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Abstract— The performance of large-scale wireless ad hoc
networks is often limited by the broadcasting nature of the
wireless medium and the inherent node energy constraints. While
the impact of the former on network capacity has been studied
extensively in the literature, the impact of energy constraints
has not received as much attention. In this paper, we study
the capacity limitations resulting from the energy supplies in
wireless nodes. We define the energy-limited capacity of a wireless
network as the maximum amount of data the network can
deliver before the nodes run out of energy. This energy-limited
capacity is an important parameter in networks where operating
lifetime is critical, such as ad hoc networks deployed in hazardous
environments and sensor networks. We study two types of
static networks, networks without any infrastructure support and
networks where base stations with unlimited energy are deployed
to support data forwarding. We consider two kinds of traffic
models motivated by ad hoc networks and sensor networks. We
derive upper and lower bounds on the energy-limited capacity
of these networks. While throughput has been shown to not
scale with node density in static networks by previous studies,
our results show that, depending on the energy consumption
characteristics of wireless communication, the energy-limited
capacity can scale well under both traffic models. In addition,
we show that the deployment of base stations can improve the
energy-limited capacity of the network, especially for networks
with sensor traffic.

I. INTRODUCTION

Wireless ad hoc networks enable devices to communicate
with each other without pre-installed infrastructure. These
networks have a wide range of applications such as envi-
ronmental sensing, battlefield support and disaster relief [19],
[33]. However, the performance of wireless ad hoc networks
is often limited by the broadcasting nature of the wireless
medium, which results in interference when nearby nodes
attempt to simultaneously transmit. In addition, since these
networks often consist of devices that are powered by batteries,
power management is of great importance.

Recently there has been significant effort in studying the
fundamental limits in the throughput capacity of wireless ad
hoc networks, defined as the total data rate (bits/second) that
can be transferred between nodes, accounting for interference
caused by the broadcast medium. In a seminal paper [15],
Gupta and Kumar study a model of ad hoc networks with
stationary nodes and show that when the number of nodes
n per unit area increases, the per node throughput decreases
as @(W). This result implies that large scale ad hoc
networks would not be scalable for non-local traffic patterns.
Grossglauser and Tse [13] study mobile ad hoc networks
and show that with loose delay constraints, node mobility
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can dramatically improve network capacity. They prove that
the per node throughput can be kept constant as the number
of nodes per unit area increases, assuming mobile nodes
that carry packets. Recently, others have investigated the
throughput capacity of hybrid networks with infrastructure
support [27], [22]. There is also other work in the capacity of
ad hoc networks under different models [12], [2], [32], [30],
[11].

While the impact of broadcast interference on network
capacity has been studied extensively in the literature, the
effect of energy constraints has not received as much attention.
In this paper, we study the capacity limitations resulting from
the energy supplies in wireless nodes. In particular, we define
the energy-limited capacity as the maximum amount of data
(bits) the network can deliver before the nodes run out of
energy'. This type of capacity constraint is an important
parameter in networks where operating lifetime is critical, such
as ad hoc networks deployed in hazardous environments and
sensor networks that are significantly battery-constrained.

We study two types of static (i.e., stationary) networks, pure
ad hoc networks without any infrastructure support (which we
call homogeneous networks), and hybrid networks where base
stations with unlimited energy are deployed to support data
forwarding. In both types of networks, we consider two traffic
models, an ad hoc model intended to reflect uniform traffic
patterns as might arise in ad hoc networks, and a sensor model
motivated by sensor networks that collect data and then deliver
to a single destination.

We derive upper and lower bounds on the energy-limited
capacity for these two networks and two traffic models. In
general, our lower bounds are within a factor of O(log’c n)
from the corresponding upper bounds for some constant k.
Based on the bounds, we can reach conclusions about the scal-
ing behavior of wireless networks under energy constraints. In
particular:

e We find that the energy-limited capacity of wireless
networks can scale well under both traffic models, for
certain properties of the energy consumption character-
istics. This result sharply contrasts with the behavior of
throughput capacity, which does not scale with increasing
node density.

o The capacity of networks supporting sensor traffic is less
than the capacity of networks supporting ad hoc traffic,
by a factor of O(y/nlog®n) for some constant c.

« The deployment of base stations can improve the network
capacity, especially with sensor traffic, where the addition

'Nodes may certainly be involved in application-specific activities that
consume energy. However, for generality, we restrict our attention to the
consumption of energy that directly results from communication.



of even a single base station has an immediate positive
effect.

« Reducing the constant energy that is required independent

of transmission distance is key to desirable scaling.

The rest of this paper is structured as follows. Section II
describes the network and traffic models we use in this paper
and defines the energy-limited capacity. We study the energy-
limited capacity of homogeneous networks with sensor traffic
in Section III. Hybrid sensor networks where base stations are
deployed to support data forwarding are considered in Section
IV. We study the energy-limited capacity of networks with ad
hoc traffic in Section V and VI, which focus on homogeneous
and hybrid networks respectively. In Section VII, we compare
our results with previous results on throughput capacity and
discuss some related issues. Related work is reviewed in
Section VIII and the paper is concluded in Section IX.

II. NETWORK MODELS

We first describe the network models and traffic models we
use in this paper. Then we define the energy-limited capacity.

A. Network Models

We consider two types of static networks, homogeneous
networks and hybrid networks. In homogeneous networks,
nodes rely on their own resources for communication and
no infrastructure support exists. In contrast, hybrid networks
consist of base stations (BSs) as well as normal nodes as in
homogeneous networks. Nodes are assumed to be identical and
have limited energy supplies; base stations are equipped with
unlimited energy and deployed to support data forwarding for
nodes. A hybrid network consists of two layers, the ad hoc
layer formed by nodes, and the infrastructure or BS layer. In
a homogeneous network, only the ad hoc layer exists.

In our analysis, the deployment area of the network is scaled
to a unit disk. Nodes in the ad hoc layer are distributed on the
unit area uniformly and independently. The number of nodes
in the network is n and the initial energy of each node is a
constant A.

In the infrastructure layer, m BSs are sparsely distributed
in the same area as nodes. We assume that the number of
base stations grows slower than the number of nodes?, i.e.,
limp,, 7* = 0. In addition, we assume that BSs are deployed
regularly in the unit disk such that the BSs divide the area into
a tessellation of hexagon cells (see Fig. 1). The BSs are at the
center of each cell. Without considering the boundary effects,
the area of each cell is +.

In the ad hoc layer, data is forwarded from the sender to
the destination in a multi-hop fashion. With the support of BSs
in a hybrid network, data can be transmitted in two modes:
the ad hoc mode and the infrastructure mode. In the ad hoc
mode, a node transmits its data to the destination in the ad
hoc layer without using any base station. In the infrastructure
mode, data is forwarded via the infrastructure layer. However,
nodes might still use multi-hop routing in the ad hoc layer in
order to reach a BS. Thus in hybrid networks, there is an issue
of how to route data via these two transmission modes.

%In Section TV, we require m < n/(200logn) as n — oo in the proof
of the lower bound.

A Base station

Fig. 1. A hybrid network.

B. Energy Model

To conserve energy, nodes may use different radio ranges
in data transmission. In this paper, we consider only energy
used in communication and do not account for the idle energy
consumption. With efficient idle energy management schemes
like [7], [43], [37], the impact of idle energy would be
minimized.

Data transmission consumes energy in both the sender and
the receiver. We define e;(r) as the minimum energy required
in the sender to transmit a unit of data (called bir) directly over
a distance r. Similarly, e,.(r) is the minimum energy required
in the receiver to receive a unit of data from a sender that is
a distance r away. We define the energy cost function e(r) as

e(r) = e(r) + e (r). M

In this paper we assume that the energy consumption of the
sender is e(r) when the transmission range used is r and no
energy is consumed in the receiver. This actually reallocates
the energy consumption in a routing path by “moving” the
energy consumption of each hop to its sender. Since the total
energy of the routing path remains the same, this simplification
would not affect our results on the energy-limited capacity>.

We consider two specific models which are often used in
the literature. The first one is a linear model in which

e(r) = ca(cs +7%) ()

where ¢, and ¢, are constants and « > 2 is the path loss
component. This is the same as the form of e(r) = ¢’ + ¢'r®
used in [16]. We adopt this form to emphasize the impact of
¢y on the scaling behavior of the transport capacity, as will be
clear in the following sections. The second model is

e(r) = cqar®. (3)

This actually is a special case of (2) by setting ¢, to zero.
We consider this separately because these two models have
different scaling properties and are treated differently in the
analysis.

3Tt can be shown that, if the receiving energy e,(r) is no more than
a constant times of the transmission energy e:(r), which is normally true
in practice, this simplification does not change our results by more than a
constant factor.



C. Traffic Models

We consider two types of traffic models which are moti-
vated by ad hoc networks and sensor networks. In the ad
hoc traffic model, nodes can be a sender or destination and
communication occurs in a one-to-one fashion. Specifically,
each node chooses a random location in the area and selects
the closest node to the location as its destination. In the sensor
traffic model, all nodes are senders of data transmission but
communicate with a common entity called the sink. We assume
that the sink is at the center of the unit disk and has infinite
energy. In both traffic models, we assume nodes have an
infinite amount of data to send.

These traffic models try to capture the traffic patterns
normally present in ad hoc networks and sensor networks.
For example, in a sensor network, sensor nodes transfer
collected data to a gateway node which processes and relays
data to users. The sensor traffic model captures the effect of
traffic concentration in sensor networks. As we will see later,
traffic patterns have significant impacts on the energy-limited
capacity of the network. Note that in sensor networks, data
may be aggregated within the network to reduce traffic load.
However, we do not consider the effect of data aggregation in
this paper and leave it as a topic of future work.

D. Definition of Energy-Limited Capacity

Now we define the energy-limited capacity. We adopt the
asymptotic notations of O, o, €2, w and © as defined in [8].

Since we are considering the maximum amount of data the
network can deliver under node energy limits, we assume that
an ideal transmission schedule is used, i.e., no collision occurs
and nodes can avoid idle energy consumption. For example,
by using contention-free MAC protocols and efficient idle
energy management schemes, the impact of interference and
idle energy would be minimized. We first define the feasible
transfer volume of networks.

Definition 2.1 (Feasible transfer volume): For a network
consisting of n nodes, a transfer volume of A(n) bits is feasible
if each node can send A\(n) bits to its corresponding destination
under energy limitation of nodes.

The definition of the feasible transfer volume requires that
every node is able to transmit A(n) bits of data. Therefore,
it measures the transport capacity of the network until the
first node runs out of energy. We now define the energy-
limited capacity which is similar to the definition of throughput
capacity in [15].

Definition 2.2 (Energy-Limited Capacity): The Energy-
Limited Capacity (or capacity for short) of networks is of
order ©(f(n)) bits if there are deterministic constants ¢ > 0
and ¢’ < 400 such that

lim Prob{A(n) = c¢f(n) is feasible} = 1, and
n—oo
lim inf Prob{A(n) = ¢ f(n) is feasible} < 1.
n—oo
The definition of energy-limited capacity does not consider
throughput or delay. As we will see in later sections, min-
imum energy consumption in general requires using shorter

transmission ranges, which tends to improve throughput be-
cause of the reduced interference [15]. So achieving optimal

transfer volume does not pose limitations on the achievable
throughput. However, it might result in larger delay because
of the increased number of hops. We will study this tradeoff
in future work.

For simplicity of presentation, we will use the term capacity
in the rest of this paper to refer to energy-limited capacity
unless stated otherwise.

III. ENERGY-LIMITED CAPACITY OF HOMOGENEOUS
NETWORKS WITH SENSOR TRAFFIC

In this section, we study the energy-limited capacity of
homogeneous networks with sensor traffic. In these networks,
all nodes transmit data to a single node called the sink which
is at the center of the unit area. We now obtain upper and
lower bounds on the capacity.

A. Upper Bound on Energy-Limited Capacity

We first derive an upper bound on the energy-limited
capacity which is stated in the following lemma.

Lemma 3.1: In a homogeneous network with n nodes and
sensor traffic, the feasible transfer volume A(n) is no more
than
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with high probability where ¢,, is a sequence that satisfies
limy, 00 ¢, — 00 and cq is a constant.

Proof: We prove the upper bound of the transfer volume
by bounding the total amount of data that nodes can transmit
directly to the sink. We first consider how close nodes are to
the sink when the network consists of n nodes. Let P(d) be
the probability that there is no node within a distance d to the
sink. Since nodes are distributed randomly in the unit disk, we
have P(d) = (1 — md?)™. Let ¢,, be a sequence that satisfies
lim, o ¢n — 00. Then we have

1 r \" -
P<m)=(l‘ﬁ7) s

which approaches 1 as n — oc. Thus with high probability,
no node lies within a distance — — to the sink.

Consider any node X;. Let }'12 be the distance between
X; and the sink. Due to the uniform distribution of X;, the
probability density function of d; is P{d; = =} = 2nx. Let
T; be the amount of data that X; can send directly to the sink
under the energy limit. The mean of T is
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Here we take into account the fact that X; is not within a

distance of m to the sink with high probability. By the

Strong Law of Large Numbers, for a network of n nodes, we

have n

Ez:l Ly E[T})

2w Az

@) dx.

with probability 1 as n — oc. In other words, the total amount
of data that all nodes can send directly to the sink is no more
than ¢on E[T;] with high probability. Thus the feasible transfer



volume per node A\(n) is no more than ¢o E[T;]. This completes
the proof. ]

In this lemma, we assume that (L) is integrable over

(0, f) This does not pose much limitation since most energy
cost functions in practice fall into this category. We now obtain
upper bounds on the feasible transfer volume for the two
specific cases.

Lemma 3.2: In a homogeneous network with sensor traffic,
if the energy cost function is e(r) = ¢,r?®, the feasible transfer
volume A(n) satisfies

clA : — 9.
An) < { log(¢2n) if o =2;

if a>2 )

oA =2, 51
ca(a— 2)¢

with high probability.

Lemma 3.3: In a homogeneous network with sensor traffic,
if the energy cost function is e(r) = cq(cp + r*), the feasible
transfer volume A(n) satisfies

C3A (ln(cb +1)—In(c + é—n)) if =2

C3.A zdz

1 a
c cp+
¢ “Gavm P

Aln) <
if a>2

(6)
with high probability.

In the case of e(r) = cq(cp + %), it is easy to prove
A(n) = O(1). This is because for any transmission, the
minimum energy required is c,cp. Given energy supply A,
each node can transmit no more than Ci units of data.
Therefore, the capacity of these networks is O(1). However,
this does not rule out the possibility that the feasible transfer
volume can increase with the node density. To understand
how A(n) evolves with n, we explicitly condition the feasible
transfer volume A(n) on n in Lemma 3.3, which holds as long
as n is large.

B. Lower Bound on Energy-Limited Capacity

In this section, we provide a lower bound on the energy-
limited capacity. Our proof constructs a spatial tessellation and
a transmission strategy that achieves the lower bound. In our
proof, data transmissions use the same transmission range.

We first describe the spatial tessellation used in the proof.
Let 7y, be the data transmission range and define w,, = r,/8.

We set r,, to be at least ¢4 l°gn" where ¢4 is a constant. ¢4 is

set to be 160 which will be clear in the proof of Lemma 3.4.
So the network is connected with high probability according
to [14]. We partition the unit disk into regions using circles
centered at the sink with radii 1w, for 1 < i < f Let
B; be the region between circles with radii ‘w, and (i +
1)w,,. For each i, we further divide region B; evenly into 6i
smaller cells (see Fig. 2). So the angle subtended by a cell
at the sink is Z and the area of a cell is ©(w3). Intuitively,
nodes are distributed evenly in the unit disk due to the uniform
distribution of nodes, i.e., every cell contains ©(nw?) nodes.
By using similar techniques as in [15], we prove this claim in
the following lemma, the proof of which can be found in the
Appendix.

Lemma 3.4: BEvery cell contains ©(nw?) nodes with high
probability.

Cell V forwards

data from nodes «,/f” .‘"/7—\,\\
in this area

Fig. 2. Spatial tessellation in homogeneous networks with sensor traffic.

Given the spatial tessellation, data is forwarded geograph-
ically from the sender towards the sink. More precisely,
consider any node X. Let L be the line segment connecting
X and the sink. Data from X is forwarded along the sequence
of cells intersecting L until reaching the sink. Since the
transmission range r, equals to 8w, and each cell can be
contained in a disk of radius 2w,, a node in any cell can
transmit directly to nodes in adjacent cells. In addition, each
cell contains ©(nw?) nodes. Therefore, for any node, a routing
path along the sequence of cells described above exists with
high probability.

Now we study the transfer volume achieved using this
routing strategy. For a transfer volume of A(n), each cell must
be able to forward the offered traffic load with high probability.
Consider a cell V in region B;. If data from a node, say X,
is forwarded by cell V/, the line segment connecting X and
the sink must intersect V. So X must lie within the sector
subtended by V' at the sink and outside cell V, i.e., in a region
BJ, J >4 (see Fig. 2). Noting that the angle of the sector is

, the total number of nodes whose traffic is handled by Vv,

1nclud1ng nodes in V itself, is no more than es(l=mituy)n

with high probability. So for a transfer volume of A(n), the
amount of traffic that cell V' needs to transmit is no more than
cs(1—mi2w2)nA(n)
e

Since nodes in a cell can transmit to any node in adjacent
cells, nodes within a cell are exchangeable in forwarding
traffic. Given that there are ©(nw2) nodes in V and the
transmission range is Tny the total amount of traffic that cell
V can transmit is @(%). Thus, for a transfer volume of
A(n) to be feasible, we have

cs(1 = mi2w2)nA(n)

i = e(rn)

cenw?2 A

@)

within the 01rcle of radlus Tn need to transmit all traffic. So
we have
cenwZA

e(rn)

nA(n) < (3)
Note that if A(n) satisfies (8), the minimum of A(n)/cs and

A(n) would satisfy both (8) and (7) for all ¢. That means either

A(n)/cs or A(n) is feasible. So combining with w,, = r,/8,

we prove that

err2 A

e(rn)

A(n) =



is feasible for some constant ¢7. To maximize A(n), we should

2
[ A . .
choose the transmission range r,, such that CT(’; y is maximized.

Taking into account the fact that r,, > ¢4 , we have the
following result.
Lemma 3.5: In a homogeneous network with sensor traffic,

a transfer volume of

logn
n

crzA logn
1 Cq
e(z) ™ =
is feasible with high probability.
Using the above lemma, we obtain lower bounds of A(n)
for the specific cases of energy cost functions.
Lemma 3.6: In a homogeneous network with sensor traffic,

if the energy cost function is e(r) = ¢,r%, a transfer volume
of

A(n) =

max{

\/—}

_[om
M) = { (23

is feasible with high probability
Proof: Let f(z) = 6] ) When a = 2, f(z) is a constant
independent of z. So by Lemma 3.5, we have A(n) = Q(1).
When « > 2, f(z) is a decreasing function of z. So we have
M) = () 1), .
Lemma 3.7: In a homogeneous network with sensor traffic,
if the energy cost function is e(r) = c,(cp +7%), the feasible
transfer volume is (1) when a = 2. If a > 2, a transfer
volume of

if a =2;
ifa>2

A 1 . 1 1
Ay = 4 EFGERE) e/ ER < (GH)s
el f(cy/12BR) if cq/1B2 > (jig)é

is feasible with high probability where f(z) = =
Proof: When a = 2, f(z) is an increasing function of
z. So by Lemma 3.5, we have A\(n) = Q(1).
We now consider the case of a > 2. In this case, f(z)
is maximized when z* = (O?cb )=. That is, the transfer
volume is maximized when using the optimal radio range z*.

However, for a given n, the minimum transmission range used

is2' = ¢4 l%gn—” Thus when z' is larger than the optimal
range z*, nodes can not use range z*. In this case, the feasible
transfer volume is % f(z"). When n is large enough such that
' < z*, the maximum transfer volume is achieved which is
% f(x*) by using the optimal range x*. This completes the
proof. ]

C. Scaling Properties

In this section, we discuss the scaling properties of the
energy-limited capacity in homogeneous networks with sensor
traffic. We focus on the class of networks where the energy
cost function is e(r) = cor® or e(r) = cy(cp + r*). As we
can see from previous results, the achievable lower bounds
are within a factor of O(log'c n) from the corresponding upper
bounds for some constant k. Thus we present only the results
for the upper bounds here.

Based on our results, we classify these networks into two
categories, depending on the scaling properties of the capacity.
In the first category, the capacity of the network increases

infinitely with the density of the network. These networks
are said to have infinite scaling regions and include networks
with e(r) = c¢,r®. For these networks, minimum energy
consumption is achieved by transmitting data using the shortest
range possible, even at the cost of forwarding data in more
hops. Thus the capacity benefits from the increase of node
density.

In the second category, the capacity of the network can only
increase finitely. These networks are said to have finite scaling
regions and include networks with e(r) = ¢, (cp + 7). The
capacity of these networks is O(1). However, this does not
rule out the possibility that the feasible transfer volume can in-
crease with node density. Intuitively, for these networks, there
is an optimal transmission range which achieves minimum
energy consumption. On the other hand, to ensure network
connectivity, the transmission range must be large enough. So
the transfer volume increases with the node density n when
n is small, and saturates when n is large such that nodes can
use the optimal transmission range while maintaining network
connectivity.

As we can see in the next section, the scaling behavior of
networks with e(r) = ¢q(cp +r*) is similar to that of e(r) =
cer®, but in a finite region. Thus we can apply the results
for the case of e(r) = c,r®, which is self-explained, to help
understand the behavior of networks with e(r) = ¢, (cp + 7).

D. Numerical Results

We now study in more detail the scaling properties of
networks with e(r) = c,(cy + r®) via numerical results.
Specifically, we would like to answer the following questions.

1) What is the upper bound of energy-limited capacity?
How does it relate to the parameters ¢4, ¢ and a?

2) How does the transfer volume evolve with the node
density? In other words, what is the scaling region
in which the capacity improves as the node density
increases?

Our analytic results shows that the feasible transfer volume
is inversely proportional to ¢,. To quantify the effects of ¢,
and «, we provide numerical results of A(n) using Lemma
3.3. We choose ¢,, = Inn and set all constants in Lemma 3.3
to 1. The real upper bounds should be scaled by a constant
factor. However, this does not affect the scaling behavior.

Fig. 3 shows the optimal transfer volume, i.e., A(n) when
n is infinity, with different ¢; and a. We can see that the
feasible transfer volume increases as ¢ decreases. This result
suggests that reducing the constant energy consumption can
lead to significant capacity improvement. Fig. 3 also shows
that A\(n) increases with @ when ¢; is small.

Fig. 4 shows how the transfer volume A(n) grows with the
node density when « is 3. As the node density increases, A(n)
also increases until saturating at the maximum value. We can
see that with a smaller ¢p, A(n) increases over a larger region
of node density. Fig. 4 also shows that the scaling behavior
of e(r) = co(cp + %) is similar to that of e(r) = ¢,r® (the
line with label “c; = 0” in the figure) before A(n) reaches the
maximum capacity. We observe similar results with different
values of a.
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Fig. 4. Transfer volume vs. number of nodes in homogeneous networks with
sensor traffic.

In summary, while the upper bound is O(1) when e(r) =
cacp + 7%), the energy-limited capacity can scale with the
node density, although within a finite region. In addition, re-
ducing the constant energy both improves the network capacity
and increases the scaling region.

IV. ENERGY-LIMITED CAPACITY OF HYBRID NETWORKS
WITH SENSOR TRAFFIC

In this section, we consider the energy-limited capacity in
hybrid networks where base stations (BSs) with unlimited
energy are deployed to support data forwarding. We study the
capacity gain obtained with the deployment of base stations.
Since the base stations have unlimited energy, the capacity
limitation lies in the nodes due to their energy constraints.
Intuitively, by transmitting data via the BSs, the traffic load
on the nodes is reduced, resulting in better energy-limited
capacity. On the other hand, the use of the BSs may cause
hot spots and overload nodes near the BSs, leading to sup-
optimal transfer volume. Thus it is important to balance these
two factors and make efficient use of the BSs.

In hybrid networks, data can be forwarded in the ad hoc
mode where the BSs are not involved in data forwarding, or
in the infrastructure mode. Node energy is shared by these
two transmission modes. In this paper, we consider an energy
allocation strategy where each node uses p fraction of its
energy for the ad hoc mode and the remaining (1 — p) fraction

for the infrastructure mode, 0 < p < 1. In the infrastructure
mode, nodes should transmit data to the closest BS, i.e., the
BS in the same cell as the node, in order to conserve energy. In
addition, data should enter and exit the BS layer once. Thus,
routing in the infrastructure mode consists of three phases,
from the sender to the closest BS, forwarding within the
BS layer, and from the BS in the destination’s cell to the
destination. Node energy is only consumed in the first phase,
i.e., forwarding data from the sender to the BS, possibly in
multiple hops.

Let Aq(n) be the transfer volume of a network when all
energy is used for the ad hoc mode. Similarly, define \;(n, m)
as the transfer volume if all energy is used for the infrastruc-
ture mode. Because the transfer volume is proportional to node
energy, given any energy allocation with parameter p, the total
transfer volume is

A(n’m) = p)‘a(n) + (1 _p)/\z’(nam)' (9)

Note that energy consumption in the ad hoc or infrastructure
mode is isolated. So we can obtain an upper (lower) bound for
A(n,m) by summing up the upper (lower) bounds of A\, (n)
and A;(n,m).

A. Area Scaling

We first determine the transfer volume in both transmission
modes, namely A\,(n) and A;(n,m). In the ad hoc mode,
nodes forward data without using any base station. We can
obtain A\, (n) by applying the results of homogeneous networks
in previous sections. In the infrastructure mode, all nodes in
a cell transmit data to the BS within the cell. To compute
Ai(n,m), we extend the analysis developed for homogeneous
networks with sensor traffic in Section III. The difference is
that A;(n,m) considers only nodes within a cell, instead of
the unit area in previous analysis.

For the upper bound of A;(n,m), it is sufficient to consider
a single cell. This is because, by definition, a transfer volume
of Aj(n,m) requires every node to be able to transmit that
amount of data to its destination. Let V' be any cell. Because
the BSs are placed regularly, the area of V' is # Since nodes
are randomly distributed, the probability that a node is in V
is % By the Strong Law of Large Numbers, the number of
nodes in V' is - with probability 1 as n — oc. To determine
Ai(n,m), we adapt the proof in Lemma 3.1 to account for the
fact that nodes are within a cell*. Specifically, the claim that
no node lies within a distance of "1\/5 to the BS with high
probability remains true. The probability density function of
a node’s distance to the BS becomes P{d; = =} = 2mmx by
conditioning on the fact that the node is within the cell. So
the upper bound A¥(n) of the feasible transfer volume is

2w Ax
e(z)

A¢(n,m) = CQm/\/m dx. (10)
eV

4We approximate a hexagon cell as a disk of the same area to apply the
analysis in Section III. We argue that this would not impact our results.
Specifically, if the energy cost function e(r) satisfies e(c’r) < ¢’e(r) for
some constants ¢’, ¢/ and 0 < 7 < 1/4/m, which is the case in practice,
it can be shown that the results obtained by approximation differ only by a
constant factor.



For the lower bound of \;(n,m), we need to prove that
nodes in every cell can transmit enough data to the sink. To
bound the number of nodes in each cell, we assume that m <
m. So the area of each cell is at least %5—”. Using
the same techniques as in Lemma 3.4, the number of nodes in
every cell can be shown to be ©(Z). So to ensure connectivity
among node within a cell, the transmission range r, must be

at least of order 4/ W. Following the same arguments in

the proof of Lemma 3.5, we can prove a lower bound AL (n,m)
of the feasible transfer volume below.

log(n/m) 1

2
ciomz®A
G0t A <z<

/\é(n,m) = max{ @) ci1 p

B. Upper Bound on Energy-Limited Capacity

We now study the capacity of hybrid networks with sensor
traffic. For this class of networks, transmissions in the ad
hoc mode and the infrastructure mode are the same except
at different scales, i.e., in the unit disk or in a cell. In the
following we present the upper bounds on the energy-limited
capacity.

Given the energy allocation parameter p, we can obtain the
total transfer volume by combining A,(n) and A;(n,m). We
now derive upper bounds for the specific cases of energy cost
functions.

Case 1. e(r) = ¢or®.
Noting that lim,, . 2 = 0, we derive A}(n,m) from (10).

u [ O(mlogn) if a = 2;
Ail(n,m) = { O(mnz~1¢272) ifa > 2.

When o > 2, the infrastructure mode transfer volume
¢ (n,m) is O(mn%~1¢2~2) by (12). And the ad hoc mode
transfer volume X\, (n) is O(n > ~1¢2~2). \¥(n, m) dominates
the total transfer volume. So A(n,m) is maximized if p — 0,
i.e., traffic should be forwarded via the BSs. In this case, the
transfer volume scales with the number of BSs. Similarly,
when @ = 2, the total capacity is O(mlogn) as compared
to the O(logn) capacity in networks without BSs. So the
capacity increases as m increases.

In both cases, the deployment of BSs in networks with
sensor traffic has immediate improvement on the network
capacity. The capacity gain scales linearly with the number
of BSs. This suggests that BS deployment in sensor networks
is a promising approach to improve capacity.

12)

Case 2. e(r) = cq(cp +7%).
We first determine AY(n,m) by (10).

1
Cot o m

ClgmA 1 — .
2¢a et o3 if @ =2
Ai(n,m) = o (13)
ciomA [Vmr zdzx if > 2
Ca —1_ Gtee O :

¢n\/;

It is easy to see that A¥(n,m) is O(1) regardless of «
and m. This is because for any transmission, the minimum
energy required is c,cp. Given energy supply A, each node
can transmit no more than CA;% units of data. Therefore, this

class of networks has finite sacaling regions.
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Fig. 5. Normalized A;(n, m) vs. number of base stations in hybrid networks
with sensor traffic.
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Fig. 6. Transfer volume A(n,m) vs. number of nodes in hybrid networks
with sensor traffic.

We now study the scaling properties of networks with
e(r) = cq(cp + r*) by numerical results. In the calculation,
we set all constants to 1. Fig. 5 shows how the infrastructure
mode capacity grows with the number of BSs when n is oo.
We normalize A\}(n,m) to the ad hoc mode transfer volume
Ae(n). We can see that the normalized A¥(n,m) is always
greater than 1, suggesting that A¥(n, m) always dominates the
total transfer volume. A¥(n, m) increases with the number of
BSs until it saturates. In addition, the maximum normalized
A¥(n,m) increases with smaller ¢; and smaller «. So the
capacity gain is more significant when ¢; and « is small.

Fig. 6 shows how the total transfer volume grows with the
number of nodes when ¢, is 1075. We compare A(n, m) when
the number of BSs m is 0, Inn, \/n and . Specifically, we
calculate A, (n) using (6) and A;(n,m) using (13), and set
A(n,m) as the larger of these two. We can see that these
networks have finite scaling regions, i.e., the transfer volume
saturates when n is large enough. Fig. 6 also confirms that the
total transfer volume increases with the number of BSs, even
the number of BSs is relatively small, e.g., Inn.

C. Lower Bound on Energy-Limited Capacity

We now obtain lower bounds using similar techniques as in
the previous section. We focus on the specific cases of energy
cost functions. In general, the achievable lower bounds are
within a factor of 0(logk n) from the corresponding upper



bounds for some constant k and the scaling behavior is similar.

Case 1. e(r) = ¢or®.
We first determine AL(n,m) by (11).

_J Qm)
M(n,m) = { Q(m(logn)%_l)

Comparing Ai(n,m) with the ad hoc mode transfer volume
Ao () obtained in Lemma 3.6, we can see that AL(n,m) will
dominate the total transfer volume A(n,m). So traffic should
be transmitted using the infrastructure mode. And A(n,m)
increases linearly with the number of BSs. This is similar to
the results on the upper bound in the previous section.

Case 2. e(r) = cq(cp +1%).
We obtain the following results about AL (n,m) using similar
techniques as in Lemma 3.7. When a = 2, we have

ifa=2;

fa>2 U9

A, m) = — 2 (15)
b + mr
When o > 2, we have
1 1
= f I < 2cy =
Az(n’m) _ Cl4mf((a ) ) 1 ’l“, ((12_52)A7 (16)
cismf(r') if 7' > (2%)-
with high probability where f(z) = =% and r' =

¢ log(n/m).

™
With Al(n,m), we can obtain a lower bound of the total
transfer volume A(n,m) by combining Al(n, m) and the lower
bound of A\,(n) obtained in Lemma 3.7.

V. ENERGY-LIMITED CAPACITY OF HOMOGENEOUS
NETWORKS WITH AD HOoC TRAFFIC

In this section, we present the energy-limited capacity of
homogeneous networks with ad hoc traffic. In these networks,
nodes communicate with randomly chosen nodes, instead of a
common sink. We will obtain upper and lower bounds of the
energy-limited capacity.

A. Upper Bound on Energy-Limited Capacity

To establish an upper bound on the energy-limited capacity,
we first determine the minimum energy that is required to
transfer data over a given distance. Given limited energy
supplies in nodes, we then obtain an upper bound of the fea-
sible transfer volume. In our proof, we extend the techniques
presented in [30]. The work in [30] studies the throughput
capacity of networks where bandwidth is infinite but the
maximum transmit power of each node is limited. Under
these assumptions, the authors show that the interference is
negligible, which renders the transmit power of nodes as the
main constraint. This is similar to our analysis of energy-
limited capacity where the transfer volume is limited by node
energy supplies.

For any routing path, the total energy used to deliver a unit
of data is the sum of energy consumed in each hop. Thus
the number of hops and the transmission range of each hop
determine the total energy of the routing path. For a network
with n nodes, there is an upper bound on the number of hops

that a routing path can have. The work in [30] has proved the
following result.

Lemma 5.1: (Result from [30]) For a network with n nodes,
the number of nodes on a routing path of length d is upper
bounded by N(n,d) = ciglogn + cizdy/nlogn for some
constants ci¢ and cy7 with high probability.

We define y(n,d) as the minimum energy for routing a
unit of data over a distance d within N (n,d) hops where the
relaying nodes can be arranged arbitrarily to minimize the total
energy consumption. Now we prove the following result.

Lemma 5.2: For a network with n nodes, the minimum
energy to transmit a unit of data over a distance d is no less
than ~y(n,d) defined above with high probability.

Proof: Let R be a routing path between two nodes that
are of distance d apart and {rl 1 be the transmlssmn ranges
used in R. By the triangle 1nequahty, we have ZZ 1T 2>
d. Consider a routing path {r;}¥_, where k is the minimum
number that satisfies Zf i >d If we replace the last hop
rr, with another range ' such that ZZ L it r' = d, we have
a routing path that is of length d and has k& hops. Obviously we
have ' < rg. By Lemma 5.1, k is no more than N(n,d) with
high probability. Because y(n,d) is the minimum energy for
routing a umt of data over a distance d within N(n,d) hops,
we have E "~ e(r;) + e(r') > y(n,d). So the total energy
consumption of R is no less than y(n,d). This completes the
proof. [ ]

For general energy cost functions e(r), we can obtain
~v(n,d) by solving an optimization problem as follows. Be-
cause a routing path can consist of up to N(n,d) hops, we
use binary variables I; to indicate whether transmission range
r; is used in the routing path, 1 < i < N(n,d). We can
formulate the problem as follow.

N(n,d)
minimize Z Lie(r;)
i=1
N(n,d)
subject to Z Lr; =d,

r; >0,I; ={0,1} for 1 < i < N(n,d).

Then 7(n,d) is the optimal value of the objective function,
i.e., the minimum value of EN ) Le(r;).

Now we derive an upper bound of the energy-limited
capacity. In a network with n nodes, data transmission for
each node consumes energy in the network. The sum of energy
consumption in all n routing paths must be no more than the
total energy supply in the network which is nA. Let d; be the
distance between node X; and its destination. To achieve a
transfer volume of A(n), we need to have

i=1
Since d; is i.i.d., by the Strong Law of Large Number, we
have % v(n,d;)/n — E[y(n,d;)] with probability 1 as
n — oco. So with high probability, we get

Aln) < cisd

= B )] "



For general energy cost functions, the analysis of ~y(n,d;)
and consequently A(n) would be difficult. In the following,
we focus on the two specific cases.

Lemma 5.3: In a homogeneous network with ad hoc traffic,
if the energy cost function is e(r) = ¢,r?®, the feasible transfer
volume A(n) satisfies

A(n) = 02 (nlogn) *7)

Ca

(18)

with high probability.

Proof: Let d be the distance between a node and its
destination. We first determine +y(n,d). Since o > 2, the
energy cost function e(r) is convex. So for any route of k hops,
the energy consumption is at least Ii‘;‘ﬁ which is a decreasing
function of k. Therefore, we can reduce energy consumption
by transmitting data in more hops. Noting that k¥ < N(n, d),

we have

Recall that N(n,d) = ciglogn + ci7dy/nlogn. When
d > € for some constant €, the /nlogn term will dominate
N(n,d) for large n, i.e., N(n,d) ~ cizdv/nlogn. We have

y(n,d) > ——=<2&___ when d > €. Thus
et H(nlogn) 2
Ely(n,d)] = P{d> €e}E[y(n,d)|d> €]
> (1-1)Ehn,dld> ¢
S ClgcaE[d|d > 6]

a—1

(nlogn)™=
Since E[d|d > €] is a constant, by (17) we have

A a
Aln) = O(—(nlogn)Tl).
Ca
This completes the proof. ]
Lemma 5.4: In a homogeneous network with ad hoc traffic,
if the energy cost function is e(r) = cq(cp + r?®), the feasible

transfer volume A(n) satisfies

—cad if Vnlogn > £-
ORI T ()
ca f(c17v/nlogn) if vn ogn < c17

with high probability where k* = (ac_—bl)é and f(z) = cpz +
1

a—1-
’ Proof: Consider any node and let d be its distance to
the destination. We first determine (n,d). Suppose that the
routing path consists of k hops. Since e(r) is convex, the
energy consumption of the routing path is at least ¢, (kcy +
kf—c_‘l). So the minimum energy is achieved when the number
of hops in the route is d( ac—bl)é, ie., k*d.

Recall that N(n,d) ~ ciydy/nlogn for large n when
d > € for some constant €. If N(n,d) > k*d, or v/nlogn >
k” " data can be forwarded in k*d hops which consumes a

cir”’, .
minimum amount of energy. In this case, we have

v(n,d) > co(k*cp + )d = co f (K*)d.

k*a—l
Similar to the proof of Lemma 5.3, we can prove

An) <

CzoA

caf(k*)

Routing path
e

Fig. 7. Voronoi tessellation and routing paths.

If N(n,d) < k*d, or v/nlogn < %, data should be routed
in as many hops as possible to conserve energy, i.e., in N (n, d)
hops. We can prove the result similarly. [ ]

B. Lower Bound on Energy-Limited Capacity

In this section we provide a constructive proof of a lower
bound on the energy-limited capacity, which is similar to the
proof in [15].

In our proof, data is transmitted using the same radio range.

To ensure that the network is connected with high probability,

logn
n

the radio range is at least of order according to [14].

In our proof, the radio range 7, is set to be at least ca; I%rgn—”

We set ca1 to 80 which will be clear in the proof of Lemma
5.5.

We divide the unit area into smaller regions. Specifically,
we use a Voronoi tessellation V,, with the following properties
which is shown to exist in [15].

1) Every Voronoi cell contains a disk of radius p,, where

Pn = %

2) Every Voronoi cell is contained in a disk of radius 2p,,.
An example of a Voronoi tessellation is depicted in Fig. 7. We
obtain the following result about the number of nodes in each
cell. The proof is skipped here because it is very similar to
that of Lemma 3.4.

Lemma 5.5: Every cell in V,, has ©(nr2) nodes with high
probability.

We consider a geographic routing strategy in which data is
forwarded from a node to its destination along Voronoi cells
intersected by the line segment connecting the source and its
destination (see Fig. 7). Specifically, consider a node X; and
its randomly chosen location Y;. Let V; and V' be the cells
that contain X; and Y; respectively. Data originating at X;
will be forwarded from V; to V; along the cells intersecting
the line segment connecting X; and Y;. After reaching cell
VZ-’ , data will be sent to the destination.

To achieve a transfer volume of A(n), every cell should be
able to transmit the amount of traffic offered by the routing
algorithm. Thus it is important to balance traffic load among
cells. The following result shows that this is achieved by using
the spatial tessellation and routing algorithm described above.
The proof of this lemma can be found in the Appendix.

Lemma 5.6: For a transfer volume of A(n), the amount of
traffic every cell is responsible for forwarding is O(nr,A(n))
with high probability.



Now we are ready to derive a lower bound on the energy-
limited capacity. By Lemma 5.5, the total energy in each cell
is ©(nr2 A). For a transfer volume of A(n), since the radio
range is r,, the amount of energy required in each cell is
O(nrpA(n)e(r,)) by Lemma 5.6. Thus we have

nrpA(n)e(ry,) > czgnriA

for some constant cy3. So we have

Coarp A
An) > 212
e(rn)
Noting that the transmission range r,, is at least caq I%rgTT",

we have the following result.
Lemma 5.7: For homogeneous networks with n nodes and
ad hoc traffic, a transfer volume of

)\(n) 2 max{ 022(534 2621“ logn < < T}

is feasible with high probability.

The above lemma can be applied to any energy cost func-
tion. We now derive the lower bounds for the two specific
cases of energy cost functions.

Lemma 5.8: In a homogeneous network with ad hoc traffic,
if the energy cost function is e(r) = ¢,r®, a transfer volume

of
() = (2 ()=

co logn

(20)

2y

is feasible with high probability.

Lemma 5.9: In a homogeneous network with ad hoc traffic,
if the energy cost function is e(r) = cq(cp + r*), a transfer
volume of

st if ea1q/ 57 < g/ 5%
An) > { oV 22)
ca3 A if o1 logn > of _cb

™ a—1

cagleary/ EF)

is feasible with high probability where g(z) =
Proof: Note that g(r) = (cp + r )/r So g( ) is
minimized when the transmission range is r* = ¢ . That

is, the feasible transfer volume is maximized by usmg radio
range r*. However, for a given n, the minimum transmission

1
range used is 7' = ¢o1 Og " Thus when the minimum range

r' is larger than the optlmal range r*, nodes can not use range

r*. In this case, the feasible transfer volume is 6033(;4,). When
n is large enough such that 7' < r*, the maximum transfer
volume can be achieved which is -4 [ |

Cag("'*) :

C. Scaling Properties

We now discuss the scaling properties of the capacity in
networks with the specific energy cost functions. As we can
see in previous sections, the achievable lower bounds are
within a factor of O(log'c n) from the corresponding upper
bounds for some constant k. Thus we present only the results
for the upper bounds here.

We can see that the energy-limited capacity can scale well in
homogeneous networks with ad hoc traffic. For example, when
e(r) = c,r?®, the transfer volume scales as O((nlog n)QT_l)
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Fig. 8. Effect of parameter c; on transfer volume in homogeneous networks
with ad hoc traffic.

When e(r) = cqo(cp + ), the transfer volume scales with
the number of nodes, but within a finite region, which par-
allels the results for networks with sensor traffic. Comparing
networks with ad hoc and sensor traffic, we can see that the
capacity of networks supporting sensor traffic is less than the
capacity of networks supporting ad hoc traffic, by a factor
of O(y/nlog®n). This capacity penalty is due to the effect
of traffic aggregation near the sink in networks with sensor
traffic.

Now we provide some numerical results for the case where
e(r) = cq(cp + ™). We set all constants to 1. Fig. 8 depicts
how the transfer volume A(n) changes with ¢;. We can see
that A(n) increases as ¢ decreases. So reducing the constant
energy consumption can increase the capacity of the network.
In addition, A(n) increases with «. This behavior is similar to
that of networks with sensor traffic.

Fig. 9 shows how the transfer volume A(n) grows with
the node density when « = 3. We can see that A(n) can
increases with node density, as in networks with sensor traffic.
In addition, with a smaller ¢, the transfer volume increases
over a larger region of node density. Fig. 9 also shows that the
scaling behavior for the case of e(r) = c,(cp + r®) is similar
to that of e(r) = ¢,r®, which scales as O(nlogn), before
A(n) reaches the maximum transfer volume.

To quantify the scaling region, we define the saturating
density as the minimum node density that achieves the maxi-
mum transfer volume. By Lemma 5.4, the saturating density is
the minimum n that satisfies ci7/nlogn > (&=+ bl) . Fig. 10
shows the saturating density under different c;. As expected,
the saturating density increases with the decrease of cy. It also
shows that the saturating density is larger with a smaller a.
Thus for a given cp, while the maximum transfer volume is
less with a smaller «, it requires higher node density to reach
that maximum transfer volume.

In summary, while the upper bound is O(1) when e(r) =
cq(cp + %), the energy-limited capacity can scale with the
node density, although within a finite region. In addition, re-
ducing the constant energy both improves the network capacity
and increases the scaling region.



1e+07 T T T

a=3, cp=1e-07 —+— -
1e+06 F =3, c,=1€-05 —-x--- - E
=3, Cp=16-03 - %---

£ 100000 [ 0=3 Cp=1e-01 -wa- 3
ﬁ n*log(n) ——®-m-"
£ 10000 -
[}
>
5 1000
(2]
&
S 100 |
10 F -
a = B = (= =] B =] 1)
1 1 1 1
100 1000 10000 100000  1e+06

Number of nodes (n)

Fig. 9. Transfer volume vs. number of nodes in homogeneous networks with
ad hoc traffic.

1e+07 T T T T

1e+06 |

QLR

Il

AR wWN
X

100000
10000 £

1000 F -
[1:5

100

Saturating density (n)

10 £ - .'\it__é
1 1 1 1 1 1
1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
Parameter c,,
Fig. 10. Saturating density vs ¢, in homogeneous networks with ad hoc
traffic.

VI. ENERGY-LIMITED CAPACITY OF HYBRID NETWORKS
WITH AD HoC TRAFFIC

We now study hybrid networks with ad hoc traffic. In these
networks, base stations with unlimited energy are deployed
to help data forwarding and data can be routed via the ad
hoc mode or the infrastructure mode. As in Section IV, we
obtain the total transfer volume by combining the transfer
volume contributed by the ad hoc and infrastructure modes. In
the following, we focus on the specific cases of energy cost
functions.

A. Upper Bound on Energy-Limited Capacity
We first obtain upper bounds of the energy-limited capacity.

Case 1. e(r) = ¢or®.
When a > 2, by (18) and (12), the total transfer volume is

A(n,m) = pO((nlogn) %) + (1 — p)O(mn¥ 142 2).

If m = o(y/n(logn) %), the ad hoc mode transfer volume
Ao (n) dominates A(n,m). So A(n,m) is maximized if p — 1.
In other words, traffic should be forwarded using the ad hoc
mode. Therefore, there is no significant performance gain
when m is small, ie., m = o(y/n(logn) = ). If m =
w(y/n(log n)aT_l), the infrastructure mode transfer volume
will be the dominating term in A(n,m). So A(n,m) is
maximized if p — 0, i.e., traffic should be routed via the

11

BS layer. In this case, the transfer volume increases linearly
with m.
Similarly, when a = 2, we have

A(n,m) = pO(y/nlogn) + (1 — p)O(mlogn).
So the total transfer volume is O(v/nlogn) if m = o(, / ===)

logn

and O(mlogn) if m = w( 1ogn)'

In summary, when the energy cost function is e(r) = ¢,r®,
the capacity gain due to the deployment of BSs is bimodal.
Specifically, when the number of BSs grows asymptotically
slower than some threshold which is of the order \/n log" n for
some constant k, the total capacity is dominated by the ad hoc
mode capacity. Thus the improvement due to the deployment
of BSs is insignificant. When the number of BSs grows faster
than that threshold, the total capacity is dominated by the
infrastructure mode capacity which increases linearly with the
number of BSs. This suggests that to achieve non-negligible
capacity gain, the number of BSs deployed should be large
enough.

Case 2. e(r) = cq(cp +1%).

Similarly, we can obtain the total transfer volume by com-
bining the transfer volume contributed by the ad hoc and
infrastructure modes using (19) and (13).

B. Lower Bound on Energy-Limited Capacity

We now consider the lower bound of the energy-limited
capacity. In general, the lower bounds are within a factor
of O(logk n) from the corresponding upper bounds and the
scaling behavior is similar.

Case 1. e(r) = cor®.
When a = 2, by (14) and (21), we can get

A(n,m) = pQ( /%) +(1—p)Q(m).

), the ad hoc mode transfer volume dominates

If m = of

A(n,m). So there is no significant performance gain in this

log n

case. If m = w(

i Ogn), however, the total transfer volume
will be dominated by the infrastructure mode transfer volume,
which scales linearly as the number of BSs.

When a > 2, we have

A(n,m) = pn«% _

5" + (L= p)QAm(—) ).

So the total transfer volume A(n,m) will be Q((; gn) =)

if m = o, /logn) And A(n,m) will be Q(m (logn)% by if

m = w(

logn

logn)‘

Case 2. e(r) = cq(cp +1%).
For this case, we can compute the total transfer volume by
(16) and (22).

VII. DISCUSSION

In this section, we compare our results on energy-limited
capacity with previous results on throughput capacity and
discuss the issues of idle energy consumption and network
lifetime.



A. Comparison with Throughput Capacity

In [15], Gupta and Kumar study the throughput capacity
of static random networks. They show that the per node
throughput decreases as Q(W) as the number of nodes
n increases. This implies that large scale wireless networks
may have performance problems for non-local traffic patterns.
Using the same network model, we analyze the energy-
limited capacity, and our results indicate that the energy-
limited capacity has fundamentally different scaling properties
from those of throughput capacity. We show that the energy-
limited capacity can scale with the node density, either in-
finitely or finitely. Therefore, from the energy consumption
perspective, this demonstrates positively the feasibility of
the deployment of large scale wireless networks, especially
those networks where energy is of paramount importance
and bandwidth demand is of less concern. By combining
the results on both types of capacities, we can obtain a
lower bound on network lifetime under ideal conditions, i.e.,
data transmission is optimal such that energy consumption is
minimum. For example, when e(r) = ¢,r?®, the energy-limited
capacity is Q((lo’g‘n)%l). Note that the throughput capacity
is O(V%gn). Therefore, a lower bound of the lifetime of the
network is Q(n2 (logn)'=%).

For networks with sensor traffic, the per node throughput is
on the order of O(%) due to the traffic aggregation at the sink.
This implies that without data fusion or in-network processing,
sensor networks are not scalable in data transmission perfor-
mance. Our results show that the energy-limited capacity can
scale with the node density, similar to the case with ad hoc
traffic, but at a slower pace.

To overcome the throughput limitations in homogeneous
networks, hybrid networks have been proposed and studied
in previous work. Liu et al. [27] show that in order to achieve
non-negligible throughput capacity gain, the number of BSs
deployed should be large enough. Specifically, the authors
show that the number of base stations must grow faster than
+/n, whereupon the overall capacity increases linearly with
m. This result parallels our result that when e(r) = ¢,r?, the
number of base stations must grow faster that /nlog’n to
achieve effective improvement in the energy-limited capacity
where ¢ is a constant.

In this paper, we also study the capacity of hybrid networks
with sensor traffic. In this case, the capacity always benefits
from the deployment of base stations. This suggests sensor
network lifetime can be effectively improved by installing base
stations, even in small numbers.

B. Energy Issues

Network lifetime. As pointed out in [5], the network lifetime
depends on the services the network is designed to provide,
thus is application-specific. For example, the goal of an ad hoc
network is mainly to provide connectivity among nodes; in a
sensor network, the requirement for coverage should also be
considered. On the other hand, the capability to communicate
is a basic requirement in every network. Thus, for general net-
works, we can consider the energy-limited capacity defined in
this paper as a measure of network lifetime. More specifically,
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by the requirement of uniform transfer volume of all nodes, the
energy-limited capacity measures the transport capacity until
the first node runs out of energy. In many applications, the loss
of a single node would not render the network useless. Thus
this measure of network lifetime would be too conservative
for these applications.

Idle energy consumption. In this paper, we consider only the
transmission energy consumption. In other words, we assume
the existence of an optimal scheduling algorithm which has
perfect knowledge about the network and does not waste any
energy by shutting down nodes whenever they are idle. In
practice where such perfect information or perfect control
of devices is not available, the capacity will be smaller. To
minimize the idle energy consumption, efficient schemes have
been developed in [7], [43] which turn off redundant nodes
in the network while maintaining network connectivity. In
addition, by aggressively putting nodes into sleep mode, we
can further reduce idle energy consumption by trading off la-
tency for energy saving [37]. Thus by using these mechanisms,
the impact of idle energy consumption on the energy-limited
capacity can be minimized.

VIII. RELATED WORK

In this section, we review the related work which is broadly
classified into two categories, throughput capacity and energy
issues.

A. Throughput Capacity of Wireless Ad Hoc Networks

In a seminal paper, Gupta and Kumar [15] study a model
of ad hoc networks with fixed nodes and show that when
the number of nodes per unit area n increases, the per node
throughput decreases as O(ﬁ) Grossglauser and Tse [13]
show that with loose delay constraints, node mobility can
dramatically improve network capacity. They prove that the
per node throughput can be kept constant as the number of
nodes per unit area increases, although at the price of increased
delay. In the work of [2], [32], the authors study the issue of
delay and capacity in mobile networks. In recent work [12], the
authors study the throughput-delay tradeoff in both stationary
and mobile networks.

To address the limitation on throughput capacity in static
networks, the work in [22] and [27] studies hybrid networks
where base stations connected with a high-bandwidth wired
network are deployed to support data forwarding in the wire-
less network. The work in [27] considers two routing strategies
and shows that when the number of base stations grows slower
than /n, the benefit of adding base stations is minimum,
which suggests that the investment in base stations should be
high enough to achieve effective improvement. In the work
of [22], the authors show that the throughput capacity scales
as O(; oén) when the number of base stations grows linearly
with the number of nodes in the network.

In [25], Li et al. conduct an experimental study of through-
put capacity and confirm that throughput capacity of networks
with non-local traffic pattern does not scale with the network
size. The work in [24] evaluates the performance improvement
due to the use of multi-channel in ad hoc networks via




simulations and presents the scaling properties of per-node
throughput. Toumpis and Goldsmith [39] study the capacity
region for given network settings. Similarly, the work in [21]
and [18] investigates the maximum achievable rates in ad hoc
networks.

In recent work [30], Negi and Rajeswaran study the through-
put capacity in networks where each node is constrained
by a maximum transmit power but can utilize unlimited
bandwidth and show that the throughput per node scales as
O((nlog n)aT_l), which demonstrates the effects of physical
layer properties on network capacity. In addition, the capacity
improvement by using directional antennas is studied in [44]
and [31].

In [11], Duarte-Melo and Liu study the throughput capacity
of networks with sensor traffic and present the conditions
under which the trivial upper bound % can not be achieved.
They also show that the use of clustering can improve the
throughput and discuss the tradeoff between capacity and
energy consumption.

B. Energy Issues

In wireless environments, nodes are often equipped with
limited energy. Thus energy management is important and
receives much attention in the research community.

Singh et al. [38] propose power-aware routing and describe
a number of routing metrics used in the routing algorithm.
Chang and Tassiulas [6] consider the problem of maximizing
the network lifetime when the traffic demand is known and
propose algorithms to select the routes and the corresponding
transmission ranges. They point out that traffic load should
be balanced among the nodes in order to maximize the
lifetime. In [26], Li et al. study online power-aware routing
where data arrival is not known and develop an approximation
routing algorithm. The work in [20] presents an improved
algorithm for online power-aware routing which achieves a
better approximation factor and requires less overhead.

To achieve optimal performance, it is important to reduce
idle energy consumption which is shown to dominate the
overall energy consumption if nodes are idle most of the time.
Kravets and Krishnan [23] propose to shut down the commu-
nication device when idle to reduce power consumption. The
work in [7] and [43] considers sensor networks and exploits
node redundancy to minimize idle energy while maintaining
network connectivity. In [5], Blough and Santi investigate
the upper bound of network lifetime extension due to the
cell-based energy conservation schemes. The work in [37]
proposes a scheme to further reduce idle energy consumption
by aggressively putting nodes into sleep mode, thus trading
off latency for energy saving.

Recently there has been significant research on the energy
issues of sensor networks [17], [1], [34]. In [16], Heinzel-
man et al. study energy-efficient communication protocol
in sensor networks and propose a clustering-based protocol
that utilizes randomized rotation of cluster-heads to evenly
distribute the energy load among sensors. In [3], Bhardwaj
and Chandrakasan derive upper bounds on the lifetime of
sensor networks that transmit data from a point, a line or
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an area source. In [4], they further formulate the network
lifetime problem as a network flow problem via optimal role
assignment. In [9], Duarte-Melo and Liu analyze the energy
consumption in networks with sensor traffic. They consider
and compare flat and clustering network structures. In [10],
they examine the energy consumption and lifetime of hybrid
sensor networks based on a clustering mechanism and study
the optimal number of clusters used. While the above work
considers energy consumption and network lifetime in sensor
network, our work is significantly different. We focus on the
scaling properties of the energy-limited capacity, which is
important in large scale networks, and formally derive upper
and lower bounds on the capacity. In addition we analyze
the capacity in both homogeneous and hybrid networks, with
either ad hoc or sensor traffic.

In [29], Marco et al. study the transport capacity of sensor
networks subject to a constraint on the quality of the recon-
structed data. They show that as the node density approaches
infinity, no data compression scheme is sufficient to transport
enough data to achieve a given quality.

There is also some research on fopology control in wireless
multi-hop networks [36], [28], [35], [42]. This body of work
focuses on adjusting the transmission power of nodes in a
multihop wireless network in order to create a topology with
desired properties, e.g., maintaining network connectivity.

In [15], Gupta and Kumar consider the minimum power
in random networks that maintains network connectivity and
show that nodes are connected with high probability when the

log n+kn

e where n is the

radio range r(n) satisfies r(n) =
number of nodes and x,, = +o00.

IX. CONCLUSION

In this paper, we studied the energy-limited capacity in
wireless networks. We derived upper and lower bounds for
homogeneous and hybrid networks, under both ad hoc and
sensor traffic models. We showed that the energy-limited
capacity can scale well in all these environments. This implies
that large scale wireless networks can be scalable in terms
of energy consumption, despite the decrease of throughput
capacity. Table I summarizes the results for networks with
energy cost function e(r) = ¢,r®. The scaling behavior of
networks with energy cost function e(r) = c¢,(cp + 7¢) is
similar, but within a finite region. We found that reducing
¢y can both improve the capacity and increase the scaling
region. Thus reducing the constant energy consumption is
key to desirable scaling. In addition, the capacity of networks
supporting sensor traffic is less than the capacity of networks
supporting ad hoc traffic, by a factor of O(y/nlog®n) for
some constant c¢. This is because of the effects of traffic
concentration at the sink.

We also analyzed the capacity gain due to the deployment of
base stations in hybrid networks. For ad hoc traffic, we showed
that the capacity gain is bimodal. Specifically, when e(r) =
cor®, to achieve non-negligible capacity gain, the number
of base stations needs to grow faster than \/ﬁlogk n. So a
minimum investment in base stations is required to improve
capacity in this case. This parallels the result in throughput
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«a Capacity | Homogeneous network Hybrid network Homogeneous network Hybrid network
Bound with ad hoc traffic with ad hoc traffic with sensor traffic with sensor traffic
O(v/nlogn) ifm=o(,/2)
a=2 Upper O(v/nlogn) ) \/loin O(logn) O(mlogn)
O(mlogn) if m = w( m)
Q /%) ifm =0,/
Lower (/=) Vi . Vi Q(1) Q(m)
ogn Q(m) it m =w(/oem)
1= SN a=1
a>2 | Upper O((nlog n)aT_l) O((n lig_nl) ;_2) ?f m = o(v/n(logn) ;) 0(¢2 2n3 1) O(mn% 192~
O(mn 2 o 2) if m=w(y/n(logn) 2 )
a—1
a—1 Q((IL) 2 ) ifm:o( IL a a
Lower Q((@) 7 ) Ognn ey . \/Oin Q((ﬁ =1 Q(m(mgn)z D)
Qm(2n) ) i m = (/)

TABLE I
ENERGY-LIMITED CAPACITY OF NETWORKS WITH €(7) = ¢qT%. ¢p, IS A SEQUENCE THAT SATISFIES limy, 00 ¢y — 00.

capacity [27]. For sensor traffic, however, the deployment
of base stations has immediate improvement on the network
capacity. This suggests that hybrid deployment would be a
promising approach to extend the lifetime of sensor networks.
In this paper, we obtained lower bounds that are a factor
of 0(logk n) from the corresponding upper bounds. This
indicates effective scaling of the capacity is achievable. In the
future, we would like to extend this study to consider other
kinds of energy consumption in the network. For example, it
would be interesting to investigate the impact of idle energy
consumption and energy conservation schemes on the network
capacity. In addition, we would like to design decentralized
routing algorithms to achieve the energy-limited capacity.

REFERENCES

[1]1 L F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Comput. Networks, 38:393-422, 2002.

[2] Nikhil Bansal and Zhen Liu. Capacity, delay and mobility in wireless
ad-hoc networks. In IEEE INFOCOM’2003, April 2003.

[3] M. Bhardwaj, A. Chandrakasan, and T. Garnett. Upper bounds on
the lifetime of sensor networks. In IEEE International Conference on
Communications, pages 785 — 790, 2001.

[4] M. Bhardwaj and A.P. Chandrakasan. Bounding the lifetime of sensor
networks via optimal role assignments. In IEEE Infocom, pages 1587—
1596, New York, June 2002.

[5] D. Blough and P. Santi. Investigating upper bounds on network lifetime
extension for cell-based energy conservation techniques in stationary ad
hoc networks. In ACM Mobicom 2002, Atlanta, Georgia, Sept 2002.

[6] J. Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc
networks. In IEEE Infocom, Tel-Aviv, Israel, 2000.

[7]1 Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris.
Span: An energy-efficient coordination algorithm for topology mainte-
nance in ad hoc wireless networks. In ACM Mobicom, Rome, Italy, July
2001.

[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
MIT Press and McGraw-Hill Book Company, 1990.

[9] E. Duarte-Melo and M. Liu. Energy efficiency in many-to-one commu-
nications in wireless networks. In IEEE 45th Midwest Symposium on
Circuits and Systems (MWSCAS’02), Tulsa, August 2002.

[10] E. Duarte-Melo and M. Liu. Analysis of energy consumption and
lifetime of heterogeneous wireless sensor networks. In IEEE Globecom,
Taipei, Taiwan, November 2002.

[11] Enrique J. Duarte-Melo and Mingyan Liu. Data-gathering wireless
sensor networks: Organization and capacity. Univ. of Michigan, Ann
Arbor, Tech. Rep., 2002.

[12] Abbas El Gamal, James Mammen, Balaji Prabhakar, and Devavrat Shah.
Throughput-delay trade-off in wireless networks. In /EEE INFOCOM
2004, Hongkong, China, March 2004.

[13] M. Grossglauser and D. Tse. Mobility increases the capacity of ad-hoc
wireless networks. In IEEE INFOCOM 2001, April 2001.

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

P. Gupta and P. Kumar. Critical power for asymptotic connectivity in
wireless networks. In Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H. Fleming, W.M. McEneaney,
G. Yin, and Q. Zhang (Eds.) Birkhauser, Boston, 1998.

Piyush Gupta and P. R. Kumar. The capacity of wireless networks. /EEE
Transactions on Information Theory, 46:388-404, March 2000.

Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.
Energy-efficient communication protocol for wireless microsensor net-
works. In 33rd Hawaii International Conference on System Sciences,
Maui, Hawaii, Jan 2000.

Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin.
Directed diffusion: a scalable and robust communication paradigm for
sensor networks. In ACM Mobicom, Boston, MA, 2000.

Kamal Jain, Jitendra Padhye, Venkata N. Padmanabhan, and Lili Qiu.
Impact of interference on multi-hop wireless network performance. In
ACM Mobicom, San Diego, CA, September 2003.

D. Johnson and D. Maltz. Dynamic source routing in ad-hoc wireless
networks. In ACM SIGCOMM, August 1996.

K. Kar, M. Kodialam, T. V. Lakshman, and L. Tassiulas. Routing for
network capacity maximization in energy-constrained ad-hoc networks.
In IEEE INFOCOM, 2003.

Murali Kodialam and Thyaga Nandagopal. Characterizing achievable
rates in multi-hop wireless networks: the joint routing and scheduling
problem. In ACM Mobicom, San Diego, CA, September 2003.

Ulas Kozat and Leandros Tassiulas. Throughput capacity of random ad
hoc networks with infrastructure support. In ACM MOBICOM, Sept.
2003.

Robin Kravets and P. Krishnan. Power management techniques for
mobile communication. In Mobicom, Dallas, TX, 1998.

J. Li, ZJ. Haas, M. Sheng, and Y. Chen. Performance evaluation
of modified IEEE 802.11 MAC for multi-channel multi-hop ad hoc
networks. Journal of Interconnection Networks, 4, 2003.

Jinyang Li, Charles Blake, Douglas S.J. De Couto, Hu Imm Lee, and
Robert Morris. Capacity of ad hoc wireless networks. In ACM Mobicom,
pages 61-69, Rome, Italy, July 2001.

Qun Li, Javed Aslam, and Daniela Rus. Online power-aware routing in
wireless ad-hoc networks. In ACM Mobicom, pages 97-107, 2001.
Benyuan Liu, Zhen Liu, and Don Towsley. On the capacity of hybrid
wireless networks. In JEEE INFOCOM’2003, April 2003.

E. Lloyd, R. Liu, M. Marathe, R. Ramanathan, and S. Ravi. Algorithmic
aspects of topology control problems for ad hoc networks. In ACM
MobiHoc, pages 123-134, 2002.

D. Marco, E. Duarte-Melo, M. Liu, and D. L. Neuhoff. On the many-
to-one transport capacity of a dense wireless sensor network and the
compressibility of its data. In International Workshop on Information
Processing in Sensor Networks (IPSN), April 2003.

Rohit Negi and Arjunan Rajeswaran. Capacity of power constrained
ad-hoc networks. In IEEE Infocom, Hong Kong, China, March 2004.
C. Peraki and S. D. Servetto. On the maximum stable throughput
problem in random networks with directional antennas. In ACM
MobiHoc, Annapolis, MD, June 2003.

Eugene Perevalov and Rick Blum. Delay limited capacity of ad hoc
networks: Asymptotically optimal transmission and relaying strategy. In
IEEE INFOCOM’2003, April 2003.

C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. Computer
Communication Review, 24, October 1994.



[34] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors.
Communications of ACM, 43, May 2000.

R. Ramanathan and R. Hain. Topology control of multihop wireless
networks using transmit power adjustment. In /EEE INFOCOM, 2000.
Volkan Rodoplu and Teresa H. Meng. Minimum energy mobile wireless
networks. IEEE Transactions Selected Areas on Communications,
17:1333-1344, August, 1999.

Curt Schurgers, Vlasios Tsiatsis, Saurabh Ganeriwal, and Mani B.
Srivastava. Topology management for sensor networks: Exploiting
latency and density. In MobiHoc’02, Lausanne, CH, June 2002.
Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing
in mobile ad hoc networks. In Mobicom, Dallas, Texas, 1998.

S. Toumpis and A. J. Goldsmith. Capacity regions for wireless ad
hoc networks. IEEE Transactions Wireless Communications, 2:736-748,
July 2003.

V. Vapnik. Estimation of Dependencies Based on Empirical Data.
Springer-Verlag, New York, 1982.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and
Its Applications, 16:264-280, 1971.

R. Wattenhofer, L. Li, P. Bahl, and Y. Wang. Distributed topology control
for power efficient operation in multihop wireless ad hoc networks. In
IEEE INFOCOM 2001, April 2001.

Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed
energy conservation for ad hoc routing. In ACM Mobicom, Rome, Italy,
July 2001.

Su Yi, Yong Pei, and Shivkumar Kalyanaraman. On the capacity
improvement of ad hoc wireless networks using directional antennas.
In ACM MobiHoc, Annapolis, Maryland, June 2003.

[35]

[36]
(371

[38]

[39]

[40]

[41]
[42]
[43]

[44]

APPENDIX

We first describe Vapnik-Chervonenkis theorem [41], [40]
which will be used in the proof of Lemma 3.4 and 5.6.

Let F be a set of subsets. A finite set of points A is said to
shattered by F if for every subset B of A there is a set F' € F
such that AN F = B. The VC-dimension of F, denoted as
VC — d(F), is defined as the supremum of the sizes of all
finite sets that can be shattered by F. For sets of finite VC-
dimension, one has uniform convergence in the weak law of
large numbers as stated in the following theorem.

Theorem 1.1 (Vapnik-Chervonenkis Theorem): If F is a set
of finite VC-dimension V.C'—d(F), and {X;} is a sequence of
ii.d. random variables with common probability distribution
P, then for every €, § > 0,

N
1
Prob [ sup | = > I(X; € F) = P(F)[<e| >1-6
rer | N
i=1
whenever
— 1 4 2
N > max{ivc A7) log —66, —log —} .
€ € € 1)

Proof of Lemma 3.4 - Let F be the set of disks with radius
wp, /2, or of area 7w? /4. As shown in [15], the VC-dimension
of the set of disks on the plane is 3. Thus, by the Vapnik-
Chervonenkis Theorem, we have

Prob (sup number of nodes in B mwj, <e (n))
BeF n 4
>1—4(n)

3 16e _4 2 . :
whenever n > max {W log ﬁ, O] log () } This condi-

tion is satisfied when e(n) = §(n) = 32l&n 1:2 .
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logn

Note that r,, > 1604 /%62 We have w,, = = > 20,/1%82
Let H be the number of nodes in any disk in F. With
probability at least 1 — §(n), we have

2
SR
or H = O(nw?).

Similarly, the number of nodes in any disk with radius 2w,
is also ©(nw?) with high probability.

In the spatial tessellation described in Section III-B, it can
be shown that each cell contains a disk with radius wy,/2
and is contained within a disk with radius 2w,,. So every cell
contains ©(nw?) nodes with high probability. This completes
the proof. [ ]

Tw?

S Tn - e(n),

Proof of Lemma 5.6 - Recall that data is forwarded from a node
to its destination along Voronoi cells intersected by the line
segment connecting the source and its destination. To bound
the amount of traffic handled by a cell, we first provide an
upper bound on the number of line segments intersecting a
cell.

Let L; be the line segment connecting node X; and its
randomly chosen location Y;. Denote {L;}?; as the set of all
n line segments. We now prove that for any cell V € V,,,

E[Number of lines in {L;}?; intersecting V] < caanry,

for some constant coy4.

Consider any node X;. According to the properties of V,,, V'
is contained in a disk of radius 2p,,. So the angle 6 subtended
at X; by this disk is no more than 222 where z is the distance
of X; from the disk. For the line L; to intersect V', Y; must
lie in this sector. The area of the section is no more than
“26fn By the uniform distribution of Y;, the probability that
L; intersects V' is no more than 222~ Since the probability
density of x is upper bounded by carm(z + 2p,,), we have

Prob{Line L; intersects V'}

1
VT C26Pn

- corm(x + 2py) dx
2pn
Co8Pn-

IA

Since p, = r,/8, with a total of n lines, the average number
of lines in {L;}? , that intersect a cell in V,, is no more than
Co4NT .

In [15], the authors show that the random sequence of
line segments {L;}?, is ii.d. and prove that the Vapnik-
Chervonenkis Theorem holds when counting the number of
lines intersecting with a cell. So there is a d(n) — 0 such that

Prob ( sup (Number of lines L; intersecting V') < CQQnrn>
vVev,

>1-4(n).

Because the amount of traffic handled by a cell is propor-
tional to the number of lines intersecting the cell, for a transfer
volume of A(n), the amount of traffic every cell is responsible
for forwarding is O(nrpA(n)) with high probability. This
completes the proof. [ ]



