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Algorithm with More Accurate Predicted Contact Restraints
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ABSTRACT To improve tertiary structure predictions of more difficult targets, the next generation of TASSER, TASSER_2.0,
has been developed. TASSER_2.0 incorporates more accurate side-chain contact restraint predictions from a new approach, the
composite-sequence method, based on consensus restraints generated by an improved threading algorithm, PROSPECTOR_3.5,
which uses computationally evolved and wild-type template sequences as input. TASSER_2.0 was tested on a large-scale, bench-
mark set of 2591 nonhomologous, single domain proteins =200 residues that cover the Protein Data Bank at 35% pairwise sequence
identity. Compared with the average fraction of accurately predicted side-chain contacts of 0.37 using PROSPECTOR_3.5 with wild-
type template sequences, the average accuracy of the composite-sequence method increases to 0.60. The resulting TASSER_2.0
models are closer to their native structures, with an average root mean-square deviation of 4.99 A com pared to the 5.31 A result of
TASSER. Defining a successful prediction as a model with a root mean-square deviation to native <6.5 A, the success rate of
TASSER_2.0 (TASSER) for Medium targets (targets with good templates/poor alignments) is 74.3% (64.7%) and 40.8% (35.5%)
for the Hard targets (incorrect templates/alignments). For Easy targets (good templates/alignments), the success rate slightly

L

increases from 86.3% to 88.4%.

INTRODUCTION

Despite several decades of intense effort, the ability to predict
the native structure of a protein from its amino acid sequence
has not been fully achieved (1-4); nevertheless, three general
approaches to protein structure prediction have been devel-
oped: comparative modeling (5-8), threading (9-11), and
template-free methods (12—-15). The basic ideas of compar-
ative modeling and threading are identical, viz. identify a set
of template proteins whose structure is related to the target
sequence. To find such structurally related templates, com-
parative modeling relies on the evolutionary relationship
between the target and template sequences (16), whereas
threading aims to identify template proteins having a similar
fold as the target sequence, irrespective of their evolutionary
relationship (17). Essential to the success of any comparative
modeling and threading method is the requirement that the
Protein Data Bank (PDB) (18) contains structures related to
that adopted by the target sequence. On the other hand,
template-free methods are designed to predict the three-
dimensional native structure of a protein without a priori
knowledge of the structure that the target will adopt. Al-
though in principle it is the most general approach, in
practice, it is the least reliable (19).

Over the past several years, improvement in fold recog-
nition algorithms that has enabled the identification of cor-
rect, but evolutionarily distantly related templates as well as
the increase in the number of solved protein structures in the
PDB, have made comparative modeling and threading the
most successful prediction approaches (10,20). In addition,
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there are several studies that find that the current PDB library
is complete because it can provide accurate templates for all
compact single domain proteins (21-24). At least for indi-
vidual domains, the prediction problem for the single domain
proteins could be solved by the current PDB library if there
were fold recognition tools that could recognize these correct
templates and generate good alignments (25). However, for
~1/3 of proteins that are weakly/nonhomologous to proteins
in the PDB, this is not yet possible (26).

The recently developed protein structure prediction algo-
rithm TASSER and its variants have shown a reasonable
level of success for targets that are weakly or nonhomologous
to templates in the PDB (26-31); have provided significant
improvement over initial template alignments in compre-
hensive PDB benchmarking (28,29,32); have been applied to
the structure prediction of identified all human G protein-
coupled receptors (33), with encouraging results shown for the
prediction of the tertiary structure of the B-adrenergic G protein-
coupled receptor structure that was recently solved (34,35)
(J. Skolnick, unpublished); and was among the top ranked
algorithms in CASP7 (26,28,31,33,36). The original version
of TASSER (26) takes the initial template alignments and
predicted side-chain contact restraints provided by the thread-
ing algorithm, PROSPECTOR _3 (37), and then refines the
structures from these initial templates. The overall perfor-
mance of TASSER is quite dependent on the accuracy of
the predicted side-chain contacts. In previous work, com-
prehensive benchmarking showed that TASSER can fold
~2/3 of all non- or weakly homologous proteins =200 resi-
dues in length (26,36). Moreover, the resulting TASSER
models were closer to the native structures than the initial
threading templates. For the remaining ~1/3 of proteins,
the prediction accuracy of TASSER is significantly worse

doi: 10.1529/biophys;.108.129759

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




TASSER_2.0 Protein Structure Prediction

because PROSPECTOR_3 provides inaccurate template
fragments and predicted side-chain contact restraints. Thus,
improvement in this regime of target difficulty is sorely needed.

In this work, to improve the accuracy of the predicted
contact restraints, we develop what to our knowledge is a new
side-chain contact restraint prediction algorithm, the com-
posite-sequence method, and incorporate this information
into the next generation of TASSER, TASSER_2.0. The
basic idea of the composite-sequence method is to generate
predicted side-chain contacts by a number of approaches, and
then obtain the consensus set of contacts with the expectation
that these will be more accurate than any of the individual
input sets. To generate one of these sets of predicted contacts,
we evolve sequences optimized for each template structure
using a structure-based scoring function that contains sec-
ondary structure, burial, and pair interaction potentials. The
resulting set of sequences is used to generate sequence profiles
used in an improved version of threading, PROSPECTOR_3.5.
Then, by using consensus contacts extracted from the evolved-
sequence method and those obtained from wild-type template
sequences, the composite-sequence method, we find that
there is a significant improvement in contact prediction ac-
curacy. Yet, the coverage is sufficient that these more accu-
rate contacts can be effectively used in TASSER_2.0. We
apply TASSER_2.0 to a comprehensive, large-scale bench-
mark test set consisting of 2591 nonhomologous single do-
main proteins having =200 residues of which 772, 513, and
1306 are all a-, all B-, and «/B-proteins. In this benchmark,
no template can have >30% sequence identity to the target
sequence. (The list of 2591 single domain benchmark proteins
is prepared as Supplementary Material, Data S1.) We compare
the performance of TASSER_2.0 with the original TASSER
algorithm and demonstrate significant improvement, espe-
cially for the more difficult targets.

METHOD

The original version of TASSER consists of template identification and
side-chain contact restraint prediction by the threading algorithm
PROSPECTOR _3, followed by structure assembly and final model selection
(26). To generate more accurate predicted contact restraints, we develop the
composite-sequence method that provides the more accurate predicted
contact restraints to TASSER_2.0. TASSER_2.0 employs an additional
contact restraint energy function to increase the influence of these more
accurate contacts, but uses the same procedure for structure assembly and
final model selection as TASSER. Since detailed descriptions of TASSER
are available elsewhere (25,26,28), we just provide a brief overview.

Synthetic evolution of template sequences

For each template in the threading template library, we independently evolve
a set of 80 sequences designed to minimize the energy of the sequence in its
native template structure. For a given sequence, the energy is given by

E = Eyuig + Econtary + Epuir, (la)

where

N
Evuriat = Y, &ouriat (i1, Si) (1b)
=1

1957

is ac y sid istical burial potential (38),
where the protein is divided into sphenul shells of width equal to 1/3 the
radius of gyration of the side-chain centers of mass (ib; = 1,5), and §; is the
amino acid at position i = /,N, with N the number of residues in the protein
chain. The secondary structure potential is given by

N
E, = Y Bussondary (01 P1);5 (Ic)

i=

secondary

where o; (P;) is the observed (predicted) secondary structure (helix, 3, coil) of
residue i. If 0; = P;, then

s\ecnndnry(unPi =0)=-2. (1d)

Execondary (01, Pi # 0;) = 3. (le)

The secondary structure is predicted using a neural network-based approach
that is logically the same as PSIPRED (39), but is designed to work on a
single (H. Zhou, unpublished). The approach was tested on a set of
820 nonhomologous sequences and has an average accuracy of 67%. Our
purpose here is not to generate yet another neural network-based approach to
secondary structure prediction, but to have one that is applicable for a single
sequence rather than one that requires a multiple sequence alignment.
The pair potential is given by

N N
Epie =1/2 3 Y £ae(S:, S;)Cyj, (1f)

i=li=1

where ey (Si, Sj) is a previously derived, orientation-independent, knowl-
edge-based pair potential between amino acids S; and §; (40), and Cj; = 1 if
side chains i and j are in contact (a pair of side chains is in contact if any pair
of their heavy atoms is within 4.5 A)and Cjj = 0 otherwise and is taken from
the template structure and remains d during the 1
procedure.

In practice, we start with the native sequence and using a genetic algo-
rithm, evolve it to minimize the potential given by Eq. 1. The population
consists of 75 members and is evolved for 500 generations. In each gener-
ation, each of the 75 sequences is randomly permuted (thus, the amino acid
composition always matches the native sequence), and the 75 lowest energy
sequences among the 75 parents and 75 children are selected. The set
of sequences is evolved for 500 generations, after which the lowest energy
sequence is stored. A total of 80 ind dently d seq are then
collected. For the template library, the average sequence identity of the
evolved sequences to the native sequence is 63%, with a standard deviation
of 5%.

PROSPECTOR_3.5 algorithm

As described for PROSPECTOR _3 (9,37), PROSPECTOR _3.5 uses a set of
four scoring functions and multiple iterations. Here, we first summarize the
essential features and subsequent modifications in the original sequence
profile scoring function utilized in the current version, PROSPECTOR_3.5,
and then describe modifications to accommodate the evolved sequences
whose generation was described in the previous section.

First pass using sequence profiles and
secondary structure terms

In what follows, upper (lower) case characters /, J, (i, /) refer to the residue
index in the target (template) structure, and jk refers to template structure

number jk. The initial alignment uses a scoring function between target se-
quence residue / and template sequence j in template jk of the type (10,41)
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Y. x(ires,I)M(ires, j, jk)
ires=1
+ M(ires,I)x(ires, j, jk)
+ besecondary (P, 05(jk)) + ¢, (2a)

where the sum is over amino acid types, x(ires,l) (x(ires,j,jk)) is the fraction
of residues of type ires at position / (/) in the target (template), and M(ires.])
is the corresponding PSI-BLAST MTX profile (42,43). &'ccondary (P1, 0;( jk))
is the secondary structure energy for predicted secondary structure type, P,
and observed secondary structure, 0;( jk), of residue j in template jk. Since we
consider better scores to be more positive (as opposed to the previous section,
where better energies are more negative),

Elecondary (P1, 05 JK), (P1 = 0;(jk))) = 1 (2b)

Speor (12, K) =

and

&'sccondary (P1, 05 jk), (P # 0;(jk))) = —1 (2¢)

otherwise. b and ¢ are constants that depend on the type of sequence profile
used.

In the original formulation of PROSPECTOR_3 (37), we used two sets of
sequence profiles: Those that are derived for all sets of sequences having
between 35% and 90% pairwise sequence identity, the 3590 set (in Eq. 2a
prof = 3 590), and those whose e value to the parent (target or template)
sequence is =10, the €10 set (in Eq. 2a prof = ¢10). In all cases, the MTX
profiles are those derived from the 3590 set of sequences. For the 3590 (e10)
set, b = 0.7 (0.8) and ¢ = 1.5(1.3).

We first generate a target-template sequence alignment using either the
3590 or €10 set of sequences. Then, we evaluate the score between the target
residue / and residue j of template jk as

Sog (171K) = Sy (1,7,K) + sty (P 0,))
P
. et pair (s Mo (m))C (G ), (3)
m=1

where M;m,(m) is the alignment of the mth template residue to the target
sequence in template jk that was generated by the first pass using the

and dary structure propensities of Eq. 2. C(j,m, jk) is the side-
chain conlacl map of template jk. b, = 0.4 (0.2) for the 35‘)() (e I()) xeqUence
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with e, the expected number of contacts per residue if they are uniformly
distributed, viz.

N N
2
Fssp =, 2 con'(1,1')/N*. (4b)
I=11=1
For the third and final iteration that includes the pair interaction contribution
to the threading alignment, we repeat the above procedure but demand that a
contact be present in at least four of the templates for the contact to be
predicted.

Evolved and composite-sequence methods for
contact prediction

The evolved-sequence method uses the identical formalism and parameters,
but replaces the 3590 sequence profiles and MTX profiles in Egs. 24 with
the corresponding evolved sequence profiles. In practice, the alignments

d from the evolved-s e method are more accurate than those
using the wild-type template sequence profiles, but the coverage of the
template is less. The average fraction of correctly predicted side-chain
contacts over the benchmark set of proteins is 0.46, with the average fraction
of predicted contacts per residue of 1.85. This compares favorably with the
average fraction of correctly predicted contacts of 0.37 and coverage of 3.29
when the wild-type 3590 profiles are used. If we consider consensus contacts
between the evolved sequence set and the original PROSPECTOR_3.5
predicted contacts, then the average fraction of accurately predicted contacts
increases to 0.60, with the average number of contacts predicted per residue
of 1.43. In what follows, we use the set of consensus-predicted contacts
between PROSPECTOR _3.5 and the evolved-sequence version; we term
this the composite-sequence method.

Structure assembly

The energy function in the original TASSER algorithm is composed of
knowledge-based long- and short-range correlations, the propensity for
predicted secondary structures extracted from PSIPRED (39), pmtem spe-
cific pair i and a residue-based solvent y term
(26,28,47). In TASSER_2.0, we introduce an additional contact restraint
function to increase the effect of the new, and more accurate on average,
contact re\lramt\ For residues / and J/ predicted to be in contact using the

profiles. :mepm, is the target’s multiple seq; ged, protein-s; p
pair potential (40).
Ali are d using the local-global ali extracted from

dynamic programming (44.,45). For the 3590 profiles, the gap opening and
gap propagation penalties are —10.0 (—14.5) and —0.1 (—0.75) for the first
(second) pass respectively. For the e10 profiles, the gap opening and gap
propagation penalties are —7.0 (—14.0) and —05 (—1.05) for the first (sec-
ond) pass, respectively. The final target-template score is eval as the
difference between the score of the best alignment generated with the target
sequence and the reverse order of the target sequence (46). This is designed to
remove trivial composition dependent effects on scoring.

Second to fourth iteration with pair potentials
and side-chain contact predictions

To generate contacts, for the top five scoring templates that have a Z-score
>1.3 in each of the four scoring functions, the set of contacts is extracted. If a
contact between residues / and /" occurs in at least three of these templates,
the total number of which is con'(/,1’), then it is counted as a predicted
contact for the construction of the protein-specific pair potential used in the
second iteration of Eq. 3 as follows,

P2 2
E orof.pair — Eprof,pair

£ —In(con'(I,1') /Nexp) (4a)
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- method, their contact energy (E,qq) is defined by

B )\
Ew=1+ (ro(lJ) - l) i
=10 r(lLJ)=ro(I,J), (5)

r(1,J) > r(1,J),

where 7(/.J) is the distance between the side-chain centers of mass of the /th
and Jth residues and ry(/./) is the corresponding cutoff distance for a contact
between their side-chain centers of mass.

TASSER_2.0 uses a protein representation composed of C,, atoms and the
side-chain centers of mass. The aligned regions in the templates identified by
PROSPECTOR_3.5 provide i for ly. For the
unaligned regions provided by PROSPECTOR_3.5, we connect the con-
tinuous template fragments by random walk of C,-C,, bond vectors to build
an initial full-length model. From the initial full-length model, conforma-
tional space is searched by parallel hyp ic Monte Carlo ling (48),
where 40 replicas are used, irrespective of target protein length.

Final model selection

After the structure Assembly procedure is finished, the 14 lowest temperature
repli are submitted to the clustering program,
SPICKER (27). To assess the prediction, we compare the quality of the best
among the top five TASSER_2.0 models with the best among the top
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five TASSER models as well as the best initial alignments from the
PROSPECTOR_3.5 threading templates.

RESULTS AND DISCUSSION
Contact restraint prediction

According to the threading score significance and the con-
sensus (if any) among the alignments of the top two tem-
plates, PROSPECTOR_3.5 categorizes target proteins as
Easy, Medium, and Hard. This classification scheme indi-
cates the relative confidence in the accuracy of prediction.
From our previous work, the majority of Easy, Medium, and
Hard sets have correct templates/alignments, correct tem-
plates with poor alignments, and incorrect templates/align-
ments, respectively (26). The Easy set has the highest
predicted contact accuracy. Among the 2591 single domain
benchmark proteins, PROSPECTOR_3.5 assigns 1802 pro-
teins to the Easy set, 167 to the Medium set, and 622 to the
Hard set (Data S1).

We calculate the fraction of accurately predicted contacts
(Face) by

Nec

Fu= Nes' =
where N, is the number of common contacts in both the
predicted contact restraints and the native structure, and N, ,
is the total number of the predicted contacts. In Table 1, we
show the average fraction of accurate contacts, Fy, of the
Easy, Medium, and Hard sets. F¥,_and F%_ indicate the Fy.
from PROSPECTOR_3.5 and those from the composite-
sequence method, respectively. Overall, the average FC_ is
0.60, whereas the average F©__ from PROSPECTOR_3.5 is

TABLE 1 Fraction of

y P
and p per from the wild-type
q and the q
Wild-type s C Composite-seq
method method
Fol !
Fho*  (contactsfresidue)  FC * (contacts/residue)
sDY) (SD] [SD] [SD]
Easy set  0.43 [0.15] 3.75 [1.20] 0.64 [0.19] 1.87 [1.12]
Medium  0.30 [0.22] 2.29 [0.93] 0.51 [0.30] 0.56 [0.51]
set
Hard set  0.22 [0.17] 2.25 [0.90] 0.50 [0.34] 0.25 [0.37]
All 0.37 [0.18] 3.29 [1.31] 0.60 [0.25] 1.43 [1.20]

*Average fraction of accurate predicted contacts using the wild-type
template sequence profiles in PROSPECTOR_3.5.

*Average fraction of predicted contacts per residue using the wild-type
template sequence profiles in PROSPECTOR_3.5.

*Average fraction of accurate predicted contacts from the composite-
sequence method.

SAverage fraction of predicted contacts per residue from the composite-
sequence method.

Standard deviation.

1959

0.37. This shows that the composite-sequence method that
takes consensus contacts generated by PROSPECTOR_3.5
using evolved and wild-type sequence profiles generates
more accurate predicted contact restraints than those pro-
vided by the use of wild-type template sequence profiles
alone. We note that a number of other methods, SVMcon
(49), PROFcon (50), and Distill (51), reported an average
accuracy of 0.3 in CASP7. For TASSER, this is too low to
produce reasonably accurate models.

The Easy, Medium, and Hard sets have an average
F&. (FP.) with = SD (one standard deviation) of 0.64 =
0.19 (0.43 £ 0.15), 0.51 = 0.30 (0.30 % 0.22), and 0.50 =
0.34 (0.22 £ 0.17), respectively. Obviously, the accuracy of
the predicted contact restraints of the composite-sequence
method is significantly increased compared with those from
use of the wild-type sequences alone in PROSPECTOR _3.5,
irrespective of target difficulty. The statistical significance of
the difference observed in the average fraction of accurate
predicted contacts between the wild-type sequence method
and composite-sequence method is also evaluated by a cor-
related two-tailed #-test (52) at a critical a-level set to a very
restrictive 10>, This r-test shows that for all levels of target
difficulty, we can safely reject the null hypothesis that there is
no significant change between composite-sequence method
and wild sequence method (p-value of <1073%, 4.46 x
107%", and 1.67 X 10~"° for the Easy, Medium, and Hard
sets, respectively). Thus, we can safely conclude that the
composite-sequence method increases the fraction of accu-
rate predicted contacts. We especially note that the F<,_ of
0.51 and 0.50 of the Medium and Hard sets is higher than
FP_ of 0.43 of the Easy set. We also calculate the fraction of
predicted contacts per residue (F ooy = N¢ o/Nyes, Where Ny, is
the length of a target protein). As a trade-off for the significant
improvement in contact accuracy, the average FS, with *
SD of the composite-sequence method is reduced to 1.43 =
1.20, compared with F? | = 3.29 * 1.31 when the wild-type
3590 template sequence profiles alone are used. For the Easy
set, the average FG, is 1.87 * 1.12, whereas F© is 3.75 =
1.20. For the Medium and Hard sets, the average FC, is also
reduced to 0.56 = 0.51 and 0.25 * 0.37, compared with FF|
0f 2.29 + 0.93 and 2.25 * 0.90, respectively. For all levels of
target difficulty, the composite-sequence method provides
more accurately predicted but fewer contacts per residue than
the wild-type 3590 template sequence profiles.

TASSER_2.0 refinement results

TASSER_2.0 uses the templates from PROSPECTOR_3.5
and predicted side-chain contact restraints from the com-
posite-sequence method. In Table 2, we show the average
root mean-square deviation (RMSD) to the native structure of
the initial threading templates from PROSPECTOR_3.5 that
uses the wild-type template sequence profiles, TASSER and
TASSER_2.0 models. The mean target-template sequence
identity is 19%, 16%, and 13% for Easy, Medium, and Hard

Biophysical Journal 95(4) 1956—1964

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1960

Lee and Skolnick

TABLE 2 Comparison of models from TASSER_2.0, TASSER and PROSPECTOR_3.5

(RMSD to the native), A[SD*]

Num' D (%)* Minicui* My Mg ! My a** Mrzgan'!
Easy 1802 19 5.60 [4.33] 3.42 [2.55] 3.27 [2.35] 4.02 [2.80] 3.86 [2.61]
Medium 167 16 8.69 [5.16] 5.39 [3.54] 4.71 [2.77) 5.82 [3.61] 5.09 [2.87])
Hard 622 13 11.87 [5.66] 8.37 [4.57] 7.69 [4.17] 8.92 [4.48] 8.24 [4.12]
All 2591 17 7.30 [5.44] 4.73 [3.84] 442 [3.46] 5.31 [3.92] 4.99 [3.57)

*Standard deviation.
"Number of target proteins in each category.
*Average sequence identity of target-template sequences.

Average RMSD to the native structure of the initial PROSPECTOR_3.5 templates®, TASSERY, and TASSER_2.0! models over the same aligned regions

provided from PROSPECTOR_3.5.

Average RMSD to the native structure of TASSER** and TASSER_2.0"" models over the entire molecule.

sets, respectively. Overall, the average RMSD to the native
structure of the TASSER models (= SD) is 4.73 + 3.84 A/
531 * 3.92 A over the aligned regions/entire molecule,
whereas the initial PROSPECTOR_3.5 templates have an
average RMSD of 7.30 * 5.44 A over the aligned regions
(the set of aligned residues in the PROSPECTOR_3.5 tem-
plates). The average RMSD of the TASSER_2.0 models is
4.42 + 3.46 A/4.99 + 3.57 A over the aligned regions/entire
molecule, which is smaller than that of the TASSER models.
This shows that the TASSER_2.0 models are closer to their
native structures than either the TASSER models or the initial
templates.

As previously reported (26,28), for all levels of target dif-
ficulty, the average RMSD of the TASSER models is clearly
smaller than that of initial templates from PROSPECTOR_3.5.
For the Easy set, the TASSER_2.0 (TASSER) models have an
average RMSD of 3.27 = 2.35 A/3.86 = 2.61 A (3.42 = 2.55
A/4.02 + 2.80 A) over the aligned region/entire molecule. For
the Medium and Hard sets, the average RMSD of their
TASSER_2.0 (TASSER) models is 4.71 = 2.77 A/5.09 =
287A(5.39+ 354 A/5.82 + 361 A)and 7.69 = 4.17 A/8.24 =
4.12 A (837 = 4.57 A/8.92 + 4.48 A), respectively. To
evaluate the statistical significance of the difference of the
average RMSD between TASSER and TASSER 2.0, the
correlated two-tailed r-test is also performed with a critical
a-level set at a very restrictive 107>, This t-test shows that
there is a significant difference of average RMSD between
TASSER and TASSER_2.0 models (p-value of 1.87 X
107"",3.10 X 107, and 1.40 X 10~"* for the Easy, Medium,
and Hard sets, respectively) and we conclude that TASSER_2.0
improves the average RMSD compared with TASSER. We
also calculate the TM-score that is also a measure of global
protein structural similarity. The TM-score ranges from 0 to
1, with 0.30 the average value of the best structure alignment
between a pair of randomly related protein structures inde-
pendent of chain length (53), and when two structures are
identical, their TM-score is 1.0. The average TM-score of the
TASSER_2.0 (TASSER) models is 0.748 (0.743), 0.533
(0.516), and 0.460 (0.444) for the Easy, Medium, and Hard
sets, respectively. These results show that irrespective of

Biophysical Journal 95(4) 1956—1964

target difficulty: 1), the TASSER models become closer to the
native structure than the initial templates and 2), TASSER _2.0,
which incorporates more accurate predicted contact restraints
than TASSER, also shows obvious improvement over
TASSER as well as the initial template structures. The list of
benchmark set proteins and results for all targets of TASSER
and TASSER_2.0 models in the benchmark set may be found
at http://cssb.biology.gatech.edu/skolnick/files/tasser2.0/.

For a detailed comparison of the TASSER_2.0 and
TASSER models, we show the histogram of the cumulative
fraction of the RMSD difference between the TASSER_2.0 and
TASSER models, ARMSD (RMSDyassgr_20—RMSDrasser)
in Fig. 1. When the TASSER_2.0 model has a smaller
RMSD than the TASSER model, ARMSD is negative. For
the Easy set, 57% of the TASSER_2.0 models are closer
to their native structures than the TASSER models. For the
Medium and Hard sets, 64% and 62% of the TASSER_2.0
models have a smaller RMSD to native than the TASSER
models. Among the improved cases, 22%, 53%, and 64%
of the TASSER_2.0 models for the Easy, Medium, and
Hard sets show an improvement in RMSD of more than
0.5 A.

As already shown, using the wild-type template sequences
in PROSPECTOR_3.5, the accuracy of the predicted contact
restraints is quite dependent on the level of target difficulty,
and for many cases, there is high contact coverage, but low
accuracy. In this situation, the TASSER models that are
generated with this large number (and fraction) of inaccurate
contacts are highly frustrated and are far from their native
structures. The composite-sequence method significantly
increases the accuracy of contact restraints, irrespective of
target difficulty. Even the Medium and Hard sets of the
composite-sequence method have higher contact accuracy
than that for the Easy set generated using wild-type sequence
profiles, which has the most accurate contact restraints.

For the Easy set, their TASSER models are quite accurate
because PROSPECTOR _3.5 provides a sufficient number of
accurate contact restraints as well as correctly identified
templates for the majority of cases. Thus, the opportunity for
improvement by TASSER_2.0 is relatively small. On the
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other hand, for many Medium and Hard cases, the contact
prediction accuracy in TASSER is quite low. By using the
composite-sequence method to provide predicted contact
restraints into TASSER_2.0, we significantly increase the
contact accuracy and reduce the number of inaccurate con-
tacts. Therefore, the conformational search is more efficient
in finding structures that are closer to their native state.

In Fig. 2, a—f, we show representative examples of the
improvement of TASSER_2.0 over TASSER models. For
the Easy set (Fig. 2, @ and b; 1BM7A, 114 residues), the

TASSER

a

Medium

|

Hard

Worse after TASSER 2.0
(RMSDiugu 30 - RMSDppgun >0)  — oy FIGURE |

. Easy

Cumulative fraction of the
RMSD difference between the TASSER_2.0
and TASSER models, RMSDysser 20 —
RMSDyassgx, for the Easy, Medium, and
Hard sets. When the TASSER_2.0 model
has a smaller RMSD than the TASSER
model, the difference is negative, indicating
that TASSER_2.0 is better. When the
difference is posi TASSER_2.0 gener-
ates worse models because the RMSD of
the TASSER model is smaller than the
TASSER_2.0 model. The values of cumu-
lative fraction (%) are shown in each histo-
gram.

<5 <20 <25 <6.0

TASSER model has a RMSD to the native of 15.3 A with
FP(FF) of 0.22 (1.50). The TASSER_2.0 model has a
RMSD of 4.1 A and FC_(FC) is 0.83 (0.69). For the
Medium set (Fig. 2, ¢ and d; 1XJHA, 62 residues), in
TASSER_2.0, where F$_ (F€,) is 0.76 (0.34), the RMSD is
smaller, 4.2 A, as compared to the model generated by
TASSER which has a RMSD of 8.2 A due to the fact that
FP _(FF) is 0.41 (1.16). For the Hard set (Fig. 2, e and f;
1KQ4A, 199 residues), the TASSER _2.0 model has a RMSD
of 5.0 A, compared with 16.5 A for the TASSER model. The

FIGURE 2 Representative examples showing the im-
provement of the TASSER_2.0 models over the TASSER
models for the Easy (IBM7A), Medium (1XJHA), and
Hard (1IKQ4A) sets. The thick (thin) line refers to the native
structure (predicted model). The stereo images of TASSER
and TASSER_2.0 models are on the left- and right-hand
sides of the figure, respectively. Red indicates residue pairs
having a distance <5 A after the superposition of the
predicted model onto the native structure. For the remainder
of residues whose distance is =5 A after superposition, the
native structure is shown in blue (thick line). The RMSD to
the native structure is shown below the models.

Biophysical Journal 95(4) 1956-1964

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1962

Fi (FS,) and FP(FF ) are 0.72 (0.87) and 0.40 (1.66),
respectively, which shows the importance of improved ac-
curacy at reasonable levels of structure coverage.

Fig. 3 shows a histogram of the RMSD distribution from
TASSER and TASSER_2.0. To assess the results, we define
a foldable protein as that when the RMSD to the native is
<6.5 A (26,28,36). TASSER_2.0 shows better performance
than TASSER. For TASSER_2.0 (TASSER), the fraction of
foldable proteins in the Medium set is 0.743 (0.647). This
success rate decreases to 0.408 (0.355) for the Hard set. For
the Easy set, TASSER_2.0 shows a success rate of 0.884,
compared with 0.863 for TASSER. Overall, TASSER_2.0
has a higher fraction of foldable proteins of 0.761 as com-
pared to 0.727 for TASSER.
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FIGURE 3 Cumulative fraction of proteins in the Easy, Medium, and
Hard sets as a function of the RMSD to the native structure for the best of top
five TASSER and TASSER_2.0 models.
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In previous work, TASSER"" (36), which iteratively re-
fines the original TASSER models, also showed improve-
ment over TASSER. For the Easy, Medium, and Hard set
proteins, their TASSER_2.0 (TASSER™) models have an
average RMSD to native of 3.86 A (3.83 A), 5.09 A (4.90 A),
and 8.24 A (8.44 A) and a folding success rate of 0.884
(0.876), 0.743 (0.754), and 0.408(0.386), respectively.
Comparing TASSER_2.0 with TASSER™, the average
RMSD of TASSER_2.0 is smaller than that of TASSER"*"
for the Hard set, whereas TASSER_2.0 has a slightly larger
average RMSD for the Easy and Medium sets. For the Hard
and Easy sets, TASSER_2.0 has a higher success rate than
TASSER™, whereas TASSER_2.0 has a marginally smaller
success rate than TASSER™ for the Medium targets. These
results show that TASSER_2.0 has comparable performance
to TASSER™ (and is even better for the Hard set) but re-
quires about a factor of 6 less simulation time.

We also calculate the fraction of proteins that are fold-
able (RMSDrasser 20 < 6.5 A) in TASSER_2.0 but not
in TASSER (RMSDyasser > 6.5 A); 11% and 9% of the
Medium and Hard proteins become foldable when
TASSER_2.0 is used, whereas 3% of the Easy set targets
show a corresponding improvement. Irrespective of target
difficulty, TASSER_2.0 provides an increased fraction of
foldable proteins, with the largest improvement seen for the
Medium and Hard sets; the latter represents significant progress.

CONCLUSIONS

To improve the accuracy of TASSER, especially for difficult
targets, we have developed the TASSER _2.0 algorithm that
incorporates more accurate predicted side-chain restraints
obtained from the composite-sequence contact prediction
method. TASSER_2.0 was tested on a comprehensive, large-
scale benchmark set consisting of 2591 nonhomologous
single domain proteins (Data S1). TASSER_2.0 outperforms
TASSER, especially for the Medium and Hard sets where the
original contact prediction algorithm that uses wild-type
template sequence profiles provides a large number of low
accuracy contacts, whereas for many targets, the composite-
sequence method provides contact predictions of acceptable
accuracy and coverage. Therefore, TASSER_2.0 improves
protein structure prediction quality especially for the more
difficult targets; it also improves over the initial alignments
from threading. Since the accuracy of TASSER_2.0 is
strongly dependent on the accuracy of the predicted side-
chain contacts, we plan in the near future to focus on the
development of even more accurate tertiary restraint predic-
tion approaches. What is encouraging is that the Medium
targets are shifted to have the same quality as TASSER’s
more difficult Easy set targets, and the Hard targets, whose
prediction quality was very poor in TASSER, show en-
couraging improvements. This suggests that for the most
difficult targets, significant progress using template-based
approaches to structure prediction can be made.
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