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SUMMARY

Architectural simulation is one of the most important performance modeling ap-

proaches for architecture design. Compared to the native execution speed, the simulation

speed has 10,000x times slowdown. Therefore, the techniques that reduce the simulation

time are required. Prior techniques target for the conventional benchmark suites, which are

either single-threaded or having limited parallelism. However, the emerging workloads,

such as GPGPU kernels and data analytic workloads, feature massive parallelism and huge

data volume. Prior simulation techniques are not applicable to these workloads or could

still incur long simulation time. In this dissertation, three simulation techniques were pro-

posed to simulate these large-scale applications accurately and efficiently.

First, this dissertation presents the sampling techniques, inter-launch and intra-launch

sampling, for reducing the simulation time of GPGPU kernels. In inter-launch sampling, a

new feature vector is proposed to capture the control and memory divergence, which are the

unique characteristics of GPGPU kernels. In intra-launch sampling, the dynamic sampling

approach is proposed to sample the instruction intervals that are non-deterministic due to

warp scheduling effect.

Second, even with sampling, the number of simulated instructions is proportional to

the number of threads in the system. The longer simulation time is expected with more

hardware threads integrated onto the GPU. To further reduce the simulation time, an ab-

stracted simulation technique were proposed. Instead of using detailed timing simulation,

the simulation model is abstracted using functional simulation and analytical modeling.

This technique models the performance of a multithreaded GPU core using the execution

behaviors of a single warp. It achieves low modeling error of performance compared to a

detailed timing simulation while achieving two orders of magnitude speedup.

Finally, to reduce the simulation time of data analytic workloads, a sampling frame-

work were proposed to select the simulation points. Prior sampling approaches focused on

xiii



capturing the performance difference caused by code changes. However, because of the

data diversity of the data analytic workloads, the sampling approach needs to take the data

impact on performance into account. The framework profiles the workloads with negligible

overhead on a real machine for fast analysis of phase behaviors. It uses stratified random

sampling, a statistical sampling technique, to account not only the performance impact of

code, but also other factors, such as data access patterns. Furthermore, it provides the input

sensitivity test to further reduce the simulation time when simulating multiple inputs.

xiv



CHAPTER 1

INTRODUCTION

1.1 The Problem: Reducing the simulation time of large-scale appli-
cations

Architecture simulation is an important performance modeling technique. Modeling the

hardware components with sufficient detail helps developers to identify both hardware and

software bottlenecks. It is more flexible than hardware counters because it can be modi-

fied to provide some program statistics that hardware counters may not provide, such as

instruction-level parallelism (ILP). In addition, simulation is a required tool for designing

future processors before they are implemented in the hardware.

However, the major issue of architectural simulation is the huge simulation time. Since

architecture simulation uses software to model hardware behavior, its speed is several order

of magnitude slower than real hardware. For example, the typical speed of an architecture

simulator is from 10,000 instructions per second up to several million instructions per sec-

ond while the slowdown compared to the actual execution is around 10,000x. Thus, it is

important to reduce the simulation time in order to make simulation a feasible solution for

performance study.

The speed gap between simulation and real hardware is growing wider and wider for

the following reasons: (1) hardware complexity, (2) massive parallelism and (3) massive

data.

In terms of hardware complexity, the future processor will become more complex

and accommodate more hardware components to improve performance. For example, the

network-on-chip (NoC) design will be more complex to reduce the communication over-

head between cores. Memory hierarchy will become deeper to avoid off-chip memory

accesses. Since more complex hardware designs require more lines-of-code to model their

behaviors, the cost of simulating one instruction becomes higher.

1



In terms of massive parallelism, the technology trend is to integrate more cores into a

chip to increase performance. Furthermore, the new computing platform, GPGPU, exe-

cutes thousands of threads concurrently using a large number of simple cores. To match

the hardware parallelism, a straightforward approach is to parallelize the simulator. How-

ever, the speedup is still limited since memory system is shared creating a single point of

bottleneck. To accurately model the memory contention between threads, synchronization

is required to ensure the correctness of their access orders. In addition, periodic synchro-

nization, e.g., every 1000 cycles, is required to make sure the threads progress at the same

speed. The synchronization overhead negates the benefits of parallelization, especially

when the number of cores is high.

In terms of massive data, the data analytic workloads, which are the services deployed

in data centers, process a huge amount of data on multiple nodes. For such workloads,

more extensive resources are required to simulate because of the involvement of multi-

node simulation and the large input set. Another challenge of simulating the data analytic

workloads is to deal with the managed runtime, e.g., Java, applications, since the workloads

are usually written in high-level languages to achieve platform independence.

Prior studies have proposed various techniques to reduce the simulation time, such as

sampling [3, 1] and simulation abstraction [4]. However, they all focus on traditional ap-

plications or hardware without accounting for the existence of higher parallelisms in the

modern hardware and software. From a hardware perspective, they target platforms with

a small number of out-of-order cores (up to 8 cores [5, 6]), that are very different from

some modern platforms, e.g., GPGPU, featuring a large number of simpler in-order mul-

tithreaded cores. From a software perspective, the emerging workloads, GPGPU kernels

and the data analytic workloads, have very different characteristics from the conventional

benchmarks, e.g., SPEC [7] and PARSEC [8]. The conventional benchmarks are purely
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CPU-bound, native executed without managed runtimes and have limited thread-level par-

allelism. In this dissertation, several mechanisms have been innovated to efficiently simu-

late the GPGPU kernels and data analytic workloads, which have massive thread and data

parallelism, with small modeling errors.

1.2 The Solution: Domain-specific simulation mechanisms

The solution to the emerging large scale workloads is to design domain-specific simulation

techniques. Based on the characteristics of the applications and the execution model of

the platform, we design a set of simulation-based modeling techniques for GPGPU kernels

and data analytic workloads. They are based on mathematical theory to provide trustworthy

simulation results. The highlights of the proposed techniques are as follows.

1.2.1 Sampling technique for GPGPU kernels

To reduce the simulation time of GPGPU simulation, we have developed TBPoint, the sam-

pling technique that can deal with the massive thread-level parallelism (TLP). Simulating

the GPGPU kernels may incur a huge overhead since GPUs typically have a large num-

ber of threads and high throughput. However, since the prior sampling techniques do not

account for massive parallelism, the sample size is likely to be more than required.

The proposed sampling technique, TBPoint, contains inter-launch sampling and intra-

launch sampling. Inter-launch sampling selects the representative kernel launches to be

simulated while the performances of the remaining kernel launches are predicted as the

same as the representative ones. Then, intra-launch sampling selects and simulates the

instructions within a kernel launch. The proposed sampling technique can quickly adapt to

different levels of thread-level parallelism incurring little overhead.

1.2.2 Hybrid modeling technique for GPGPU kernels

Even though the simulation time can be reduced through sampling, the number of simulated

instructions of each simulation point may be high depending on the number of threads in
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the system. By contrast, to quickly model the performance, analytical modeling is likely to

have higher errors.

The proposed technique, GPUMech, leverages both functional simulation and analyt-

ical modeling to balance the accuracy and the modeling speed. Based on the concept of

interval analysis [9, 10], an analytical model of multithreaded core is developed to model

the performance while the cache simulation is used to identify the stall events of a thread.

The proposed technique balances the speed and accuracy. In addition, it provides the CPI

stack for analyzing the performance bottlenecks in a GPGPU kernel.

1.2.3 Sampling technique for data analytic workloads

Because of the era of big data, the data analytic workloads, which have the computations

scale out to multiple nodes, have growing importance. Even though many frameworks have

been developed for those workloads, it is still a challenge in the architecture community

to simulate those workloads. Although some sampling tools exist, they are inadequate

for those workloads that are implemented using high-level languages and that have long

running time.

The proposed technique, SimProf, is a profiling tool for analyzing the phase behaviors

and selecting the representative simulation points. It profiles the Java applications using

Java call stacks and the hardware counter values. To select the simulation points, SimProf

uses the stratified random sampling approach to deal with the non-homogeneous phase

behaviors.

1.3 Thesis Statement

The modern software and hardware that feature massive parallelism can be simulated effi-

ciently without sacrificing much accuracy by designing mechanisms based on their execu-

tion characteristics.
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1.4 Organization of This Thesis

Chapter 2 provides the related work of different categories of simulation techniques. Chap-

ter 3 presents the sampling technique for GPGPU kernels. Chapter 4 presents the hy-

brid modeling technique that combines functional simulation and analytical modeling for

GPGPU kernels. Chapter 5 presents a sampling framework for data analytic workloads

based on modern computing platform, e.g., Hadoop and Spark. Chapter 6 concludes this

document.
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CHAPTER 2

RELATED WORK

Multiple techniques have been proposed to reduce simulation time including simulation

sampling, statistical simulation and parallel simulation, each of which is explained as fol-

lows.

2.1 Simulation Sampling

Simulation sampling, one of the most popular techniques to reduce the simulation time,

selects the sampling units to be simulated in detail while “fast-forwarding” the other sam-

pling units. During fast-forwarding, the detailed timing simulation is not performed, but

the functional simulation is still required to guarantee the functional correctness. The sam-

pling unit size is a variable depending on the sampling technique. Sampling techniques can

be classified into statistical sampling and profile-driven sampling described as follows.

2.1.1 Statistical Sampling

Statistical sampling takes samples based on statistical theories. Two sampling techniques

have been proposed for statistical sampling: random sampling and systematic sampling

(periodic sampling). Conte et al. [11] proposed random sampling which selects the sam-

pling units at random. This approach provides the confidence interval and error bounds,

but it is based on unrealistic assumptions about the micro-architecture, e.g., perfect cache

hierarchy or branch prediction. Wunderlich et al. [3] proposed SMARTS, which chooses

systematic sampling over random sampling to take samples since it is more intuitive to be

implemented in an event-driven simulator. In addition, SMARTS uses the z-score of the

central limit theorem to estimate the required sample size to achieve the specified confi-

dence interval without assuming the target population. SMARTS uses a small sampling

unit size, 1000 instructions, to minimize the instructions simulated in detail. For such a
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small sampling unit size, the requirement of the reconstruction of cache and branch pre-

dictor states is more important compared to a large sampling unit size. Thus, SMARTS

applies “functional warming,” which continuously warms the components with long his-

tory to guarantee correct micro-architecture states at all times. The major bottleneck of

SMARTS is the speed of functional warming since the authors found that the required

instructions for detailed simulation are relatively small (< 1%).

Carlson et al. [6] and Ardestani et al. [5] extend SMARTS to support multithreaded ap-

plications on multi-core platforms. The challenge of sampling multithreaded applications

is to decide the relative speed of each thread during fast-forwarding. The IPC of a thread

in the previous period is used as the IPC of the fast-forwarding period of the thread. In

addition, the authors adopt systematic sampling but take samples based on cycles instead

of instructions and claim better accuracy than instruction-based sampling like SMARTS.

2.1.2 Profile-driven Sampling

Profile-driven sampling takes samples based on the profiled information. The idea is to

pick a sampling unit from each program phase as the simulation point. Since other sam-

pling units in the same phase are predicted to have the same behavior as the selected point,

the overall IPC can be predicted. The profiling is used to cluster sampling units into phases.

Thus, the key to good accuracy is to extract the features of each sampling unit that can ac-

curately cluster the sampling units with similar behaviors into phases. Sherwood et al. [1]

developed Simpoint, the most popular profile-driven sampling technique. Because they

found that the instructions being executed have a strong correlation with performance [12],
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Basic Block Vector (BBV) is used as the feature vector of each sampling unit. Equation 5

shows the representation of a BBV. BBV characterizes the basic blocks executed in a sam-

pling unit and their execution counts. By clustering the BBVs using k-means, a clustering

algorithm, the sampling units are grouped into clusters, while each cluster is a phase. For

each cluster, a sampling unit closest to the centroid of the cluster is selected as the sim-

ulation point of the phase. Equation 3 shows the overall CPI. The weight of a phase is

determined by the number of sampling units in the phase, as shown in Equation 2.

BBV =< BB1 :
#BB1 insts

#insts
, BB2 :

#BB2 insts
#insts

...BBN :
#BBN insts

#insts
> (1)

phase weighti =
#sampling unitsi

total sampling units
(2)

Total CPI =
∑

i∈phases

(simulation point CPIi × phase weighti) (3)

Pinpoint [13] leverages the Pin tool [14], a dynamic instrumentation tool, to collect

BBVs. Sherwood et al. proposed a processor architecture based on the concept of BBV

with online phase detection. Perelman et al. [15] extended Simpoint to provide statistically

valid simulation points with confidence interval analysis. Biesbrouck et al. [16] proposed

co-phase matrix, which detects phases when multi-programmed workloads are running.

Lau et al. [17] extended Simpoint to support variable-length sampling units so that the sam-

pling unit size is better matched with the period of a phase. In addition to BBV, Eeckhout et

al. [18] consider several micro-architecture independent metrics to find simulation points.

They also explored picking simulation points cross-input and cross-program to further re-

duce the number of simulation points. Similarly, Lau et al. [19] use program semantics,

called graph and loop graph, to identify the phase changes in the software level. For multi-

threaded benchmarks with barriers, Carlson et al. [20] consider each inter-barrier region as

a sampling unit and use BBV to pick the inter-barrier regions needed to be simulated.

SMARTS and Simpoint can be compared based on (1) implementation easiness, (2)

accuracy and (3) efficiency. From an implementation easiness standpoint, the simulation
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points selected by Simpoint are easier to be used by simulators since no warming tech-

niques need to be implemented while SMARTS requires functional warming integrated

into simulators and statistical analysis to be performed. From an accuracy perspective, Yi

et al. [21] concluded that SMARTS is slightly more accurate than Simpoint. The reason is

that Simpoint determines the similarity between sampling units using code signature (BBV)

without considering micro-architecture states. On the other hand, SMARTS determines re-

quired sample size based on the central limit theorem using the actual CPI variation. Wun-

derlich et al. [22] applied stratified random sampling using BBVs and found that it does not

provide much benefit over simple random sampling when the sampling unit size is small.

From an efficiency perspective, SMARTS is slower than Simpoint due to the overhead of

functional warming. In addition, SMARTS requires running the entire benchmark, while

in Simpoint, the simulation can be terminated early once all simulation points have been

simulated.

2.2 Statistical Simulation

Different from sampling, statistical simulation reduces the simulation time by generating

and simulating synthetic traces rather than simulating the original programs. To generate

synthetic traces, a set of program characteristics is profiled and represented as distribu-

tions. This process is called statistical profiling. Then, statistical simulation used a simple

simulator to simulate the synthetic traces to get performance numbers. Because the length

of a synthetic trace is much shorter than the original program, the simulation time can be

greatly reduced.

Statistical profiling characterizes the program statistics into micro-architecture depen-

dent and independent statistics. The micro-architecture independent statistics include in-

struction mix and dependency distance distribution. Statistical profiling also needs to con-

sider control flow behaviors. Oskin et al. [23] propose using control flow graph tagged

with transition probabilities. Eeckhout et al. [24] propose the statistical flow graph (SFG),
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which uses a Markov chain to further improve the accuracy. Using SFG, the execution

paths caused by different control flows are better captured. The micro-architecture depen-

dent statistics include the locality events, such as cache and branch predictor behaviors.

The initial designs of statistical simulation [25, 26] to capture the locality events do not

consider the delayed hits and the memory level parallelism (MLP). Genbrugge et al. model

the delayed hits by collecting the cache line reuse distributions and model MLP through

the global history of cache events. Functionality-wise, the synthetic trace simulator is sim-

ilar to the full blown simulator but it is less complex since it only needs to simulate the

information encoded in the traces.

2.3 Parallel Simulation

Eeckhout [27] categorizes parallel simulation into (1) parallel sampled simulation and (2)

parallel simulation, explained as follows.

Parallel sampled simulation divides a simulation into multiple time chunks. Simflex [28]

speeds up SMARTS using checkpoints. According to Simflex, 99% of the overhead of

SMARTS comes from functional warming. Thus, the authors proposed “live points” to

store the micro-architecture states in addition to the functional states. Instead of check-

pointing the whole micro-architecture states, only the states of cache hierarchy and branch

predictor need to be stored since most of micro-architecture states can be reconstructed

through a few thousand instructions of warming. The simulation can be parallelized by

running different checkpoints in parallel. One limitation of this approach is that the stored

micro-architecture states are not flexible and may not be used in different hardware con-

figurations, e.g., different cache sizes. Using checkpoints to parallelize the simulation.

Parallelizing simulations using checkpoints has been used in other work [29].

Parallel simulation is becoming popular for simulating multi-core platforms. It is nat-

ural to parallelize by cores because of the independence between core executions. The
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intuitive way is to synchronize between cores every cycle. Although this approach in-

curs no errors, the synchronization overhead outweighs the benefits of parallelization. The

cycle-by-cycle synchronization can be relaxed using quantum-based synchronization [30],

which synchronizes between threads every quantum size, e.g. N cycles. If the quantum size

is smaller than the latency of propagating an event from one thread to another, the accu-

racy is the same as the cycle-by-cycle synchronization. For multicore processors, since the

communication latency between threads is small, the quantum size needs to be in the range

of tens of cycles without losing accuracy [31]. Similarly, the small quantum size limits

the benefit of parallelization. To address this limitation, some studies trade accuracy for

speed by further relaxing the synchronization. Slacksim [32] uses the concept of “slack”

defined as the cycle count difference between threads. The simulation can tolerate a certain

amount of slack without barrier synchronization. Zsim [33] uses the “bound-weave” ap-

proach, which divides the synchronization into two steps. In the first step, the threads run

in parallel to determine the interaction between threads on shared resources. In the second

step, since the interaction between threads is known from the first step, the synchronization

can incur much lower overhead. Zsim also uses Pin tool [34], a binary instrumentation tool,

to speed up the functional simulation and applies an instruction-driven timing model, which

moves the timing model to the instrumentation stage for low-overhead timing simulation.

2.4 Analytical Modeling
2.4.1 Analytical Models of Single-threaded Cores

The foundation of interval analysis was proposed by Karkhanis et al. [9] and Eyerman

et al. [10]. The basic idea is that the performance of a processor is equal to the issue

rate of a processor (a sustained performance) unless disruptive miss events occur such as

branch mispredictions or cache misses. Performance is then estimated by subtracting the

stall cycles due to different stall events from the maximum issue rate. Figure 2 illustrates

interval analysis. An interval is defined as a sequence of instructions with the maximum

issue rate followed by stall cycles. Functional simulators are used to detect stall events.
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Figure 2: Example of interval analysis. (i: instruction.)

Several studies improved or applied the interval analysis technique. Genbrugge et

al. [35]. proposed “interval simulation,” which improves the simulation speed by abstract-

ing the out-of-order execution using interval analysis. Eyerman et al. [36, 37] proposed

performance counter architectures for out-of-order processors and SMT processors based

on interval analysis. Chen et al. [38] improved the accuracy of the technique considering

pending cache hits, prefetching, and MSHRs. Breughe et al. [39] applied the technique to

in-order processors.

2.4.2 Analytical Models of Multi-threaded Cores

Chen and Aamodt proposed a first-order performance model of a multithreaded core [40].

They performed a Markov chain analysis to predict the performance of a multithreaded

core similar to a GPU core except with vector processing. To begin with, a single thread is

modeled as a random variable with two states: activated and suspended. Activated means

that the thread can issue an instruction at the cycle. Otherwise, it is stalled. The transition

probability from activated to suspended is p, while the probability from suspended to acti-

vated is 1
M , where M is the number of cycles of a thread being suspended. By performing

the Markov chain analysis, the probability of being in any state at any cycle can be known.

In the past few years, several GPU performance models have been proposed. Bagh-

sorkhi et al. [41] proposed using a work flow graph (WFG), an extension of the control

flow graph, to estimate the performance. Zhang and Owens [42] proposed a model to mea-

sure the execution time of the instruction pipeline, shared memory, and global memory

respectively using micro-benchmarking. However, these prior works did not model the
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cache hierarchy that is equipped in all modern GPUs.

GPUPerf [43] is a performance analysis framework used to predict the performance

bottlenecks of GPGPU kernels. The authors use benefit metrics to indicate the relative im-

portance of different performance bottlenecks: B f p, Bitilp, Bmemlp, and Bserial. They model

the benefits of removing the inefficient computation, increasing TLP and MLP, and remov-

ing the synchronization and resource contention. B f p represents the benefits of removing

the inefficient computation; Bitilp represents the benefits of increasing the thread-level par-

allelism; Bmemlp represents the benefits of increasing the memory-level parallelism; and

Bserial represents the benefits of removing the synchronization and resource contention.

The benefit metrics are generated by the performance model extended from the MWP-

CWP model [44]. But, similar to the model for a multithreaded core, they do not model

the queuing delay due to resource contention in the memory system nor do they model the

scheduling policy. This affects not only the modeling accuracy, but also the reported ben-

efit metrics. For example, the model may suggest increasing the memory-level parallelism

(MLP), but it may instead hurt the performance due to increased queuing delays. In addi-

tion, the proposed benefit metrics do not show the performance bottlenecks in detail, e.g.,

micro-architecture level.

Eq. 4 shows that the total execution time is composed of Tcomp, Tmem and Toverlap. Tcomp

is the execution time to excute compute instruction. First, the total exeuction cycles of a

single warp is counted. Because the execution cycles from multiple warps can overlap, such

effect can be modeled by estimating the TLP. Similarly, to compute Tmem, the overlapping

effect can be modeled by estimating the memory-level parallelism (MLP). Toverlap repre-

sents the degree of how much the memory access cost can be hidden by warped execution.

Toverlap is equal to min(Tcomp×,Tmem).

Texec = Tcomp + Tmem − Toverlap (4)

In addition to performance models, several GPU cache models have been proposed.
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Baghsorkhi et al. [45] applied Monte Carlo simulation for a finite number of times to mimic

the non-deterministic schedule deviation between thread blocks. Tang et al. [46] applied

the reuse distance theory on a single thread block to model the cache miss rate without

considering MSHRs. Nugteren et al. [47] proposed a cache model for L1 cache based

on the reuse distance theory. They emulate per-warp memory traces with the round-robin

scheduling policy. In addition, they modeled MSHRs accounting for a limited number of

outstanding misses.

2.5 Input Set Selection

Prior work on input sets focused on selecting the representative input sets. Eeckhout et

al. [48] used principle component analysis (PCA) to select the representative program-

input pairs. They characterize each program-input pair using 20 program characteristics,

such as instruction mix and cache miss rates. Breughe et al. [49] used BBV to select the

representative inputs for microprocessor design space exploration. Hsu et al. [50] found

that procedure coverage and microarchitecture behaviors are different between the training

and reference sets of SPEC 2000.
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CHAPTER 3

TBPOINT: REDUCING SIMULATION TIME FOR LARGE-SCALE
GPGPU KERNELS

This chapter first describes the problem of long simulation time of GPGPU kernels. To

reduce the simulation time, this chapter introduces TBPoint [51], which is an infrastructure

that reduces the instructions to be simulated by sampling GPGPU kernel launches and

thread blocks. On average, the solution leads to 1.74% of sampling error compared to full

simulation while simulating only 2.6% of total instructions.

3.1 Introduction

Recently, one of the main scientific computing paradigms in addition to Titan [52] and

CSCS (Swiss National Super- computing Center) [53] is General-purpose graphics process-

ing units(GPGPU), which has large-scale computing power. To take advantage of this

computing power, a wider range of algorithms have been converted to GPGPU kernels.

Future workloads of GPGPU kernels will be much more complex and much larger scale.

To design new architectures optimized for GPGPU kernels, computer architects use a

cycle-level simulator to gain insights into kernel behaviors. Using cycle-level simulation

can help not only architects but also application developers to understand the performance

bottleneck in applications and architectures.

However, because GPGPU architectures have many cores to simulate, cycle-level simu-

lation takes a significant amount of execution time. Table 1 shows comparisons of GPGPU

execution times and expected simulation times of a cycle-level GPGPU simulator. The

GPGPU execution times are from Burtscher et al. [54], and we used the Macsim simulator

for the GPGPU simulations [55]. The slowdown of Macsim running on the Intel Ivy-bridge

is around 80,000x compared to native NVIDIA Quadro processors. Even for kernels with
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Table 1: Comparison of GPGPU execution time and Simulation Time. GPU time is for
NVIDIA Quadro 6000.

Time NB SP SSSP PTA TSP DMR MM
GPU
(msec)

28557 18779 7067 4485 4456 3391 881

Simulation 3.78
weeks

2.48
weeks

6.54
days

4.15
days

4.13
days

3.14
days

19.58
hours

a few seconds of running time, the simulation time takes days. As a result of this slow-

down, simulation is an unattractive approach. Although most GPGPU kernels have short

kernel sizes, the overhead comes from simulating a massive number of threads. Because

of the computing power of GPU processors, an 80,000x slowdown is reasonable. GPGPU

applications can easily have 1GFLOPS or even higher performance. If a simulator can sim-

ulate 1,000FLOPS/sec (which is similar to 10K instructions per sec in typical cycle-level

simulators), a 106 slowdown is typical. To accelerate simulation time, one can parallelize

a cycle-level GPGPU simulator, but when large-scale GPGPU systems are simulated, the

required resources for such simulations become significant.

In this chapter, we first introduce the GPGPU simulation model and the terminology.

Then, we discuss the existing sampling techniques on reducing simulation time.

3.2 Background and Motivation
3.2.1 Target Platform and Terminology

Figure 3 illustrates GPGPU simulations and the following terminology used throughout the

chapter.

• Occupancy: For a kernel, “system occupancy” refers to the maximum number of

concurrent thread blocks, while “SM occupancy” refers to the maximum number of

concurrent thread blocks on one SM. For example, Figure 3 shows that SM occu-

pancy is 1 and system occupancy is 4 for both Kernels A and B.

• Kernel Launch (Launch): A “kernel launch” is an instance of a GPGPU kernel that

can be executed multiple times. For each kernel launch, thread blocks are dispatched
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Figure 3: GPGPU Simulation Overview

in a sequence based on their thread block IDs. The global thread block scheduler

dispatches the thread blocks in a greedy fashion. All thread blocks of the kernel

launch need to be executed before the next kernel launch.

• Warp/Thread Instruction: “Warp instructions” or “instructions” are those executed

by a warp, and “thread instructions” are those executed by a thread within a warp.

• Interval: An interval is a series of contiguously executed instructions.

3.2.2 Motivation

In profiling-based sampling, the idea is to profile a program and find the instruction in-

tervals likely to have homogeneous behaviors based on the program characteristics. The

simulation time can be reduced by simulating one interval to represent the performance of

the other intervals with homogeneous behaviors.

The requirements of profiling-based sampling are as follows.

• Hardware independence: The profiling should have no constraints on the platform

where the profiling can be performed.

• One-time profiling: The profiling needs to be executed only once for each pro-

gram/input combination, and the results can be used in different hardware configura-

tions.
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• Mathematical model support: The sampling approach should be supported by de-

tailed mathematical modeling to confirm its accuracy.

The most popular profiling-based sampling technique targeting single-threaded CPU

applications is Simpoint [1], the functionality of which is described as follows.

• At profile time, the program is divided into sampling units that contain a fixed number

of instructions, such as one million instructions. Then, the profiler collects a basic

block vector (BBV) for each sampling unit. A dimension of the vector represents

a basic block in the program. The value of a dimension is the executed instruction

counts of the basic block normalized by the total instruction counts, as shown in

Equation 5. The BBVs, used as feature vectors, are fed into the clustering algorithm,

k-means, to group the sampling units into clusters. For each cluster, a sampling unit

that is selected as the simulation point represents the performance of the other units

in the cluster.

• At simulation time, only the sampling units selected as simulation points need to

be simulated. The other sampling units can be skipped by fast-forwarding. Each

simulation point could have different weights, depending on the number of sampling

units in the cluster. The overall CPI can be predicted by Equation 5.

BBV =< BB1 :
#BB1 insts

#insts
, BB2 :

#BB2 insts
#insts

...BBN :
#BBN insts

#insts
>

Total CPI =
∑

i∈phases

(representative unit CPIi × phase weighti)

phase weighti =
#sampling unitsi

total sampling units

(5)

Since GPGPU kernels can be considered as multithreaded applications, Pinpoint [14],

an extension of Simpoint for sampling multi-threaded applications, could be applicable

to GPGPU kernels. In Pinpoint, BBVs are collected on a per-thread basis by actually

executing all threads on a real system. However, it does not meet the requirements of

profiling-based sampling for the following reasons.
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• The profiling needs to be redone for different hardware configurations since the pro-

filing results (simulation points) can only be applied to the simulated platform, which

has the same hardware configurations as the profiling platform.

• Although the BBV has a strong correlation with performance in single-thread ap-

plications [12], it is uncertain whether the same would be true for GPGPU kernels

because of the warp scheduling effect.

Table 2 summarizes the comparisons of different profiling-based sampling techniques.

To satisfy all of the requirements of profiling-based sampling, we propose a sampling ap-

proach, TBPoint. In terms of hardware independence, TBPoint uses GPUOcelot [56] as

the profiling tool, which performs the functional simulations of GPGPU kernels and col-

lects the information about each thread block. In terms of one-time profiling, for different

hardware configurations, such as a different number of warps and SMs, TBPoint simply

needs to re-perform clustering while reusing the profiling results, incurring low overhead.

To model the warp scheduling effect, we use a Markov Chain model that accounts for the

performance impact of the effect.

Table 2: Comparisons of profiling-based sampling techniques
applicability
to GPGPU

hardware inde-
pendence

one-time
profiling

math model
support

Simpoint [1] N Y Y Y
Pinpoint [14] Y N N N
TBPoint Y Y Y Y

To reduce the GPGPU simulation time, inter-launch sampling and intra-launch sam-

pling are proposed. To reduce the number of kernel launches, the former selects the kernel

launches that need to be simulated. If different kernel launches have homogeneous behav-

iors, only one of them needs to be simulated to represent the others. To reduce the simu-

lation time of a kernel launch, intra-launch sampling selects the thread blocks that need to

be simulated within a kernel launch. inter-launch sampling and intra-launch sampling are
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explained in the following sections.

3.3 Inter-Launch Sampling

Using hierarchical clustering, inter-launch sampling groups the kernel launches with homo-

geneous performance. We simulate only one kernel launch within each cluster and predict

that the performance of the other kernel launches within each cluster will be the same as

the simulated launch, thus reducing simulating time.
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Figure 4: Procedure of Inter-Launch Sampling.

Figure 4 shows the procedure of inter-launch sampling. First, each kernel launch is

represented as a feature vector, which is the input to the clustering algorithm. A feature

vector describes the characteristics of a kernel launch that contains four features (described

below), each of which belongs to one dimension of the vector. Then, hierarchical clustering

processes the feature vectors and groups them into clusters. Since each feature vector

represents a kernel launch, the kernel launches within the same cluster are believed to have

homogeneous performance (IPCs).

The design of feature vectors is important since a feature vector should correctly de-

scribe the characteristics of a kernel launch so that the hierarchical clustering can group the

kernel launches with homogeneous performance into a cluster. The features with which we

chose to compose a feature vector and their performance impact are shown as follows.

• Kernel launch size: The number of thread instructions of a kernel launch is used as

a feature to capture the size of a kernel launch.
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• Control flow divergence: Because simply capturing the number of thread instruc-

tions of a kernel launch does not reflect its degree of control flow divergence, the

number of warp instructions of a kernel launch is used as a feature to capture the de-

gree of control flow divergence. Even if two kernel launches have the same number

of thread instructions, they may have different IPCs due to different degrees of con-

trol flow divergence. For example, Kernel Launch 1 executes 32 thread instructions

in one warp instruction, while Kernel Launch 2 executes 32 thread instructions in 32

warp instructions.

• Memory divergence: Because kernel launches with different numbers of memory

requests are likely to have different IPCs, the number of memory requests of a kernel

launch is used as a feature to capture the degree of memory divergence. The degree

of memory divergence is independent of the number of thread blocks and the control

flow divergence. For example, a warp instruction that contains 32 thread instructions

can issue at least one and up to 32 memory requests if none of the accesses can be

coalesced.

• Thread block variations: The coefficient of variations (CoV) of thread block sizes

of a kernel launch is used as a feature to capture the variations of thread block sizes.

Thread block size is defined as the number of thread instructions in a thread block.

All the above features are designed as if only one thread block were running per

kernel launch. However, a kernel launch typically has multiple thread blocks, and

different thread blocks may have a different number of instructions. For example,

let’s assume that kernel launch 1 has two thread blocks with the number of thread

instructions 100 and 100, respectively, and that kernel launch 2 has two thread blocks

with the number of thread instructions 160 and 40, respectively. Even though both

kernel launches may have the same size (200 thread instructions), they may perform

differently because of distinct thread block interleaving situations.
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Equation 6 shows the inter-feature vector composed of the above features, each of which

is normalized with its average value across all kernel launches so that they have the same

order of magnitude.

For kernel launch i,

inter f eature vectori =< Kernel Launch S ize,Control Flow Divergence,

Memory Divergence,Thread Block Variations >

=<
#thread instsi

avg thread insts
,

#warp instsi

avg warp insts
,

#mem reqsi

avg mem reqs
,CV T B size >

(6)

Hierarchical clustering takes all inter-feature vectors and groups them into clusters. For

each cluster, the kernel launch with the inter-feature vector closest to the center of the

cluster is selected as a simulation point that will be sampled by intra-launch sampling.

We chose hierarchical clustering instead of the k-means algorithm used by Simpoint for

the following reason. The number of clusters can be determined automatically by setting

the distance threshold σ, which is the maximum distance between any two points in a clus-

ter. The higher threshold results in fewer clusters, which decreases the total sample size,

but the variations within each cluster could be higher, which increases the sampling er-

rors. The appropriate value of the distance threshold depends on the required accuracy and

hardware configurations. On the other hand, the k-means algorithm requires a pre-defined

number of clusters as an input, which needs another index, such as Bayesian information

criterion (BIC) score, to set. In addition, while the results of hierarchical clustering are

deterministic, the results of k-means could be affected by the selection of the initial seeds.

For all hardware configurations that we tested, the distance threshold = 0.1 for inter-launch

sampling can minimize the sampling errors to less than 10% on average.

The proposed inter-feature vector has the following advantages over BBVs, which were

used in Simpoint. First, it provides more insight into performance behavior. We found that

BBVs are less correlated with performance on GPGPU programs. GPGPU kernels often

have very few basic blocks and even the same basic blocks show very distinct performance
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behaviors because of memory divergence, thread block variations, and other behaviors.

Furthermore, the same kernel can be launched multiple times but each invocation of the

kernel shows particular behaviors, e.g., reduction kernel. Hence, although BBVs can be

useful to detect program behavior, the sources of performance variations cannot be solely

obtained through BBVs. On the other hand, the proposed vector is also more computation-

ally efficient since it has only four dimensions, while the BBV has a number of dimensions

equal to the number of basic blocks in the kernel launch. 1

3.4 Intra-Launch Sampling

Once inter-launch sampling selects a kernel launch from each cluster for simulation, intra-

launch sampling can further reduce the simulation time by sampling the selected kernel

launch.

Figure 5 shows a high-level view of intra-launch sampling. Within a kernel launch,

our goal is to sample homogeneous regions, which have homogeneous performance across

multiple thread blocks. In a homogeneous region, a few thread blocks are simulated while

the others are skipped so as to reduce the simulation time. The IPC collected from the

simulated thread blocks is predicted to be the IPC of the entire homogeneous region. The

1The BBV can be added as another feature for improving accuracy with the cost of increased total sample
size. The study of such extension is left for our future work.
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thread blocks not in any homogeneous regions are simulated as usual.

The design presents the following challenges.

• How do we define a homogeneous region? (Section 3.4.1)

• During profiling, how do we identify the location of a homogeneous region? (Section

3.4.3)

• During simulation, how do we sample a homogeneous region? (Section 3.4.4)

3.4.1 The Design of Intra-Launch Sampling

Our design of intra-launch sampling identifies a homogeneous region through the mathe-

matical model that quantifies the IPC variations under different warp interleaving situations

that we assume are caused by variable memory latencies due to resource contention and/or

queuing delay. Based on our model, such IPC variation has proven to be small. The IPC of

a homogeneous region can be predicted as equal to one of its homogeneous intervals. The

definitions and proofs are as follows.

Definition 1:

• p is the stall probability that is the probability of a warp being stalled, and M is the

average stall cycles consumed by a stall event. p is modeled as a constant while M

is modeled as a random variable following Gaussian distribution. N is the number of

warps in an SM.

• A homogeneous interval is a sequence of executed instructions from concurrent

warps, and each warp has the same p and M.
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• A homogeneous region is the region with consecutive homogeneous intervals with

the same p and M.

Lemma 1 The IPC variation of a homogeneous interval under different warp interleaving

situations caused by random variable M is within a 10% difference of the average IPC.

Definition 1 shows all definitions that are required for the model. As an example of

the input parameter p and M, let us assume that 10% of the instructions of a warp are

long latency instructions, and each of which consumes 400 cycles on average. Then, p is

a constant equal to 0.1. M is a random variable following N(µ, σ2) where the σ = 0.1×µ
1.96

so that 95% of randomly picked Ms is within ±10% of µ (400 cycles). Figure 6 shows the

state diagram of a warp, which is the basic building block of the model.

Lemma 1 is proven by modeling the IPC variation of a homogeneous interval that in-

cludes two steps. First, the IPC of a homogeneous interval is predicted by the Markov

chain, which considers the warp interleaving effect. Second, the IPC variation caused by

variable M can be predicted by the Monte Carlo method, which performs the Markov chain

analysis a finite number of times.

S i, j =

N∏
x=1

f (Ai[x], A j[x]), Ai[x], A j[y] ∈ {0, 1}, 0 ≤ i, j < 2N − 1

f (Ai[x], A j[x]) =


Ai[x] × p + (1 − Ai[x]) ×

1
Mx

, Ai[x] 6= A j[x]

Ai[x] × (1 − p) + (1 − Ai[x]) × (1 −
1

Mx
), Ai[x] = A j[x]

Vi =< R0,R1,R2...R2N−1 >=< 0, 0, 0, ...1 >

Vs = lim
n→∞

ViT n

T =



S 0,0 S 0,1 ... S 0,2N−1

S 1,0 S 1,1 ... S 1,2N−1

... ... ... ...

S 2N−1,0 S 2N−1,1 ... S 2N−1,2N−1


IPC = 1.0 × (1 − R0)

(7)
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To predict the IPC under different warp interleaving situations, the Markov chain is

used, as shown in Equation 7. Let us assume that each warp is an independent and iden-

tically distributed (i.i.d.) random variable. The size of the transition matrix is 2N × 2N , as

each warp has two states and the number of warps in an SM is N. The transition proba-

bility S i, j is the element of the transition matrix T and its calculation is shown as follows.

For example, S 6,2 is the transition probability from 0110 (6) to 0010 (2), in which each bit

represents a warp such that Warp 1 is the most significant bit, Warp 2 is the second most

significant bit, and so on. In this case, S 6,2 is the probability of Warp 2 transiting from a

runnable to stall state while other warps remain in their current states since the second most

significant bit is flipped from 1 (runnable) to 0 (stall) while other bits remain unchanged.

After constructing the transition matrix, steady state vector Vs and the expected IPC can be

calculated using Equation 7. The initial state vector Vi is < 000...1 > since all warps are

initially in the runnable states.

After the IPC is predicted by Markov chain model, we need to quantify the IPC vari-

ation caused by variable M using the Monte Carlo method, which performs the Markov

Chain a finite number of times (samples). For each sample, M of each warp is randomly

selected. The total number of samples is set to 10,000. Figure 7 shows that the IPC varia-

tion of a homogeneous interval is low since more than 95% of the samples have less than

a 10% difference of the average IPC. In this figure, increasing the memory intensity by

increasing p and M leads to higher IPC variation since the mean of IPC is decreasing. By
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contrast, increasing the number of warps decreases the IPC variation based on the central

limit theorem.

By Lemma 1 , we can conclude that for a homogeneous interval or region, its IPC is

stable and not sensitive to different warp interleaving situations. The model provides a

theoretical range of IPC values of different warp interleaving situations caused by random

variable Ms of a homogeneous interval: For more than 95% of samples with randomly

picked Ms, the IPCs are within 10% error of the average IPC.

Our model shares some similarities with other Markov chain models that predicts the

IPC of a multithreaded core [40]. However, in these models, M is modeled as a constant,

which is unrealistic for the stall events such as DRAM accesses, which have variable la-

tencies resulting from a queuing delay. Our model provides a detailed study that examines

IPC variation caused by variable stall latencies M.

3.4.2 Implementation of Intra-Launch Sampling

Our implementation of intra-launch sampling has two components: (1) homogeneous re-

gion identification and (2) homogeneous region sampling. The former identifies the homo-

geneous regions during profiling. The locations of homogeneous regions are stored in the

homogeneous region table. The latter samples the homogeneous regions using the homo-

geneous region table during simulation.

Since profiling is done at the thread block level, to reduce the complexity of implemen-

tation, we change the definitions of homogeneous regions and intervals from the warp level

to the thread block level. For example, the definition of a homogeneous interval becomes a

sequence of executed instructions from concurrent thread blocks with the same p and M.

3.4.3 Homogeneous Region Identification

The basic idea of homogeneous region identification is shown as follows. During profil-

ing, because the thread blocks within a homogeneous region must have the same p and

M, identifying a homogeneous region requires the information of which thread blocks are
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concurrently running at any time period. Since we observe that thread blocks having closer

thread block IDs are likely to be running concurrently, we group several thread blocks with

closer IDs into an ”epoch”, as shown in Equation 8. The size of an epoch is equal to the

system occupancy. For example, the epoch size of Figure 5 is four thread blocks. An epoch

with all thread blocks that have equal p and M is a homogeneous interval. If consecutive

epochs has equal p and M, a homogeneous region is constructed by those epochs.

epochi = {T Boccupancy∗i,T Boccupancy∗i+1...T Boccupancy∗i+occupancy−1} (8)

Implementing the idea contains three steps: (1) epoch vector construction, (2) epoch

clustering, and (3) homogeneous region construction.

Epoch vector construction: Epoch vector construction converts each epoch into an

intra-feature vector that is used to find epochs with the same average stall probability (p)

and average stall cycles (M). An intra-feature vector uses the stall probability of an epoch,

which is the stall probability averaged over all thread blocks in an epoch, as the only feature.

The stall probability (p) and average stall cycles (M) of each thread block are collected as

follows. Equation 9 illustrates intra-feature vector.

• Stall probability (p) The stall probability of a thread block is approximated using the

ratio of the number of memory requests to the total number of instructions collected
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for each thread block. The types of memory requests that we consider are global and

local memory accesses.

• Average stall cycles (M) The average stall cycles of a thread block is not collected

since the average stall cycles M cannot be determined without detailed timing simu-

lations. Instead, we assume that if two epochs have the same stall probability (p) for

the thread blocks, the average stall cycles (M) from two epochs are also equal since

the same kernel code is executed.

Xepoch j = {xT Bi |T Bi ∈ epoch j}

xT Bi = The number o f memory requests in T Bi

Yepoch j = {yT Bi |T Bi ∈ epoch j}

yT Bi = The number o f warp instructions in T Bi

stall probabilityepoch j =

∑
T Bi∈epoch j

( xT Bi
yT Bi

)

|Xepoch j |

intra f eature vectorepoch j =< avg stall probabilityepoch j >

variance f actorepoch j = max(CoV(Xepoch j ),CoV(Yepoch j ))

(9)

Epoch clustering: Hierarchical clustering groups epochs using their intra-feature vec-

tors and generates a cluster ID for each epoch. The epochs with the same cluster ID are

believed to have the same p and M. However, some thread blocks with distinct stall prob-

abilities and/or number of instructions, called outlier thread blocks, in an epoch may result

in different performance and they may not be captured by hierarchical clustering. Thus, af-

ter grouping, post-processing must be done to capture the epochs with outlier thread blocks

using the variation factor (VF), which quantifies the dissimilarity between thread blocks

using the coefficient of variation (CoV), as shown in Equation 9. If the variation factor of

an epoch is larger than some threshold, indicating the existence of outlier thread blocks,

the epoch should be removed from the cluster it belongs to and assigned its own cluster.

Homogeneous region construction: After every epoch has been assigned a cluster,

a homogeneous region is constructed for a sequence of consecutive epochs that share the

29



  

RID=1

RID=1

RID=1

RID=1

RID=1

RID=1

RID=1

RID=1

RID=1

RID=1

RID=1

Homogeneous Region 
Start

RID=1

Fast-forwarding Period

RID=1

RID=1

RID=1

RID=1

RID=1

RID=1

…..
…..

…..

…..

Fast-forwarding 
Start

RID=1

RID=1

RID=1

PID=1

SU = 1 SU = 2 SU = 3 SU = 4

IPC = 9.5 IPC = 9.0

Warming Period

IPC = 7.3

Homogeneous Region Exit
and Fast-forwarding Stop

SM 1

SM 2

SM 3

SM 4

Predicted 
IPC = 9.0

Simulation Simulation

Figure 9: Example of Homogeneous Region Sampling. SU = sampling unit ID. RID =
homogeneous region ID.

same cluster. The ID of the cluster, used as the region ID, is assigned to every thread block

in a region. For every homogeneous region, all its thread blocks and their corresponding

region IDs are stored in the homogeneous region table, as shown in Table 3.

Figure 8 illustrates homogeneous region identification. During epoch vector construc-

tion, because the first four epochs have the same stall probability (0.2), their intra-feature

vectors are equal. Similarly, the remaining four epochs have the same intra-feature vec-

tors. During epoch clustering, the first four epochs are grouped into one cluster while

the remaining epochs are grouped into the other cluster. Because the variation factors of

the third and fourth epochs are high indicating the existence of outlier thread blocks, the

epochs are removed from the cluster. During homogeneous region construction, two ho-

mogeneous regions are identified. The first and second epochs belong to one homogeneous

region while the last four epochs belong to the other homogeneous region.

Table 3: Example of Homogeneous Region Table
Region ID Start TB ID End TB ID

1 0 40
2 50 120
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3.4.4 Homogeneous Region Sampling

After the locations of homogeneous regions are determined, we need to sample homoge-

neous regions using the homogeneous region table during simulation. The basic idea is to

simulate only a few thread blocks within a homogeneous region and skip the other thread

blocks in the region. The IPC of the region is predicted as equal to the IPC of the simulated

thread blocks. For the thread blocks not in any homogeneous regions, they are simulated

as usual.

To sample a homogeneous region, we must define the size of a sampling unit. The IPC

of a sampling unit represents the IPC of a homogeneous region. We define a sampling unit

as the interval between the start and end of a specified thread block. The first specified

thread block is the very first dispatched thread block when the simulation begins. Once

the current one is retired, another thread block will be specified. Compared to the design

of sampling units with a fixed number of instructions, this design ensures that every sam-

pling unit has a similar stall probability since the specified thread block executes the whole

kernel code, which potentially captures the behaviors of the whole kernel. In addition,

as it requires no instruction counting for determining the length of an interval, the design

simplifies the complexity of implementation.

Sampling a homogeneous region contains three steps: (1) entering, (2) sampling and

(3) exiting a homogeneous region. Each step is described as follows.

Entering: Entering a homogeneous region happens when all concurrently running

thread blocks belong to the same homogeneous region in the homogeneous region table.

Sampling: Once a homogeneous region is entered, sampling a homogeneous region

breaks into two periods: (1) a warming period and (2) a fast-forwarding period. During

the warming period, the thread blocks are simulated as usual, and the IPC of the current

sampling unit is recorded. If the IPC difference between the current and previous sampling

units is less than 10%, the cache states are considered stable and the fast-forwarding period
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Table 4: IPCs of Inter-Launch and Intra-Launch Sampling
Inter-Launch sampling

total CPI =
∑

clusterk∈clusters

representative kernel launch CPIclusterk×

cluster weightclusterk

cluster weightclusterk =

∑
launchp∈clusterk

#kernel launch instslaunchp

total insts

Intra-Launch sampling
launch insts =

∑
i∈simulated T Bs

#T B instsi +
∑

j∈skipped T Bs

#T B insts j

launch cycles =
∑

i∈simulated T Bs

#T B cyclesi +
∑

j∈skipped T Bs

#T B insts j

homogeneous region IPC j

launch CPI =
launch cycles
launch insts

begins. Otherwise, the warming period continues. During fast-forwarding period, the dis-

patched thread blocks are skipped while the IPC of the homogeneous region is predicted to

be the IPC of the last sampling unit in the warming period.

Exiting: The homogeneous region exits when the newly dispatched thread block region

ID differs from the current homogeneous region ID. Then, the simulation continues.

Figure 9 illustrates homogeneous region sampling. Initially, because not all thread

blocks of sampling unit 1 are in a homogeneous region, the homogeneous region is not

entered until sampling unit 2. Sampling units 2 and 3 belong to the warming period of

sampling step. Since the IPC difference between sampling units 2 and 3 is less than 10%,

the cache states are stable and the fast-forwarding period starts at sampling unit 4. Dur-

ing fast-forwarding period, the remaining thread blocks from the region are skipped. The

homogeneous region exits when the thread block that does not belong to the region is dis-

patched. Then the simulation continues as usual.

Table 4 summarizes how the overall IPC is predicted when inter-launch and intra-launch

sampling techniques are applied. Note that these two sampling techniques, which are or-

thogonal, can be applied independently.
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3.5 Evaluation
3.5.1 Evaluation Configurations

We use Macsim, a cycle-accurate trace-driven simulator, as our simulation platform in

which the homogeneous region sampling technique is implemented. The detailed simula-

tion configurations, based on the NVIDIA Fermi architecture, are listed in Table 5.

Table 5: Simulation Configuration.

Number of cores 14

Front End
Fetch width: 1 warp-instruction/cycle,
4KB I-cache, 5 cycle decode

Execution core

1.15 GHz,
1 warp-instruction/cycle,
32-wide SIMD execution unit,
in-order scheduling
instruction latencies are modeled
according to the CUDA manual

On-chip caches
16 KB software managed cache
16 KB L1 cache, 128B line, 8-way assoc
768 KB L2 cache, 128B line, 8-way assoc

DRAM
1.15GHz, 2 KB page,
16 banks, 6 channels,
FR-FCFS scheduling policy

Table 6 shows the evaluated benchmarks, long running benchmarks from several bench-

mark suites. For those with multiple kernels, we select the kernel that has the longest run-

ning time. Figure 10 depicts our method of classifying regular and irregular kernels based

on thread block sizes. The X axis is the thread block ID, while the Y axis is the thread block

size. Types (a) is a regular kernel since the thread block sizes exhibit particular patterns.

Type (b) is an irregular kernel.

We evaluate the following sampling techniques.

• TBPoint: This approach applies both inter-launch sampling and intra-launch sam-

pling. The distance threshold of hierarchical clustering is for the former 0.1 and for

the latter 0.2. The variation factor is 0.3.
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Table 6: Evaluated Benchmarks (Type I: irregular kernel, Type II: regular kernel)
Benchmark Suite Type # Kernel launches # Thread blocks Abbreviation

BFS lonestar I 41 10619 bfs
SSSP lonestar I 49 12691 sssp
MST lonestar I 9 2331 mst

MRI-Gridding parboil I 7 18158 mri
SPMV parboil II 50 38250 spmv
LBM parboil II 6 108000 lbm
CFD rodinia II 100 50600 cfd

Kmeans rodinia II 30 58080 kmeans
Hotspot rodinia II 1 1849 hotspot

StreamCluster rodinia I 21 2688 stream
BlackScholes sdk II 87 41760 black
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• Random sampling (Random): We conduct a full simulation in which we collect

IPC for every sampling unit with one million instructions and randomly select 10%

sampling units.

• Ideal-Simpoint: For Ideal-Simpoint, we collect the BBV and IPC for every sam-

pling unit with one million instructions. Then, we use the Simpoint tool for cluster-

ing BBVs and simulation point selection. The overall IPC can be calculated using

Equation 5. The difference between Ideal-Simpoint and the original Simpoint is that
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the full timing simulation is performed in Ideal-Simpoint to collect BBV from con-

current warps in every sampling unit, so Ideal-Simpoint is not a viable solution for

the GPGPU platform. Without a full timing simulation, what instructions are exe-

cuted by each warp in every sampling unit is unknown because of the unpredictable

effect of warp scheduling.

• Full: The total IPC is collected through the full simulation with no sampling tech-

niques applied.
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3.5.2 Comparisons

Figure 11 shows the total IPCs of three approaches. The geometric mean of the sampling er-

rors of Random, Ideal-Simpoint, and TBPoint are 7.95%, 1.74%, and 0.47%, respectively.

Random has a much higher error rate, especially for the irregular kernels. The sampling

errors of Ideal-Simpoint and TBPoint are less than 2% for all benchmarks, except mst.

Ideal-Simpoint has the highest errors (8.5%) for mst because the BBVs cannot detect the

thread-level parallelism (TLP) changes caused by the outlier thread blocks, which have

considerably more instructions than the others.

Figure 12 shows the total sample size of the three approaches. The geometric mean of

the total sample size of Random, Ideal-Simpoint, and TBPoint are 10%, 5.4%, and 2.6%,

respectively. For regular kernels, while Random takes many more samples than needed

since it cannot detect the regularity in a kernel, the other approaches have a similar sample

size. For irregular kernels, the average sample size of TBPoint is 50.5% of the sample size

of Ideal-Simpoint because the intra-feature vector captures changes in stall probabilities.

mst has a high sample size (55%) because to achieve high accuracy, TBPoint needs to

simulate the epochs with outlier thread blocks.
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Figure 13: Breakdown of the Relative Percentage of Skipped Instructions from Inter-
Launch and Intra-Launch Sampling.

Figure 13 shows the relative percentage of skipped instructions from inter-launch and
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intra-launch sampling. For regular kernels, most savings come from the inter-launch sam-

pling for both approaches because all kernel launches are homogeneous, except binomial

and hotspot, which only have one kernel launch. For irregular kernels, the percentage of

inter-launch sampling decreases since different kernel launches are not homogeneous. For

mst, most savings come from intra-launch sampling since different kernel launches have

different sizes. For stream, hundreds of homogeneous kernel launches cause the most sav-

ings to come from inter-launch sampling.
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Figure 14: Errors of L1/L2 cache miss rates.

Figure 14 shows the errors of L1/L2 cache miss rates. The average errors of the L1 miss

rates of Ideal-Simpoint and TBPoint are 1.5% and 2.2%, respectively, while the average

errors of the L2 miss rates are 4.5% and 2.9%, respectively. The errors are higher for

irregular kernels because of the random memory accesses. Some kernels have errors close

to or equal to 0 because they have no data localities, which causes a very high miss rate,

such as black and lbm. The L2 error is similar to the L1 error but it is much higher for

some kernels, such as sssp, because of the low L2 miss rates, leading to errors that are

more sensitive to the mispredictions of cache miss rates.
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Figure 15: Sampling Errors of Different Hardware Configurations. W is the number of
warps in an SM, and S is the number of SMs
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Figure 16: Total Sample Sizes (Ratios) of Different Hardware Configurations

3.5.3 Sensitivity Analysis

TBPoint can quickly adapt to the hardware configurations with system occupancy change,

such as those with a different number of SMs or warps. The required computations are

shown as follows. For intra-launch sampling, the homogeneous region identification needs

to be redone since the epoch size changes according to system occupancy. The overhead is

small compared to that of profiling all thread blocks using GPUOcelot, which only needs to

be done once, regardless of the system occupancy. For inter-launch sampling, because the

kernel characteristics do not change when the system occupancy changes, the clustering of

inter-launch sampling needs to be done only once.
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Figure 15 shows the errors of the hardware configurations with different system occu-

pancies. The maximum error rate is less than 14%. Some kernels exhibit high variation

in the error rate for the following reasons. First, the cache states are not fully constructed

because of the lack of cache accesses during fast-forwarding, leading to inaccurate IPC af-

ter fast-forwarding. Second, if a kernel is more memory intensive, IPC variation is higher.

However, IPC variation decreases if the system occupancy increases.

Figure 16 shows the sample sizes of the hardware configurations with different system

occupancies. For regular kernels, when the system occupancy is low, the total sample size is

lower since the size of the epoch size is proportional to the system occupancy. However, for

irregular kernels, low system occupancy may have a high sample size because of the longer

warming period, which occurs when the sampling units in the warming period exhibit high

IPC variations resulting from incomplete cache states. In the cases of the cache-sensitive

kernels, such as bfs and sssp, the low system occupancy usually takes a longer warming

period.

3.6 Summary

The proposed TBPoint system raises the possibility of simulating large-scale GPGPU appli-

cations by significantly reducing the GPGPU simulation time while achieving low sampling

error and total sample size. Moreover, the design of TBPoint achieves three requirements

of a good profiling-based sampling technique: hardware independence, one-time profiling,

and mathematical model support.

As a greater range of algorithms is converted to GPGPU kernels, finding the perfor-

mance bottlenecks using detailed timing simulations has growing importance. TBPoint

provides an efficient method of simulating large-scale GPGPU kernels.
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CHAPTER 4

GPUMECH: GPU PERFORMANCE MODELING TECHNIQUE
BASED ON INTERVAL ANALYSIS

Chapter 3 introduces a sampling methodology for GPGPU kernels. To reduce the sim-

ulation time, an orthogonal approach is to improve the simulation speed. Instead of us-

ing detailed timing simulation, this chapter presents an abstracted simulation approach,

GPUMech [57], which leverages both functional simulation and analytical modeling to

model the performance. On average, the overall speed is 97x faster than the detailed sim-

ulation while having only 13.2% sampling error compared to the full simulation. In ad-

dition, it can visualize the performance bottlenecks in microarchitecture level using CPI

stack, which help architects gain insights into workload behaviors. While detailed timing

simulation is irreplaceable, the proposed approach can be leveraged in the early stage of

processor design for design space exploration.

4.1 Introduction

Performance models are attractive solutions to speed up simulation speed, especially for

exploring early-stage design options. The models can provide greater insight for under-

standing architectures and applications. For example, analytical models have been pro-

posed for both CPUs and GPUs [58, 59, 60, 40]. However, because of the relatively short

history of GPU architectures, fewer analytical models and fast-simulation methods have

been developed for GPUs.

Even though several GPU performance models are proposed [44, 41, 42, 43], unfor-

tunately, most of them have focused on helping software optimizations. These models use

hardware performance counters or program analysis to understand the performance bot-

tlenecks of software, but they have not been used to explore different GPU architecture

design options. Jia et al. [61] presented a regression-based GPU model that can explore the
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design space with various hardware parameters, but this model lacks in providing insight

into performance changes.
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Figure 17: The CPIs of different number of warps in an SM

For example, Figure 17 shows CPIs with different number of warps in an SM for three

kernels from Rodinia suite [62]. The regression-based model cannot provide the infor-

mation on what limits the performance at each design point. In addition, it incurs high

overhead since training the model requires thousands of detailed simulations.

Analytical models are simple and fast enough to get a first-order performance estima-

tion, but they often have higher errors than detailed timing simulations. As an alternative

solution to traditional analytical models, interval analysis was proposed [9, 10], which uses

both trace-driven functional simulators and an analytical model to estimate core-level per-

formance. The key difference between traditional analytical models and interval analysis

is that while traditional analytical models use the average (or total summation) value of

events, interval analysis traverses the instruction trace and tracks the performance degra-

dation events, such as cache misses and branch mispredictions, and then a model is used

to estimate the performance impact of each event. Tracking the events only requires func-

tional simulations, e.g., cache simulation, which results in at least a 100x speedup com-

pared to cycle-level simulations [38, 63, 39]. Hence, the interval analysis technique is

faster than detailed cycle-level simulation while having a higher accuracy than traditional

analytical models. Furthermore, interval analysis also provides the CPI stack, which shows

the breakdown of different types of performance loss events and can provide an insight into
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performance behavior.

Nonetheless, no previous interval analysis technique has been proposed for GPU archi-

tectures. Prior interval analysis techniques cannot be naı̈vely applied to GPU architectures

for two reasons. First, multithreading is not considered. Techniques have been developed

for single-core or multi-cores in which only one thread executes per core but not for multi-

threaded architectures in which multiple threads concurrently execute to hide the memory

latency. Second, control and memory divergence are not considered, since they are unique

behaviors in SIMD/SIMT architectures.

To overcome these limitations, we propose an interval analysis technique, called GPUMech,

the first interval analysis technique for GPU architectures. GPUMech profiles the instruc-

tion trace of every warp and uses a clustering algorithm to identify the representative warp.

This is critical for kernels that have control-flow divergent warps. To model multithread-

ing, GPUMech introduces the concept of non-overlapped instructions to accurately model

the latency hiding capability of a scheduling policy. To handle performance degradations

resulting from memory divergence, the resource contention in the memory system is also

modeled.

4.2 Background and Motivation
4.2.1 Motivation

Multithreading: To apply CPU-based interval analysis to an in-order multithreaded archi-

tecture, e.g., GPU, several challenges exists. First, the previous interval analysis techniques

have only been developed for single-threaded applications. Extending the model from a

single-threaded architecture to a multithreaded architecture requires emulating instruction

scheduling from multiple threads, which could incur high overhead.

IPCcore = IPCsingle−warp per f ormance × #warps (10)

Alternatively, as shown in Eq. 10, a naı̈ve approach to predict the performance of a mul-

tithreaded architecture is to use interval analysis for a single warp, which is then multiplied
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Figure 18: The case of interval analysis with multiple warps. A green box represents an
interval. The red boxes contain the instructions that do not overlap with the stall cycles.
(W: warp, i: instruction.)

by the number of warps to get the final performance of multithreading. It assumes that the

total cycles of a single warp remain unchanged while all instructions from the other warps

can be issued during the stall cycles of the single warp to hide the stall cycles. However,

this approach does not accurately model the warp scheduling policy, in which case the total

cycles may change since not all instructions from the other warps can overlap with the stall

cycles. The extra cycles, which are needed to issue the instructions that do not overlap with

stall cycles, result in performance loss.

Figure 18 shows an example. Assume that 3 warps are running on a core and each of

which has two intervals: Interval 1 has 1 instruction while Interval 2 has 4 instructions.

Both intervals have 10 stall cycles. The issue rate is 1 instruction per cycle. During interval

1, a total of three instructions can be issued, so the IPC for the core is 3/11, which is the

same result as using Eq. 10 (1/11 × 3). However, this is an optimistic assumption. For

Interval 2, warp 3 cannot issue instructions 4 and 5 during the stall cycles of warp 1. To

issue those instructions, extra issue cycles are required. In Section 4.4.1, we will illustrate

and model two widely used scheduling polices: round-robin (RR) and greedy-then-oldest

(GTO) policies to consider the extra issue cycles incurred in both polices.
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Figure 19: Interval analysis with different degrees of memory divergences.

Resource Contention in the Memory System: The second issue of the naı̈ve approach

is that it ignores resource contention in the memory system, which is likely to occur with

multithreaded architectures. One of the unique features of a GPU architecture is that the

number of memory requests from a SIMD/SIMT instruction varies significantly depending

on the degree of memory divergence, referred to as uncoalesced memory accesses. Fig-

ure 19 illustrates that stall cycles can vary significantly because of queuing delays caused

by memory divergence. To address the problem, we model the queuing delays of limited

MSHR entries and DRAM bandwidth, shown in Sections 4.4.2.1 and 4.4.2.2.
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Figure 20: The errors of a kernel from the SRAD benchmark. The arrows represent the
error reduction from its left-side configuration.

A Case Study: To provide a more concrete example, we show how modeling different

components reduces the error gradually. Figure 20 shows the error of interval analysis

compared with a detailed timing simulation for an SRAD kernel that has divergent memory

accesses from Rodinia [64]. Naive Interval bar shows the error when using Eq. 10.

MT models the round-robin scheduling policy while MSHR and DRAM Bandwidth model

resource contention for the MSHRs and DRAM bandwidth, respectively. As the result

shows, modeling both scheduling policy and resource contention is critical to improve the
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accuracy of the interval analysis technique for GPUs.

4.3 Single-Warp Model
4.3.1 GPUMech Overview
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Figure 21: GPUMech Overview

Figure 21 shows the performance model of GPUMech, including single-warp and multi-

warp models. The input of the single-warp model is generated by the input collector de-

scribed in Section 4.5. For the single-warp model, the interval algorithm, described in the

next subsection, models an in-order execution of a warp and forms its intervals. “Selecting

the representative warp” chooses the representative warp that has an interval profile similar

to that of the majority of warps.

Eq. 11 shows an interval profile of a warp, defined as a collection of intervals con-

structed by the interval algorithm. Each interval has the information of the number of

instructions and stall cycles. The interval profile of the representative warp is sent to the

multi-warp model.

interval pro f ile = {[#interval instsi,stall cyclesi] , i ∈ intervals} (11)

Eq. 12 shows the final CPI, which is the sum of the CPIs of multithreading and resource

contention, predicted by the multi-warp model.

CPI f inal = CPImultithreading +CPIrc contention (12)
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Figure 22: Intervals of a warp. (The shaded boxes indicate the stall cycles in which no
instructions are issued. The instructions in dark gray are the ones that lead to stall cycles.)

4.3.2 Interval Algorithm

The purpose of the interval algorithm is to construct a warp’s interval profile assuming

an in-order execution model. The inputs of the interval algorithm are (1) the instruction

latency per static instruction and (2) the instruction trace of a warp tagged with depen-

dency information. The generated interval profile of each warp will be used to select the

representative warp.

Figure 22 illustrates intervals of a warp. The done cycle is equal to the issue cycle plus

the instruction latency. instruction 3 (i3) leads to stall cycles because instruction 5 (i5)

depends on it. On the other hand, other instructions in the first interval have no dependent

instructions, so they do not cause any stall cycles.

The interval algorithm traverses every instruction in the instruction trace of a warp. It

determines the issue cycle of each instruction using Eq. 13, assuming that one instruction

can be issued every cycle. An interval is formed if the issue cycle of the current instruction

is not equal to the issue cycle of the previous instruction plus one, since it indicates that the

stall cycles are incurred between the two instructions. In that case, the previous instruction

is included into the newly formed interval, while the current instruction will belong to the

interval that will be formed next. The algorithm proceeds until every instruction in a warp

belongs to an interval.

issue cycle(instk+1) = max(issue cycle(instk) + 1, done cycle(source instk+1) + 1) (13)
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4.3.3 Selecting Representative Warp

Once the interval profile of each warp is collected, we select one warp to predict the overall

performance. However, as some warps may have different degrees of control divergences,

their interval profiles could be quite different. Using the interval profile from a random

warp as an input to the multi-warp model can lead to high error, since the warp may not

be representative of the other warps. Therefore, to reduce the errors caused by control

divergences, we attempt to identify the most representative warp using clustering.

Specifically, GPUMech uses the k-means algorithm, which requires two inputs: (1) the

number of clusters and (2) the feature vector of each warp. We set the number of clusters

to two. One cluster is to capture the majority warps with similar interval profiles while the

other cluster is to capture the outlier warps.

warp per f =
∑

i∈intervals(#interval instsi)∑
i∈intervals(

#interval instsi
1.0(issue rate) + stall cyclesi)

(14)

A feature vector is used to characterize the interval profile of a warp. One simple ap-

proach is to represent each interval as one dimension of the vector. Then the number of

dimensions is equal to the number of intervals of a warp. However, clustering the vectors

is not scalable, since a feature vector for a long-running warp may have thousands or more

dimensions (intervals). Instead, we use the warp performance, which is the IPC when a

warp is running alone on a core, as shown in Eq. 14, as one dimension of the vector. Our

assumption is that if two warps have different interval profiles, their warp performances are

different, and vice versa. However, the warp performance may not capture the warps with

different number of intervals, e.g., distinct iteration counts, even though their performances

are the same. Thus, the number of instructions of a warp is also used as another dimen-

sion of the vector. The final feature vector of a warp is shown in Eq. 15. Both features are

normalized by the respective average value over all warps.

f eature vectorw = [
warp per fw

avg warp per f
,

#warp instsw

avg warp insts
],w ∈ warps (15)

The representative warp is selected as the warp closest to the center of the largest cluster,
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since its interval profile is more likely to be representative of the majority of warps and thus

will be used as the input of the multi-warp model.
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Figure 23: Errors from different representative warp selection methods. Each tick rep-
resents a control divergent kernel and data points are sorted by the errors of Clustering
approach.

Figure 23 shows the errors of GPUMech when it uses three different methods to select

a representative warp. (The baseline configuration is shown in Table 7). The three selection

methods are (1) MAX: selecting the warp with the maximum warp performance; (2) MIN:

selecting the warp with the minimum warp performance and (3) Clustering: selecting the

warp using clustering. For some kernels, the three cases have similar errors, indicating

that the difference of interval profiles of warps is negligible. For the others, the clustering

method usually has the best accuracy.

4.4 Multi-Warp Model

The multi-warp model uses the interval profile of the representative warp and predicts the

performance under multiple warps, which is the typical situation on a GPU core. Specif-

ically, it models the performance improvement due to multithreading and the degradation

due to resource contention.

4.4.1 Modeling Multithreading

We model multithreading by assuming that multiple warps are running on a core without

resource contention. The key idea is to count the number of instructions of the remain-

ing warps that hide the stall cycles of the representative warp. Later, we add resource
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contention modeling. Ideally, all instructions in the remaining warps hide the stall cycles.

However, some instructions do not hide the stall cycles, leading to sub-optimal perfor-

mance. In the following, we illustrate and model two popular warp scheduling polices:

round-robin (RR) and greedy-then-oldest (GTO) [65] polices.

In our terminology, among the warps assigned to a given core, the warps other than the

representative warp are referred to as the remaining warps. From the remaining warps,

the instructions that hide the stall cycles of the representative warp are referred to as over-

lapped instructions while the other instructions are called non-overlapped instructions.

The “intervals” and “stall cycles” are referred to as those of the representative warp, un-

less otherwise specified. We also differentiate between “schedule” and “issue”. A warp is

scheduled means that a warp is selected by the scheduler to issue instructions. But it may

not be able to issue due to stalls. In this case, the next candidate warp is scheduled in the

same cycle until the warp that can issue instructions is scheduled.
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Figure 24: The cases of non-overlapped instructions of RR and GTO policies. (WR: repre-
sentative warp.)

4.4.1.1 The cases of non-overlapped instructions

Figure 24 illustrates how non-overlapped instructions are incurred. To begin with, we

assume that four warps are running on a core with the issue rate equal to 1 instruction per
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cycle, and they all have the same interval profile. For simplicity, we use one interval that

has 3 instructions and 6 stall cycles, as shown in Figure 24(c).

Figure 24(a) illustrates the case for the round-robin scheduling policy, which issues an

instruction every cycle in round-robin fashion. Since the instructions are issued regardless

whether the representative warp is stalled or not, some instructions from the the remaining

warps do not hide the stall cycles. As shown in the example, three instructions from the

remaining warps hide the stall cycles of the representative warp while the other instructions

are interleaved with the first two instructions from the warp. The number of overlapped

instructions is 3 (the instructions after WR-i3, i.e., W1-i3, W2-i3, W3-i3) while the number

of non-overlapped instructions is 6 (W1-i1, W2-i1, W3-i1, W1-i2, W2-i2, W3-i2). The

remaining stall cycles is 3 (the number of stall cycles minus the number of overlapped

instructions). By contrast, the remaining stall cycles of the naı̈ve prediction is 0 since all

instructions from the remaining warps overlap with the stall cycles (9 = 3 × 3 > 6).

Figure 24(b) illustrates the case for the greedy-then-oldest scheduling policy, which

issues instructions from the same warp until it stalls. Then, the warp that has the oldest

instruction is issued next and so on. As shown in the example, all instructions from W1

and W2 are overlapped with the stall cycles. However, the non-overlapped instructions are

still incurred since 3 instructions (W3-i1, W3-i2, W3-i3) are not overlapped with any stall

cycles. Ideally, those instructions could potentially hide the stall cycles of the next interval.

But in this case, since W3 has the oldest instruction, the representative warp has to wait

even though it is ready to issue.

With consideration of non-overlapped instructions, Eq. 16 shows the calculation of the

multithreading CPI. The non-overlapped instructions become extra cycles added to the total

cycles of the representative warp (total cycles) since they do not overlap with the stall

cycles. For the ease of explanation, we again assume that the issue rate is 1 instruction/cycle

and the warp scheduler can issue an instruction from a warp every cycle.

CPImultithreading =
total cycles + #total nonoverlapped insts

1.0(issue rate)

#warps ×
∑

i∈intervals #interval instsi
(16)
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Eq. 17 shows how the total non-overlapped instructions is counted. The basic idea is to

aggregate per-interval non-overlapped instructions, which are calculated probabilistically

based on the scheduling policy. The probabilistic counting takes into account cases in

which the intervals of warps could randomly interleave while Figure 24 illustrates the case

where the warps are well aligned.

#total nonoverlapped insts =
∑

i∈intervals

#nonoverlapped instsi (17)

Before modeling the non-overlapped instructions for a given scheduling policy, we first

define the issue probability as the probability that a warp can issue an instruction in a

cycle, as shown in Eq. 18. Issue probability is computed with a representative warp, and

we assume that all other remain warps have the same uniform distribution.

issue prob =
∑

i∈intervals(#interval instsi)∑
i∈intervals(

#interval instsi
1.0(issue rate) + stall cyclesi)

(18)

Next, we explain how to estimate the number of non-overlapped instructions of an

interval when a scheduling policy, round-robin or greedy-then-oldest, is used.

4.4.1.2 Modeling Round-Robin Policy

To model the non-overlapped instructions in the round-robin policy, we identify the in-

structions that are issued within several “waiting slots”, where a “waiting slot” is the time

period between scheduling two instructions from the representative warp during an inter-

val. For example, in Figure 24(a), there are two waiting slots, one between WR-i1 and

WR-i2 and another between WR-i2 and WR-i3. Eq. 19 shows the number of waiting slots

of an interval i.

#waiting slotsi = #interval instsi − 1, i ∈ intervals (19)

Within a waiting slot, every remaining warp is scheduled because of the round-robin

scheduling. Eq. 20 shows the expected number of instructions issued from all remaining
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warps within all waiting slots of interval i, which is equal to the number of non-overlapped

instructions of the interval.

#nonoverlapped instsi = issue prob × (#warps − 1) × #waiting slotsi (20)

Finally, the CPI of multithreading can be calculated using Eq. 17 and 16.

4.4.1.3 Modeling Greedy-Then-Oldest Policy

To model the non-overlapped instructions in the greedy-then-oldest policy, we identify the

instructions that are issued after the stall cycles of an interval are fully overlapped. To count

the number of non-overlapped instructions of the interval i, we first need to count the total

number of instructions issued before the representative warp is re-scheduled, as shown in

Eq. 21. This number is estimated as the multiplication of the number of issued instruc-

tions for a remaining warp (#avg interval insts) and the number of warps issued before the

representative warp is re-scheduled (#issue warps in stalli). Both terms are explained in

Eq. 22 and Eq. 23.

#issue insts in stalli = avg interval insts × #issue warps in stalli (21)

The number of issued instructions of a remaining warp is the number of instructions in

the interval that it is currently executing. Since this is unknown information, we instead

estimate that value by taking the average number of instructions of an interval as the number

of issued instructions of a remaining warp, as shown in Eq. 22.

avg interval insts =
∑

i∈intervals

#interval instsi

#intervals
(22)

Eq. 23 shows the number of warps that issues instructions during the stall cycles of

interval i. The number of remaining warps (#warps − 1) is multiplied based on the assump-

tion that during the stall cycles, every remaining warp will be scheduled since the “oldest”

policy equalizes the probability of each warp being scheduled to prevent starvation.

#issue warps in stalli = issue prob in stalli × (#warps − 1) (23)
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Eq. 24 shows the issue probability of a remaining warp during the stall cycles. Recall

that we assume an uniform distribution of the issue probability.

issue prob in stalli = min(issue prob × stall cyclesi, 1) (24)

Finally, Eq. 25 shows the number of non-overlapped instructions of interval i by sub-

tracting the number of stall cycles from the total issued instructions (Eq. 21). The non-

overlapped instructions are incurred if the number of issued instructions is more than the

stall cycles.

#nonoverlapped instsi = max(#issue insts in stalli−

stall cyclesi × 1.0(issue rate), 0)
(25)

Similar to the round-robin policy, the CPI of multithreading can be calculated using

Eq. 17 and 16.

4.4.2 Modeling Resource Contention

One of the most prominent cause of resource contentions in GPUs is memory divergence

(a.k.a. uncoalesced memory accesses). We do not model the resource contention for normal

operations by assuming that in a balanced GPU design, the resources used for normal

operations are sufficient for each warp. For example, if the number of threads is 32 in a

warp, then the floating-point units should be at least 32 (or 16 if a warp takes two cycles to

issue) to make all threads progress equally.

To model the queuing delays caused by memory divergence, different scheduling poli-

cies may affect the queuing delays as the instruction orderings are different. However, we

find that the instruction orderings matters only when the degree of contention is low. Oth-

erwise, different instruction orderings cannot change the queuing delays much because the

incurred queuing delays are far more than any instruction ordering can overlap. Thus, our

resource contention models, described below, are applied to both round-robin and greedy-

then-oldest policies.
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Specifically, we model the queuing cycles caused by the contention for (1) MSHRs

and (2) DRAM bandwidth. Similar to the multithreading model, we leverage the interval

profile of the representative warp to predict the queuing delays. Eq. 26 shows the queuing

delay calculated per-interval basis.

CPIrc contention =

∑
i∈intervals(MS HR delayi + Bandwidth delayi)∑

i∈intervals #interval instsi
(26)

4.4.2.1 Modeling MSHRs

Figure 25 illustrates the queuing delays resulting from a limited number of MSHRs. As-

sume that the number of MSHR entries are 6 and all warps have the same interval profiles

containing two compute instructions and one load instruction. The load instruction issues

two memory requests and which both result in an L1 cache miss. The MSHR entries are

saturated after three warps issue (W1-W3) the load instructions. Thus, W4 incurs queuing

delays before its load instruction can be issued.
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Figure 25: The queuing delays caused by a limited number of MSHR.

Since the queuing delay of a memory instruction varies depending on the number of

the remaining warps issuing memory requests beforehand, we probabilistically estimate the

queuing delay of every interval of the representative warp. First, we estimate the number of

concurrent memory requests of a core in an interval (#core reqsi). Second, we calculate the

expected queuing delay of a memory request (exp queuing delayi). Finally, by multiplying

the expected queuing delay with the number of memory instructions in an interval, we get
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the queuing delay of the interval due to limited MSHR entries (MSHR delayi). Details are

as follows.

Eq. 27 shows the number of concurrent memory requests of a core in interval i. For

each interval, we count the expected number of concurrent memory requests as the total

requests issued from all warps in a core.

#core reqsi = #warp mem reqsi × #warps, i ∈ intervals (27)

Eq. 28 shows the expected latency of a memory request in interval i considering a lim-

ited number of MSHRs. avg miss latency is the average L2/DRAM access latency of all

memory instructions without MSHR contention. Since the distribution of the L1/L2 miss

rates of a memory instruction can be calculated from the input collector (Section 4.5.2), we

take the average L2/DRAM access latency across all memory instructions to get avg miss latency.

Then, we estimate the latency of a memory request with index j in MSHRs as

“avg miss latency ×
⌈

j
#MSHR

⌉
”. For example, in Figure 25, the latency of the memory re-

quests from W1, W2 and W3 is avg miss latency while the latency of those from W4

is avg miss latency × 2 since the memory requests from W1, W2 and W3 can be serviced

concurrently while W4 has to wait until the MSHR entries are freed. By taking the average,

we get the expected latency of a memory request. Finally, by subtracting avg miss latency

from the expected miss latency, we get the expected queuing delay of a memory request

caused by limited MSHRs.

exp queuing delayi =

∑#core reqsi
j=1 avg miss latency ×

⌈
j

#MS HR

⌉
#core reqsi

−avg miss latency (28)

Eq. 29 shows the queuing delay of interval i in a core due to MSHR contention. The

queuing delay only occurs when the expected number of memory requests exceeds the

number of MSHRs. Note that #warp mem instsi represents the number of memory instruc-

tions in interval i from a warp. We count the queuing delay per-memory instruction not
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per-memory request since a divergent memory instruction has multiple memory requests

issued concurrently, thereby overlapping the queuing delay.

MS HR delayi =


0, #core reqsi ≤ #MS HR

exp queuing delayi × #warp mem instsi, #core reqsi > #MS HR
(29)

In Eq. 28, we assume that all warps issue the memory instructions of an interval at the

same cycle. However, in reality, memory requests are issued at different cycles depending

on how warps are scheduled. In that case, some warps may incur less queuing delay if

they issue the memory instructions at a later time. As the difference of the progresses of

different warps tend to be much smaller than the incurred stall cycles, the difference of

queuing delay between warps is ignored.

The approach used to model queuing delays can be generalized to model other compo-

nents with resource contention problems, such as the special functional unit (SFU). Apply-

ing the approach for these components is left for the future work.

4.4.2.2 Modeling DRAM Bandwidth

As a large number of memory requests from the warps are likely to be issued within a short

amount of time, limited DRAM bandwidth is another major bottleneck in the memory

system. However, the queuing delay model of MSHRs cannot be applied to the DRAM

queue since the DRAM queue has a much shorter service time. For example, the service

time of a memory request in MSHRs is the miss latency of the request while that in the

DRAM queue is the transmission time of a cache line on the DRAM bus. In the case of

short service times, estimating the arrival time between different requests is crucial since it

can affect the queuing delay.

To approximate the arrival time of each request, we leverage M/D/1 queue, an approach

used to model queuing delays in parallel simulations [66], as shown in Eq. 30. It states that

the arrival rate follows a Poisson process and the service time is constant. The expected

DRAM queuing delay of interval i composed of the utilization (ρ) and the arrival rate (λ).

56



However, for some intervals with a large number of memory requests, ρ could be equal

to 1 resulting in unlimited queuing delay. To prevent this, we cap the queuing delay by

assuming that a request arrives at the queue in which half of the maximum number of

requests are ahead of it (#core reqsi×#cores
2 ).

Bandwidth delayi = min(
λis2

2(1 − ρ)
, s ×

#core reqsi × #cores
2

) (30)

Eq. 31 shows the utilization ρ in which the service time s is represented in cycles as

freqcore ×
L
B while the service time of the request in the DRAM queue is L

B where L is the

cache line size and B is the DRAM bandwidth.

ρ(utilization) = λis = λi( f reqcore ×
L
B

) (31)

Eq. 32 shows the aggregated arrival rate from all cores. To estimate the arrival rate λ,

we assume that the memory requests of a given interval from all warps can be issued within

the total cycles of the interval (#interval instsi
1.0(issue rate) + stall cyclesi).

λi(arrival rate) =
#core reqsi × #cores

#interval instsi
1.0(issue rate) + stall cyclesi

(32)

4.5 Input Collector
4.5.1 Overview
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Figure 26: The input collector

Figure 26 shows the input collector of GPUMech. GPUOcelot [56] is used as a func-

tional simulator, which executes a GPGPU kernel and generates per-warp instruction traces
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with dependency information. The cache simulator reads the memory instructions and their

addresses from the trace of each warp in a round-robin fashion to get the per-memory PC1

miss rates. The cache simulator models a system with the number of warps and cores equal

to that of the modeled system without timing information. Once the latency of a PC is

determined (Section 4.5.2), both per-warp instruction trace and the per-PC latency are used

as the inputs to the single-warp model.

4.5.2 Instruction Latency per PC

To determine the latency of per PC, we classify the PCs into compute and memory PCs.

The latencies of compute PCs are fixed and based on the system configurations. On the

other hand, the latencies of memory PCs are determined as follows.

First, we simulate L1/L2 caches to collect the distribution of miss events for every

memory PC, e.g., (L1 hit: 0%, L2 hit: 10%, L2 miss: 90%). For a divergent memory

instruction, it may have some cache hits at different levels of the memory hierarchy. In this

case, the miss event of the memory instruction is determined by the memory request with

the longest latency. Second, the distribution of miss events is collected by counting the miss

events of every memory instruction across all warps. Lastly, the latency of a memory PC is

equal to the average memory access time (AMAT) of the PC. For example, a memory PC

hits L2 cache (120 cycles) for 90% of the executions and misses L2 cache (420 cycles) for

10% of the executions, the latency of the memory PC is equal to 150 = 0.9×120+0.1×420

cycles.

In this work, we do not model front-end stall events, such as I-cache misses and syn-

chronization overhead. Because warps share the same kernel (SPMD programming model),

the I-cache miss rate is very low for all kernels. In most kernels, synchronization usually

occurs occasionally within a thread block, e.g. by calling synchthreads(). Since the warps

in a thread block are likely to make similar progress, the within-thread-block synchro-

nization overhead is typically low. Synchronization across thread blocks is rarely used in

1We use the term PC to indicate a static instruction.
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GPGPU kernels since the operation requires atomic instructions, which cause significant

slowdown. Please note that control divergence is not considered as one of the stall events

since it does not stall the entire warp (some threads in a warp still make progress).

4.6 Evaluation
4.6.1 Methodology

We use Macsim [67], a cycle-level simulator to validate GPUMech. The simulation con-

figurations are listed in Table 7. The latency of the network-on-chip is included as part of

the L2 latency. The validation is done by calculating the relative error of the CPI predicted

by the evaluated model with that of detailed timing simulation.

To demonstrate the wide applicability of our model, we evaluated the kernels from

Rodinia 2.1 [64], Parboil 2.5 suites [68] and NVIDIA SDK (40 kernels in total). The

evaluated kernels have at least 3 × system occupancy thread blocks to have enough length

of simulation.

Table 7: Simulation Configuration.

Number of cores 16

Front End
Fetch width: 1 warp-instruction/cycle,
4KB I-cache

Execution core

1.0 GHz,
SIMT width: 32,
Warp size: 32 threads,
Maximum threads: 1024 threads,
Issue width: 1 warp-instruction/cycle,
Instruction latencies are modeled according to
the CUDA manual (normal FP instructions are 25 cycles)

On-chip caches
16 KB software managed cache
32 KB L1 cache, 128B line, 25 cycles,
8-way assoc, 32 MSHR entries
768 KB L2 cache, 128B line, 120 cycles 8-way assoc

DRAM DRAM Bandwidth: 192 GB/s
Access latencies: 300 cycles

Table 8 shows the evaluated models. Naive Interval is the same as Eq. 10 in

Section 4.2.1. In addition to evaluating the relevance of modeling different components,
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we compare our results with a Markov Chain that models the multithreaded performance

in [40]. The Markov Chain model is discussed in Section 2.4.

Table 8: Evaluated models.

Evaluated Models Descriptions
Naive Interval Optimistic overlap
Markov Chain Markov chain based model [40]

MT Modeling multithreading (Section 4.4.1)
MT MSHR Modeling Multithreading + MSHR (Section 4.4.2.1)

MT MSHR BAND (GPUMech) Modeling Multithreading + MSHR
+ DRAM Bandwidth (Section 4.4.2.2)

4.6.2 Model Accuracies of Different Scheduling Policies
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Figure 27: Model comparisons for round-robin policy

Figure 27 shows the comparisons between different models using the round-robin pol-

icy. Markov Chain shows a slightly better result than the Naive Interval since

it models the multithreading effect more accurately. However, compared to MT, it still

overestimates the performance. On the other hand, as MT does not account for the re-

source contention, some kernels with high memory divergence have high errors, such as

invert mapping from the kmeans benchmark that has a 330% error. MT MSHR reduces the

errors for most kernels down to less than 30%, except for the kernel invert mapping from

the kmeans benchmark. The reason why MT MSHR is effective for most cases without

modeling DRAM bandwidth is that the number of MSHR entries caps the number of read
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requests, making the queuing delay of DRAM bandwidth bounded. However, since write

requests do not allocate MSHR entries and invert mapping has a large number of diver-

gent write requests, the queuing delay of DRAM bandwidth is significant and has to be

modeled. MT MSHR BAND (GPUMech) further reduces the error of invert mapping from

180% to 35%. The remaining error is mainly caused by the inherit errors from modeling

using queuing theory. Overall with our proposed mechanism GPUMech, 75% of the ker-

nels have less than 20% errors, while only 50% of kernels have less than 20% errors with

Markov Chain. Furthermore, 32 warp case in Figure 29 (our baseline), shows that the

average error of GPUMech is 13.2% while the Markov Chain average error is 62.9%.
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Figure 28: Model comparisons for greedy-then-oldest policy

Overall, Markov Chain has two limitations, which are most likely the causes of high

errors in our evaluation. First, the model assumes that threads are randomly interleaved

without modeling any specific scheduling policy. Second, because the model assumes that

a thread can issue no more than one memory request, it underestimates the queuing delays

due to the resource contention in the memory system, especially for memory divergent

kernels on GPUs.

Figure 28 shows the comparisons between different models using the greedy-then-

oldest policy. The average error of GPUMech is 14.0% while the Markov Chain error

is 65.3%, showing a similar trend as modeling the round-robin policy. Overall, GPUMech

models both scheduling policies with high accuracy.
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4.6.3 Varying Hardware Configurations

In order to demonstrate the robustness of our model, we varied the number of warps per

core, the number of MSHR entries and the DRAM bandwidth to see the accuracy impact

of our models for multithreading, MSHR and DRAM bandwidth. The error in the Y-axis is

the relative error averaged over all kernels. Since both round-robin and greedy-then-oldest

policies show a similar trend, in the following figures, we report the results of modeling the

round-robin policy only.
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Figure 29: Errors with different number of warps per core

Figure 29 shows the errors with different number of warps. For the importance of re-

source contention modeling, except for MT MSHR and MT MSHR BAND, the errors of other

models increase with the number of warps per core since the delays caused by memory con-

tentions get more severe with more warps. Although the MSHR is rarely congested when

the number of warps is 8, some kernels still have significant queuing delays in DRAM

bandwidth because of the write traffic, such as the two kernels from the sad benchmark.

For the importance of multithreading modeling, when the number of warps is low, the

prediction accuracies between MT, Markov Chain and Naive Interval are similar

since the probability that instructions overlap with stall cycles is high. However, when the

number of warps increases, the percentage of non-overlapped instructions increases. In this

case, MT has a better accuracy than Markov Chain and Naive Interval. Overall, in

GPUMech, the errors are higher in low number of warps per core, because it has more

variations of multithreading. However, all other modeling techniques show higher errors
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as the number of warps per core increases, which makes GPUMech more attractive.
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Figure 30: Errors with different number of MSHR entries

Figure 30 shows the errors with different number of MSHR entries. Increasing the

number of MSHR entries increases the importance of modeling DRAM bandwidth. With

more MSHR entries, the queuing delays in MSHR decrease, so the error differences be-

tween MT and MT MSHR also decrease. However, more MSHR entries increase the queu-

ing delays of DRAM since more on-the-fly memory requests need to be consumed. Only

MT MSHR BAND captures these increases in DRAM congestion well since with all other

modeling techniques, error increases as the number of MSHR entries increases.

0

0.2

0.4

0.6

0.8

1

64 128 192 256

Er
ro

r

Markov_Chain Naive_Interval MT MT_MSHR MT_MSHR_BAND
218% 227% 171% 119%

Figure 31: Errors with different DRAM bandwidth (the unit of X-axis is GB/s)

Figure 31 shows the errors with different DRAM bandwidth. DRAM bandwidth model-

ing is more important when the DRAM bandwidth is lower since lower DRAM bandwidth

indicates higher DRAM queuing delays. The difference between modeling MT MSHR BAND

and other models becomes smaller as the DRAM bandwidth increases. When the DRAM

bandwidth is low, the errors are higher even with MT MSHR BAND indicating that it requires
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a more accurate determination of DRAM queuing delays. For 64 GB/s, GPUMech shows

26.1% error, while for all other configurations the error was less than 17.8%.

4.6.4 Accuracy of Cache Simulation
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Figure 32: Error of L1/L2 cache miss rates compared against detailed simulations

Since the cache simulation is used for the input collector to get the cache miss rates

per-PC, it is required to know the representativeness of the cache miss rates compared to

those of detailed simulation. Figure 32 shows the errors of L1 and L2 cache miss rates

of cache simulations compared to the detailed simulations. The L1/L2 cache miss rates

below 5% are excluded since small differences can lead to high errors. For both RR and

GTO policies, the memory instructions are fed into the cache simulator in the round-robin

fashion. We made the following observations.

• Even though different scheduling polices may change the cache miss rates, the dif-

ference is negligible for our tested kernels since the errors between the polices are

similar. The hit/miss rates are not affected much since each memory instruction has

strong tendency on hit/miss rates depending on access types, e.g., streaming or in-

dexed accesses.

• The major source of error is that detailed simulations have the “pending hits” which

hit the MSHRs and is considered as miss while the cache simulation reports hits. To

address the issue, random delays can be added to the miss latencies of L1 and L2

to capture more pending hits. The error of L1 miss rate is higher than that of L2
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since a larger space (768 KB) and inter-core sharing of L2 make the prediction more

challenging. On average, the errors of L1 miss rates are 8.3% and 8.6% while the

errors of L2 miss rates are 12.4% and 11.5% for RR and GTO policies, respectively.

4.6.5 Discussions on Timing Overhead

In this section, we discuss the timing overhead of GPUMech compared to a detailed timing

simulator.

GPUMech has three areas of overhead: warp clustering, interval algorithm and cache

simulation. Since GPUOcelot is used for collecting traces for both detailed simulation

and GPUMech, its overhead is excluded. First, the overhead of warp clustering could be

significant depending on how many warps a kernel has. However, clustering only incurs

a one-time cost in the per-input-basis. For the kernel with 100,000 warps, the clustering

overhead is a few seconds. Second, the instruction algorithm is several hundred times faster

than detailed simulations. In addition, the speedup can be further increased by running the

interval algorithm of each warp in parallel, but we did not explore this option. Third, on

average, the cache simulator is around 108x faster than our detailed simulator. Overall,

GPUMech is 97x faster than detailed simulation.

To model a different hardware configuration, since the stall cycles may have changed,

cache simulation and the interval algorithm of the representative warp need to be rerun.

Because the representative warp is already selected, running interval algorithms on the

remaining warps and warp clustering are not needed as these tasks are applied in the per-

input-basis and remain unchanged across different hardware configurations. Overall, the

speedup would be higher when exploring different hardware configurations since the pro-

filing cost can be further reduced by excluding the cost of warp clustering and the running

of the interval algorithms on the remaining warps.
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4.7 Use Case

An advantage of GPUMech is the ability to construct CPI stacks which are used to visualize

the performance bottlenecks and their relative impact. Table 9 shows the total categories in

which cycles are spent.2 We construct the CPI stack of a kernel as follows.

• We construct the CPI stack of the representative warp. To determine the CPI category

(excluding BASE3), we check the reason for stalling. If the stall cycles are caused

by a dependence on a compute instruction, we add the cycles to DEP category. If

the stall cycles are caused by a memory instruction, we use the distribution of miss

events to categorize the cycles. For example, if the stall cycles are 100 while the

distribution of miss events is L2 hit: 10% and L2 miss: 90%, we then add 10 cycles

to L2 category while we add 90 cycles to DRAM category assuming no MSHR and

DRAM queuing delays. By dividing each category with the number of instructions,

we get the CPI stack of the representative warp. After the category of an interval is

determined, we add the stall cycles of the interval to the category.

• Based on the performance improvement of multithreading, we shrink down each

category of the CPI stack of the representative warp by the factor of CPImultithreading

CPIrepres warp
. By

doing this, the relative importance of each category is reserved while modeling the

performance under multithreading.

• To model the resource contention, we create two new categories: MSHR and QUEUE.

The modeled queuing delays of MSHR and DRAM bandwidth are normalized by the

number of instructions before being added to MSHR and QUEUE categories.
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Table 9: Stall types of CPI stacks.

Stall types Abbreviations
Instruction issue cycles BASE
Compute Dependencies DEP

L1 Hits L1
L2 Hits L2

DRAM access latency DRAM
MSHR queuing delay MSHR
DRAM queuing delay QUEUE

Figure 33: The CPI stacks of cfd step factor, cfd compute flux and
kmeans invert mapping kernels.

4.7.1 Identify the Scaling Bottlenecks

In this application, we leverage the CPI stack to visualize the performance bottlenecks with

varying the number of warps on a core. Increasing the number of warps may reduce the

cycles spent in DEP because the computation takes fixed cycles while more warps can re-

duce the stall cycles caused by computation dependencies. However, the cycles spent in

L1 and L2 depend on the miss rates where more warps may cause higher miss rates due

to cache pollution. On the other hand, the cycles in MSHR and QUEUE may increase since

more warps compete for those shared resources. GPUMech is able to visualize perfor-

mance bottlenecks using the CPI stack and then find the configuration that has the best

performance.

We select three kernels with distinct memory divergence degrees from Rodinia suite [69].

2Note that the DRAM access latency is the base DRAM access latency (300 cycles in our case) without
queuing delays

3BASE category is the cycles used to issue an instruction, which is a constant depending on the system
configuration.
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cfd step factor kernel is a coalesced kernel with no divergent accesses. cfd compute flux

has medium range of divergence since some memory instructions have up to 16 diverged re-

quests. kmeans invert mapping has maximum memory divergence with up to 32 diverged

requests per memory instruction.

Figure 33 illustrates the CPI stacks, shown in bars. The lines show the oracle CPI

measured using detailed simulations. All CPIs are normalized by the oracle CPI of the

configuration with 8 warps. As seen in the figure, GPUMech accurately predicts the scaling

trend. In the following, we explain the performance limiting factors for each kernel.

• cfd step factor: Because all memory accesses are almost coalesced, the cycle over-

head from MSHR and QUEUE are negligible in all configurations except for the 48

warps configuration, in which case larger MSHR queuing delays are incurred. Even

though the major performance bottleneck is DRAM accesses, cfd step factor has a

good scaling capability since the accesses are well spread into different intervals

without congesting the memory system. In addition, we can see that cfd step factor

has negligible or no cache locality since no cycles are seen in the L1 or L2 categories.

• cfd compute flux: In the configuration of 8 warps, DRAM and DEP have a simi-

lar amount of cycle overhead. The L2 cache is effective for the diverged accesses

while L1 is not very useful since the working set is much larger than the L1 size.

In terms of memory congestion, MSHR contributes to 10.8% of the cycle overhead

while QUEUE contributes to 3.8% of the cycle overhead, thanks to the high degree

of memory divergences. Since MSHR and QUEUE are not the majority of the cycle

overhead, increasing the number of warps improves performance, as shown from the

configurations of 8 to 16 warps. The predicted performance saturation point occurs

in the configuration of 32 warps in which MSHR dominates the cycle overhead.

• kmeans invert mapping: In the configuration of 8 warps, since the load instructions

have a high L1 hit rate (90.5%), the cycles spent in the L1 cache is significant. The
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MSHR is negligible even though the divergence degree is high thanks to the high

L1 hit rate preventing most accesses from occupying MSHR entries. On the other

hand, it is a bit counter-intuitive to see that DRAM has negligible cycle overhead while

QUEUE is high. The reason is that while the store instruction is not on the critical path

and does not increase the cycles in DRAM category, the diverged write accesses still

consume DRAM bandwidth and increase the queuing delays of the load instruction.

Because the performance bottlenecks could come from multiple sources, without CPI

stacks, it is hard to tell what limits the performance of a given hardware configuration. By

showing the relative importance of performance bottlenecks, the CPI stack is useful for

software developers to apply the corresponding optimizations and for hardware developers

to scale the required hardware resources, such as MSHR entries, DRAM bandwidth, to

achieve the optimal performance. By leveraging the proposed model, not only can we find

the performance saturation point, but also the details of performance bottlenecks.

4.8 Summary

In this work, we proposed GPUMech, which is the first interval analysis for GPU architec-

tures. GPUMech models multithreading and resource contentions in MSHR and DRAM

bandwidth due to memory divergence. To reduce the errors from control-divergent warps,

we employ a clustering algorithm to identify representative warps. Overall, GPUMech is

about 97x faster than a detailed timing simulator and on average, it only has 13.2% error for

modeling round-robin scheduling policy and 14.0% error for modeling greedy-then-oldest

policy. In addition, GPUMech generates CPI stacks, which helps the hardware/software

developers to visualize performance bottlenecks.

The contributions of this chapter are as follows.

• We propose the first interval analysis technique for GPU architectures, which can be

also applied to other mulitithreaded architectures as well.
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• We improve the interval analysis technique by modeling multithreading (Section 4.4.1)

and resource contention of memory system. (Section 4.4.2).

• By leveraging our proposed technique, we propose the first CPI-stack visualization

tool for GPU architectures to provide insights into performance bottlenecks. (Sec-

tion 4.7).

The sampling approach in Chapter 3 and the abstracted sampling approach in this chap-

ter can be complimentary to each other to further reduce the simulation time. For example,

after selecting the simulation points are selected using TBPoint, for each simulation point,

GPUmech can be applied to explore the performance under different hardware configura-

tions.
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CHAPTER 5

SIMPROF: A SAMPLING FRAMEWORK FOR DATA ANALYTIC
WORKLOADS

Chapter 3 and 4 introduce the approaches for reducing the simulation time of GPGPU

kernels. This chapter focuses on the simulation time problem of another type of emerging

workloads, data analytic workloads, which are prevalent in today’s data center. In addition

to massive thread-level parallelism, data analytic workloads also feature huge data volume

and IO activity. This chapter presents a sampling framework, SimProf, which selects the

simulation points through the execution behaviors on a real machine including call stacks

and performance counters. It also includes an effective input-sensitivity test to reduce the

number of simulation points when exploring multiple inputs.

5.1 Introduction

Data analytic workloads have growing importance as data volume increases rapidly. The

enterprise can gain valuable insights using data analytics. For example, using the social

media analysis, companies can adjust their pricing and promotion on the fly for optimal

results. To process the huge data volume, data analytic workloads are typically built on top

of a computing framework, e.g., Apache Hadoop [70] or Apache Spark [2] to scale out to

multiple nodes. In addition, the frameworks handle how the workloads are scheduled onto

multiple nodes and provides reliability to tolerate node failures.

In recent years, the computation of data analytic workloads has been moving toward

in-memory computing, which keeps the data to be processed in the memory as much as

possible for better performance. The major factor is the drop in DRAM prices every year

and that the commodity hardware can support tera-bytes of main memory. The comput-

ing frameworks, such as Apache Spark, use the directed acyclic graph (DAG) execution
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model to leverage the cheap and abundant main memory to achieve 100x faster perfor-

mance than Hadoop [2], which requires frequent disk accesses. A recent study indicated

that data analytic workloads become more CPU-bound than IO-bound [71]. For Spark SQL

workloads, assuming a zero cost on disk IO only improves the job completion time by at

most 19%. Therefore, it requires immediate attention to improve the performance of data

analytic workloads from the architecture side.

Architectural simulation is the most common approach for architecture designs. How-

ever, because of a slow simulation speed, it is not possible to simulate entire workloads.

Therefore, various approaches were proposed to sample the instructions to be simulated [3,

1]. For server workloads, so far mostly transaction-based workloads are assumed, e.g.,

SpecWeb [72], which have a large number of short and atomic transactions. To simulate

this server workload, the common practice is to simulate a one time interval that covers

a sufficient number of transactions, e.g., 10 seconds [28, 73, 74]. However, simulating a

single interval is not suitable for data analytic workloads for the following reasons.

From the accuracy perspective, a single interval cannot represent the behavior of the

entire data analytic workloads. The data analytic workloads typically have several stages,

each of which has multiple tasks being executed. Furthermore, the task length of a data

analytic workload can be much longer than transaction-based workloads because more

complex queries are processed. The task length ranges from a few hundred milliseconds to

tens of seconds.

From the efficiency perspective, even a 10-second interval demands a long simulation

time e.g., 20 days for simulating 10 seconds of a 64-core workload [75]. Other optimization

techniques, such as checkpointing and parallel simulations, provide additional simulation

time reductions, but the space overhead and the simulation complexity become additional

challenges to overcome.

In this chapter, we propose SimProf, which is the first sampling framework to generate

simulation points for data analytic workloads based on phase analysis. It has the following
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key features. First, it runs natively on a real machine for fast profiling speed. It uses the

standard profiling interfaces, such as Java Virtual Machine Tools Interface (JVMTI) [76]

and perf event kernel API, which can be easily integrated into any functional simulator.

Second, it identifies the phases using call stacks and applies statistical sampling methods

to select the final simulation points, which can sample the phases that do not have homo-

geneous performances. Third, it detects input-insensitive phases, whose performance does

not change by inputs. When simulating multiple inputs with different data volumes, the

simulation time can be further reduced by skipping input-insensitive phases. Fourth, the

simulation points contains method-level information for the architects to analyze program

behaviors more easily. Finally, the validation is done against the performance of a real

machine rather than a simulator to demonstrate the robustness of SimProf.

5.2 Background and Motivation

It is essential to understand the execution model of the computing framework, which deter-

mines the phase behaviors of data analytic workloads.

5.2.1 Apache Spark

Apache Spark is a computing framework for distributed computing. It leverages the in-

memory computation to provide performance up to 100 times faster than Hadoop for some

applications. Several libraries, such as Spark SQL [77] and GraphX [78] are built on top

of the core functionality in Spark to support different types of workloads. In the following,

we explain how a data analytic workload is executed and how the phases are formed.

Figure 34 shows how the benchmark wordcount is implemented and executed in

Spark. Figure 34(a) shows the source code of wordcount written in Scala [79]. Line 1 is

to read the files from Hadoop Distributed File System (HDFS) [70], which is a distributed

file system, and to put all lines into lines, which is a Resilient Distributed Datasets

(RDD). An RDD is an immutable collection of data elements. Multiple operations can be

performed on an RDD, such as map and reduce operations. After applying an operation on
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val lines =
spark.textFile(filename, splits)

(GH,1)

val result =
words_map.reduceByKey(_ + _)

val words = 
lines.flatMap(line=>line.split(“ "))

val words_map =
words.map(word=>(word, 1))

result.saveAsTextFile(save_file)
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Figure 34: WordCount Example

every element in an RDD, the original RDD is transformed to a new RDD. For example,

each line between lines 2 and 4 applies an operation and each operation results in a new

RDD (words, words map and result). Finally, the final RDD result is saved to a

text file.

Figure 34(b) shows the execution flow. For the first three operations, the processing of

a data element in an RDD can be done in parallel since it does not rely on the processing re-

sults of the other data elements. For the fourth operation (reduceByKey), the processing

of a data element in words map also involves the data elements with the same key. The

fourth operation has to wait until the first three operations complete before it can proceed.

Therefore, the first three operations form the first stage, while the other two operations form

the second stage. In each stage, multiple tasks are spawned, as shown in Figure 34(c). Each

task processes a “subset” of an RDD and applies multiple operations, e.g., three operations

in stage 1. If stages have dependencies, as in this example, the tasks in different stages

cannot be executed concurrently although the tasks within the same stage can be executed

concurrently.

Figure 35 shows how the Spark workload is mapped into the distributed environment.

First, a user submits the workload as a Spark job through the Spark driver to the cluster

master. Then the cluster master analyzes the job and divides the operations into stages.

For each stage, the master spawns tasks to multiple computing nodes, each of which runs a
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Figure 35: Spark Infrastructure [2]

Java virtual machine (JVM). Each task is processed by an executor thread within the JVM.

Typically the number of executor threads is equal to the number of cores in the node to

fully utilize the available computation power.

5.2.2 Phase Behaviors

We define “phase” as a set of sampling units that execute similar code. A sampling unit

is a fixed number (e.g., 100 million instructions) of instruction intervals within a thread.

Non-contiguous sampling units could belong to the same phase.1

We categorize the phase behaviors into intra-stage and inter-stage.

• intra-stage: multiple operations are executed within each task. Depending on the

duration of each operation, several phases could be formed. One example is that the

data processing and data IO can be in different phases. Initially, a task may be busy

processing the data and generate the outputs to a memory buffer. When the memory

buffer is close to full, it flushes the data to the disk to be used by the next stage.

In addition, the framework operations used for data movement between nodes, e.g.,

1Essentially phase is the same as cluster in this chapter, but we use the term phase because it is commonly
used in program profiling contexts.
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data shuffling, also occur within the stage.

• inter-stage: The tasks in different stages may belong to different phases since they

could execute different operations, e.g., map and reduce operations.

Phase analysis is a commonly used technique for selecting simulation points. The idea

is to group the sampling units that have similar code executed into a phase. For each

phase, a simulation point is selected to represent the behavior of the phase. However, the

commonly-used tool of selecting simulation points, e.g., SimPoint [1], is not suitable for

data analytic workloads for the following reasons.

First, most data analytic workloads are written in high-level languages, such as Java,

Python or Scala, which use managed runtime to achieve platform independence. However,

SimPoint collects the basic block counts as the code signature, while collecting the basic

blocks for Java applications is not trivial and does not provide method-level information.

The method-level information can provide useful insights for the architects to understand

the architectural behaviors. Furthermore, collecting the basic block counts incurs high

profiling overhead, which incurs 100% to 400% slowdown [80]. Finally, although porting

the workloads to other languages, such as C++, is possible, it requires nontrivial porting

effort and whether the behaviors are similar to the Java-based implementation is unknown.

Second, using the code signature solely to classify program behaviors is insufficient.

We corroborate with the previous study [81] that the performance of server workloads

could be dominated by other factors, such as the data access behaviors, while the similarly

executed code may have heterogeneous performance because of different LLC miss rates.

Thus, without being aware of the data-sensitive behavior within a phase, a single simulation

point is insufficient to represent the performances of other points of the phase.

Third, the data diversity, which can be characterized in “4V,” is significant for the data

analytic workloads. Previous tools did not consider the input data impact on performance

since only a few inputs exist for the conventional benchmark suites, such as SPEC CPU [82]

and Parsec [8]. However, for the data analytic workloads, the data synthesizer is usually
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used to synthesize data sets with different volumes based on the real-world seed inputs

while retaining the characteristics of the inputs. Thus, it is important to understand the

performance of which phases change by inputs. We will show that the number of simulation

points can be trimmed down significantly by simulating only the input-sensitive phases.

Our goal is to sample only one executor thread based on its phase behaviors. How-

ever, since different computing frameworks may adopt different programming models, the

design of the sampling framework should be general enough that it can be applied to any

computing frameworks. For example, in Apache Hadoop [70], users define the map and

reduce operations applied on the data while in Spark, users can define the types of data

collections (RDD types) as well as the operations, which are not limited to map and reduce

operations, e.g., union operation.

5.3 SimProf

Figure 36 is an overview of the SimProf framework. Thread Profiling profiles every execu-

tor thread within a JVM to retrieve the call stacks and the hardware counter events. Phase

Formation vectorizes the call stacks and clusters them into phases. Phase Sampling lever-

ages the statistical sampling approach, stratified random sampling, to select the simulation

points based on phases. Input-Sensitivity test uses the mean and variance of the IPC of each

phase to detect input-sensitive phases, which might have architectural behaviors sensitive

to the inputs.
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Threads 
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Figure 36: SimProf Overview
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5.3.1 Thread Profiling

To detect the code executed in a sampling unit, the call stacks within the unit are col-

lected. A call stack is a record of the active stack frames at a certain point in time during

the program execution. In addition, the hardware counter events, such as IPCs and cache

miss rates, are collected for validation and sampling purposes. To avoid a high profiling

overhead, we take snapshots of the call stacks in a sampling unit periodically, as shown in

Figure 37.

Method A

Method B

Method C

Main

25M instructions
Performance

counters
+

Sampling Unit N (100M instructions)

Sampling Unit N-1 Sampling Unit N+1

Snapshot

Figure 37: Snapshots in a sampling unit

Figure 38 shows the infrastructure for thread profiling. The call stack collector retrieves

the call stacks of JVM through the JVM tool interface (JVMTI), which is the standard

profiling interface available in all Java implementations. The hardware counter collector

retrieves the hardware counter values through the perf event interface provided by the

Linux kernel. Both counters are controlled by the sampling manager, which controls the

sampling rate, e.g., the frequency of a snapshot. It is also responsible for flushing the

outputs of the collectors to the files since the collectors initially output to the memory for

fast collection speed.

The profiling infrastructure is attached to each JVM, while SimProf profiles per-executor-

thread basis in the JVM. Depending on the execution model of the profiling target comput-

ing framework, the lifetime of an executor thread can be different. In Spark, the lifetime of

an executor thread is equal to the total time of a job. Profiling only one executor thread can

cover different stages. However, in Hadoop, the lifetime of an executor thread is equal to
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Figure 38: Thread profiler in SimProf

the lifetime of a task that it executes. So, the executor thread dies when its task is finished.

In this case, the profiler merges profiled results from executor threads running on the same

core to mimic a long-running executor thread in Spark.

Our design leverages the standard profiling interfaces so that it is applicable to any Java-

based computing framework, not limited to Spark or Hadoop. The sampling unit size and

the frequency of a snapshot can be tuned based on the users’ needs. Empirically, we use a

large sampling unit size, 100M instructions to avoid the simulation start-up effect, e.g., cold

cache. The frequency of a snapshot affects the profiling overhead. The high frequency can

slow down the application and skew the results of hardware counters, while low frequency

may miss important call stacks executed in a sampling unit. We take snapshots every 10M

instructions to balance accuracy and efficiency.

5.3.2 Phase Formation

Phase formation groups the sampling units into a phase if they have similar call stacks.

It contains two steps. First, it converts the call stacks in one sampling unit into a feature

vector. Second, it clusters the feature vectors into phases.

Figure 39 shows an example call stack that represents the IO routine commonly seen in

Spark. From levels 1 to 4, it represents the starting methods of an executor thread. Then

it is followed by the task routine, which indicates that a map task is currently executed.

Finally, several IO-related methods, such as object serialization and disk writing, are called.

Note that the figure only shows one call stack while one sampling unit typically contains

multiple call stacks. All methods appearing in the call stacks in one sampling unit need to
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be counted and converted into a feature vector. Each dimension of the vector represents a

method while the value of the dimension is the frequency of the method appearing in the

sampling unit. In addition, the number of dimensions in a feature vector is equal to the

number of unique methods in the entire job execution so that all feature vectors have the

same number of dimensions.

LV 1 Thread::run
LV 2 ThreadPoolExecutor$Worker::run
LV 3 ThreadPoolExecutor::runWorker
LV 4 Executor$TaskRunner::run
LV 5 Task::run
LV 6 ShuffleMapTask::runTask
LV 7 ShuffleMapTask::runTask
LV 8 HashShuffleWriter::write
LV 9 AppendOnlyMap$$anon$1::foreach
LV 10 Iterator$class::foreach
LV 11 HashShuffleWriter$$anonfun$write$1::apply
LV 12 HashShuffleWriter$$anonfun$write$1::apply
LV 13 DiskBlockObjectWriter::write
LV 14 JavaSerializationStream::writeObject
LV 15 ObjectOutputStream::writeObject
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LV 1 Thread::run

LV 2 ThreadPoolExecutor$Worker::run
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Figure 39: Convert call stacks into a feature vector

However, this type of feature vector has the following problems. First, a feature vector

can easily have thousands of dimensions because a large number of methods are called,

which often results in a high clustering time. Second, the high dimensions often have

challenges in identifying the hot functions that have the most impact on performance.

To select the important methods (features), we use a linear regression to identify the

methods that are highly correlated with performance. The univariate linear regression

test [83] selects the top K methods that are highly correlated with the profiled IPCs. We

set K as 100 to balance the clustering speed while still capturing important methods. For

example, in Figure 39, the starting methods of the executor thread and the tasks are elim-

inated in the feature vector since those methods are common in most feature vectors and

have no significant impact on performance.

We use the k-means clustering algorithm to group the sampling units into clusters

(phases). To determine the number of phases k, we score the fitness of each k between

1 and 20 using the silhouette coefficient. Then, we choose the smallest k, which has at least

90% of the highest score among all k.

80



5.3.2.1 Phase Homogeneity Analysis

To understand how much the performance is similar in each phase, we calculate the coeffi-

cient of variation (CoV) of CPIs. The CoV is a good metric to indicate how homogeneous

(i.e. how much the performance is uniform in a phase) the collection of sampling units is.

A higher CoV means that the sampling units have a higher CPI variation.

Figure 40 show the population/weighted/maximum CoV of CPIs. We calculate the

weighted CoV, which is the CoV of each phase weighted by the number of sampling units

in the corresponding phase. The maximum CoV is the CoV of the phase that has the

highest CoV. The population CoV is the CoV of all sampling units. The purpose is to

demonstrate how well the phase formation performs. In an ideal case, the phase formation

results in a low performance variation of each phase. In this case, the weighted CoV is

low even if the population CoV is high. By contrast, if the phase formation is useless, it

cannot separate high-performance phases from low-performance phases. In this case, the

weighted CoV remains high when the population CoV is high. The figure shows that the

weighted CoVs from all benchmarks are always lower than the population CoVs, so we

can safely conclude that our phase formation separates phases with distinct performances.

However, phase formation does not necessarily construct all phases to be homogeneous, as

we see from the maximum CoV. We summarize the reasons for non-homogeneous phase

behaviors as follows.
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Figure 40: Coefficient of variation of CPIs
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• Data access pattern: For key-value applications, if the reduce stage exists, it in-

volves the sorting algorithm, which sorts the key-value pairs by the key since the re-

ducer needs to process the data in the per-key basis. The common sorting algorithm

used is quicksort, which sorts the keys recursively from small to large partitions. Al-

though the sampling units execute the same sorting algorithm, some of them have

a lower cache miss rate because of sorting the small partitions while others have a

higher miss rate because of sorting the large partitions. For example, wc hp spends

a significant amount of time sorting keys (words) before the count of each word can

be calculated. Thus, the non-homogeneous sorting phase results in a high weighted

CoV.

Another type of changing data access pattern is the reduce operation, which combines

the values of the same key. For all key-value pairs, the values with the same key may

not be next to each other, leading to random accesses. Thus, for sort and reduce

operations, the LLC cache miss rates could affect the overall IPC.

• OS scheduling: we observe that sometimes the executor thread can be scheduled to

other cores by OS. For the sampling units that involve the newly scheduled threads,

higher D-cache misses could occur, leading to a higher CPI.

• Phase Interleaving: The phase behaviors of executor threads can be interleaved in

a random order depending on how tasks are scheduled within threads. Even though

the same phase behaviors are observed in two different sampling units, they may

have diverse performances since they are interleaved with different phases of other

executor threads.

• Executed code difference: to make a phase have homogeneous behaviors, the sam-

pling units in a phase need to have nearly identical call stacks to ensure that they have

similar behaviors. However, in some cases, since the large size of code is executed,

a phase could have sampling units that have different code, leading to performance
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differences.

Because non-homogeneity can occur within a phase, instead of assuming that all phases

have homogeneous behaviors and selecting one sampling unit for each phase, we need

a reliable way to select a set of simulation points within a phase to better represent the

behaviors of the entire phase.

5.3.3 Phase Sampling

Phase sampling selects a number of sampling units within each phase as the final simu-

lation points. To deal with the performance variation within a phase, we use the optimal

allocation [84] to determine the sample size of each phase and use simple random sampling

to select sampling units for each phase. This is a statistical sampling approach, known as

stratified random sampling [84]. We refer to the “sample” as the set of selected sampling

units (simulation points) while the “sample size” is the number of these units.

The idea of optimal allocation is to have a larger sample in the phase that has a higher

IPC variance. Since the hardware counter events of every sampling unit, such as IPC, can

be obtained from the frontend data collector (Section 5.3.1), the variance of each phase can

also be measured.

Eq. 33 shows the sample size of a phase h determined by the optimal allocation. n is

the overall sample size. For each phase h, Nh is the total number of sampling units, nh is

the sample size and σh is the standard deviation of phase h. The sample within each phase

is randomly selected. We call the selected sampling units the final “simulation points”. We

use the sampling unit ID to represent each simulation point. On the other hand, the cluster

center of each phase is also saved, which will be used for the input sensitivity test.

nh =
n × (Nh × σh)∑
i∈phases(Ni × σi)

, h ∈ phases (33)

The sampling error of the simulation points is represented as the confidence interval,

which can be calculated as follows. Eq. 34 shows how the confidence interval is computed.

83



Eq. 35 shows the margin of error defined by the confidence level (1−α) and the standard er-

ror (SE). Users can specify the required confidence level, while the standard error depends

on the sampling technique. We assume the distribution of the means (the average CPI of

the simulation points of a phase (CPIh)) is normal because of the central limit theorem. In

this case, α can be expressed in z-score form.

CI = sample mean ± margin o f error (34)

margin o f error = α × S E (35)

Eq. 36 shows the standard error (SE) of stratified sampling. Eq. 37 shows sh, which is

the standard deviation of the phase. We use the collected CPIs of each sampling unit to get

sh.

S E =
1
N
∗

√√√ ∑
h∈phases

[N2
h × (1 −

nh

Nh
) ×

s2
h

nh
] (36)

sh =

√√
1

nh − 1

nh∑
i=1

(CPIi −CPIh) (37)

Based on the above analysis, users can choose the sample size based on the simulation

budget and the target sampling errors. First, users choose the sample size n that fits in

their simulation time budget. Second, SimProf picks the simulation points based on the

sample size. Third, users simulate the simulation points and estimate the sampling error. If

the error is higher than their requirement, they can increase the sample size and repeat the

procedure until the sampling error is acceptable.

Since SimProf uses a large number of sampling units, the simulation time can still be

significant; users can combine other sampling approaches, e.g., systematic sampling [3] to

reduce the simulation time of each simulation point.
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5.3.4 Input Sensitivity Test

Algorithm 5.1 shows the procedure for the input sensitivity test of reference inputs. Ini-

tially, one input is assigned as the training input and the rest of the inputs become the

reference inputs. For each reference input, the unit classification classifies the sampling

units of the reference input to phases. For each phase, we perform the input sensitivity test

of the corresponding phase by comparing their performances and determine whether the

performance of the phase changes by inputs.

# A s s i g n one i n p u t as t h e base i n p u t , and t h e o t h e r s are r e f e r e n c e i n p u t s

a s s i g n i n p u t s ( )

f o r i n p in r e f e r e n c e i n p u t s :

# C l a s s i f y s a m p l i n g u n i t s i n t o ph ase s

t o t a l p h a s e s = p h a s e c l a s s i f i c a t i o n ( )

f o r phase in t o t a l p h a s e s :

# Check i f t h e phase i s i n p u t s e n s i t i v e

i f phase not in i n p u t s e n s i t i v e p h a s e s and p h a s e s e n s i t i v i t y t e s t ( phase ) i s True :

i n p u t s e n s i t i v e p h a s e s . add ( phase )

Algorithm 5.1: Input sensitivity Test

5.3.4.1 Unit Classification

Unit classification classifies the sampling units from a reference input into phases using

the cluster (phase) centers of the training input. Even though the program takes different

inputs, similar methods are still executed resulting in the same set of phases. However,

because of different length of phases and/or input-sensitive phases, the performance of the

program varies by inputs.

The procedure for classifying a sampling unit is as follows.

• A sampling unit is vectorized into a feature vector based on the profiled call stacks.

(Section 5.3.2)

• The feature vector is classified into the phase where the center of the phase has the
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minimum distance to the feature vector.

Unit classification ensures that sampling units that execute similar program methods

belong to the same phase between the training and the reference inputs. In this case, we

can assume that each phase is executing similar code between both inputs so that we can

use the input sensitivity test to see whether the performance of the phase would change by

inputs.

5.3.4.2 Phase Sensitivity Test

The mean and standard deviation tests are used for the phase sensitivity test. For each

phase, we collect the mean and standard deviation of the sampling units within the phase.

Then, we compare mean and standard deviation between those of reference inputs and those

of train inputs respectively. If any of them are larger than 10%, then the phase is considered

input sensitive, as shown in Eq. 38. For a given phase, if all the reference inputs do not pass

the input sensitivity test, then the phase is considered input insensitive. When exploring the

micro-architectural behaviors of multiple inputs, one can skip the input-insensitive phases

while focusing on simulating the input-sensitive phases.

i f (|
µtrain − µre fi

µtrain
|> 10% or |

σtrain − σre fi

σtrain
|> 10%); then Pass (38)

Note that the input sensitivity test does not select the inputs for the test. As the number

of inputs is infinite, it is impossible to select the representative inputs. However, one can

use the knowledge to trim down the simulation space by categorizing the inputs and select

one input from each category. For example, if an input is a graph, the categories can be

based on the number of vertices and their connectivity. Selecting inputs is based on one’s

need and is out of the scope of this chapter.

After the input sensitivity test, we can easily trace back the methods that show input-

sensitive/input-insensitive behaviors using the method information encoded in the phase

centers. For example, we can analyze the phase centers and retrieve the method (feature)
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that have the highest weight indicating that the method is most commonly seen in this

phase.

5.4 Evaluation
5.4.1 Platform and Benchmarks

Our testbed is the machine with Intel(R) Core(TM) i7-4820K [85] and 40G DDR3-1333

MHz memory. We ran each benchmark on a single node since the executed code should be

similar between different nodes. Analyzing the architectural behaviors of a single node is

sufficient to cover the different phase behaviors.

Benchmark Abbrev. Type Input
Size

Frameworks

Sort sort
Microbench

10G text
Hadoop, Spark

WordCount wc
Grep grep
NaiveBayes bayes Machine

Learning
Connected
Components

cc Graph
Analytics

224 nodes

PageRank rank

Table 10: Evaluated benchmarks

Table 10 shows the evaluated benchmarks from BigDataBench [86]. Each workload has

implementations on two frameworks: SPARK and Hadoop. We use “ [hp]” and “ [sp]” to

represent the Hadoop and Spark frameworks respectively. For example, bayes hp means

the NaiveBayes algorithm implemented on top of Hadoop. The purpose of evaluating on

both frames is to test the robustness of SimProf and analyze how phase behaviors look on

different frameworks. Since Hadoop is disk-IO intensive when the default configuration

is used, we apply common optimizations, such as increasing the memory buffer size of

mappers and compressing the output of the mappers before writing to the disk, to improve

the performance and make it closer to the real-world settings. The inputs are generated

using the data synthesizer provided in BigDataBench.
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We evaluated the following sampling approaches. Note that SRS and SimProf are prob-

abilistic sampling techniques for which the range of the CPI error can be quantified as the

confidence interval.

• Single N-second simulation point (SECOND): This is one of the most common

approaches used for simulating data center workloads. The original use was for

the transaction-based workloads, such as OLTP [87] and SpecWeb [72]. In those

workloads, only a few type of transactions exist and each has a short running time.

In that case, when N is sufficiently large, e.g. 10 seconds, it is able to cover the entire

transaction behaviors.

• Simple Random Sampling (SRS): SRS randomly selects sampling units into the

sample in which each sampling unit has an equal chance to be selected. The advan-

tage is that SRS does not need to know the running code in each sampling unit so it

can save profiling overhead.

• Single point for each phase (CODE): This is the SimPoint-like approach that uses

only call stacks to cluster phases and selects the sampling unit closest to the center

of the cluster as the simulation point.

• SimProf: It uses the stratified random sampling approach. The maximum number of

phases is 20 and the threshold of the Silhouette coefficient is 90%.

5.4.2 Accuracy and Sample Size Results

To evaluate the sampling accuracy. We run each workload until its completion to collect

the CPI of each sampling unit. By averaging the CPIs of all sampling units, we get the

oracle CPI. The sampling errors are computed by comparing the differences between the

predicted CPIs with sampling and the oracle CPIs.

Figure 41 shows the comparison of sampling errors of different sampling approaches.

The sample size is 20 for SRS, CODE and SimProf while SECOND uses the 10-second
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interval as the sample size. SRS sometimes has higher errors than SECOND since different

sampling units have higher CPI variations. Although SECOND may not have high CPI er-

rors, in most cases, the sample is not representative since it does not cover all the execution

stages. For example, SECOND is not able to cover the reduce stage for all Hadoop work-

loads. CODE also has a higher error than SimProf since purely using the code signature

does not reduce the CPI variation of each phase because of other factors that could affect

the performance. The average error of SECOND, SRS, and CODE are 6.5%, 8.9%, and

4.0% respectively, whereas the average error of SimProf is only 1.6%.
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Figure 41: The sampling errors of CPI of different sampling approaches

Another advantage of SimProf is to have the bound of sampling errors thanks to the

stratified random sampling. Figure 42 shows the required sample size of SimProf for the

99.7% confidence interval with sampling errors of 5% and 2%. Since SECOND uses the

time duration as the sample size, the actual number of sampling units may differ by bench-

marks. (Each sampling unit has 100M instructions.) In most benchmarks, the required

sample size is less than SECOND while achieving much lower CPI errors except cc sp

and rank sp. These two workloads have more phases and the CPI variations of these

phases are also high. The average sample sizes of SimProf 0.05, SimProf 0.02 and SEC-

OND are 85, 244 and 611 respectively. This demonstrates that SimProf not only selects

more representative samples, which lead to a higher accuracy, but also has a smaller sam-

ple size that leads to a higher efficiency.
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Figure 42: The comparison of the sample size (number of sampling units) between SimProf
and SECOND.

5.4.3 Phase Analysis

Figure 43 shows the number of phases in each category of the workloads. It is interesting

to see that the number of phases of Spark-based workloads has a much wide range (1 for

grep and 9 for cc) than that of Hadoop-based workloads. Some benchmarks, such as cc and

rank, have many more phases since they use more operations and data collection types for

the optimization purpose, e.g., GraphX libraries, while in Hadoop implementations, only 1

to 2 map and reduce operations are defined, leading to fewer phases.
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Figure 43: Number of phases

Since we use the workloads that operate on key-value pairs, we can categorize the phase

types based on the dominant operations of the phase. We categorize the phase types into:

(1) map, (2) reduce, (3) sort and (4) IO types. Sort indicates the key-sorting operation,

such as quicksort while the IO includes the operations that read/write to the HDFS due to

insufficient memory space. Since operations are often very tightly coupled, the boundary
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between them is sometimes blurred. For example, a phase may have both map and IO

operations active since each sampling unit in the phase contains both operations. In this

case, the type of phase depends on the dominant operation.

Figure 44 shows the breakdown of different phase types while the weight depends on

the number of sampling units in the type of phase. Sort operations appear in all Hadoop-

based workloads, except grep hp and sort hp. The purpose of the sort operations is to

reduce the number of mapper outputs for optimization purposes. Before the mapper outputs

are flushed to the disk, they are sorted and merged by keys so that a reducer only receives

one copy instead of N copies where N is equal to the number of mappers on the node.

By default, Spark-based workloads do not enable this option so the sorting operations are

not seen. In general, Hadoop-based workloads spent more time on IO operations instead of

doing actual work than Spark-based workloads, which could be one of the reasons Hadoop-

based workloads have a lower performance than Spark-based workloads.
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Figure 44: Phase type distribution

Figure 45 shows how the optimal allocation distributes the simulation points between

phases. The sample size ratio of a phase represents the number of simulation points in

the phase divided by the total number of simulation points. The figure also shows the

CoV of CPI, and the weight of the phase. All three numbers range between 0 and 1.

Phase 0 has the highest phase weight (29.1%) and the sample size ratio in which 35%

of the simulation points belong to this phase. The high CPI variation is caused by the

aggregateUsingIndex operation, defined in the GraphX library, which performs a

91



reduce operation. By contrast, although Phase 1 has the second-highest phase weight

(18.9%), only 5% of the simulation points belong to the phase since the CPI variation of the

phase is low. The phase is dominated by the mapPartitionsWithIndex operation,

which sequentially converts the lines from an input file to the key-value pairs. The nature

of sequential accesses leads to a low CPI variation. Thus, the optimal allocation allocates

the simulation points based on both CPI variations and phase weights. Since SimProf cap-

tures both performance and call stacks, the information is used by the optimal allocation to

determine the best partition of the simulation points.
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Figure 45: The sample size ratio of each phase of cc sp distributed based on the optimal
allocation. (The phases are sorted by the weight)

5.4.4 Input Sensitivity Analysis

Table 11 shows the graphs downloaded from the SNAP website [88] that we use to analyze

how phase behaviors change by inputs. Since most of the original graphs are small and have

a different number of nodes, we synthesize the Kronecker graphs [89] that have similar

connectivity as the original graph. The resulting graphs have the number of nodes between

220 and 224. One input is selected as the training input, while the rest are the reference

inputs. To select the representative inputs, we try to select the ones that are likely to lead to

distinct performances of the workloads to cover a wide range of inputs. For graph analytic

workloads, we can select the graphs with diverse topology as the representative inputs.

For text-based workloads, it is more challenging to identify the representative inputs since

identification is more benchmark-dependent. For example, for WordCount, the inputs with
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different frequencies of words should be used while for Sort, the inputs with different

ordering between words should be used. Since the criteria of representative inputs for text-

based workloads requires more analysis on the content of the documents, we evaluated the

graph analytic workloads for now, leaving the text-based workloads for future work.

Table 11: Evaluated Inputs
Input Name Input Type

Google Web graph training input
Facebook Social Network

reference inputs

Flickr Online communities
Wikipedia Online encyclopedia

DBLP Computer science bibliography
Stanford Web graph
Amazon Product co-purchasing networks

Road Road Networks

Figure 46 shows the percentage of simulation points that are in input-sensitive phases.

This indicates the sample size for reference inputs. For training inputs, all simulation

points need to be simulated, but for the reference inputs, the simulation points in the input-

insensitive phases can be skipped. Using the proposed input sensitivity analysis, the sample

size is reduced from 20% up to 45%. On average, 33.7% of the sample size can be reduced.
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Figure 46: The input-sensitive sample size

Figure 47 shows the number of input-sensitive and insensitive phases. For most work-

loads, the number of input insensitive phases is at least 40% of the total number of phases.

We found that the input-sensitive phases are likely to have some operations that have time-

varying performance. For example, in cc sp, the phase with the aggregateUsingIndex
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operation has different performances at different execution stages. The performances of the

phase change by inputs as well. In addition, a high CPI variation within a phase is not nec-

essarily an input-sensitive phase since the variation could exhibit some pattern while the

pattern does not change by inputs, e.g., the quicksort algorithm.

0

2

4

6

8

10

12

cc_hp cc_sp rank_hp rank_sp

N
u

m
b

er
 o

f 
p

h
as

es

Sensitive insensitive

Figure 47: The number of input-sensitive and input-insensitive phases

5.4.5 Framework Comparisons

In this subsection, we compare the phase behaviors of the WordCount benchmark on

Hadoop and Spark frameworks. In the following figures, the sampling units are sorted

by phase IDs. Blue dots correspond to the left y-axis and represent the CPI of the sampling

units while the red lines correspond to the right y-axis and represent the phase IDs of the

sampling units.

Figure 48 shows the Spark implementation of WordCount. From the programmers’

view, the reduce operation should occur at the second stage, as shown in Figure 34. How-

ever, by analyzing the call stacks, we found that the majority of the reduce operation occurs

in the first stage. The phase with the majority of the sampling units is dominated by the

combineValuesByKey operation of the Aggregator class, which calls not only the

reduce operation but also the map and IO operations, e.g., the first three operations in

Figure 34. Then the reduce operation is performed as hashing the key and inserting the

key-value pairs into a large in-memory map. If the key already exists in the in-memory

map, the newly inserted value is merged with the value in the map. This is the so-called

map-side reduce optimization used to reduce the size of the mapper output. Since these
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operations are tightly coupled, they belong to the same phase. Finally, the second phase

reduces the output from the first stage and saves the output to the HDFS. Since the map-

side reduce already takes care of the majority of the reducer work, the second phase only

occupies 1% of the total sample size. In terms of CPI variations, we expect the first phase

that has the reduce operation to have a high CPI variation; however, it shows fairly stable

performance. This is likely due to multiple operations being merged together, e.g., map

and IO, while the reduce operation is not the dominant operation of the phase. The second

phase that contains the HDFS IO operations has a higher CPI variation because different

data types are accessed.

Figure 48: WordCount - Spark implementation

Figure 49 shows the Hadoop implementation of WordCount. The first phase is domi-

nated by the map operation of the TokenizerMapper class, which generates the key-

value pairs where the key is a word and writes them to the memory buffer. Since the

map operations have a good cache locality, the phase has a high performance and a rela-

tively low CPI variation. The second phase is dominated by the combine operation of the

95



NewCombinerRunner class, which performs the map-side reduce operation. Different

from the Spark implementation, the combine operation is not coupled with other opera-

tions; therefore, the CPI variation is higher in this phase. The third phase is dominated by

the sort operation, which uses the quicksort algorithm. The purpose is to reduce the number

of mapper outputs sent to a reducer. Because of the recursive nature of the function, the

CPI variation is high.

Figure 49: WordCount - Hadoop implementation

The architects can use SimProf to understand the operations composed of a phase and

design optimization techniques to improve the performance of a phase. In addition, the CPI

variations of some phases can be high since the cache miss rate fluctuates. The stratified

random sampling approach, which selects multiple simulation points, in a phase better

captures the phase behavior.

5.4.6 Architecture-level Analysis

Figure 50 shows the average CPIs of different types of phases. We can see that even with

the same type of phases, different workloads can still lead to diverse CPIs. For map and
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reduce type of phases, this is mostly due to different map and reduce methods being called.

Depending on the methods, some phases can have higher CPI. For example, grep hp has

the lowest CPI since the pattern matching functions, which are compute-intensive and have

higher ILP, are dominating. The sort type of phases has higher CPI than the other type of

phases since the quicksort algorithm can incur high cache miss rates, except bayes hp.

In bayes hp, besides the quicksort algorithm, some computation methods are also domi-

nating, which increase the CPI of the phase. In summary, the map type of phases has lower

CPI than the reduce type of phases when both phases coexist in the same benchmark. The

CPI variance of both types of phases can be high depending on the called methods of the

phases. The sort type of phases has the highest CPI in general while the IO type of phases

has similar CPIs between workloads since the methods that read/write the HDFS are shared

in common.
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Figure 50: The CPI of each type of phases

Here is a quick summary of our findings.

• Phase types: the weights of different phase types of the evaluated benchmarks can

be very different. Even for the same phase types, different benchmarks may exhibit

different CPIs, e.g., map and reduce types of phases.

• Number of Phases: The number of phases of different benchmarks has higher vari-

ation in Spark than in Hadoop. For Spark, some complex operations, such as sort-

ByKey, result in several phases for better performance, while some simple operations
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can be merged into one phase. For Hadoop, the number of phases is more stable

across different benchmarks following the MapReduce execution model.

• Phase CPIs: Reduce and sort types of phases are likely to have higher CPIs than

other types. In general, both Spark and Hadoop do not have very low CPI due to low

ILP. However, for grep hp and grep sp, the IPC can reach 3.0 (capped by 4.0)

implying that the high ILP is still possible for the scale-out workloads if the phase is

more compute-intensive than memory-intensive.

To understand the performance bottlenecks of different types of phases, we analyzed

both frontend and backend events. For frontend events, we analyzed the ITLB and i-cache

MPKI. For backend events, we analyzed the DTLB, L1D, L2 and L3 MPKIs. The detailed

results are shown as follows.

5.4.6.1 Backend Bottleneck
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Figure 51: L1D MPKI of each type of phase

Figure 51 shows the L1D MPKI. We can see that the MPKI is less than 10 in all except

the IO phases of rank hp, indicating that L1D is effective in capturing the data local-

ity. Another observation is that the Spark-based workloads have lower MPKI than that of

Hadoop-based workloads, which could be due to the fact that the Spark execution model

can merge multiple operations into the same phase so that the operations that process the

same data can be executed together to have better locality. Based on the L1D MPKI, each

type of phase does not have consensus behavior. Any type of operations can have low or

high MPKIs.
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Figure 52: L2 MPKI of each type of phase

Figure 52 shows the L2 MPKI. The L2 MPKI of the IO type of phase is significantly

reduced compared to the L1D MPKI, indicating that the working set size of the IO oper-

ations can be well fitted into the L2 cache. For the other types of phases, the L2 MPKI is

moderately reduced.
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Figure 53: L3 MPKI of each type of phase

Figure 53 shows the L3 MPKI. We observed that (1) the sort type of phases and (2) some

reduce types of phases have higher MPKIs than the other types of phases. This is caused by

the huge working set size of those operations. The reduce type of phases have higher MPKI

in Spark-based implementations than in Hadoop-based implementations. The reason is that

the Hadoop-based implementations use the sort operations to make sure the reduce methods

can merge the values of the same key from a sorted list without performing random accesses

of a large memory partition. The random accesses are done by the sort operation rather than

the reduce operation. By contrast, the Spark implementation employs the map-side reduce,

which directly merges key-value pairs from the mapper output, leading to random accesses

of a large memory partition.
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Figure 54: DTLB MPKI of each type of phases

Figure 54 shows the DTLB MPKI. The phases with higher L3 MPKI in cc sp and

rank sp also exhibit a similar trend in DTLB MPKI, which corroborates our hypothesis

that in Spark-based implementations, the reduce and sort phases have a large working set

size being accessed. In addition, it is interesting to see that in the Hadoop-based implemen-

tations, the DTLB MPKIs are low since the memory buffer size used in Hadoop is lower

than that of Spark, which is possibly the limitation of the Hadoop execution model.

Here is a quick summary of our findings.

• Backend bottleneck: The sort and reduce phases are likely to have higher L3 misses.

The L3 misses are higher for graph workloads, connected components, and page

rank. The reduce phases of Hadoop workloads do not have high L3 misses since the

key-value pairs are sorted by the sort phase before being processed by the reduce

methods leading to regular data accesses. Thus, the Hadoop workloads have higher

L3 misses for the sort phase.

• Performance correlation: The CPI is correlated with L3 misses, indicating that

most phases of the workloads are backend bound and the performance is limited by

L3 misses.

5.4.6.2 Frontend Bottleneck

Figure 55 shows the L1I MPKI. We can see that Spark-based implementations have much

lower L1I MPKI than the Hadoop-based implementations. However, even for Hadoop,

most phases do not exhibit high L1I MPKI except for reduce and IO phases. By analyzing
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the methods of those phases, we found that the high L1I MPKIs are caused by the IO

operations of the HDFS. The IO operations also exist in reduce phases by copying the

mapper outputs to the memory to be merged. Those operations involve the IO-specific

routines that may expand the accessed code base. In Spark, the IO access routines are less

frequent than Hadoop because of the high utilization of memory space. However, rank sp

and wc sp, which have more frequent IO operations, also incur higher L1I MPKI than

other benchmarks. We also found that the L1I MPKI is also negligible (less than 0.1),

implying that the working set of instructions is not large.
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Figure 55: L1I MPKI of each type of phases

Here is a quick summary of our findings.

• Most phases in Hadoop and Spark workloads do not exhibit high L1I MPKI. Only

the phases with IO operations have higher MPKIs, which may involve in IO-specific

routines, e.g., HDFS access procedures, which may increase the access code sizes or

the context switch of threads between different cores, leading to higher L1I misses.

5.5 Summary

SimProf is the first sampling framework for data analytic workloads based on modern com-

puting frameworks, such as Apache Spark and Hadoop. It identifies phases using call

stacks and applies statistical sampling methods to select the final simulation points, which

can sample the phases that do not have homogeneous performances. It achieves a 1.6%
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sampling error of CPI with only 20 simulation points, each of which has 100 million in-

structions. This sample size is less than 5% of that of a single 10-second interval. In

addition, it detects input-insensitive phases, whose performance does not change by inputs.

When simulating multiple inputs with different volumes, the number of simulation points

can be further reduced by 33.7% on average as the results of skipping input-insensitive

phases.

The contributions of this chapter are as follows.

• We propose the first sampling framework, SimProf, based on phase analysis for data

analytic workloads, which are built on top of commonly used computing frameworks,

e.g., Apache Hadoop and Spark.

• We propose to apply stratified random sampling, a statistical sampling approach to

select the representative simulation points by taking into account the factors that

cause performance variation within a phase.

• We propose an input sensitivity test to reduce simulation points when exploring mul-

tiple inputs by eliminating the points whose performance does not change by inputs.

• SimProf provides method-level information of each phase, which may help architects

to understand the performance bottlenecks of data analytic workloads with managed

runtime, e.g., Java.

For future work, we plan to study the phase behaviors of more data analytic work-

loads with various machine learning and graph algorithms. Using the generated simulation

points, we would like to study how to improve the performance by accelerating the common

operations that cause low-performance phases.
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CHAPTER 6

CONCLUSION

Architectural simulation is one of the most important performance modeling techniques

for architecture design. Compared to the native execution speed, the simulation speed has

a 10,000x times slowdown. Therefore, techniques that reduce the simulation time are re-

quired. Prior techniques target conventional benchmark suites, which are single-threaded

or have limited parallelism. However, the emerging workloads feature massive parallelism

and huge data volume, which increase the simulation time further. In this dissertation, we

present three simulation techniques to simulate those large-scale applications accurately

and efficiently. We developed the techniques based on understanding the execution behav-

iors of the workloads. In addition, some mathematical theories are used to support and

strengthen the techniques. Here is the summary of the techniques.

• Chapter 3 introduces the sampling techniques, inter-launch and intra-launch sam-

pling, for GPGPU kernels. In inter-launch sampling, a new feature vector is proposed

to capture the control and memory divergence, which are the unique characteristics

of GPGPU kernels. In intra-launch sampling, the dynamic sampling approach is

proposed to sample the instruction intervals that are non-deterministic due to warp

scheduling effect.

• Chapter 4 presents a hybrid modeling technique that combines the functional sim-

ulation and analytical models to model the performance of a GPGPU kernel. The

technique predicts the performance of a multithreaded GPU core using the perfor-

mance of a single warp. This technique achieves low modeling error of performance

compared to a detailed timing simulation while achieving two orders of magnitude

speedup. In addition, it provides detailed insights into the performance bottlenecks

of a GPGPU kernel.
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• Chapter 5 presents a sampling framework for the emerging data analytic workloads.

The framework identifies the phase behaviors of the workloads and samples each

phase to get the simulation points. The framework uses method information from the

call stacks to identify phases. Being aware that some phases do not have homoge-

neous performance, stratified random sampling is used to select samples based on the

performance variation of each phase. In addition, the framework further reduces the

simulation time by identifying the input-insensitive phases. The framework increases

the accuracy and efficiency of simulating the data analytic workloads.

The emerging workloads become more complex and the executions not only involve

CPUs but also other resources, e.g., network, disk. Furthermore, a workload can be dis-

tributed onto multiple compute nodes making the simulation more challenging. To faith-

fully model the performance of these workloads, it is required to develop different simula-

tion techniques. This dissertation serves as a starting point to investigate such techniques

to simulate these workloads accurately and efficiently.
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