoke responses in the

visual, somatosensory (upper limb, lower limb and whisker), and auditory cortices. This

analysis corroborated the predictive power of ALT in modeling the diffusion of cortical

activity from specific source nodes.

The main result of this analysis is that there are a small number of regions with high

centrality forming a bottleneck in MSI dynamic. Thus, our study shows that the mouse

cortical network has an hourglass architecture as the main topological signature by which

the sensory streams are integrated at early stages to form a unified perception. These core

nodes include key association areas, such as the claustrum and posterior parietal associative

areas, suggesting that these areas play critical roles in MSI.

1.4 Thesis outline

Our methodological contributions and findings are discussed in the thesis as follows. In

chapter 2, we present a new technique (published in [28]) to convert data derived from

dMRI and tractography to actual networks. The method, referred to as MANIA (Minimum

Asymmetry Network Inference Algorithm), is capable of inferring the brain connectome

without any parameter involved in the inference pipeline, leading to reproducible and ob-
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jective networks. In chapter 3, we apply our method to two experimental datasets. First, we

reconstruct the network between 18 ROIs playing significant roles in several mental dis-

orders. Then, we apply MANIA to 37 female subjects from HCP. We further validate our

inference method using high resolution MRI data available by HCP. Our results re-iterated

the effectiveness of the method using more recent MRI acquisition technologies. Chapter

4 departs from structural network inference to its application on communication dynamics.

Specifically, we investigate how multiple sensory information streams travel on structural

underpinning. By employing Asynchronous Linear Threshold (ALT) diffusion model on

the cortical structural of mice, we present evidence of hourglass-like topological attributes

in multi-sensory integration in the mouse cortex. Finally, we conclude this thesis in chapter

5.
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CHAPTER 2

A SYMMETRY-BASED METHOD TO INFER STRUCTURAL BRAIN

NETWORKS FROM PROBABILISTIC TRACTOGRAPHY DATA

Recent progress in diffusion MRI and tractography algorithms as well as the launch of

the Human Connectome Project (HCP)1 have provided brain research with an abundance

of structural connectivity data. In this work, we describe and evaluate a method that can in-

fer the structural brain network that interconnects a given set of Regions of Interest (ROIs)

from probabilistic tractography data. The proposed method, referred to as Minimum Asym-

metry Network Inference Algorithm (MANIA), does not determine the connectivity between

two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limita-

tion of the tractography process: the observed streamlines from a source to a target do

not provide any information about the polarity of the underlying white matter, and so if

there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should

be able in principle to follow this connection in both directions, from X to Y and from Y to

X. We leverage this limitation to formulate the network inference process as an optimiza-

tion problem that minimizes the (appropriately normalized) asymmetry of the observed

network. We evaluate the proposed method on a noise model that randomly corrupts the

observed connectivity of synthetic networks.

2.1 Introduction

Diffusion MRI has opened a new window at the meso-scale structure of the living

brain [29]. Clinicians and researchers can now observe and measure the properties of white

matter in a non-invasive manner, analyzing the location and density of neuronal fibers at a

spatial granularity of 1-2mm isotropic voxels [30]. Such structural information is important

1www.humanconnectome.org/
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in deciphering how the brain works [31, 32], and it also creates new ways to understand

and potentially diagnose [33, 34] or even treat [35] various brain diseases [36, 37].

Processing diffusion MRI data using tractography algorithms is the next step for-

ward: instead of analyzing the properties of white matter at the level of individual voxels,

tractography aims to detect individual bundles of neuronal fibers originating or passing

through a given “seed” voxel [38]. Additionally, given a seed voxel and a target ROI, it

is now possible to examine the likelihood that some white matter fibers connect the two

(referred to as “probabilistic tractography” ), and to track the shape of these connections

[39]. In this chapter, we propose a method to further process the noisy connectivity in-

formation provided by probabilistic tractography in order to estimate an interconnection

network between a given set of grey matter ROIs.

Diffusion MRI data, jointly with deterministic [40] or probabilistic tractography

methods [39] have been used successfully during the last decade to infer the structure of

the human brain between hundreds of ROIs [41]. Various structural properties of these

networks have been discovered for the healthy brain and for various psychiatric diseases

[42, 43]. When combined with fMRI and behavioral or genomic analysis, these non-trivial

topological properties provide new insights about the role of individual ROIs in specific

networks and the way in which these distinct ROIs exchange information to produce inte-

grated function [44].

A major challenge in this research effort is that the inferred brain networks, as well

as their topological properties, are often sensitive to the parameters of the tractography

process [45]. In probabilistic tractography, the most critical of those parameters is the

connectivity threshold τ that determines whether the tractography-generated streamlines

from a given seed voxel to a target ROI occur with sufficiently large probability to indicate

the presence of an actual connection [46]. If τ is too low the resulting network includes

connections that do not exist in reality and the converse happens if τ is too high. Even a

small number of spurious or miss-detected edges can adversly effect the properties of the
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inferred networks [47]. Further, the optimal value of τ , i.e., the threshold that would result

in the most accurate reconstruction of the underlying “ground truth” network, may vary

between different subjects [48] and image acquisions parameters [49].

The problem of selecting an appropriate connectivity threshold in either determin-

istic or probabilistic tractography is not new. One approach has been to select the largest

possible threshold (i.e., fewest possible edges) so that the final inferred network remains

connected across the majority of subjects [50]. Depending on the selected ROIs, this ap-

proach can lead to many miss-detections (if those ROIs are densely interconnected) or false

alarms (if the ROIs are not directly connected). Another approach has been to analyze the

tractography data with a wide range of threshold values, hoping that certain qualitative

properties are robust and independent of the exact threshold. Li et al. investigated how

the connectivity thresholds affects network density and therefore network efficiency met-

rics [46]. Duda et al. have shown the importance of the connectivity threshold for various

network metrics such as clustering coefficient and characteristic path length [45].

This work focuses on the following problem: how to infer the structural network

between a given set of grey matter ROIs in a reliable way that does not require an arbi-

trary choice of the connectivity threshold? The proposed method, referred to as Minimum

Asymmetry Network Inference Algorithm (MANIA), exploits a fundamental limitation of

diffusion MRI imaging and of the tractography process: diffusion MRI can estimate the

orientation of fibers in each voxel but it cannot infer the polarity (afferent versus efferent)

of those fibers [51, 52]. Similarly, a tractography algorithm can combine those per-voxel

orientations to “stitch together” expected connections but it does not provide any informa-

tion about the direction of those connections [53]. Given this limitation, MANIA expects

that the presence of an actual connection from voxel X to voxel Y (in that direction) will

be detected by the tractography process as a symmetric connection between X and Y. Simi-

larly, if there is no connection between X and Y, the tractography process should not detect

a connection in either direction. Based on this principle, MANIA formulates the network
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inference problem as an optimization over the range of connectivity threshold values: it

selects the value of τ that minimizes the asymmetry of the resulting network. The network

asymmetry is normalized relative to the asymmetry that would be expected due to chance

alone in a random network of the same density.

MANIA can work in tandem with all probabilistic tractography methods, such as

FSLs probtrackx [39], PiCo [54], and fDF-PROBA [55]. It can be also combined with

deterministic tractography methods, such as FACT [40], but only if a large number of

streamlines (in the thousands) are generated from randomly placed seeds within each voxel.

We expect that the given set of ROIs primarily reside in grey matter. Dilating a grey

matter ROI so that it includes some white matter voxels may result in connectivity errors,

especially with cortical ROIs, because of the dense white matter systems just beneath the

cortical sheet [56]. The selection of ROIs and the estimation of their boundaries is an

important issue that is further discussed in Section 4

We evaluate the accuracy of MANIA based on synthetically generated data in

which the ground-truth network is known. We also compare MANIA with an ideal threshold-

based method in which the optimal connectivity threshold is assumed to be known. Further,

we show how to associate a confidence level with each edge, and how to apply MANIA in

a group of subjects. In next chapter, as a case-study, we apply MANIA on diffusion MRI

data from two different experimental datasets.

2.2 Methods

We apply MANIA in Diffusion Tensor Imaging (DTI) data collected by an earlier

study: “Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques

(Macaca mulatta): magnetic resonance imaging studies of macro- and microstructural

changes” [17]. Twenty eight healthy right-handed females between the ages of 18 and

22 (mean: 20.2), without a history of psychiatric disorder, were selected from that study.

All subjects gave written informed consent, and the study was approved by the Emory
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University Institutional Review Board. Diffusion-weighted images were acquired using a

Siemens 3T with a 12-channel parallel imaging phase-array coil. Foam cushions were used

to minimize head motion. Diffusion MRI data were collected with a diffusion weighted

SE-EPI sequence (Generalized Autocalibrating Partially Parallel Acquisitions [GRAPPA]

factor of 2). A dual spin-echo technique combined with bipolar gradients was used to

minimize eddy-current effects. The parameters used for diffusion data acquisition were

as follows: diffusion-weighting gradients applied in 60 directions with a b value of 1000

s/mm2; TR/TE of 8500/95 ms; FOV of 216× 256 mm2; matrix size of 108× 128; resolu-

tion of 2× 2× 2 mm3; and 64 slices with no gap, covering the whole brain. Averages of 2

sets of diffusion-weighted images with phase-encoding directions of opposite polarity (left-

right) were acquired to correct for susceptibility distortion. For each average of diffusion-

weighted images, 4 images without diffusion weighting (b=0 s/mm2) were also acquired

with matching imaging parameters. The total diffusion MRI scan time was approximately

20 minutes. T1-weighted images were acquired with a 3D MPRAGE sequence (GRAPPA

factor of 2) for all participants. The scan protocol, optimized at 3T, used a TR/TI/TE of

2600/900/3.02 ms, flip angle of 8◦, volume of view of 224× 256× 176 mm3, matrix of

224× 256× 176, and resolution of 1× 1× 1 mm3. Total T1 scan time was approximately

4 minutes.

The resulting DTI data were processed using the FMRIBs Diffusion Toolbox (FDT)

provided by FSL (FMRIB 4 Software Library) [57]. The FDT probabilistic tractography

parameters were set to their default values (number of streamlines=5000, maximum num-

ber of steps=2000, loop check: set, curvature threshold=0.2, step length=0.5mm, no dis-

tance bias correction).

We applied MANIA on 18 corticolimbic ROIs. All ROIs are localized in Montreal

Neurological Institute (MNI) standard space using the Automated Anatomical Labeling

(AAL) [58] of the WFU PickAtlas toolbox [59]. The ROI acronym as well as the number

of voxels in each ROI are shown in Table ??. The shape of these ROIs are not dilated and
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Figure 2.1: Running tractography with streamlines from a seed voxel q in the ith ROI to
the jth target ROI. Two streamlines hit the target ROI, therefore Ti (q, j) = 2

3
.

we adhere to the standard masks provided in the WFU PickAtlas toolbox. We chose these

ROIs because they are known to play a significant role in various psychiatric disorders

such as MDD, PTSD, OCD, anxiety and addiction [60, 61] [35, 21] . This sample of ROIs

includes cortical, subcortical and limbic regions. Specifically, the cortical ROIs are BA6,

BA9, BA10, BA40, BA46, BA47, the limbic are BA24, Th, BS, and the sub-cortical are

BA11, BA25, BA32, Acb, Amg, Hp, Ht, Ins, Pc.

MANIA inputs

The proposed network inference method requires the following inputs:

1. A set of N ROIs that represent the nodes of the structural brain network. The ith

ROI is a spatially connected cluster of vi voxels (i = 1 · · ·N). The selection of

ROIs is important [62, 63] but outside the scope of MANIA. MANIA attempts to

find the anatomic network between the given ROIs independent of whether the latter

are defined by an expert neuroanatomist or by a data-driven method. For instance,

ROIs may correspond to different Brodmann areas or other anatomical atlases [64]

[65]. Or, it could be that the spatial extent of ROIs results from the analysis of fMRI
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data [66, 67, 68, 69]. The results of tractography depend on the selection of ROIs,

including their size, shape, grey/white matter composition, and their distance to other

ROIs.

2. The results of the tractography process between the previous N ROIs. We assume

that the tractography results are structured as voxel-to-ROI matrices (i.e., streamlines

are generated from each voxel towards each target ROI), instead of voxel-to-voxel or

ROI-to-ROI matrices. Specifically, we represent the output of tractography with N

matrices Ti (i = 1 · · ·N), defined as follows. The ith ROI corresponds to a matrix Ti

with vi rows (i.e., the number of voxels in that ROI) and N columns. The element

(j, k) of matrix Ti represents the fraction of tractography-generated streamlines that

originate from the seed voxel j of the ith ROI and reach any voxel of the kth ROI.

The same number of streamlines is generated for every seed to target pair (j, k). The

ith column of matrix Ti is set to zero, meaning that we do not consider edges from

an ROI back to itself (even if such fibers exist). Figure 2.1 illustrates this notation.

Since we have N ROIs, there will be N input matrices, one for each source ROI.

2.2.1 Connectivity threshold τ

How can we decide whether voxel j of the ith ROI connects to the kth ROI given

the fraction Ti (j, k) ? The simplest approach is to examine if Ti (j, k) is larger than a

given “connectivity threshold” τ (0¡τ ¡1). In MANIA, τ is not a given threshold but an

optimization variable, as described in the next section.

As in prior work, we assume that the ith ROI is connected to the kth ROI as long

as at least one voxel of the former is connected to the latter [70, 53]. This assumption is

not central to MANIA however, and it can be easily replaced with a stronger connectivity

constraint.
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2.2.2 Network inference as an optimization problem

For a given value of τ , we can identify the voxels of the ith ROI that connect to every

other ROI. If this process is repeated for every i, we can construct a directed network in

which the ith ROI is connected to the jth ROI if there is at least one voxel in the former

that is connected to the latter for that value of τ . This network can be represented with an

adjacency matrix2 Gτ , as follows:

Gτ (i, k) =


1 if Ti (j, k) > τ for at least one voxel j

0 otherwise

(2.1)

So, the element (i, k) of this matrix is equal to one if there is a (directed) edge from

the ith ROI to the kth ROI. The diagonal entries of Gτ are set to zero because we do not

consider streamlines from a source ROI back to itself.

We define the asymmetry φ (G) of a directed network G as the fraction of edges

that are present in only one direction,

φ (G) =

∑N
i=1

∑N
k=1G (i, k) (1−G (k, i))∑i=N
i=1

∑N
k=1G (i, k)

(2.2)

The asymmetry of a network G depends on its density ρ (G), defined as the fraction of

connected node-pairs,

ρ (G) =

∑N
i=1

∑N
k=1G (i, k)

N (N − 1)
(2.3)

The more edges a directed network has, the more likely it becomes that a pair of nodes

will be connected in both directions, i.e., the higher the density, the lower the asymmetry.

More formally,consider a directed network with K directed edges and N nodes.

2 In graph theory, an N× N adjacency matrix represents a directed and unweighted graph with N nodes
as follows: if there is an edge from node i to node j the (i,j) element of the adjacency matrix is 1; otherwise
it is 0. The graph (and the corresponding adjacency matrix) are referred to as “weighted” if each edge is
associated with a weight, which typically represents the strength of the edge.
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The density is ρ = K/ [N (N − 1)] ( 0 < ρ < 1). To construct such a network randomly,

denoted by Gρ, we simply connect N (N − 1) ρ randomly selected but distinct pairs of

nodes with directed edges. The expected number of edges that exist in only one direction

is N (N − 1) ρ (1− ρ) and so the expected value of the asymmetry of Gρ is:

φ (Gρ) =
N (N − 1) ρ (1− ρ)

N (N − 1) ρ
= 1− ρ (2.4)

To quantify the actual asymmetry of an observed networkGτ , we normalize φ (Gτ )

by the asymmetry that is expected simply due to chance given the density of this network.

So, we define the normalized asymmetry of Gτ as

Φ (Gτ ) =
φ (Gτ )

φ (Gτ )
(2.5)

which is well defined as long as ρ (Gτ ) < 1.

MANIA is based on the following premise: the inferred directed network should

be as symmetric as possible. The reason is that the tractography process is unable to infer

the actual direction (polarity) of the underlying neural fibers. So, if there are some fibers

connecting two voxels X and Y, tractography should be able, in principle, to follow this

connection in both directions, from X to Y and from Y to X. We do not claim that two

connected ROIs are always attached with both afferent and efferent fibers; instead, we argue

that tractography is not able to discover the polarity of those fibers and so the corresponding

connection should be traceable in both directions.

The presence of some streamlines from some voxels in ROI X to ROI Y does not

necessarily mean however that the network inference method will detect an edge both from

X to Y and from Y to X; this also depends on the parameter τ . Given that we aim to

minimize the asymmetry of the inferred network, MANIA aims to select the value of τ that

leads to the lowest possible asymmetry.

The corresponding optimization problem can be stated as follows: determine the
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Figure 2.2: Top: Network density ρ as a function of the connectivity threshold τ (plotted
for one subject in our DTI dataset). Bottom: Network asymmetry (red) and normalized
network asymmetry (blue) as functions of the network density ρ. The optimal density ρ∗ is
the largest value that minimizes the normalized network asymmetry.17



adjacency matrix Ĝ = Gτ∗, where τ ∗ is a value of the connectivity threshold that minimizes

the normalized asymmetry of Gτ across all possible values of τ ,

τ ∗ = arg min0<τ<1 Φ (Gτ ) (2.6)

So, MANIA is based on the premise that there is an ideal value (or range of values)

of the connectivity threshold that can correctly classify every directed pair of ROIs as either

“connection exists” or “connection does not exist”. When such a threshold exists, it will

result in a completely symmetric network (because a perfectly accurate tractography-based

network cannot be asymmetric). On the other hand, if such an ideal threshold does not

exist (for instance, it may be that two connected ROIs are too far from each other and

tractography cannot “see” their connection, or that it is impossible for streamlines to cross

the white matter/grey matter boundary of a certain ROI in one direction but not in the

opposite), then MANIA aims to at least minimize the normalized asymmetry metric, even

if the resulting network will not be completely symmetric.

If there is more than one value of τ that results in the same minimum of the nor-

malized asymmetry (potentially zero), MANIA reports the network with the largest density.

The rationale behind this tie-breaker is to avoid trivial solutions that include only a subset

of the actual network edges. The previous optimization problem can be solved numerically

by scanning the range of τ values with a given resolution.31 The density of the resulting

network is denoted by

ρ∗ = ρ (Gτ∗) (2.7)

As an illustration of the previous method, Figure 2.2 shows how the network asym-

metry (both φ and Φ ) varies with the density ρ as well as the relation between ρ and τ for

the dataset that corresponds to one of the subjects in our case-study.

3Since we set the number of streamlines to 5000, the minimum resolution is τ = 1
15000 = 0.0002.
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2.2.3 Threshold-based network inference with post-symmetrization

A common network inference method is to rely on a given connectivity threshold τ , as

shown in Equation 2.1. This threshold is sometimes chosen to achieve a certain network

density or to ensure that the network is connected [50] ).

Given that tractography cannot detect the direction of inferred edges, the resulting

network can be then “post-symmetrized” as follows. Consider two network nodes i and j

and suppose that the fraction of streamlines from i to j is denoted by Ti,j . Supose that Ti,j

¿ τ but Tj,i ¡ τ . We can resolve the conflicting evidence between the two directions of this

edge by comparing the ratio ( Ti,j - τ ) / ( 1 - τ ) that reflects our confidence that the edge

from i to j exists, with the ratio ( τ −Tj,i ) / τ that reflects our confidence that the edge from

j to i does not exist.

This post-symmetrization step is different than MANIA in several ways. First, post-

symmetrization relies on an arbitrary connectivity threshold to make all edges symmetric,

while MANIA selects the threshold value that minimizes the asymmetry metric Φ. Second,

post-symmetrization considers each pair of nodes individually, while MANIA considers

the entire network, normalizing the observed asymmetry by the expected asymmetry of a

random network of equal density. Third, post-symmetrization always results in a symmetric

network, while MANIA may not do so if there is no value of the connectivity threshold

value that would result in perfect symmetry. Optionally, post-symmetrization can also

be applied on the output of MANIA, if the resulting MANIA network is not completely

symmetric.

2.2.4 Performance metrics

MANIA can be viewed as a binary classifier: each possible directed edge is classified

as present or absent. We evaluate MANIA based on the following standard metrics for

binary classification: the false positive rate (or false alarm) pf , and the false negative rate

(or miss detection) pm. The former is defined as the fraction of absent edges that are
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incorrectly classified as present, while the latter is defined as the fraction of present edges

that are incorrectly classified as absent.

Also, the Jaccard similarity between the sets of edgesE (G) andE(Ĝ) of the actual

network G and the MANIA network Ĝ, respectively, is defined as

J(G, Ĝ) =
|E (G) ∩ E(Ĝ)|
|E(G) ∪ E(G)|

(2.8)

and it varies between zero (no common edges) and one (identical networks).

2.7 Optimal threshold-based network inference

We can also compare the network that results from MANIA with the network that

would result if we knew the optimal value τ opt of the connectivity threshold, i.e., the value

of τ that maximizes the Jaccard similarity between the inferred network Gτ and the ground

truth network G :

τ opt = arg max0<τ<1 J (Gτ , G) (2.9)

Even though it is not possible to know this optimal threshold value when analyzing real

tractography data, we can easily compute its value (or range of values) in experiments with

synthetically generated networks, where the ground-truth network G is known.

2.2.5 Edge ranking and confidence metric in MANIA

The output of MANIA is an unweighted directed network. We can quantify the level

of confidence we have in each edge with the following edge ranking scheme.

Let ρα be the minimum network density at which edge α is present. If the edge α

is from a source X to a target Y, the lower ρα is, the higher the fraction of streamlines from

X to Y. Consequently, we can rank edges so that we are more confident in the presence of

edge α than of edge β if ρα < ρβ (see Figure 2.3).
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Figure 2.3: As we decrease the connectivity threshold, each edge first appears at a certain
value of the network density. If this density is larger than ρ*, the corresponding edge is not
present in the MANIA network.
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We define a confidence metric for an edge α that is present in the MANIA network

(i.e., ρα < ρ∗ ) as follows

C (α) =
ρ∗ − ρα
ρ∗

(2.10)

C(α ) varies from 0 (the edge is only marginally present) to 1 (highest confidence that

the edge is present). Similarly, if edge α is absent from the MANIA network (i.e., ρα > ρ∗

), its confidence metric is defined as

C (α) =
ρ∗ − ρα
1− ρ∗

(2.11)

and C(α ) varies from 0 (the edge is only marginally absent) to -1 (highest confidence

that the edge is absent).

We also define a confidence metric for a pair of nodes (X,Y), as the arithmetic mean

of the confidence metric of the two directed edges between X and Y,

C (X, Y ) =
C (X → Y ) + C (Y → X)

2
(2.12)

Note that one of the two edges may be present while the other may be absent. In

that case, the confidence of the corresponding node-pair will be less than the confidence of

the present edge.

Note that this edge confidence metric is not related to connection “strength” or

“quality”, and the resulting network is still meant to be interpreted as an unweighted graph.

2.2.6 Group analysis using MANIA

If the objective is to create a single “average network” based on data from several

subjects, the question is how to best aggregate the tractography data from the given group.

One approach is to average the diffusion MRI data, after transforming them in a standard

space. Another approach is to average the fraction of streamlines from a given seed voxel to
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a given target ROI, across all subjects. These approaches are sensitive to outliers, variations

in the diffusion MRI process across subjects, tractography errors and mapping/warping into

a standard space. A third approach could be to construct an individual network for each

subject, perhaps using MANIA, and then construct an aggregate network only keeping

those edges that appear in a large fraction of subjects. This approach requires a group-level

threshold to represent the minimum fraction of subjects that should have a connection. For

instance, de Reus et al. have proposed a statistically rigorous method to compute such a

threshold [62].

Here, we propose a different group analysis method, referred to as group-MANIA,

that is based on the aggregation of edge-rankings across subjects. The rank-based nature

of this method makes it robust to outliers.

As in the previous section, the edges of a subject can be ranked based on the mini-

mum network density at which an edge first appears. We are more confident in the presence

of edge α than of edge β if ρα < ρβ (see Figure 3).

Suppose that we compute an edge rank vectorRm for each subject m, so that the the

lowest rank Rm (1) corresponds to the edge for which we are most confident. The number

of possible (not necessarily present) directed edges is the same for all subjects: N (N− 1)

where N is the number of network nodes.

Given a group of size M, we have M distinct rank vectors Rm, m = 1 · · ·M . The

computational problem of rank aggregation [71] is to compute an optimal permutation R

of the N (N− 1) possible edges that captures as well as possible the ordering relations in

the M input rank vectors. Specifically, the Kemeny distance between two rank vectors R1

and R2 is defined as

∑
i

∑
j

δi,j (R1, R2) (2.13)

where δi,j (R1, R2) = 1 if R1 and R2 disagree in the relative position of elements i

and j, and zero otherwise. Rank aggregation aims to compute a vector R̂ that minimizes
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the cumulative Kemeny distance between R̂ and all input rank vectors Rm. It is an NP-

hard problem, and so it is typically solved heuristically. We use the Quicksort algorithm

[72] since it is has been shown to provide a good approximation of the optimum solution.

QuickSort selects a random edge as pivot at each recursive step, while the remaining edges

are separated in a left and right list. The left list includes edges that have a lower rank than

the pivot in the majority of the subjects; similarly for the right list. The algorithm proceeds

recursively in the left and right lists until all edges are ordered.

After computing the optimal aggregate rank vector, we apply MANIA on R to

compute the network with the minimum normalized asymmetry (as in the case of a single

subject). Note however that the input to MANIA in this case is an ordered list of edges

R rather than the set of connectivity matrices T (see section 2.2). Group-MANIA forms

a network with the first K = N (N − 1) ρ edges in R̂, and it computes the normalized

asymmetry of that network. It then repeats this step, for all values of K, to identify the

network with the minimum value of Φ. We refer to the resulting network as the rank-

aggregated network.

2.2.7 Synthetically generated networks

To evaluate the accuracy and sensitivity of MANIA in a reliable manner we need to

rely on synthetic networks rather than actual DTI and tractography data. The benefit of

these computational experiments is that we can test MANIA under a wide range of noise

conditions and for arbitrary network densities. Unfortunately there are no good statistical

models for the noise in DTI and tractography data [51]. We evaluate MANIA based on

a simple noise model that is based on the theory of maximum entropy distributions, as

described next.

For simplicity, each ROI of the synthetically generated networks is simply a voxel.

Modeling multi-voxel ROIs in these simulation experiments would not add any new in-

sights. Suppose that the directed network between N nodes is represented by the N× N
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adjacency matrix G. Let Ti,j be the fraction of streamlines that originate from node i and

terminate at node j. Ideally, in the absence of any noise in the DTI data and without any

errors in the tractography process, it should be that

Ti,j =


1 if Gi,j = 1 or Gj,i = 1

0 if Gi,j = 0 and Gj,i = 0

(2.14)

So, if there is an edge between nodes i and j in either direction, the fraction of stream-

lines from node i to node j should be 100% ; otherwise, it should be zero.

In practice, there is significant noise in DTI data and the tractography process can

be error-prone, especially when the ROIs are in grey matter and/or when neural fibers cross

each other, split or merge, or fan out as they approach their targets. Consequently, the

tractography output may show that some streamlines do not reach from node i to node j

even when the two nodes are connected, or that some streamlines get from i to j even when

there is no connection between the two nodes. We model these errors probabilistically, as

follows:

Ti,j =


1− Z1 if Gi,j = 1 or Gj,i = 1

Z2 if Gi,j = 0 and Gj,i = 0

(2.15)

where Z1 and Z2 are two (generally different) random variables with [0,1] support. If

their probability mass is concentrated close to 0, the results of the tractography process

are not significantly affected by noise. On the other hand, if these two random variables

are uniformly distributed in [0,1], the tractography results are completely random and any

network inference process is hopeless.

We model the two random variables Z1 and Z2 with the Maximum Entropy distri-

bution with one-degree of freedom. In this case, this distribution is the truncated exponential
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Figure 2.4: Probabilistic error model (Z) for tractography-generated connection probabili-
ties using the maximum entropy distribution (with one degree of freedom).

distribution with support [0,1],

fZ (ζ) =


α

1−e−α e
−αζ ζ ∈ [0, 1]

0 otherwise,

(2.16)

where α > 0 is a parameter that determines the mean and variance of the distribution.

Instead of controlling α, we control the intensity of noise through the mean of Z,

µ = E [Z] =
1− (1 + α) e−α

α (1− e−α)
(2.17)

The two distributions Z1 and Z2 follow this statistical model with means µ1 and µ2

respectively. Figure 2.4 shows the previous distribution for four values of µ. Note that the

distribution Z becomes almost “flat” (close to the uniform distribution) when its mean is

higher than 0.3, meaning that tractography would be extremely inaccurate when the noise

intensity exceeds that level . In the rest of this chapter we limit the range of µ1 and µ2

between 0 and 0.3.
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2.3 Results

2.3.1 Evaluation with synthetic data

We evaluate MANIA based on computational experiments with synthetic data and ran-

dom networks. The “ground-truth” networks G are constructed as follows. Suppose that

G has N nodes and density ρ. We place bρN(N−1)
2
c undirected edges between randomly

selected but distinct pairs of nodes. Note that G is symmetric by construction because the

tractography process cannot infer the true polarity of the underlying neural fibers. Given G,

we then create the tractography matrix T that represents the “noisy” fraction of streamlines

between any pair of nodes, as shown in equation 2.15. Note that the fraction of streamlines

from a node X to a node Y is typically different than the fraction of streamlines from Y to

X. In the following experiments, N is set to 50 nodes, and each experiment is repeated for

1000 networks G.

We first examine the effect of post-symmetrization on the accuracy of both threshold-

based network inference and MANIA. In the former, the connections are determined based

on a given threshold τ0, as discussed in Section 2.5. We denote the Jaccard similar-

ity between the inferred network and the ground-truth network with JSYM when post-

symmetrization is performed, and with JNO−SYM otherwise. Figure 2.5 shows the dif-

ference ∆J = JSYM − JNO−SYM for several choices of τ0 as well as for MANIA. Each

box-plot is generated from 1000 experiments; in each experiment we generate a random

network with density between 0 and 1, while the noise parameters µ1 and µ2 are uniformly

distributed between 0 and 0.3. The red line corresponds to the median, the box boundaries

correspond to the 25th and 75th percentiles, while the dashed lines show the 10th and 90th

percentiles. In all cases, ∆J > 0 (one-sided Mann-Whitney U test p-values shown next to

each box plot), meaning that post-symmetrization helps to improve the accuracy of network

inference. This is true for both MANIA and threshold-based inference, even though the im-

provement is larger for the latter. Because of the positive effect of post-symmetrization, in
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Figure 2.5: The Jaccard similarity difference ( ∆J = JSYM−JNO−SYM ) with and without
post-symmetrization for five threshold values and for MANIA. Each box plot is generated
from 1000 experiments; in each experiment we generate a random network with density
between 0 and 1, while the noise parameters µ1 and µ2 are uniformly distributed between
0 and 0.3. The red line corresponds to the median, the box boundaries to the 25th and 75th

percentiles, while the dashed lines show the 10th and 90th percentiles. In all cases, ∆J ¿ 0
(one-sided Mann-Whitney U test p-values are shown next to each box plot) meaning that
post-symmetrization helps to improve the accuracy of network inference.
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Figure 2.6: False positive rate and false negative rate of MANIA as a function of µ1 and
µ2 for sparse networks ( ρG = 0.1 ), medium density networks ( ρG = 0.5 ) and dense
networks ( ρG = 0.9 ). Each square is the average of 1000 independent simulations.

the rest of the chapter, we apply it in all network inference experiments.

Figure 2.6 illustrates the performance of MANIA in the two-dimensional space

defined by the noise parameters µ1 and µ2 for three values of the network density. Each

square in these heat maps is the median across 1000 experiments. The false positive and

false negative rates are close to 0 (less than 5% ) in the lower-left half of each heat map

(i.e., when µ1+µ2 < 0.3). For higher values of the noise intensity, the accuracy of MANIA

depends on the density of the underlying network. In the case of sparse networks, MANIA

also infers a sparse network and most errors are false negatives, i.e., MANIA does not

detect some of the few existing edges. For dense networks, MANIA also infers a dense

network and most errors are false positives, i.e., MANIA detects a few extra edges that

do not actually exist. In mid-range densities, the errors are more balanced between false

positives and false negatives. In all cases the maximum false positive (or negative) rate
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Figure 2.7: The Jaccard similarity difference ( ∆J = Jτopt − JMANIA ) between MANIA
and the optimal threshold-based scheme as a function of µ1 and µ2 for sparse networks (
ρG = 0.1 ), medium density networks ( ρG = 0.5 ) and dense networks ( ρG = 0.9 ). Each
square is the average of 1000 independent simulations.

when µ1 = µ2 = 0.3 is less than 25%. Recall from Figure 2.4 that these noise intensity

levels should be considered quite high in practice.

Figure 2.7 compares the MANIA-inferred network with the network that corre-

sponds to the optimal threshold τ opt, as discussed in Section 2.7. Specifically, the heat maps

of Figure 2.7 compare the Jaccard similarity JMANIA between MANIA and the ground-

truth network, with the Jaccard similarity Jτopt between the optimal threshold based net-

work and the ground-truth network. The accuracy of MANIA is typically close to that

of the optimal threshold method. Even under the highest noise intensity we consider (

µ1 = µ2 = 0.3 ), JMANIA is only 10% lower than Jτopt . These results suggest that MANIA

selects automatically a connectivity threshold value that results in almost optimal accuracy,

across all possible such threshold values.

Finally, Figure 2.8 compares MANIA with five given threshold values τ0. The

comparison is in terms of the Jaccard similarity difference ∆J = JMANIA − Jτ0 . As

in Figure 2.5, each box-plot is generated from 1000 experiments in which we vary the

network density between 0 and 1, and the noise parameters µ1 and µ2 between 0 and 0.3.

The median ∆J is always positive and the distribution of ∆J is skewed towards positive
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Figure 2.8: The Jaccard similarity difference ( ∆J = JMANIA−Jτ0 ) between MANIA and
five given threshold values. The accuracy comparisons are made after post-symmetrization.
Each box plot is generated from 1000 experiments; in each experiment we generate a ran-
dom network with density between 0 and 1, while the noise parameters µ1 and µ2 are
uniformly distributed between 0 and 0.3. The red line corresponds to the median, the box
boundaries to the 25th and 75th percentiles, while the dashed lines show the 10th and 90th

percentiles. In all cases, ∆J ¿ 0 (one-sided Mann-Whitney U test p-values are shown next
to each box plot) meaning that MANIA is more accurate than inferring the network based
on a fixed threshold.
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values (one-sided Mann-Whitney U test p-values shown next to each box plot), meaning

that MANIA typically performs better than a fixed threshold scheme, independent of the

selected threshold.

2.4 Discussion

Thomas et al. have recently shown that inferring long-range anatomical connections be-

tween grey matter ROIs from DWI data can be significantly inaccurate [73]. The authors

also note that “(probabilistic tractography methods) are less susceptive to changes in the

composition of an ROI but only if an optimized threshold can be derived and used.” More

recently Reveley et al. [56] have investigated the key reasons behind the negative results

of [73]. They showed that the dense system of white matter fibers residing just under the

cortical sheet poses severe challenges for long-range tractography, concluding that it is

“extremely difficult to determine precisely where small axonal tracts join and leave larger

white matter fasciculi.”

In light of the previous results, we believe that there is a need for new network

inference methods.MANIA is moving in the right direction for the following reasons:

1. The results of [73] suggest that probabilistic tractography can be more accurate than

deterministic tractography in terms of sensitivity and specificity as long as its pa-

rameters are appropriately optimized. MANIA is indeed mostly applicable to prob-

abilistic tractography, and its main focus is how to “self-configure” its connectivity

threshold τ in an optimized manner, relying on what we expect to be true about the

structure of the resulting solution (namely, a symmetric network).

2. The results of [56] suggest that it is risky to artificially dilate the given ROIs, which

are typically mostly grey matter, so that they also include some white matter voxels.

Those voxels may be part of the white matter fiber systems that reside just under the

cortical sheet. In other words, if our goal is to understand the connectivity between
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grey matter ROIs, we should not use tractography seeds that reside in white matter;

instead, we need to seed from grey matter even if the diffusion signal is much weaker

there. So, we need to expect that some connections may appear as asymmetric, which

is what MANIA anticipates.

3. The results of [56] can be interpreted as follows: because it is hard for any trac-

tography method to accurately cross the white matter/grey matter boundary (WGB),

especially in the case of cortical ROIs, a network inference method should be able

to deal somehow with erroneous measurements about specific connections. In other

words, just because tractography failed to cross the WGB going from seed X to tar-

get Y does not mean that we should conclude that X and Y are not connected. And

so, given that the input data about individual connections is quite noisy, we need to

examine if there is any additional “hidden structure” in the inference problem that

we can exploit. If this is case, we can then look for a solution that satisfies the

constraints of that additional structure. In MANIA, this “hidden structure” in the

inference problem is that the resulting network should be as symmetric as possible.

Of course, we do not claim that MANIA addresses every concern about tractography-

based network inference. On the contrary, there are more open issues that need to be

addressed. Two of them are further discussed next.

Even if the thresholding problem is adequately addressed with MANIA, there is

another important problem in structural network inference: the distance bias of the trac-

tography process [74]. It is harder to discover connections between distal regions due to

the accumulation of uncertainty in long streamlines, causing false negatives for long-range

connections [46]. Additionally, it is more likely to incorrectly detect connections between

proximal regions, especially in the presence of crossing or turning fibers, causing false pos-

itives. The FDT toolbox provides a “distance correction” option by multiplying the number

of streamlines that cross a voxel by the average length of those streamlines41 there is no ev-
41 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide
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idence however that this simple form of distance correction is able to improve significantly

the accuracy of the network inference process [46]. A more sophisticated method is that

of [75], which compares the tractography-generated connectivity probabilities with a null

model that gives the corresponding connectivity probabilities with a random tracking pro-

cess that is dominated by the same distance effects.We view distance correction methods as

an independent processing step that can be applied prior to applying MANIA. For instance,

the method by Morris et al. first creates a “null frequency of connection map”, it then filters

the “experimental frequency of connection map” that is produced by a probabilistic tractog-

raphy tool, resulting in the so-called “significance of connection map” (which is supposed

to have fewer false positives). MANIA can be then applied on the latter, rather than on the

experimental frequency of connection map. Even though it is still not clear if the Morris

distance correction method is sufficient to completely address the distance correction bias

[76], we anticipate that the combination of MANIA with the distance correction method of

Morris et al. will improve the accuracy of the resulting networks.

A network representation consists of both nodes and edges. The clinical and re-

search value of representing a brain as a network depends critically on the selected nodes

and on the exact boundaries of the corresponding ROIs [63]. MANIA assumes that the set

of given nodes is sufficiently specified, and that their spatial boundaries are accurately de-

fined. In practice, this step of the network inference process is always an “inexact science”

given that the functional role of any given ROI is at best only partially understood and the

anatomical boundary of each ROI is subject-dependent [77].

A voxel-level analysis [78] avoids the selection of functionally specific ROIs but

it makes it harder to associate the topological properties of the observed network, which

now consists of many thousands of nodes, to any known brain circuits and their function.

Again, we view this important issue as orthogonal to MANIA: improved brain parcellation

methods, such as data-driven parcellations [79, 80] and decreasing voxel sizes can be

34



used jointly with MANIA to identify structural networks that are consistent, or that can

explain well, the observed spatio-temporal correlations in resting-state or task-based fMRI

analyses. This coupled exploitation of fMRI and diffusion MRI data has provided valuable

insights about the underlying anatomy of the brain structures that result in the Default Mode

Network [81], and they can become more common now that the HCP project provides both

functional and diffusion data for hundreds of subjects [30].
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CHAPTER 3

CASE STUDIES: APPLICATION OF MANIA ON EXPERIMENTAL DATASETS

As a case-study, we first (case study A) apply MANIA on diffusion MRI data from 28

healthy subjects to infer the structural network between 18 corticolimbic ROIs that are asso-

ciated with various neuropsychiatric conditions such as major depressive disorder (MDD),

post traumatic stress disorder (PTSD), obsessive compulsive disorder (OCD), generalized

anxiety disorder (GAD) and addictive disorder (AD) [18, 19] [20, 21]. We note however

that, even though these ROIs are generally associated with various psychiatric disorders and

the aspects of emotional regulation putatively impacted by these disorders, the objective of

this work is not to infer the network that is associated with any particular disorder.

In second case study (case study B), we apply MANIA to the state-of-the-art dataset

provided by HCP, not only to elicit findings about the human brain, but also to provide

connectome on a platform that is open, reproducible, and reputable within the neuroscience

community. This will lead to a connectome on a dataset that is shared by a large commu-

nity, which in turn provides reproducible results and facilitates findings based on a com-

mon benchmark. MANIA fits as a powerful tool in the HCP ecosystem, whose overarching

objective is to map the connectivity gathered by non-invasive imaging techniques (MA-

NIA only focuses on the anatomical goal). We reconstruct and present cortical anatomical

connectomes for 37 HCP subjects. The connectomes are reconstructed for left and right

hemispheres, and also for inter-hemispheric connections.

Also, in case study B, we employed the most recent widely accepted human brain par-

cellation (introduced in [23]), known as HCP-MMP. The HCP-MMP parcellation is derived

from the combination of the anatomical landmarks and the functional organization of the

brain as inferred by fMRI. The higher resolution and functional homogeneity of HCP-

MMP parcellation come with the additional benefit of the surface-based parcels (ROIs).
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Surface-based parcellation has significant effect on increasing the accuracy when mapping

cortical connectivity, since volume-based parcellation cannot capture the many extreme

folding structures of the cortex [82]. Also, the volume files have biases in their streamline

counts (and are more prone to catch fibers that are passing by, rather than terminating).

Moreover, in this case study, we validate the accuracy of MANIA using data from a

high resolution 7T MRI scanner (and compare it to that from a 3T scanner). This further

proves the efficacy of MANIA, as previously discussed in chapter 2, where the emphasis

was on phantom and synthetic data studies. We leverage three subjects in the HCP dataset

who had both 3T and 7T MRI scans. Since 7T provides a considerable boost in signal-

to-noise ratio, and spatial resolution, we build a benchmark dataset based on 7T and show

that MANIA results run on 3T can predict connections that are highly anticipated by 7T

acquisition, while controlling the false positive rate. This proves that MANIA is (nearly)

striking an optimal point between specificity and sensitivity.

3.1 Case Study A: corticolimbic circuitry implicated in major depression disorders

3.1.1 Data set

We apply MANIA in Diffusion Tensor Imaging (DTI) data collected by an earlier study:

“Brain aging in humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca

mulatta): magnetic resonance imaging studies of macro- and microstructural changes”

[17]. Twenty eight healthy right-handed females between the ages of 18 and 22 (mean:

20.2), without a history of psychiatric disorder, were selected from that study. All subjects

gave written informed consent, and the study was approved by the Emory University In-

stitutional Review Board. Diffusion-weighted images were acquired using a Siemens 3T

with a 12-channel parallel imaging phase-array coil. Foam cushions were used to mini-

mize head motion. Diffusion MRI data were collected with a diffusion weighted SE-EPI

sequence (Generalized Autocalibrating Partially Parallel Acquisitions [GRAPPA] factor of

2). A dual spin-echo technique combined with bipolar gradients was used to minimize
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eddy-current effects. The parameters used for diffusion data acquisition were as follows:

diffusion-weighting gradients applied in 60 directions with a b value of 1000 s/mm2; TR/TE

of 8500/95 ms; FOV of 216× 256 mm2; matrix size of 108× 128; resolution of 2× 2× 2

mm3; and 64 slices with no gap, covering the whole brain. Averages of 2 sets of diffusion-

weighted images with phase-encoding directions of opposite polarity (leftright) were ac-

quired to correct for susceptibility distortion. For each average of diffusion-weighted im-

ages, 4 images without diffusion weighting (b=0 s/mm2) were also acquired with matching

imaging parameters. The total diffusion MRI scan time was approximately 20 minutes.

T1-weighted images were acquired with a 3D MPRAGE sequence (GRAPPA factor of 2)

for all participants. The scan protocol, optimized at 3T, used a TR/TI/TE of 2600/900/3.02

ms, flip angle of 8◦, volume of view of 224× 256× 176 mm3, matrix of 224× 256× 176,

and resolution of 1× 1× 1 mm3. Total T1 scan time was approximately 4 minutes.

The resulting DTI data were processed using the FMRIBs Diffusion Toolbox (FDT)

provided by FSL (FMRIB 4 Software Library) [57]. The FDT probabilistic tractogra-

phy parameters were set to their default values (number of streamlines=5000, maximum

number of steps=2000, loop check: set, curvature threshold=0.2, step length=0.5mm, no

distance bias correction).

We applied MANIA on 18 corticolimbic ROIs. All ROIs are localized in Montreal

Neurological Institute (MNI) standard space using the Automated Anatomical Labeling

(AAL) [58] of the WFU PickAtlas toolbox [59]. The ROI acronym as well as the number

of voxels in each ROI are shown in Table ??. The shape of these ROIs are not dilated and

we adhere to the standard masks provided in the WFU PickAtlas toolbox. We chose these

ROIs because they are known to play a significant role in various psychiatric disorders

such as MDD, PTSD, OCD, anxiety and addiction [60, 61] [35, 21] . This sample of ROIs

includes cortical, subcortical and limbic regions. Specifically, the cortical ROIs are BA6,

BA9, BA10, BA40, BA46, BA47, the limbic are BA24, Th, BS, and the sub-cortical are

BA11, BA25, BA32, Acb, Amg, Hp, Ht, Ins, Pc.
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Figure 3.1: The rank-aggregated network, based on DTI data from 28 subjects, between the
18 ROIs in Table 3.1. Every edge in the connected component has been detected in both di-
rections, i.e., MANIA identifies a completely symmetric network (no post-symmetrization
is needed). The density of the connected component is 19%. The color of each edge repre-
sents the fraction of subjects that have the corresponding edge in their individual MANIA-
based networks.

3.1.2 Results

We applied MANIA in the DTI data presented in Section 3.1.1, based on the 18 ROIs

listed in Table 3.1. A single rank-aggregated network is constructed, using the group-

MANIA, aggregating data from 28 subjects. The rank-aggregated network is shown in

Figure 3.1.

Two ROIs (Pc and BA40) appear to not be directly connected with the other 16

ROIs; of course there may be indirect connections through other ROIs that have not been

included here (we return to this point in Section 4). Every edge in the connected component

of Figure 3.1 has been detected in both directions, i.e., MANIA identifies a completely

symmetric network in this case (i.e., no post-symmetrization is needed). The density of the

connected component (16 ROIs) is 19%. The color of each edge in Figure 3.1 represents

the fraction of the 28 subjects that have the corresponding edge in their individual networks
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(constructed by MANIA).

We measured the “centrality” of each node in the rank-aggregated network, based

on four centrality metrics (degree, closeness, betweenness, PageRank) [83]. Different cen-

trality metrics focus on different notions of importance. For instance, the degree centrality

metric associates importance with the number of direct connections a node has; BA32

(Ventral anterior cingulate) has the largest number (six) of direct connections in this net-

work (see Table 3.2). This may be because BA32 is spatially adjacent to both BA10 and

BA25, and those ROIs are also of high degree. The betweenness centrality of a node X, on

the other hand, focuses on the number of shortest paths between any pair of nodes that go

through X; BA25 (subcallosal cingulate) is the most important node from this perspective

because it serves as the “unique bridge” between the 6 red nodes at its left and the 9 blue

nodes at its right. BA25 is also the most central node in terms of its average distance to all

other nodes (closeness centrality).

Similarly, we measured the edge centrality of all connected node pairs. In terms of

edge betweenness centrality, the connection between BA25 and the Nucleus Accumbens

(Acb) is by far the most central in this network. It is interesting to note that this edge

includes the segment of white matter that is the target of Deep Brain Stimulation (DBS)

therapies for the treatment of MDD [35]. In fact, the DBS target is typically the point at

which the fibers between (BA25-Acb), (BA25-BA32) and (BA25-BA24) intersect.

Figure 3.1 also shows some percentiles of the per-subject node-pair confidence met-

ric (median, 25-75th percentiles, 10-90th percentiles, and outliers) for each node-pair that

appears connected in at least one of the 28 subjects. The connections between the follow-

ing node pairs appear in all subjects and have the highest confidence: Hp-Acb, Amg-Acb,

BA47-Ins. On the other hand, the following connections appear only in some subjects and

their confidence metric varies around zero: Th-BS, BA46-BA9, BA6-Ins. Some connec-

tions that appear in 1-2 subjects but have very low confidence are: Pc-BA24, BA11-BA24,

Ins-BA25, BA40-BA6.
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3.1.3 Discussion

In our 18-ROI case-study, summarized in Figure 3.1, the use of mostly large ROIs that

do not necessarily correspond to distinct functional units, together with the distance bias of

the tractography process, may account for the lack of certain expected connections. Two

such expected connections are between Pc and BA40 [84], and between BA9 and BA40

[85]; the latter is a long-distance connection. Additionally, large cortical ROIs such as BA9

and BA40 are only imprecisely defined, which may also explain the absence of some of

their connections. The limbic and subcortical ROIs, on the other hand, are more precisely

defined and their connections are mostly running over shorter distances. These findings

suggest that MANIA should be evaluated in the future jointly with, first, advanced distance

correction methods, and second, with either more precisely defined ROIs or on a whole-

brain parcellation template.
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Table 3.1: The 18 corticolimbic ROIs we consider in the case-study.

ROIs Acronym Number of

voxels

Premotor cortex BA6 3131

Insula Ins 1858

Ventromedial prefrontal cortex BA10 1784

Inferior parietal cortex BA40 1598

Dorsolateral prefrontal cortex BA9 1422

Mid-brain and pons BS 1406

Orbito-frontal cortex BA11 1243

Thalamus Th 1100

Hippocampus Hp 932

Precuneus Pc 861

Inferior prefrontal gyrus BA47 851

Ventral anterior cingulate BA32 721

Dorsal anterior cingulate cortex BA24 593

Dorsolateral prefrontal cortex BA46 574

Amygdala Amg 220

Subcallosal cingulate BA25 204

Nucleus accumbens Acb 140

Hypothalamus Ht 13
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Table 3.2: Top-three nodes in rank-aggregated network based on four node-centrality met-
rics

Centrality Top-three nodes
Degree BA32 BA10 BA25
Closeness BA25 BA32 Acb
Betweenness BA25 Acb Hp
PageRank BA10 BA32 BA11

3.2 Case Study B: human corticocortical anatomical network

3.2.1 Data set

This case study is carried out using data from the Human Connectome Project (HCP) which

is publicly available [15]. We used HCP data in the two S900, and S1200 releases. HCP is a

large-scale NIH-funded effort to map the macroscopic wiring diagram of the human brain.

HCP has chosen dMRI and probabilistic tractography as the methods of choice for mapping

the in-vivo anatomical connectome which makes their data highly relevant to our studies

and compatible with our pipeline described in chapter 2. For our evaluation purposes, we

focused on a subset of subjects from the HCP dataset comprising 37 female adults of age

31-35. Restricting the gender and age allows us to minimize the subject variability to the

best of our ability so that we focus on the method evaluation and connectome characteristics

while also being congruent to the study in chapter 2. The list of all subjects used in this

chapter are available in Appendix A.

3.2.2 Node delineation: ROIs

The first step in reconstructing an individual connectome is specifying a parcellation scheme

to subdivide cortical gray matter into discrete, spatially contiguous parcels used as the

graph nodes in the network inference phase. Parcellation can be thought as dimensionality

reduction in connectome studies, reducing the computational time, increasing the signal-

to-noise ratio without eliminating valuable information about the interactions between dif-

ferent brain regions. Also, studying the connectome at macroscale parcellation resolution
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(a) (b)

Figure 3.2: a) 180 ROIs from HCP’s multi-modal cortical parcellation (HCP-MMP) pro-
jected on the S1200 group average cortical surface (inflated left hemisphere). This visual-
ization is generated by the data from [23] b) The size (surface area) distribution for the 180
ROIs

.

allows us to unravel the mechanisms through which these interconnections give rise to

complex cognitive processes at a high level.

Parcellation is the first step in the pipeline of connectome inference. As a result, par-

cellation is one of the most critical steps in connectivity inference. Cytoarchitecture or

anatomical landmarks have long been used for this task. For example, Brodmann areas

have been used to define regions of interest (ROIs) for network analysis [86]. Also, in the

previous chapter, we applied MANIA on 18 corticolimbic ROIs localized in Montreal Neu-

rological Institute (MNI) standard space using the Automated Anatomical Labeling (AAL)

[58] of the WFU PickAtlas toolbox [59] which is again a parcellation based on anatomical

landmarks. The aforementioned parcellations were volumetric, however most recent stud-

ies, specifically ones focusing on cortex, are surface-based [87, 23], i.e, the surface of the

cortex is divided into regions rather than its volume. Surface-based analysis is believed to

yield better results as the human cortex is extremely convoluted [88]. Thus, surface rep-

resentations offer a better description of the boundaries at any resolution for the cortical
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areas. Voxel-based representation of the white-gray matter boundary cannot necessarily

follow the highly convoluted boundary of the cortical surface and thus increases the gyral

bias [89], consequently decreasing the accuracy of any tractography method.

Besides, anatomical parcellations, surface- or volume-based, some studies choose to

use uniform parcellation to control the network nodes for similar size. The nodes in these

studies are inherently not linked to either anatomical or functional specificity of the brain

directly [90]. However, we chose to stay relevant to the anatomy and functional homogene-

ity of underlying data, using multi-modal parcellation that employs both. Also, limiting

our study to cortex, we looked only for surface-based parcellations. Having all these con-

straints in the study, we parcellated subjects’ brain based on HCP-MMP atlas [23] to 180

regions per hemisphere (see figure 3.2). The HCP-MMP atlas is shown in figure 3.2 with

the distribution of surface areas of its regions.

3.2.3 Network inference without an arbitrary threshold or density: MANIA

The network reconstruction process entailed using MANIA on dMRI images for each of

the 37 female individuals with the HCP-MMP parcellation. We ran probtrackx as described

in [28] (also chapter 2) with three differences. First, Streamline seeding in this work is from

white-gray matter boundary, encouraged by [91]. We mapped surface boundary between

white-matter and gray matter on a cortical surface mesh with 32000 vertices. Each of these

vertices were also assigned to one of the HCP-MMP ROIs. Then, for each vertex in the

ROI we assigned a randomly seed point on that ROI surface and initiated 5000 streamlines.

Streamlines reaching from the source to the target ROI were used to form matrix T of

equation 2.1. Second, since MMP parcellation consists of 1050 adjacent ROIs, we excluded

the adjacent pairs from the process of choosing the threshold in MANIA, i.e., MANIA was

run to minimize the asymmetry between non-adjacent pairs. The 1050 adjacent ROIs in

the MMP parcellation are already strongly and symmetrically connected given they share

physical border. Lastly, as opposed to the first case studies that distthresh parameter in

45



probtrackx was set to zero, the distthresh parameter in this study was set to 20mm, i.e., the

network results are based on streamlines that are at least 20mm long.

3.2.4 Results

Individual networks

The network reconstruction procedure was applied separately to inter and intra-hemispheric

connections. First, we looked at the density at which the normalized asymmetry ratio

(NAR) is minimized for each subject. The first column of figure 3.3 shows the NAR vs

density plots for three sample subjects and for the two hemispheric modes (right hemi-

sphere, left hemisphere). Likewise, figure 3.4 shows the NAR vs density plots for three

sample subjects in the inter-hemispheric mode. Note that as noted in section 3.2.3 the ad-

jacent ROIs are excluded in minimizing the NAR, hence the much smaller density range in

the intra-hemispheric modes of figure 3.3 compared to the density range in figure 3.4. We

found that NAR is consistently minimized (at the value of approximately 0.08) at a density

close to 3.2% for inter-hemispheric and 0.4% for intra-hemispheric modes, regardless of

the subject. Including the adjacent pairs to the network, the intra-hemispheric densities

also reach to 3.2%. This is the density that is also reported by deterministic tractography

algorithms when mapping brain connections [92]. The second column of figure 3.3 depicts

the relation between the density and threshold. To reach to the optimum density of around

3.2%, MANIA used thresholds ranging from 35% to 60% across the subjects. The distri-

bution of densities, minimum NAR and MANIA thresholds are all plotted in figure 3.5.

The optimum threshold returned by MANIA (approximately 45%) is neither very strict

nor very relaxed, and it is located in the plateau of the density-threshold curve (around 2250

streamlines out of 5000 are required for a connection), as seen in figure 3.3 and figure 3.4.

Note that to reach to larger connectome densities (such as 10%, which is frequently set as

the arbitrary connectome density in the literature [93]), one needs to apply considerably

smaller thresholds (approximately 2% in our dataset), which consequently increases the
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false positive connections of the connectome. Even thresholds close to zero will result in

a network not denser than 20%, since there are no streamlines running between many of

the source-target pairs (see the asymptotic behaviour of the density in the second column

of the figures.

The distribution of the NAR, threshold and density values are shown in figure 3.5. Note

that densities in this figure is considered for whole network including all pairs adjacent or

non-adjacent.

Figure 3.6 shows the axonal distance and connection probability scatter plot for a sam-

ple subject. The x-axis value is the average length of the connected streamlines between

the corresponding two ROIs, and the y-axis value would be the corresponding fraction of

connected streamlines. The axonal distance and connection probability relationship is de-

picted for left, right and inter-hemispheric connections separately in figure 3.6. The density

of the networks are 3.45%,3.33% and 2.98% for left, and right hemisphere and for inter-

hemispheric respectively. The axonal distance (the average streamline length connecting

two ROIs) for detected ROI pairs varies between 0 to 100mm. The median axonal dis-

tance in all these three networks is approximately 19mm .Although, connection probability

shows a decreasing trend by axonal distance, as evident in the figure, for each distance the

connection probability still varies significantly and axonal distance could not determine the

connection strength.

3.2.5 7T validation

Validation of MANIA accuracy using high resolution 7T MRI scans The absence of a

ground truth limits our ability to assess the accuracy and precision of connectomes built

using tractography. Hence, the accuracy of MANIA was quantified using the phantom and

synthetic dataset discussed in [28]. In this section, we further quantify the accuracy of

MANIA by exploiting the enhanced signal-to-noise ratio (SNR), contrast, and resolution

attainable through the use of data derived from high-field 7T MRI as part of the HCP [95].
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(a) Subject 126426

(b) Subject 146735

(c) Subject 135124

Figure 3.3: The results of applying MANIA on three sample subjects for right and left
hemisphere network inference - the dashed lines show the densities chosen by MANIA for
the corresponding networks. The density is calculated excluding the adjacent pairs.

48



(a) Subject 126426

(b) Subject 146735

(c) Subject 135124

Figure 3.4: The results of applying MANIA on three sample subjects for inter-hemispheric
network inference - the dashed lines show the densities chosen by MANIA for the corre-
sponding networks
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Figure 3.5: The distributions of MANIA results across 37 subjects - The distributions are
calculated by kernel-density estimate using Gaussian kernels [94]

(a) Left hemisphere (b) Right hemisphere (c) Inter-hemisphere

Figure 3.6: Connection probability vs axonal distance for subject 146735 in connected
and none-adjacent ROIs - The graphs are presented for left, right and inter-hemispheric
networks separately and MANIA thresholds are shown in the graphs. In the left hemisphere
12% of the connections are non-adjacent and 9% of connections are none-adjacent in the
right hemisphere. Note that the probtrackx was run to include only streamlines extending
at least 20mm (distthresh=20).
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Results were obtained from three of our HCP subjects for whom both 7T and 3T MRI data

were available.

The high resolution and better SNR of 7T data leads to an amplification of the connec-

tion probability for true connections and to an attenuation on the opposite case. Figure 3.7

illustrates two sample cases: one for attenuation and one for amplification in a subject.

Note that the connection probability is shown in log-scale for visual purposes; thus, the

amplification and attenuation in the figure span an order of magnitude.

To build a proxy for ground truth for our benchmark in each of the three subject, we

applied very strict thresholds on the 7T probtrackx dataset of that subject in order to tag if

an edge is or isn’t present. We categorized each edge as a true positive if the connection

probability in probtrackx exceeded δ1 = 0.4. Likewise, an edge was categorized as a true

negative if the probability was lower than δ2 = 0.01. We then find the trivial true negative

connections as those with a probability less than 0.001, which we excluded from our true

negative connection set. Figure 3.8 shows the size of 7T benchmark true negatives and true

positives as functions of our control parameters δ1 and δ2 for a sample subject 146735. Note

that we have been strict in labeling connections as true positives or negatives by requiring

large δ1 and small δ2. This gives a sample set to measure the accuracy of MANIA that we

can have a high level of confidence in. At the same time, we do not want to have easy to

detect positive or negative connections, because they would artificially inflate the accuracy

of any network inference method. Thus, we excluded ROI pairs in the 7T data for which

the connection probability is less than 0.001 as mentioned before.

Finally, we ran MANIA on the 3T data from the same subject and quantified the accu-

racy against its 7T benchmark1. The top row of figure 3.9 shows the true positive rate and

false negative rate for a threshold estimator across different density thresholds for sample

subject 146735. The optimal density returned by MANIA is marked by the red vertical

line. Interestingly, MANIA operates at the point where the true positive rate begins to satu-

1Of course, this is only an indirect method of constructing a ground truth.
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(a) (b)

Figure 3.7: Sample source to target connection probability (log − scale) vs distance for
subject 14673 both in 3T and 7T - a) An ROI pair in which 7T signal is attenuated compared
to 3T b) An ROI pair with the opposite effect (amplification in 7T compared to 3T).

(a) (b)

Figure 3.8: True positive and true negative sizes in subject 146735 of our benchmark
dataset built using 7T data for different δ1 and δ2 parameters
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rate, and where the false positive rate begins to grow exponentially, i.e., any increase in the

density would only slightly increase the true positive rate while introducing a large false

positive error. There is thus a trade off between a small sensitivity increase and a large

decrease in specificity.

To quantify this trade-off, we employed the F-measure [96] for the reconstructed con-

nectivity matrices in order to assess their accuracy with a single index. The bottom left

plot of figure 3.9 shows the F-measure for different network densities. MANIA manages

to find a density close to the maximum F-measure. The same trade-off between sensitivity

and specificity is also plotted as an ROC curve in the last plot of figure 3.9. In this plot, the

operating point of MANIA is denoted by the red star. One can see that MANIA operates

close to the knee of the curve, where any change in the operating point (estimated density)

leads to a considerable reduction in accuracy.

All previous results were for fixed variables δ1 and δ2 and were shown for a sample

subject 146735. As opposed to the benchmark size for true negatives, the true positive

benchmark size was an order of magnitude smaller (See figure 3.8). Therefore, we ran a

test to measure the robustness of our results for different values of δ1 and for two more

subjects. Moreover, instead of using maximally connected voxels between the source-

target ROI-pair, we ran the same test requiring multiple number of voxels nv linking the

source and the target. For example, δ1 = 0.5 and nv = 3 means that three voxels must be

connected with a probability larger than 0.5 for a connection to exist in our benchmark true

positive sample set. Figure 3.10 shows the F-measure graphs for different values of δ1 and

nv and for three subjects. As seen in the figure, MANIA is consistently operating close to

the maximum F-measure, and shows a remarkable robustness to the underlying benchmark

construction parameters. Thus, all our results hold for different types of benchmark dataset

constructions derived from the 7T data and are valid across the subjects.
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(a)

(b)

Figure 3.9: Measuring the accuracy of MANIA with δ1 = 0.4, δ2 = 0.01 Top) False
positive rate and true positive rate across different density thresholds - MANIA operating
points are marked by red lines Bottom) F-measure and ROC for different density thresholds
- MANIA operating points are marked by red line and red star
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Figure 3.10: The F-measure across several schemes to build the benchmark dataset out of
7T dataset - the study is done for three subjects marked in the title of each figure.

3.2.6 Hemispheric asymmetries

As explained in section 3.2.3, MANIA was applied independently to left and right hemi-

sphere of the 37 subjects in our HCP study. In this section, we focus on the connections

consistently present in one hemisphere and not present in the other. In order to isolate

these connections, we marked the connections showing 75% difference in their right and

left hemisphere presence, i.e. for a connection C we marked it as hemispheric asymmetry

if |PL(C) − PR(C)| > 27 where PR(C) is the number of subjects having C in their right

hemisphere and PL(C) is the number of subjects having C in their left hemisphere. Ta-

ble 3.3 lists all these connections. As seen in the table, there are seven such connections,

two of which appear mostly in the left hemisphere while the rest of them are present mostly

in the right hemisphere.

Four of the ROIs appearing in table 3.3 are located in the auditory cortex (see table 3.4).

There are converging evidence from activation, connectivity, and stimulation in the litera-

ture pointing to the fact that the auditory cortex is a lateralized network [97]. Also, a47,

a10p and 9-46d show network asymmetries. Interestingly, all these areas are known to have

topological asymmetries reported in [23] and hinted in table 3.4.
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Table 3.3: Connections with hemispheric lateralization. The first two connection are mostly
present in left hemisphere and the rest of the connection are mostly present in right hemi-
sphere while absent in the opposite hemisphere

ROI1 ROI2 # Appearances left hem. # Appearances right hem.
MBelt PI 35 6
9-46d a10p 30 0
TA2 STSda 1 31
PGp IP1 4 36
PGp PGi 1 36
p10p a47r 5 37
STSva TE1m 0 28

Table 3.4: Meta information about ROIs in table 3.3

ROI Longer Label Location hints Commentary

9-46d Central portion of the dorsolateral
prefrontal cortex

Relative to its supero-medial neighbor
9-46d in the left hemisphere,
area 46 has less myelin (Panel B),
differs modestly in functional connectivity

STSva (area 176) Superior Temporal Sulcus ventral-
anterior

Auditory Association Cortex

STSda Auditory Association Cortex
MBelt Medial Belt Early Auditory Cortex
PGp Inferior Parietal Cortex

a10p Area anterior 10p The orbital and
polar frontal cortex area a10p adjoins area a9-46v only in the left hemi-

sphere.

IP1 Inferior Parietal Cortex
lateral bank of intraparietal sulcus

a47r Area 47 r The orbital and polar frontal cortex The topology of area a47rs superior border differs
in the left and right hem.

PGi Area PGi Inferior Parietal Cortex
TA2 Auditory Association Cortex is activated vs deactivated in the LANGAUGE MATH
PI ParaInsular cortex Insular and Frontal Opercular Cor-

tex
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3.2.7 Discussion on HCP study - case study B

How dense is the human cortical connectome? The density of the human cortical connec-

tome, the most fundamental network property, is still elusive to us at different scales. In

chapter 2, we introduced MANIA as a mean to address the problem of thresholding the

probabilistic tractography results in order to infer the network density for the connectome

using probabilistic tractography. In the second case study of this chapter, we used MA-

NIA to build human cortical connectome from data published by the Human Connectome

Project, HCP [15]. We concluded that with the current state-of-the-art MRI acquisitions

and with the control to avoid the high false positive rate of probabilistic tractography [96],

the cortical connectome density is approximately 3.2%. However, note that this is not a

claim on the actual density of the connectome, since there are several inherent limitations

to diffusion MRI and tractography which need to be addressed prior to draw conclusions

about the ultimate representative connectome.

There are multiple steps to infer brain networks from dMRI data, and each introduces

parameters affecting the network density and indices, such as centrality and the clustering

coefficient [98, 99]. Some of the uncertainties stem from the limited resolution of MRI

scans, making it impossible to model the fibers crossing and kissing each other along the

white matter pathways. However, there are uncertainties in network inference that are

inherent to tractography itself [100], and more prominent in long-range connections [101].

For example, authors in [102] show that most tractography algorithms cannot recover more

than one-third of the volumetric extent of well-known long-range connections. Thus the

inherent limitation of tractography when dealing with longer connections, distance bias,

needs conceptual development and methodological creativity.

Also, connection probabilities reported by probabilistic tractography exhibit exponen-

tial decay with inter-regional distance, even in the case of leveraging high resolution 7T

MRI scans from HCP. This is in agreement with tracer studies reporting also exponential

decay but for biological connection strengths [103, 104]. The extent to which the expo-
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nential decay of tractography is biologically specific or stems from the methodological ar-

tifacts (distance bias) remains to be explored [105]. A correction framework to decompose

the decay exponent to the distance bias factor and the true biological factor and conse-

quently regress out the distance bias systematically from tractography results will generate

a remarkable increase in the accuracy of individual connectomes. In the presence of such

a method, MANIA, or any network inference algorithm, can work on corrected data such

that distance bias does not affect the final connectome.

The FDT toolbox provides a distance bias correction option by multiplying the num-

ber of streamlines that cross a voxel by the average length of those streamlines. However,

there is no evidence that this simple form of distance bias correction is able to significantly

improve the accuracy of the network inference. Moreover, the results do not have probabil-

ity scale or meaningful span. This multiplication strategy is not meant to correct distance

bias, and has only been proven to increase the accuracy of clustering analysis; hence it is

recommended for studies related to brain parcellation. Authors in [106] explored distance

correction using different strategies that seek to multiply the distance matrix and proba-

bilistic tractography inferred strengths. The results lead to only a small notable increase in

the overall accuracy of the identified connections, since the multiplication compromises the

false positive rate in order to enhance the detection of true connections. On the other hand,

the study conducted by [107] demonstrates that FDT distance correction strategies worsen

the results because they compare the corrected connectome to a ground truth2 connectome

from tracer studies.

Distance bias, although the most important issue at hand, must be considered in con-

junction with gyral bias. As authors in [89] report, “there is a bias for fiber tracking al-

gorithms to terminate preferentially on gyral crowns, rather than the banks of sulci”. This

bias will corrupt tractography algorithms to a significant extent if the seeding happens on

white matter and also if volumetric analysis is used instead of a surface-based method. The

2Although tracer studies are believed to report the best in vivo connectomes, the ground truth is still a
frequent misnomer, since tracer studies are not fully devoid of false positives and negatives.
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tractography seed points in all our case studies were on gray-matter, or at its boundary to

white matter. This reduces the “gyral bias” effect in our studies. Also, we moved from vol-

umetric to surface based analysis in this chapter to account for the highly convoluted nature

of the human cortex, which has an added benefit of also decreasing the gyral bias [108].

Despite the aforementioned inherent limitations of tractography, we showed that the re-

construction of highly accurate and consistent connectomes at the macro-scale is possible,

albeit with sparse cortico-cortical graphs.

Finally, we should mention despite considerably denser networks for other animals

reported in the literature of invasive studies, e.g., the extremely dense cortico-cortical con-

nectome of mice (97%) [103], the human connectome must still await for such reports due

to the noninvasive nature of human studies.

59



CHAPTER 4

MULTI-SENSORY INTEGRATION IN THE MOUSE CORTICAL

CONNECTOME USING A NETWORK DIFFUSION MODEL

4.1 Introduction

Perception requires the integration of multiple sensory inputs across distributed areas through-

out the brain [109]. While sensory integration at the behavioral level has been extensively

studied [110], the network and system-level mechanisms underlying Multi-Sensory Inte-

gration (MSI) are still not well understood, especially in terms of the role that cortex plays.

The traditional view of primary sensory areas as processing a single modality is rapidly

shifting towards a view of the cortex as highly integrated and multi-sensory [111]. The

somatosensory, visual, auditory, gustatory and other sensory streams, come together (inte-

grate) and separate (diverge) to be processed in different parts of the cortex. The neural

basis of how these sensory streams are processed and how they generate a coherent per-

ceptual state remains elusive [112]. It is likely that this state is created and regulated by

multiple structures distributed throughout the cortex working together in concert [113].

To understand the architectural principles that enable MSI, we need data and models

that span the entire brain focusing not on individual neurons, regions or even circuits, but

on distributed networks. The connectome is thus a potentially powerful tool for study-

ing MSI. However, it would not be enough to just know how different brain regions are

connected anatomically. Rather, we need models that combine structure (connectomics)

with function [114] to address the question of which connections and paths are activated

by different sensory modalities. Having both a structural network and a functional model

in hand, we can begin to tackle the problem of discovering the networks that support and

constrain MSI.
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Figure 4.1: High-level illustration of approach and main result: Top-Left: An illustration
of a single sensory cascade, originating at the primary visual cortex (VISp). The yellow
edges show anatomical connections that participate in the cascade. The ROIs at the upper
layer reside on the cortical surface while the ROIs at the lower layer are deeper in the
brain. The edges between the two layers are dashed. To simplify the visualization, we only
include 20 ROIs at this cascade (the complete cascade includes 67 ROIs). The cascade
forms a Directed Acyclic Graph (DAG), and it is produced by applying the Asynchronous
Linear Threshold (ALT) model on the cerebral cortex portion of the mouse connectome
– starting the cascade at VISp. Bottom and Right: The two most important core ROIs
at the hourglass waist – Claustrum (CLA) and Posterior Parietal (PTLp) cortex – jointly
cover 40% of all activation paths in the ten sensory cascades we consider. Each cascade is
represented by a different color. We include two circular disks (pie charts), one for each of
these two core ROIs. The proportion of activation paths in each cascade is shown by the
corresponding color. The protruded portion of each circular section represents those paths
that traverse the corresponding core ROI. For example, the activation paths in the auditory
cascase account for about 8.5% of the total number of paths – and about 36% of those paths
traverse CLA.
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Here, we adopt a variation of the Asynchronous Linear Threshold (ALT) network dif-

fusion model [115] to capture the communication dynamics of networks that contribute to

MSI. In particular, we focus on how information propagates throughout the brain, starting

from different primary sensory regions (e.g. primary visual cortex, auditory cortex, and

different somatosensory regions). The ALT model assumes that a “node” (brain region)1

becomes active when more than a fraction of the neighboring nodes it receives afferent pro-

jections from are active. We use a variation of this model with weighted connections, where

the weights are based on the connection density of the projections [115]. The ALT model

is simple yet it incorporates information about distances between areas (to model connec-

tion delays) and uses local information (a thresholding nonlinearity) to potentially gate the

flow of information. Figure 4.1 illustrates the notion of activation cascade, showing only

a small part of the visual cascade according to the ALT model. With such a model, it is

possible to understand how activation cascades propagate in the brain, and then combine

them to study the global architecture of MSI.

We apply this model to the Mouse Connectivity Atlas (MCA) provided by the Allen

Institute for Brain Science [26]. This connectome has been available since 2014, and it

consists of estimates of connection density between cortical as well as subcortical regions,

providing access to information about whole brain connectivity across functionally and

structurally distinct regions. By coupling the ALT network diffusion model with this rep-

resentation of the connectome, we can ask questions such as: what is the relative order

in which different regions get activated after, say a visual or auditory stimulation? Which

are the most central regions for each activation cascade? Are these cascades largely in-

dependent of each other, or are there few “bottleneck” regions through which almost all

cascades go through? If so, which are these regions and what is their topological role in

each cascade?

To examine the accuracy of the ALT model, we use Voltage Sensitive Dye (VSD) imag-

1We use the terms “node”, “region” and ROI (“region of interest”) interchangeably.
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ing to capture how the activity that is triggered from uni-sensory stimulation propagates

throughout the cortex [27]. By comparing our modeling results to these functional datasets,

we find that the ALT model predicts correctly the temporal ordering of node activations in

a cascade – as long as the VSD data provides sufficient temporal resolution to permit acti-

vation time comparisons. This suggests, perhaps surprisingly, that despite the simplicity of

linear threshold models, they can provide a useful approach for studying communication

dynamics in brain networks.

We then aggregate the uni-sensory activation cascades predicted by the ALT model to

investigate the architecture of MSI. To do so, we consider the number of activation paths

that traverse each node across all of the different uni-sensory cascades inferred by the ALT

model. We find that a small set of brain regions (around ten), form a “bottleneck” through

which almost all such activation paths traverse. The Claustrum (CLA), despite its small

size, is the most central bottleneck region in the flow of sensory information from primary

sources towards higher-level brain regions [116]. The Posterior Parietal (PTLp) cortex is

the second bottleneck node, covering almost as many activation paths as CLA. Figure 4.1

visualizes the contribution of these two core regions in each of the ten sensory cascades we

consider. About 40% of all activation paths, across all sensory cascades, traverse these two

regions, suggesting that they play a prominent role in MSI.

Our results support the presence of a bow-tie or hourglass architecture in the architec-

ture of MSI. The salient qualitative feature of an hourglass architecture is that a small num-

ber of nodes (at the waist of the hourglass) can cover almost all source-target paths [117]. In

the context of MSI, this means that the multi-modal sensory input is first integrated through

a small set of brain regions at the waist of the MSI hourglass. Then, those intermediate-

level representations diverge to several higher-level association regions, providing inte-

grated multi-sensory information for more complex cognitive tasks. Importantly, this re-

sult would not be revealed through static network analysis metrics and methods (such as

betweenness centrality or rich-club), suggesting that the dynamic perspective offered by
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the ALT model provides valuable insights into MSI.

4.2 Methods and Data

The ALT model focuses on how stimulation of one cortical region propagates to the rest of

the brain when constrained by the underlying connectome. An appropriate metaphor could

be to think of the cortex as a complex consisting of several ponds that are connected through

creeks of different lengths and widths (the connectome), while a stimulus corresponds to

a large rock falling in one of the ponds. ALT aims to model how that initial perturbation

in the pond ripples through the connected ponds (the activation cascade). In the rest of

this section, we describe the main components of our approach: the mouse connectome,

the ALT diffusion model, the hourglass network analysis framework, and the VSD-based

model validation.

4.2.1 Structural network

The structural (i.e., anatomical) network we analyze is a subset of the Allen Mouse Brain

Connectivity Atlas [26], which is based on tracking axonal projections labeled by viral

tracers. It consists of 213 ROIs that cover the entire brain – all tracer injections however

were performed at the right hemisphere [26]. This means that the contralateral connections

from the left hemisphere to the right and the ipsilateral connections at the left hemisphere

are not mapped. For this reason we only analyze the right hemisphere connections.

The strength of the connection from a source ROI to a target ROI is quantified by a

metric that Oh et al. refer to as connection density [26]. This metric is roughly proportional

to the average number of axons projecting to a target ROI neuron from the source ROI.

This metric can be thought of as the total number of axons from the source ROI to the

target ROI, normalized by the size of the target ROI.

Each connection is associated with a p-value that quantifies the statistical confidence
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that that connection exists [26]. We filter out connections with p-value higher than 0.05.2

The reason we do not filter connections based on their weight is because there are many

weak but statistically significant connections, as shown in Figure B-1 – it is well known

that weak connections can play an important role in network diffusion phenomena as long

as there are many of them [118].

The physical length of the connections is approximated based on the Euclidean distance

between the two corresponding ROIs’ centroids. This is only an approximation but it is

reasonably accurate because the mouse cortical surface is small and smooth with little

folding [119, 120]. Additionally, as shown in Section 4.3.6, our results are robust to the

selection of the connection weights or physical lengths.

The network we consider consists of the 67 ROIs that cover the four components of the

cerebral cortex: isocortex, olfactory areas, hippocampal formation, and cortical subplate.

We do not include subcortical ROIs that reside in the cerebellar cortex, cerebellar nuclei,

striatum, medulla, pallidum, midbrain, pons, thalamus and hypothalamus for the following

reasons. First, we are mostly interested in how sensory information that reaches the primary

sensory regions of the cortex propagates throughout the rest of the cortex [121], rather than

on the role of subcortical structures such as the thalamus or the superior colliculus. Most

of the MSI literature focuses on the how those subcortical structures modulate and “route”

sensory information in different parts of the cortex [122] – this type of processing how-

ever cannot be modeled without further sub-divisions of the thalamus and other subcortical

regions and without at least some cell-type specificity. Second, modeling the interactions

between cortical and sub-cortical regions, especially in the context of MSI, would require

more elaborate communication models that can capture feedback mechanisms. Third, the

accuracy of the inferred subcortical projections in the Allen mouse connectome is not ex-

pected to be as high as that of cortical projections.

The final network, denoted as Nc, consists of 617 directed edges between 67 nodes –

2We have repeated the analysis for other p-values in the range 0.01-0.1 – see Section B-2.
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Figure 4.2: The location of the ten primary sensory regions: Three coronal slices from the
Allen Mouse Brain Atlas with the cerebral cortex regions tinted by green and the source
regions identified by an arrow. The somatosensory region includes six different sub-regions
for lower limbs, upper limbs, trunk, mouth, nose and whiskers. The remaining four sensory
sources are: visual (VISp), auditory (AUDp), gustatory (GU) and olfactory (MOB).

each node corresponds to one of the ROIs in our model. The density of Nc is 13.9%. The

distribution of edge weights is skewed, with 80% of the edges having a weight of less than

5 and few edges having a weight of up to 40. The distribution of edge lengths is almost

uniform in the 1-7mm range. The diameter of the network (maximum shortest path length

between any two nodes) is 7 hops, while a node is on the average about 4 hops away from

any other node. The average in-degree of each node is 9.2 connections (σ=3.1), while the

out-degree distribution has the same mean but larger variability (σ=8.3). Additionally, the

network Nc is strongly clustered, with an average clustering coefficient of 60% [123].

The ten primary sensory regions associated with the visual, auditory, gustatory, olfac-

tory systems, as well as six somatosensory regions for different body parts (see Table B-1),

have a special role in our analysis: they are viewed as sources of sensory information in

the cortex [124, 125]. The location of these ROIs in the Allen Mouse Brain Atlas is shown

in Figure 4.2.
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4.2.2 The ALT model and activation cascades

The connectome is a structural network and so it constraints, but it does not determine by

itself, the paths through which information flows in the brain. To study that flow, we also

need to model how dynamic brain activity propagates on the connectome.

We choose a simple network diffusion linear threshold model [126], mostly because it

involves a single parameter – more realistic neural mass models, such as Wilson-Cowan,

depend on several parameters [127]. The model assumes that nodes are either inactive

(state=0) or active (state=1). In the model’s simplest form, a node i becomes active when

more than a fraction θ of its neighbors become active. Here, we deploy a variation for

directed and weighted networks in which each edge is associated with a communication

delay and a weight, referred to as Asynchronous Linear Thereshold (ALT) model.

Specifically, the state of node ni is represented by si(t), the neighbors of ni with an

incoming edge to ni are denoted by Nin(ni), the communication delay from node nj ∈

Nin(ni) is tji, while the weight of that connection is wji. Initially, the state of every node

is set to 0, except the source node of the activation cascade, which is set to active at time

t = 0. The state of each node ni is then updated asynchronously based on the state of its

neighbors as follows:

si(t) = 1 if
∑

j∈Nin(i)

wji sj(t− tji) > θ, (4.1)

where θ represents the activation threshold.

Figure 4.3-a illustrates the ALT model with a toy example, where we can think of

each node as a cortical ROI. The (directed) edges between ROIs represent the structural

connections between ROIs. In this example, the activation threshold θ is set to 1. For this

value, the cascade covers the entire network node within 7 time steps. If θ was larger than

1, the cascade would not take place – the only active node would be n1. As we will see in

the next section, this sharp transition between not having a cascade and a complete cascade
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Figure 4.3: Illustration of ALT model and τ -core analysis: (a) A toy example of a 5-node
network on which we run the ALT model. Each edge is marked with a communication
delay, followed by a weight. The activation threshold is θ=1. The black edges represent the
underlying structural network while the red unidirectional edges represent the activation
cascade as it unfolds over time. (b) The activation cascade directed acyclic graph for the
previous toy example. The source of the cascade is n1. (c) A toy example with three
activation cascades (the sources are nodes u, v and y). The total number of source-target
paths is 11 (4 at the left, 3 at the middle, and 4 at the right). Node w has the highest path
centrality (P (w)=9/11). If τ ≤ 9/11, the τ -core consists of only that node.
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as θ decreases also occurs in the mouse connectome.

An activation cascade also reveals the node(s) that contribute in a causal manner in the

activation of a node. For example, the activation of n1 and of n2 in the previous example

is not sufficient to activate n3; the latter is activated only when n1, n2 and n4 are all active.

Suppose that tai denotes the time at which ni becomes active according to the ALT model.

We say that node nj contributes in the activation of ni (denoted by nj → ni) if nj ∈ Nin(ni)

and tai ≥ taj + tji. In other words, the nodes j that contribute to the activation of ni have a

connection to ni and they should be active at least tji time units before the activation of ni.

The set of relations nj → ni form a Directed Acyclic Graph (DAG) with a single source

node that covers all nodes that participate in the cascade. The DAG edges are a subset of

the connections in the underlying structural network. The cascade for the previous example

is shown in Figure 4.3-b.

4.2.3 Analysis of activation cascades

An activation cascade consists of a collection of source-target paths, with each such path

originating at the source of the cascade and terminating at a node without any outgoing

edges in the cascade. A source-target path is a sequence of ROI activations that propagate

in a causal manner from the source node to a target node. For instance, the cascade of

Figure 4.3-b includes three source-target paths from n1 to n4 because the activation of

the latter requires the activation of both n2 and n3, and the activation of n2 requires the

activation of both n1 and n3.

After constructing a cascade for each source, we use network analysis to identify the

nodes that play a more central role in the collection of all cascades. The centrality metric

we use has the following graph theoretic interpretation: for each node v, the Path Centrality

P (v) of node v is the fraction of all source-target paths, across all cascades, that traverse v

(following the terminology of [117]). Figure 4.3-c illustrates this metric with three small

cascades. Nodes with higher path centrality (PC) are expected to be more important be-
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cause the activation cascades depend more heavily on them. Note that a source node is

traversed by all source-target paths in its own cascade but it may have low path centrality

when we consider the collection of all cascades.

The PC metric quantifies the importance of each node in isolation. We are interested,

on the other hand, in the smallest set of nodes that can jointly cover almost all source-target

paths in the given set of cascades. To answer this question, we adopt the τ -core definition

of [117]: the τ -core is the minimal set of nodes such that the fraction of source-target paths

that traverse any node in the set is at least τ . The τ -core problem is NP-Hard for τ < 1

[117]. It can be approximated with a greedy heuristic in which the node with the highest

PC joins the set in each iteration. That node is then removed from all cascades it appears

in. The PC of the remaining nodes is recomputed after each iteration. If the τ -core is a

small set, relative to the total number of nodes in the network, the nodes of that set can be

thought of as the bottleneck of the activation cascades (see Figure 4.3-c for an example).

4.2.4 Comparison of modeling results with functional data

To examine whether the ALT model can accurately predict the propagation of sensory

stimulation in the cortex, we need an experimental setup in which we can stimulate different

sensory modalities of a living animal, and monitor at the same time and in a fine temporal

resolution (in the order of a millisecond) the activity of different cortical neural populations

(in a spatial resolution of few µm).

Such experiments are possible today, relying on technologies such as calcium imaging

or voltage-sensitive dies (VSD) in conjuction with fluorescence microscopy. Here, we

leverage the experimental results of an earlier study to examine the accuracy of the ALT

model in the context of whole-cortex imaging in mice under single sensory stimulation [27].

In brief, the experiments include five types of sensory stimulation: visual (flash), auditory

(tone), whisker touch, forelimb touch, and hindlimb touch. Each stimulation experiment

is repeated ten times and on several different animals (we analyze data for five animals).
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Figure 4.4: VSD data processing pipeline: (a) Lower: The Allen Reference Atlas (ARA).
Upper-left: A sample VSD image covering most of the left cortical surface five frames
after visual stimulation. Upper-right: The ROIs at the left ARA cortical surface mapped
to the native cortical surface of an animal. (b) The activation time of a pixel is defined as
the frame of maximum post-stimulus VSD signal at that pixel. (c) The activation time of
an ROI is defined as the activation time of most pixels in that ROI. (d) The output of this
pipeline is an activation time for each ROI, depicted here with a grey-scale map (black for
the first ROI activation and white for the last).

The recorded images cover almost the entire cortical surface, have a temporal resolution

of 6.67msec, and a size of 128 × 128 pixels at a spatial resolution of 50µm/pixel. As it

will become clear in Section 4.3.2, the experimental spatial resolution is sufficient for our

purposes, given that each network node in the ALT model refers to an entire cortical ROI

of the Allen mouse brain atlas. The temporal resolution, however, is marginally sufficient

because for about 20-30% of all ROI pairs we cannot tell which ROI gets activated first as

they appear to be activated during the same frame.

To compare the VSD-based results with our modeling results, we perform the following

steps:

Step 1. Register: Register the native cortical surface of each animal to the Allen mouse

brain atlas. This step is performed using an affine transformation that minimizes the least-

squares error between the coordinates of the centroid of a primary sensory ROI (e.g., VISp)

in the Allen atlas, and the coordinates of the pixel that first gets activated after the corre-
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sponding sensory stimulation (visual in this example). We use five primary sensory ROIs

to construct this transformation: VISp, SSp-bfd, SSp-ll, SSp-ul and AUD-p.

Step 2. Parcellate into ROIs: Parcellate the native cortical surface into ROIs using the

Allen mouse brain atlas and the previous affine transformation. Some cortical ROIs are not

visible in the VSD images: FRP, PL, ACAd, VISpl, and VISpor. Also, the MOs region is

only partially captured in the VSD images.

Step 3. Estimate Activation Time: Estimate an activation time for each ROI in the ex-

perimental data. To perform this step, we first identify the maximum post-stimulus activity

for each pixel in that ROI – this is defined as the activation time of that pixel. The image

frame that corresponds to the activation time for most pixels of that ROI is defined as the

activation time of the ROI. This processing pipeline is summarized in Figure 4.4.

The ALT model, on the other hand, models each cortical ROI as a single node, and

it assumes that the transition of each node from inactive to active occurs instantaneously.

The time unit in the ALT timeline is arbitrary – so we cannot just compare the absolute

activation times between the experimental and modeling results. Instead, we examine the

consistency of the temporal ordering of activations in the ALT model and in the VSD

experiments. Specifically, if X and Y are two ROIs, and X is activated before Y in the

modeling results, is it also the case that X is activated before Y in the VSD data? If so,

we count that ROI pair as a temporal agreement. If X and Y are activated in the same

VSD frame, we count that pair as a case of insufficient temporal resolution. Finally, if X is

activated after Y in the VSD data, we count that ROI pair as temporal disagreement.

4.3 Results

4.3.1 Sensory-specific activation cascades in the mouse cortex

The ALT model requires the selection of a single parameter, the activation threshold θ.

This threshold controls the size of the cascade, i.e., the fraction of network nodes that

become active after the activation of a source node. One may expect that as θ decreases
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Figure 4.5: Effect of parameter θ on cascade size, and similarity between the ten cascades:
(a) Each row of the heat map shows the fraction of activated nodes after the stimulation of
a single source, for different values of the threshold θ. The selected threshold is marked
with the dashed vertical line. (b) Similarity between the ten sensory cascades using the
average-linkage hierarchical clustering method.

towards zero, the size of the cascade becomes gradually larger. This is not the case however.

Figure 4.5-a shows that as θ decreases we observe a rapid transition from the absence of a

cascade (where only the source node is active) to a complete cascade, in which all nodes

become active. This is true for all source nodes listed in Table B-1.

The reason behind this rapid transition is the highly clustered topology of the mouse

connectome. This property is often quantified by the clustering coefficient [128], which has

an average value of 0.60 in the mouse connectome. This means that if a node v connects to

two nodes u and w, there is a probability of 60% that there is an edge from u to w or in the

opposite direction,“closing the triangle” formed by the three nodes u, v, w. So, if v is the

source of the activation and θ is low enough so that v activates at least one of its neighbors,

say u, it is highly likely that other neighbors of v receive input from u as well, increasing

the chances that they will also get activated. The same argument applies to all other pairs

of activated nodes – not only the source and its direct neighbors.

We choose θ so that the ALT model produces a complete cascade, for every source we
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consider [129]. This choice is motivated by experimental results [27]: at least some activ-

ity is detected in all cortical regions after sensory stimulation (visual, auditory, touch) in

anesthetized mice. It may appear counter-intuitive that visual stimulation, for example, can

impact activity in regions associated with different sensory modalities (e.g., gustatory) but

such interactions are possible through the many feedback connections in the connectome,

and they are consistent with several prior studies which argue that there are no strictly uni-

sensory regions, and that to some extent the entire cortex is a multi-sensory organ [130,

131, 113, 132].

Lower values of θ would also result in complete cascades. However as θ decreases, the

dynamics of the underlying cortical networks would move away from the critical boundary

between sensitivity to internal or external stimulation and stability [133]. A very low value

of θ would keep the system in a constant state of activation, resembling a brain under a

global epileptic seizure.

Based on the previous considerations, we select θ = 0.98 as the lowest value that results

in a complete cascade across all sensory modalities.3 We have repeated the analysis for

two more values of θ (0.90 and 0.95) without any significant changes in the results (see

Section B-3).

Figure 4.6 shows the complete activation cascade when the source of the stimulation is

the primary visual cortex (VISp) – the corresponding cascades for the other sensory modal-

ities are included in the Supplementary Information (see Section B-3). Note that the activa-

tion of the source triggers the activation of eleven other ROIs. Only few of them however

play a major role in extending the cascade to the rest of the network: ECT (ectorhinal),

PTLp (posterior parietal association), VISl (lateral visual), and POST (postsubiculum).

PTLp in particular, causes the activation of seven more ROIs at the next step of the cascade.

The activation of the claustrum (CLA), in this cascade, takes place through the sequence of

3The connection from AOB to COAp forms a single-edge bottleneck in the olfactory cascade. The weight
of that connection in the Allen connectome is 0.46. With that value however the olfactory cascade require
a different (lower) θ threshold than all other cascades. For this reason, we chose to artificially increase the
weight of that connection from 0.46 to 1.
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Figure 4.6: The visual activation cascade, accoring to ALT: The source for this cascade
is the primary visual cortex (VISp). The red edges form the activation cascade, while the
underlying grey edges show anatomical connections that do not participate in this cascade
– those connections may be present in other sensory cascades or they may play a role in
feedback (or second-order) interactions that are not captured by the “first ripple” scope of
the ALT model. To help with the visualization, we place the nodes in eight layers, so that
cascade edges only point from a layer to a higher layer (never to the same or lower layer).
The vertical position of each node is slightly “jittered” to avoid cluttering due to anatomical
connections between nodes of the same layer.
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ECT, followed by TEa (temporal association).

We emphasize that the hierarchical layout shown in Figure 4.6 is specific to each sen-

sory modality and it represents the activation cascade from the corresponding source to the

rest of the cortex. This notion of hierarchy should not be confused with the hierarchical

organization of the cortex [134] that results from anatomical distinctions of intracortical

connections (feedforward versus feedback, based on laminar markers) [135]. The latter is

an anatomical hierarchical structure, it is not specific to any particular sensory modality,

and it does not convey any functional information about how one ROI may be affecting

another in the presence of a specific external or internal stimulation. An activation cascade,

on the other hand reveals the sequence and causal dependencies through which ROIs get

activated after an initial activation at the source ROI.

4.3.2 Model validation

We examine the validity of the ALT model predictions using functional imaging data during

sensory stimulation experiments, as discussed in Section 4.2.4. The question we focus on

is: after stimulating a specific sensory modality (e.g., visual), if the ALT model predicts

that an ROI X should be activated before an ROI Y , is it true that X gets activated before

Y in the functional imaging data? When this is the case, we count the pair (X, Y ) as a

temporal agreement. IfX gets activated before Y in the ALT model but the opposite is true

for the experimental data, we count (X, Y ) as a temporal disagreement. Because of the

finite temporal resolution in the experimental results (each frame is sampled every 7msec

roughly), there are also cases whereX and Y appear to be activated during the same frame,

while the model always predicts a temporal difference between two activations – when that

is the case, we count (X, Y ) as a case of insufficient temporal resolution.

Figure 4.7a shows the percentage of (X, Y ) ROI pairs that show temporal agreement,

temporal disagreement, and insufficient temporal resolution between the activation order

of X and Y in the modeling results and the mouse experiments. The plot shows results for
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(a) Comparison with temporal activations based on experimental data

(b) Comparison with temporal activations based on randomized data

Figure 4.7: Comparison between model-based and experimental temporal ordering of ROI
activations: a) The y-axis shows the percentage of (X, Y ) ROI pairs that show tempo-
ral agreement (green), temporal disagreement (red), and insufficient temporal resolution
(blue) between the activation order of X and Y in the modeling results and the mouse ex-
periments. The plot shows results for five animals and for five sensory stimulations (a touch
at the whiskers, forelimb, and hindlimb, as well as an auditory and a visual stimulation).
b) The same comparison but here we have randomized the ROIs that are active during each
frame, preserving the number of ROI activations in each frame.
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five animals and for five sensory stimulations. Even though the variability across animals is

considerable, we observe that the percentage of temporal agreement pairs, averaged across

the five animals, is higher than 50% and it varies between 55% to 80% depending on the

sensory modality. On the other hand, the corresponding percentage of temporal disagree-

ment is less than 10%-20%, depending on the stimulation. In the rest of the cases, the

temporal resolution is not sufficient.

We also compare the ALT modeling results with a randomized sequence of experimen-

tal activations in which we preserve the number of ROIs that are activated in each frame

but assign random ROI activations during each frame. The results of that experiment are

shown in Figure 4.7b. The average percentage of ROI pairs that show temporal agreement

in this case varies between 20%-30%, depending on the stimulation. This comparison

shows that the ALT model has significant prediction power on the temporal sequence of

ROI activations, relative to a randomized baseline.

Finally, we analyzed the temporal disagreement cases between VSD experiments and

modeling results to examine if certain brain regions, or pairs of regions, are over-represented

in those disagreements (see Section B-4). The main result of that analysis is that the ROIs

with highest disagreement cases appear at the boundary of the cortical surface at the VSD

datasets and they are only partially visible. So, it is likely that the VSD data may not accu-

rately capture the time at which those boundary regions are activated after each stimulation.

4.3.3 Similarity of sensory cascades

We next sought to answer the question of how similar the ten sensory cascades predicted

by the ALT model are. The similarity between two cascades can be quantified using the

Jaccard similarity metric. It is defined as the ratio of the common connections in two

cascades over the total number of connections in those cascades.

After calculating the Jaccard similarity between every pair of cascades, we use an ag-

glomerative hierarchical clustering algorithm to construct a dendrogram of the ten cortical
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sensory cascades. This dendrogram was computed for three linkage methods: average link-

age (the similarity between two clusters is based on the average similarity across all pairs of

cascades in the two clusters), single linkage (based on maximum similarity), and complete

linkage (based on minimum similarity). The resulting dendrograms are quite similar across

the three linkage methods. Figure 4.5-b shows the dendrogram with average linking – the

two others are shown in Figure B-13.

A first observation is that the olfactory cascade (originating at MOB) is very different

than all other sensory cascades – its similarity is less than 10% with the cluster of all other

cascades. This is expected given that olfaction is quite different than all other sensory

processes – it bypasses the thalamus and MOB is the only primary sensory ROI in the

mouse connectome that is not located in the isocortex [136, 137].

Interestingly, the two most similar cascades are the Gustatory (GU) and the somatosen-

sory cascade of the nose (SSp-n). Further, these two cascades are quite different than all

others, including the rest of the somatosensory cascades. The somatosensory cascades are

quite similar to each other and they tend to cluster as follows: trunk and lower-limb (sim-

ilarity of about 75%), mouth and upper-limb (about 70%), while the whiskers produce a

significantly different cascade than the previous four (similarity of about 40%). This or-

ganization mirrors the anatomical layout of the somatosensory regions. The auditory and

visual cascades are also quite distinct from all other cascades – but not as dramatically

different as olfaction.

4.3.4 Core ROIs and hourglass architecture

In this section, we analyze the collection of ten activation cascades (one cascade for each

source) using the network analysis approach described in Section 4.2.3. The total number

of source-target paths in the ten cascades is 560. The path centrality distribution, which

captures how many activation paths traverse each node, is shown in Figure 4.8a. Almost

half of the nodes have very low path centrality (2% or less). On the other hand, there
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are four nodes with much larger path centrality – each of them covering about 20% of

the source-target paths in the collection of activation cascades. These ROIs are the CLA

(claustrum), SSs (supplemental somatosensory), PTLp (posterior parietal association), and

AUDv (ventral auditory) areas.

Some activation paths can traverse more than one of these highly central regions. For

this reason, we compute the minimal set of nodes that cover a given fraction τ of all source-

target paths, i.e., what is referred to as τ -core [117]. Figure 4.8b shows the fraction of

covered source-target paths as we increase the size of the τ -core. The “knee-shaped” shape

of this curve suggests that a small set of nodes is sufficient to cover almost all source-target

paths in the activation cascades, forming a bottleneck in the MSI process. For instance, a

set of nine nodes is sufficient to cover more than 90% of all source-target paths. These nine

ROIs account for 14.7% of the brain volume of the ROIs we consider in the network Nc.

The small size of the τ -core, relative to the size of the network, suggests that the cor-

tex follows an hourglass architecture, in which the sensory information from all different

modalities is first integrated (other terms could be “encoded” or “compressed”) by a small

set of τ -core ROIs that form the “waist” (or bottleneck) of the hourglass. Those τ -core ROIs

then drive a large number of downstream ROIs that presumably operate on multi-sensory

information and contribute in higher-level cognitive processes. The benefit of an hourglass

architecture is that it reduces the dimensionality of the input, computing a more compact

intermediate-level sensory representation at the “waist” of the hourglass. That intermediate

representation is then be re-used in more than one higher-level ROIs and cognitive tasks.

The hourglass architecture is visualized, at an abstract level, in Figure 4.9.

The τ -core nodes for τ=90% are listed in Table 4.8d. Together with the percentage of

additional source-target paths that each node contributes to the τ -core (“Path Coverage”),

the table also shows the Path Centrality (PC) rank of that node. As expected, the node with

the highest PC is the first node in the τ -core. After that point, the order in which nodes join

the τ -core does not follow their PC ranking. The top three nodes (CLA, PTLp, AUDv) are
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(a) Path Centrality distribution
(b) Covered source-target paths as core in-
creases

(c) Core regions for τ=90%

(d) The location of the nine τ -core regions on the Allen atlas

Figure 4.8: Path centrality and τ -core analysis: (a) Path Centrality (PC) histogram for
the 67 regions in Nc, considering all source-target paths across the ten activation cascades.
(b) Cumulative path coverage by the top-X core nodes for X=1· · · 67. Nine regions are
sufficient to cover τ = 90% of all paths.
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sufficient to collectively cover about 60% of the activation paths. Note that none of these

τ -core ROIs are a primary sensory region (i.e., a source node). Instead, they are either ROIs

that are not typically associated with a single sensory modality (CLA, PTLp, ACAd, ECT)

or they are ROIs that are often thought of as “secondary” or “supplemental” to a certain

sensory modality (AOB, AUDv, SSs, MOs, or VISl). If we exclude the MOB cascade, the

only difference is that the τ -core will not include the AOB region.

Figure 4.9: Illustration of hourglass architecture: A hypothetical network with feedfor-
ward, feedback and lateral connections between regions at different levels of the cortical
hierarchy. Input information is provided at sensory-specific modules (left), while high-
level cognitive tasks are performed by association regions at the other end of the hierarchy
(right). The “hourglass feature refers to the fact that the high-dimensional input information
is first integrated through through a relatively small number of highly central intermediate-
level regions, before it is re-used at high-level cortical regions and tasks.

4.3.5 Location of τ -core nodes in activation cascades

Location relative to sources

In this section, we first investigate the topological location (rather than anatomical location)

of the τ -core nodes relative to the source of each activation cascade. Are the τ -core nodes,
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(a) (b)

Figure 4.10: Location-related metrics: In both matrices, a column represents one of the
ten activation cascades, originating at the node shown at the top of the column. (a) Each
row represents the source-distance of the corresponding node from the source of that col-
umn’s cascade. White denotes a distance of one hop, while black denotes the maximum
distance for that cascade. Rows are ordered in terms of the average distance (in number
of hops) of the corresponding node from the sources of all activation cascades (excluding
the MOB cascade, which is very different). (b) Each row represents the influence of the
corresponding node, i.e., the number of nodes that are reachable from that node in the ac-
tivation cascade that the column represents. White denotes an influence of one (only that
node), while black denotes an influence that covers all network nodes. Rows are ordered
in terms of the average influence of the corresponding node across all activation cascades
(excluding the MOB cascade).
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which form the waist of the hourglass architecture, closer to the sources or targets of the

activation cascades? And how does their location compare to the location of the sources and

of other cortical ROIs? These questions are related to recent experimental work suggesting

that cross-modal representations are constructed at early stages of the sensory information

flow [138].

We focus on the top-4 τ -core nodes (CLA, PTLp, AUDv, SSs), which collectively

cover about τ=70% of all source-target paths (see Table 4.8b). Figure 4.10a visualizes

in grey-scale the location of each node (matrix row) in each activation cascade (matrix

column). Each source node (represented with red) is obviously at a distance of zero in its

own activation cascade. Note however that source nodes can be at a much larger distance

from sources of other activation cascades. For instance, the primary visual cortex (VISp)

appears at the maximum distance in the nose (SSp-n) and gustatory (GU) cascades.

The four τ -core nodes we consider (represented with blue rows) are relatively close to

all source nodes: AUDv has the lowest average distance to all of the primary source areas,

while SSs and PTLp are ranked as third and fourth. The claustrum (CLA) is slightly further

away from the sources, ranked 13th (out of 67) in the previous ranking. If we consider a

higher value of τ=90%, the additional τ -core nodes (MOs, ACAd, VISl, and ECT) are

ranked as 17th, 5th, 22nd, and 9th in terms of their average distance from sources. In

summary, all τ -core nodes appear in the top one third of the distance ranking, and so they

are closer to the sources of the hourglass architecture than to its targets.

Location relative to targets – influence

Another way to examine the location of a node v in the hourglass architecture is in terms of

how many nodes appear in activation paths downstream of v – a metric that we refer to as

the influence of v. Figure 4.10b visualizes in grey-scale the influence of each node (matrix

row) in each activation cascade (matrix column). The source of a specific cascade has, by

definition, maximal influence (i.e., all network nodes) in its own cascade – but it may have
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a much lower influence in other cascades. Indeed, the influence of source ROIs (shown

in red) does not seem to follow a coherent pattern: the gustatory (GU) and somatosensory

area of the lower-limb (SSp-ll) are sources with high influence but the primary visual cortex

(VISp), the primary auditory cortex (AUDp) or the main olfactory bulb (MOB) are sources

with low influence in other cascades.

On the other hand, the four most important τ -core nodes (CLA, PTLp, AUDv and SSs)

also occupy the top-four positions in terms of influence. The next four τ -core nodes (MOs,

ACAd, VISl, and ECT) have high influence as well, ranked as 12th, 13th, 9th and 20th,

respectively.

Combining the previous observations about the influence of τ -core nodes as well as

their distance from sources, we can summarize our findings as follows: τ -core nodes are

close to most sensory sources and they also influence the activation of many downstream

nodes. These two features place τ -core nodes at a location that allows them to both

integrate sensory information from different sources as well as to use that integrated infor-

mation in driving many downstream ROIs.

4.3.6 Robustness of τ -core nodes

In this section, we examine the robustness of the previous results regarding the τ -core when

we randomize the edges and weights of the underlying connectome. We also examine

whether the length and/or weights of these connections are responsible for the hourglass

effect and for the specific regions that form the τ -core.

We create ensembles of random connectomes, derived from the mouse connectome in

four different ways:

1. Randomize the weight assigned to each each edge, reallocating the weights of the

original connectome across randomly selected connections but maintaining the topol-

ogy.

2. Randomize the physical length of each edge (and thus its communication delay in
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the ALT model), again reallocating randomly the lengths of the original connections

but maintaining the topology.

3. Randomize both the weights and lengths assigned to each edge, as previously men-

tioned. We do not maintain any correlation between weights and lengths.

4. Randomize the connectome’s topology by swapping connections between randomly

selected pairs of nodes. This randomization method preserves the in-degree and out-

degree of each node.

Figures 4.11a-4.11d focus on the first three randomization methods: weights, lengths,

and their combination. In all cases, the τ -core size of the original network is contained

in the 5% confidence interval of 100 randomized networks. In other words, the weights

and physical lengths of the connectome’s connections do not play a significant role in the

number of τ -core nodes, for any value of τ .

On the other hand, when we randomize the topology of the connectome, the τ -core

size doubles in size when τ=90%: from nine nodes in the original network to eighteen.

Additionally, it takes about half of the entire network to cover all activation paths in the

collection of ten A-DAGs. So, it is the graph structure of the connectome (i.e., its topology)

that leads to a small τ -core size – not the weight and/or length of the connections.

Even though the weight and length of the connections do not have a strong effect on

the τ -core size, do they affect the identity of the ROIs that participate in that τ -core? To

answer this question, Table 4.11e shows the fraction of random networks that include each

of the eight τ -core nodes in Table 4.8d. The Claustrum (CLA), for instance, appears in

the MSI τ -core of 88% of the networks that have randomized connection lengths (89%

for randomized weights) but in only 13% of the networks that have randomized topology.

The results are similar for the top-6 MSI τ -core nodes: they appear in the MSI τ -core of

most randomized networks when we randomize connections weights and/or lengths – but

they rarely appear in the MSI τ -core when we randomize the topology. For the last two
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(a) Weight randomization (b) Length randomization

(c) Length and Weight randomization (d) Topological randomization

(e) Probability that each of the eight MSI τ -core nodes appears in a randomized
network

Figure 4.11: Robustness results: The effect of different connectome randomization meth-
ods on the core size. Light blue shade marks the 5% to 95% values among 100 randomiza-
tion runs, while the solid blue line is the median of these runs. The red line represents the
τ -core size for the original connectome. The dotted green line marks the τ -core size for
τ=90%. The table at the bottom shows the fraction of random networks that include each
of the eight τ -core nodes.
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(a) (b)

Figure 4.12: Connections that appear in sensory cascades: (a) Conditional probability that
a connection el of physical length l appears in an activation cascade given that l > l0. (b)
Conditional probability that a connection ew of weight w appears in an activation cascade
given that w > w0.

MSI τ -core nodes (VISl and ECT) their membership in the MSI τ -core is not as robust:

randomizing connection lengths has a major effect in the appearance of VISl in the τ -core,

and randomizing any aspect of the network has a major effect in the appearance of ECT in

the τ -core.

4.3.7 Which anatomical connections are more important in sensory cascades?

Which anatomical connections are more important in terms of MSI? Only about half the

connections of the anatomical connectome appear in sensory activation cascades, and a

quarter of the former appear in only one sensory cascade.

To answer this question, we examine the conditional probability that an connection el

of physical length l appears in an activation cascade given that l > l0; we denote this

probability as P [el = 1|l > l0]. Similarly, we define the probability P [ew = 1|w > w0] for

an edge of weight w.

Figure 4.12 shows these two conditional probabilities separately for each of the ten
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activation cascades.4 Even though there are significant variations across the ten cascades,

all of them show that P [el = 1|l > l0] decreases with l0, i.e., as the length of a connection

increases (and especially when l is larger than 1-2mm) it becomes less likely that it will be

part of an activation cascade.

The right part of Figure 4.12 shows the corresponding results for the connection weight

conditional probability P [ew = 1|w > w0]. With the exception of the olfactory cascade

(MOB), which shows a decreasing trend, the rest of the sensory cascades show a more

complex and diverse pattern. The average probability suggests that weight is not a signifi-

cant factor in determining which connections will be part of an activation cascade (perhaps

with the exception of edges with very high weights – larger than 8). One reason is that if

the weight of a connection is higher than the activation threshold θ (which is about one in

our modeling results), that edge is sufficient to activate a downstream node, independent of

the state of other connections to the same destination node.

These results suggest that sensory cascades spread in the cortex as a forest fire mostly

through short connections connecting physically adjacent regions, rather than through the

(relatively few) long connections that connect remote regions.

4.3.8 Comparison with static network analysis methods

Finally, we asked whether we would we obtain similar results if we had relied on static

network analysis metrics and approaches (such as [139, 140, 86]) that do not consider a

model of dynamic network activity?

We first ask whether the path centrality metric correlates strongly with more commonly

used node centrality metrics, namely: incoming or outgoing strength, betweenness cen-

trality, closeness centrality, pagerank and eigenvector centrality [141]. The results of this

comparison are included in the Supp-Info section B-7. In brief, the conclusion of that

4The probability for l0 = 0 is roughly 0.12 because the connectome has 616 connections and the average
cascade includes only 75 of these edges – so the (unconditional) probability that a connection appears in at
least one activation cascade is about 75/616≈0.12.
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comparison is that none of these centrality metrics correlates well with path centrality,

computed over all source-target sensory activation paths. The identification of nodes that

play an important role in multisensory integration requires an approach that models com-

munication dynamics over the anatomical network – not just the topological properties of

the latter [142, 97].

We also examined the similarity between the nine τ -core nodes, the five rich-club nodes

[143, 144, 145], as well as the thirteen core-periphery nodes computed using Rombach’s

method [146]. The complete results appear in B-7. The overlap between the rich-club and

the τ -core nodes consists of only the claustrum (CLA) and the supplementary motor region

(MOs). The overlap between Rombach’s core nodes and the τ -core nodes consists of only

MOS and AOB.

In summary, this analysis highlights the marked differences between ALT-based net-

work diffusion modeling and static network analysis methods based on centrality metrics

or core-periphery concepts.

4.4 Discussion

This study built a suite of tools to quantify and characterize multisensory integration from

the perspective of communication dynamics. We chose to analyze the mouse connectome

due to the availability of a detailed meso-scale anatomical map and because the problem

of multisensory integration is relatively well-studied in rodents [122]. In particular, we

analyzed the cortical brain network from the Allen Mouse Connectivity Atlas [26] and

focused on “early” dynamics of sensory integration. By early we specifically mean the

first wave of cortical activity, starting from primary sensory areas and propagating to the

whole-hemisphere. This point differentiates our work from earlier models of multisensory

integration [147, 148].

The underlying anatomical pathways recruited by diverse sensory modalities (e.g., vi-

sual, auditory, somatosensory) branch out rapidly and become increasingly complex as they
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reach the higher associative cortical areas [27]. To capture the nonlinear and asynchronous

nature of these dynamics, we used a diffusion model that can capture both non-linearity

and communication delays, called Asynchronus Linear Thresholding (ALT). We found

that ALT can closely recapitulate sensory cascades when compared with VSD datasets

from sensory stimulation experiments on mice [27].

ALT is a phenomenological model that aims to describe (but not explain mechanisti-

cally) the diffusion of information at the ROI level. As such, it does not model the un-

derlying mechanisms of neuronal communication through chemical or electrical synapses,

and it is also quite different than neural mass models that capture coarse grained activity

of large populations of neurons and synapses [149]. Similar to neuroimaging modalities

of similar spatial resolution, such as task-based fMRI, ALT aims to capture how a certain

activity, namely the stimulation of a primary sensory region, causes the activation of other

brain regions. A difference with fMRI or MEG however, is that the resulting activation

cascades can be analyzed to infer interactions between ROIs that participate in the cascade,

as described above. Additionally, ALT depends on the communication delays and weights

of the connections between brain regions. Thus, it produces a timeline of activation events,

one for each ROI that participates in the cascade. The length of the time interval between

activation events, at least in relative terms, can be compared with experimental results from

neuroimaging modalities that have fine temporal resolution, such as VSD (as in this study)

or calcium imaging.

On the other hand, the ALT model cannot capture more complex dynamics, such as sus-

tained oscillations at certain frequencies or feedback from a newly activated region back to

regions that were activated earlier. Modeling such dynamics would require more elaborate

neural mass models – their validation however would require whole-brain neuroimaging

data of fine spatial and temporal resolution (higher temporal resolution than fMRI and

higher spatial resolution that EEG). Additionally, those more complex models may not be

necessary when the goal is to map the feedforward initial propagation of brain activity after
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a sensory stimulation.

Our primary result is that relatively few cortical regions are responsible for integrating

almost all sensory information. This finding supports the idea that multisensory integration

is performed through an “hourglass architecture”. The benefit of an hourglass architecture

is that it first reduces the input dimensionality of the sensory stimulus at few intermediate-

level modules that reside at the “hourglass waist”. Second, it re-uses those compressed

intermediate-level representations across higher-level tasks, reducing redundancy between

the latter. The hourglass analysis framework was first developed in [117] and it has been

recently applied in the connectome of C.elegans [150]. There are two fundamental dif-

ferences in our study: i) we rely on communication dynamics while [150] uses a pre-

defined set of “routing mechanisms” to construct ensembles of sensory pathways, and ii)

the sources and targets of the C.elegans cascade are the sensory and motor neurons, re-

spectively. Nonetheless, it is interesting that the “hourglass architecture” emerges in both

studies. One possibility is that this architecture is selected by evolution because it drives

a network towards reusing a small set of intermediate functions in constructing a range of

redundant output functions.

Rather than studying each sensory cascade in isolation, our analysis framework is based

on the combination of all sensory cascades. Comparative and competitive cascades have

been studied in [151] to quantify the combined effect of multiple cascades, using simulta-

neously activated source nodes. Sensory stimuli of different modalities, however, do not

need to arrive at the cortex simultaneously in order to be integrated [152]. Different sensory

stimuli travel at different speeds through body receptors [153]. The analysis framework that

we followed constructs uni-sensory cascades and merges their activation paths. We have

also experimented with cascades originating from two simultaneously activated sources

(see Section B-6). The hourglass architecture is still observed in that case, and the core

nodes are mostly the same.

There is mounting evidence that points to the fact that many computations in the brain
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are multi-sensory. Even primary sensory cortices respond to sensory stimuli from different

modalities. For instance, there is significant activity in olfactory cortex after delivering taste

stimuli to the tongue [154]. Or, many units in the auditory cortex respond to visual stimuli

[132]). A number of studies have shown primary-like responses from multiple sensory

modalities [130, 131], advancing the notion that much of cortex is multi-sensory [113].

Our results shed new light on this debate, and support the findings that many regions in

early sensory cascades are multi-sensory, the most important of which are the claustrum

and the posterior parietal cortex.

The claustrum is known for its anatomical uniqueness [155] and its precise function has

been enigmatic [156, 116]. The late F. Crick has hypothesized that the claustrum may be a

potential gateway to consciousness [157]. More recent results have demonstrated that the

claustrum is important in gating sensory information, and in attention mechanisms in visual

perception [156]. These and other studies provide strong evidence that the claustrum is a

crucial node for multisensory integration. Our findings are in agreement with this growing

body of work.

The posterior parietal cortex is the second most important region for MSI, according

to our analysis. This stems from its strong and immediate connectivity to primary sensory

regions and its projections to motor areas. PTLps connectivity points to its role in inte-

grating sensory information to direct immediate motor commands [158]. The experiments

of Nikbakht et al. [159] provide direct evidence that PTLp is multisensory both at the be-

havioural and neurophysiological levels and it provides sensory independent information

about the orientation and categorization of objects in the environment. We refer the reader

to [160] for further discussion.

Three additional core nodes have been associated with specific sensory modalities in the

past: Ventral auditory area (AUDv), Supplemental somatosensory area (SSs), and Lateral

visual area (VISl). However, all of them have also been implicated to some extent with

multisensory processing. For instance, Hishida et al. [161] found that activity propagating
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to the parietal association area passes through the ventral auditory region, irrespective of

the sensory stream source (visual, auditory or somatosensory). Similarly, [162] suggests

that SSs has a major role in bringing context to the sensory pathways [163]. VISl is on

the dorsal visual stream and is associated mostly with spatial location and action guidance

[164], while the other secondary visual areas participate in the ventral stream [165].

An important next step is the inclusion of subcortical regions in the diffusion model.

Various nuclei in the thalamus or the superior colliculus are known to be crucial in MSI

[166]. An integrated model of both cortical and subcortical activity, in the context of

sensory integration, may help to explain the complex cortico-thalamic feedback mecha-

nisms [167, 168]. Disentangling such communication dynamics requires working at finer

spatial resolutions, and including distinct cortical layers (laminar divisions) [169]. Incor-

porating high-resolution [170] and cell type specific [135] information about connectivity

in our pipeline is an interesting direction, that can allow segregation of different commu-

nication channels. By increasing the spatial resolution and the complexity of the model

dynamics, we could capture more complex population-level activity patterns (e.g., Wilson-

Cowen [149]) and better understand the role of mesoscale network topology in constructing

a coherent perceptual state from raw sensory streams.
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CHAPTER 5

CLOSING REMARKS

5.1 Conclusions

We have now come to the conclusions of this thesis. The ultimate aim of which was a topo-

logical analysis of the macroscale brain connectome, both structurally (i.e. only anatom-

ical) and also by the means of network dynamic models. The path to this goal started

at the human connectome. Although recent advances in MRI have provided neuroscien-

tists with an abundance of human brain scans, unfortunately these scans are only indirect

measurements of the structural connections in the brain and often susceptible to subjective

interpretation, to an extent that the most fundamental property of the human connectome,

its density, is still elusive and debated.

Many sophisticated steps from MRI acquisition to connection probability inference for

the human connectome often end with proportional or weight-based thresholding that is

arbitrary and study dependent. In the pursuit of a better, more reproducible, and objective

connectome, we started our work by introducing a network inference framework dubbed

MANIA. MANIA relaxes the need to subjectively fix a threshold in probabilistic tractog-

raphy studies to infer connectome density or filter out spurious connections. We rigorously

validated our method using synthetic data from phantom MRI acquisitions, and also using

high-resolution MRI data. After showing the accuracy of our method, consequent topo-

logical analyses for human brains were based on connectomes inferred by MANIA. In

particular, we ran a subsequent case study of 27 healthy subjects to model the major the

depression disorder circuitry. MANIA circuitry was compatible with clinical practices that

seek to cure the disorder using deep brain stimulation. Further, we presented one of the

first cortical network on the renowned data repository used by neuroscientists from around
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the world: the human connectome database (https://db.humanconnectome.org).

Although the human connectome is undoubtedly the most interesting to study dynamic

processes on, it is unfortunately undirectional for in-vivo dMRI connectomes. Furthermore,

the accuracy and resolution of the connectomes for other mammals, notably macaque and

mice, are still significantly ahead of those of humans. The main reason behind this is the

possibility of using intrusive surgeries and introducing bio-markers in the brain of these

mammals. For example, The Allen Institute published a resolute atlas of the mouse brain

which modelled connectivity between approximately five hundred regions of the mouse

brain. Apart from the resolution and greater confidence in the connectome, the connectome

is directed network as opposed to that inferred from diffusion data, as in the case of human

MRIs.

More suitable dataset plus the fact the neural networks are believed to have same dy-

namics at different scales across the species convinced us to use mouse connectome for the

study of a fundamental dynamic: Multi-sensory integration.

We proposed a framework to model sensory stream flows and integration on the anatom-

ical brain connectomes. The framework is accompanied by rigorous experimental valida-

tion using the state-of-the-art microscopy with both high temporal resolution (< 7 mil-

lisecond) and high spatial resolution (< 8 micrometer). After validating our computational

model, we apply it on ten sensory regions of the mouse cortical connectome and found

that the multi-sensory integration and unified perception view of the world is facilitated

through an hourglass architecture in which few core nodes integrate the sensory informa-

tion and disseminate a digested view to many consumer nodes.

Therefore, the contributions of this thesis can be categorized into the following two

groups of table 5.1
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Table 5.1: Summary of the contributions in this thesis by chapter and type - group 1 is
related to the anatomical analysis while group 2 is related to the MSI dynamic

Contribution group Chapters Type List
Group 1 Chapter 2 Methodological Introducing of network inference

framework (MANIA) for converting
probabilistic tractography data to
actual anatomical connectome and
extending the method to support both
individual and group connectome
inferences.

Chapter 3 Finding Constructing networks to model the
brain circuitry implicated in mental
disorders and identifying the BA25 to
Neuclues Accumbens as the most im-
portant connection in the circuit.

Chapter 3 Finding Presenting cortical anatomical connec-
tome for the human brain using state-
of-the-art diffusion data and parcella-
tion published by HCP.

Chapter 3 Finding Comparison between 7T diffusion data
and 3T counterparts: We validated
MANIA in 3T by benchmarking better
data at 7T.

Group 2 Chapter 4 Methodological Introducing a computational frame-
work to model the propagation of sen-
sory information in the brain at the
early cascade phase.

Chapter 4 Finding Presenting evidence of an hourglass ar-
chitecture in the process of MSI in the
mouse cortex.

Chapter 4 Finding Showing that nodes in the hourglass
waist that we discovered in MSI
have negligible intersection with nodes
ranked high by static network central-
ity metrics.

Chapter 4 Finding Presenting sensory cascades from 10
primary sensory regions in the mouse
cortex - we compared these cascades
together and showed that the olfactory
cascade is the most different of all.
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5.2 Limitations

5.2.1 Lack of ground truth to quantify the accuracy of tractography methods

In the course of this thesis, we have discussed the impact of many algorithmic and method-

ological choices and their shortcomings in inferring human brain anatomical connectome,

e.g., definition of nodes in networks, distance bias, gyral bias and seeding strategy. Unfor-

tunately measuring the ultimate accuracy of different connectome inference methodologies

in the space of all these choices is only possible indirectly for the lack of ground truth con-

nectome. Thus, we resorted to case studies on known circuitry (major depression disorder),

diffusion MR phantom study, and high resolution MR images to quantify the accuracy of

our method in a diverse way. Although, there have been efforts to directly validate tractog-

raphy results using chemical tracers, but they have their own limitations and biases. All in

all, the ultimate benchmark to measure the accuracy of inferred anatomical connectomes is

yet to come.

5.2.2 Undirected nature of diffusion data

A major limitation in mapping brain connections from tractography data is that diffusion

MRI does not provide any information about the direction of connections. Although, we

exploited this limitation to our advantage in chapter 2 and introduced MANIA, the same

limitation prohibited us from using MANIA connectomes in studying MSI dynamics of

chapter 4. Studying communication dynamics requires direction of connections in the un-

derlying network, and the diffusion MRI cannot provide it. Thus, the study of brain-wide

causal communication dynamics (such as MSI) on anatomical connectomes is still impos-

sible in-vivo for humans.
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5.2.3 Partial validation of the ALT model

We ran ALT model from ten primary sensory regions in chapter 4. However, we examined

the validity of the ALT model predictions for 5 primary sensory regions since VSD exper-

imental data for other sensory regions was not available at the time of this study. Also,

the temporal resolution of VSD did not allow us to quantify the accuracy of ALT predic-

tions thoroughly; thus, there were cases in which the results were undecided in terms of

correctness.

5.3 Extensions

Throughout the thesis we have suggested several directions in which this research can be

extended in order to address its limitations or expand its reach. Here, we elaborate upon

the most immediate or interesting ones:

• Thresholding is not the only problem standing in the way of an accurate connec-

tome. The results of probabilistic tractography are severely compromised by dis-

tance bias, i.e., it is harder to find longer connections compared to short ones. It is

now established that the human brain has topological features that are only possible

because of the presence of the direct communication of distant regions, hence the

long connections. Addressing the distance bias problem by systematic modelling of

the probabilistic tractography will lead to a reduction of the bias of distance on prob-

abilistic streamline counts. This will be a considerable contribution to the field of

connectomics.

• The weights of anatomical connectomes are still very controversial; how would one

convert the tractography results to a weighted connectome which is biologically rel-

evant - pruning out the spurious connections and yet constructing a biologically

weighted connectivity matrix? In MANIA, we take a different stand on the weight

issue compared to [91]: instead of interpreting the probabilistic spatial maps that are
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generated using probabilistic tractography as strength-related weights, we generated

a binary network, but with a separate confidence value for each edge. From this

point of view, MANIA generates a binary network, but with the relative confidence

we have in the presence or absence of each edge.

• Comparative connectomes and connectome across the age are two important and

active trends in neuroscience [171, 172]. Studying variations in the brain across

species and ages using the toolkits developed in this thesis, or studying the topolog-

ical features (such as the hourglass structure) across species and ages, are important

untapped directions for future research.

• The studies in chapters 3 (case study B) and 4 are based on cortical brain regions.

The cortex is believed to house higher associative/cognitive functions, but the link

to subcortical regions cannot be ignored. Given that the cortex is the outer layer

of the brain, the quality and availability of data from the cortex is higher than that

of the subcortical regions. However, subcortical data is also sporadically available,

providing a great opportunity to extend the work in this thesis. For example, is the

hourglass structure also seen in the subcortical regions? Is the distance bias model of

chapter 3 valid for data from subcortical regions?

• The results here apply to the macroscale brain. Given the availability of data and

pipeline for mesoscale analysis, it well be worth exploring how the topological fea-

tures vary at that scale.

• We studied the multi sensory brain integration using the primary sensory regions.

One can run the same analysis in other cortical or subcortical regions. Since photo-

stimulation in mice has made it possible to study the cascade from non-sensory re-

gions, the study of these cascades and their differences to sensory cascades remain

open and interesting directions for future research.
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APPENDIX A: LIST OF HCP SUBJECTS USED IN CHAPTER 3

Table A.1: List of the subjects used in our study

Number HCP ID Release Quarter Gender Age

1 126426 S1200 Q12 F 31-35

2 135124 S1200 Q13 F 31-35

3 137431 S1200 Q13 F 31-35

4 144125 S900 Q12 F 31-35

5 146735 S1200 Q12 F 31-35

6 152427 S1200 Q13 F 31-35

7 153227 S900 Q12 F 31-35

8 177140 S1200 Q13 F 31-35

9 180533 S1200 Q12 F 31-35

10 186545 S1200 Q13 F 31-35

11 188145 S1200 Q12 F 31-35

12 192237 S1200 Q11 F 31-35

13 206323 S1200 Q12 F 31-35

14 227533 S1200 Q08 F 31-35

15 248238 S1200 Q13 F 31-35

16 360030 S1200 Q13 F 31-35

17 361234 S900 Q12 F 31-35

18 362034 S1200 Q13 F 31-35

19 368753 S1200 Q12 F 31-35

20 401422 S1200 Q08 F 31-35

21 413934 S1200 Q09 F 31-35

22 453542 S1200 Q12 F 31-35

23 463040 S1200 Q13 F 31-35

24 468050 S1200 Q08 F 31-35

25 481042 S1200 Q12 F 31-35

26 825654 S1200 Q12 F 31-35

27 911849 S1200 Q13 F 31-35

28 917558 S900 Q12 F 31-35

29 992673 S900 Q12 F 31-35

30 558960 S1200 Q12 F 31-35

31 569965 S1200 Q13 F 31-35

32 644246 S1200 Q12 F 31-35

33 654552 S1200 Q12 F 31-35

34 680452 S1200 Q13 F 31-35

35 701535 S1200 Q13 F 31-35

36 804646 S1200 Q13 F 31-35

37 814548 S1200 Q13 F 31-35
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APPENDIX B: SUPPLEMENTARY INFORMATION FOR CHAPTER 4

B-1 Sources of sensory cascades

The ten cortical regions we consider as sources of sensory activation cascades are shown

in Table B-1.

Table B-1: Sources of sensory cascades

Acronym Description Major region Size (number of voxels)
AUDp Primary auditory area Isocortex 2689
VISp Primary visual area Isocortex 6227
GU Gustatory areas Isocortex 2104

SSp-n Primary somatosensory area, nose Isocortex 1358
SSp-bfd Primary somatosensory area, barrel field Isocortex 10306
SSp-ll Primary somatosensory area, lower limb Isocortex 3254
SSp-m Primary somatosensory area, mouth Isocortex 2924
SSp-tr Primary somatosensory area, trunk Isocortex 4799
SSp-ul Primary somatosensory area, upper limb Isocortex 5406
MOB Main olfactory bulb Olfactory Areas 16978

B-2 Connectome filtering

We have repeated the analysis for the following p-values: 0.01, 0.02, · · · 0.1. When the p-

value is smaller than 0.03, the network becomes disconnected. When the p-value is higher

than 0.04, the core nodes remain the same as in Table 4.8d.

Figure B-1 shows the network density for different p-values (left) as well as the con-

nection density (edge weight) versus p-value for each structural connection among the 67

ROIs we consider (right).

B-3 The activation cascade of each sensory source

The ten activation cascades, one for each sensory source, are shown in Figures B-2 through

B-11.
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Figure B-1: Connectome filtering. Left: Network density versus edge p-value. Right:
Connection density (edge weight) versus edge p-value

Sensitivity to activation threshold θ

Recall that if θ is higher than 0.98, the cascade of some sources will not be complete. We

have also computed the core nodes for two lower values of θ: 0.9 and 0.95. The 70%-core

remains exactly the same. The 90%-core for θ = 0.9 includes PERI instead of ECT.

B-4 Analysis of “disagreement cases” between VSD data and ALT modeling results

In this section we analyze the cases in which the VSD experimental results predict a differ-

ent temporal ordering than the ALT modeling results. Recall that a disagreement refers to

a pair of ROIs (e.g., X and Y) for which the activation order in ALT is different than that in

VSD. Thus, every disagreement case involves two different ROIs.

We first split the ROI pairs in two sets, the disagreement cases and the agreement cases.

We measured the Euclidean distance between the center of the two ROIs in each pair of the

two sets. The hypothesis that the sample mean of these distances is the same could not be

rejected with a p-value of 5%.

We did the same for the connection weight between connected ROI pairs, comparing

the average weight of pairs in the set of agreements and the set of disagreements. Again,
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the hypothesis that the sample mean of these distances is the same could not be rejected

with a p-value of 5%.

So, the distance or connection weight between two ROIs does not predict whether they

will be a disagreement case.

Are there certain ROIs that appear in surprisingly many disagreement cases? To answer

this question, we measure the number of times X that each ROI appears in the N disagree-

ment cases that are observed in the cascade of a certain sensory modality (considering the

datasets form all five animals). If an ROI appears in k > µ + 3σ disagreement cases, we

conclude that it is significantly over-represented in the group of disagreement cases. The

mean and standard deviation in the previous inequality are calculated based on the null

model that the disagreements involve randomly chosen pairs of distinct ROIs. So, if K is

the number of ROIs and we have N disagreements (for a specific sensory cascade), then

the probability of selecting a specific ROI in each pair is:

p =
1

K
+ (1− 1

K
)× 1

K − 1
(B.1)

Given that we sample N pairs, the null model is that we will sample each ROI a number of

times X , where X follows the Binomial(N, p). So, µ = N p and σ2 = N p (1− p).

Figure B-12 shows the results for this study. Note that in each of the five cascades, it

is only one or two ROIs that are significantly over-represented in disagreement cases. In

the visual cascade for instance, it is the SSp-bfd ROI that is present in surprisingly many

disagreements.

We further analyzed these disagreements in which one of the two ROIs is an outlier,

asking whether the second ROI is also over-represented. Figure B-12f identifies such ROI

pairs – four of the cascades have only one pair while the Forelimb stimulation cascade

has none. ACAd is an ROI that appears in many disagreements in the visual, whisker

and tone stimulation cascades – note that this ROI appears at the boundary of the cortical
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surface at the VSD datasets and it is only partially visible. So, it is likely that the VSD data

do not reflect accurately the time at which that region is activated after each stimulation.

To a smaller degree, the same may be true for TEa, which is the outlier in the hindlimb

stimulation cascade.

B-5 Similarity between activation cascades with single and complete linkage

Figure B-13 shows hierarchical clustering dendrograms quantifying the similarity between

the ten activation cascades based on single (left) and complete (right) linkage. The corre-

sponding average linkage plot is shown in Figure 4.5-b.

B-6 Activation cascades when two sensory sources are activated simultaneously

We have also considered the case of two simultaneously active sources, considering all

possible pairs of sources (10x9/2=45 cascades). The hourglass analysis is summarized in

Figure B-14. The core nodes are the same with the single-source case, except that the

anterior cingulate area – dorsal part (ACAd) and the Ectorhinal area (ECT) are replaced by

the perirhinal area (PERI).

B-7 Comparison with other network analysis metrics

We first ask whether the path centrality metric correlates strongly with more commonly

used node centrality metrics, namely: incoming or outgoing strength (the equivalent of

“degree” for directed and weighted networks), betweenness centrality (fraction of all short-

est paths traversing a node), closeness centrality (inversely related to average shortest path

distance from that node to any other node), pagerank and eigenvector centrality (two re-

lated “influence” metrics that assign a higher score to a node that is connected to other

highly-scored nodes compared to a node that has the same number of connections to low-

scored nodes) [141]. Given that we are mostly interested in the dissemination of sensory
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information over the network, one may expect that the pagerank and eigenvector centrality

metrics would be more highly correlated with path centrality because such cascades do not

necessarily follow shortest paths [173].

Table B-2: Top-five nodes according to different centrality metrics

Centrality metric Top-five nodes
Out-strength ENTl - CA2 - PIR - FRP - EPv
In-strength CA1 - MOs - ENTl - DP - FRP

Betweenness ENTl - CLA - PERI - VISl - MOs
Closeness ENTl - PERI - CLA - PIR - VISl
Pagerank VISl - RSPagl - VISpm - FRP - RSPv

Eigenvector MOs - FRP - AOB - CLA - MOp
Path Centrality CLA - SSs - PTLp - AUDv - MOs

Table B-2 shows the top-five nodes in the network for each centrality metric. Figure B-

15 shows scatter plots for the previous centrality metrics, comparing each of them with

path centrality. The plots also show Kendall’s τ rank correlation coefficient. All centrality

metrics are computed using networkx [174].

Strength (either for outgoing or incoming edges) only considers the local connections

of each node; nodes in the hippocampal formation (CA1, CA2, ENTl) are among the most

strongly connected, while none of the τ -core nodes ranks highly in terms of strength. The

betweenness and closeness metrics are both based on shortest paths; the lateral entorhinal

(ENTl) ranks highest in terms of that metric, while the claustrum (CLA) is the only τ -core

node in the top-5 according to these two metrics. The highest ranked node based on pager-

ank is the lateral visual area (VISl) while the highest ranked node based on eigenvector

centrality is (by far) the secondary motor area (MOs).

Table B-3 shows the five rich-club nodes. The rich-club analysis is performed on un-

weighted and undirected networks and the rich-club coefficient is computed based on 1000

random surrogate networks, as described in [143]. The rich-club coefficient peaks at 1.15

for nodes with total degree over 23. Only two of the nodes in the rich-club overlap with the

hourglass τ -core (CLA and MOs).
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Table B-3: Rich-club nodes, Rombach core nodes nodes, and hourglass core nodes
(τ=90%): the overlap between the first two sets with the hourglass core nodes is high-
lighted in red.

Mode Nodes
Rich club (in order of total degree) BLA, CLA, ENTl, MOs, PERI

Rombach (in order of Rombach score [146])

CA2, CA1, FRP, ENTl,
MOs, EPv, PIR, MOp
DP, COAa, NLOT,
PAA, AOB

Hourglass Core for τ=90% (in order of path coverage)
CLA, PTLp, AUDv, AOB
SSs, MOs, ACAd,
VISl, ECT

We also performed a core-periphery analysis on weighted but undirected networks us-

ing Rombach’s method [146]. The core nodes according to this method are reported in

Table B-3. Again, only two of the nodes in that core set overlap with the hourglass τ -core

(MOs and AOB).

109



Figure B-2: Visual cascade (source: VISp)
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Figure B-3: Auditory cascade (source: AUDp)
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Figure B-4: Gustatory cascade (source: GU)
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Figure B-5: Upper-limb somatosensory cascade (source: SSp-ul)
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Figure B-6: Lower-limb somatosensory cascade (source: SSp-ll)
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Figure B-7: Whiskers somatosensory cascade (source: SSp-bfd)
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Figure B-8: Trunk somatosensory cascade (source: SSp-tr)
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Figure B-9: Mouth somatosensory cascade (source: SSp-m)
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Figure B-10: Nose somatosensory cascade (source:SSp-n)
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Figure B-11: Olfactory cascade (source: MOB)

119



(a) Whisker cascade (b) Visual cascade

(c) Forelimb cascade (d) Hindlimb cascade

(e) Tone cascade (f) Disagreement ROI pairs

Figure B-12: (a)-(e): The number of disagreements between VSD and ALT that involve
each ROI, over the 21 ROIs that appear in the VSD data. The outlier ROIs have frequencies
that exceed the red dashed line. (f) Disagreement ROI pairs that appear in all five animal
datasets - each row corresponds to a different stimulus. ROIs at the boundary of the VSD
visible cortical surface are marked by a star.
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(a) Single linkage (b) Complete linkage

Figure B-13: Similarity between activation cascades.

(a) (b)

(c)

Figure B-14: Simultaneous activation of two source nodes: (a) Path Centrality (PC) his-
togram for the 67 cortical nodes, considering all source-target paths across the 10×9/2=45
activation cascades. (b) Cumulative path coverage by the top-X core nodes for X=1· · · 67.
(c) Eight nodes are enough to cover τ = 90% of all paths.
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Figure B-15: Path centrality compared to other centrality metrics. Each point corresponds
to one of the 67 nodes in the network. The four star nodes constitute the hourglass core
for τ=70%. All nodes are color-coded based on the broader brain region they belong to
(isocortex, hippocampal formation, cortical subplate, olfactory areas).
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