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ABSTRACT To improve tertiary structure predictions of more difficult targets, the next generation of TASSER, TASSER_2.0, 
has been developed. TASSER_2.0 incorporates more accurate side-chain contact restraint predictions from a new approach, the 
composite-sequence method, based on consensus restraints generated by an improved threading algorithm, PROSPECTOR_3.5, 
which uses computationally evolved and wild-type template sequences as input. TASSER_2.0 was tested on a large-scale, bench­
mark set of 2591 nonhomologous, single domain proteins " 200 residues that cover the Protein Data Bank at 35% pairwise sequence 
identity. Compared with the average fraction of accurately predicted side-chain contacts of 0.37 using PROSPECTOR_3.5 with wild­
type template sequences, the average accuracy of the composite-sequence method increases to 0.60. The resulting TASSER_2.0 
models are closerto their native structures, with an average root mean-square deviation of 4.99 A compared to the 5.31 A result of 
TASSER. Defining a successful prediction as a model with a root mean-square deviation to native < 6.5 A. the success rate of 
TASSER_2.0 (TASSER) for Medium targets (targets with good templates/poor alignments) is 74.3% (64.7%) and 40.8% (35.5%) 
for the Hard targets (incorrect templates/alignments). For Easy targets (good templates/alignments), the success rate slightly 
increases from 86.3% to 88.4% 

INTRODUCTION 

Despite several decades of intense effort , the ability to predict 
the native structure of a protein from its amino acid sequence 
has not been full y achieved ( 1-4); nevertheless, three general 
approaches to protein structure prediction have been devel­
oped: comparative modeling (5- 8), threading (9- 1 I ), and 
template-free methods (12- 15). The basic ideas of compar­
at ive modeling and threading are identical, viz. identify a set 
of template proteins whose structure is related to the target 
sequence. To find such structurally related templates, com­
parative modeling relies on the evolutionary re lationship 
between the target and template sequences (16) , whereas 
threading aims to identify template proteins hav ing a similar 
fold as the target sequence, irrespective of their evolutionary 
relationship (17). Essential to the success of any comparative 
modeling and threading method is the requirement that the 
Protein Data Bank (PDB) (18) contains structures related to 
that adopted by the target sequence. On the other hand, 
template-free methods are designed to predict the three­
dimensional native structure of a protein without a priori 
knowledge of the structure that the target wi ll adopt. Al­
though in principle it is the most general approach, in 
practice, it is the least reliable (19). 

Over the past several years, improvement in fold recog­
nition algorithms that has enabled the identification of cor­
rect, but evolutionarily distantly re lated templates as well as 
the increase in the number of solved protein structures in the 
PDB, have made comparat ive modeling and threading the 
most successful prediction approaches ( 10,20). In addition , 
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there are several studies that find that the current PDB library 
is complete because it can provide accurate templates for all 
compact single domain proteins (2 1-24). At least for indi­
vidual domains, the prediction problem for the single domain 
proteins could be solved by the current PDB library if there 
were fold recognition tools that could recognize these correct 
templates and generate good alignments (25). However, for 
- 1/3 of proteins that are weakly/nonhomologous to proteins 
in the PDB, this is not yet possible (26). 

The recently developed protein structure prediction algo­
rithm TASSER and its variants have shown a reasonable 
level of success for targets that are weakly or nonhomologous 
to templates in the PDB (26-3 1); have provided significant 
improvement over initial template alignments in compre­
hensive PDB benchmarking (28,29,32); have been applied to 
the structure prediction of identified aU human G protein­
coupled receptors (33), with encouraging results shown for the 
prediction of the tertiary structure of the ,B-adrenergic G protein­
coupled receptor structure that was recently solved (34,35) 
(J. Skolnick, unpublished); and was among the top ranked 
algorithms in CASP7 (26,28 ,3 1,33,36). The original version 
of TASSER (26) takes the initial template alignments and 
predicted side-chain contact restraints provided by the thread­
ing algorithm, PROSPECTOR_3 (37), and then refines the 
structures from these initial templates. The overall perfor­
mance of T ASSER is quite dependent on the accuracy of 
the predicted side-chain contacts. In previous work , com­
prehensive benchmarking showed Ihat TASSER can fold 
- 2/3 of all non- or weakly homologous proteins :,;200 resi­
dues in length (26,36). Moreover, the resulting TASSER 
models were closer to the native structures than the initial 
thread ing templates. For the remaining - 1/3 of proteins, 
the prediction accuracy of TASS ER is significantly worse 
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because PROSPECfOR_3 provides inaccurate template 
fragments and predicted side-chain contact restraints. Thus, 
improvement in this regime of target difficulty is sorely needed. 

In this work, to improve the accuracy of the predicted 
contact restraints, we develop what to our knowledge is a new 
side-chain contact restraint prediction algorithm, the com­
posite-sequence method, and incorporate this infonnation 
into the next generat ion of TASSER, T ASSER_2.0. The 
basic idea of the composi te-sequence method is to generate 
predicted side-chain contacts by a number of approaches, and 
then obtain the consensus set of contacts wi th the expectation 
that these will be more accurate than any of the individual 
input sets. To generate one of these sets of predicted contacts, 
we evolve sequences optimized for each template structure 
using a structure-based scoring function that contains sec­
ondary structure, burial , and pair interaction potentials. The 
resulting set of sequences is used to generate sequence profiles 
used in an improved vers ion of threading, PROSPECfOR_3.5. 
Then, by using consensus contacts extracted from the evolved­
sequence method and those obtained from wild-type template 
sequences, the composite-sequence method, we find that 
there is a significant improvement in contact prediction ac­
curacy. Yet, the coverage is sufficient that these more accu­
rate contacts can be effectively used in TASSER_2.0. We 
apply TASSER_2.0 to a comprehensive, large-scale bench­
mark test set consisting of 259 1 nonhomologous single do­
main proteins having :5200 residues of which 772, 513, and 
1306 are all a-, all {3-, and al{3-proteins. In this benchmark, 
no template can have> 30% sequence identity to the target 
sequence. (The list of 2591 single domain benchmark proteins 
is prepared as Supplementary Material, Data S I .) We compare 
the performance of TASSER_2.0 with the original T ASSER 
algorithm and demonstrdte significant improvement, espe­
cially for the more difficult targets. 

METHOD 

The original version of TASSER consists of template identification and 
side-chain contact restraint prediction by the threading algorithm 
PROSPECfOR_3. followed by structure assembly and final model selection 
(26). To generate more accurate predicted contact restraints, we develop the 
composite-sequence method that provides the more accurate predicted 
contact restraints to TASSER_2.0. TASSER_2.0 employs an additional 
contact restraim energy function to increase the influence of these more 
accurate contacts, bu t uses the same procedure for Shl!cture assembly and 
fi nal model selection as TASSER. Since detailed descriptions of TASSER 
are available elsewhere (25,26.28), we just prov ide a brief overview. 

SynthetiC evolution of template sequences 

For each template in the threading template library, we independemlyevolve 
a set of 80 sequences designed to minimize the energy of the sequence in its 
native template structure. For a given sequence, the energy is given by 

£ = Eburial + Esewndary + Epa;" (I a) 

where 
N 

£""ri., = L '''''ri'' (ib;, S;) ( lb) 
1= 1 

t957 

is a centrosymmetric. residue-dependent statistical burial potential (38). 
where the protein is divided into spherical shells of width eq ual to 1/3 the 
radius of gyration of the side-chain centers of mass Ubi = 1.5), and Si is the 
amino acid at position i = I.N. wilh N the number of residues in the protein 
chain. The secondary structure potential is given by 

N 

E=.",.", = L '","",,,,(0; , P;) , 
i= ] 

(Ie) 

where OJ (Pj ) is the observed (predicted) secondary structure (helix. (3. coil) of 
residue i. If OJ = Pi. then 

(I d) 

Otherwise, 

(Ie) 

The secondary structure is predicted using a neural network-based approach 
that is logically the same as PSIPRED (39). but is designed to work on a 
single sequence (H. Zhou, unpublished). The approach was tested on a set of 
820 nonhomologous sequences and has an average accuracy of 67%. Our 
purpose here is not 10 generate yet another neural network-based approach to 
secondary structure prediction, but to have one that is applicable for a s ingle 
sequence rather than one that requires a multiple sequence alignment. 

The pair potential is given by 

£",;, = 1/2 f f",,;,(S;,Sj)C;j, ( If) 
i= 1 ;=< 1 

where Epair(Sj ,Sj) is a previously derived, orientation-independent, knowl­
edge-based pair potential between amino ac ids Si and Sj (40), and Cij = I if 
side chains j and ) are in contact (a pair of side chains is in contact if any pair 
of their heavy atoms is wilhin 4.5 A) and e jj = 0 otherwise and is taken from 
the template structure and remains unchanged during the seq uence evolution 
procedure. 

In practice, we start with the native sequence and using a genetic algo­
rithm, evolve it to minimize the potential given by Eq. I . The population 
consists of 75 members and is evolved fo r 500 generations. In each gener­
ation, each of the 75 sequences is random ly pennuted (thus. the amino acid 
compos ition always matches the native sequence). and the 75 lowest energy 
sequences among the 75 parents and 75 children are selected. The set 
of sequences is evolved for 500 generations, after which lhe lowest energy 
sequence is stored. A total of80 independently generated sequences are then 
collected. For the templ ate library. the average sequence identity of the 
evolved sequences to the nalive seq uence is 63%, with a standard deviat ion 
of 5%. 

PROSPECTOR_3.S algorithm 

As described fo r PROSPECfOR_3 (9.37), PROSPECfOR_3.5 uses a set of 
four scoring fu nctions and multiple iterations. Here, we first summarize the 
essential features and subsequent modifications in the original sequence 
profi le scoring function utilized in the current version. PROSPECfOR_3.5. 
and then describe modifications to accommodate the evolved sequences 
whose generation was described in the previous section. 

First pass using sequence profiles and 
secondary structure terms 

In what follows, upper (lower) case characters I . J, (i,f) refer to the residue 
index in the target (template) structure, and)k refers to template structure 
number jk. The initial alignment uses a scoring function between target se­
quence residue I and template sequence j in template )k of the type (10.41) 
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S;rof(t ,j ,jk) = ,I, x(ires , !)M(ires ,j,jk) 

+ M(ires , !)x(ires,j,jk) 

+ he""x><l,,'(P" OJ (jk)) + c, (2a) 

where the sum is over am ino acid Iypes. x(iI'CJJ ) (x(ires.j,jk) is the fraction 
of residues of type ires at position I (;) in the target (templme). lmd MUresJ) 
is the corresponding PSI~BLAST MTX profile (42.43). C'secoodary(P J, oj{jk) ) 
is the secondary structure energy for predicted secondary structure type, Pl. 

and observed secondary structure. oj(jk) , ofresiduej in tcmptmcjk. Since we 
consider better scores to be more positive (as opposed to the previous section. 
where better energies are more negative). 

and 

otherwise. b and c are constants that depend on the type of sequence profile 
used. 

III the original formulation of PROSPECTOR_3 (37). we used two sets of 
sequence profi les: Those that are derived for all sets of seq uences having 
between 35% and 90% pairwise sequence identity, the 3590 sci (in Eq. 2a 
prof = 3 590), and those whose e value to the parent (target or template) 
sequence is ~ I 0, the elO set (in Eq. 2a prof = e lO). In a ll cases, the MTX 
profiles are those derived from the 3590 set of seq uences. For the 3590 (e IO) 

set. b ~ 0.7 (0.8) and c ~ 1.5(1.3). 

We first genemte a target-template seq uence alignment using either the 
3590 or e lO sel of seq uences. Then. we evaluate the score between the larget 
residue I and residue j of template jk as 

s:rof(i,j,jk) = S'".,f(i,j,jk) + b,c=<md",(P" OJ Uk)) 
N -I e:rof."",(i, M;rof(m))CU, m,jk) , (3) 

where M~rof(m ) is the alignment of the mth template residue to the target 
sequence in template jk that was generated by the first pass using the 
sequence and secondary structure propensities ofEq. 2. C(j,m,jk) is the side­
chai n conlact map of remplatejk. b2 = 0.4 (0.2) fo r the 3590 (e IO) sequence 

profiles. t:~r,p.tir is the target' s muhiple sequence averaged, protein-specific 
pair potent ial (40). 

Al ignments are generated using the local-g lobal alignment extracted from 
dynamic programming (44,45). For the 3590 profiles, the gap opening and 
gap propagation penahies are - 10.0 (- 14.5) and - 0.1 (- 0.75) for the fi rst 
(second) pass respectively. For the elO profiles. the gap open ing and gap 
propagation penalties are - 7.0 (- 14.0) and - 05 (- 1.05) for the first (sec­
ond) pass. respectively. The fina l target- template score is evaluated as the 
difference between the score of the best a lignment generated with the target 
sequence and the reverse order of the target sequence (46). This is designed to 
remove trivial composition dependent effects on scoring. 

Second to fourth iteration with pair potentials 
and side-chain contact predictions 

To generate contacts. for the top fi ve scoring templates that have a Z-score 
> 1.3 in each of the four scoring functions, the set of contacts is extracted. If a 
contact between residues I and I' occurs in at least three of these templates. 
the total number of which is con! (J , I ' ), then it is counted as a pred icted 
contact for the construction of the protein-specific pair potential used in the 
second iteration of Eq. 3 as follows. 
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with lIe~p the ex pected number of contacts per residue if they are unifonnly 

di stributed. viz. 

11", = f f con' (! ,!')/N'. (4b) 
t= ! I' = ! 

For the third and final iteration that includes the pair interaction contribution 
to the threading alignment, we repeat the above procedure but demand that a 
contact be present in at least four of the templates for the contact to be 
predicted. 

Evolved and composite-sequence methods for 
contact prediction 

The evolved-sequence method uses the identical forma lism and parameters, 
but replaces the 3590 sequence profi les and MTX profiles in Eqs. 2-4 with 
the corresponding evolved seq uence profiles. In practice. the alignments 
generated fro m the evolved-seq uence method are more accurate than those 
using the wild-type template sequence profi les. but the coverage o f the 
template is less. The average fraction of correctly predicted side-chain 
contacts over the benchmark set of proteins is 0.46. with the average fraction 
of predicted contacts per res idue of 1.85. This compares favorably with the 
average fraction of correctly predicted contacts of 0.37 and coverage of 3.29 
when the wi ld-type 3590 profiles are used. (fwe consider consensus contacts 
between the evolved seq uence set and the original PROSPECTOR_3.5 
predicted contacts, then the average fracl ion of accurately predicted contacts 
increases to 0.60. with the average number of contacts predicted per residue 
of 1.43. In what follows, we use the set of consensus-predicted contacts 
between PROSPECfOR_3.5 and the evolved-sequence vers ion; we lem 
this the composite-sequence method. 

Structure assembly 

The energy fu nction in the original T ASSER algorithm is composed of 
knowledge-based long- and short-range correlations, the propensity for 
predicted secondary structures extracted from P5IPRED (39), protein-spe­
cific pair interactions. and a residue-based solvent accessibility tenn 
(26.28.47). In T ASSER_2.0. we introduce an additional conlact restraint 
fu nction to increase the effect of the new. and more accurate on average. 
contact restraints . For residues I and 1 predicted to be in contact using the 
composite-sequence method. their contact energy (Eadd) is defined by 

( 
r(I,1 ) ) ' E",,= 1 + - (-)- 1 , 
ro 1,1 

= 0, 

r(l ,1 ) > ro(l ,J ), 

r(l, J )"; 1'0(l,J), (5) 

where r(IJ) is the distance between the side-chain centers of mass of the Ith 
and lth residues and rdJJ> is the corresponding cutoff distance for a contact 
between their side-chain centers of mass. 

TASSER_2.0 uses a protein representation composed ofC .. atoms and the 
side-chain centers of mass. The aligned reg ions in the temp lates identified by 
PROSPECfOR_3 .5 provide continuous fragments for assembly. For the 
unaligned regions provided by PROSPECfOR_3.5, we connect the con­
tinuous template fragments by random walk of C .. -C .. bond vectors to build 
an in itial full-length model. From the initial full-length model. conforma­
tional space is searched by parallel hyperbolic Monte Carlo sampling (48), 

where 40 replicas are used, irrespective of target protein le ngth. 

Final model selection 

After the structure assembly procedure is finished. the 14 lowest temperature 
replicas' trajectories are submitted to the structural clustering program , 
SPICKER (27). To assess the prediction. we compare the quality of the best 
among the top five TASSER_2.0 models with the best among the top 
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five TASSER models as well as the txst initial alignments from the 
PROSPECfOR_3.5 threading templates. 

RESULTS AND DISCUSSION 

Contact restraint prediction 

According to the threading score significance and the con­
sensus (if any) among the alignments of the top two tem­
plates, PROSPECTOR_3 .5 categorizes target proteins as 
Easy, Medium, and Hard. This classification scheme indi ­
cates the relative confidence in the accuracy of prediction. 
From our previous work, the majority of Easy, Medium, and 
Hard sets have correct templates/alignments, correct tem­
plates with poor alignments, and incorrect templates/align­
ments, respectively (26). The Easy set has the highest 
predicted contact accuracy. Among the 259 1 single domain 
benchmark proteins, PROSPECTOR_3.5 assigns 1802 pro­
teins to the Easy set, 167 to the Medium set, and 622 to the 
Hard set (Data S I). 

We calculate the fraction of accurately predicted contacts 
(F",,) by 

(6) 

where Nc.c is the number of common contacts in both the 
predicted contact restraints and the native structure, and Nc,Q 
is the total number of the predicted contacts. In Table I, we 
show the average fraction of accurate contacts. F!lcc' of the 
Easy, Medium. and Hard sets. F~ and f'Cace indicate the F ace 

from PROSPECTOR_3 .5 and those from the composite­
sequence method, respectively. Overall, the average r:..,., is 
0.60, whereas the average F~ from PROSPECTOR_3.5 is 

TABLE 1 Fraction of accurately predicted contact restraints 
and predicted contacts per residue from the wild-type 
sequence and the composite-sequence methods 

Wild-type sequence Composite-sequence 
method method 

/{,.' ~yl 
P'~' (contacts/residue) f"~' (contacts/residue) 
ISO'I [SOl [SO] ISOI 

Easy set 0.4310.t51 3.75 [1.201 0.64 [0.19] I.S711.121 
Medium 0.3010.221 2.29 [0.93] 0.51 [0.301 0.5610.5 11 

set 
Hard set 0.22 10.171 2.25 [0.90] 0.50 [0.34] 0.25 10.371 
All 0.37 [O.IS] 3.2911.311 0.60 [0.25] 1.4311.201 

·Average fmc tion of accurate predicted contacts us ing the wild-type 
template sequence profiles in PROSPECfOR_3.5. 
t Average fmction of predicted contacts per residue using the wild-type 
template sequence profiles in PROSPECfOR_3.5. . 
t Average fruction of accurate predicted contacts from the composue­
sequence method. 
' Average fraction of predicted contacts per residue from Ihe composite­
sequence method. 
Standard deviation. 

1959 

0.37. This shows that the composite-sequence method that 
takes consensus contacts generated by PROSPECTOR_3.5 
using evolved and wild-type sequence profiles generates 
more accurate predicted contact restraints than those pro­
vided by the use of wi ld-type template sequence profiles 
alone. We note that a number of other methods, SYMcon 
(49), PROFcon (50), and Disti ll (5 1), reponed an average 
accuracy of 0.3 in CASP7. For TASSER , this is too low to 
produce reasonably accurate models. 

The Easy, Medium, and Hard sets have an average 
F<: (FP ) with :!: SD (one standard deviation) of 0.64 :!: 
0.'19 (OA3 :!: 0.15), 0.51 :!: 0.30 (0.30 :!: 0.22), and 0.50 :!: 
0.34 (0.22 :!: 0.17), respectively. Obviously, the accuracy of 
the predicted contact restraints of the composi te-sequence 
method is significantly increased compared with those from 
use of the wi ld-type sequences alone in PROSPECTOR_3.5, 
irrespective of target difficulty. The statistical significance of 
the difference observed in the average fTaction of accurate 
predicted contacts between the wi ld-type sequence method 
and composite-sequence method is also evaluated by a cor­
related two-tailed I-test (52) at a critical a-level set to a very 
restrictive 10- 3 This I-test shows that for all levels of target 
difficulty, we can safely reject the null hypothesis that there is 
no significant change between composite-sequence method 
and wild sequence method (p-value of < 10- 300

, 4.46 X 
10- 27

, and 1.67 X 10- 79 for the Easy, Medium, and Hard 
selS, respectively). Thus, we can safely conclude that the 
composite-sequence method increases the fraction of accu­
rate predicted contacts. We especially note that the r:..,., of 
0.5 1 and 0.50 of the Medium and Hard sets is higher than 
F~ of 0.43 of the Easy set. We also calculate the fraction of 
predicted contacts per residue (Fcov = Nc.JNre..<I" where NfVj IS 

the length of a target protein). As a trade-off for the significant 
improvement in contact accuracy, the average f<=cov with ± 
SD of the composite-sequence method is reduced to 1.43 :!: 
1.20, compared wi th F::O. = 3.29 :!: 1.31 when the wild-type 
3590 template sequence profi les alone are used. For the Easy 
set. the average FZov is 1.87 ± 1.12. whereas F:'v is 3.75 ± 
1.20. For the Medium and Hard sets, the average r;o. is also 
reduced to 0.56:!: 0.51 and 0.25 :!: 0.37, compared with F;o. 
of 2.29 :!: 0.93 and 2.25 :!: 0.90, respect ively. For all levels of 
target difficulty, the composi te-sequence method provides 
more accurately predicted but fewer contacts per residue than 
the wi ld-type 3590 template sequence profiles. 

TASSER_2_0 refinement results 

TASSER_2.0 uses the templates from PROSPECTOR_3 .5 
and predicted side-chain contact restraints from the com­
posi te-sequence method. In Table 2, we show the average 
root mean-square deviation (RMSD) to the native structure of 
the initial threading templates from PROSPECTOR_3.5 that 
uses the wild-type template sequence profiles, TASSER and 
TASSER 2.0 models. The mean target-template sequence 
identity i; 19%, 16%, and 13% for Easy, Medium, and Hard 

Biophysical Journal 95(4) 1956-1964 
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TABLE 2 Comparison 01 models Irom TASSER_2.0, TASSER and PROSPECTOR_3.S 

(RMSD to the native), ArsD·] 

Num t ID (%) ' M iniLIlIi ' MT_~1i Mr2.0_alill MT_all •• 
MT2.0_a tl 

tf 

Easy 1802 19 5.60 14.33J 3.42 (2.55J 3.27 (2 .35J 4.02 (2.80J 3.8612.6IJ 
Medium 167 16 8.69 15.161 5.39 13.541 4.71 12.77J 5.82 13.6 IJ 5.09 12.87J 
Hard 622 13 11.87 15.661 8.37 14.571 7.69 14.171 8.92 14.481 8.2414. 12J 
All 2591 17 7.30 15.44J 4.73 13.84J 4.42 (3.46J 5.31 13.92 1 4.99 13.57J 

·Standard deviation. 
tN umber of larget proteins in each category. 
t Average sequence identity of target-template sequences. 
Avemge RMSD 10 the nat ive structure of the initial PROS PECTOR_3.5 templates' , TASSER"i , and TASSER_2.0Il models over the s:lme aligned regions 
provided from PROSPECTOR_3. 5. 

Average RMSD to the native structure of TASSERu and TASSER_2.0ft models over the entire molecule. 

sets, respectively. Overall , the average RMSD 10 Ihe nal ive 
structure of the TASSER models (:t SD) is 4.73 :t 3.84 A/ 
5.3 1 :t 3.92 A over the aligned regions/entire molecule, 
whereas the initial PROSPECTOR_3.5 lemplales have an 
average RMS D of 7.30 :t 5.44 A over Ihe aligned regions 
(the sel of aligned res idues in the PROSPECTOR_3.5 tem­
plates). The average RMSD of the TASSER_2.0 models is 
4.42 :t 3.46 A/4.99 :t 3.57 A over the aligned regions/entire 
molecule, which is smaller than that of the TASSER models. 
This shows that the TASSER_2.0 models are closer 10 their 
native structures than either the TASSER models or the initial 
templates. 

As previously reported (26,28), for all levels of target dif­
ficulty , the average RMSD of the TASSER models is clearly 
smaller than thai of initial templates from PROSPECTOR_3.5. 
For the Easy sel, the TASSER_2.0 (TASSER) models have an 
average RMSD of3.27 :t 2.35 N3.86 :t 2.6 1 A (3.42 :t 2.55 
N4.02 :t 2.80 A) over the aligned region/entire molecule. For 
the Medium and Hard sets, the average RMSD of their 
TASSER_2.0 (TASSER) models is 4.7 1 :t 2.77 N5.09 :t 
2.87 A (5.39 :t 3.54N5.82 :t 3.61 A) and 7.69 :t 4. 17 Ns.24 :t 
4. 12 A (8.37 :t 4.57 A/8.92 :t 4.48 A), respec tively. To 
evaluate the statistical s ignificance of the difference of the 
average RMSD belween TASS ER and TASSER_2.0, the 
correlated two-ta iled '-test is also perfonned wi th a critical 
a- level set at a very restrictive 10- 3

. This ' -lest shows that 
there is a significant di fference of average RMSD between 
TASSER and TASSER_2.0 models (p-value of 1.87 X 
10- 11 , 3. 10 X 10- 4

, and 1.40 X 10- 15 forthe Easy, Medium, 
and Hard sets, respectively) and we conclude thai TASSER_2.0 
improves the average RMS D compared with TASSER. We 
also calculate the TM-score that is also a measure of globaJ 
protein structural similarity. The TM-score ranges from 0 10 

I, with 0.30 the average value of the best structu re alignment 
between a pair of randomly related protein structures inde­
pendenl of chain length (53), and when IwO structures are 
identical, their TM-score is 1.0. The average TM-score of the 
TASSER_2.0 (TASSER) models is 0.748 (0.743), 0.533 
(0.5 16), and 0.460 (0.444) for the Easy, Medium, and Hard 
sets. respectively. These results show that irrespective of 
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target d ifficu lty: I), the TASSER models become closer 10 the 
native structure than the inilial templates and 2), TASSER_2.0, 
which incorporates more accurate predicted contact restraints 
Ihan T ASSER, also shows obvious improvement over 
TASSER as well as Ihe ini lial template structu res. The list of 
benchmark sel proteins and results for al l targels ofTASSER 
and TASSER_2.0 models in the benchmark sel may be fou nd 
al http://cssb.biology.gatech.edu/skolnick/files/tasser2.0/. 

For a detailed comparison of the TASSER_2.0 and 
TASSER models, we show Ihe histogram of the cumulative 
fraction of the RMSD difference between the TASSER_2.0 and 
TASSER models, ~RMSD (RMSDrASSER...2.0- RMSDrASS.,v 
in Fig. I. When the TASSER_2.0 model has a smaller 
RMS D than the TASSER model, ~RMSD is negative. For 
the Easy set, 57% of the TASSER_2.0 models are closer 
10 Iheir nalive structures than the TASSER models. For the 
Medium and Hard sets, 64% and 62% of the TASSER_2.0 
models have a smaller RMSD 10 native than the TASSER 
models. Among the improved cases, 22%. 53%, and 64% 
of Ihe T ASSER_2.0 models for the Easy, Medium, and 
Hard sets show an improvement in RMS D of more than 
0.5 A. 

As already shown, us ing the wild-type template sequences 
in PROSPECTOR_3.5, the accuracy of the predicted contacl 
restraints is quite dependent on the level of target difficulty, 
and for many cases, there is high contact coverage. but low 
accuracy. In this si tuation, the TASSER models thai are 
generated with this large number (and fraction) of inaccurate 
contacts are highly frustrated and are far from their native 
structures. The composite-sequence method significantly 
increases the accuracy of contact restrain ts. irrespective of 
target di ffi culty. Even the Medium and Hard sets of the 
composite-sequence method have higher contact accuracy 
than that for the Easy sel generated using wild-type sequence 
profi les, which has the most accurate contact restraints. 

For the Easy set, their TASSER models are quite accurate 
because PROSPECTOR_3.5 provides a sufficient number of 
accurate contact restraints as well as correctly identified 
lemplales for the majori ty of cases. Thus, the opportunity for 
improvement by TASSER_2.0 is re latively small. On the 
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70 r----------------------,----------------------, 
Improved after TASSER_2.0 .. 

" Worse afterTASSER_2.0 _ Ea.y 
_ Medium 

60 (RM SDw.sp, u - RMSD...,.. < 0) (RMSDT ........ u - RMSD, ....... > 0) 
c::::J Hard FIGURE I CumulUlive fraction of the 

RMSD difference between the TASSER_2.0 
and TASSER models. RMSOrASSER..l.O -
RMSDrASSER. for the Easy, Medium. and 
Hard sets. When the TASSER...2.0 model 
has a smaller RMSD than the TASSER 
model. the difference is negative. indicating 
thUl TASSER_2.0 is better. When the 
difference is positive. TASSER_2 .0 gener­
ales worse models because the RMSD of 
the TASSER model is smaller than the 
TASSER_2.0 model. The values of cumu­
IUlive fraction (%) are shown in each histo­
gram. 
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other hand, for many Medium and Hard cases, Ihe contact 
prediction accuracy in TASSER is quite low. By using the 
composite-sequence method to provide predicted contact 
restraints into TASSER_2.0, we significantly increase the 
contact accuracy and reduce the number of inaccurate con­
tacts. Therefore, the conformational search is more efficient 
in finding structures that are closer to their native state. 

In Fig. 2, a-f, we show representative examples of Ihe 
improvemenl of TASSER_2.0 over TASSER models. For 
the Easy set (Fig. 2, a and h; IBM7A, 11 4 residues), the 

OJ 

" 
,,, 

"-

< 1.5 <2.0 <2.5 <6.0 

TASSER model has a RMSD to the native of 15.3 A with 
F::cr (~,) of 0.22 (1.50). The TASSERJO model has a 
RMSD of 4. 1 A and F""" (~,) is 0.83 (0.69). For the 
Medium set (Fig. 2, c and d; IXJHA, 62 residues), in 
TASSER_2.0, where F""" (~o,) is 0.76 (0.34), the RMSD is 
smaller, 4.2 A, as compared to the model generated by 
TASSER which has a RMSD of 8.2 A due to the fact that 
F~" (F~o,) is 0.41 (1.1 6). For the Hard set (Fig. 2, e and/. 
I KQ4A, 199 residues), the TASSER_2.0 model has a RMSD 
of 5.0 A, compared with 16.5 A for the TASSER model. The 

FIGURE 2 Representati ve examples showing the im­
provement of the TASSER_2.0 models over the TASSER 
models for the Easy ( IBM7A). Med ium ( IXJH A), and 
Hard (I KQ4A) sets. The thick (thin) li ne refers to the native 
structure (pred icted model). The stereo images ofTASSER 
and TASSER_2.0 models are on the left- and right-hand 
sides of the fi gure. respectively. Red indicates residue pairs 
having a distance < 5 A after the superposition of the 
predicted mooel onto the native structure . For the remainder 
of residues whose distance is ~5 A after superposition, the 
native structure is shown in blue (thick line). The RMSD to 
the native structure is shown below the mooels. 
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F""", (~o,) and F;'" (F~o,) are 0.72 (0.87) and 0.40 (1.66), 
respectively , which shows the importance of improved ac­
curacy at reasonable levels of structure coverage. 

Fig. 3 shows a histogram of the RMSD distribution from 
TASSER and TASSER_2.0. To assess the results, we define 
a foldable protein as th at when the RMSD to the native is 
< 6.5 A (26,28,36). T ASSER_2.0 shows better performance 
than TASSER. For TASSER_2.0 (TASSER), the fraction of 
foldable proteins in the Medium set is 0.743 (0.647). This 
success rate decreases to 0.408 (0.355) for the Hard set. For 
the Easy set, TASSER_2.0 shows a success rate of 0.884, 
compared with 0.863 for TASSER. Overall , TASSER_2.0 
has a higher fraction of foldable proteins of 0.761 as com­
pared to 0.727 fo r TASSER. 
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FIGURE 3 Cumulalive fmetion of proteins in the Easy. Medium. and 
Hard sets as a function of the RMSD to the nalive structure for the best of top 
five TASSER and TASSER_2.0 models. 
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In previous work, TASSER;'" (36), which iteratively re­
fin es Ihe original TASSER models, also showed improve­
ment over TASSER. For the Easy, Medium, and Hard set 
proleins, their TASSER_2.0 (TASSER'''') models have an 
average RMSD to native of 3.86 A (3.83 A), 5.09 A (4.90 A), 
and 8.24 A (8.44 A) and a fo lding success rate of 0.884 
(0.876), 0.743 (0.754), and 0.408(0.386), respectively. 
Comparing TASSER_2.0 with TASSER;''', the average 
RMSD of TASS ER_2.0 is smaller than that of TASSER;'" 
for the Hard set, whereas TASSER_2.0 has a slightly larger 
average RMSD for the Easy and Medium sets. For the Hard 
and Easy sets, T ASSER_2.0 has a higher success rate than 
TASSER;''', whereas TASSER_2.0 has a marginally smaller 
success rate than TASSER licr for the Medium targets. These 
results show that TASSER_2.0 has comparable performance 
to TASSER;'" (and is even better for the Hard set) but re­
quires about a factor of 6 less simulation time. 

We also calcu late the fraction of prote ins that are fold­
able (RMSDTASSER 2.0 < 6.5 A) in TASSER_2.0 but not 
in TASSER (RMSDTASS ER > 6.5 A); 11 % and 9% of the 
Medium and Hard proteins become fo ldable when 
TASSER_2.0 is used, whereas 3% of the Easy sel targets 
show a corresponding improvement. Irrespective of target 
difficulty, TASS ER_2.0 provides an increased fract ion of 
foldable proteins, with the largest improvement seen for the 
Medium and Hard sets; the laller represents significant progress. 

CONCLUSIONS 

To improve the accuracy ofTASSER, especially for difficult 
targets, we have developed the TASSER_2.0 algorithm that 
incorporates more accurate predicted side-chain restraints 
obtained from the composite-sequence contact prediction 
method. TASSER_2.0 was tesled on a comprehensive, large­
scale benchmark set consisting of 259 1 nonhomologous 
single domain proteins (Data S 1). TASSER_2.0 outperforms 
TASSER, especially for the Medium and Hard sets where the 
original conlaCI prediction algorithm that uses wild-type 
template sequence profiles provides a large number of low 
accuracy contacts, whereas for many targets, the composite­
sequence method provides contact predictions of acceptable 
accuracy and coverage. Therefore, TASSER_2.0 improves 
protein structure prediction quality especially for the more 
difficult targets; it also improves over the initial alignments 
from threading. Since the accuracy of TASSER_2.0 is 
strongly dependent on the accuracy of the predicted side­
chain contacts, we plan in the near future to focus on the 
development of even more accurate tertiary restraint predic­
tion approaches. What is encouraging is that the Medium 
targets are shifted to have the same quality as TASSER's 
more difficult Easy set targets, and the Hard targets, whose 
prediction quality was very poor in TASSER, show en­
couraging improvements. This suggests that for the most 
difficult targets, significanl progress using tempi ale-based 
approaches to structure prediction can be made. 
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