
Appleton, Wisconsin

This report is supplementary to Progress Report 81 of the baseline study on corrugating medium entitled. "Continuous evaluation of corrugating medium" which provides a program whereby participating mills have the opportunity to submit rolls of medium on a regular weekly schedule for evaluation with regard to physical characteristics of the medium and of the single-faced board made from the medium. Specifically, each medium is evaluated for caliper, basis weight; and Concora flat crusho In addi-tion-each-medium-is-fabricated-into-A-flute-single-faced corrugated_board on the Institute's corrugator to determine its runability in terms of speed and tension, and the single-faced board obtained at maximum speed with minimum tension is evaluated for its flat crush strength.

This report is an extension of the baseline study described above and is concerned specifically with the caliper and uniformity of caliper of the single-faced board fabricated from each roll of mediumo Uniformity of caliper is generally considered to be another facet of the criteria used to evaluate the runability of corrugating medium, and the Technical Committee of the Fourdrinier Kraft Board Institute. Inco; has requested that a measurement of the uniformity of caliper be included as a part of the evaluation given each roll of corrugating medium。

The evaluation of the caliper and uniformity of caliper of the single-faced board made from each roll of corrugating medium was carried out using the five circular specimens that were subsequently tested for flat crush strength. Each specimen was five square inches in area. They were cut at intervals of approximately two feet along the central portion

Fourdrinier Kraft Board Institute, Inc。 Project 1108-17

Page 2
Progress Report 82
of a strip of the single-faced board fabricated at maximum speed and minimum tension. On each of these five specimens, caliper measurements were made on five consecutive flutes and the caliper difference between consecutive flutes was calculated there being four calculations of differences for each specimen. The twenty-five caliper measurements (five calipers on each of the five specimens) were averaged and are reported as the caliper for each sample of medium. Likewise, the twenty caliper differences between consecutive flutes (four caliper differences on each of the five specimens) were averaged; and the maximum-minimum -and-average values are reported for each sample of corrugating medium.

The instrument for measuring the caliper of individual flutes of single-faced board consists of a bench-type thickness gage with a pressure foot $3 / 8$ inch in diameter and an anvil consisting of a plane circular surface 2 inches in diameter. The pressure foot is attached to a dial indicator which can be read to 0.0001 inch. The load on the pressure foot is 100 ± 10 grams. A caliper determination is made by inserting each five-square-inch circular specimen between the pressure foot and the anvil so that the foot rests on the second flute from one end of the specimen without touching either of the adjacent flutes. The 3/8-inch diameter of the pressure foot permits it to contact only one flute with ease. The specimen is pressed gently against the anvil, and the reading is then recorded. As mentioned previously; five consecutive flutes through the center of each specimen are calipered in this way. It should be emphasized that these calipers may not necessarily correspond to regular caliper measurements because of differences in load and other variables.

Caliper data have been obtained on the single-faced board fabricated from each of the eighty-nine rolls of corrugating medium which were submitted for evaluation during the month of December; Also included for purposes of convenient reference are the single-face flat crush and runability data. The current machine averages for each test are sumnarized in Table I for Machines A through U. A graphical presentation of the current machine caliper averages on single-faced board is shown in Figure 1, and a similar presentation of the current machine averages for the caliper difference between consecutive flutes is given in Figure 2。 The test results obtained on the individual rolls of medium submitted by each company are given in Tables II through XXII for machines A through U, respectively.

It may be seen in Figure 1 and Table I that the average caliper results for the single-faced boards varied from a low value of 193.1 points for Machine Q to a high value of 198.7 points for Machine A. Likewise. from the results given in Table I and Figure 2, it may be noted that the average caliper difference between consecutive flutes ranged from a minimum of 1.3 points for Machines D, H, and K to a maximum of 3.0 points for Machine B. The majority of the machines were associated with average caliper differences of two points or less.

Fourdrinier Kraft Board Institute, Inc. Project 1108-17

Page 4 Progress Report 82

TABLE I
SUMMARY OF CURRENT MACHINE AVERAGES
December; 1960

	Number		Caliper Difference Between	Single-Face
Machine	of	Caliper,	Consecutive Flutes,	Flat Crush,

A	4	198.7	1.4	30.6
B	4	198.1	3.0	31.0
C	6	196.6	1.7	35.4
D	4	196.4	1.3	34.2
	4	196.2		
F	5	197.4	1.7	35.5
G	5	195.4	1.8	35.6
H	4	196.8	1.3	33.1
I	2	195.7	1.9	34.0
J	5	196.3	2.0	31.2
K	1	195.7	1.3	35.2
L	2	196.6	2.0	32.9
M	5	194.6	1.8	35.7
N	4	194.6	2.0	34.8
O	4	198.4	2.2	

P	4	196.0
Q	8	193.1
R	6	196.8
S	6	196.6
T	5	195.9

U 1 Note a
Total 89
${ }^{a}$ Single-face flat crush and caliper could not be determined because the medium fractured at less than 100 fopomo

Fourdrinier Kraft Board Institute，Inc． Project 1108－17

Page 6
Progress Report 82

TABLE II
SUMMARY OF TEST RESULTS FOR MACHINE A
December， 1960

Code	Date Made	Mill Roll No．	Cali－ per． pt．	Caliper Difference Between Consecu－ tive Flutes，pt。			Single－Face Flat Crush， posoi．	Runability （Maximum Ten－ sion at 600 f．p．mo）； lb。／in。
A－1	11－30－60	423	197.9	3.5	0.1	1.1	31.5	1
A－2	11－30－60	424	198.0	3.8	0.0	1.5	30.9	1
A－3	12－7－60	431	199.3	3.8	0.2	1.6	30.4	1－1／2
A－4	12－7－60	432	199.5	3.7	0.0	1.4	29.8	

TABLE III
SUMMARY OF TEST RESULTS FOR MACHINE B December． 1960

B－1	$11-29-60$	355	197.8	6.9	0.7	3.5	33.6	1
B－2	$11-29-60$	356	199.4	6.7	0.4	3.0	28.1	1
B－3	$12-7-60$	357	197.1	5.2	0.0	2.7	33.9	$;$
B－4	$12-14-60$	358	198.2	5.9	0.0	2.7	28.5	$1-1 / 2$
					3.0	31.0	$1-1 / 2$	
Current Machine Av．	198.1			30				

TABLE IV
SUMMARY OF TEST RESULTS FOR MACHINE C December， 1960

C－1	$12-5-60$	46	196.7	3.5	0.5	2.0	25.1	$1-1 / 2$
C－2	$12-5-60$	47	196.1	3.7	0.0	1.7	26.8	$1-1 / 2$
C－3	$12-6-60$	48	196.8	2.4	0.3	1.3	24.6	$1-1 / 2$
C－4	$12-6-60$	49	196.1	3.1	0.0	1.0	26.1	$1-1 / 2$
C－5	$12-7-60$	50	196.7	4.0	0.4	1.9	25.7	$1-1 / 2$
C－6	$12-7-60$	51	197.3	7.8	0.5	2.5	24.4	$1-1 / 2$

Fourdrinier Kraft Board Institute, Inc. Project 1108-17

Page 7
Progress Report 82

TABLE V
SUMMARY OF TEST RESULTS FOR MACHINE D
December, 1960

Code	Date Made	Mill Roll No.	Cali- per, pt.	Caliper Difference Between Consecutive Flutes, pt。 Max. Min. Avo			Single-Face Flat-Crush, pos.i。	Runability (Maximum Tension at 600 f. $p_{0} m_{0}$), lb./in.
D-1	11-22-60	421	195.1	2.9	0.1	1.3	37.5	1-1/2
D-2	11-22-60	422	195.4	2.5	0.2	1.2	36.5	1-1/2
D-3	12-6-60	429	198.2	4.2	0.1	1.8	32.0	1-1/2
D-4	12-6-60	430	197.0	2.9	0.1	1.0	35.5	1-1/2

TABLE VI
SUMMARY OF TEST RESULTS FOR MACHINE E December, 1960

E-1	$11-24-60$	-	196.4	3.1	0.0	1.3	35.3	1
E-2	$12-6-60$	-	195.9	5.4	0.2	2.5	34.0	$1 / 2$
E-3	$12-7-60$	--	195.9	5.0	0.0	1.5	33.4	$1 / 2$
E-4	$12-13-60$	--	196.4	3.2	0.0	1.0	$34 \circ 0$	1
						1.6	34.2	

TABLE VII
SUMMARY OF TEST RESULTS FOR MACHINE F December, 1960

F-1	$11-9-60$	292	196.6	404	0.0	1.7	37.8	$1 / 2$
F-2	$11-17-60$	293	198.6	3.8	0.0	1.5	35.9	$1 / 2$
F-3	$11-23-60$	294	196.6	4.7	0.0	1.9	34.2	$1 / 2$
F-4	$12-1-60$	295	197.2	5.8	0.5	1.9	35.9	1
F-5	$12-5-60$	296	197.8	2.0	0.0	1.3	33.7	1
					1.7	35.5		

Fourdrinier Kraft Board Institute, Inc. Project 1108-17

Page 8
Progress Report 82

TABLE VIII
SUMMARY OF TEST RESULTS FOR MACHINE G December; 1960

TABLE X
SUMMARY OF TEST RESULTS FOR MACHINE I December; 1960

I-1	$11-29-60$	427	195.5	6.5	0.0	2.0	34.6	$1-1 / 2$
I-2	$11-29-60$	428	195.9	4.0	0.0	1.8	33.3	$1-1 / 2$
Current Machine Av.	195.7			1.9	34.0			

Fourdrinier Kraft Board Institute，Inc． Project 1108－17

Page 9
Progress Report 82

TABLE XI

SUMMARY OF TEST RESULTS FOR MACHINE J
 December， 1960

Code	Date Made	$\begin{aligned} & \text { Mill } \\ & \text { Roll } \\ & \text { No. } \end{aligned}$	Cali－ per． pt．	Caliper Difference Between Consecu－ tive Flutes，pt．			Single－Face Flat Crush， pos．i．	Runability （Maximum Ten－ sion at 600 f．p．m．）， 1b．／in．
J－1	11－16－60	124	196.2	2.0	0.0	0.9	31.8	
J－2	11－18－60	125	196.2	7.5	0.2	3.2	32.4	1
J－3	11－20－60	126	195.9	3.7	0.1	1.7	31.4	1／2
J－4	11－24－60	127	195.8	5.6	0.6	3.0	30.0	Min．
J－5	12－8－60	128	197.5	3.5	0.0	1.2	30.5	1－1／2

Current Machine Av． 196.3 2．0 31.2

TABLE XII
SUMMARY OF TEST RESULTS FOR MACHINE K
December， 1960

K－1	$11-23-60$	80	195.7	3.9	0.2	1.3	35.2

TABLE XIII
SUMMARY OF TEST RESULTS FOR MACHINE L December， 1960

L－1	$10-30-60$	4934	196.2	4.0	0.4	2.2	33.6	Min。
L－2	$11-3-60$	314	197.0	5.3	0.5	1.9	32.2	$1 / 2$
Current Machine Av．	196.6			2.0	32.9			

TABLE XIV
SUMMARY OF TEST RESULTS FOR MACHINE M
December， 1960

M－1	$11-4-60$	96	193.1	5.7	0.0	1.4	34.6	Min。
M－2	$11-10-60$	296	195.3	3.5	0.0	1.1	36.0	$1 / 2$
M－3	$11-17-60$	512	195.8	4.3	0.0	1.2	36.5	Min。
M－4	$11-28-60$	840	193.4	5.4	0.0	2.1	36.1	Min。 $_{0}$
M－5	$11-30-60$	911	195.4	6.5	0.0	3.0	35.4	Min。
Current Machine Av．	194.6			1.8	35.7			

Fourdrinier Kraft Board Institute, Inc. Project 1108-17

Page 10
Progress Report 82

TABLE XV

SUMMARY OF TEST RESULTS FOR MACHINE N December; 1960

Code	Date Made	$\begin{aligned} & \text { Mill } \\ & \text { Roll } \\ & \text { No. } \end{aligned}$	Cali- per. pt.	Calip Betw tiv Max.	Dif En Co Flut Min。	ance pu- pto Avo	Single-Face Flat Crush; pos.i。	Runability (Maximum Ten- sion at 600 f.p.m.); lbo/in.
N-1	11-23-60	599	195.6	3.4	0.0	1.4	35.4	1
N-2	12-7-60	600	192.0	6.0	0.3	2.6	33.3	1/2
N-3	12-9-60	601	195.1	4.0	0.2	1.6	35.9	1/2
N-4	12-14-60	602	195.8	4.5	0.2	2.5	34.7	$1{ }^{1 / 2}$
Curre	t Machine		194.6			2.0	34.8	

TABLE XVI
SUMMARY OF TEST RESULTS FOR MACHINE 0 December; 1960

$0-1$	$11-16-60$	417	197.4	6.0	0.1	2.5	33.1	$1 / 2$
$0-2$	$11-16-60$	418	196.9	5.1	0.1	1.8	33.9	$1 / 2$
$0-3$	$11-30-60$	425	200.7	5.7	0.0	2.0	32.0	Min.
$0-4$	$11-30-60$	426	198.8	4.1	0.0	2.4	34.2	Min.
					2.2	33.3		

TABLE XVII
SUMMARY OF TEST RESULTS FOR MACHINE P December, 1960

P-1	$11-22-60$	-	196.2	4.0	0.0	1.5	36.3	$1-1 / 2$
P-2	$12-6-60$	-	195.9	5.6	0.3	2.2	32.3	$1 / 2$
P-3	$12-9-60$	-	195.4	2.5	0.0	1.1	32.0	$1 / 2$
P-4	$12-16-60$	--	196.3	5.3	0.5	2.4	32.8	$1-1 / 2$
						196.0		
Current Machine Av.	196.0	33.4						

Fourdrinier Kraft Board Institute，Inc。 Project 1108－17

Page 11
Progress Report 82

TABLE XVIII
SUMMARY OF TEST RESULTS FOR MACHINE Q．
December： 1960
December： 1960

Code	Date Made	$\begin{aligned} & \text { Mill } \\ & \text { Roll } \\ & \text { No。 } \end{aligned}$	Cali－ per， pt。	Calip Betw tiv Max．	Dif F Con Flute Min．	$\begin{aligned} & \text { ence } \\ & \text { cu- } \\ & \text { pto } \\ & \text { Avo } \end{aligned}$	Single－Face Flat Crush． pos．i。	Runability （Maximum Ten－ sion at 600 $\left.f \circ p \cdot m_{0}\right) ;$ lb．／in．
Q－1	11－21－60	45	192.2	2.0	0.1	0.8	33.5	1
Q－2	11－21－60	46	191.3	5.1	0.0	2.4	31.9	1
Q－3	11－21－60	47	191.8	3.8	0.2	1.7	29.4	1／2
Q－4	11－21－60	48	192.3	3.4	0.1	1.2	31.6	1／2
Q－5	12－5－60	． 49	194.2	9.5	1.0	3.9	33.2	1－1／2
$Q=6$	$12=506$	50	194.2	6.0	0.4	2.8	32.5	1－1／2
Q－7	12－6－60	51	194.3	6.9	0.0	2.3	32.5	1－1／2
Q－8	12－6－60	52	194.4	4.9	0.6	2.8	32.6	1－1／2
Curre	t Machine	Av．	193．1			2.2	32.2	

TABLE XIX
SUMMARY OF TEST RESULTS FOR MACHINE R December， 1960

R－1	$11-11-60$	49	195.4	4.9	0.5	3.0	31.9	$1-1 / 2$
$-\mathrm{R}-2$	$11-11-60$	50	195.6	3.3	0.0	1.2	31.7	$1-1 / 2$
$\mathrm{R}-3$	$11-29-60$	51	197.6	8.2	0.0	3.9	29.6	$1 / 2$
$\mathrm{R}-4$	$11-29-60$	52	197.2	6.8	0.0	2.8	29.7	$1 / 2$
$\mathrm{R}-5$	$11-29-60$	53	196.9	4.5	0.1	1.7	31.9	$1-1 / 2$
$\mathrm{R}-6$	$11-29-60$	54	197.8	5.0	0.4	2.5	30.9	$1-1 / 2$

TABLE XX
SUMMARY OF TEST RESULTS FOR MACHINE S
December， 1960

S－1	$11-19-60$	407	196.8	2.8	0.0	1.4	36.5	Min。
S－2	$11-19-60$	408	196.4	404	0.0	1.4	33.2	$1 / 2$
S－3	$11-20-60$	409	197.8	7.2	0.1	2.7	31.6	Note a
S－4	$11-22-60$	410	197.0	2.8	0.1	1.0	33.0	1
S－5	$11-23-60$	411	195.9	403	0.2	2.1	34.8	Note a
S－6	$12-1-60$	412	195.9	408	0.5	2.6	29.4	Mino
Current Machine Av．					196.6			1.9
A．								

a Maximum speed at which this roll could be corrugated with minimum tension was 575 f．p．m．

Fourdrinier Kraft Board Institute, Inc。 Project 1108-17

Page 12
Progress Report 82

TABLE XXI
SUMMARY OF TEST RESULTS FOR MACHINE T
December, 1960
Runability
Caliper Difference (Maximum Ten-
Date Mill Cali- Between Consecu- Single-Face sion at 600 Code Made
T-1 11-30-60
T-2 11-30-60
T-3 $\quad 11-30-60$
$\begin{array}{ll}\mathrm{T}-4 & 11-30-60 \\ \mathrm{~T}-5 & -11-30-60\end{array}$
Current Machine Av. 195.9 $2.5 \quad 32.3$

TABLE XXII
SUMMARY OF TEST RESULTS FOR MACHINE U
December; 1960

01-1 11-21-60 7 Note a Note a Note a
Current Machine Avo --
a Single-face flat crush and caliper could not be determined because the medium fractured at less than 100 fopomo

Fourdrinier Kraft Board Institute, Inc Project 1108-17

Page 13
Progress Report 82

THE INSTITUTE OF PAPER CHEMISTRY

W. No Hubert, Research Aide

Container Section
acme.
R.C. McKee; Chief; Container Section

