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NOMENCLATURE 

A area 

Cc control capacitance 

Cl 
load capacitance 

co output capacitance 

d diameter 

G amplitude ratio 

g acceleration due to gravity 

Ka amplifier gain constant 

Lc control inductance 

V output inductance 

1 connecting line length 

1 c - interaction region length 

M magnitude ratio 

Pc control pressure 

pi input pressure 

<l flow rate 

*c control resistance 

R l 
load resistance 

Ro output resistance 

r radius 

s Laplace operator 

fcd transport delay constant 

V velocity of sound 



vc average fluid velocity in interaction region 

v*. average fluid velocity in connecting line 

Zc control impedance 

Z^ load impedance 

Z output impedance 

y absolute viscosity 

£ damping ratio 

p density 

0 phase angle 

w angular frequency 

aw pole break frequency 

o)_ zero break frequency 
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SUMMARY 

The absence of the series capacitor and inductor causes sizeable 

difficulties in the design'-of analog fluidic networks. In general, 

systems directly analogous to passive R-L-C electrical networks cannot 

be used. An effective procedure consists of combining in series known 

basic networks which generate; elementary or component transfer functions. 

This study is concerned with the dynamic analysis and physical 

implementation of basic analog fluidic networks. A previously validated 

electrical equivalent model of the vented proportional amplifier is 

used in the derivation of network transfer functions. The model 

serves to represent the dynamics of the amplifier and its associated 

connectors. Simplified transfer functions, which neglect amplifier 

and connector dynamics, are also presented and analyzed. Pole-Zero 

locations in terms of system parameters,. a discussion of limits on 

their positioning and generalized Bode and Pole-Zero diagrams are 

given. From the unsimplified transfer functions, the degradation of 

simplified transfer function performance at higher frequencies has been 

discerned. 

The dynamic testing of a few selected networks has been con

ducted in order to demonstrate the relative accuracies of simplified and 

unsimplified transfer functions. An important conclusion has been 

that the capacitance and path length of necessary connectors between 

network elements prevents accurate implementation of many useful transfer 

'functions.: 



CHAPTER I 

INTRODUCTION 

1*1 Analog Fluidic Networks 

Since its introduction in 1959 by the Diamond Ordnance Fuze 

Laboratories (now the Harry Diamond Laboratories), fluidics technology 

has, matured considerably. Digital applications in particular have 

grown from the stage of feasibility demonstration to successful use 

in industry. 

Analog fluidics has not fared as well, commercial applications 

at present being far from plentiful. Initial problems involved 

components; it took several years before analog fluidic anplifiers 

with workable characteristics could be designed and mass produced. 

At present, such devices are readily available. 

Given these components and their major advantages of reliability, 

safety in explosive environments, and resistance to high temperatures 

and radiation, it is surprising that analog fluidics is not experiencing 

more applications. One significant obstacle is the complex nature of 

fluid systems analysis. 

Analog fluidic amplifiers are, in general, distributed parameter, 

nonlinear, coupled, multiport elements. To consider them in their 

total complexity is a staggering problem. The use of graphical charac

teristics for nonlinear, static analysis and linear electrical equiva

lent circuits for small signal dynamic analysis have proved to be 



successful approaches. 

Even with these techniques, obstacles for the network designer 

still exist. Implementing a specific transfer function is not a 

straightforward matter of adopting the well established electrical 

R-L-C network. Fluidic counterparts of two very basic electronic 

components do not exist--the series capacitor and the inductor. 

Briefly, a fluidic capacitor stores energy by virtue of the 

compressibility of the fluid medium (usually air). Ambient pressure 

being the network ground potential, all fluidic capacitors are in 

parallel to ground. Fluidic inductance is a consequence of the 

inertia of the medium. However, air is both viscous and compressible. 

Viscosity generates fluidic resistance find compressibility fluidic 

capacitance. Since these latter effects are typically more signifi

cant than the effects of inertia, it is impossible to produce a 

fluidic component whose dominant characteristic is inductance. For 

these reasons, transfer function implementation and the design of 

complex analog fluidic systems have been something of an art,until 

recently, have proceeded on an intuitive basis. 

Boddy has presented an analysis of fluidic networks to implement 

certain elementary transfer functions, a combination of which results 

in more complex configurations. Theoretically, any rational, finite 

transfer function containing no more zeros than poles and having 

only left hand plane poles may be produced by his method. This 

paper, however, provides only one network each to generate several 

elementary transfer functions/Other networks often exist which 
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prove more satisfactory in certain circumstances. Furthermore, 

Boddy's amplifier model does not include such dynamic characteristics 

as transport delay and inductive and capacitive effects. Consequently, 

the network transfer functions yield no information on the degradation 

of system performance with increasing frequency due to amplifier 

dynamics. " 

2 

Parker and Addy have also presented networks for the implementa

tion of elementary transfer functions. However, the few networks which 

they presented cannot be combined to make all arbitrary configurations. 

For example, no transfer functions with either complex poles or complex 

zeros can be implemented. In addition, amplifier dynamics are neglected. 

3 
Another approach to the problem is taken by Doherty. He uses 

high gain "gain blocks" and fluidic "operational amplifiers" and 

presents a generalized approach to transfer function implementation. 

These specialized components tend to exhibit excessive phase lags at 

higher frequencies and are quite expensive at the present time. They 

will not be considered here. 
/ c r -j 

Other networks * 9 ' • have appeared from time to time for the 

implementation of certain transfer functions, by and large as minor 

components of more complex systems. Without exception, these 

presentations share the previously discussed shortcomings, namely 

the neglect of amplifier dynamics and lack of provision for the 

generation of many pole-zero configurations. 

1.2 Statement of the Problem 

This study is intended to be a more comprehensive treatment of 
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the problem of fluidic transfer function implementation, with Boddy's 

approach as a basis. A literature search has produced many additional 

networks, some of these being singularly useful. These are analyzed 

to augment the options of the network designer. An electrical 

equivalent of the vented beam deflection amplifier is utilized to 

describe amplifier and associated connector dynamics. A complete 

transfer function" is then derived for each network. At low fre

quencies and for small geometries, amplifier dynamics may be neglected 

and a simplified transfer function is assumed to adequately represent 

system performance. This transfer function is referred to as the 

"reduced transfer function" and is presented for each network. 

A Bode plot and a Pole-Zero diagram; for each reduced transfer 

function is given. In addition, a discussion of Pole-Zero placement 

limitations is included. The reduced transfer function is the transfer 

function to be implemented. The complete transfer function is capable 

of describing the degradation of reduced transfer function performance 

at higher frequencies due to amplifier and connecting line dynamics. 



CHAPTER II 

THE VENTED BEAM DEFLECTION AMPLIFIER 

2.1 The Basic Âmplifier Geometry ^ 

The amplifier considered in this analysis is of vented beam 

deflection type with or without center dump. It is perhaps the most 

widely used analog fluidi'c amplifier because of its many desirable 

characteristics (large linear range, high pressure gain, high 

signal to noise ratio and relative independence of input charac

teristics on output loading). In addition, beam deflection amplifiers 

have either single sided or push-pull capabilities. 

In Figures la and lb, respectively, are shown diagrams of 

vented proportional amplifiers without and with the center dump. 

The power jet is controlled by the control jets by virtue of a 

momentum interchange mechanism. The power jet is deflected toward one 

output port or the other in response to pressure inputs. In this 

analysis only pressure amplification is of concern. A load, i. e» 

some restrictions of the output flow, causes a pressure build-up 

in the output ports. The center dump allows stable operation at 

large loads. 

2.2 The Lumped Parameter Model 

Figure 2 shows a lumped-parameter electrical equivalent circuit 

of the vented proporational amplifier without the center dump, as 



Supply Port 

Vent Vent 

Output Port Output Port 

Figure la. The Vented Proportional! Amplifier, 

Supply Port 

Vent Vent 

Output Port Output Port 

Center Dump 

Figure lb. The Center Dump Proportional Amplifier. 
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Figure 2. A Lumped Electrical Model for the Vented Jet-Interaction Amplifier. 



8 
proposed by Belsterling. Each significant component and parameter 

in the proportional amplifier is represented and the layout is in 

direct analogy to the physical device. The lumped-parameter model 

is valid for low operating frequencies and for relatively small 

geometries. The present analysis is restricted to such a lumped 

parameter model of the amplifier, which is applicable to most analog 

fluidic systems. The analysis for the center dump configuration 

proceeds along similar lines. 

In Figure 2, Z is the internal impedance of the voltage or 

pressure source. Z „, Z , Z ., and Z , are respectively the left 
c cf cr or or • .• J 

and right input and output impedances of the amplifier. Z. is the 

power nozzle impedance and Z, is the bleed port impedance. Zoo and 

ZA are the parallel to ground load impedances on the left and right 

outputs respectively. K is the zero impedance voltage generator due 
o 

to suction caused by power jet entrainment., K is the amplification 

factor of the device. P and P , are respectively the input and 

output differential signals. 

Even in well designed vented amplifiers, a small amount of 

internal feedback exists. That is, back up pressure in the output 

legs due to loading affects the interaction between control and power 

jet streams. This effect is small and is neglected here. 

The model is quite general, save for the lumped parameter 

assumption and the neglect of internal feedback. Each of the circuit 

parameters is nonlinear. If the nonlinearities were known a complete 

description of amplifier behavior would become available. Unfortunately, 
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the nonlinearities are not easily described and a linearized model for 

small variations about an operating point must be used. 

Using A to indicate small incremental changes, the equations 

for the left and right output circuits may be written by inspection 

as 

Ps " *J (Zs + V - Kp Pcd + (<o - h% I ( Zo* + ZM>. ( 2 a ) 

for the left branch, and 

P = q. (Z + Z.) + K P ,'+ (q - Aq ) (Z + Z0 ) (2.2) 
s J s j p cd nor or or Six 

for the right branch. 

In general, for symmetrical operation 

AP = AP = AP , Aq . = Aq - Aq and Z „ = Z = Z . (2.3) 
cj? cr c c£ cr ^c cA cr c 

A substitution of equations (2.3) into equations (2.1) and (2.2) yields 

2AP = 2Aq Z . (2.4) 
c c c 

For the control circuits, the equations become 

p
cje + ipc* = «CJf

 + A W za - «i + A V h Y (2-5) 

for the left branch, and 

P :- AP - (q - Aq ) Z - (q. +Aq.) Z. K (2.6) 
cr cr - cr . cr cr j J j g 

for the right branch. 
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In general, for symmetrical operation, 

APcJt = " c r = APc> A«cjf " ' A « c r " A*c a n d Z c j T Zor = V ( 2 - 7 ) 

Substitution of equations (2<7) into equation (2.5) and (2.6) gives 

2AP = 2Aq Z . (2.8) 
c c c 

A linearized electrical circuit representing these equations 

(2.4) and (2.8) may be drawn directly, as shown in Figure 3. Note 

that the linearized, incremental circuit eliminates bias or reference 

conditions at null state, the supply pressure, and the bleed impedance. 

At low frequencies, when inductive and capacitive effects are 

negligible, each impedance in the model may be approximated by a 

pure resistance. At higher frequencies, the circuit in Figure 4 

must be used. Here each impedance is represented by a resistor, a 

~st capacitor, and an inductor. The e d terra is included to represent 

pure transport delay in the amplifier and its associated connectors. 

L , C , and R are the inductance, capacitance and resistance, 
c c c r ' 

respectively, of the input connectors and control ports combined. 

The inductor is in series, while the resistor and capacitor are in 

parallel to ground as they act between the input pressure and ambient. 

L , C and R are the inductance, capacitance and resistance, res-
o o o ' . . • • • 

pectively, of the output connectors and ports combined. Here both 

the inductor and the resistor are in series, while the capacitor, as 

always, is in shunt to ground. The load resistance and capacitance 

are in shunt to ground, loads typically being the input connectors and 



Amplifier 
2Z 

Load 

11 

<EL_3 2 Z * od 

cd 
2Z 

Figure 3« Linearized Small-Signal Equivalent Circui t for the Vented 
J e t - I n t e r a c t i o n Amplifier (Valid for S ta t i c and Low 
Frequency Behavior). 
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cd 
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Figure 4. Linearized Small-Signal Equivalent Circuit for Vented Jet-
Interaction Amplifier (Valid to 400 Hz). 
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ports of another amplifier, fluidic resistors venting to ambient, or 

both. 

2.2ol Resistance 

Fluidic resistance is due to fluid friction. In laminar flow 

elements or in connecting lines resistance is linear, with pressure 

drop being directly proportional to flow-rate. In amplifier 

control and output ports, resistance is nonlinear. 

R is the resistance of the input: connectors and control ports 

combined. The port resistance is that due to turbulent flow and its 

value is obtained from an experimentally derived curve of input 

pressure versus flow at a constant bias level, the value needed 

being the slope of this curve at the operating point pressure. The 

input connector resistance is obtained from the Hagen-Poiseuille 

equation 

R = M = I2Jk (2.9) 
A 1 -fl-d4 

where p. is the fluid viscosity and d is the line inside diameter. 

R is the combined resistance of the output port and connector. 

The output port resistance is the slope of the output pressure versus 

flow curve at a fixed control signal. R« is the resistance of the 

load resistor and its associated connector. The load resistor may 

be a laminar flow element or the turbulent control port of a second 

amplifier. 
• • • ' i W - •• • : 

2.2.2 Capacitance 

A fluidic capacitor is a volume, either an incidental connector 
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volume or an external one intentionally placed. The isothermal 

relation for capacitance is given as C = V/P , . The operating 

point absolute pressure in the volume is used in its evaluation. 

It might appear that at higher frequencies the adiabatic 

expression for capacitance, C = V/k P , -, is more realistic. However, 

10 
Rohman and Grogan have demonstrated that the isothermal assumption 

is more accurate due to the relatively large flow rates through 

pneumatic capacitors. 

2.2.3 Inductance / 

• PJt ' Fluidic inductance is given by L " ~ where f is fluid 
eff 

density, J? is inductor length and A ,.,- is effective inductor area, 

usually taken as 

A - A 
A = in out fr) ins 
A re 77—TT (2.10; 
eff o (A. Ik . v Jen in out) 

In a connecting line, A' - = A, the cross sectional area of the connector. 

2.2.4 Pressure Amplification Factor 

The pressure amplification factor K is the slope of the output 

differential pressure versus control differential pressure curve at a 

constant output flow. This is the maximum pressure gain that an 

amplifier could deliver if there were no loading effects. K must be 
' • • • P : - ' 

experimentally determined. 

2.2.5 Tlie Transport Delay Constant 

In fluidic systems, it takes a finite period of time for a 

pressure signal to traverse the distance between input and output. In 

a transmission line, the signal travels at the velocity of sound in the 
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fluid medium plus the mean velocity of the medium. In the interaction 

region of a proportional amplifier, the signal travels only at the 

average velocity of the fluid in the interaction region. An 

expression may thus be written for signal transmission time through 

an amplifier-connecting line system as 

•t J?c 

t := „2L_ + *£. (2.11) 
d v+sr v * 

t c 

where t, ~ total signal transmission time, 

X - connecting line length, 

J? = characteristic length of interaction region, 

v - velocity of sound in transmission line, 

v. ~ average velocity of fluid in the transmission line, 

and v = average velocity of fluid in interaction region. 

Since three jets of different average velocities meet in the 

interaction chamber, exact expressions for J? and v are difficult to 
c c 

determine. A good approximation is to use the average velocity of the 

power jet for v and the distance from the power nozzle to the opposite 
side of the interaction chamber as J? . v can be calculated from the 

' . " ' • • ' . G . - . • ' • . - • c ' 

nozzle dimensions and a measurement of supply flow rate at the operating 

point supply pressure. The transfer function for pure transport delay is 

I*-.- e'std :-. e_ju,td = >d -1 sln 'd (2.12) 
i 

The phase angle is 



0 - -tan"1 (sln^ d ) - ""^d. (2.13) 
COSOJt, V 

a 

The gain is constant at unity. 

A generalized plot of magnitude G and phase 0 versus frequency 

for the phase transport delay transfer function is shown in Figure 5. 

Phase lag due to transport delay is seen to increase linearly with 

frequency. 

The lumped electrical equivalent amplifier model presented in 

Figure 4 has been experimentally validated to above 400 Hz . A 

comparison is now made of lumped parameter capacitive and inductive 

reactances to demonstrate that for the geometries and frequencies of 

interest in this analysis, inductance may be neglected. Fluidic 

PX 
inductance for a connecting line was previously defined as L = T~~ • 

2 
Typical values are e> 1.15 x 10~7 l b f ' ^ ^ - , A = .0123 in2, 

in 
and X = 6 in. Inductive reactance is given by X_ = t4J"L. At 

CXT = 100 H*. or 628 rad/sec, ̂  = 3.52 x 10"2 l b f " s e c . 
in v 

Fluidic capacitance was defined previously as C = *T . 

3 a ^ s • 

The volume of the above inductor is V = .0738 in . At P , - 14.7 
5 abs 

*—T , C = 5.02 x 10 •"'T7T» Capac i t i ve r e a c t a n c e i s given by X = — ~ r . . 2 lbf r to J c u / C 
111 1 I h f 
At CJ= 628 r a d / s e c , X = 3 .17 x l 0 - i " s e c . The r a t i o of 

c b -
• A -• - •-• ' •*: • W V _ 3.52 x 10 L . V . , inductive to capacitive reactance is then •— '— — - — — — ~ 0.11. 

C 3.17 x 10"1 

An examination of the relations for inductive and capacitive 

reactances shows that increasing line length as well as frequency 

increases X_ , while decreasing X_. For a typical network, a serious 

degradation of system performance will occur by 100 Hz due to transport 
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G,db 
0 0, deg 

'*> > Cd2 > t d l > ° 

, RAD/SFC 

- s t F i g u r e 5 . Magnitude and Phase Versus Frequency fo r e d with t , 
as a Parameter . 
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delay. In addition, the 6 in connector leng;th used in the above 

calculations is a large value. An untypically high X /X ratio is 

then obtained. The ratio is still low enough to justify the neglect 

of inductance, but will be considered as the upper limit of 

negligible inductance* In the remaining part of this study, 

inductive effects are not included. 

2.4 The Amplifier Transfer Function 

A schematic of the amplifier circuit: without inductance is 

shown in Figure 6. Derivation of the amplifier transfer function 

can now be obtained in a straightforward manner. Use of loop equations 

in Figure 7 gives 

P . (2 K e"Std) - P• - 2q R . (2.14) 
cd p od • o o 

A p p l i c a t i o n of flow ba l ance gives 

f "P C* y 

q = ~ S P . . ' + ~ ^ - + - 4 S P ... ( 2 . 1 5 ) 
Mo 2 od Rjj 2 od 

A combinat ion of equa t ions (2 .14) and '(2.15) g ive s 

2 P . K e " S t d = 2 P . R C e 2 ^ - % S + - i •+ - i - ] cd p od o 2 2R ZRo 

or 

P A 

od . 
2K R 0 e " S t d 

- • • P X r 
P A 

cd 
R o + Rje u

 f
2 c t Ro R * 

(2 .16 ) 

) S + 1 
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Amplifier 

2R 

WV^ 
Load 

Figure 6. Amplifier Equivalent Circuit (Neglecting Inductance) 
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or 

P , K e"Std 
od „ a 

P „ S/(JJ +1 
cd pa 

where 

2K R, Ro + Rje 
— p "̂  

a Ro + Rje • ^ p a 2Ct(H.o + R 1) 

and 

Ct = C + C0 . t o X 

K is called the overall amplifier gain constant. This scaler 

constant becomes the amplifier transfer function when amplifier dynamics 

may be totally neglected. It may be noted that 

a) The transfer function consists of a constant multiplied by 

a first order lag and a pure transport delay; 

b) typically C < < 1 and R < < Rn:, giving oJ > > 1, which 

implies that attenuation of amplifier output occurs only 

at higher frequencies; 

c) at OS - 0, the transfer function consists of the scaler 

constant K ; 
a 

d) as R a—> ©O » K > 2K , giving the deadhead gain of 
•* " a P 

' 2 K P » ; ' '::J/:S-:: 

e) output connector capacitance and resistance and transport 

delay for the entire amplifier-connecting line system are 
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included in the amplifier transfer function, and 

f) the input parameters R and C are not included. They are 
c c • 

included in the input network that precedes the amplifier. 



CHAPTER III 

ANALYTICAL-DEVELOPMENT OF BASIC FLUIDIC NETWORKS 

3.1 Preliminary Comments 

This chapter is devoted to a detailed analysis of a few basic 

networks, the results obtained being called upon for use in later 

sections. 

A complete transfer function is derived for each network using 

the previously discussed linearized electrical equivalent model of the 

vented proportional amplifier. This gives an accurate picture of 

network behavior up to the frequency limitations of the amplifier 

model. A reduced transfer function is obtained from the complete 

transfer function by neglecting the capacitances of the control port 

and output port, C^ and C respectively, and by neglecting transport 

delay, t,. These assumptions are reasonable when connector volumes 
d 

are small in comparison to external capacitors in the netowrk, and 

when operating frequencies are low, together with small geometries. 

The presence of control capacitance, C , cancause slight 

inaccuracies in the break frequency expressions of the reduced transfer 

function. For this reason, some of the discussion of pole-zero posi

tioning limitations is somewhat academic. In addition, physical 

limitations of the amplifier may cause further restrictions on pole-zero 

positioning. Amplifier matching requirements may demand some network 

resistors with specific values. If these resistors are contained in 
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expressions for poles and zeros, further restrictions are effected. 

In a typical design situation, network resistors, capacitors 

and amplifier gains have been selected to locate reduced transfer 

function poles and zeros as desired. The complete transfer function 

is then obtained for a given physical implementation of the reduced 

transfer function and serves to provide information on the performance 

degradation of reduced transfer functions at higher frequencies. 

In the presentation of the first five networks, the development 

is kept straightforward and readily understandable. The fifth network, 

namely the integrator or lag-lead configuration, has certain pecularities 

which have been used in later sections. The presence of more than one 

amplifier in this network necessitates the introduction of subscripts 

on certain system parameters. In addition, ambiguities exist as to 

whether an intermediate connector volume should be lumped with the 

output plus load capacitance of the preceding amplifier, C.-, or with 

the input capicatance of the following, C . Another difficulty is the 
• . - . . ' . c Z 

absence of a single unique signal path. More than one transport delay 

constant is then necessary. 

In networks with multiple amplifiers, a general convention is 

adopted by denoting as a primary subscript the number of the amplifier 

associated with a particular parameter. Secondary subscripts indicate 

the number of the associated port. For example, in Figure 17, R,- is 

the resistance of port 1 of amplifier 1 and its associated connector. 

When two amplifiers are staged and the total output of the first 

is used as the input to the second, the convention is to consider the 
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output network of the first as being the input network of the second, RL 

equal to infinity, and C equal to zero. The first amplifier transfer 

-st 
function then becomes 2K 1e "dl. The first amplifier pole disappears 

as the output capacitance of the first, C«- , is now zero, intermediate 

connector capacitance being considered part of the control circuit 

capacitance of the second amplifier, C «. The first amplifier output 

port resistance, Rn , is now a series resistor in the input circuit of 

the second amplifier. The resistance of the intermediate connector is 

included in R „. 
cz 

Whenever two amplifiers are staged with an intermediate load 

present, the first amplifier transfer function has been expressed in 

the standard form 

p , K - e dl rod _ al  

cd s A-̂ pal 

where 

K 
2K . R •'•'''• (3.1) 
pi 1 

al RQ1 + R 

and 

. R 0 1 + R l 
pal 2Ctl ^ k" 

All parameters are as previously defined, with RQ- being the first 

amplifier output port resistance plus the resistance of the intermediate 

connector up to the loading point, and' c ^ being the load capacitance 



25 

plus the capacitance of the intermediate connector up to the loading 

point. 

In configurations with more than one amplifier, it is necessary 

to use a separate transport delay constant for each unique signal path. 

These signal paths have been defined in the derivation of the complete 

transfer functions. 

3.2 Network 1 -- The Passive Lag 

The fluidic schematic for network 1 and the electrical equivalent 

are shown in Figures 7a and 7b respectively. Viewing the electrical 

equivalent and applying Kirchoff's Laws yields 

+ % , (3.2) 

where 

p - p 

i 

and 

. _ po 
q2 • " F 

C 

A combination of equations (3.2) -and (3.3) gives 

p
0 _ 1/Ri <..r.+ ir> 

p i ( i r ^ v > s + 1 

Rc h 

(3.4) 
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lo o 
) R 

Figure 7a. Network 1 Schematic. 

o-—VW* 

Figure 7b. Network 1 Electrical Equivalent, 
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The inclusion of transport delay gives 

p0
 I / R I < F + b > a i / . 

JL - J - 8 — i 0.5) 
1 (^n_ ) s+1 

R R-
c 1 

This is the complete transfer function for network 1. If the 

geometry is small transport: delay may be neglected i. e. t = 0, and 

the reduced transfer may be written as 

P0 _ K 

P.L ,- * V +.1 
(3.6) 

where 

K 

c 1 

and 
(3.7) 

' = „L. + -L-. 
^p R̂ c R c 

It can be seen from equation (3.7) that the pole can be located 

anywhere on the real axis of the left hand plane. In addition, K, the 

overall system gain, is less than unity, as R- is typically significantly 

greater than R .'•' A generalized pole-zero diagram and a Bode plot which 
c 

indicate these results are shown respectively in Figures 8a and 8b. 
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JUJ 

Figure 8a. Network 1 Pole - Zero Diagram. 

1 90 

G, db 
0 

K 

-90 

CJ 

Frequency on Log Scale 

J -180 

Figure 8b« Network 1 Bode Plot. 
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3.3 Network 2i -.-'The Differential Input Lag 

The fluidic schematic and electrical equivalent for both the left 

and right hand input network are shown in Figures 9a and 9b, respectively. 

Viewing the electrical equivalent and applying a flow balance gives 

or 

+ ' 
?1 " ?Cl = C s P c l + i K + CcsPcl» <3'8> 

R c 

+ 
P = • — J . ( 3 . 9 ) 

C i R(C + C c ) s + R + ! 

S imi lar ly 

? 1 
P . = • — — — 5 ~ — " • (3 .10) 

Cl R(C + C ) s •+§-• + .1 
C K 

C 

Equat ions (3 .9 ) and (3 .10) may be combined t o o b t a i n 

+ 
2P 1 

P c = — — i — _ - . . , • • , ( 3 .11 ) 
C d R(C + C ) s + - 1 - + 1 

C K 

c 

wi th 

Pcd = P c l - Pc2 ^ P l + = - P l ' ' ( 3 . 1 2 ) 



1 G 

CH 
Figure 9ao Network 2 Schematic. 

pi+* pro 
vw 

P 1 > P 0 

c l c2 

Figure 9b. Network 2 Left and Right Hand Input E l e c t r i c a l Equivalent. 



A use of the relation 

+ 

given the total input transfer function as 

Pld C + C 

I + I 
R R 

c 

) s+ 1 

Since 

p P P , 
od . cd od 

P, " p^T x ~ 
Id Id cd 

and since the amplifier transfer function is 

P '. K e"Std 
od a 
P . s/tj +1 * cd pa 

the complete transfer function is written as 

P od _ 
p l d 

, ' ( L • • + ' ^ - ) 
1/R V R R • .• . 

c 

K e d 
a 

P od _ 
p l d 

c + c 
< 1 _ + 1 > s + 1 

V R 

S/UJ •+ 1 pa 
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Pld = 2P1 ' (3.13) 

Pcd 1 / R ( R + I >•• * 

^cd B __R_ «£_ ^ (3»14) 

(3-15) 

(3.16) 

(3.17) 

If the system geometry is such that G <<"1. and td « 1, then the 

reduced transfer function adequately represents system behavior. It can 
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P ° "' KaK ( s/ur + 1 } ' id p 
(3»18) 

where 

and 

K R t i- + i > 
c 

or - ; i - + i -
^ p R R C 

r c c 

(3.19) 

The pole can be located anywhere on the real axis of the left 

hand plane. As in network 1, K is typically less than unity. However, 

the overall system gain K K is normally greater than unity. A generalized 
ex 

pole-zero diagram and a Bode plot are shown in Figures 10a and 10b 

respectively. 

3.4 Network 3 - The Lag-Lead 

A fluidic schematic and electrical equivalents for left and right 

inputs are shown respectiveljr in Figures 11a, lib and lie. Viewing the 

left hand electrical equivalent, a flow balance gives 

Pl " p i 
1
 p
 cl - c 
R, ! 

. - : , • " ' • • ? , 

Cl R C Cl 
c 

(3.20) 

or 

__,:! 
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Figure 10a. Network 2 Pole-Zero Diagram 
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0,deg 

-90 

-180 

u7 

Frequency on Log Scale 

Figure 10b. Network 2 Bode Plot, 
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Figure 11a. Network 3 Schematic. 

r ^ o - — W V - ^ 

C Z=S^R \,C c ^ c 

I 

•O cl 

Figure lib. Network 3 Left Hand Input Electrical Equivalent. 

R„ 

i o—VW 

Figure lie. Network 3 Right Hand Input Electrical Equivalent* 
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p c l ( 
V p c l ( 

R (c + C ) s c R 
c 

+ 1 

(3.21) 

Viewing the right hand electrical equivalent, a flow balance gives 

P 1 " P 9 P 1 

II R + Cc sPcl> <3'22> 
c c 

or 

P , = 1 . (3.23) 
" L t s + "2 + 1 

2 c F 
c 

Using equations (3.12) and (3.13) gives 

l e i [R1 <C + Cc> s + f e + 1 ] + [ R 2 C c s + f e + ^ 
p " ~- ~ ~ — — - . (3.24) 

2CR, (C+C c) - + r + l ] [ R 2 C c s + F + 1 ] 

C C 

Using equations (3.15) and (3.16), the complete transfer function may

be written as 
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(C + C ) / R 2 ' + Cj&t 

i- (L^L. + ]J^71^ 
Rl Rc R2 R2 V V 

c + c 
c 

±-+±-
R R„ 

) s +-1 

R 
+ ±-

• R n 

S • + 1 

+ 1 

X 

K e d 
a  

s/toT + 1 pa 

(3.25) 

I f t h e geometry i s such t h a t C < < C,.-C < < 1 and td < < 1 , 

then the reduced t r a n s f e r func t ion adequa te ly r e p r e s e n t s system response , 

I t may be w r i t t e n as 

od s/or 2 + 1 

p - . K a K ( TlZT^i )"',: 
Id P 

( 3 . 2 6 ) 

where 

K = 
!k_ Rc R2 H V V 

Rc R l Rc *2 

(3.27) 

= JL_ + i__ 
^ p ^ C R C * 

and 
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or 

1 R? 
z p R,C v R ' 

1 c 

It can be seen from equation (3.27) that the break frequency of the 

zero is always greater than that of the pole. The zero can be 

located anywhere on the real axis of the left hand plane. The zero 

always lies to the left of the pole. The positions of the pole and 

zero are not completely independent. For example, since R , the amphfer 

central part resistance cannot be varied for a specific geometry, a 

given location of the pole fixes the R-C product. The only parameter 

available for the positioning of LJ is R«. Increasing R- can locate 

ur as far to the left as desired. However decreasing R~ can only bring 

(jj as far to the right as the point or = + -— . 
Z Z p JR.. Ci 

A generalized pole-zero diagram and a Bode plot for this transfer 

function are shown in Figures 12a and 12b respectively. Note in the 

Bode plot the lag-lead characteristics of this network. The phase lag 

reaches its maximum between the break frequencies of the pole and the 

zero, and finally returns to zero at high frequencies. The amplitude 

ratio plot, level at low frequencies, starts to decrease at a rate of 

20 db/dec when the break frequency of the pole is reached, then levels 

off again after the break frequency of the zero. 

3.5 Network 4 - The Lead-Lag or The Differentiator 

The fluidic schematic and left and right side input electrical 

equivalents are shown in Figures 13a, 13b and 13c, respectively. 
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Figure 12a. Network 3 Pole Zero Diagram. 
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F i g u r e 12b. Network 3 Bode P lo t . 
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Figure 13a. Network 4 Schematic. 
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Figure 13b. Network 4 Left Hand Input E lec t r i ca l Equivalent 
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Figure 13c. Network 4 Right Hand Input E l ec t r i c a l Equivalent. 
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Viewing the l e f t hand e q u i v a l e n t , a flow ba lance g ives 

\ " ^ = C P c l + J 1 + C c S P c l > (3.28) 
1 c 

or 

P ! 
P c l = * ~ " ~ *i ~ " • • • • 0 . 2 9 ) 

C i R-- (C + C ) s + - - 1 + 1 
1 c R 

c 

Viewing the r i g h t hand e l e c t r i c a l i n p u t , aga in a flow ba lance gives 

or 

Thus 

Z c 

Pc2 = ? 1 B, ' - * ( 3 - 3 1 ) 

R2Gc s + r + 1 

c 

p = p - p 
cd c l c2 

P l P l 
R, 1 *2 

R, (C + C ) s + 7 * '+ 1 R9 C • s + - ± + 1 
1 c R 2 c R 

c c 

, (3.32) 

o r 
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cd 
[ R 2 C c s 

+ r + 1] ;- cW:>>:^-'8 +"sL + 
i ] 

RI v 
[1^ (0+ Cc) s+ ~ + 1] [R2 CC S + ~ " + 1] 

. (3.33) 

With the inclusion of the amplifier transfer function, the complete 

transfer function for the network may be written as 

JL. (l_ + i_) .1- (!_ + !_) 
'od _ R2 Rc Rl _h Rc h 

(i- + 1_) ( 1 _ + I _ ) 
Rc V Rc • . »2 • 

(C. + C ) / R_ - C /R, c 2 c T. 

L_ (!_ + !_) 
P2 R

C « 1 ; 

i- (I-. +JL) 
Rl V R2 

.8 + 1 

i 
c + c 

+ l 

'R 
+ 1-) V 

L i~ +• i-
Rc V 

s+ lj 

tr "St , 

K e d 
' a 
s/cj- +1 

pa 

(3.34) 

When circumstances are such that C C« and t, may be neglected, the 

reduced transfer function adequately represents network response. It 

may be written as 

Pod '••' s/^z + 1 , 

T^ = K K ( -7—-— r - • • ) 
Pv a s/cj- + 1 
1 P 

(3.35) 
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where 

L. ( L + 1_) . i_ ( i_ + ^ } 

K - V
 Rc V V R. V 
(L + i_) ( JL_ + L, ) 

R c • * ! • R c R 2 

^ P = I T *.. I~c- » (3-36> 
c 1 

ej-
z 

Rz . r 1 V I 
R0

 A R R ' R A R • R_ ' J •» 
^ C 1 1 C Z 

or 

*. 5> 
or = ̂  ._ __!__ ( .J_L. + x) 

z P R_ C v R ' c 

The pole can be located anjrwhere on the real axis of the left hand plane. 

The zero always lies to the right of the pole. As in the previous network, 

the positions of the pole and zero are not completely independent. Since 

R cannot be conveniently varied, a given location of the pole fixes the 

R C product. The only parameter available for controlling the zero 

location is R«. By increasing R-, the zero can be moved as far to the 

right as desired, but decreasing R„ only permits the zero to be located 

as far to the left as the point given by 

" » = P̂ - &c = rr - -::\B o-w 
• • ' . : ' : * • c 

For this network, there are three basic pole-zero configurations. 

The first, shown in the pole-zero diagram and the Bode plot of Figures 14a 



j w 

43 

- UJ_ 

F i g u r e 14a. Network 4 Pole Zero Diagram wi th 70, 
z 
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G,db 
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0 0,deg 
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or. OS, 
z • — p 

Frequency on Log Scale 

Figure 14b. Network 4 Bode Plot with os >0, 



44 

and 14b, respectively, is where the zero lies in the left hand plane. 

This is a lead-lag configuration with the phase angle verses frequency 

plot demonstrating phase lead at low frequencies, reaching its maximum 

between the break frequencies of the pole and the zero and returning to 

zero at high frequencies. 

With the zero at the origin, this network is a differentiator. 

The pole-zero diagram and Bode plot for this situation are shown in 

Figures 15a and 15b, respectively. Note that the magnitude verses 

frequency plot immediately starts increasing at a rate of 20 db/dec, 

and levels off after the break frequency of the pole is reached. 

It can be seen from an examination of the expressions for K and 

UX in equation (3.36), that when or is less than zero, i. e. when the 

zero lies in the right hand plane, K becomes negative. This implies 

a reversal of output polarity, The pole-zero diagram and Bode plot for 

this situation are shown in. Figures 16a and 16b, respectively. It can 

be seen that the magnitude verses frequency plot in identical with that 

of Figure 14a, where the zero is in the left hand plane. However, the 

phase angle verses frequency plot indicates that the zero now contributes 

a phase lag rather than a phase lead. 

3.6 Network 5 - The Integrator or The Lag-Lead 

The schematic for network 5 is shown in Figure 17a. Viewing the 

schematic, the system can be put directly into block diagram form. The 

block diagram is shown in Figure 17b. 

Block "a" is the transfer function of the left input circuit to 

amplifier 1, its electrical equivalent being shown in Figure 18a. Using 

the results given by equation (3.5) and substituting appropriate quantities 
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F i g u r e 15a. Network 4 Pole-Zero Diagram wi th LJ = 0 . 
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Figure 15b. Network 4 Bode Plot with OJ - 0, 
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Figure 16a. Network 4 Pole Zero Diagram with uJ < 0. 
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g i v e s 

P ' 1 / R 1 ( Rc + " R l > e " S t d l 
a = _cii. = _ _ _ _ _ _ _ 0 3 S ) 

1 ( -JLG
+_L. } S + 1 

R RT 

c 1 

where t ,_ i s t he s i g n a l t r a n s i t time from inpu t t o t he i n t e r a c t i o n 

r e g i o n of a m p l i f i e r 1. 

In more convenient form 

Pcll „ Kl e"Stdl 
Pl s/cjr + 1 

pi 

where 

K - 1 ~- , (3.39) 

and 

Uf pl R C R C. r c c c 

Block "b" is the transfer function of .amplifier 1. Since all of the left 

output flow is used for the left control flow into amplifier 2, by a 

previously explained convention the amplifier 1 transfer function is of 

the form 

• • • • ' ' p 

b . " ^ = K V (3:.4.0); 
Fcdl P l 
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The single sided utilization of output'cuts amplifier gain in half. 

Block "c" is the transfer function of the left input circuit 

to amplifier 2. The electrical equivalent is shown in Figure 18b. 

Using the results given by equation (3.14) and substituting appropriate 

quantities gives 

I/(R + R011) ( j r - + i r i — ) 
c21 _ c21 Oil /0 , lA 

_ _ . _ . . (3.41) 
Oil C + C 

( _ _ _£Zi __ } s +i . .. + 
Rc21 R + R011 

Note the inclusion of the left output resistance of amplifier 1 as a 

series resistance in this circuit. In a more convenient form 

Pc21 - h 
P0U s / t Jp2 + 1 

where 

K = _ . — _ _ _ . ___ _ ^ ( 3 # 4 2 ) 

(R + R l ) ( ~ + JT1 > 
Oil R ^ R + R o n 

and 

« v - ; • • • • — + 

Rc21 ( C + C c 2 1 >•'.• •.«.. + ..'»bll> ^ W 



R, 

i o—VV\A -O P c l l 

Ccll - p > Rcll 

F i g u r e 18a. Network 5 Lef t E l e c t r i c a l Equiva len t Input C i r c u i t to Amplif ier 1 
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F i g u r e 18b. Network 5 Left E l e c t r i c a l Equiva len t Input C i r c u i t to 
Amplif ier 2 . 

p + p 
f 022 

022 O — V V \ A 

"cl2 

O c !2 

1 
c l 2 

F i g u r e 18c. Network 5 E l e c t r i c a l Equiva lent Feedback Circuit . 
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Block "d" i s the amp l i f i e r 2 t r a n s f e r func t ion 

d • « - % a i - = K , e ' s t d 2 , (3 .43) 
Pcd2 p 2 

where t,9 is the signal transit time from the left output of amplifier 1, 

through amplifier 2 and the feedback loop and through the right input 

of amplifier 1. Once again the amplifier gain is cut in half because 

of single sided operation. 

Blcok e is the feedback loop transfer function. The electrical 

equivalent is shown in Figure 18c. Using the results given by equation 

(3.5) and substituting appropriate quantititis gives 

p l/(Rf +R 0 2 2) ( — - +. ; qr^— ) 
Pcl2 _ f 022 Rcl2 Rf + RQ22 

P022 C 
(3.44) 

cl2 

Rcl2 Rf + R022 • 

S • + 1 

In more convenient form 

p i o K f c!2 _. r_ 
P022 s / S f + 1 

where 

K = — —j — — 1 •—;:.',. ( 3 . 45 ) 

( R
f

+ R 0 2 2 ) < - ^ ; . +
 Rf + R 0 2 2 -

and 
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Uf 
Pf Rcl2Ccl2 (Rf +R022> Ccl2 

Block f is again the amplifier 1 transfer function, this time 

with output loading. Single sided output: utilization cuts the gain 

in half. The transfer function is then 

f - !0 - (Kal/2> e S t d 0 .,. .; 
f F.. s/ur . +1 ' (3*46) 

cdl pal 

where t ,0 is the signal transit time through the interaction region of 

amplifier 1 to the output. 

A reduction of the block diagram yields 

P 
0 _. af 
P- .1 - bcde 

(3.47) 

or 

K, e " 8 ^ (K -/2) e"StdO 

( 1 J- v , al _____ v 
PA ^ s/ojr + 1 } K "s/uS + 1 ' 
0 pi pal  P l K , K „ Krt K. e " S t d , 

,(3.48) 

'_ _ Pl P2 2 f ___ 
(s/urp2 +1) -<s/cjvf + 1) 

o r 

K- e°S tdl (K 1/2)e"StdO 

P0 _ (s^V-i) <^T-TT)< s/̂ Dal + 1 > 
P , ' K T K 0 K,, K. e~std2 

1 / 4- v i Pl P2 2 f 

(3.49) 

S , W
P 2 ' v \ : (s/orpf;+ 1) 
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When C , CQ and t , may b e n e g l e c t e d , cj -. j CJ" ' , and o r f 

become i n f i n i t e . The r e d u c e d t r a n s f e r f u n c t i o n i s t h e n 

P 0 ( s / u r p 2 + l ) K l K a l 

? 1 s /^P2 + C l " K p l K
P 2 . V K f > 

].' . (3.50) 

If the system parameters are adjusted such that K •- K K„ K. - 1, 

the reduced transfer function becomes 

PQ K ( S/OJZ + 1) 

Pl 

where 

K - Kal Kx oj p 2 , 

(3.51) 

Kl 

\ ^ i + ^ \ 

and 

CAJ •••' - CJ 
z p2 

This is an integrator configuration, the pole being located at the 

origin. An examination of equation (3.42) shows that the zero may be 

located anywhere, on the real axis of the left hand plane. Pole-zero 

and Bode diagrams for this case are shown in Figures 19a and 19b 

respectively. Note that the magnitude verses frequency plot immediately 

starts decreasing at a rate of 20db/dec. 
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JUT 

• * • 

Figure 19a. Network 5 Pole-Zero Diagram with GJ ~~ 0. 

0 
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G,db 

<c-- 0 

r ^ ^^ 
_ -20 db 

dec 

^C • • • ~ 

-. 90 

0 , d e g 

or 

-90 

-90 

-180 

Frequency on Log Scale 

F i g u r e 19b. Network 5 Bode P lo t wi th uf - 0 . 
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If the system parameters are adjusted such that 0 < K , K „ 
Pi p2 

K~ Kf < 1, the reduced transfer function takes the form 

PQ s/cs^ + 1 
K* ( •77~-TT- ) > P, v S/CAT + 1 

1 v p 

where 

K> = _ _ _ t. (3.52) 

^ z < l " Kpl KP2
 K2 V 

^ p = <^z ( 1 - KP1
KP2K2 V 

and CJ" and K are defined as in equation (3.51). An examination of 

the above expression for uf shows that the pole always lies to the right 

of the zero. This is a lag-lead configuration. The pole-zero diagram 

and Bode plot are similar to those shown in Figures 12a and 12b 

respectively. In this network, pole and zero locations are completely 

independent. If the zero location is chosen first, a gain adjustment 

can locate the pole in any arbitrary position to the right of the zero. 

It should be cautioned that if 'K". K 7 Yi : K~ > 1, the break frequency of 

the pole is negative, rendering the system unstable. 
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CHAPTER IV 

THE NETWORKS 

4.1 Preliminary Comments 
a 

This chapter deals with the reduced transfer functions for 

those fluidic networks which are obtained by various combinations 

of the simple configurations discussed in Chapter III. Figures 20 

through 26 show the fluidic schematics of these networks, whereas 

for each, the pole-zero diagram and Bode plot are shown in Figures 27 

through 36. The complete transfer functions, for which the reduced 

transfer functions are a special case, are derived in the appendix. 

Discussion of the networks pole-zero locations are also provided 

following each Bode plot. 

4.2 Network 6 The Differentiator or Real • 
Poles and Real Zero Configuration 

The fluidic schematic is shown in Figure 20a. The reduced 

transfer function is given by 

p ( - ^ - " ^ ) S + ( K , - K , ) . 

. -£-" = k KK, Ka3 [ - ^ _ * 1 _ - J ^ i - ] (4.1) 
i <s/^pi + X> < s / c ^ p 2

 + 1 } 

where 

K = 

(R + RnV) ( - 1 

0 1 Rc3 R + R01 
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2 

• ^ 
c l 

P. -^_ v-x R i 
i O -

\ 
\ 

R 

R 

>0 
c32 

F igu re 20a. Network 6 Schematic. 

Q£J 

o P, 

-O p 

Figure 20b. Network 7 Schematic. 



Figure 21a. Network 8 Schematic. 

Figure 21b. Network 9 Schematic. 



Figure 22a. Network 10 Schematic. 

Figure 22b. Network 11 Schematic. 
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F igure 23a. Network 12 Schematic. 

F igu re 23b . Network 13 Schematic* 
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+ R l _ C l 
Pl°" O-l'd O P , 

O P, 

F igure 24a. Network 14 Schematic . 

P X O 

R, 

R-, 

c l 

<a 
c2 

•O P, 

r 0 

F igu r e 24b. Ne tw ork 15 Schemat i c • 



Figure 25a. Network 16 Schematic. 

R, 

Figure 25b. Network 17 Schematic 
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Figure 26. Network 18 Schematic. 



64 

.jur 

• * - — * • 

Figure 27a. Network 6 Pole-Zero Diagram with K ,=K rt. 
pl p2 
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Figure 27b. Network 6 Bode Plot: with K ,=K 0 
pl pZ. 
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j w 

"W™"'7r ,™ ,7v 

Figure 28a. Network. 6 Pole Zero D i g r a m f o r Case 1 . 
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G,db 0 0, deg 

__ - -90 

-180 

P P z 

Frequency on log scale 

Figure 28b. Network Bode Plat for Case 1. 
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jar 

• * — e — * • 

Figure 29a. Network. 6 Pole Zero Diagram for Case 2 

- 0 0, deg 

- - — -90 

-180 

Frequency on log scale 

Figure 29b. Network 6 Bode Plot for Case 2, 
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Figure 30a. Network 6 Pole Zero Diagram for Case 3. 
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Frequency on log scale. 

Figure 30b. Network 6 Bode Plot for Case 3. 
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Figure 31a. Network 6 Pole Zero Diagram for Case 4. 
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X. 
- X . • 

\ \ 
\ -40 db | . 

V 
\ 

\ 

<T dec / 

\ 

\ ) 
" • - . 

1 

^ • 

—.̂i 
^"p Wp OJz 

Frequency on log scale 

- 0 0 , deg 

- -90 

- -180 

-270 

Figure 31b. Network 6 Bode Plo t for Case 4, 
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Figure 32a. Network 14 Pole Zero Diagram. 
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ur, USr 
p W z W P 

Frequency on log scale 

- 0 0, deg 

-180 

Figure 32b. Network 14 Bode Plot, 
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Figure 33. Network 16 Zero Locus. 



JCJ* 
K; 

^e 

K, 

Figure 34a. Network 17 Root Locus 
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Frequency on log scale 

Figure 34b. Network 17 Bode Plot with §<.707 



72 

G, db 0 
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0 0, deg 
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Frequency on log scale 

Figure 35a. Network 17 Bode Plot with f =.707. 
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Figure 35b. Network 17 Bode Plot with S >.707 
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Figure 36a. Network 18, Case 1 Pole-Zero Diagram. 
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Figure 36b. Network 18, Case 2 Pole-Zero Diagram. 
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K± = • — , (4.2) 

i v R - R. J 

Cl 3-

1 1 
— — .+ — 

^ P l <R + R01> Cl Rc3 Cl 

LJ 
1 

+ 
P2 (R + RQ1) C2 Rc3 C2 

Rcl Rcll " Rc21 ' 

Rc3 Rc31 " Rc32 ' 

» 

and RQ1 - R02. 

If K , - K _ - K , the reduced transfer function can be put into 
pi p2 p 

the form 

PQ K' 

Pi <s/^pi
 + 1 > (s/^p2

 + 1 } 

(4.3) 

tihere 

K' ,- .% K. K K Ka3 ..<-£-. - j J - ) , (4.4) 
P1 P2 

and all other parameters are defined as in equation (4.2). 

The zero for this configuration is located at the origin, while 

the poles can be located anywhere on the real axis of the left hand 

plane. This is a differentiator transfer function, with the pole-zero 
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diagram and Bode plot as shown in Figures 27a and 27b, respectively. 

Note the differentiator characteristics of the Bode plot, where the 

magnitude ratio is initially increasing at a rate of 20 db/dec and 

the phase angle is initially leading. 

, If K , f K „, the reduced transfer function has the form pi p2' 

PQ K " (s/uJ-z+l) 

Pi <s/c^pl
 + D ( s / ^ p 2 + 1) 

where 

K" = h KiKKa3 ( V ~ V ' <4'5) 

= c u Pi w P2 pi p2 

K - CtT _ - K _ oJ ' 
pi pi p2 p2 

and all other parameters are defined as in equation (4.2)» 

It is seen from equation (4.5) that the zero can be located 
» 

anywhere on the real axis of either plane.. There are several possible 

combinations of pole-zero positioning. 

Case 1 occurs when the zero lies to the left of the two polesi 

in other words, when 

V^PI K " V <CJz < °-

p r • • • • • ( 4 . 6 ) 

or „ < ux , < os < o. 
p2 pl z 
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The pole-zero diagram and Bode plot for this configuration are shown 

in Figures 28a and 28b respectively. 

Case 2 occurs when the zero lies between the two poles, 

or • 

uj • < ccr < us n < o, 

pl z p2 

or (4.7) 
UJ ^ < CS < Uf . < 0. 

p2 z pl 

The pole-zero diagram and Bode plot for this configuration are shown 

in Figures 29a and 29b respectively. 

Case 3 occurs when the zero lies to the right of the two poles, 

but in the left hand plane, or 

US " < OS - < Uf ' < 0, 
P Pl P2 

or ' (4.8) 

z p2 pl 

The pole-zero diagram and Bode plot for the configuration are shown 

in Figures 30a and 30b respectively. 

Case 4 occurs when the zero lies to the right of the two poles 

and in the right hand plane, or ° 

or . < or 0 < o < or , 
.pl ' • p 2 •.: 2 

or (4.9) 

^ P2
 <a/

P2 < ° <UJz-



The pole-zero diagram and Bode plot for this configuration are shown 

in Figures 31a and 31b respectively. Note that the magnitude versus 

frequency plot is the same as for case 2, but: the zero now contri

butes a phase lag. 

Note from equation (4.5) that the generation of a right hand 

plane zero requires that K' , to be greater than K .,. This situation 
p2 pi 

also produces a negative overall system gain, K1'. The physical 

significance of this is an output initially 180 degrees out of phase 

with input. 

4.3 Network 7 - The Differentiator 

The fluidic schematic is shown in Figure 20b. The reduced 

transfer function is given by 

P , K1 s od 
P., (s/u/ +1) id x P 

where 

K K 
i 

P 
K\ '..-£— , (4 

K = 

* < H r : + - R - > 
> 

p.. R R C c c 
> 

and 



R — R •_• - • "~ R 1 0 c ell cl2 

The zero is located at the origin. The pole can be located 

anywhere on the real axis of the left hand plane. This is a differ' 

entiator configuration. The pole-zero diagram and Bode plot are 

similar to those given in Figures 15a and 15b respectively. 

4-4 Network 8 - The Lag-Lead 

The fluidic schematic is shown in Figure 21a. The reduced 

transfer function is given by 

P. , s/oi/ + 1 
od == K ( z . \ 
P... K ( s/ux + 1 ̂  id p 

where 

K 
Kl Kal 

1 + 2 K a l V V K f 

* = L— L , . • • • • ' . • ; • ; . ' ( 4 . 1 1 ) 
R (—— +' - ) 
"•11 ^ B B ' 1 VR -- R 

e l l 

K 
2 R ( -1— + - i- ) 

v R 0 R ' 
c2 

K£ = 

( Kc + R„J ( -
•£• 0 2 ' VR R f + E o 2 ' 
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1 
O/ ~ — + 

z R . C R C 
c2 

and 

US 
P 

OJ z 

1 + 2 K - K _ K 
al p2 f 

The zero can be located anywhere on the real axis of the left 

hand plane. The pole is always to the right of the zero and can be 

located as close to the origin as desired:, providing sufficient gain 

is available. The network therefore has a lag-lead configuration. 

The pole-zero diagram and Bode plot are similar to those shown in 

Figures 12a and 12b respectively. 

4.5 Network 9 - The Lead-Lag ..'•'• 

The fluidic schematic is shown in Figure 21b. The reduced trans

fer function is given by 

v . '-.•/«• + 1 •• 
od " K ( 

Pid • . . ; * ' " > + 1 

where (4.12) 

K = 
V K a i 

K = » 
1 - 2 K a l V K 2 K f 

. z 
^ P i - 0 V V V V 

9 

al p2 2 f 
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and a l l other parameters are defined as in equations (4 .11) . 

The zero can be located anywhere on the r ea l axis of the l e f t 

hand plane. The pole always l i e s to the le f t of the zero . This i s 

therefore a lead-lag configuration. Gare must be taken to insure tha t 

the factor 2 K , K _ K0 K -does not exceed unity and thus render the al p2 2 f ^ 

system unstable . The pole-zero diagram and Bode Plot are similar to 

those shown in Figures 14a. and 14b respect ively. 

4.6 Network 10 - The Lag-Lead 

The f lu id ic schematic i s shown in Figure 22a. The reduced 

t ransfe r function i s given by 

P d
 S/Uf

2'
 + ! 

"iTT = K ( ThJ^TJ > 
i d p 

where 

K = 
K i K i 1 a l 

1 +2Kal Slhh 

K = — -~ , (4.13) 
1 R

c i i \ 

K, 2 V i " +t> 
• c2 h 

f (R + R ) (r^-._-'.+. R
X

+ R ) 
V cl2 R R02 

9 



CJ = ,„ ̂  „ , „ + (R + RQ2) C Rcl2 C 

and 

<^z 
(JJ 

P 1 +2 K n K 0 K0 K. al p2 2 f 

The zero can be located anywhere on the real axis of the left 

hand plane. The pole always lies to the right of the zero and can 

be located as close to the origin as desired, providing sufficient 

gain is available. The pole-zero and Bode plots are similar to those 

shown in Figures 12a and 12b respectively. 

4.7 Network 11 - The Lead-Lag 

The fluidic schematic is shown in Figure 22b. The reduced 

transfer function is given by 

P , s/ux + I 
od . K ( z _ _ 

Pid s/ur '+ 1 
P 

where 

K1 K . 
K > ^ — • i (4 

• 1 ~ 2 K •, K _ K.n K*-al p2 2 f 
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and all other parameters are defined as in equations (4.13). 

The zero can be located anywhere on the real axis of the left 

hand plane. The pole always lies to the left of the zero. This is 

a lead-lag configuration. Care must be taken that the factor 

2 K - K _ Kn K_ does not exceed unity and. thus render the system al p2 2 f J 

unstable. The pole-zero diagram and Bode plot are similar to those 

shown in Figures 14a and 14b respectively. 

4.8 Network 12 - The Lead-Lag 

The fluidic schematic is shown in Figure 23a. The reduced 

transfer function is given by 

P , s/cj* + 1 
K C S/CJ- + 1 > 

where 

P., -,w 
id p 

4K, K„ K T K 0 K0 
K • - K , K, ( 1 - * 2 BL^Bg-l } 

a3 f K 
f 

Ki = ~ — — r ^ — - — r — - , (5ol5) 
R ( ~— + *^~ ) 

1 Rci h " 

K 
2 (R + R01) (-2- -.+ .. +

1
R. ) 

1 c2 R2 R01 
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K3 1 
3 ,02'^R c 3 1 R3 + R Q 2 

K 
* . R ( _^_ + ._J: ) 

f R ^ 0 R ,-co2 f 

w = — i +• 
p (R2 + R01)C R C 

and 

4 K, K K K K, 
a/ - or • c i - —L-EL-2. P2 ̂  ) 

Kf 

The pole can be located anywhere on the real axis of the left 

hand plane. The zero always lies to the right of the pole. The zero 

cannot be located at the origin, however. For the configuration to 

occur, the factor 4 K- K , K K „ K_ / K- must equal unity. The system 

gain is, then zero. The Pole-Zero diagram and Bode plot for the case 

of a left hand plane zero are similar to those shown in Figures 14a 

and 14b respectively, and, for a right hand plane zero, in Figures 15a 

and 15b respectively.. 

4.9 Network 13 - The Lag-Lead 

The fluidic schematic is shown in Figure 23a. The reduced transfer 

function is given by 

P s/or + 1 

TTA " K ( S 7 ^ T T ) •»"•.-.' ( 5 ' 1 6 ) 

id P 
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where 

1 + 4 *1 KP1 K2 KP2 *3 , 
K Ka3 K4 ( Kf 

1. + 4 K, K , K0 K . KQ _ , _. , 1 pl 2 p2 3 v 
CJV - CcT ( -—•*• v ) , 

z p v K. ' 

and all other parameters are as defined in equation (5o15)o 

The pole can be located anywhere on the real axis of the left 

hand plane. The zero always lies to the left of the pole. This is 

a lag-lead configuration. The Pole-Zero diagram and Bode plot are 

similar to those shown in Figures 12a and 12b respectively, 

4.10 Network 14 - Real Poles-Real Zero 

The fluidic schematic is shown in Figure 24a. The reduced 

transfer function is given by 

P ,• S/UJ + 1 od _ „ „ z 
r, = K K 
P. , a i d * . ( s / o J - p l + 1) ( s / 6 j p 2 + 1) 

> 

where 

Of 
1 1 

•' + ' 
p l R- C., R C 

<**rm.;tV + K~^~ - (5a7) 



R- R0 1 1 1 1 1 1 
M = — i ^ [ - ( —- + —• ) +- ( + — ) ]• . 
w z C, R.. + C 0 R0 . R0

 V R Rn
 y R- V R R0 ' ' 

1 1 2 2 2 c 1 1 c 2 

and 

K \ Rl V *2 R2 V "l 
V R R0

 } K R R, V 
c 2 c 1 

The po les can be anywhere on the r e a l a x i s of the l e f t hand 

p l a n e , R e s t r i c t i o n s on zero p o s i t i o n i n g can now be o b t a i n e d . 

Let 

and 

then 

and 

r l R,. v.R R„ ' 

r 2 R0 V R R- J ' 
2 c 1 

R l ? 1 6J ' ~ 
p i C, 9 

_ <V+?2 
UT 
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R2 ? 2 ^ P 2 =: - V - • (5-18) 

Gl / R2 + C2 / Rl 
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or 

<* - ( e ' l + P 2 ^ p l ^ P 2 
2 ^ 2 ^ p l + -^1 " "P2 

I t can be seen by i n s p e c t i o n of t he above r e s u l t tha t6J" must 

l i e between UT and uT The Pole-Zero diagram and Bode p l o t a r e 

shown i n F i g u r e s 32a and 32b r e s p e c t i v e l y . 

4 .11 Network 15 - Real Po le s -Rea l Zero 

The f l u i d i c schemat ic i s shown i n F igu re 24b. The reduced 

t r a n s f e r func t ion i s given by 

P o d . sfmz + . 1 

T^"" K
a
K V/ujpl +1)(s/zrprT) >' (5-19) 

where 

R / R R9
; R9̂ R :+ .B- j 

_ 1 c 2 2 c 1 
^ _ ——. —.^ 

c 2 c 1 

= ::-:RlR2- : l _ ,_1 , : _ i v : l_ ;JL .- 'i-V'• 
^ z iLC.-RiC. R • VR • . & / ."" R 0

l R + R / » 
2 2 1 1 1 c 2 2 c 1 

and a l l o t h e r parameters a r e def ined as in equa t i on (5 .17 ) 
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The poles can be located anywhere on the real axis of the left 

hand plane. Once again, defining tJl, uJl, CJ" and ? as in 

equation (5.18), and using the above expression for 6J" yields the 
z 

result 

^ . ^ J e i U ^ k • (5.20) 

It can be seen by inspection of the above result, that the zero 

can take on all real values. Its possible; locations are to the left of 

the poles, between the poles, to the right of the poles but in the left 

hand plane, or in the right hard plane., These possibilities correspond 

to cases 1, 2, 3 and 4 of netowrk 6, and the Pole-Zero and Bode plots 

correspond to those shown in Figures 27a, 27b, 28a, 28b, 29a, 29b, 30a 

and 30b. 

4.12 Network 16 - Real Poles-Complex Zeros 

The fluidic schematic is shown in Figure 25a. The reduced 

transfer function is given by 

2 (a 

P w o 
od2 

ujl UTQ 

Px ."-.
 Ka2K4(1"K-:):-(s/c^i+l)(sA^2+l) 

where 
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K4 = 1 1 * 
M R " +• i h 

' Rc22 * 4 

(5 .21) 

K 
K 0K K•-.K„ 

• = a 2 P3- -> 
K4Ka2 

K = 
R l R cl R2 R2 V R l 

<1T7 + b <IT + I7> 
c l 2 c l 1 

K„ -

^ W ^ + R ^ V 

ur 
X + 1 

p i R 1 (C 1 + C ) R c l ( C l + C c l ) ' 

1 : 1 
OJ. - = — ^ = 7—Z 5" + 'p2 R2(C2 + C ) R a ( C 2 + C ) ' 

CJ'° " [w'p.lu&2 (1-K') 
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^Tg 

2 (1-K' ) OJ P i CJ P2 

K_ » 1 

and 

ur 
R1R2 

R 2 G 2- R 1 C 1 Rn
 VR , R, 1 c l ^- (* + ̂ ] 

Since t h e e x p r e s s i o n s forCcT,» AJ" ^ and as are t h e same as f o r 
pi pZ z 

these parameters in network 11, the same restrictions apply. The poles 

can lie anywhere on the real axis of the left hand, while the zero can 
have any real value. 

12 
It can be shown that the locus of zeros is a circle on the 

s-plane, with center at" ur and radius given by 
z • 

•c (UJ -ar,)(a; -cj- 0) 
h 

pi p2' r 
(5.22) 

A real-values radius and therefore complex roots will only occur only 

if both poles lie to one side of the zero. The locus of zeros is shown 

in Figure 33. 

4.13 Network 17 - Complex Poles 

The fluidic schematic is shown in Figure 25b. The reduced 

transfer function is given by 
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where 

Fod = K 
rld s , 2§ s • _ 

to-z <urx 

v • 4KplK
P2

Ka3KlK2K3 
1 + KL 

*L"" 4KplKp2Ka3K2K3Kf ' 

Kx = — • , (5.23) 

h ^ + b 
ell 1 

Krt = 
2 <*+.*OI"T + m - > 

c 01 

K„ = 
3 (R + Ro2 ) ( i r + I T T : ' • • * 

c 02 

K.= X 
f R (F^ + i~) 

f Rcl2 Rf 



9 1 

R 0 1 " R 02 •»' 

R • — R «. ;ss R *, t c cz c3 

^ x = % ( 1 + K L > » 

I r •• ' ' ]L 1" ' 1 ' 
p RC R C ' 1 c 

and 

<V* 
The real component of the second order root is given by 

\ l'*} = "J = Wpd+V - ~ - -Wp • (5-24) 
(1 +V 

Therefore, the root locus is a straight vertical line located at -or 

in the s-plane. Increasing K. causes a more oscillatory response 
JL 

to a step input. The root locus is shown in Figure 34a. The Bode 

plot for the underdamped case, that is, a damping ratio of less than 

.707, is given in Figure 34b. The Bode plots for the cases where the 

damping ratio equals .707 and is greater than .707 are given in Figures 

35a and 35b respectively. 



4.14 'Network 18 ' - Complex Poles-Complex Zeros 

The l u n d i c schemat ic i s shown i n Figt t re 26 . The reduced 

t r a n s f e r func t ion i s given by 

s2 *V 

where 

P , ^ J <*£ 
od „ o 0 = K P. , . 2 2f s 

CO* 2 ^ x 
X 

"A. 
i 

l + h 

Ka3 Kg ( 1 + ~TT? 
K = _ _ _ _ _ &JL J 

T<L " 4 K p l K
P 2 K a 3 *2 *3 K f > 

1 

(5 
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and 

K f . -
h(T7:+ b ' 

c l 2 f 

K = 
R2 V — + ' i T > '••' 1 c32 R2 

R 0 1 ~ R 0 2 » 

R = R 0 = R Q , 
c c2 c3 

K K̂  h 
Uf = CAJ (1 + - > 
^ 0 p U K K / 

u /
x = % < 1 + V 2 •» 

o . " (1 +
 KKJ ' 

g f 

S x = ^ + V 
.-J-

W p " RC + R C • * 
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It can be seen that 

< y n l = UX .•% - UX . i (5.25) 
0 0 x x p 

Therefore5 the complex poles and zeros lie on a vertical line located 

at -ur in the s-plane. Increasing K. lowers both 5 - and § . 

There are two possible Pole-Zero configurations. Case 1 occurs when 

the zeros lie closer to the real axis. The Pole-Zero diagram is shown 

in Figure 36a. Case 2 occurs when the poles lie closer to the real 

axis. The Pole—Zero diagram is shown in Figure 36b. 
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CHAPTER V 
c . ' - ' • ' . • . . ' 

EXPERIMENTAL PROGRAM 

' : 5.1: Purpose of the Experimental Work 

The dynamic testing of a few selected networks is conducted in 

order to demonstrate the relative accuracies of reduced and complete 

transfer functions. The results are not intended to be experimental 

validation of the amplifier model, the verity of which is well 

established. 

5.2 Apparatus 

A schematic of the dynamic test apparatus is shown in Figure 

37. The pneumatic signal generator is an electrical"to pneumatic signal 

converter. The electrical signal is supplied by an electrical function 

generator. The input and output pressures are measured by Pitran 

transducers. A dual channel oscilloscope is used, x/ith input pressure 

pictured on the horizontal axis and output pressure on the vertical. 

In all the networks tested, a Corning Model 19807 center dump pro

portional amplifier is used. All external resistors are laminar 

restrictors. 

5.3 Test:Procedure 

In all tests, the amplifier supply pressure, P , is set at 6 
5 

ps ig . P , the bias l e v e l , i s se t a t 10 percent P by adjusting the c s 

supply pressure control valve attached to the pneumatic s igna l genera tor . 



Pressure 
Transducer 

Pneumatic 
Signal 
Generator 

valve 

V-

Supply 

Pressure 
Transducer 

Electrical 
Signal 
Generator 

Figure 37. Schematic of Dynamic Test Apparatus. 
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With the electric signal generator set at 1 to 2 Hz, the pattern on 

the oscilloscope is a straight line. As the input frequency is 

increased, the linear pattern becomes an ellipse. Such a pattern 

is shown in Figure 38, where B/C gives the system amplitude ratio, G, 

and sin A/B gives the phase angle, . When the major axis of 

ellipse lies in the first and third quadrants, the phase angle lies 

between 0.. and -90 . When the phase angle equals 90 , the major axis 

is vertical. A phase angle between -90 and -180 causes the major 

axis to fall in second and fourth quadrants. 

If the initial linear pattern is adjusted so that B/C = 1, 

then G is the same as the magnitude ratio, M, where the magnitude 

ratio is defined as the 'amplitude, ratio at a given frequency 

divided by the dc amplitude ratio, which is the overall system gain. 

5.4 The Network Transfer Functions 

Appropriate pressure versus flow curves are generated and all 

system parameters are evaluated at the operating point pressures, 

as explained in a previous section. Since experimentally obtained 

system output amplitudes can be conveniently read as magnitude 

ratios, overall system gam constants are irrelevant. For this 

reason each overall system gain is taken as unity. The complete and 

reduced transfer functions for each experimentally tested network are 

then obtained. Reasonably short connector lengths keep amplifier 

and connecting line dynamics to a minimum. 

The amplifier transfer function is given by 
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Figure 38. The Oscilloscope Elliptical Pattern, 
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-(. 0003-6) s 

• ^ 2 i : - i _ ^ _ (5.D 
cd (.0030) s + 1 

Magnitude and phase angle versus frequency plots of this transfer 

function are compared with experimental data in Figures 39 and 40. 

The pole break frequency as predicted analytically is significantly 

lower than the value indicated by test results. 

The reduced transfer function for network 1 is given by 

P 
_0 = - • : - 1 • •:; ••,: 

P1 "[.0153) s + 1 

and the complete transfer function by 

-(.00064)s 
?0 e 

(5.2) 

Pl (.0153)s + 1 
(5.3) 

Magnitude and phase angle versus frequency plots of these transfer 

functions are compared with experimental results in Figures 41 and 

42. Here again, the pole break frequency as predicted analytically is 

lower than the value indicated by test results. Note that the reduced 

transfer function phase angle plot levels off to -90 at higher 
r • • 

frequencies. Neither experimental data nor values predicted by the 
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complete transfer function have this characteristic, both tend 

to keep decreasing with frequency. 

The reduced transfer for network 3 is given by 

P0d :(.008.2)s -Kl 
P c d (.0139)s + 1 

and the complete transfer function by 

(5.4) 

-(.00087)s 
^0d • • ; [(.0099)s-KLle , ,, 
P. d ""[(.0168)s-fT[I(.0030)s4-l][(.0031)s+l]

 K* J 

functions are compared with experimental data in Figures 43 and 44. 

The magnitude predictions of the complete transfer function are not 

very accurate, analytically derived pole break frequencies once 

again being too low. The experimentally obtained phase angle plot 

does at least have some agreement with complete transfer function 

values. The phase angle contribution by transport delay keeps the 

phase angle decreasing, while the reduced transfer function calls for 

it to return to zero at higher frequencies. 

The reduced transfer function for network 4 is given by 

P0d 1 (.Ql49)s4-1 /q fi^ 
P- ..'• (..0095)8+1 ,y'-V.. 
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and the complete transfer function by 

- ( • . •00087)s 
E (.-0149)64-1] e •••••;;•, (^7) 

[ (. 0095) s-!-l] [.(. 0030) s+1] KZ>'[} 

Magnitude and phase angle versus frequency p lo t s of these t ransfer 

functions are compared with'experimental data in Figures h5 and h6, 

The complete t r ans fe r function magnitude p red ic t ions are reasonably 

accura te , but some er ror once again stems from low pole break frequency 

values.. Note tha t phase lead i s never ac tua l ly achieved, due t o the 

effects of t ranspor t delay. 

5«5 Discussion of Results 

In the systems t e s t e d , only f a i r agreement between experimental 

r e s u l t s and response are predicted by the complete t r a n s f e r function 

e x i s t s . Analyt ical pole "break frequencies are too low in a l l cases. 

These discrepancies can a t l e a s t in par t be a t t r i b u t e d t o inaccuracies 

in the evaluation of amplifier input and output r e s i s t a n c e s . 

These quan t i t i e s are obtained experimentally, as previously 

discussed. The flow instrumentat ion, a Brooks rotameter with a 

0 t o 10 SCFH sca l e , may contr ibute some inaccuracy. The flow 

ra tes measured are on the lower end of the i n s t r u m e n t s sca le . 

At flow ra t e s approaching zero , the meter i s qu i t e inaccura te , the 

f loat being unstable . The only s l i gh t ly higher readings used might 

then be suspect, 

Od 
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The evaluation of output resistance using a manufacturer 

supplied output pressure versus output flow curve for an amplifier 

of similar geometry, where the supply pressure is 5 psig, yields 

5 the value R = .51 'lbf-sec/in . Evaluating the same parameter 

using the experimentally derived output pressure-flow curve, where the 

supply pressure is 6 psig, yields the value R = .80 lhf-sec/in^. 

In spite of the difference in supply pressure, the smaller value of 

R is perhaps more realistic, in view of the doubtful nature of the 

rotameter reading at low flow rates. 

The amplifier pole break frequency is given by 

• • • • • 1 . • • 1 

pa 2R C.. 2R C^ 
* o t t 

5 
Since R- , the load resistance, has a value of 28 lhf-sec/in , it 

can he seen that the amplifier pole frequency is very sensitive to the 

output resistance, R . Using the lower value of R causes the pole 

frequency to increase by about 50 percent. This corrects a major part 

of the experimental error. 

Since R is also a relatively smallquantity, similar reasoning 

indicates that inaccuracy in its evaluation could he responsihle for 

error in the prediction of other network pole and zero break. 

frequencies. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS ; 

Networks have "been presented for the implementation of elementary 

transfer functions. These may "be combined in series to produce any 

rational, finite transfer function with no fever poles than zeros 

and only left hand plane poles. They should serve as an ample "basis 

for analog fluidic system design. 

The use of the lumped electrical equivalent amplifier model in 
• J • 

the analys is of the "basic networks i s a convenient procedure and lends 

great physical ins ight in to the workings of f lu id ic systems. A well 

known and widely used' amplifier model i s accepted without question 

in t h i s study. However, a careful examination of cer ta in aspects 

of the model casts some doubt on i t s ana ly t ica l r igor and indicates 

a need for further inves t iga t ion . These doubts center around the 

lumped parameter representat ion of the connecting l i n e . 

While connecting l i n e dynamics are not e x p l i c i t l y discussed, a 

connecting l i n e model i s included in the e l e c t r i c a l equivalent amplifier 

c i r c u i t . This model, shown for an input connector i s given in Figure 

UTa. C i s the connecting l i ne capacitance and R i s the res is tance 

—st of the amplifier control port and l i ne combined. The e d term 

represents pure t ranspor t delay. The t r ans f e r function for t h i s lumped 

parameter system i s given by 
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<ZZ> 
c — R 

Figure 47a. The Lumped Connecting Line Model. 

p r q i P2> *2 

Figure 47b. A Distributed Connecting Line Model. 
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^ = e - S t d (6.1) 

The magnitude r a t i o i s constant at unity and the phase angle l i n e a r l y 

decreases with frequency, as discussed previously , 

A d is t r ibu ted parameter representat ion of the undamped 

connecting l i ne i s pictured in Figure 47b. A mathematical 

*' ' ' 13 
descr ip t ion of the system i s given by Takahashi as 

cosh I - Z sinhj 

-Z s in i cosh[ 
j 

^ i 

where Z , the cha rac t e r i s t i c impedance of the l i n e i s given by 

z = z,V"z/r 

with 

Z " A s > (6.2) 

and 

0 = p" S , 

r = st,. 
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In addition, 

P2 

V =z» ;/'
 (6-3) 

where Zp is the load impedance, 'Combining equations (6.2) and (6.3) 

yields the transfer function 

l i : • _ • • • - - : r : • • • : : : : : • 

p l ~ z c 
c o s U t , + i TT~ s i n c J t , d J . Z j d 

(6.4) 

If Zc/Z^ = 1, then 

. .P 9 •. ., - s t , 

2 = — / . -. — • = e d, (6.5) 
Pn cosujt, + i smart, ' 
1 d J d 

which is the same as the lumped parameter transfer function given in 

equation (6.1). For a typical input connector however, Z / Z - ^ < 1, 

and the transfer function is very nearly 

P 
r 2 1 
_ _ = _ _ _ = secoort, ( 6 . 6 ) 
Pn ' cosuit , d > • ' 

1 d. 
The magnitude r a t i o given by equat ion (6 .6 ) i s t h e a b s o l u t e va lue of 

^, and goes t o i n f i n i t y a t u ^ t , s e c u / t . and goes t o i n f i n i t y a t <**tA = If/2, 3lf/2y • . • 2 . 



The phase angle decreases by discrete jumps of 180 degrees at these 

critical values ofu/t,. For those frequencies and geometries of 

interest in this study, cat, always lies below 'ff/2. Therefore, the 

above transfer function predicts zero phase lag and an increasing 

magnitude ratio with increasing frequency, within the realm of 

typical operation. This is in conflict with the predictions of the 

amplifier model. This discrepancy is unexplained. However, the well 

established position of the amplifier model as an analytical tech

nique justifies its use in this study. In addition, although not 

conclusive, the experimental results of this study favor the lumped 

parameter representation with transport delay operator. Experimental 

phase angle versus frequency data for all networks tested indicates 

an ever decreasing phase angle at higher frequencies. This can only 

be the result of transport delay. 

When system parameters are carefully evaluated, the complete 

transfer functions provide a reasonably accurate picture of network 

response. However, it can be seen from the experimental results that 

the reduced transfer functions can only be accurate at very low 

frequencies. Even then, for some configurations, the reduced 

transfer function is not adequate. A case in point is network 4, 

a lead-lag configuration. The experimental results, shown in Figure 

46, demonstrate that phase lead is never achieved by this network, 

even though predicted by the reduced transfer function. Again, in 

Figure 44, for a lag-lead network, the experimental phase versus 

frequency plot keeps decreasing at higher frequencies, while the 
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reduced transfer function calls for a return to zero. 

Since the reduced transfer function is the transfer function 

to be implemented, it is seen that certain configurations are 

difficult to physically produce. If the designer is limited to the 

use of breadboarded circuits, as tested in this study, this is true. 

The inevitably long connectors result in large values of input and 

output capacitance and large transport delay constants. 

However, in some commercial applications, miniaturized, 

integrated circuit blocks are used, with the result that amplifier 

and connecting line Cin this case, connecting passage) dynamics are 

kept to an absolute minimum. For these systems, reduced and 

complete transfer function will be nearly identical. 

In addition to their superior frequency response, circuit 

blocks are rugged and inexpensive when mass produced. However., many 

applications call for the production of only a single network or a. 

small quantity. The use of integrated circuit blocks may not be 

economically feasible in such a situation. 

The solution might be in the development of variable parameter J 

circuit blocks. Variable capacitors could'be .'used to regulate RC 

factors, it being easier to vary a volume than a laminar resistance. 

An alternative for some transfer functions would be to use those net

works that require gain admustment for pole-zero location. Gain can 

be adjusted by adjusting amplifier supply pressure. The development 

of such networks would facilitate the use of truly high, performance 

fluidic systems in situations where they were formally not economically 

feasible. 
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APPENDIX 

THE COMPLETE TRANSFER FUNCTIONS 

A.l Network 6 

Viewing the f l u i d i c schemat ic , shovm in F igu re 20a, us ing the 

r e s u l t s of equa t i ons (3 .39) and ( 3 . 4 2 ) , and s u b s t i t u t i n g a p p r o p r i a t e 

p a r a m e t e r s , g i v e s 

P c 3 1 , K U ' « * - - • K ' 
" {Vu~7Ti- > (KPie d l ) < i 7 C T T > • <A-l> p i s ^ P i i + 1 P1 S ^ P I 

S i m i l a r l y , 

^^^ZTI^/^i^-^). (A.2) 

T y p i c a l l y , t 

R c l l ". Rc21 " R d > 

Rc31 s s R c 3 2 t t R c 3 > (A.3) 

R01 * R02 ' 

and C ... • C _ * C . 
e l l c21 c i 

The parameters of equa t i ons (A . l ) and (A.2) a r e t hen def ined 

as 
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* Vir: + ir> cl " i 

Kx - K2 « K 
( R + R O I » ^ + RTC:^ ' 

c3 01 

1 , 1 
' ^ P i i * w P i 2 - ^ i - R ^ + 5 T c T ' ( A - 4 ) 

l cl cl cl 

" P I • l B T - R ^ ) ( C 1 + C e l ) . + HC3(C1 +CC 1) ' 

8 n d ^ P 2 " ^ r r ^ l C a + C c l ) - + B c 3 ( C 2 + C c l ) ' 

With reference to Figure 20a, t,. is the signal transit time from 

input to interaction chamber 3, through amplifier 1, t,« is the signal 

transit time to interaction chamber 3, through amplifier 2. t,~ is the 

signal transit time through interaction chamber 3, to output. 

A use of 

Pcd3 * Pc31 " Pc32 ' (A.5) 

and 

**s^d3 P K 0 e a* 
o a 3 

Pcd3 ^ ? » 3 + 1 ' 

the complete t ransfe r function can be wri t ten as 

V Kp iK1K(s/urp2-H)e"'Stdl> Kp^js/^+De 

Pi'"-' ^/^pi+^TiA^+UCs/wj^+l) 

(K a 3 /2)e"S d 3 

X r - -"T"T • 

(A.6) 

(A.7) 
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When amplifier and connecting line dynamics may be neglected, the result 

is 

Kpi Kpo 

P ' t r^ ' - jT 4 ' )^ tVi - W 
o _ 1 • . P 2 . P l _ r. • x 

P ^ . - S ^ a a " " T ^ ^ + l T T s ^ + l ) lA-W 

A.2 Network 7 

Viewing the fluidic schematic shown in Figure 20b, yields directly 

P , P - P 
cdl cd!2 *cdll ,A 0\ 

p s ~p — • • • ( A . 9 ) 

*ld Id 

where, by the results of equation (3.39) and substituting approgriate 

parameters 

Pcdll "Kl 
Pld S^P1 + X ' 

with 

ell 

and w n,= =——i—• +
 X 

ell ell ell 

By the results of equation (3.42),and.substituting appropriate parameters 

Ism* V •••••, (A n ) 
p
l d V" P 2 + i ' {A-11) 
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where K̂  iiz -
nf—i—. + L\ 
"AR TO

 + R ' 
cl2 

and or, P2 = R ^ I C + C c l 2 ) + R l C + C c l 2 ) -

Therefore 

Pcdl K 2 K l 
Pld " V ^ P 2 + 1 s ^ l + 1 • 

(A.12) 

I t will be assumed that the input signal path lengths are approxi

mately equal. Transport delay for the entire network can then be 

described by the single constant, t , , . I t i s further assumed that 

H c l l - B c l 2 - V ' - ' ( A a 2 ) 

Therefore 

. Kx « K2 « K . (A.13) 

The complete transfer function may then be written as 

P^ UMn + l) - (V^2tl) > a le'
S^ -; 

Pld = ^ P l + DCs/^ p 2 + 1) ~ s/*rpl +1 V lA*14; 

Note in the fluidic schematic the reversal of positive and nega

tive output ports. This gives rise to the negative sign in front of the 

above result. Neglecting amplifier and connecting line dynamics yields 
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A.3 Network 8 

Viewing the fluidic schematic, shown in Figure 21a, the system 

can be directly put into block diagram form. The block diagram is shown 

in Figure 48. Using the results of equations (3.39) and (3.42) and 

substituting appropriate parameters yields 

-st 

s/«J~+l > 

where 

Ke Vai-
a = - ,.-. - , (A.16) 

K, = 
1 Ri(RT7 + r-) 

Cll 1 

and ^ « ?; x-— + 
cll cll 1 cll 

K e"^ 0 

^fc"^ ' (A'17) 
K, 

s/wbo + 1 • ' 

c - rr-r-TT / (A.is) 
'P2 

where K 2
 Rf L xl\ ' 

R (
R - +

 R ) 

and " 2 = ^ ( e 1 . c c 2 ) + R^r • 

d - 2Kp2e
 d 2 . (A.19) 

® 
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• • K f ' 

e « —-—-. ( A # 2 0 ) 
s /w p f + 1 

where K-r = 
^f (R +R ; ) ( ^ + . r i ~ ) ' 

• • ~ K c l 2 f 0 2 

and 

OXpf'~Rciki2+Tri+k^r2' 

t ,, is the signal transit time from input, to interaction chamber 1, 

t^0 is the signal transit time through interaction chamber 1, to output 

t d 2 is "the signal transit time from output, through amplifier 2, and to 

interaction chamber 1. 

A reduction of the block diagram yields 

P0d ab 
P., . * 1 + bcde * 
id 

The complete transfer can be written as 

K i e " S t d l Kve"StdO 
7_i — ) ( - ^ L - ) 

P0d K*/«9l + * S / - P a l + 1 / 

(A.21) 

l d K-.e"S d 0 K0 - s t J O V 

^ ^ f c T T ^ V ^ H ^ d2)C ĵTr) 

(A. 22) 

or 

K,e" S t dl K . e " S t d O 

P 0 d ^a-^^i^^HjfcTTT) 
Z ^ " S5 ' " " ^^—I^^^^W^— ' " 'I I •' !•• • IIIIM^—W^—l• , • ! • — » . . n i l . I.III.H—I — I — • ! I — * i ^ — i l W W — — ^ 1 

l d K i e " S d 0 - s t , 0 Kf 

( s ^ 2 + l ) + K2 ( i f e - T l ) C2Kp2e
 d 2)(i^7TT) 

(A.23) 
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When amplifier and connecting line dynamics may be neglected, this 

simplifies to 

!°4 ^ l H * 1 ' ,.,.. 
Pld = ̂ P 2 + 1} + ̂ alVp^f ' 

A.4 Network 9 

It can be seen from its fluidic schematic, shown in Figure 21b, 

that network 9 is simply network 8 with a positive instead of a nega

tive feedback. The complete transfer function can then be written 

directly as 

•-st 

P0d V° / W p2 •' *' % *>Sl + 1 ' W « p ~ + 1 
p i ^ -st1A 
ld K-.e. d 0 -st K-

<*"i>2 + 1> - K2(sft—fT^^^e "JfefrT 

(A. 25). 

Pal " s/ Pf 

When amplifier and connecting line dynamics may be neglected 

3a • y«i (*i>2* » (A26) 
P l d T ^ p 2 + 1) - 2K a lK 2 K p 2K f V .<*•»> 

A. 5 Network 10 

An inspection of the network 10 schematic, shown in Figure 22a, 

shows that it is very similar to network 8. The difference is that 

the capacitor, G, now lies in the feedback loop. The block diagram of 

Figure 48 may be used, and all block transfer functions are identical, 

except those of blocks rtC,n and Me". 
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Id 

Figure 48. Network 8 Block Diagram. 
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Using the results of equations (3.39) and (3,42) and substituting 

appropriate quantities yields 

K o • • 

where 

•K.'- ' 

2 R * { & + &' 

and CJ"_,„ := - — - — + -
P 2 RC2CC2 R2CC2 ' 

e = ./ • , , (A.28) 
V Pf + i ' 

where Kc -

and w; 

f ( H + B ^ ( ^ + ^ } ? 

Pf = R c l 2 ( C + C c l 2 ) + ( R + R 0 2 K C + C c l 2 ) -

The complete transfer function can be written as 

-st,, 
K K e 

>0d
 (^pfV i ) (v^7TT)(iferTT) 

^ld ' ""^dl 

(s/~ p f + 1) + K f(^ i + 1 ) ( i 7 ^ T ) ( 2 K p 2 e "
S t d 2 ) 

;. • (A,29) 

When amplifier and connecting line dynamics may be neglected 
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P0d K lKal< s^Pf + 1 ) • • " • " • • • • ( * • * * 

P l d = ^ P f + 1 ) + ^alWf ' ^ l 

A. 6 Network 11 

I t can be seen from i t s f l u i d i c schemat ic , shown i n Figure 22b, 

t h a t network 11 i s simply network 10 with p o s i t i v e i n s t e a d of nega t ive 

feedback. The complete t r a n s f e r funct ion can then be w r i t t e n d i r e c t l y 

as 

- s t . 
K l K a l e d l 

pod (s /"Pf + 1)(^~TT)^7TT 
? l d K

 1 e " S t d l K0 . . s* 

t«Sf.+ 1> ^V&TTTJt^E^^ap^ d2> 
r . ' Pal ' P2 

(A. 31) 

(A.32) 

When a m p l i f i e r and connect ing l i n e dynamics may be neg lec ted 

P0d K l K a l ( s / " P f + 1 ) 

P l d
 J U / - p f + 1) - « a l K 2 K p 2 K f ' 

A.7 Network 12 

Viewing the fluidic schematic, shown in Figure 23a, the system 

can be directly put into block diagram form. The block diagram is shown 

in Figure 49. Using the results of equations (3.39) and (3.42) and 

substituting appropriate quantities yields 

' . " V^T+T ' (A.33) 

where K 
1 R I ( R T + R7> 

c l 1 



Id 

Figure 49. Network 12 Block Diagram, 

H 
N> 



and .*p = ̂ ~ + jrg- . 
Cl Ci 1 Cl 

and 

where 

b ' . 2 K p i 

K, 

'pa 

where ^ o ~ 2 ^ + v ^ + v ^ ) ' 

d = 2^po * 

K3 
" V"p3 + 1 ' 

( R3 + H02K57;+R,+Rn,) 

a n d "P3 = R c 3c c 3
 + I K 7 + R 0 2 ) c c 3 

K, where f nA^ + h ' fVRc32 Rf 

CJ „ a: — = — + 
a n d ** Rc3^c32 RfCc32 
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(A,34) 

o at -£. — (A 'VSY 
s/^0 + i > U.35; 

^ 2 • R C : ^ + c c 2 ) . + TR; 2 +"R01nc+7c^r. v 

(A.36) 

(A.37) 

V - • • • • ( A . 3 8 ) 
s/^pf + I V 
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t,, is the signal transit time from input, through amplifiers 1 and 2, 

to interaction chamber 3. t,f is the signal transit time through the 

feedforward loop, to interaction chamber 3. t.« *s t n e signal transit 

time through interaction chamber 3, to output. 

A reduction of the block diagram yields 

—-- - abcdef - fg . (A.39) 
Id 

The complete transfer may then be written directly as 

-s(tdl
 + t d 3 ) 

^Od 4K1K2Kp iKp2Ka3K3e _ 

pid * U / " P I + T ) ( s / wP2 + 1 } ( s H:3 + Hs/a/p a 3+ l) 
(A.40) 

K K -rf td 3*td f) K 0K-.e a3 f 
" TsM;a, +TJTs/^", + i) ' Pa3 ' * ' Pf 

or 

-s'twHio)- -sCtjo+trff) 
p_od ̂ K^^K^s/^-fDe * yZ-K^^nH^M^i)* ^ 
P l d '" (s/urp l + l ) ( s / o r p 2 + l ) ( s /ur p 3 + l ) ( s / U p f l 3 + l ) Cs/^p f + D 

CA.41) 

When a m p l i f i e r and connect ing l i n e dynamics may be neg l ec t ed 

P0d 4 K l K 2 K 3 K Pl K P2 K a3 " K a 3 K f ( s ^ > 2 + X > 
p l d

s " T ^ P 2 + i) (A.42) 

A. 8 Network 13 

It can be seen from its fluidic schematic, shown in Figure 23b, 

that network 13 is simply network 12 with a positive instead of a negative 
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feedforward loop. The complete t ransfer function can then be w r i t t e n 

d i r e c t l y as 

.-sCtjf+tj-^) "S('*H'*+W) 

!2d 4Wfa^a^+ l ) e +S&&Pl+M*&M*tfl)e 
P ld * ( s / ^ p 1 + l ) ( s / u r p 2 ^ l ) ( s ^ p 3 4 l ) ( s / ^ p a 3 4 - l ) ( s A r p f +1) 

(A.43) 

When amplifier and connecting line dynamics may be neglected 

P0d m
 4W3^1^63 + K a 3 K f ( : ^ P 2 + i ) 

'id ""• ~^SH2 
IL±^LJL^2 «? \ L£ (A 44} 

p . , TsM,0 + i) u ' 4 4 / 

A. 9 Network 14 

The schematic is shown in Figure 24a. Using the results of 

equation (3,9) and substituting appropriate quantities yields 

Pcl »
 i R -, (A.45) 

R i < c i + c c ) s + i r + 1 

c 

and •' 

: • p V - '^ : '• : ; ; : 

C2 R 
R 1 ( C 2 + C C ) S + R ; + 1 

Using Pcd * Pcl - P c 2 and P ^ * -P^ (A.46) 

results in 

P + ".•": P + C'"; 

Pcd * ~ V R —+• l
 R . U.47) 

VV+cc>» + i r + 1 Vc2+ cc)r+r+ 1 

\ c - c 

Since P d * 2P.+ , (A.48) 
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• - R ^ C ^ C ^ s + ^ + l + f i ^ C ^ ^ s + ^ + l 

_£l .• _ i L _ _ - _ £ _ (A. 49) 

l d 2 t S l ( c ^ + C e ) s + J - + l][R2{C2+Ce)s+.g2.+ I 

The complete transfer function is then 

(C1+Cc)/R2 + ( 0 2 + ^ ) / ^ 

JLrJL i l w JL( i- 4. i v J tJ- + JU + JL/JL + JLy 
P0d Rl Rc V V \ V VRc" V VRc V 

s+1 

X 
P l d 2 ( i + i ) ( J L + i ) C l + C c C 2 + C c 

l d 2M* + Ro
nR + R / - 7 — 7 ^ s + 1 i T-" s + 1 

(r+R7} (r+o 
c 1 c 2 

V 
- s td 

s/urpa + 1. 
(A.50) 

A. 10 Network 15 

The schematic is shown in Figure 24b„ Using the results of 

equation (3.9) and substituting appropricite quantities yields 

p c i > — l r - — <A-51> 
V C l + C e > s + R + 1 

• • • • ' . • • c • " • 

• • : P , '' 

and Pc2•-« — — j - - • (A.52) 

R2(c2 + c c ) s + ^ + i 
c 

(A.53) A use of Pcd ' Pcl "Pc2 ' 

gives 

Pl v 
Pcd = . ..^ ;vt, . R 2 . -,. 

(A.54) 

l2v 2 c'9 R^ c 
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or 

p R2(C + C ) s + R 2 + 1 . - ^ ( 0 + C > 8 - R 1 - 1 

c d : _ _ e • ,-• __ _ _ _ c 

P, = ~ R v ,-•'.." " R 9 • 
1 [ R ( C + C ) s + g i + i ] [ R 2 ( C '+• C c ) s + J T + 1] . • 

c c 

The complete transfer function is then 

-LrJLj. JL\ JLfJL + X* 

!od Ri Rc V "V R
C V : 

1 VR R . M R R . ' 
c 1 c 2 

( C 2 + C c ) / R l - ( C 1 + C e ) / R 2 

i i i i i , S + 1 

_L (A. + _I_\ . _L {-L + JL} -st 
R, R̂ R„ ; R . V R , R , J K e 

• C l + C c , f
C 2 K c , s ^ P a + 1 

I i + JL> , + 1 ( JL + i> R
c • « ! s+i Cv s + 1 

(A.55) 

(A.56) 

A. 11 Network 16 

The fluidic schematic is shown in Figure 25a. It can be seen 

that the input circuit to amplifier 1 is identical to the input circuit 

in network 4. Using the results of equation (3.34) yields 

Pcdl (sAr -f 1) 

••;.•••''..''••• P l K ' ^ P l +lTTs/ir p 2+l) ..3; 

where 
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Si : - R.Tc-rc^j +.. r^cj + ccl) > 

^ 2 - B2Tc2Vc^T + R IC X+ Ccl) • 

1 9 1 1 1 1 1 1 
z R2C2 - R1C1 Rx Rc R2- R2 RQ Rx 

I t fo l lows t h a t 

- s t , -
Pc21 s/urz + * K 3 e 

p ~ s ^ l ^ r ^ f + DCsA^^TTT^ s/urpa+ i ' (A-58) 

where 

. K 3 . - . (R3*V(£ + vn£>/ 

"P3 - tR3 + R01)cc21
 + Rc2Jcc21 > 

and t.« is the signal transit time from input, through amplifier 1, to 

interaction chamber 2. 

Using the results of equation (3.39) and substituting appropriate 

quantities yields 

""s d̂4 

Pl ^ T ^ ' 

where 
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""M " W C 2 2 + R A 2 2 ' 

and t , i s the signal t r a n s i t time from input, through r e s i s t o r R , to 

in t e rac t ion chamber 2. 

Using the amplifier 2 t ransfer function and the equation 

^ - £ 2 2 ^ 4 )(JaU); (A.60) 
*1 1 cd2 

y ie lds 

P 0 d 2 = ^ P l K 3 ( s ^ r z ^ l ) e " S t d 3 > V ^ t d 4 

Wwv» +" iTTiMjo + I ) ( S M > Q + l) " s/C~TT 

K * " S t d 2 
a2 

7 7 — — x r »••••'' ( A . 6 i ) 
s / w 0 a 0 + 1 • 

JT a *i 

or 

(A.62) 

-sOLio+tri J "sfeo'̂ ^rt/i^ 
P 0 d 2 • ^ K a 2 ^ ( s ^ 2 + l ) ( ^ 4 h l ) e ^ ^ ^ ^ l ^ ^ ^ 1 ^ ^ ^ 6 

Px * (s/orpi + 1) (s /c j ^TTf is /o r p 3 + 1 ) (s/£rp4 + l ) U/ar p a 2 + 1) 
\* ' 

When amplifier and connecting line dynamics may be neglected 

P0d2 ^ i W ^ + X ) + Ka-2K4(V^p.+ D ( ^ p 2 t l ) 
Px ~ T s ^ ~ •+ 1) (s/crp2 +U (A.63) 

or 

pod2 *4Ka" 3 ( s ^ z + 1)^Cv^r^XvUp;-^) 
p7~ *K4l<a2 • " ^ p i . + i ) t v k 2

: + i ) . ' ; (A*64) 
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K ' KK*-.. }\n 

K* * -H-T1-1 (A.65) 
•k4Ka2-.': 

pod rr^K'K-pur r r - K ? 7 A ^ «- u ^ x 

p ^ - K4Ka2(l .K.) — - ^ - g ^ ^ (A 66) 

A.12 Network 17 

Viewing the fluidic schematic,, shown in Figure 25b, the system can 

be directly put into block diagram form. The block diagram is shown in 

Figure 50. Using the results of equations (3.39) and (3.42) and substitu

ting appropriate quantities yields the results 

" s t dl K e 
' 1 " i , • 

• • - q j t p l + r '•;• (A-67) 

where K 
R i ( RT7 + a:) 

e l l i 

and CJT , V — 1 — ~ + l 

P 1 R c l l C c l l R l C c l l 

b ;« 2 ^ • (A.68) 

K, 

"P2 
- V ^ W ^ l V (A.69> 

where K 2 <«+V<4+R^>' 

and ^ 2 " ( R + R S ( C + C J +R JC+C J • 
01' c2 c2 c2 



$» e s*.- od 

Figure 50. Network 17 Block Diagram, 
c 
Ov 
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° d « 2Kp2 . (A.70) 

.' ' K o ' • 

e . 7 r ^ r r (A.71) 
SMP3 .+ 1 • 

where K 3 ^ - V ^ ^ ! ^ ^ ) , 

>3 = l ^ ^ 

K a / S t d 3 

fmT&£?FIT-- •-•. 

K / ^ 

9 .'y^f+ i • • ' • 

_ i 

* R c l 2 R f 

where K 

and <4>* * r ^ + 

(A.72) 

(A.73) 

P f Rcl2Ccl2 RfC<:12 ' 

t̂ ,' is the signal transit time from input, to interaction chamber 1. 

"td3 is the signal transit time through interaction chamber 1 and through 

amplifiers 1 and 2, to output* t^f is the signal transit time from output, 

through the feedback loop, to interaction chamber 1. 

A reduction of the block diagram yields 

p 
J S i . . abcdef (A 74) 
P r 1 + bcdefg ' .-• VA. /4 / 

o r 
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~ s ^ d l "p S^d3 
K .e K^ ' < £ « - • ^ a 3 e 

PM {^Tr[){*ei)(^rr)u V c 3 ^ > ( * ? w T } 
P l • * K K K e ~ " S t d 3 K e " S t d f 

i + (2,W (^TT) CV (V^TT ) (V%^I) <$£*t ) 

or 

pod ^i^Wa1^"^1 

i^3^1 P 1 

( ^ + 1 > ( ^ ^ ^ ^ 

When amplifier and connecting line dynamics may be neglected 

Typically, 

and He - Rc2 - Rc3 . 

Therefore V j ^ » ox »csp . 

Using equation (A.78) in (A.77) yields 

P 0 d KCl + l^) 

Pl 4 + 4 + { 1 + K L ) 

(A. 76) 

P0d 4 K Pl K P2 K l K 2 K 3 K a3 fa 77^ 

Px - T s / ^ + D r s ^ + i ) + ^Kp^iyCgK^Kj • u ' 7 7 > 

R01 ttR02> U - 7 ^ 

(A.79) 
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where K^ » 4Kp^KppK0K,.K QX r , 

4KPlKP2KlK2K3Ka3 
and K 

A. 13 Network 18 

1 + KL 

Viewing the fluidic schematic, shown in Figure 26, the system 

can be directly put into block diagram form* The block diagram is shown 

in Figure 51 and a reduced block diagram in Figure 52. Using the results 

of equations (3.39) and (3.42) and substituting appropriate quantities 

yields the following results. 

(A.80) 

where 

v" t < u . 
* s7<*Pl + i 

a 
v" t < u . 

* s7<*Pl + i 

K. • 
I 

i K. • 
I 

1 R C l l ; R l . 

— 1. 1 1 

~pl RcllCcll ' RlCcll 

2K?l . (A.81) 

( t Qo'Y 
K2 



a I - M l ^ l Hu c d e —*6?)—> 
+ f 

« 1 a 

" 1 Hu c d e —*6?)—> 
+ f " 1 

—*6?)—> 
+ f " 1 

g 

—*6?)—> 
+ f 

s 

g 

s s 
. h 

l 
•• i . h 

Figure 51. Network 18 Block Diagram, 

H 
•P* 
O 



""I 

p. 
* Q , y. a p^-^0- mfcl •H f 

• h 

• P . « 
-$» QCIJ 

Figure 52. Network 18 Reduced Block Diagram. 

4> 
H* 
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d - 2K ? 2 . (A.83) 

* V . • 
e ' ' " ' ' T ^ T T » : . (A.84) 

S ^ P 3 * l 

where K = — 

c 3 V2. 

- P 3 = D f T R ^ ^ 

K . e " S t d 3 

f - 7 7 7 - — T T • ' (A.85) 
Pa 3 

5 / Pa3 * 

K e d 9 
' Q -

9 *v^g + r . ' 

1 

where K « -
2 Hc32 R 2 

1 ' 1 ' •' 

and OJ » • — + r ~ 
P 3 c32 c32 R 2 c 3 2 

where K 

Pf 

1 

(A. 86) 

K e " S t d f 

^fc^'V (A.87) 

f V R 1 - ' - R^ ' 
f R e l 2 R f 

and cs -.••• _—1 4. 1 
" R c l 2 C c l 2 R f C c l 2 V ( 

t . , i s t h e s i g n a l t r a n s i t t ime from i n p u t , t o i n t e r a c t i o n chamber X, 
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t, is the signal transit time through the feedforward loop, to inter

action chamber 3, t,^ is the signal transit time through interaction 

chamber 3, to output, t.^'is the signal transit time from output, through 

the feedback loop, to interaction chamber 1. 

A reduction of the block diagram of Figure 52 yields 

P 
od3 a abcdef + fq 
P. ~ * 1. + bcdefh " Id 

(A. 88) 

Therefore, 

K ^ K2 K3 Ka3e"
Std3 Ka3<f

Std3 K e ^ _ 

Poa _ ( * ^ ( 2 K F I ) ( j ^ ) ( 2 K P 2 ) ( j £ f o H ) ^ a H ' ^ ^ f t j H ) ¥ y T ) 

Pld K K K e " ^ 3 K e"$ t d 9 

1 + (2KPiH^-?r)t2kp2) ( — ^ (^g—^) (^r j ry) 
(A. 89) 

or 

!°d 4K p l K p 2 KK 2 3K a 3( s /^ p f - t - l ) ( s /ur p o -H)e ' S ( t d l + t d 3 

pid " W^p1
+i)U/^p2+i)(s7cJp3+i)(s/wpa3+i)(s/^pf+i)(s/wPg+iT 

-s(tr t ,+tdo) 

; W^i*1^*^*1)^*1***^*1**-' 9
 (A.90) 

+ 4KplKp2K2K3Ka3Kf (s/^pg+l) (S/c<rpl+l)e"
S t d 9 + t d f 

When amplifier and connecting line dynamics may be neglected 

P0d 4KPlKP2KlK2K3Ka3 •t-Ka3Kq^/^P2-fl) (s/^P3+l) 

Pld * I ^ P 2 « ) ( ^ f 3 « )
 +4KPlKP2K2K3Ka3Kf 

Typically, 
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R „•« R 0• « R , (A.91) 
c2 c3 c ' 

and R01 * R 0 2 .'•" 

Therefore 1p2 " ̂ 3 * ̂ P ' (A.92) 

Using the results of equations (A.91) and (A,,92) in equation (A.90) 

yields 

4KP1KP2K1K2K3 '. s
2 . 2s". • + -~— + ~rr + 1 

J » - v » - ^ - 5 ' — - - — <*•«> 
r£ . r . 
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