
Designing Multithreaded Algorithms for Breadth-First

Search and st -connectivity on the Cray MTA-2

David A. Bader Kamesh Madduri

College of Computing

Georgia Institute of Technology

February 26, 2006

Abstract

Graph abstractions are extensively used to understand and solve challenging compu-

tational problems in various scienti�c and engineering domains. They have particularly

gained prominence in recent years for applications involving large-scale networks. In

this paper, we present fast parallel implementations of three fundamental graph the-

ory problems, Breadth-First Search, st-connectivity and shortest paths for unweighted

graphs, on multithreaded architectures such as the Cray MTA-2. The architectural

features of the MTA-2 aid the design of simple, scalable and high-performance graph

algorithms. We test our implementations on large scale-free and sparse random graph

instances, and report impressive results, both for algorithm execution time and parallel

performance. For instance, Breadth-First Search on a scale-free graph of 200 million

vertices and 1 billion edges takes less than 5 seconds on a 40-processor MTA-2 sys-

tem with an absolute speedup of close to 30. This is a signi�cant result in parallel

computing, as prior implementations of parallel graph algorithms report very limited

or no speedup on irregular and sparse graphs, when compared to the best sequential

implementation.

1 Introduction

Graph theory concepts are widely applied in many traditional and emerging scienti�c dis-

ciplines such as VLSI Design, Combinatorial Optimization, Databases, and Computational

Biology. Some examples include phylogeny reconstruction [36, 35], protein-protein inter-

action networks [42], placement and layout in VLSI chips [30], data mining [23, 25], and

1

clustering in semantic webs. Graph abstractions are also �nding increasing relevance in

the relatively new domain of large-scale and social network analysis [13, 29]. Empirical

studies show that many social and economic interactions tend to organize themselves in

complex network structures. These networks may contain billions of vertices with degrees

ranging from small constants to thousands [7, 19]. The Internet and other communication

networks, transportation and power distribution networks also share this property. The two

key characteristics studied in these networks are centrality (which nodes in the graph are best

connected to others, or have the most inuence) and connectivity (how nodes are connected

to one another). Popular metrics for analyzing these networks, like betweenness centrality

[20, 9], are computed using fundamental graph algorithms like Breadth-First Search (BFS)

and shortest paths.

In recognition of the importance of graph abstractions for solving large-scale problems

on High Performance Computing (HPC) systems, several communities have proposed graph

theoretic computational challenges. For instance, the recently announced 9th DIMACS

Implementation Challenge [17] is targeted at �nding shortest paths in graphs. The DARPA

High Productivity Computer Systems (HPCS) [16] program has developed a synthetic graph

theory benchmark called SSCA#2 [26, 27] which is composed of four kernels operating

on a large-scale, directed multi-graph. (We describe our implementation of SSCA#2 on

symmetric multiprocessors in [6])

Graph theoretic problems are typically memory intensive, and the memory accesses are

�ne-grained and highly irregular. This leads to poor performance on cache-based systems.

On distributed memory clusters, few parallel graph algorithms outperform their best sequen-

2

tial implementations due to long memory latencies and high synchronization costs. Parallel

shared memory systems are a more supportive platform. They o�er higher memory band-

width and lower latency than clusters, as the global shared memory avoids the overhead

of message passing. However, parallelism is dependent on the cache performance of the al-

gorithm and scalability is limited in most cases. While it may be possible to improve the

cache performance to a certain degree for some classes of graphs, there are no known general

techniques for cache optimization because the memory access pattern is largely dependent

on the structure of the graph.

1.1 Preliminaries

The Cray MTA-2 is a high-end shared memory system o�ering two unique features that aid

considerably in the design of irregular algorithms: �ne-grained parallelism and zero-overhead

synchronization. The MTA-2 has no data cache; rather than using a memory hierarchy to

hide latency, the MTA-2 processors use hardware multithreading to tolerate the latency. The

low-overhead synchronization support complements multithreading and makes performance

primarily a function of parallelism. Since graph algorithms often have an abundance of

parallelism, these architectural features lead to superior performance and scalability.

The computational model for the MTA-2 is thread-centric, not processor-centric. A

thread is a logical entity comprised of a sequence of instructions that are nominally issued in

order, respecting jumps and skips. It has a �nite state, which is de�ned at any given point

by the values in its registers and its program counter. At any point in time, an executing

program will include one or more threads. No thread is bound to any particular processor.

3

System memory size and the inherent degree of parallelism within the program are the only

limits on the number of threads used by a program.

Synchronization among threads within an executing program is easy and eÆcient because

of special hardware support. Each 64-bit word of memory also has an associated full/empty

bit which can be used to synchronize load and store operations. A synchronous load or store

operation retries until it succeeds or traps. The thread that issued the load or store remains

blocked until the operation completes, but the processor that issued the operation continues

to issue instructions from non-blocked streams.

BFS [14] is one of the basic paradigms for the design of eÆcient graph algorithms. Given

a graph G = (V;E) (m edges and n vertices) and a distinguished source vertex s, BFS

systematically explores the edges of G to discover every vertex that is reachable from s. It

computes the distance (smallest number of edges) from s to each reachable vertex. It also

produces a breadth-�rst tree with root s that contains all the reachable vertices. All vertices

at a distance k (or level k) are �rst visited, before discovering any vertices at distance k+1.

The BFS frontier is de�ned as the set of vertices in the current level. Breadth-First Search

works on both undirected and directed graphs. A queue-based sequential algorithm runs in

optimal O(m+ n) time.

st-connectivity is a related problem, also applicable to both directed and undirected

graphs. Given two vertices s and t, the problem is to decide whether or not they are

connected, and determine the shortest path between them, if one exists. It is a basic building

block for more complex graph algorithms, has linear time complexity, and is complete for

the class SL of problems solvable by symmetric, non-deterministic, log-space computations

4

[31].

Here, we present fast parallel algorithms for Breadth-First Search and st-connectivity,

for directed and undirected graphs, on the MTA-2. We extend these algorithms to compute

single-source shortest paths, assuming unit-weight edges. The implementations are tested on

four di�erent classes of graphs { random graphs generated based on the Erd}os-R�enyi model,

scale-free graphs, synthetic sparse random graphs that are hard cases for parallelization, and

SSCA#2 benchmark graphs. We also outline a parallel implementation of BFS for handling

high-diameter graphs.

1.2 Related Work

Distributed BFS [2, 37, 43] and st-connectivity [8, 21] are both well-studied problems, with

related work on graph partitioning and load balancing schemes [3, 40] to facilitate eÆcient

implementations. Other problems and algorithms of interest include shortest paths variants

[18, 12, 39, 38, 33, 15] and external memory algorithms and data structures [1, 10, 32] for BFS.

However, there are very few parallel implementations that achieve signi�cant parallel speedup

on sparse, irregular graphs when compared against the best sequential implementations. In

[5], we demonstrated superior performance for list ranking and connected components on

the MTA-2 when compared with symmetric multiprocessor implementations and attained

considerable absolute speedups over the best sequential implementations. This work serves

as the primary motivation for our current experimentation on the MTA-2.

5

Input: G(V;E), source vertex s

Output: Array d[1::n] with d[v] holding the length of the shortest path from s to v 2 V ,

assuming unit-weight edges

1 for all v 2 V in parallel do

2 d[v] �1;

3 d[s] 0;

4 Q �;

5 Enqueue s Q;

6 while Q 6= � do

7 for all u 2 Q in parallel do

8 Delete u Q;

9 for each v adjacent to u in parallel do

10 if d[v] = �1 then

11 d[v] d[u] + 1;
12 Enqueue v Q;

Algorithm 1: Level-synchronized Parallel BFS

2 A Multithreaded Approach to Breadth-First Search

Unlike prior parallel approaches to BFS, on the MTA-2 we do not consider load balancing or

the use of distributed queues for parallelizing BFS. We employ a simple level-synchronized

parallel algorithm (Alg. 1) that exploits concurrency at two key steps in BFS:

1. All vertices at a given level in the graph can be processed simultaneously, instead of

just picking the vertex at the head of the queue (step 7 in Alg. 1)

2. The adjacencies of each vertex can be inspected in parallel (step 9 in Alg. 1).

We maintain an array d to indicate the level (or distance) of each visited vertex and

process the global queue Q accordingly. Alg. 1 is however a very high-level representation,

and hides the fact that thread-safe parallel insertions to the queue and atomic updates of the

distance array d are needed to ensure correctness. Alg. 2 details the MTA-2 code required

to achieve this (for the critical steps 7 to 12), which is simple and very concise. The loops

6

/* While the Queue is not empty */

#pragma mta assert parallel

#pragma mta loop future

for (i = startIndex; i < endIndex; i++)

u = Q[i];

/* Inspect all vertices adjacent to u */

#pragma mta assert parallel

for (j = 0; j < degree[u]; j++)

v = neighbor[u][j];

/* Check if v has been visited yet? */

dist = readfe(&d[v]);

if (dist == -1)

writeef(&d[v], d[u] + 1);

else
writeef(&d[v], dist);

/* Enqueue v */

Q[int fetch add(&count, 1)] = v;

Algorithm 2: MTA-2 parallel C code for steps 7-12 in Alg. 1

will not be automatically parallelized as there are dependencies involved. The compiler can

be forced to parallelize them using the assert parallel directive on both the loops. We then

note that we have to handle and exploit the nested parallelism in this case. We can explicitly

indicate that the iterations of the outer loop can be handled concurrently, and the compiler

will dynamically schedule threads for the inner loop. We do this using the compiler directive

loop future (see Alg. 2) to indicate that the iterations of the outer loop can be concurrently

processed.

We use the low-overhead synchronization calls int_fetch_add, readfe(), and writeef()

to atomically update the value of d, and insert elements to the queue in parallel. int_fetch_add

o�ers synchronized updates to data representing shared counters without using locks. The

readfe operation atomically reads data from a memory location only after that locations

full/empty bit is set full, and sets it back to empty. If the bit is not full to start with, the

7

thread executing the read operation suspends in hardware and is later retried. Similarly, a

writeef writes to a memory location when the full/empty bit is empty and then sets it to

full. A readfe should be matched with a writeef, or else the program might deadlock.

Once correctness is assured, we optimize the code further. Note that we used the loop

future directive on the outer loop in Alg. 2 to concurrently schedule the loop iterations.

Using this directive incurs an overhead of about 200 instructions. So we do not use it

when the number of vertices to be visited at a given level is less than 50 (an experimentally

determined �gure for this particular loop). Clearly, the time taken to spawn threads must

be considerably less than the time spent in the outer loop.

High-degree vertices pose a major problem. Consider the case when the majority of

vertices at a particular level are of low-degree (less than 100), but a few vertices are of very

high-degree (order of thousands). If Alg. 1 is applied, most of the threads will be done

processing the low-degree vertices quickly, but only a few threads will be assigned to inspect

the adjacencies of the high-degree nodes. The system will be heavily under-utilized then,

until the loop �nishes. To prevent this, we �rst need to identify high-degree nodes at each

level and work on them sequentially, but inspect their adjacencies in parallel. This ensures

that work is balanced among the processors. We can choose the low-degree cuto� value

appropriately so that parallelization of adjacency visits would be suÆcient to saturate the

system. We take this approach for BFS on Scale-free graphs. In general, given an arbitrary

graph instance, we can determine which algorithm to apply based on a quick evaluation

of the degree distribution. This can be done either during graph generation stage (when

reading from an uncharacterized data set and internally representing it as a graph) or in a

8

pre-processing phase before running the actual BFS algorithm.

We observe that the above parallelization schemes will not work for high-diameter graphs

(for instance, consider a chain of vertices with bounded degree). For arbitrary sparse graphs,

Ullman and Yannakakis o�er high-probability PRAM algorithms for transitive closure and

BFS [41] that take ~O(n�) time with ~O(mn1�2�) processors, provided m � n2�3�. The key

idea here is as follows. Instead of starting the search from the source vertex s, we expand the

frontier up to a distance d in parallel from a set of randomly chosen distinguished vertices

(that includes the source vertex s also) in the graph. We then construct a new graph whose

vertices are the distinguished vertices, and we have edges between these vertices if they were

pair-wise reachable in the previous step. Now a set of superdistinguished vertices are selected

among them and the graph is explored to a depth t2. After this step, the resulting graph

would be dense and we can determine the shortest path of the source vertex s to each of the

vertices. Using this information, we can determine the shortest paths from s to all vertices.

3 st-connectivity and Shortest Paths

We can easily extend the Breadth-First Search algorithm for solving the st-connectivity

problem too. A na��ve implementation would be to start a Breadth-First Search from s, and

stop when t is visited. However, we note that we could run BFS concurrently both from

s and to t, and if we keep track of the vertices visited and the expanded frontiers on both

sides, we can correctly determine the shortest path between s and t. The key steps are

outlined in Alg. 3 (termed STCONN-FB), which has both high-level details as well as MTA-

speci�c synchronization constructs. Both s and t are added to the queue initially, and newly

9

Input: G(V;E), vertex pair (s, t)

Output: The smallest number of edges dist between s and t, if they are connected

1 for all v 2 V in parallel do

2 color[v] WHITE;

3 d[v] 0;
4 color[s] RED; color[t] GREEN ; Q �; done FALSE; dist 1;

5 Enqueue s Q; Enqueue t Q;

6 while Q 6= � and done = FALSE do

7 for all u 2 Q in parallel do

8 Delete u Q;

9 for each v adjacent to u in parallel do

10 color readfe(&color[v]);

11 if color = WHITE then

12 d[v] d[u] + 1;
13 Enqueue v Q;

14 writeef(&color[v], color[u]);
15 else

16 if color 6= color[u] then
17 done TRUE;

18 tmp readfe(&dist);
19 if tmp > d[u] + d[v] + 1 then
20 writeef(&dist, d[u] + d[v] + 1);

21 else

22 writeef(&dist, tmp);

23 writeef(&color[v], color);

Algorithm 3: st-connectivity (STCONN-FB): concurrent BFSes from s and t

discovered vertices are either colored RED (for vertices reachable from s) or GREEN (for

vertices that can reach t). When a back edge is found in the graph, the algorithm terminates

and the shortest path is evaluated. As in the previous case, we encounter nested parallelism

here and apply the same optimizations. The pseudo-code is elegant and concise, but must

be carefully written to avoid the introduction of race conditions and potential deadlocks (see

[4] for an illustration).

We also implement an improved algorithm for st-connectivity (STCONN-MF, denoting

minimum frontier) applicable to graphs with a large percentage of high degree nodes, detailed

10

Input: G(V;E), vertex pair (s, t)

Output: The smallest number of edges dist between s and t, if they are connected

1 for all v 2 V in parallel do

2 color[v] WHITE;

3 d[v] 0;
4 color[s] GRAY ; color[t] GRAY ; Qs �; Qt �;

5 done FALSE; dist �1;

6 Enqueue s Qs; Enqueue t Qt; extentS 1; extentT 1;

7 while (Qs 6= � or Qt 6= �) and done = FALSE do

8 Set Q appropriately;

9 for all u 2 Q in parallel do

10 Delete u Q;

11 for each v adjacent to u in parallel do

12 color readfe(&color[v]);
13 if color = WHITE then

14 d[v] d[u] + 1;
15 Enqueue v Q;

16 writeef(&color[v], color[u]);
17 else

18 if color 6= color[v] then
19 dist d[u] + d[v] + 1;
20 done TRUE;
21 writeef(&color[v], color);

22 extentS jQsj; extentT jQtj;

Algorithm 4: st-connectivity (STCONN-MF): alternate BFSes from s and t

in Alg. 4. In this case, we maintain two di�erent queues Qs and Qt and expand the smaller

frontier (Q in Alg. 4 is either Qs or Qt, depending on the values of extentS and extentT)

on each iteration. This algorithm would be faster for some graph instances (see [4] for an

illustration). Both Alg. 3 and 4 are discussed in more detail in an extended version of this

paper [4].

11

4 Experimental Results

This section summarizes the experimental results of our BFS and st-connectivity implemen-

tations on the Cray MTA-2. We report results on a 40-processor MTA-2, with each processor

having a clock speed of 220 MHz and 4GB of RAM. From the programmer's viewpoint, the

MTA-2 is however a global shared memory machine with 160GB memory.

Figure 1: Degree distributions of the four test graph classes

We test our algorithms on four di�erent classes of graphs (see Fig. 1):

� Random graphs generated based on the Erd}os-R�enyi G(n; p) model (Rand-ER): A

12

Figure 2: Breadth First Search Performance Results: Execution Time and Speedup for

Random graphs: 1-10 processors (inset), and 10-40 processors

13

Figure 3: Breadth First Search Performance Results: Execution Time and Speedup for

Scale-free (SF-RMAT) graphs: 1-10 processors (inset), and 10-40 processors

14

Figure 4: Breadth First Search Performance Results: Execution Time and Speedup for

SSCA2 graphs

15

Figure 5: Breadth First Search Performance Results: Execution Time variation as a function

of average degree for SSCA2 graphs

16

Figure 6: Breadth First Search Performance Results: Execution time variation as a function

of average degree for Rand-ER graphs

17

Figure 7: Breadth First Search Performance Results: Execution time variation as a function

of average degree for Rand-Hard graphs

18

random graph of m edges is generated with p = m

n
2 and has very little structure and

locality.

� Scale-free graphs (SF-RMAT), used to model real-world large-scale networks: These

graphs are generated using the R-MAT graph model [11]. They have a signi�cant

number of vertices of very high degree, although the majority of vertices are low-

degree ones. The degree distribution plot on a log-log scale is a straight line with a

heavy tail, as seen in Fig. 1.

� Synthetic sparse random graphs that are hard cases for parallelization (Rand-Hard):

As in scale-free graphs, a considerable percentage of vertices are high-degree ones, but

the degree distribution is di�erent.

� DARPA SSCA#2 benchmark (SSCA2) graphs: A typical SSCA#2 graph consists of

a large number of highly interconnected clusters of vertices. The clusters are sparsely

connected, and these inter-cluster edges are randomly generated. The cluster sizes are

uniformly distributed and the maximum cluster size is a user-de�ned parameter. For

the graph used in the performance studies in Fig. 1, a maximum cluster size of 10 was

speci�ed.

We generate directed graphs in all four cases. Our algorithms work for both directed and

undirected graphs, as each vertex stores all its neighbors, and the edges in both directions.

In this section, we report results for the undirected case. By making minor changes to our

code, we can analyze directed graphs also.

Fig. 2 plots the execution time and speedup attained by the Breadth-First Search algo-

19

rithm on a random graph of 134 million vertices and 940 million edges (average degree 7).

The plot in the inset shows the scaling when the number of processors is varied from 1 to

10, and the main plot for 10 to 40 processors. We de�ne the Speedup on p processors of the

MTA-2 as the ratio of the execution time on p processors to that on one processor. Since the

computation on the MTA is thread-centric, system utilization is also an important metric to

study. We observed utilization of close to 97% for single processor runs. We also note that

the system utilization was consistently high (around 80% for 40 processor runs, see Table 1

in [4] for more details) across all runs. We achieve a speedup of nearly 10 on 10 processors

for random graphs, 17 on 20 processors, and 28 on 40 processors. This is a signi�cant result,

as we are not aware of any s random graphs have no locality and such instances would o�er

very limited on no speedup on cache-based SMPs and other shared memory systems. The

decrease in eÆciency as the number of processors increases to 40 can be attributed to two

factors: hot spots in the BFS queue, and a performance penalty due to the use of the future

directive for handling nested parallelism.

Fig. 3 gives the BFS execution time for a Scale-free graph of 134 million vertices and

940 million edges, as the number of processors is varied from 1 to 40. The speedups are

slightly lower than the previous case, due to the variation in the degree distribution. We

have a pre-processing step for high-degree nodes as discussed in the previous sections; this

leads to an additional overhead in execution time (when compared to random graphs), as

well as insuÆcient work to saturate the system in some cases. Figs. 4 and 5 summarize the

BFS performance for SSCA#2 graphs. The execution time and speedup (4) are comparable

to random graphs. We also varied the user-de�ned cluster size parameter to see how BFS

20

performs for dense graphs. Fig. 5 shows that the dense SSCA#2 graphs are also handled

well by our BFS algorithm.

Fig. 7 and 6 show the performance of BFS as the edge density is varied for Rand-ER

and Rand-Hard graphs. We consider a graph of 2.147 billion edges and vary the number of

vertices from 16 million to 536 million. In case of Rand-ER graphs, the execution times are

comparable as expected, since the dominating term in the computational complexity is the

number of edges, 2.147 billion in this case. However, in case of the Rand-Hard graphs, we

note an anomaly: the execution time for the graph with 16 million vertices is comparatively

more than the other graphs. This is because this graph has a signi�cant number of vertices

of very large degree. Even though it scales with the number of processors, since we avoid

the use of nested parallelism in this case, the execution times are higher.

Fig. 8 summarizes the performance of st-connectivity. Note that both the st-connectivity

algorithms are based on BFS, and if BFS is implemented eÆciently, we would expect st-

connectivity also to perform well. Fig. 8 (top) shows the performance of STCONN-MF on

random graphs as the number of processors is varied from 1 to 10. Note that the execution

times are highly dependent on (s; t) pair we choose. In this particular case, just 45,000

vertices were visited in a graph of 134 million vertices. The st-connectivity algorithm shows

near-linear scaling with the number of processors. The actual execution time is bounded by

the BFS time, and is dependent on the shortest path length and the degree distribution of the

vertices in the graph. In Fig. 8 (bottom), we compare the performance of the two algorithms,

concurrent Breadth-First Searches from s and t (STCONN-FB), and expanding the smaller

frontier in each iteration (STCONN-MF). Both of them scale linearly with the number of

21

Figure 8: st-connectivity Results: Execution time and Speedup for Rand-ER graphs (top)
and comparison of the two st-connectivity algorithms (bottom)

22

processors for a problem size of 134 million vertices and 805 million edges. STCONN-FB

performs slightly better for this graph instance. They were found to perform comparably in

other experiments with random and SSCA#2 graphs.

5 Conclusions

We present fast multithreaded algorithms for fundamental graph theory problems. Our im-

plementations show strong scaling for irregular and sparse graphs chosen from four di�erent

graph classes, and also achieve high system utilization. The absolute execution time values

are signi�cant; Problems involving large graphs of billions of vertices and edges can be solved

in seconds to minutes. With its latency tolerant processors, high bandwidth network, global

shared memory and �ne-grained synchronization, the MTA-2 is the �rst parallel machine to

perform extraordinarily well on sparse graph problems. It may now be possible to tackle sev-

eral key PRAM algorithms [24, 28, 22, 34] that have eluded practical implementations so far.

Another attractive feature of the MTA-2 is the ease of programming. It is possible to write

concise and elegant code, focusing on exploiting the concurrency in the problem, rather than

optimizing for cache locality (or minimizing communication in distributed memory systems).

Acknowledgements

This work was supported in part by NSF Grants CAREER ACI-00-93039, CCF-0611589,

NSF DBI-0420513, ITR ACI-00-81404, ITR EIA-01-21377, Biocomplexity DEB-01-20709,

and ITR EF/BIO 03-31654; and DARPA Contract NBCH30390004. We would like to thank

23

Richard Russell for sponsoring our MTA-2 accounts. We are grateful to John Feo for provid-

ing the SSCA#2 graph generator source. We acknowledge the signi�cant algorithmic inputs

and MTA-2 programming help from Jonathan Berry and Bruce Hendrickson. Finally, we

would like to thank Simon Kahan, Petr Konecny, John Feo and other members of the Cray

Eldorado team for their valuable advice and several suggestions on optimizing code for the

MTA-2.

References

[1] J. M. Abello and J. S. Vitter, editors. External memory algorithms. Amer. Math. Soc.,
Boston, MA, USA, 1999.

[2] B. Awerbuch and R. G. Gallager. A new distributed algorithm to �nd breadth �rst
search trees. IEEE Trans. Inf. Theor., 33(3):315{322, 1987.

[3] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and

locality in distributed computation. In IEEE Symp. on Found. of Comp. Sci., pages
364{369, 1989.

[4] D. A. Bader and K. Madduri. Designing multithreaded algorithms for breadth-�rst

search and st-connectivity on the Cray MTA-2. Tech. report, Georgia Institute of
Technology, January 2006.

[5] D.A. Bader, G. Cong, and J. Feo. On the architectural requirements for eÆcient ex-

ecution of graph algorithms. In Proc. 34th Int'l Conf. on Parallel Processing (ICPP),
Oslo, Norway, June 2005.

[6] D.A. Bader and K. Madduri. Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In Proc. 12th Int'l Conf. on High Perfor-

mance Computing, Goa, India, December 2005. Springer-Verlag.

[7] A. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286:509,
1999.

[8] G. Barnes and W. L. Ruzzo. Deterministic algorithms for undirected s-t connectivity
using polynomial time and sublinear space. In Proc. 23rd Annual ACM Symp. on Theory

of Computing, pages 43{53, NY, USA, 1991. ACM Press.

[9] U. Brandes. A faster algorithm for betweenness centrality. J. Mathematical Sociology,
25(2):163{177, 2001.

24

[10] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook. On

external memory graph traversal. In Proc. 11th Annual ACM-SIAM Symp. on Discrete

Algorithms, pages 859{860, Philadelphia, PA, USA, 2000.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph

mining. In Proc. 4th SIAM Intl. Conf. on Data Mining, Florida, USA, April 2004.

[12] B.V. Cherkassky, A.V. Goldberg, and T. Radzik. Shortest paths algorithms: theory

and experimental evaluation. Mathematical Programming, 73:129{174, 1996.

[13] T. Co�man, S. Greenblatt, and S. Marcus. Graph-based technologies for intelligence

analysis. Communications of the ACM, 47(3):45{47, 2004.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, Inc., Cambridge, MA, 1990.

[15] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra's
shortest path algorithm. In MFCS '98: Proc. of the 23rd Int'l Symp. on Mathematical

Foundations of Computer Science, pages 722{731, London, UK, 1998. Springer-Verlag.

[16] Defense Advanced Research Projects Agency (DARPA). High productivity computing
systems program. http://www.darpa.mil/ipto/programs/hpcs/.

[17] C. Demetrescu, A. Goldberg, and D. Johnson. 9th DIMACS implementation challenge
{ shortest paths. http://www.dis.uniroma1.it/~challenge9/.

[18] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1:269{271, 1959.

[19] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the Internet

topology. In SIGCOMM, pages 251{262, 1999.

[20] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry,

40(1):35{41, 1977.

[21] H. Gazit and G. L. Miller. An improved parallel algorithm that computes the BFS
numbering of a directed graph. Inf. Process. Lett., 28(2):61{65, 1988.

[22] J. Greiner. A comparison of data-parallel algorithms for connected components. In

Proc. 6th Ann. Symp. Parallel Algorithms and Architectures (SPAA-94), pages 16{25,

Cape May, NJ, June 1994.

[23] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent

substructures from graph data. In Proc. 4th Europ. Conf. on Principles of Data Mining

and Knowledge Discovery, pages 13{23, London, UK, 2000.

[24] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company,

New York, 1992.

25

[25] G. Karypis, E. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic

modeling. Computer, 32(8):68{75, 1999.

[26] J. Kepner, D. P. Koester, and et al. HPCS Scalable Synthetic Compact Application

(SSCA) Benchmarks, 2004. http://www.highproductivity.org/SSCABmks.htm.

[27] J. Kepner, D. P. Koester, and et al. HPCS SSCA#2 Graph Analysis Benchmark Spec-

i�cations v1.0, April 2005.

[28] P.N. Klein and J.H. Reif. An eÆcient parallel algorithm for planarity. J. Comp. and

System. Sci., 37(2):190{246, 1988.

[29] V.E. Krebs. Mapping networks of terrorist cells. Connections, 24(3):43{52, 2002.

[30] T. Lengauer. Combinatorial algorithms for integrated circuit layout. John Wiley &

Sons, Inc., New York, NY, USA, 1990.

[31] H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded computation (extended
abstract). In Proc. 7th Colloquium on Automata, Languages and Programming, pages

374{384, London, UK, 1980.

[32] U. Meyer. External memory BFS on undirected graphs with bounded degree. In Proc.

12th Annual ACM-SIAM Symp. on Discrete Algorithms, pages 87{88, Philadelphia, PA,
USA, 2001.

[33] U. Meyer and P. Sanders. �-stepping: a parallelizable shortest path algorithm. J.

Algorithms, 49(1):114{152, 2003.

[34] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In Proc. 26th

Ann. IEEE Symp. Foundations of Computer Science, pages 478{489, Portland, OR,

October 1985.

[35] B. M.E. Moret, D.A. Bader, T. Warnow, S.K. Wyman, and M. Yan. GRAPPA: a high-

performance computational tool for phylogeny reconstruction from gene-order data. In
Proc. Botany, Albuquerque, NM, August 2001.

[36] B.M.E. Moret, D.A. Bader, and T. Warnow. High-performance algorithm engineering

for computational phylogenetics. In Proc. Int'l Conf. on Computational Science, volume

2073{2074 of Lecture Notes in Computer Science, San Francisco, CA, 2001. Springer-

Verlag.

[37] P. M. Pardalos, M. G. Resende, and K. G. Ramakrishnan, editors. Parallel Processing

of Discrete Optimization Problems: DIMACS Workshop April 28-29, 1994. American

Mathematical Society, Boston, MA, USA, 1995.

[38] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J.

Comput. Syst. Sci., 51(3):400{403, 1995.

26

[39] M. Thorup. Undirected single-source shortest paths with positive integer weights in

linear time. J. ACM, 46(3):362{394, 1999.

[40] J. L. Tr�a�. An experimental comparison of two distributed single-source shortest path

algorithms. Parallel Comput., 21(9):1505{1532, 1995.

[41] J. Ullman and M. Yannakakis. High-probability parallel transitive closure algorithms.

In Proc. 2nd Ann. Symp. Parallel Algorithms and Architectures (SPAA-90), pages 200{

209, New York, NY, USA, 1990. ACM Press.

[42] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function

prediction in protein-protein interaction networks. Nature Biotechnology, 21:697, 2003.

[43] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and �U. V. C�ataly�urek.

A scalable distributed parallel breadth-�rst search algorithm on Bluegene/L. In Proc.

Supercomputing (SC 2005), Seattle, WA, November 2005.

27

