
6-CONNECTED GRAPHS ARE TWO-THREE LINKED

A Dissertation
Presented to

The Academic Faculty

By

Shijie Xie

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Algorithms, Combinatorics and Optimization

School of Mathematics
Georgia Institute of Technology

December 2019

Copyright c© Shijie Xie 2019



6-CONNECTED GRAPHS ARE TWO-THREE LINKED

Approved by:

Dr. Xingxing Yu, Advisor
School of Mathematics
Georgia Institute of Technology

Dr. Robin Thomas
School of Mathematics
Georgia Institute of Technology

Dr. Prasad Tetali
School of Mathematics
Georgia Institute of Technology

Dr. Richard Peng
School of Computer Science
Georgia Institute of Technology

Dr. Lutz Warnke
School of Mathematics
Georgia Institute of Technology

Date Approved: October 24, 2019



No, emptiness is not nothingness. Emptiness is a type of existence. You must use this

existential emptiness to fill yourself.

Liu Cixin, The Three-Body Problem



To my parents and my wife.
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SUMMARY

Let G be a graph and a0, a1, a2, b1, and b2 be distinct vertices of G. Motivated by their

work on Four Color Theorem, Hadwiger’s conjecture for K6, and Jørgensen’s conjecture,

Robertson and Seymour asked when does G contain disjoint connected subgraphs G1, G2,

such that {a0, a1, a2} ⊆ V (G1) and {b1, b2} ⊆ V (G2). We prove that if G is 6-connected

then such G1, G2 exist. Joint work with Robin Thomas and Xingxing Yu.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction to Hadwiger’s conjecture and 2-3 linked graphs

The Four Color Theorem [1, 2, 3] asserts that every loopless planar graph admits a

vertex 4-coloring. The related problem was first put forward by Francis Guthrie in 1852,

who asked whether it is true that any planar map can be colored with four colors such that

adjacent regions receive different colors. In 1976, Appel and Haken [1] claimed a proof of

the Four Color Theorem with the help of a computer. However, some computer-free parts

of their proof are complicated and tedious to verify. In 1997, Robertson, Sanders, Seymour,

and Thomas [2, 3] gave a much simpler proof for the Four Color Theorem.

According to Kuratowski’s theorem [4], a graph is planar if and only if it contains

no K5-subdivision or K3,3-subdivision. Moreover, it is well known that any 3-connected

nonplanar graph other than K5 contains a K3,3-subdivision. Hence, as an extension of

the Four Color Theorem, it is natural to ask whether every graph without K5-subdivision

is also 4-colorable. More generally, Hajós [5] conjectured that for any positive integer

k, any graph containing no Kk+1-subdivision is k-colorable. This conjecture is true for

k ≤ 3, but Catlin [5] found counterexamples to this conjecture for each k ≥ 6. However,

the cases for k = 4 and k = 5 are still open. Efforts have been made to resolve Hajós’

conjecture for k = 4. Yu and Zickfeld [6] proved that a minimum counterexample to Hajós’

conjecture when k = 4 must be 4-connected. Moreover, Sun and Yu [7] showed that if G

is a minimum counterexample to Hajós’ conjecture and S is a 4-cut in G then G − S has

exactly two components. In fact, if one can show a minimum counterexample to Hajós’

conjecture for k = 4 is 5-connected, then Hajós’ conjecture for k = 4 will immediately

follow from the Kelmans-Seymour conjecture [8, 9]: Every 5-connected nonplanar graph

1



contains K5-subdivision. This Kelmans-Seymour conjecture was recently proved by He,

Wang, and Yu [10, 11, 12, 13].

While Hajós’ conjecture concerns the chromatic number of graphs with no Kk+1-

subdivision, Hadwiger [14], in 1943, conjectured a far-reaching generalization of the Four

Color Theorem in terms of Kk+1-minor: For any positive integer k, if a graph contains no

Kk+1-minor then it is k-colorable.

It is easy to prove that Hadwiger’s conjecture holds for k ≤ 2. Hadwiger [14] and

Dirac [15] proved the case for k = 3. For k = 4, Hadwiger’s conjecture is equivalent to the

Four Color Theorem by the result of Wagner [16], which characterized graphs containing

no K5-minor and showed that Four Color Theorem implies that graphs containing no K5-

minor are 4-colorable. The case k = 5 can also be reduced to the Four Color Theorem, as

shown by Robertson, Seymour, and Thomas [17]. However, this conjecture remains open

for k ≥ 6.

In fact, there are also many other interesting results related to Hadwiger’s conjecture.

Suppose Hadwiger’s conjecture is false for some k, and let G be a minor minimal coun-

terexample. Dirac [15] showed that G is 5-connected when k ≥ 5, and Mader [18] showed

that G is 6-connected when k ≥ 5, and 7-connected when k ≥ 6. Kawarabayashi and G.

Yu [19] proved that G is (2k/27)-connected, improving upon an earlier bound in [20].

Let the stability number α(G) of a graphG denote the size of the largest stable set inG.

Then every n-vertex graph G has chromatic number at least dn/α(G)e, and should contain

a clique minor of this size if Hadwiger’s conjecture is true. In 1982, Duchet and Meyniel

[21] proved that every n-vertex graph G has a Kk-minor where k ≥ n/(2α(G) − 1).

Moreover, there has been a subsequent improvement by Fox [22]. And then Balogh and

Kostochka [23] further improved the result, and showed that every n-vertex graph G has

a Kk-minor where k ≥ 0.51338n/α(G). Later, in 2007, Kawarabayashi and Song [24]

proved that every n-vertex graphGwith α(G) ≥ 3 has aKk-minor where k ≥ n/(2α(G)−

2).
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For an n-vertex graph G with α(G) = 2, the Duchet-Meyniel theorem implies that

there is a Kk-minor with k ≥ n/3, which was strengthened by Böhme, Kostochka and

Thomason [25] in 2011. They proved that every n-vertex graph with chromatic number t

has a Kk-minor where k ≥ (4t− n)/3.

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours. So graphs

with stability number two are claw-free. Fradkin [26] showed that every n-vertex connected

claw-free graph G with α(G) ≥ 3 has a Kk-minor where k ≥ n/α(G). Furthermore, in

2010, Chudnovsky and Fradkin [27] proved that every claw-free graph G with no Kk+1-

minor is b3k/2c-colorable.

Since line graphs are claw-free, these results about claw-free graphs are related to a

theorem of Reed and Seymour. They showed [28] that Hadwiger’s conjecture is true for

line graphs (of multigraphs).

We say that H is an odd minor of G if H can be obtained from a subgraph G′ of G by

contracting a set of edges that is a cut ofG′. Clearly, a graph containsK3 as an odd minor if

and only if it is not 2-colorable. In 1979, Catlin [5] showed that if G has no K4 odd minor

then G is 3-colorable. A fully odd K4 in G is a subgraph of G which is obtained from K4

by replacing each edge of K4 by a path of odd length in such a way that the interiors of

these six paths are disjoint. Zang [29] in 1998 and, independently, Thomassen [30] in 2001

proved the conjecture of Toft [31] that if G contains no fully odd K4 then G is 3-colorable.

In 1995, Gerards and Seymour conjectured a strenthening of Hadwiger’s conjecture (see

[32]) that for every k ≥ 0, if G has no Kk+1 odd minor, then G is k-colorable, which is

known to be true for k ≤ 3. More interesting results and open problems about Hadwiger’s

conjecture and its variations can be found in [33], which was written by Seymour in 2016.

Now, we come back and spend a bit more space on the k = 5 case of the Hadwiger

conjecture. As we mentioned, Mader [18] proved that any minor minimal counterexample

to the Hadwiger conjecture for k = 5 is 6-connected. Jørgensen [34] conjectured that every

6-connected graph contains a K6-minor or has a vertex whose removal results in a planar
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graph. Therefore, if Jørgensen’s conjecture holds, then Hadwiger’s conjecture for k = 5

easily reduces to the Four Color Theorem. In 2017, Kawarabayashi, Norine, Thomas, and

Wollan [35] showed that Jørgensen’s conjecture holds for sufficiently large graphs.

In their work [17], Robertson, Seymour, and Thomas proved that Jørgensen’s conjec-

ture holds for each 6-connected graph in which some edge is contained in four triangles.

(However, they were not able to resolve the Jørgensen conjecture. Instead, they explored

different structures of a minimum counterexample to the Hadwiger conjecture.) It is natural

and useful to extend this result to graphs in which some edge is contained in three triangles:

Given a 6-connected graph G and triangles aib1b2ai for i = 0, 1, 2 in G, can we prove that

G contains K6-minor or has a vertex whose removal results in a planar graph?

A first step is to prove that 6-connected graphs are two-three linked: If G is a 6-

connected graph and a0, a1, a2, b1, b2 are distinct vertices of G, then G contains disjoint

connected subgraphs G1, G2 such that {a0, a1, a2} ⊆ V (G1) and {b1, b2} ⊆ V (G2). In

fact, Robertson and Seymour asked for a characterization of two-three linked graphs. We

believe that we have such a characterization except that it is quite complicated (even to

state) and its proof is long.

1.2 A main theorem about 2-3 linked graphs

For convenience, we use (G, a0, a1, a2, b1, b2) to denote a graph G and distinct vertices

a0, a1, a2, b1, b2 ofG, and call it a rooted graph. A cluster in a graphG is a set X of disjoint

subsets of V (G) such that each member of X induces a connected subgraph of G. We say

that a rooted graph (G, a0, a1, a2, b1, b2) is feasible if there exists a cluster {X1, X2} in G

such that {a0, a1, a2} ⊆ X1 and {b1, b2} ⊆ X2. We can now state our result as follows.

Theorem 1.2.1 Let (G, a0, a1, a2, b1, b2) be a rooted graph, and assume G+ b1b2+ {aibj :

i = 0, 1, 2 and j = 1, 2} is 6-connected. Then (G, a0, a1, a2, b1, b2) is feasible.

We may view the problem of characterizing feasible rooted graphs as a generalization
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of the following problem of characterizing 2-linked graphs: Given a graph G and four

distinct vertices a1, a2, b1, b2 of G, when does G contain disjoint paths from a1, a2 to b1, b2,

respectively? Several characterizations of 2-linked graphs are known in [36, 37, 38, 39]

and have been used extensively in the literature for proving important structural results on

graphs (e.g., in the graph minors project of Robertson and Seymour).

Suppose γ := (G, a0, a1, a2, b1, b2) is an infeasible rooted graph such that b1b2 /∈ E(G),

aibj /∈ E(G) for i = 0, 1, 2 and j = 1, 2, and G∗ := G+ b1b2 + {aibj : i = 0, 1, 2 and j =

1, 2} is 6-connected. A B-bridge of G is a subgraph of G induced by all edges in a com-

ponent of G− V (B) and all edges from that component to B.

In Chapter 2, we will present the proof of our main theorem, and in Chapter 3, some

future works will be introduced.

In fact, in section 2.1, we show that for some i ∈ {0, 1, 2}, G has an ai-frame A,B in

(G, a0, a1, a2, b1, b2), that is G− ai has disjoint paths A from ai−1 to ai+1 and B from b1 to

b2 (with a−1 = a2, a3 = a0). Moreover, given an ai-frame A,B for some i ∈ {0, 1, 2}, we

will prove some useful properties. For example, we prove that theB-bridge ofG containing

ai can be drawn in a disk in which no two edges cross, and b1, b2, ai occur on the boundary

of the disk.

In section 2.2, we further show that γ has a good frame and an ideal frame. For an ideal

ai-frame A,B in γ, roughly speaking, we group the (A ∪ B)-bridges of G not containing

ai into slim connectors and fat connectors.

In sections 2.3 and 2.4, we deal with the case when there exists at least one fat connector

in A,B. In section 2.5, we solve the case when there does not exist any fat connector. In

this case, G−A can be drawn in a disk in which no two edges cross, b1, b2, ai occur on the

boundary of the disk, and anyA-B path inG is induced by a single edge. So the structure of

G is quite simple in some sense. However, in both cases, we will try to find a configuration

consisting of paths with special properties, and use them to force a small cut in G or show

that (G, a0, a1, a2, b1, b2) is feasible.
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For readers’ convenience, we also draw Figure 1.1 containing the illustration of struc-

tures of some important special graphs, which shows a sketch of our proof idea.

Finally, we end this chapter with some notation and terminology. Let G1, G2 be two

graphs. We useG1∪G2 (respectively,G1∩G2) to denote the graph with vertex set V (G1)∪

V (G2) (respectively, V (G1)∩V (G2)) and edge set E(G1)∪E(G2) (respectively, E(G1)∩

E(G2)). Let G be a graph, a separation in G is a pair (G1, G2) of edge-disjoint subgraphs

G1, G2 of G such that G = G1 ∪G2. And |V (G1) ∩ V (G2)| is the order of the separation

(G1, G2). Let P be a path, and let u, v ∈ V (P ). Then we write P [u, v) := P [u, v] −

v, P (u, v] := P [u, v]− u, and P (u, v) := P [u, v]− {u, v}. For any positive integer m, we

let [m] := {1, · · · ,m}.

6



(G, a0, a1, a2, b1, b2)

a1 a2

b1 b2

a0

An a0-frame

A good frame
a1 a2

b1 b2

a0

u1 u2

v1 v2

Two different ideal frames

An ideal frame with a fat connector An ideal frame with only slim connectors

a1 a2

b1 b2

a0

a1 a2

b1 b2

a0

u1 u2

v1 v2

Figure 1.1: A flow chart of proof
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CHAPTER 2

THE PROOF OF MAIN THEOREM

2.1 Frames

In the first section of this chapter, we state some known results and prove some lemmas

that we will use. In particular, we show that an infeasible rooted graph must contain a

“frame” which consists of two disjoint paths.

A result we use often is Seymour’s characterization of 2-linked graphs [37] (with equiv-

alent versions in [36, 38, 39]). To state this result we introduce several concepts. A disk

representation of a graph G is a drawing of G in a disk in which no two edges cross. A 3-

planar graph (G,A) consists of a graph G and a set A = {A1, ..., Ak} of pairwise disjoint

subsets of V (G) (possibly A = ∅) such that

(i) for i 6= j, NG(Ai) ∩ Aj = ∅,

(ii) for 1 ≤ i ≤ k, |NG(Ai)| ≤ 3, and

(iii) if p(G,A) denotes the graph obtained from G by (for each i) deleting Ai and adding

edges joining every pair of distinct vertices in NG(Ai), then p(G,A) can be drawn in

the plane without crossing edges.

If, in addition, b0, b1, ..., bn are vertices in G such that bi /∈ A for 0 ≤ i ≤ n and A ∈ A,

p(G,A) can be drawn in a closed disk with no edge crossings, and b0, b1, ..., bn occur on the

boundary of the disk in this cyclic order, then we say that (G,A, b0, b1, ..., bn) is 3 -planar.

If there is no need to specify A, we may simply say that (G, b0, b1, ..., bn) is 3-planar. If

A = ∅, we say that (G, b0, b1, ..., bn) is planar. Moreover, we say that a face of (the disk

representation of) G is finite, if the face is inside the disk.
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Lemma 2.1.1 (Seymour, 1980) LetG be a graph with distinct vertices x1, x2, x3, x4. Then

either (G, x1, x2, x3, x4) is 3-planar, or G has a cluster {X1, X2} such that {x1, x3} ⊆ X1

and {x2, x4} ⊆ X2.

We say that a sequence (α1, · · · , αn) is larger than (β1, · · · , βm) with respect to the

lexicographic ordering if either

(i) m < n and αi = βi for i = 1, · · · ,m, or

(ii) there exists j ∈ [min(m,n)] with αj > βj and αi = βi for all i < j.

We will also use the following lemma to modify paths.

Lemma 2.1.2 Let G be a connected graph and P be a path between vertices u1 and u2 of

G, and let C denote a component of G− P . Then one of the following holds:

• G has a separation (G1, G2) such that |V (G1∩G2)| ≤ 2, V (C)∪{u1, u2} ⊆ V (G1),

and |V (G2 −G1)| ≥ 1, or

• G has an induced path Q from u1 to u2 such that G − Q is connected with C ⊆

(G−Q).

Proof. We choose a path Q in G from u1 to u2 and label the components of G − Q as

C1, . . . , Cn such that C ⊆ C1 and |V (C2)| ≥ · · · ≥ |V (Cn)|, and, subject to this, s(Q) :=

(|V (C1)|, |V (C2)|, · · · , |V (Cn)|) is maximum under the lexicographical ordering. Note

that Q is well defined because of P .

Then Q is an induced path in G. For, otherwise, let Q′ be the induced path in G[Q]

from u1 to u2 then s(Q′) > s(Q), a contradiction. If n = 1 then the assertion of the lemma

holds. So assume n ≥ 2.

Let ln, rn ∈ NG(Cn)∩V (Q) such thatQ[ln, rn] is maximal. We may assume there exists

Cj with j < n such that NG(Cj) ∩ Q(ln, rn) 6= ∅; otherwise, G has a separation (G1, G2)

such that V (G1 ∩G2) = {ln, rn}, V (C) ∪ {u1, u2} ⊆ V (G1), and V (Cn) ⊆ V (G2 −G1),

a contradiction.
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Now letQ′ be an induced path between u1 and u2 inG[Q∪Cn] such thatQ′∩Q(ln, rn) =

∅. Clearly, s(Q′) > s(Q) under the lexicographical ordering, a contradiction. 2

In the remainder of this paper, we will always assume that

• γ := (G, a0, a1, a2, b1, b2) is a given rooted graph such that b1b2 /∈ E(G), aibj /∈

E(G) for i = 0, 1, 2 and j = 1, 2, and

• G∗ := G+ b1b2 + {aibj : i = 0, 1, 2 and j = 1, 2} is 6-connected.

When we write ai+j , we understand that the subscript i + j is taken modulo 3. In the next

two lemmas, we show that G does not admit certain separations.

Lemma 2.1.3 G has no separation (G1, G2) such that V (G1∩G2) = {c1, c2, c3, c4, c5, c6},

|V (G2 −G1)| ≥ 2, {a0, a1, a2, b1, b2} ⊆ V (G1), and (G2, c1, c2, c3, c4, c5, c6) is planar.

Proof. For, otherwise, let G′2 := G2 + {c1c2, c2c3, c3c4, c4c5, c5c6, c6c1, c1c3, c3c5, c5c1},

which is planar as (G2, c1, c2, c3, c4, c5, c6) is planar.

Since G∗ is 6-connected, G2 has at least one edge from each ci to V (G2 − G1) and,

hence, the number of edges inG2 with at least one end in V (G2−G1) is at least (6|V (G2−

G1)| + 6)/2 = 3|V (G2 − G1)| + 3 = 3|V (G2)| − 15. Thus, G′2 has at least 3|V (G2)| −

15 + 9 = 3|V (G2)| − 6 edges.

Thus, G′2 is a planar graph with exactly 3|V (G′2)| − 6 edges and each ci has a unique

neighbor in G2−G1. Note thatG′2 must be a planar triangulation. Therefore, the neighbors

of c1, · · · , c6 in G2−G1 are the same. Hence, since G∗ is 6-connected, |V (G2−G1)| = 1,

a contradiction. 2

Lemma 2.1.4 G has no separation (G1, G2) such that |V (G1 ∩ G2)| = 4 and for some

permutation π of {0, 1, 2}, aπ(0), aπ(1), bj ∈ V (G2 −G1), |V (G2 −G1)| ≥ 4, aπ(2), b3−j ∈

V (G1), and (G2, aπ(0), bj, aπ(1), V (G1 ∩G2)) is planar.

Proof. Suppose to the contrary that such a separation (G1, G2) exists in G and let V (G1 ∩

G2) = {c1, c2, c3, c4} such that (G2, aπ(0), bj, aπ(1), c4, c3, c2, c1)) is planar. Let X :=
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V (G2 − G1) − {aπ(0), aπ(1), bj}. Since G∗ is 6-connected, we see that G2 has at least

two edges from bj to X and at least three edges from aπ(i) to X for i ∈ {0, 1}.

Further, for any i ∈ [4], ci has a neighbor in X . For, otherwise, suppose, for some i ∈

[4], ci has no neighbor in X . Then by applying Lemma 2.1.3 to the separation (G[V (G1)∪

{ci}], G2 − ci) in G, we see that |X| = 1. It then follows from planarity that bj has at most

one neighbor in X , a contradiction.

Hence, the number of edges inG2 with at least one end inX is at least (6|X|+1+1+1+

1+3+3+2)/2 = 3|X|+6. SoG′2 := G2+{c1c2, c2c3, c3c4, c4aπ(1), aπ(1)bj, bjaπ(0), aπ(0)c1,

c2aπ(0), c2bj, c2c4, c4bj} has edges at least 3|X| + 6 + 11 = 3(|X| + 7) − 4. On the other

hand, since G′2 is planar (as (G2, aπ(0), bj, aπ(1), c4, c3, c2, c1) is planar), G′2 has at most

3(|X|+ 7)− 6 edges, a contradiction. 2

For i ∈ {0, 1, 2}, an ai-frame in γ consists of disjoint paths A from ai−1 to ai+1 and B

from b1 to b2 in G− ai, such that A is induced in G, G−A is connected, and the B-bridge

of G containing ai does not contain A. The next lemma says that if γ is infeasible then it

has a frame.

Lemma 2.1.5 If γ is infeasible then there exists i ∈ {0, 1, 2} such that γ has an ai-frame.

Proof. Since G∗ is 6-connected, G− {a0, a1, a2} contains an induced path P from b1 to b2

such that G−{a0, a1, a2}−P 6= ∅. By Lemma 2.1.2, G−{a0, a1, a2} has an induced path

Q from b1 to b2 such that C := G− {a0, a1, a2} −Q is connected and C 6= ∅.

Note that there exists a permutation i, j, k of {0, 1, 2} such that NG(aj) ∩ V (C) 6= ∅

and NG(ak) ∩ V (C) 6= ∅, or NG(aj) ∩ V (C) = ∅ and NG(ak) ∩ V (C) = ∅. In the

former case, G − ai contains disjoint paths from b1, aj to b2, ak, respectively. In the latter

case, NG(aj) ∩ V (Q(b1, b2)) 6= ∅ and NG(ak) ∩ V (Q(b1, b2)) 6= ∅; so we have a path in

G[Q(b1, b2)+{aj, ak}] from aj to ak and a path from b1 to b2 inG−{a0, a1, a2}−Q(b1, b2).

Hence, there exists i ∈ {0, 1, 2} such that G − ai has disjoint paths A∗ and B from

ai−1, b1 to ai+1, b2, respectively. Since γ is infeasible, ai and A∗ are contained in different
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components of G − B. Hence, ai and B are contained in a component of G − A∗. So by

Lemma 2.1.2, G has an induced pathA between ai−1 and ai+1 such thatG−A is connected

andB+ai ⊆ G−A. Since γ is infeasible, theB-bridge ofG containing ai does not contain

A. Hence, A,B is an ai-frame in γ. 2

In the next two lemmas, we derive useful information about frames in γ, seen at Fig-

ure 2.1.

a1 a2

b1 b2

a0

Figure 2.1: An a0-frame

Lemma 2.1.6 Suppose γ is infeasible and A,B is an ai-frame in γ. Let Ai(B) denote the

B-bridge ofG containing ai, and let V (Ai(B)∩B) = {d1, · · · , dt} such that b1, d1, · · · , dt,

b2 occur on B in this order. Then (Ai(B) ∪B, ai, b1, d1, · · · , dt, b2) is planar.

Proof. Let G′ = G/A, and let a′ denote the vertex representing the contraction of A.

Since γ is infeasible, G′ has no disjoint paths from a′, b1 to ai, b2, respectively. So by

Lemma 2.1.1, there exists a set S of pairwise disjoint subsets of V (G′), such that (G′,S, a′,

b1, ai, b2) is 3-planar.

Note that for any S ∈ S , a′ ∈ NG′(S). For, otherwise, NG(S) is a cut in G∗ separating

S from {a0, a1, a2, b1, b2}, a contradiction as G∗ is 6-connected.
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Thus, for any S ∈ S, we have |NG′(S) ∩ V (B)| ≤ 2. Hence, S ∩ Ai(B) = ∅.

For otherwise, since a′ ∈ NG′(S), there exists u ∈ V (Ai(B) ∩ B), such that u ∈ S.

But then G − A contains three internally disjoint paths from u to b1, b2, ai, respectively,

a contradiction to the existence of cut NG′(S). Therefore, Ai(B) ⊆ G′ − ∪S∈SS, and

G′ − ∪S∈SS has a disk representation with b1, b2, ai on the boundary of the disk. Thus,

Ai(B) ∪ B inherits a disk representation with b1, b2, ai occurring on the boundary of the

disk. Since Ai(B) ∪ B − B has only one component, (Ai(B) ∪ B, ai, b1, d1, · · · , dt, b2) is

planar. 2

Suppose A,B is an ai-frame in γ. Let Ai(B) denote the B-bridge of G containing ai.

By a double cross in A,B we mean a pair of disjoint connected subgraphs A′, B′ (in this

order) of G − (Ai(B) − B) for which there exist a′1, a
′
2 ∈ V (A) and b′1, b

′
2 ∈ V (B), such

that V (A′) includes a′1, a
′
2 and at least one vertex ofB(b′1, b

′
2) and is otherwise disjoint from

A∪B[b1, b
′
1]∪B[b′2, b2], and V (B′) includes b′1, b

′
2 and at least one vertex of A(a′1, a

′
2) and

is otherwise disjoint from B∪A[a1, a′1]∪A[a′2, a2]. The vertices a′1, a
′
2, b
′
2, b
′
1 (in this order)

are called the terminals of the double cross.

Lemma 2.1.7 If γ is infeasible then there is no double cross in γ.

Proof. Without loss of generality, assume A,B is an a0-frame in γ. Suppose A′, B′ is a

double cross in A,B with terminals a′1, a
′
2, b
′
2, b
′
1. Let H = A(a′1, a

′
2) ∪ B(b′1, b

′
2) ∪ (A′ −

{a′1, a′2}) ∪ (B′ − {b′1, b′2}). Consider the graph G′ obtained from G by contracting H to a

single vertex h.

Since G∗ is 6-connected, then, combined with the existence of four disjoint paths

A[a1, a
′
1], A[a

′
2, a2], B[b1, b

′
1], B[b′2, b2] and Menger’s theorem, G′ contains five vertex dis-

joint paths between {a′1, a′2, b′1, b′2, h} and {a0, a1, a2, b1, b2}. So G contains five disjoint

paths Pi, i = 1, . . . , 5, (also internally disjoint from H) joining a′1, a
′
2, b
′
1, b
′
2 and H to

{a0, a1, a2, b1, b2}. Without loss of generality, assume that a1 ∈ V (P1), a2 ∈ V (P2),

b1 ∈ V (P3), b2 ∈ V (P4), and a0 ∈ V (P5).
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Let S1 = (V (P1 ∪ P2 ∪ P5)) ∩ ({a′1, a′2, b′1, b′2} ∪ V (H)), and S2 = (V (P3 ∪ P4)) ∩

({a′1, a′2, b′1, b′2} ∪ V (H)). Using the properties of a double cross, we can show that H

contains a cluster {H1, H2} such that Si ⊆ V (Hi), i = 1, 2. LetX1 := H1∪V (P1∪P2∪P5)

and X2 := V (P3 ∪ P4) ∪H2. Then {X1, X2} is a cluster in G, a contradiction. 2

We conclude this section by considering intersections of special cuts in a planar graph,

and investigating when they force another cut or interesting structures of the graph.

Lemma 2.1.8 Let γ be infeasible with an a0-frame A,B, and let G0 be obtained from G∗

by deleting the component of G∗ − B containing A. Suppose (G0, a0, b1, B, b2) is planar,

and G0 has 3-cuts {a′0, b′1, b′2} and {a′′0, b′′1, b′′2} separating {a0, b1, b2} from B[b′1, b
′
2] and

B[b′′1, b
′′
2], respectively, such that b1, b′′1, b

′
1, b
′′
2, b
′
2, b2 occur on B in order, b′1 6= b′′2, and

G0 contains a path from B(b′1, b
′′
2) to a0 and internally disjoint from B. Then one of the

following holds:

(i) {b′′1, b′2} is contained in a 3-cut of G0 separating {a0, b1, b2} from B[b′′1, b
′
2].

(ii) {b′′1, b′2} = {b1, b2}, and a′0 = a′′0 = a0.

(iii) {a′′0, b′′1, b′2} = {a0, b1, b2}, b′′2 is a cut vertex of G0 separating b2 from {a0, b1}, and

a′0, a
′′
0, b
′
2, b
′′
2 are incident with some finite face of G0.

(iv) {a′0, b′′1, b′2} = {a0, b1, b2}, b′1 is a cut vertex of G0 separating b1 from {a0, b2}, and

a′0, a
′′
0, b
′
1, b
′′
1 are incident with some finite face of G0.

Proof. We may assume a′0 6= a′′0. For, otherwsie, since (G0, a0, b1, B, b2) is planar, ei-

ther {a′0, b′′1, b′2} is a 3-cut in G0 separating {a0, b1, b2} from B[b′′1, b
′
2] and (i) holds, or

{a′0, b′′1, b′2} = {a0, b1, b2} and (ii) holds.

For i ∈ [2], let F ′i be a finite face of G0 incident with both b′i and a′0 and let F ′′i be a

finite face of G0 incident with both b′′i and a′′0. Since a′0 6= a′′0, b1, b′′1, b
′
1, b
′′
2, b
′
2 occur on B in

order, and G0 contains a path from B(b′′1, b
′
2) to a0 and internally disjoint from B, we have

F ′i = F ′′i for some i ∈ [2].
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By symmetry, we may assume F ′1 = F ′′1 . Then a′0, a
′′
0, b
′
1, b
′′
1 are incident with some finite

face of G0. Thus, either {a′0, b′′1, b′2} is a 3-cut of G0 separating {a0, b1, b2} from B[b′′1, b
′
2],

or {a′0, b′′1, b′2} = {a0, b1, b2} and b′1 is a cut vertex of G0 separating b1 from {a0, b2}. So (i)

or (iv) holds, a contradiction. 2

Lemma 2.1.9 Let γ be infeasible and A,B be an a0-frame in γ, and let G0 be obtained

from G∗ by deleting the component of G∗ − B containing A. Suppose (G0, a0, b1, B, b2) is

planar, and G0 has four distinct vertices b′′1, b
′
1, b
′′
2, b
′
2 with b1, b′′1, b

′
1, b
′′
2, b
′
2, b2 on B in order,

and b′′1, b
′′
2 are incident with some finite face of G0.

(i) If {b′1, b′2} is a 2-cut in G0 separating B[b′1, b
′
2] from {a0, b1, b2}, then b′′1, b

′
1, b
′′
2, b
′
2 are

incident with some finite face of G0, and {b′′1, b′2} is a 2-cut in G0 separating B[b′′1, b
′
2]

from {a0, b1, b2}.

(ii) If there exists a vertex a′0 in G0, such that {a′0, b′1, b′2} is a 3-cut in G0 separating

B[b′1, b
′
2] from {a0, b1, b2}, then one of the following occurs:

(a) a′0, b
′′
1, b
′
1, b
′′
2 are incident with some finite face of G0, and {a′0, b′′1, b′2} is a 3-cut

in G0 separating B[b′′1, b
′
2] from {a0, b1, b2} or {a′0, b′′1, b′2} = {a0, b1, b2};

(b) a′0, b
′′
1, b
′′
2, b
′
2 are incident with some finite face of G0, and {b′′1, b′2} is a 2-cut in

G0 separating B[b′′1, b
′
2] from {a0, b1, b2}.

Proof. Let F ′′ be a finite face of G0 incident with b′′1, b
′′
2. To prove (i), we let F ′ be a finite

face of G0 incident with b′1, b
′
2. Since b1, b′′1, b

′
1, b
′′
2, b
′
2, b2 occur on B in order, F ′ = F ′′, and

so (i) holds.

Next, we prove (ii). For each i ∈ [2], we let F ′i be a finite face of G0 incident with both

b′i and a′0. Since b1, b′′1, b
′
1, b
′′
2, b
′
2, b2 occur on B in order, then F ′1 = F ′′ or F ′2 = F ′′. Now, if

F ′1 = F ′′, then (a) of (ii) holds; if F ′2 = F ′′, then (b) of (ii) holds. 2
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2.2 Good frames and ideal frames

In this section, we fix γ = (G, a0, a1, a2, b1, b2) and G∗ = G + b1b2 + {aibj : i =

0, 1, 2 and j = 1, 2}, assume that γ is infeasible, and then show that γ has a special frame

with good properties. For an ai-frame A,B in γ, we fix the following notation:

• α(A,B) = |{bi : NG(bi) ∩ V (Ai(B)− ai −B) 6= ∅}|, and

• c(A,B) = |{v ∈ V (Ai(B)∩B)− {b1, b2} : {v, ai} separates b1 from b2 in Ai(B)∪

B}|.

a1 a2

b1 b2

a0

a1 a2

b1 b2

a1 a2

b1 b2

a0 a0

α(A,B) = 2 α(A,B) = 1 α(A,B) = 0

Figure 2.2: α(A,B)

a1 a2

b1 b2

a0

c(A,B) = 2
a1 a2

b1 b2

a0

c(A,B) = 1
a1 a2

b1 b2

a0

c(A,B) = 0

Figure 2.3: c(A,B)

We say that an ai-frame A,B in γ is good (seen at Figure 2.4), if among all the frames

in γ,

(i) α(A,B) is maximum,
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(ii) subject to (i), c(A,B) is minimum,

(iii) subject to (ii), Ai(B) is maximal.

a1 a2

b1 b2

a0

u1 u2

v1 v2

Figure 2.4: A good frame and its connectors

Lemma 2.2.1 Suppose A,B is a good frame in γ. Let i ∈ {0, 1, 2} and A′, B′ be disjoint

paths in G− ai from ai−1, b1 to ai+1, b2, respectively.

(i) If, for some j ∈ [2], G has a path B0 from ai to bj that is internally disjoint from

A′, B′, then α(A,B) ≥ 1.

(ii) If {ai, b1, b2} is contained in a component of G − (A′ ∪ (B′ − {b1, b2})), then

α(A,B) = 2.

(iii) IfG has a pathB′′ from b1 to b2 that is internally disjoint fromA′, B′, then α(A,B) =

2 and c(A,B) = 0.

Proof. We first prove (i). We see that B′, B0 are contained in some component of G− A′.

By Lemma 2.1.2 and the existence of A′, there exists an induced path A∗ from ai−1 to ai+1,

such that G − A∗ is connected, and B′, B0 ⊆ G − A∗. Since γ is infeasible, A∗ and ai
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are in different components of G − B′. So A∗, B′ is a frame. By the existence of B0,

α(A∗, B′) ≥ 1, and so α(A,B) ≥ 1.

Similarly, for (ii), let C be the component of G − (A′ ∪ (B′ − {b1, b2})) containing

b1, b2, ai, we may assume there exists an induced path A∗ from ai−1 to ai+1, such that

G − A∗ is connected, and B′, C ⊆ G − A∗. So A∗, B′ is a frame. By the existence of C,

α(A∗, B′) = 2, and so α(A,B) = 2.

For (iii), since γ is infeasible, B′∪B′′+ai must be contained in a component ofG−A′.

Hence, we may assume thatB′′+ai is contained in a component ofG−(A′∪(B′−{b1, b2})).

So by (ii), α(A,B) = 2. Now by Lemma 2.1.2 and the existence of A′, there exists an

induced pathA∗ from ai−1 to ai+1, such thatG−A∗ is connected, andB′∪B′′+ai ⊆ G−A∗.

SoA∗, B′ is a frame. SinceB′′+ai is contained in a component ofG−(A′∪(B′−{b1, b2})),

we see that c(A,B) = 0. 2

For a frame A,B in γ, an A-B bridge is an (A ∪ B)-bridge of G that intersects both

A and B. Let M be an A-B bridge, l, r ∈ V (A ∩ M), and l′, r′ ∈ V (B ∩ M), such

that A[l, r] and B[l′, r′] are maximal. Then we say that l, r are the extreme hands of M ,

and that l′, r′ are the feet of M . We say that M lies on B[b′1, b
′
2] for some b′1, b

′
2 ∈ V (B), if

B[l′, r′] ⊆ B[b′1, b
′
2]. We say thatM is fat if |V (M∩B)| ≥ 2 and non-fat if |V (M∩B)| = 1.

Lemma 2.2.2 Suppose A,B is a good a0-frame in γ. Let {d1, · · · , dt} = V (B ∩ A0(B))

such that b1, d1, · · · , dt, b2 occur on B in order, and let d0 = b1, dt+1 = b2. Then the

following conclusions hold:

(i) For any i ∈ [t], G− (A0(B)− (B − di))) does not contain disjoint paths from a1, b1

to a2, b2, respectively.

(ii) For any A-B bridge M , M ∩B ⊆ B[di−1, di] for some i ∈ [t+ 1].

(iii) Let N be a B-bridge of G not containing A or a0, then |V (N ∩ B)| ≥ 4, and

N ∩B ⊆ B[di−1, di] for some i ∈ [t+ 1].
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Proof. First, we note that (ii) and (iii) follow immediately from (i). So we prove (i). Sup-

pose (i) fails, and let A∗, B′ be disjoint paths in G − (A0(B) − (B − di))) from a1, b1 to

a2, b2, respectively.

Then A0(B) ∪ B′ is contained in a component of G − A∗. By Lemma 2.1.2 and the

existence ofA∗, there exists an induced pathA′ from a1 to a2, such thatG−A′ is connected,

and A0(B) ∪ B′ ⊆ G− A′. So A′, B′ is a frame in γ. Now, due to the existence of di, the

B-bridge of G containing a0 is properly contained in the B′-bridge of G containing a0, a

contradiction. 2

An ai-frame A,B in γ is ideal if A,B is a good frame such that

(i) the union of B-bridges of G not containing A or ai is maximal,

(ii) subject to (i), the union of fat A-B bridges is maximal,

(iii) subject to (ii), the number of non-fat A-B bridges is minimum.

Lemma 2.2.3 Suppose A,B is an ideal a0-frame in γ. Then all A-B bridges are fat.

Proof. Let M be a non-fat A-B bridge with extreme hands l, r and foot u. Then V (M ∩

A(l, r)) 6= ∅, to avoid the cut {l, r, u} in G∗. Note that M − u − A(l, r) has a path from

l to r. Hence, by Lemma 2.1.2, M ∪ A[l, r] − u contains an induced path P from l to r,

such that M ∪ A[l, r] − u − P is connected with A(l, r) ⊆ M ∪ A[l, r] − u − P . Let

A′ := A[a1, l] ∪ P ∪ A[r, a2]. We show that A′, B contradicts the choice of A,B.

Clearly, A′, B is a good frame, and the union of those B-bridges of G not containing

A or a0 is equal to the union of those B-bridges of G not containing A′ or a0. Moreover,

A(l, r) is contained in a non-fatA′-B bridge; otherwise, the union of those fatA′-B bridges

properly contains the union of those fat A-B bridges, a contradiction.

Let M1, · · · ,Mk be the A-B bridges such that for each i ∈ [k], Mi ∩ A(l, r) 6= ∅,

Mi 6= M . Then k 6= 0; otherwise, G has at least two disjoint edges from A(l, r) to B (as

G∗ is 6-connected), which contradicts that A(l, r) is contained in a non-fat A′-B bridge.
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SinceMi∩A(l, r) 6= ∅ for i ∈ [k],
⋃
i∈[k]Mi andA(l, r) are contained in a same non-fat

A′-B bridge; so M1, . . . ,Mk are non-fat A-B bridges. Now, since M ∪ A[l, r]− u− P is

connected with A(l, r) ⊆M ∪A[l, r]− u−P , then
⋃
i∈[k]Mi and M ∪A[l, r]− u−P are

contained in one single A′-B bridge. Hence, the number of non-fat A′-B bridges is strictly

smaller than the number of non-fat A-B bridges, a contradiction. 2

LetA,B be a good ai-frame in γ, let {d1, · · · , dt} = V (B∩Ai(B)) with b1, d1, · · · , dt,

b2 on B in order, and let d0 = b1 and dt+1 = b2. For any i ∈ [t + 1], we let J∗i be the

union of B[di−1, di], all the edges between A and B[di−1, di], all those A-B bridges M

with M ∩ B ⊆ B[di−1, di], and all those B-bridges N of G with (A + ai) ∩ N = ∅ and

N ∩ B ⊆ B[di−1, di]. Let u1, u2 ∈ V (A ∩ J∗i ), such that a1, u1, u2, a2 occur on A in order

with A[u1, u2] maximal. Then we say Ji = G[V (J∗i ∪A[u1, u2])] is an A-B connector, and

u1, u2 are the extreme hands of Ji. We say that di−1, di are the feet of Ji. Note that our

definition does not require Ji ∩ Jj = ∅ for i 6= j.

AnA-B connector J (with feet v1, v2 and extreme hands u1, u2) is slim if (J−A[u1, u2],

B[v1, v2]) is planar, and each edge of J with exactly one end in A[u1, u2] has its other end

in B[v1, v2] (seen at Figure 2.5). Thus, no slim A-B connector contains an A-B bridge. If

J is not a slim connector, we say that J is a fat A-B connector (seen at Figure 2.6).

u2

v1 v2

planar

u1

Figure 2.5: A slim connector
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u1 u2

v1 v2

planar

Figure 2.6: A fat connector

Lemma 2.2.4 Let A,B be an ideal a0-frame in γ, and J be an A-B connector with feet

v1, v2 and extreme hands u1, u2, such that V (J)\{u1, u2, v1, v2} 6= ∅. Then

(i) u1 6= u2, there exists a unique j ∈ [2] such that G has an A-B path from B[bj, vj) to

A(u1, u2), and (J − vj, A[u1, u2], v3−j) is planar, and

(ii) if J is fat then NG(vj) ∩ V (J − vj − A) * Lp for p ∈ [2], where Lp denotes the

subpath of the outer walk of (J − vj, A[u1, u2], v3−j) from up to v3−j without going

through u3−p.

Proof. Since V (J)\{u1, u2, v1, v2} 6= ∅ and G∗ is 6-connected, then u1 6= u2 and G has an

A-B path from B − B[b1, b2] to A(u1, u2). By Lemma 2.1.7, there exists a unique j ∈ [2]

such that G has an A-B path from B[bj, vj) to A(u1, u2).

To prove (J − vj, A[u1, u2], v3−j) is planar, let T be an A-B path from t′ ∈ B[bj, vj) to

t ∈ A(u1, u2). If J − vj contains disjoint paths A∗, B∗ from u1, t to u2, v3−j , respectively,

thenA′ := A[a1, u1]∪A∗∪A[u2, a2] andB′ := B[bj, t
′]∪T ∪B∗∪B[v3−j, b3−j] are disjoint

paths in G − vj − (A0(B) − B) from a1, b1 to a2, b2, respectively; which contradicts (i)

of Lemma 2.2.2. So assume that such A∗, B∗ do not exist. Then by Theorem 2.1.1, there

exist m ≥ 0 and a set D = {D1, · · · , Dm} of pairwise disjoint nonempty subsets of

V (J − vj) − {u1, u2, t, v3−j} such that (J − vj,D, u1, t, u2, v3−j) is 3-planar. We choose

D1, . . . , Dm such that
⋃
i∈[m]Di is minimal. Then for all p ∈ [m], G[Dp∪NJ−vj(Dp)] does

not have a disk representation with NJ−vj(Dp) occurring on the boundary of the disk (or

else, Dp could be chosen to be empty). Obviously, |Dp| ≥ 2.
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Note that J − vj − A[u1, u2] is connected. For, otherwise, let C be a component of

J − vj − A[u1, u2] disjoint from B(vj, v3−j]. Then NG(C) ⊆ V (A[u1, u2]) ∪ {vj}. Since

G − A is connected, vj ∈ NG(C); hence, G[V (C) ∪ NG(C)] − E(A) is a non-fat A-B

bridge, contradicting Lemma 2.2.3.

If m = 0 then D = ∅, and (J − vj, u1, t, u2, v3−j) is planar; so (J − vj, A[u1, u2], v3−j)

is planar as J − vj − A[u1, u2] is connected. Hence, m ≥ 1. Since G∗ is 6-connected,

for all p ∈ [m], NJ−vj(Dp) ∪ {vj} is not a cut of G separating Dp from other vertices.

So Dp ∩ V (A) 6= ∅. Since Dp ∩ {u1, u2, t, v3−j} = ∅, |NJ−vj(Dp) ∩ A| ≥ 2. Moreover,

sinceA is an induced path andG[Dp∪NJ−vj(Dp)] does not have a disk representation with

NJ−vj(Dp) occurring on the boundary of the disk, Dp 6⊆ V (A). Thus, NJ−vj(Dp) 6⊆ V (A)

as J − vj − A[u1, u2] is connected. So |NJ−vj(Dp)| = 3 and |NJ−vj(Dp) ∩ A| = 2.

Moreover, if we let {s1, s2, s} = NJ−vj(Dp) such that s /∈ V (A) and u1, s1, s2, u2 occur

on A in order, then J − vj has a path D from s to v3−j disjoint from A; or else, there

exists a non-fat A-B bridge with foot vj , or G−A is not connected. Moreover, since G∗ is

6-connected, G has an A-B path R from r′ ∈ V (B − B[v1, v2]) to r ∈ V (A(s1, s2)). By

Lemma 2.1.7, r′ ∈ B[bj, vj).

Let H := G[Dp ∪ NJ−vj(Dp)]. If H contains disjoint paths X ′, R1 from s1, r to s2, s,

respectively, then the paths A′ := A[a1, s1]∪X ′ ∪A[s2, a2] and B′ := B[bj, r
′]∪R∪R1 ∪

D ∪ B[v3−j, b3−j] in G − (A0(B) − B) − vj from a1, b1 to a2, b2, respectively, contradict

Lemma 2.2.2. So such X ′ and R1 do not exist. By Lemma 2.1.1, there exist n ≥ 0 and a

set V = {V1, · · · , Vn} of pairwise disjoint subsets of Dp such that (H,V , s1, r, s2, s) is 3-

planar. However, we see that {D1, · · · , Dm}\{Dp} ∪ {V1, · · · , Vn} contradicts our choice

of {D1, . . . , Dm}. This completes the proof of (i).

Next, we prove (ii). Since J contains disjoint paths A[u1, u2] and B[v1, v2], NG(vj) ∩

V (J − vj − A) 6= ∅. Suppose NG(vj) ∩ V (J − vj − A) ⊆ Lp for some p ∈ [2]. Let u ∈

NG[vj]∩V (Lp), such that u 6= up, and Lp[up, u] is minimal. Since (J−vj, A[u1, u2], v3−j)

is planar, J − vj − A[u1, u2] is also planar. Let P ′ denote the subpath of the outer walk of
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J − vj −A[u1, u2] from u to v3−j with P ′ ⊆ Lp. Then NG(vj)∩ V (J − vj −A) ⊆ V (P ′).

Let B′ = B[bj, vj]∪ {vju} ∪P ′ ∪B[v3−j, b3−j]. Then A,B′ is a good frame. The union of

those B-bridges of G not containing A and a0 is contained in the union of those B′-bridges

of G not containing A and a0, which forces B = B′ by the choice of A,B. Moreover, by

Lemma 2.2.3 and the planarity of J − vj , each edge of J with exactly one end in A[u1, u2]

has its other end in B[v1, v2]; so J is a slim connector, a contradiction. 2

2.3 Core frames

In this section, we consider the situation when there is a fat connector for some ideal

frame in γ (seen at Figure 2.7). The first two lemmas study the structure inside fat con-

nectors, and show that each fat connector has a core in which we can find various disjoint

paths.

a1 a2

b1 b2

a0

u1 u2

v1 v2

Figure 2.7: An ideal frame with a fat connector

Lemma 2.3.1 Suppose A,B is an ideal a0-frame in γ. Let J be a fat A-B connector with

feet v1, v2 and extreme hands u1, u2, such that (J−v1, A[u1, u2], v2) is planar, a1, u1, u2, a2
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occur on A in order, b1, v1, v2, b2 occur on B in order, and G has an A-B path from

A(u1, u2) to B[b1, v1). Then there exists a separation (H,L) in J of order 4 (we allow

H = J and L consists of u1, u2, v2 and no edges), such that

(i) V (H ∩ L) = {v1, x1, x2, y2}, u1, x1, x2, u2 occur on A in order, v1, y2, v2 occur on

B in order, A[x1, x2] ∪B[v1, y2] ⊆ H , and {u1, u2, v2} ⊆ V (L);

(ii) (L−A,B[y2, v2], v1) is planar, and each edge of L with exactly one end in A has its

other end in V (B[y2, v2]) ∪ {v1};

(iii) (H − v1, A[x1, x2], y2) is planar, H − v1 − A[x1, x2] is connected, x1y2, x2y2 /∈

E(H), H − A(x1, x2) − {v1x1, v1x2} contains disjoint paths from v1, y2 to x1, x2,

respectively, and disjoint paths from v1, y2 to x2, x1, respectively, and V (X1∩X2) =

{y2} and NG(v1) ∩ V (H − A) 6⊆ V (Xi) for i ∈ [2], where Xi is the path from xi to

y2 on the outer walk of H − v1 without going through x3−i.

Proof. Note that by Lemma 2.2.4, if we take H = J and let L consist of u1, u2, v2 and no

edges, then (H,L) satisfies (i) and (ii) (with xi = ui for i ∈ [2] and y2 = v2). Hence, we

choose (H,L) satisfying (i) and (ii) and, subject to this, H is minimal. We show that (iii)

holds.

Since (J − v1, A[u1, u2], v2) is planar, (H − v1, A[x1, x2], y2) is planar. Note that H −

v1−A[x1, x2] is connected; for otherwise, let C be a component of H − v1−A[x1, x2] not

containing y2, which is also a component of J − v1 − A[u1, u2]. Then either it contradicts

the definition of frame that G−A is connected, or it contradicts Lemma 2.2.3 that all A-B

bridges are fat. By the minimality of H , we see that x1y2, x2y2 /∈ E(H).

For i = 1, 2, let Xi denote the path in the outer walk of H − v1 from y2 to xi not

containing x3−i. Then V (X1 ∩ X2) = {y2}. For, otherwise, H has a separation (H1, H2)

such that |V (H1 ∩ H2)| = 1, y2 ∈ V (H1 − H2), and A[x1, x2] ⊆ H2. Since G∗ is 6-

connected, V (H1 − H2) = {y2}. Let y′2 ∈ V (H1 − y2). Now it is easy to check that the

separation (H − y2, G[L+ y′2]) contradicts the choice of (H,L) (that H is minimal).
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Next we show that NG(v1) ∩ V (H − A) 6⊆ V (Xi) for i = 1, 2. For, suppose this is

false and, by symmetry, that NG(v1) ∩ V (H − A) ⊆ V (X2). Let y′2 ∈ NG(v1) ∩ V (X2)

with X2[y
′
2, y2] minimal. Let B′ denote the path in the outer walk of H − A from y′2 to y2

not containing X2[y
′
2, y2]. We could choose B so that B′ ⊆ B. However, this shows that J

is not fat, a contradiction.

It remains to show that for j ∈ [2], H − A(x1, x2) − {v1x1, v1x2} contains disjoint

paths from v1, y2 to x3−j, xj , respectively. For, otherwise, we may assume by symmetry

that H − A(x1, x2) − {v1x1, v1x2} does not have disjoint paths from v1, y2 to x1, x2, re-

spectively. Hence, H − A(x1, x2) − X2 − {v1x1, v1x2} has no path from v1 to x1. Since

(H − v1, A[x1, x2], X2, X1) is planar, there exist x′1 ∈ V (A(x1, x2)), y′2 ∈ V (X2), and

a 2-separation (H1, H2) in H − v1 such that V (H1 ∩ H2) = {x′1, y′2}, x1, y2 ∈ V (H1),

A[x′1, x2] ⊆ H2, and NG(v1) ∩ V (H) ⊆ V (H2 ∪ A[x1, x2] ∪ X2). Then we see that the

separation (H2, G[H1 ∪ L]) of J contradicts the choice of (H,L). 2

With the notation in Lemma 2.3.1, we say that H is an A-B core or a core of the fat

connector J . Moreover, we say that x1, x2 are the extreme hands of H , v1, y2 are the feet

of H , and y2 is the main foot of H . For convenience, we write y1 := v1. By symmetry, we

may always assume that a1, x1, x2, a2 occur on A in order, and that b1, y1, y2, b2 occur on B

in order. Note that y1 ∈ V (A0(B)) and G has a path from a0 to y1 internally disjoint from

B. For i ∈ [2], let x′i ∈ V (A(x1, x2)) such that x′i, xi are incident with some finite face of

H−y1, and H−y1 has a path from x′i to y2 and internally disjoint from A. And for i ∈ [2],

let X ′i be the path from y2 to x′i on the outer walk of H − {y1, xi} without going through

x3−i.

Lemma 2.3.2 Suppose A,B is an ideal a0-frame, and H is an A-B core with extreme

hands x1, x2 and feet y1, y2, where y2 is the main foot. Then the degree of y2 in H − y1 is

at least 2 and, for i ∈ [2], |V (Xi(xi, y2))| ≥ 1 and V (Xi ∩ X ′3−i) = {y2}. Moreover, if,

for some i ∈ [2], H does not contain disjoint paths from y1, y2 to xi, x′3−i, respectively, and

internally disjoint from A, then the following are true:
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(i) No finite face of H − y1 is incident with both y2 and a vertex of A(x1, x2).

(ii) For any v ∈ NG(y1)∩V (H) with v /∈ X ′3−i∪A(xi, x3−i], there exist c1 ∈ A(xi, x′3−i)

and c2 ∈ X ′3−i(x′3−i, y2), such that {c1, c2} is a cut in H − {y1, x3−i} separating v

from xi, and there exist internally disjoint paths from v to c1, c2 in H − {y1, x3−i},

respectively, which are internally disjoint from X ′3−i ∪ A[xi, x′3−i].

(iii) H has disjoint paths from y1, y2 to x3−i, x′i, respectively, and internally disjoint from

A.

Proof. By Lemma 2.3.1, V (X1 ∩ X2) = {y2} and x1y2, x2y2 /∈ E(H); so the degree of

y2 in H − y1 is at least 2 and |V (Xi(xi, y2))| ≥ 1. Moreover, V (Xi ∩ X ′3−i) = {y2} for

i ∈ [2]; for, suppose there exists c ∈ V (Xi ∩X ′3−i)− {y2}, then {c, y1, y2, x3−i} is a cut in

G separating V (X3−i) from {a0, a1, a2, b1, b2}, a contradiction.

By symmetry, we may assume that H does not contain disjoint paths from y1, y2 to

x1, x
′
2, respectively, that are internally disjoint from A.

To prove (i), suppose there exists v0 ∈ V (A(x1, x2)) such that v0, y2 are incident with

some finite face in H − y1. Since (H − y1, A[x1, x2], y2) is planar, H − y1 has a separation

(H1, H2) such that V (H1 ∩ H2) = {y2, v0}, X1 ⊆ H1, and X2 ⊆ H2. Now, we further

choose v0 so that H1 is minimal.

Now, we see that H2 contains a path P2 from y2 to x′2 and internally disjoint from A;

for otherwise, V (H2 ∩A) = {x2} and, hence, {y1, y2, x2} is a cut in G∗ separating V (X2)

from {a0, a1, a2, b1, b2}, a contradiction.

Now, let P1 be the path from y1 to x1 inH−V (A(x1, x2])∪{y2} (by (iii) of Lemma 2.3.1).

Since v0 6= x1, V (P1 ∩H2) = ∅, and so V (P1 ∩ P2) = ∅. However, the existence of P1, P2

contradicts that H does not contain disjoint paths from y1, y2 to x1, x′2, respectively, and

internally disjoint from A. This completes the proof of (i).

To prove (ii), let v ∈ NG(y1) ∩ V (H) such that v /∈ X ′2 ∪ A(x1, x2]. Since (H −

{y1, x2}, A[x1, x′2] ∪ X ′2[x′2, y2]) is planar and H − y1 − A(x1, x2] ∪ X ′2 does not have a
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path from v to x1, there exist c1, c2 ∈ V (A(x1, x
′
2] ∪ X ′2) such that {c1, c2} is a cut in

H − {y1, x2} separating v from x1. We may assume c1, c2 occur on A(x1, x′2] ∪X ′2[x′2, y2]

in order.

Note that c1 /∈ V (X ′2), to avoid the cut {c1, c2, y1, x2} in G∗. Moreover, c2 /∈ A(x′2, y2];

or else, H − V (A) ∪ {y1} is not connected, contradicting (iii) of Lemma 2.3.1.

We choose c1, c2 such that A[c1, x′2] and X ′2[x
′
2, c2] are minimal. Then H − {y1, x2}

contains internally disjoint paths from v to c1, c2, respectively, and internally disjoint from

A ∪X ′2. Moreover, by (i), c2 6= y2. This completes the proof of (ii).

To prove (iii), observe that V (X ′1∩X ′2) = {y2}. For otherwise, let c ∈ V (X ′1∩X ′2) with

c 6= y2. Since y2 has degree at least 2 in H − y1 and x1y2, x2y2 /∈ E(H), {x1, x2, y1, y2, c}

is a cut in G∗ separating V (X1 ∪X2) from {a0, a1, a2, b1, b2}, a contradiction.

Now, let u2 ∈ V (X2∩X ′2) such thatX2[x2, u2] is minimal. Moreover, let v ∈ NG(y1)∩

V (H − A). If v ∈ V (X ′2) then let P2 = v = c2; and if v /∈ V (X ′2) then by (ii), there exist

c1 ∈ V (A(x1, x
′
2)) and c2 ∈ V (X ′2(x

′
2, y2)), such that {c1, c2} is a cut in H − {y1, x2}

separating v from x1, and there exists a path P2 from v to c2 in H − {y1, x2}, which is

internally disjoint fromX ′2∪A[x1, x′2]. Since V (X ′1∩X ′2) = ∅ and (H−y1, A[x1, x2]∪X2)

is planar, P2 is disjoint fromX ′1. Now, X ′1 and y1v∪P2∪X ′2[c2, u2]∪X2[u2, x2] are disjoint

paths from y2, y1 to x′1, x2, respectively, in H , which are internally disjoint from A. 2

The next lemma describes interactions between cores from different connectors and

finds a path B′ so that A,B′ is a good frame in γ which will eventually be used to form a

special frame A′, B′ in γ.

Lemma 2.3.3 Let A,B be an ideal a0-frame in γ, and let Hj , j ∈ [m], be the A-B cores

in γ such that Hj has extreme hands xj1, x
j
2 and feet yj1, y

j
2. Then

(i) for any distinct i, j ∈ [m], A[xi1, x
i
2] ⊆ A[xj1, x

j
2] or A[xj1, x

j
2] ⊆ A[xi1, x

i
2],

(ii) for any j ∈ [m], Hj − A[x1, x2] has a path Pj from yj1 to yj2 such that |V (Pj)| ≥ 3,

Hj − Pj is connected, and Pj is induced in G− yj1y
j
2,
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(iii) A,B′ is a good a0-frame and A0(B
′) = A0(B), where B′ is obtained from B by

replacing B[yj1, y
j
2] with the path Pj in (ii) for j ∈ [m], and

(iv) withG′0 as the graph obtained fromG by deleting the component ofG−B′ containing

A, (G′0, a0, b1, B
′, b2) is planar and, for any v ∈ B′(yj1, y

j
2), the degree of v in G′0 is

2.

Proof. To prove (i), assume for some distinct i, j ∈ [m] with i 6= j, we have A[xi1, x
i
2] *

A[xj1, x
j
2], and A[xj1, x

j
2] * A[xi1, x

i
2]. Without loss of generality, let b1, yi1, y

i
2, y

j
1, y

j
2, b2

occur on B in this order, and a1, xi1, x
j
2, a2 occur on A in this order with xi2, x

j
1 ∈ A(xi1, x

j
2).

By Lemma 2.3.1, H i − A(xi1, xi2) has two disjoint A-B paths P1, P2 from yi1, y
i
2 to xi2, x

i
1,

respectively, and Hj − A(xj1, x
j
2) has two disjoint A-B paths P3, P4 from yj1, y

j
2 to xj2, x

j
1,

respectively. Therefore, P1, P2, P3, P4 form a double cross in A,B, a contradiction.

For (ii), let j ∈ [m]. Since Hj is a core, Hj − yj1y
j
2 −A has a path Tj from yj1 to yj2. So

by Lemma 2.1.2, Hj − yj1y
j
2 has an induced path Pj from yj1 to yj2 such that Hj − yj1y

j
2−Pj

is connected and A[xj1, x
j
2] ⊆ Hj − yj1y

j
2 − Pj .

To see (iii), we observe that A0(B
′), the B′-bridge of G containing a0, is the same as,

A0(B), the B-bridge of G containing a0. So A,B′ is also a good a0-frame.

To prove (iv), let C denote the component of G − B′ containing A; so G′0 = G − C.

By Lemma 2.1.6, (A0(B
′), a0, b1, B

′, b2) is planar. Thus, to show that (G′0, a0, b1, B
′, b2) is

planar, it suffices to show that for any A-B connector J with feet v1, v2, (J −C,B′[v1, v2])

is planar. This is clear when J is a slim connector. So assume J is a fat connector. Then J

has a separation (H,L) satisfying (i), (ii), and (iii) of Lemma 2.3.1. By (ii) of Lemma 2.3.1,

(L− A,B′ ∩ L) is planar. Since H −B′ ⊆ C, we see that (J − C,B′[v1, v2]) is planar.

Moreover, for any v ∈ B′(yj1, y
j
2), since B′[yj1, y

j
2] is a path in the core Hj , then, com-

bined with (ii) that Pj is induced in G− y1y2, the degree of v in G′0 is exactly 2. 2

In the remaining parts of this section, suppose A,B is an ideal frame in γ. By (i) of

Lemma 2.3.3, there exists an A-B core H with extreme hands x1, x2 and feet y1, y2 (y2 as
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the main foot), which is also an A-B′ core, such that for any core Hj with extreme hands

xj1, x
j
2, we have A[xj1, x

j
2] ⊆ A[x1, x2]. We call such a core H a main A-B′ core or a main

A-B core. We also use B′ to denote the path in (iii) of Lemma 2.3.3 and G′0 to denote the

graph in (iv) of Lemma 2.3.3. By (iii) of Lemma 2.3.2, for i ∈ [2], we let P1,i, P2,3−i be

disjoint paths in H − A(x1, x2) from x1, x2 to yi, y3−i, respectively.

We consider the structure of G outside H . Let r1 ∈ V (B′[b1, y1)), such that B′[b1, r1)

contains no foot of A-B′ cores in γ, G has no A-B′ path from A(x1, x2) to B′[b1, r1), and

subject to these conditions, B′[b1, r1] is maximal. Then G has a path R1 from r1 to some

r ∈ V (A(x1, x2)) and internally disjoint from A such that R1 = r1r or R1 is contained in

some A-B′ core H ′ with r1 as a foot and does not contain the other foot of H ′.

For notational convenience, we let t1 := r1 and t2 := y2. We derive useful structure of

G outside A[x1, x2] ∪B′[t1, t2].

Lemma 2.3.4 G has no A-B′ path from A(x1, x2) to B′ − B′[t1, t2] or from B′(t1, t2) to

A− A[x1, x2].

Proof. By the maximality of B′[b1, r1], G has no A-B′ path from A(x1, x2) to B′[b1, t1).

Since no double cross exists inA,B (by Lemma 2.1.7), G has noA-B′ path fromA(x1, x2)

toB′(t2, b2]. Moreover,G has noA-B′ path fromB′(t1, t2) toA[a1, x1)∪A(x2, a2]; to avoid

forming a double cross in A,B with R1 and one of {P1,2, P2,1}, {P1,1, P2,2}. 2

Lemma 2.3.5 Let e3 = a3b3, e4 = a4b4 ∈ E(G) with a3, a4 ∈ V (A) and b3, b4 ∈ V (B′).

(i) If for some i ∈ [2], a3 ∈ V (A[ai, xi)), b3 ∈ V (B′[t2, b2)), a4 ∈ V (A(a3, xi]),

and b4 ∈ V (B′[b1, t1)), then G′0 has a 3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b1, b4] and

b′2 ∈ B′[t2, b3], which separates B′[b′1, b
′
2] from {a0, b1, b2} in G′0.

(ii) If for some i ∈ [2], a3 ∈ V (A[ai, xi)), b3 ∈ V (B′(b1, t1]), a4 ∈ V (A(a3, xi]), and

b4 ∈ V (B′(t2, b2]), then one of the following holds:
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(a) G′0 has a 3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b3, t1] and b′2 ∈ B′[b4, b2], which sepa-

rates B′[b′1, b
′
2] from {a0, b1, b2} in G′0;

(b) G′0 has a 2-cut {y1, b′2} with b′2 ∈ B′[b4, b2], which separates B′[y1, b′2] from

{a0, b1, b2} in G′0.

(iii) If a3 ∈ V (A[a1, x1]), a4 ∈ V (A[x2, a2]), and b3, b4 ∈ V (B′(b1, t1)), then G′0 has a

3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b3, b4] and b′2 ∈ B′[t2, b2], which separates B′[b′1, b
′
2]

from {a0, b1, b2} in G′0.

(iv) If a3 ∈ V (A[a1, x1]), a4 ∈ V (A[x2, a2]), and b3, b4 ∈ V (B′(t2, b2)), then one of the

following holds:

(a) G′0 has a 3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b1, t1] and b′2 ∈ B′[b3, b4], which sepa-

rates B′[b′1, b
′
2] from {a0, b1, b2} in G′0;

(b) G′0 has a 2-cut {y1, b′2} with b′2 ∈ B′[b3, b4], which separates B′[y1, b′2] from

{a0, b1, b2} in G′0.

Proof. Suppose (i) fails. Then, since (G′0, a0, b1, B
′, b2) is planar and y2 is the main foot

of H , there exist disjoint paths B′2, A
′
0 in G′0 − (B′[b1, b4]∪B′[y2, b3]) from b2, a0 to y1, r1,

respectively. Now, A[ai, a3]∪e3∪B′[y2, b3]∪P3−i,2∪A(xi, a3−i]∪R1∪A′0 andB′[b1, b4]∪

e4 ∪ A[a4, xi] ∪ Pi,1 ∪B′2 show that γ is feasible, a contradiction.

Now suppose (ii) fails. Then, since (G′0, a0, b1, B
′, b2) is planar and y2 is the main

foot of H , G′0 − (B′[b3, r1] ∪ B′[b4, b2]) contains two disjoint paths B∗1 , A
∗
0 from b1, a0 to

y1, y2, respectively. Now A[ai, a3] ∪ e3 ∪ B′[b3, r1] ∪ R1 ∪ A(xi, a3−i] ∪ P3−i,2 ∪ A∗0 and

B∗1 ∪ Pi,1 ∪ A[a4, xi] ∪ e4 ∪B′[b4, b2] show that γ is feasible, a contradiction.

If (iii) fails then, since (G′0, a0, b1, B
′, b2) is planar and y2 is the main foot of H ,

G′0 − (B′[b3, b4] ∪ B′[t2, b2]) has disjoint paths B∗1 , A
∗
0 from b1, a0 to r1, y1, respectively.

Moreover, by Lemma 2.3.2, for some p ∈ [2],H contains disjoint paths Y1, Y2 from xp, x
′
3−p

to y1, y2, respectively. Thus, A[a1, x1] ∪ e3 ∪ B′[b3, b4] ∪ e4 ∪ A[x2, a2] ∪ Y1 ∪ A∗0 and

B∗1 ∪R1 ∪ A(x1, x2) ∪ Y2 ∪B′[t2, b2] show that γ is feasible, a contradiction.
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Finally, suppose (iv) fails. Then, since (G′0, a0, b1, B
′, b2) is planar and y2 is the main

foot of H , G′0 − (B′[b1, t1] ∪ B′[b3, b4]) has disjoint paths B′2, A
′
0 from b2, a0 to y2, y1,

respectively. Thus, A[a1, x1] ∪ e3 ∪ B′[b3, b4] ∪ e4 ∪ A[x2, a2] ∪ Y1 ∪ A′0 and B′[b1, r1] ∪

R1 ∪ A(x1, x2) ∪ Y2 ∪B′2 show that γ is feasible, a contradiction. 2

Lemma 2.3.6 G′0 does not have 3-cuts {a′0, b′1, b2} and {a′′0, b1, b′′2} with b′1 ∈ V (B′(b1, t1])

and b′′2 ∈ V (B′[t2, b2)) such that {a′0, b′1, b2} separates B′[b′1, b2] from {a0, b1, b2} and

{a′′0, b1, b′′2} separates B′[b1, b′′2] from {a0, b1, b2}.

Proof. For, suppose both 3-cuts exist. We choose {a′0, b′1, b2} with B′[b1, b′1] minimal, and

choose {a′′0, b1, b′′2} with B′[b′′2, b2] minimal. Then, since G′0 has a path from a0 to y1 and

internally disjoint from B′, it follows from Lemma 2.1.8 that

(1) (ii) or (iii) or (iv) of Lemma 2.1.8 holds (and so c(A,B′) ≥ 1).

By the minimality ofB[b1, b
′
1] andB[b′′2, b2], it follows from (1) and planarity of (G′0, a0,

b1, B
′, b2) that

(2) G′0−B′(b1, b′1)−B′(b′′2, b2) has disjoint paths B∗1 , B
∗
2 , A

∗
0 from b1, b2, a0 to b′1, b

′′
2, y1,

respectively, which are internally disjoint from B′.

Also by the minimality of B[b1, b
′
1] and B[b′′2, b2], it follows from (iii) and (iv) of

Lemma 2.3.5 and Lemmas 2.1.8 and 2.1.9 that

(3) G has no edge fromB′(b1, b
′
1) toA[a1, x1] or no edge fromB′(b1, b

′
1) toA[x2, a2]; and

G has no edge from B′(b′′2, b2) to A[a1, x1] or no edge from B′(b′′2, b2) to A[x2, a2].

Next, we claim that

(4) α(A,B′) ≤ 1.

For, suppose α(A,B′) = 2. Then, by (1), a0 = a′0 = a′′0; so c(A,B′) ≥ 2. For convenience,

let s1 := b′1 and s2 := b′′2. Now, since α(A,B′) = 2, G′0 has a path A∗i (for each i ∈ [2])
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from a0 to bi and internally disjoint fromB′. Hence, sinceG∗ is 6-connected,B′(bi, si) 6= ∅

for i ∈ [2].

We claim that there do not exist e = ab, e′ = a′b′ ∈ E(G), such that for some i ∈ [2],

a, a′ ∈ A(ai, xi), b ∈ B′[b1, s1), and b′ ∈ B′(s2, b2]. For, otherwise, α(A,B′) = 2 and

c(A,B′) = 0 by Lemma 2.2.1, because of the path B′[b1, b] ∪ e ∪ A[a, a′] ∪ e′ ∪ B′[b′, b2]

from b1 to b2, the path B∗1 ∪ B′[b′1, r1] ∪ R1 ∪ A[xi, x3−i) ∪ Pi,2 ∪ B′[y2, b′′2] ∪ B∗2 from b1

to b2, and the path A∗0 ∪ P3−i,1 ∪ A[x3−i, a3−i] from a0 to a3−i. This is a contradiction.

SinceG∗ is 6-connected, G has at least three pairwise disjoint edges fromB′(bi, si) (for

each i ∈ [2]) to A[a1, x1] ∪ A[x2, a2]. By (3), for each i ∈ [2], we may assume for some

j ∈ [2], G has no edge from B′(bi, si) to A[aj, xj]. Now, by symmetry, we assume G has

no edge from B′(b1, s1) to A[x2, a2].

By Lemma 2.1.7, G has no cross from A[a1, x1] to B′(b1, s1). So, let fi = uivi for

i ∈ [3] be pairwise disjoint edges of G with ui ∈ A[a1, x1] and vi ∈ B′(b1, s1), such that

a1, u1, u3, u2, a2 occur on A in order, and b1, v1, v3, v2, b2 occur on B′ in order. We choose

f1, f2 so that A[u1, u2] ∪B′[v1, v2] is maximal.

Then G has no edge from B′(s2, b2) to A[a1, x1]. For otherwise, G has no edge from

B′(s2, b2) to A[x2, a2] and, hence, has at least three pairwise disjoint edges from B′(s2, b2)

to A[a1, x1]. Therefore, G has an edge from A(a1, x1) to B′(s2, b2), which together with f3

contradicts our claim above.

Thus, G has three pairwise disjoint edges from B′(s2, b2) to A[x2, a2]. Since G has no

cross from A[x2, a2] to B′(s2, b2) (by Lemma 2.1.7), we let fj = ujvj for j ∈ {4, 5, 6} be

pairwise disjoint edges ofGwith uj ∈ A[x2, a2] and vj ∈ B′(s2, b2), such that a1, u4, u6, u5,

a2 occur on A in order, and b1, v4, v6, v5, b2 occur on B′ in order. Choose f4, f5 so that

A[u4, u5] ∪B′[v4, v5] is maximal.

Now by the maximality of A[u1, u2], G has an edge f7 = u7v7 with u7 ∈ A(u1, u2) and

v7 ∈ B′[t2, b2], to avoid the cut {u1, u2, b1, s1, a0} in G∗. Similarly, by the maximality of

A[u4, u5], G has an edge f8 = u8v8 with u8 ∈ A(u4, u5) and v8 ∈ B′[b1, t1]. Now, by the
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claim above, v7 ∈ B′[t2, s2] and v8 ∈ B′[s1, t1]. Hence, f2, f4, f7, f8 form a double cross,

contradicting Lemma 2.1.7. 2

For i ∈ [2], let a′i ∈ V (A[ai, xi]) with A[ai, a′i] minimal such that a′i = xi or G has an

edge from a′i to B′(b′1, b2). Then G has an edge e4 = a4b4 with a4 ∈ A(a′1, x1] ∪ A[x2, a′2)

and b4 ∈ B[b1, b
′
1); for, otherwise, {a0, a′1, a′2, b′1, b2} would be a 5-cut in G∗ separating H

from {a0, a1, a2, b1, b2}, a contradiction. By symmetry, we may assume

(5) a4 ∈ A(a′1, x1].

Let e3 = a3b3 ∈ E(G) with a3 = a′1 and b3 ∈ B′(b′1, t1] ∪ B′[t2, b2). Since e3, e4 and

the paths in H do not form a double cross (by Lemma 2.1.7), we have

(6) b3 ∈ B′[t2, b2).

Let e = ab ∈ E(G) with a ∈ A[a1, a3] and b ∈ B′[b3, b2], such that B′[b, b2] is minimal,

and subject to this, A[a1, a] is minimal. Further, let e′ = a′b′ ∈ E(G) with a′ ∈ A[a1, a4]

and b′ ∈ B′[b1, b4], such that B′[b1, b′] is minimal, and subject to this, A[a1, a′] is minimal.

Similarly, for each i ∈ [2], let a′′i ∈ V (A[ai, xi]) with A[ai, a
′′
i ] minimal such that

a′′i = xi or G has an edge from a′′i to B′(b1, b′′2). Since G∗ is 6-connected, there exist j ∈ [2]

and e6 = a6b6 ∈ E(G) such that a6 ∈ A(a′′j , xj] and b6 ∈ B′(b′′2, b2]. Since a′′j 6= xj ,

it follows from Lemma 2.1.7 that there exists e5 = a5b5 ∈ E(G) such that a5 = a′′j and

b5 ∈ B′(b1, t1].

(7) b ∈ B′(b′′2, b2].

For, otherwise, b /∈ B′(b′′2, b2]. Then, j = 2 and a6 ∈ A[x2, a′′2) by the choice of e. Hence,

b5 ∈ B′[b1, b4] to avoid the double cross e3, e4, e5, e6. So b5 = b1 by (3), a contradiction to

b5 ∈ B′(b1, t1]. 2

If a′ 6= x1 then α(A,B′) = 2 by Lemma 2.2.1 and the following paths: the path

A[a1, a
′] ∪ e′ ∪ B′[b1, b′] from a1 to b1, the path A[a1, a] ∪ e ∪ B′[b, b2] from a1 to b2, the
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path B∗1 ∪ B′[b′1, r1] ∪ R1 ∪ A[x1, x2) ∪ P1,2 ∪ B′[y2, b′′2] ∪ B∗2 from b1 to b2, and the path

A∗0 ∪ P2,1 ∪ A[x2, a2] from a0 to a2. This contradicts (4).

So a′ = x1. Hence, by the choice of e′ and Lemma 2.1.7, G has no edge from A[a1, x1)

to B′[b1, t1]. Thus, G has an edge from a1 to B′[t2, b2]. So by the choice of e and by

Lemma 2.1.7, a = a1 and, hence, b 6= b2.

We claim a6 ∈ A[x2, a
′′
2). For, otherwise, a6 ∈ A(a′′1, x1]. Then a5 ∈ A[a1, x1).

Now, e5 contradicts the choice of e′, or e5, e′, P1,2, P2,1 form a double cross, contradicting

Lemma 2.1.7.

Thus, by (3), b6 = b2. Moreover, b5 ∈ B′[b1, b′] to avoid the double cross e, e′, e5, e6.

Now, by (3), we may further assume b5 = b1, a contradiction to b5 ∈ B′(b1, t1]. 2

Lemma 2.3.7 Let {a′0, b′1, b′2} be a cut in G′0 separating B′[b′1, b
′
2] from {a0, b1, b2}, with

b′1 ∈ B′[b1, t1] and b′2 ∈ B[t2, b2]. Then b′1 = b1, b′2 6= b2, a′0 = a0, y1 is a cut vertex in G′0

separating b2 from {a0, b1}, b2 has degree 1 in G′0, and for some p ∈ [2], G has an edge

from b2 to xp and no edge from b2 to A− xp.

Proof. For i ∈ [2], let a′i ∈ V (A[ai, xi]) with A[ai, a′i] minimal such that a′i = xi or G has

an edge from a′i to B′(b′1, b
′
2). Since G∗ is 6-connected, there exist i, j ∈ [2] such that G

has an edge e4 = a4b4 with a4 ∈ A(a′i, xi] and b4 ∈ B′[bj, b′j). By symmetry, assume i = 1.

Then a′1 6= x1 and let e3 = a3b3 ∈ E(G) such that a3 = a′1 and b3 ∈ B′(b′1, t1] ∪ B′[t2, b′2).

Now b3 ∈ B′[t3−j, b′3−j), to avoid the double cross formed by e3, e4 and two paths in H (by

Lemma 2.1.7).

First, we show that

(1) b′1 = b1.

For, suppose b′1 6= b1. Choose the 3-cut {a′0, b′1, b′2} with b′1 6= b1, such that B[b′2, b2] is

minimal and, subject to this, B[b1, b
′
1] is minimal.

Observe that b4 ∈ B[b1, b
′
1). For, otherwise, b4 ∈ B(b′2, b2]. Then b3 ∈ B(b′1, t1].

Now, by Lemma 2.1.9 and (ii) of Lemma 2.3.5, G′0 has a 3-cut contradicting the choice of
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{a′0, b′1, b′2}.

Then b3 ∈ B′[t2, b′2). Hence, because of e3, e4, it follows from (i) of Lemma 2.3.5 that

G′0 has a 3-cut {a′′0, b′′1, b′′2} with b′′1 ∈ B′[b1, b4] and b′′2 ∈ B′[t2, b3], separating B′[b′′1, b
′′
2]

from {a0, b1, b2}. By Lemma 2.1.8 and the choice of {a′0, b′1, b′2}, we have b′′1 = b1.

By Lemma 2.3.6, b′2 6= b2. Hence, by Lemma 2.1.8, there exists a∗0 ∈ V (G′0), such

that {b′′1, b′2, a∗0} is a 3-cut in G′0 separating {a0, b1, b2} from B′[b′′1, b
′
2]. For i ∈ [2], let

a′′i ∈ A[ai, xi] with A[ai, a
′′
i ] minimal such that a′′i = xi or G has an edge from a′′i to

B′(b′′1, b
′
2).

Since G∗ is 6-connected, there exist k ∈ [2] and e5 = a5b5 ∈ E(G) with a5 ∈ A(a′′k, xk]

and b5 ∈ B′(b′2, b2]. Let e6 = a6b6 ∈ E(G) with a6 = a′′k and b6 ∈ B′(b′′1, t1] ∪ B′[t2, b′2).

Then b6 ∈ B′(b′′1, t1], to avoid the double cross formed by e5, e6 and two paths in H .

Because of e5 and e6, it follows from (ii) of Lemma 2.3.5 and the choice of {a′0, b′1, b′2}

that G′0 has a 2-cut {y1, b∗2} with b∗2 ∈ B′[b5, b2], separating B′[y1, b∗2] from {a0, b1, b2}. But

then, by Lemma 2.1.9, {y1, b∗2} and {a′0, b′1, b′2} force a 3-cut in G′0, which contradicts the

choice of {a′0, b′1, b′2}. 2

Since G∗ is 6-connected, it follows from (1) that b2 6= b′2. We choose {a′0, b′1, b′2} so that

B[b2, b
′
2] is minimal. Then, by (1) and (ii) of Lemma 2.3.5, G′0 has a 2-cut {y1, b′′2} with

b′′2 ∈ B′[b4, b2], separating B′[y1, b′′2] from {a0, b1, b2}.

Moreover, b′′2 = b2; for, otherwise, by Lemma 2.1.9, {y1, b′′2} and {a′0, b′1, b′2} force a

3-cut in G′0, which contradicts the choice of {a′0, b′1, b′2}. Hence, y1 is a cut vertex in G′0

separating b2 from {a0, b1} and α(A,B′) ≤ 1. And (for any choice of {a′0, b′1, b′2},) a′0 = a0;

or else, since y1 is a cut vertex in G′0 separating b2 from {a0, b1}, {b1, a′0, b′2, b2} is a cut in

G separating a0 from {a1, a2}, a contradiction.

So by (1), G′0 − B′(b1, t1) ∪ B′(y1, b2] has disjoint paths B∗1 , A
∗
0 from b1, a0 to t1, y1,

respectively, such that A∗0 is internally disjoint from B′. By the choice of {a′0, b′1, b′2},

G′0 −B′(b′2, b2) has a path B∗2 from b2 to b′2.

(2) For i ∈ [2], if G has an edge from B′(b′2, b2] to A[ai, xi), then G has no edge from
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A[ai, xi) to B′[b1, t1).

For, suppose for some i ∈ [2], G has an edge e from b ∈ B′(b′2, b2] to a ∈ A[ai, xi) and an

edge e′ from a′ ∈ A[ai, xi) to b′ ∈ B′[b1, t1).

Then, α(A,B′) = 2, by Lemma 2.2.1 and the following paths: A[ai, a′]∪ e′ ∪B′[b1, b′]

from ai to b1, the path A[ai, a]∪ e∪B′[b, b2] from ai to b2, the path B∗1 ∪R1∪A[xi, x3−i)∪

Pi,2 ∪ B∗2 from b1 to b2, and the path A∗0 ∪ P3−i,1 ∪ A[x3−i, a3−i] from a0 to a3−i. This is a

contradiction. 2

(3) B′(b′2, b2) = ∅, and so b2 has degree 1 in G′0.

For, suppose B′(b′2, b2) 6= ∅. Then, as G∗ is 6-connected, G has edges from B′(b′2, b2) to

A[a1, x1] ∪ A[x2, a2].

Indeed, G has an edge e3 from B′(b′2, b2) to A[a1, x1], and an edge e4 from B′(b′2, b2)

to A[x2, a2]. For otherwise, there exists i ∈ [2], such that all edges of G from B′(b′2, b2)

to A end in A[ai, xi]. Let u1, u2 ∈ V (A[ai, xi]), such that G has edges from B′(b′2, b2) to

u1, u2, respectively, and, subject to this, A[u1, u2] is maximal. Now, by Lemma 2.1.7, G

has no edge from A(u1, u2) to B′[t2, b′2). Moreover, by (2), G has no edge from A(u1, u2)

to B′[b1, t1). But then, {t1, u1, u2, b′2, b2} is a cut in G separating V (A[u1, u2] ∪ B′[b′2, b2])

from {a0, a1, a2, b1, b2}, a contradiction.

NowA[a1, x1]∪e3∪B′(b′2, b2)∪e4∪A[x2, a2]∪Y1∪A∗0 andB′[b1, r1]∪R1∪A(x1, x2)∪

Y2 ∪B′[y2, b′2] ∪B∗2 show that γ is feasible, a contradiction. 2

(4) G has no edge from b2 to A[a1, x1) ∪ A(x2, a2].

Suppose for some i ∈ [2], G has an edge e from b2 to a ∈ A[ai, xi). Let e′ = a1b
′ ∈ E(G)

with b′ 6= t1. Obviously, b′ /∈ B′[t2, b2); otherwise, e, e′ and two disjoint paths in H force a

double cross, contradicting Lemma 2.1.7.

So b′ ∈ B[b1, t1). Now α(A,B′) = 2 by Lemma 2.2.1 and the following paths: the

path e′ ∪ B′[b1, b′] from ai to b1, the path A[ai, a] ∪ e from ai to b2, the path B∗1 ∪ R1 ∪
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A[xi, x3−i) ∪ Pi,2 ∪ B′[y2, b2] from b1 to b2, and the path A∗0 ∪ P3−i,1 ∪ A[x3−i, a3−i] from

a0 to a3−i. However, this is a contradiction. 2

Now, since the degree of b2 inG is at least 2, it follows from (4) thatG has an edge from

b2 to xp for some p ∈ [2]. If G has no edge from b2 to x3−p then we are done. So assume

b2x1, b2x2 ∈ E(G). Then a1 6= x1 and a2 6= x2. Now, by Lemma 2.1.7, G has no edge

from {a1, a2} to B′[t2, b2). Since G∗ is 6-connected, G has edges e1, e2 from B′(b1, t1) to

a1, a2, respectively. But then, it follows from (iii) of Lemma 2.3.5 that G′0 contains a 3-cut,

which contradicts (1). 2

Lemma 2.3.8 H is the unique main A-B′ core in γ.

Proof. Suppose for a contradiction that H ′′ is a main A-B′ core with H ′′ 6= H , and let

w1, w2 be the feet of H ′′ (with w2 as the main foot). Then, by Lemma 2.1.7, w2 = r1 and

b1, w2, w1, y1, y2, b2 occur on B′ in order.

Recall the definition of x′i, X
′
i before Lemma 2.3.2. For i ∈ [2], let x′′i ∈ V (A(x1, x2))

such that x′′i , xi are incident with some finite face of H ′′−w1, and H ′′−w1 has a path from

x′′i to w2 and internally disjoint from A. So for i ∈ [2], let X ′′i be the path from w2 to x′′i on

the outer walk of H ′′ − {w1, xi} without going through x3−i, and, moreover, let X∗i be the

path from xi to w2 on the outer walk of H ′′ − w1 without going through x3−i. And let A0

be a path in G from a0 to y1 and internally disjoint from B′.

Suppose H contains disjoint paths from y1, y2 to x2, x
′
1, respectively, and internally

disjoint from A, as well as disjoint paths from y1, y2 to x1, x′2, respectively, and internally

disjoint from A. Then, by Lemma 2.1.7, for any i ∈ [2], H ′′ does not contain disjoint paths

from w1, w2 to xi, x′′3−i, respectively, and internally disjoint from A. This contradicts (iii)

of Lemma 2.3.2.

Hence, by symmetry, we may assume that H contains no disjoint paths from y1, y2 to

x1, x
′
2, respectively, and internally disjoint from A. Then by Lemma 2.3.2, H contains

disjoint paths Y ′1 , Y
′
2 from y1, y2 to x2, x′1, respectively, and internally disjoint from A.
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Then by Lemma 2.1.7 and 2.3.2, we may further assume H ′′ contains disjoint paths

Y ′′1 , Y
′′
2 from w1, w2 to x2, x′′1, respectively, and internally disjoint from A, but no disjoint

paths from w1, w2 to x1, x
′′
2, respectively, and internally disjoint from A. Moreover, by

(i) of Lemma 2.3.2, H − {y1, y2} ∪ V (A(x1, x2)) contains a path D′ from x1 to x2, and

H ′′ − {w1, w2} ∪ V (A(x1, x2)) contains a path D′′ from x1 to x2.

(1) There is no A-B′ path in G from A(x1, x2) to B′(w1, y1).

For, suppose that P is an A-B′ path from p ∈ V (A(x1, x2)) to p′ ∈ V (B′(w1, y1)). Then

G′0 − B′(w2, w1) − B′[y2, b2] does not contain disjoint paths B∗1 , A
∗
0 from b1, a0 to p′, y1,

respectively; otherwise, A[a1, x1]∪D′′∪A[x2, a2]∪Y ′1 ∪A∗0 and B∗1 ∪P ∪A(x1, x2)∪Y ′2 ∪

B′[y2, b2] show that γ is feasible, a contradiction. Hence, there exists w′ ∈ V (B′(w2, w1)),

a′0 ∈ V (G′0), and b′2 ∈ V (B′[y2, b2]), such that {w′, a′0, b′2} is a 3-cut in G′0 separating

B′[w′, b′2] from {a0, b1, b2}.

Now b1 = w2. For, suppose not. Since w1, w2 are feet of H ′′, w1, w2 are incident with

some finite face of G′0. Therefore, {w2, a
′
0, b
′
2} is a 3-cut in G′0 separating B′[w2, b

′
2] from

{a0, b1, b2}, a contradiction to Lemma 2.3.7. Similarly, by the symmetry between H and

H ′′, we can also prove b2 = y2.

Now, since b′2 ∈ V (B′[y2, b2]), b′2 = b2. So a′0 = a0; or else, {b1, a′0, b2} is a 3-cut in G′0

separating a0 from B′(b1, b2), a contradiction. Then a0, b1, w′, w1 are incident with some

finite face of G′0. Similarly, by the symmetry between H and H ′′, a0, b2, y1 are incident

with some finite face of G′0, which implies α(A,B′) = 0.

By Lemma 2.3.2, V (X ′′2 ∩X∗1 ) − {w2} = ∅. Now α(A,B′) ≥ 1 by Lemma 2.2.1 and

the following paths: the pathA0∪Y ′1∪A[x2, a2] from a0 to a2, the pathX ′′2 ∪A(x1, x2)∪Y ′2

from b1 to b2, and the path A[a1, x1] ∪X∗1 from a1 to b1. This is a contradiction. 2

(2) a1 = x1 and a2 = x2.

Recall that for i ∈ [2], P1,i and P2,3−i are disjoint paths from x1, x2 to yi, y3−i, respectively,
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in H − A(x1, x2). For i ∈ [2], let Q1,i, Q2,3−i be disjoint paths from x1, x2 to wi, w3−i,

respectively, in H ′′ − A(x1, x2).

We claim that for i ∈ [2], G has no edge from A[ai, xi) to B′(b1, w2]. For, suppose

there exists e′ = a′b′ ∈ E(G) with a′ ∈ A[ai, xi) and b′ ∈ B′(b1, w2]. Then b1 6= w2.

By Lemma 2.3.7, G′0 −B′[b′, w2]−B′[y2, b2] contains disjoint paths B∗1 , A
∗
0 from b1, a0 to

w1, y1, respectively. Now A[ai, a
′] ∪ e′ ∪ B′[b′, w2] ∪ Q3−i,2 ∪ A[x3−i, a3−i] ∪ P3−i,1 ∪ A∗0

and B∗1 ∪Qi,1 ∪ Pi,2 ∪B′[y2, b2] show that γ is feasible, a contradiction.

Due to the symmetry between H and H ′′, with the same argument above, we can

show that for i ∈ [2], G has no edge from A[ai, xi) to B′[y2, b2). Thus, (2) follows from

Lemma 2.3.4 and the assumption that G∗ is 6-connected. 2

(3) H ′′−X∗1 ∪X∗2 contains a path Q′′ from w1 to A(x1, x2); and H −X1 ∪X2 contains

a path Q from y1 to A(x1, x2).

By the symmetry between H and H ′′, we only prove the existence of Q′′. Suppose for a

contradiction that Q′′ does not exist.

We see that (NG(w1) ∩ V (H ′′)) ⊆ V (X ′′2 ∪ A(x1, x2]). For, otherwise, by (ii) of

Lemma 2.3.2, there exists v′′ ∈ NG(w1) ∩ V (H ′′), c′′1 ∈ A(x1, x′′2), and c′′2 ∈ X ′′2 (x′′2, w2),

such that v′′ /∈ X ′′2 ∪ A(x1, x2], {c′′1, c′′2} is a cut in H ′′ − {w1, x2} separating v′′ from x1,

and there exists a path P ′′1 from v′′ to c′′1 in H ′′ −w1 − x2, which is internally disjoint from

X ′′2 ∪ A[x1, x′′2]. But then, w1v
′′ ∪ P ′′1 is a path from w1 to A(x1, x2) in H ′′ −X∗1 ∪X∗2 , a

contradiction.

Now, sinceQ′′ does not exist, combined with (NG(w1)∩V (H ′′)) ⊆ V (X ′′2 ∪A(x1, x2]),

we may further assume (NG(w1)∩V (H ′′)) ⊆ V (X∗2 ), contradicting (iii) of Lemma 2.3.1.

2

(4) b1 = w2 and b2 = y2.

By the symmetry between H and H ′′, we only show b1 = w2. Suppose for a contradiction

that b1 6= w2.
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Since w1, w2 are incident with some finite face of G′0, it follows from Lemma 2.3.7 that

G′0 − B′[w2, w1) − B′[y2, b2] contains disjoint paths B∗1 , A
∗
0 from b1, a0 to w1, y1, respec-

tively.

Now, A[a1, x1]∪X∗1 ∪X∗2 ∪A[x2, a2]∪Y ′1∪A∗0 andB∗1∪Q′′∪A(x1, x2)∪Y ′2∪B′[y2, b2]

show that γ is feasible, a contradiction. 2

Note that G has no A-B′ path from a1 to B′(w1, y1), as such a path together with

Y ′′2 , Y
′
1 , Y

′
2 forms a double cross, contradicting Lemma 2.1.7. So by (1) and (4), {b1, b2, w1,

y1, a2} is a cut in G separating a0 from a1, a contradiction. 2

We now use A,B′ to form a new frame A′, B′, called core frame.

Lemma 2.3.9 Let M0 denote the union of all the A-B′ bridges that are disjoint from H −

A − y1. Then there exists an induced path A′ ⊆ (A ∪M0) − B′ from a1 to a2 in G, such

that A′[ai, xi] = A[ai, xi] for i ∈ [2] and the following hold:

(i) A′, B′ is a good frame in γ.

(ii) Each A′-B′ bridge lying on B′[r1, y1] is contained in some A-B′ bridge.

(iii) There exists an induced subgraph H∗ in G, such that A′[x1, x2] ∪ H ⊆ H∗, all A′-

B′ bridges not lying on B′[r1, y1] are contained in H∗, and H∗ is separated from

{a0, a1, a2, b1, b2} by V (A′[x1, x2]) ∪ {y1, y2} in G.

(iv) For any v ∈ (V (H∗) − V (A′) ∪ {y1}), H∗ − y1 contains a path from v to y2 and

internally disjoint from A′.

(v) If l, r are the extreme hands of an A′-B′ bridge lying on B′[r1, y1] then {l, r} 6=

{x1, x2}, and H∗ − y1 does not contain a path from y2 to A′(l, r) and internally

disjoint from A′.

Proof. We choose the induced path A′ so that A′ ⊆ A∪M0−B′ is from a1 to a2, such that

A′[ai, xi] = A[ai, xi] for i ∈ [2], (i)-(iv) are satisfied, and, subject to this, H is maximal.

Note that such A′ exists, as A satisfies (i)-(iv).
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To prove (v), let M be an A′-B′ bridge M lying on B′[r1, y1] with extreme hands l, r

and feet l′, r′. If {l, r} = {x1, x2} then, sinceM is contained in anA-B′ bridge (by (ii)),M

is contained in a main A-B′ core, a contradiction to Lemma 2.3.8. Hence, H − y1 contains

a path Y2 from y2 to y′2 ∈ A′(l, r) and internally disjoint from A′.

Let T be an induced path in M −A′(l, r)∪B′[l′, r′] from l to r, and let C1, C2, . . . , Cn

be the components of M ∪A′[l, r]∪B′[l′, r′]−T not containing A′(l, r) and not containing

B′[l′, r′]. We choose T , such that |T | := (−|V (
⋃
i∈[n]Ci)|, |V (C1)|, |V (C2)|, . . . , |V (Cn)|)

is maximal with respect to the lexicographical ordering.

We claim n = 0. For, suppose n > 0. Let ln, rn ∈ NG(Cn) ∩ V (T ) such that T [ln, rn]

is maximal. Since G∗ is 6-connected, there exists another component C of M ∪ A′[l, r] ∪

B′[l′, r′]−T , such thatNG(C)∩T (ln, rn) 6= ∅.Now, let T ′ be an induced path inG[T ∪Cn]

between ln and rn, such that T ′ ∩ T (ln, rn) = ∅. Clearly, |T ′| > |T |, a contradiction.

Now, let A′′ be obtained from A′ by replacing A′[l, r] with T . Clearly, A′′[ai, xi] =

A[ai, xi] for i ∈ [2]. Since T is induced, A′′ is induced. Moreover, since n = 0, then any

component ofG[V (M∪A′[l, r]∪B′[l′, r′])]−T containsA′(l, r) orB′[l′, r′], and soG−A′′

is connected. Hence, A′′, B′ is a frame. Since A′′0(B
′) = A′0(B

′) = A0(B
′), we see that

A′′, B′ is a good frame in γ.

Next, we show that G has no A′-B′ path from A′(l, r) to B′[b1, y1) and disjoint from T .

For otherwise, let S be an A′-B′ path from s ∈ A′(l, r) to s′ ∈ B′[b1, y1) and disjoint from

T . Then A′′ and B′[b1, s′] ∪ S ∪ A′[s, y′2] ∪ Y2 ∪ B′[y2, b2] are disjoint paths from a1, b1 to

a2, b2, respectively, in G− (A0(B
′)−B′)− y1, a contradiction to (i) of Lemma 2.2.2.

Hence, there does not exist an A′-B′ bridge N lying on B′[r1, y1], such that N 6= M ,

N ∩ A′(l, r) 6= ∅, and N ∩ B′[b1, y1) 6= ∅. So each A′′-B′ bridge lying on B′[r1, y1] must

be contained in some A′-B′ bridge and, hence, contained in some A-B′ bridge. So A′′, B′

satisfies (ii).

And V (A′′[x1, x2]) ∪ {y1, y2} is a cut in G separating V (H) from {a0, a1, a2, b1, b2}.

Now, we let V ′′ be the set of vertices of A′′ ∪B′[b1, y1] ∪B′[y2, b2]-bridge of G containing
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A′(l, r), and let H ′′ := G[V ′′ ∪ V (A′′[x1, x2])]. Then clearly (iii) and (iv) holds for A′′, B′.

However, H ′′ properly contains H , a contradiction. 2

2.4 Inside the main A′-B′ core

We use the notation of the previous section, in particular, Lemma 2.3.3 and 2.3.9: γ is

infeasible, A′, B′ is a core frame, and let H ′ := H∗ − {x1y2, x2y2}, where B′, t1, t2, R1, r1

are defined as in or after Lemma 2.3.3, A′, H∗, x1, x2, y1, y2 are defined as in Lemma 2.3.9.

We also say that H ′ is the main A′-B′ core in γ with extreme hands x1, x2 and feet y1, y2

(such that y2 is the main foot).

We now study the structure of G inside H ′.

Lemma 2.4.1 (H ′ − y1, A′[x1, x2], y2) is planar, the degree of y2 in H ′ − y1 is at least 2,

and H ′ − y1 − A′(x1, x2) contains disjoint paths from y1, y2 to xi, x3−i, respectively, for

i ∈ [2]. Moreover, for i ∈ [2], let Xi be the path from xi to y2 on the outer walk of H ′ − y1

without going through x3−i, then NG(y1) ∩ V (H ′ − y1 − A′) 6⊆ V (Xi) for i ∈ [2].

Proof. We can apply the same proof in Lemma 2.2.4, and show that (H ′−y1, A′[x1, x2], y2)

is planar, and NG(y1) ∩ V (H ′ − y1 − A′) 6⊆ V (Xi) for i = 1, 2.

Moreover, since V (H− y1) ⊆ V (H ′− y1), then, by (iii) of Lemma 2.3.1, the degree of

y2 in H ′ − y1 is at least 2, and H ′ −A′(x1, x2)− {y1x1, y1x2} contains disjoint paths from

y1, y2 to x1, x2, respectively, as well as disjoint paths from y1, y2 to x2, x1, respectively. 2

Lemma 2.4.2 Let R be an A′-B′ path from r ∈ V (A′(x1, x2)) to r′ ∈ V (B′[r1, y1)) such

that B′[r1, r′] is minimal. If r′ 6= r1 then the following conclusions hold:

(i) There exists an A-B core H1 with r1 as a foot.

(ii) Let r2 be the other foot of H1, then there exists an A′-B′ bridge with r1 as a foot,

intersecting A′ only at xj for some j ∈ [2], and lying on B′[r1, r2].
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(iii) r′ ∈ B′(r1, r2), andG has anA′-B′ bridge with feet l′1, r
′
1, which is internally disjoint

from R and intersecting A′ only at xj , such that r′ ∈ B′(l′1, r′1).

(iv) If G′0 has a cut {a′0, b′1, b′2} separating B′[b′1, b
′
2] from {a0, b1, b2} such that b′1 ∈

V (B′(r1, r
′]) and b′2 ∈ V (B′[y2, b2]), then r1 = b1, a′0 = a0, G′0 has no path from a0

to b1 and internally disjoint from B′, and α(A′, B′) ≤ 1.

Proof. To prove (i), assume that r1 is not a foot of any A-B core. Then by the definition of

r1, G has an edge from r1 to a′ ∈ V (A(x1, x2)). Since r′ 6= r1, a′ /∈ A′(x1, x2). Moreover,

a′ is not contained in any A′-B′ bridge lying on B′[r1, y1], as any such A′-B′ bridge is

contained in an A-B′ bridge (by (ii) of Lemma 2.3.9). So a′ ∈ V (H ′−y1)\V (A′). Hence,

by (iv) of Lemma 2.3.9, H ′− y1 has a path Y2 from a′ to y2 and internally disjoint from A′.

Therefore, A′ and B′[b1, r1] ∪ r1a′ ∪ Y2 ∪ B′[y2, b2] are disjoint paths from a1, b1 to a2, b2,

respectively, in G− V (A′0(B
′)−B′) ∪ {y1}, contradicting (i) of Lemma 2.2.2.

Now, we prove (ii). By Lemma 2.3.4, r2 is the main foot of H1. Hence, by (iii) of

Lemma 2.3.1, r1 has two neighbors u1, u2 in H1 − r2 − A. Since B′[r1, r2] is induced in

G − {r1r2} (by Lemma 2.3.3), up /∈ B′ for some p ∈ [2]. Moreover, up /∈ A′(x1, x2)

since r′ 6= r1. Thus, up must be contained in some A′-B′ bridge M0 lying on B′[r1, r2],

which must have r1 as a foot and cannot have both x1 and x2 as extreme hands (by (v) of

Lemma 2.3.9). Hence, since r′ 6= r1, this A′-B′ bridge intersect A′ only at xj for some

j ∈ [2].

Obviously, since G∗ is 6-connected, r′ ∈ B′(r1, r2) to avoid the cut {r1, r2, x1, x2} in

G∗ separating V (H1) from {a0, a1, a2, b1, b2}. Let l′0, r
′
0 be the feet of M0 with l′0 = r1 and

r′0 ∈ B′[r1, r2]. For, suppose (iii) fails. Then r′ ∈ B′[r′0, r2]. Since x3−j /∈ V (H1 ∩ A′)

(by Lemma 2.3.8), then by the definition of r′, {xj, r1, r′} is a cut in G separating M0 from

{a0, a1, a2, b1, b2}, a contradiction.

To prove (iv), we observe that B′[r1, r2] is on the boundary of a finite face of G′0.

Therefore, since r′ ∈ B′(r1, r2), a′0 and r1 are also incident with that finite face. Suppose

r1 6= b1 or a′0 6= a0. Then {a′0, r1, b′2} is a 3-cut in G′0 separating B′[r1, b′2] from {a0, b1, b2}.
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By Lemma 2.3.7, r1 = b1. So a′0 6= a0. Then, by Lemma 2.3.7, {a′0, b1, b′2, b2} is a cut in G

separating a0 from {a1, a2}, a contradiction. So, r1 = b1 and a′0 = a0. Hence, G′0 has no

path that is from a0 to b1 and internally disjoint from B′. In particular, α(A′, B′) ≤ 1. 2

SinceG∗ is 6-connected,G has two disjointA′-B′ paths P,Q from p, q ∈ V (A′(x1, x2))

to p′, q′ ∈ V (B′[r1, y1)), respectively. We choose P,Q so that

(i) A′[p, q] is maximal,

(ii) subject to (i), B′[b1, p′] ∩B′[b1, q′] is minimal, and

(iii) subject to (ii), B′[p′, q′] is maximal.

By the symmetry between a1 and a2, we may relabel a1, x1, x2, a2 so that

• a1, x1, p, q, x2, a2 occur on A′ in order, and b1, r1, p′, q′, y1, b2 occur on B′ in order.

Lemma 2.4.3 Any A′-B′ path from B′[r1, p
′) to A′(x1, x2) must be disjoint from P,Q,

and end in A′(p, q). Moreover, if H ′ − y1 contains a path from u ∈ A′[q, x2) to y2 and

internally disjoint from A′, then all A′-B′ paths from A′(u, x2) to B′[r1, y1] and internally

disjoint from H ′ − y1 are edges ending in {r′, y1}.

Proof. First, assume S is an A′-B′ path from s′ ∈ V (B′[r1, p
′)) to s ∈ V (A′(x1, x2)).

Then V (S ∩ (P ∪ Q)) = ∅; for otherwise, let v ∈ V (S ∩ (P ∪ Q)) with S[s′, v] minimal

then P ′ := S[s′, v] ∪ P [v, p] and Q (when v ∈ V (P )) or P and Q′ := S[s′, v] ∪ Q[v, q]

(when v ∈ V (Q)) contradict the choice of P,Q. Hence, s ∈ A′(p, q) as otherwise S, P or

S,Q contradict the choice of P,Q.

Now let Y2 be a path inH ′−y1 from u ∈ V (A′[q, x2)) to y2 and internally disjoint from

A′. We first see that G has no path from A′(u, x2) to B′[r1, y1)− p′. For, suppose not. Let

S be an A′-B′ path from s ∈ V (A′(u, x2)) to s′ ∈ V (B′[r1, y1)− p′). Then V (S ∩P ) 6= ∅,

or else, P, S contradict the choice of P,Q. Since s′ 6= p′, S, P are contained in an A′-B′

bridge. However, by u ∈ A′(p, s), the existence of Y2 contradicts (v) of Lemma 2.3.9.
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Now let S be an arbitrary A′-B′ path from s ∈ A′(u, x2) to s′ ∈ B′[r1, y1]. Suppose

S has length at least 2. Then S is contained in some A′-B′ bridge N with feet n′1, n
′
2 and

extreme hands n1, n2. Then n′1, n
′
2 ∈ {p′, y1}. By (v) of Lemma 2.3.9 and the existence of

S and Y2, A′[n1, n2] ⊆ A[u, x2]. Let h1, h2 ∈ A′[x1, x2], such that A′[n1, n2] ⊆ A′[h1, h2],

H ′ − y1 does not contain a path from A′(h1, h2) to y2 and internally disjoint from A′,

and subject to this, A′[h1, h2] is maximal. Clearly, A′(h1, h2) ⊆ A′(u, x2), and for i ∈ [2],

H ′−y1 contains a path from hi to y2 and internally disjoint fromA′. By (v) of Lemma 2.3.9,

{h1, h2, p′, y1} is a cut in G∗ separating V (N) from {a0, a1, a2, b1, b2}, a contradiction.

Thus, S must be an edge. To complete the proof, we need to show r′ = p′. For, suppose

r′ 6= p′. By (i), R is disjoint from P,Q with r ∈ A′(p, q), and so R,P, S, Y2 force a double

cross in A,B, contradicting Lemma 2.1.7. 2

Let R = P if r′ = p′, and if r′ 6= p′ then by Lemma 2.4.3, R is disjoint from P,Q with

r ∈ A′(p, q) (seen at Figure 2.8). By Lemma 2.4.1, for i ∈ [2], we let P1,i, P2,3−i be disjoint

paths from x1, x2 to yi, y3−i, respectively, in H ′ − y1 − A′(x1, x2).

a1 x1 x2 a2r q

r′ q′
b1 b2

y2y1

a0

Figure 2.8: A core frame

We now use the structure inside H ′ to derive further structure outside H ′.
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Lemma 2.4.4 (i) G has no edge fromB′(b1, r1] toA′(x2, a2] and no edge fromB′[y2, b2)

to A′[a1, x1).

(ii) G has no edge from b1 to A′[a1, x1] ∪ A′[x2, a2] and no edge from b2 to A′[x2, a2].

(iii) r1 = b1 implies x1 = a1, and y2 = b2 implies x2 = a2.

(iv) If y2 6= b2 and y2 is a cut vertex of G′0 separating b2 from {a0, b1}, then NG(b2) =

{y2, x1}, a1 6= x1, and a2 = x2.

Proof. By Lemma 2.3.7 and (iv) of Lemma 2.4.2, we may assume that

(1) when b1 6= r1, G′0 − B′(b1, r′]− B′[y2, b2] contains disjoint paths B∗1 , A
∗
0 from b1, a0

to q′, y1, respectively.

(2) G has no edge from A′(x2, a2] to B′(b1, r1].

For, let e = ab ∈ E(G) with a ∈ A′(x2, a2] and b ∈ B′(b1, r1]. Then b1 6= r1; so B∗1 , A
∗
0

exist by (1). Now A′[a1, r]∪R∪B′[b, r′]∪e∪A′[a, a2]∪P1,1∪A∗0 andB∗1 ∪Q∪A′[q, x2]∪

P2,2 ∪B′[y2, b2] show that γ is feasible, a contradiction. 2

(3) G has no edge from b2 to A′[x2, a2].

For, let e = ab2 ∈ E(G) with a ∈ A′[x2, a2]. Then a 6= a2 and let e′ = a2b
′ ∈ E(G)

with b′ ∈ B′(b1, b2). Now b′ /∈ B′[y2, b2) to avoid the double cross e, e′, P1,2, P2,1. Hence,

b′ ∈ B′(b1, r1], contradicting (2). 2

(4) G has no edge from A′[a1, x1) to B′[y2, b2).

Otherwise, let e = ab ∈ E(G) with a ∈ A′[a1, x1) and b ∈ B′[y2, b2). Then G has no edge

from b2 to {x1, x2}; as such an edge must be b2x1 by (3), which forms a double cross with

e, P1,1 and P2,2, contradicting Lemma 2.1.7.

Hence, by Lemma 2.3.7 and (iv) of Lemma 2.4.2, G′0−B′[b1, r′]−B′[y2, b] has disjoint

paths B2, A0 from b2, a0 to y1, q′, respectively. But then, A′[a1, a] ∪ e ∪ B′[y2, b] ∪ P2,2 ∪
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A′[q, a2] ∪ Q ∪ A0 and B′[b1, r′] ∪ R ∪ A′[x1, r] ∪ P1,1 ∪ B2 show that γ is feasible, a

contradiction. 2

(5) (i) and (ii) hold.

For, suppose not. Then G has an edge e = b1a with a ∈ A′[a1, x1] ∪ A′[x2, a2].

Suppose a ∈ A′[a1, x1]. Then a 6= a1, and let e′ = a1b
′ ∈ E(G) with b′ ∈ B′(b1, b2).

Now b′ /∈ B′(b1, r1] to avoid the double cross e, e′, P1,2, P2,1. So b′ ∈ B′[y2, b2), contradict-

ing (4).

Hence, a ∈ A′[x2, a2]. Then a 6= a2, and let e′ = a2b
′ ∈ E(G) with b′ ∈ B′(b1, b2).

Now b′ /∈ B′(b1, r1] to avoid the double cross e, e′, P1,1, P2,2. Hence, b′ ∈ B′[y2, b2).

If G has an edge e3 from b2 to {x1, x2} then, by (3), it ends with x1. So a1 6= x1,

and G has an edge e4 from a1 to B′(b1, b2). But now, e, e′, e3, e4 force a double cross, a

contradiction.

So G has no edge from b2 to {x1, x2}. Hence, by Lemma 2.3.7, G′0 − B′[b1, r1] −

B′[y2, b
′] has disjoint paths B2, A0 from b2, a0 to y1, q′, respectively. But then, A′[a1, q] ∪

P1,2 ∪ B′[y2, b′] ∪ e′ ∪ Q ∪ A0 and e ∪ A′[x2, a] ∪ P2,1 ∪ B2 show that γ is feasible, a

contradiction. 2

Since G∗ is 6-connected, it follows from (2) and (4) that (iii) holds. It remains to prove

(iv). So assume y2 6= b2 and y2 is a cut vertex of G′0 separating b2 form {a0, b1}. Then

α(A′, B′) ≤ 1.

Suppose B′(y2, b2) 6= ∅. Then, since G∗ is 6-connected, it follows from (4) that G

has edges from B′(y2, b2) to distinct u1, u2 ∈ V (A′[x2, a2]), and we choose u1, u2 so that

A′[u1, u2] is maximal. Now, by (2) and (3), {u1, u2, y2, b2, x1} is a cut in G∗ separating

B′(y2, b2) from {a0, a1, a2, b1, b2}, a contradiction.

SoB′(y2, b2) = ∅. Then a2 = x2; for otherwise, sinceG∗ is 6-connected,G has an edge

from a2 to B′(b1, r1], contradicting (2). We may assume that there exists e = b2a ∈ E(G)

with a ∈ A′(a1, x1); as otherwise, (iv) holds. Let e′ = a1b
′ ∈ E(G) with b′ ∈ B′(b1, b2).
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Then b′ ∈ B′(b1, r1] by (4); so b1 6= r1, and B∗1 , A
∗
0 exist by (1). Now, by Lemma 2.2.1,

we derive α(A′, B′) = 2 with the following paths: the path e′ ∪B′[b1, b′] from a1 to b1, the

path A′[a1, a] ∪ e from a1 to b2, the path B∗1 ∪ Q ∪ A′[x1, q] ∪ P1,2 ∪ B′[y2, b2] from b1 to

b2, and the path A∗0 ∪ P2,1 from a0 to a2. This contradicts α(A′, B′) ≤ 1 as A′, B′ is a good

frame. 2

Let H0 denote the minimal union of blocks of H ′− y1−A′[q, x2] containing X1, let W

denote the path between x1 and y2, such that W is contained in the outer walk of H0, and

for any vertex v ∈ V (W − A′), there exists a vertex u ∈ V (A′[q, x2]), such that u, v are

incident with a finite face of H ′ − y1, and let w1 ∈ V (A′ ∩W ) with A′[x1, w1] maximal.

We further study the structure inside H ′.

Lemma 2.4.5 (i) H0 = H ′− y1−A(w1, x2], and each vertex in W (w1, y2] has at most

two neighbors on A′[q, x2], inducing a subpath of A′ with at most two vertices.

(ii) H ′ − {y1, y2} − A′(x1, x2) contains a path from x1 to x2.

Proof. Suppose (i) is not true. Then H ′ − y1 has a (H0 ∪ A′[q, x2])-bridge J which has

exactly one vertex in W (w1, y2] (by definition of H0 and since G − A′ is connected) or

some vertex w ∈ V (W (w1, y2]) has two neighbors on A′[q, x2] such that the subpath of

A′ between them has at least three vertices. In the first case, let w ∈ V (J ∩ H0) and

u, v ∈ V (J∩A′) such that J∩A′ ⊆ A′[u, v]; and in the second case, let u, v be the neighbors

of w on A′[q, x2] such that A′[u, v] is maximal. Then by Lemma 2.4.3, {u, v, w, y1, r′} is a

cut in G∗, a contradiction.

Now suppose (ii) is not true. Then there exists v0 ∈ V (A′(x1, x2)) such that y2, v0 are

incident with a finite face of H ′ − y1. We further choose v0 so that A′[v0, x2] is minimal,

and let (L1, L2) be a separation in H ′ − y1 such that V (L1 ∩ L2) = {y2, v0}, x1 ∈ V (L1),

and x2 ∈ V (L2).

By Lemma 2.4.1, for each j ∈ [2], H ′ − A′(x1, x2) contains disjoint paths from y1, y2

to xj, x3−j , respectively. So for j ∈ [2], G[V (Lj) ∪ {y1}] − y2 contains a path Tj from y1
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to xj and internally disjoint from A′.

We see that y2, v0 are not incident with some finite face of H0. For otherwise, v0 ∈

A′(x1, w1], x1 6= w1, and W [w1, y2] ⊆ L2. Hence, T1, W [w1, y2], P and Q are disjoint,

which form a double cross, a contradiction to Lemma 2.1.7.

Now, by the minimality ofA′[v0, x2] and planarity ofH ′−y1, v0 ∈ A′[q, x2). Therefore,

by Lemma 2.4.3, {v0, x2, r′, y1, y2} is a cut inG∗ separating V (L2) from {a0, a1, a2, b1, b2},

a contradiction. 2

Lemma 2.4.6 w1 6= x1, and H0 is 2-connected.

Proof. Suppose this is false. Let z ∈ V (H0) such that z = x1 (when x1 = w1) or z is a cut

vertex of H0 and, subject to this, W [x1, z] is maximal. Then V (W [z, y2] ∩X1) = {z, y2}.

Note that z ∈ X1[x1, y2).

Let w ∈ W (z, y2] and u ∈ NG(w) ∩ V (A′[q, x2]) such that A′[u, x2] ∪ W [w, y2] is

maximal. Moreover, let K denote the {z, u}-bridge of H ′ − y1 containing A′[u, x2] ∪X2,

and let K∗ := G[V (K) ∪ {y1}].

By (v) of Lemma 2.3.9 and by the existence of W [y2, w] ∪ wu,

(1) no A′-B′ bridge outside H ′ has one extreme hand in A′[x1, u) and the other in

A′(u, x2].

Thus, since {y1, y2, z, u, x2} is not a cut in G∗ separating K from {a0, a1, a2, b1, b2},

G has an A′-B′ path from A′(u, x2) to B′[r1, y1) and internally disjoint from H ′. By

Lemma 2.4.3,

(2) all A′-B′ paths from A′(u, x2) to B′[r1, y1] and internally disjoint from H ′ are edges

from A′(u, x2) to {r′, y1}.

So let e = ar′ ∈ E(G) with a ∈ A′[u, x2), and choose a such that A′[u, a] is minimal.

Let L denote the path on the outer walk of K between y2 and u not going through x2, and

let L0 := L ∪ A′[u, a]. Then
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(3) V (L0 ∩X2) = {y2} and NG(y1) ∩ V (K) ⊆ V (L0).

First, suppose there exists v ∈ V (L0 ∩ X2), such that v 6= y2. Then {v, y1, u, x2, r′} is a

cut in G∗ separating V (A′(u, x2)) from {a0, a1, a2, b1, b2}, a contradiction.

Now suppose there exist v ∈ NG(y1) ∩ V (K) such that v /∈ V (L0). We claim that

K∗ − L0 has a path Y1 from y1 to x2. For otherwise, by the planar structure of K, there

exist c1, c2 ∈ V (L0), such that c1, c2 are incident with a finite face of K, and {c1, c2} is a

2-cut in K separating v from x2. Thus, by (2) and the choice of a, {c1, c2, y1, u, z} is a cut

in G∗ separating v from {a0, a1, a2, b1, b2}, a contradiction.

If G has an A′-B′ path T from A′(x1, u) to B′(r′, y1] and internally disjoint from H ′,

then T, e, L, Y1 force a double cross, a contradiction. So T does not exist. Then u = q and,

by (1), {x1, u, z, r′} is a cut in G∗ separating r from {a0, a1, a2, b1, b2}, a contradiction. 2

We will need the following claim.

(4) G′0 contains a path A∗0 from B′(r′, y1) to a0 and internally disjoint from B′.

For otherwise, there exists b′1 ∈ V (B′[b1, r
′]), such that {b′1, y1} is a 2-cut in G′0 separating

B′[b′1, y1] from {a0, b1, b2}. Furthermore, {b′1, y1, y2} is a 3-cut in G′0 separating B′[b′1, y2]

from {a0, b1, b2}. We choose b′1 so that B′[b1, b′1] is minimal. By Lemma 2.3.7 and (iv)

of Lemma 2.4.2, b′1 = b1, and {b1, y1, y2, b2} is a cut in G∗ separating a0 from {a1, a2}, a

contradiction. 2

Let y′1, y
′′
1 ∈ V (L0)∩NG(y1) such that a, y′1, y

′′
1 , y2 occur on L0 in order and, subject to

this, L0[y
′
1, y
′′
1 ] is maximal.

(5) y′′1 ∈ L0[z, u).

For, otherwise, y′′1 ∈ L0(z, y2]. Then y′1 /∈ L0[z, y2]; otherwise, G has a separation

(G1, G2), such that V (G1 ∩ G2) = {r′, u, z, y1, y2, x2}, {a0, a1, a2, b1, b2} ⊆ V (G1),

G2 = K∗, and (G2, r
′, u, z, y1, y2, x2) is planar, which contradicts Lemma 2.1.3.
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We claim that K−L0[y
′
1, a]∪L0[y2, y

′′
1 ] contains a path X ′ from x2 to z. For otherwise,

by (3) and the planar structure of K, there exist c1 ∈ V (L0[y
′
1, a]) and c2 ∈ V (L0[y2, y

′′
1 ]),

such that c1, c2 are incident with a finite face of K, and {c1, c2} is a 2-cut in K separating

x2 from z. If c1 ∈ A′[u, a] then {c1, c2, y2, x2, r′} is a cut in G∗ separating V (X2) from

{a0, a1, a2, b1, b2}, a contradiction. So c1 /∈ A′[u, a]. Then G has a separation (G1, G2),

such that V (G1 ∩ G2) = {r′, u, c1, c2, y2, x2}, {a0, a1, a2, b1, b2} ⊆ V (G1), V (A′[u, x2] ∪

X2) ⊆ V (G2), and (G2, r
′, u, c1, c2, y2, x2) is planar. This contradicts Lemma 2.1.3.

Now, the following paths give a contradiction to (i) of Lemma 2.2.2: the pathA′[a1, x1]∪

X1[x1, z]∪X ′ ∪A′[x2, a2] from a1 to a2, the path B′[b1, r′]∪ e∪L0[a, y
′
1]∪ y′1y1 ∪ y1y′′1 ∪

L0[y
′′
1 , y2] ∪B′[y2, b2] from b1 to b2, and the path A∗0 from B′(r′, y1) to a0. 2

Now y′1 ∈ A′(u, a]. For, otherwise, y′1, y
′′
2 ∈ L0[z, u]. Now,G has a separation (G1, G2),

such that V (G1 ∩ G2) = {r′, u, y1, z, y2, x2}, {a0, a1, a2, b1, b2} ⊆ V (G1), G2 = K∗, and

(G2, r
′, u, y1, z, y2, x2) is planar. This contradicts Lemma 2.1.3.

Moreover, K − L0[y
′
1, a] ∪ L0[y2, y

′′
1 ] contains a path X ′ from x2 to u. For otherwise,

by (3) and the planar structure of K, there exist c1 ∈ V (L0[y
′
1, a]) and c2 ∈ V (L0[y2, y

′′
1 ]),

such that c1, c2 are incident with a finite face of K, and {c1, c2} is a 2-cut in K separating

x2 from u. If c2 ∈ L0[y2, z] then {c1, c2, y2, x2, r′} is a cut in G∗ separating V (X2) from

{a0, a1, a2, b1, b2}, a contradiction. So c2 /∈ L0[y2, z]. Then G has a separation (G1, G2),

such that V (G1 ∩ G2) = {r′, c1, c2, z, y2, x2}, {a0, a1, a2, b1, b2} ⊆ V (G1), V (A′[c1, x2] ∪

X2) ⊆ V (G2), and (G2, r
′, c1, c2, z, y2, x2) is planar. This contradicts Lemma 2.1.3.

Hence, the following paths contradict (i) of Lemma 2.2.2: the path A′[a1, u] ∪ X ′ ∪

A′[x2, a2] from a1 to a2, the pathB′[b1, r′]∪e∪L0[a, y
′
1]∪y′1y1∪y1y′′1∪L0[y

′′
1 , y2]∪B′[y2, b2]

from b1 to b2, and the path A∗0 from B′(r′, y1) to a0. 2

Lemma 2.4.7 Let z1, z2 ∈ V (W ) with W [z1, z2] is maximal, such that x1, z1, z2, y2 occur

on W in order, and for each i ∈ [2], G[H0 + y1] has a path Zi from y1 to zi and internally

disjoint from W . Then, NG(y1) ∩ V (X1[x1, y2)) = ∅ and Z1 ∩ (X1 ∪X2) = ∅.
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Proof. By Lemma 2.4.6, w1 6= x1 and H0 is 2-connected. So V (X1 ∩W ) = {x1, y2}.

If NG(y1) ∩ V (X1[x1, y2)) 6= ∅ or Z1 ∩ X1 6= ∅ then Z1 ∪ X1 contains a path S from

y1 to x1 and disjoint from W [w1, y2]. Now S, W [w1, y2], P , and Q force a double cross,

contradicting Lemma 2.1.7. So NG(y1) ∩ V (X1[x1, y2)) = ∅ and Z1 ∩X1 = ∅.

Moreover, Z1 ∩X2 = ∅. For, otherwise, by the choice of z1 and Z1, it follows from the

planarity of H ′ − y1 that z1 ∈ V (X2). But then, H ′ −A′(x1, x2) contains no disjoint paths

from y1, y2 to x1, x2, respectively. This contradicts Lemma 2.4.1. 2

Letw2, · · · , wm be the vertices onW in order from x1 to y2 such that for i ∈ {2, · · · ,m},

NG(wi) ∩ V (A′[q, x2]) 6= ∅.

Lemma 2.4.8 a2 = x2, and if y2 6= b2 then y1, y2 are cut vertices in G′0 separating b2 from

{a0, b1}, NG(b2) = {y2, x1}, and a1 6= x1. Moreover, one of the following holds:

(i) there exists a 2-cut {z′1, z′2} in H0 with x1, z′1, z1, z2, z
′
2, y2 on W in order such that

W (z′1, z
′
2) 6= ∅ and z′1, z

′
2 are incident with a finite face of H0, or

(ii) NG(y1) ∩ V (H0) ⊆ V (W [w1, y2]) and, for any i ∈ [m], wi /∈ W (z1, z2).

Proof. By Lemma 2.4.6, w1 6= x1, and H0 is 2-connected. If y2 = b2, then by (iii) of

Lemma 2.4.4, we have a2 = x2.

Now assume y2 6= b2. We claim that G′0 has a 3-cut {a′0, b′1, y2} with b′1 ∈ B′[b1, r1],

which separates B′[b′1, y2] from {a0, b1, b2}. For otherwise, by (iv) of Lemma 2.4.2, G′0 −

B′[b1, r
′]− y2 contains disjoint paths A0, B2 from a0, b2 to q′, y1, respectively. Let Y1 be a

path in Z1∪W [z1, w1]∪A′[w1, r] from y1 to r. Note that r /∈ A′[q, x2] and, by Lemma 2.4.7,

Y1 ∩ (A′[q, x2] ∪ X1 ∪ X2) = ∅. Now, A′[a1, x1] ∪ X1 ∪ X2 ∪ A′[q, a2] ∪ Q ∪ A0 and

B′[b1, r
′] ∪R ∪ Y1 ∪B2 show that γ is feasible, a contradiction.

Thus, when y2 6= b2, we may apply Lemma 2.3.7 (with b′2 = y2), and conclude that

b′1 = b1, a′0 = a0, and y1, y2 are cut vertices in G′0 separating b2 from {a0, b1}. By (iv) of

Lemma 2.4.4, we have NG(b2) = {y2, x1}, a1 6= x1, and a2 = x2.
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We now show (i) or (ii) holds. First, suppose z1 = z2. Then NG(y1) ∩ V (H0) = {z1};

or else, there exists v ∈ NG(y1)∩ V (H0) with v 6= z1, and {z1, y1} is a cut in G separating

v from {a0, a1, a2, b1, b2}, a contradiction. Clearly, z1 ∈ V (W (w1, y2)), and so (ii) holds.

So we may assume z1 6= z2. Now suppose W (z1, z2) ∩ {w1, . . . , wm} = ∅. Then (ii)

holds or there exists v ∈ NG(y1) ∩ V (H0) such that v /∈ V (W ). In the latter case, there

exist c1, c2 ∈ V (W (x1, y2]), such that {c1, c2} is a 2-cut in H0 separating v from x1; since,

otherwise,H0−W (x1, y2] contains a path T from v to x1, and y1v∪T,W [w1, y2], R,Q force

a double cross, contradicting Lemma 2.1.7. Now, {y1, c1, c2} is a cut inG∗, a contradiction.

Hence, we may assume W (z1, z2) ∩ {w1, . . . , wm} 6= ∅. Now suppose (i) fails. Then

by the planar structure of H0, H0 −W (x1, z1] −W [z2, y2] contains a path X ′ from x1 to

W (z1, z2) and internally disjoint from W .

We claim that X ′ must be disjoint from Z1, Z2. For otherwise, let x∗ ∈ V (X ′ ∩ Zj)

for some j ∈ [2]. As X ′, Z1, Z2 are all internally disjoint from W , Zj[sj, x∗] ∪ X ′[x∗, x1]

implies that z1 = x1, contradicting Lemma 2.4.7 that V (Z1 ∩ (X1 ∪X2)) = ∅.

We claim w1 ∈ W (z1, z2). For otherwise, wi ∈ W (z1, z2) for some i ≥ 2. Let vi ∈

NG(wi) ∩ V (A′[q, x2]) with A′[vi, x2] minimal. By Lemma 2.3.7 and (iv) of Lemma 2.4.2,

there exists a path A∗0 in G′0 from a0 to B′(r′, y1), which is internally disjoint from B′.

Now A′[a1, x1] ∪X ′ ∪W (z1, z2) ∪ wivi ∪ A′[q, a2] ∪Q ∪ B′(r′, y1) ∪ A∗0 and B′[b1, r′] ∪

R ∪ A′[r, w1] ∪ W [w1, z1] ∪ Z1 ∪ Z2 ∪ W [z2, y2] ∪ B′[y2, b2] show that γ is feasible, a

contradiction.

So z1 ∈ A′(x1, w1). Moreover, r /∈ A′(x1, z1]; otherwise, A′[a1, x1]∪X ′ ∪W (z1, z2)∪

A′[w1, a2]∪Q∪B′(r′, y1)∪A∗0 andB′[b1, r′]∪R∪A′[r, z1]∪Z1∪Z2∪W [z2, y2]∪B′[y2, b2]

show that γ is feasible, a contradiction. But now, A′[a1, z1] ∪ Z1 ∪ B′(r′, y1] ∪ A∗0 ∪ Q ∪

A′[q, a2] and B′[b1, r′] ∪ R ∪ A′[r, w1] ∪W [w1, y2] ∪ B′[y2, b2] show that γ is feasible, a

contradiction. 2

Lemma 2.4.9 Suppose (i) of Lemma 2.4.8 holds, and the 2-cut {z′1, z′2} in G′0 is chosen

with W [z′1, z
′
2] maximal. Then z′1 ∈ A′[x1, w1] (seen at Figure 2.9).
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Figure 2.9: Structures in a core frame I

Proof. For, suppose z′1 /∈ A′[x1, w1]. By Lemma 2.4.5, let u′, u′′ ∈ V (A′[q, x2]) and

v′, v′′ ∈ V (W (z′1, z
′
2)) such that x1, u′, u′′, x2 occur on A′ in order, u′v′, u′′v′′ ∈ E(G),

and, subject to this, A′[u′, u′′] is maximal and then W [v′, v′′] is maximal. Then H ′− y1 has

a separation (K,K ′) such that V (K ∩K ′) = {u′, u′′, z′1, z′2}, W [z′1, z
′
2] ∪ A′[u′, u′′] ⊆ K,

and W [x1, z
′
1] ∪X1 ⊆ K ′.

By (v) of Lemma 2.3.9 and by the existence of paths from y2 to u′, u′′, respectively, in

H ′ − y1 that are internally disjoint from A′,

(1) no A′-B′ bridge outside H ′ has u′ or u′′ as internal vertex of the subpath of A′ be-

tween its extreme hands.

Therefore, since {y1, z′1, z′2, u′, u′′} does not separate K from {a0, a1, a2, b1, b2} in G∗,

(2) A′(u′, u′′) 6= ∅, and G has an A′-B′ path from A′(u′, u′′) to B′[r1, y1) and internally

disjoint from H ′ − y1.

Recall from Lemma 2.4.3 that

(3) all A′-B′ paths from A′(u′, u′′) to B′[r1, y1] and internally disjoint from H ′ − y1 are

edges from A′(u′, u′′) to {r′, y1}.
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By (2) and (3), let e = ar′ ∈ E(G) with a ∈ V (A′[u′, u′′)) and A′[u′, a] minimal. Note

that

(4) G′0 contains a path A∗0 from B′(r′, y1) to a0 and internally disjoint from B′.

For otherwise, there exists b′1 ∈ B′[b1, r
′], such that {b′1, y1} is a 2-cut in G′0 separating

B′[b′1, y1] from {a0, b1, b2}. Furthermore, {b′1, y1, y2} is a 3-cut in G′0 separating B′[b′1, y2]

from {a0, b1, b2}. By Lemma 2.3.7 and (iv) of Lemma 2.4.2, b′1 = b1, and {b1, y1, y2, b2} is

a cut in G separating a0 from {a1, a2}, a contradiction. 2

Since z′1 /∈ A′[x1, w1], no finite face of K ′ incident with z′2 is incident with a vertex of

A′[x1, w1]. Thus,

(5) K ′ − A′[x1, u′] contains a path Y from y2 to z′1 and internally disjoint from A′.

Let L denote the path on the outer walk of K from z′1 to u′ without going through u′′,

and let L0 := L ∪ A′[u′, a]. Note that z′2 /∈ V (L0).

(6) NG(y1) ∩ V (K) 6⊆ V (L0) ∪ {z′2}.

For, suppose NG(y1) ∩ V (K) ⊆ V (L0) ∪ {z′2}. Then V (L0) ∩ NG(y1) 6= ∅; otherwise,

{u′, u′′, z′1, z′2, r′} is a cut in G∗ separating K from {a0, a1, a2, b1, b2}, a contradiction.

Let y′1, y
′′
1 ∈ V (L0)∩NG(y1), such that a, y′1, y

′′
1 , z
′
1 occur on L0 in order and L0[y

′
1, y
′′
1 ]

is maximal.

We first claim y′1 ∈ L0(u
′, a]. For otherwise, y′1, y

′′
2 ∈ V (L0[z

′
1, u
′]). Now, G has a

separation (G1, G2), such that V (G1 ∩ G2) = {r′, u′, y1, z′1, z′2, u′′}, {a0, a1, a2, b1, b2} ⊆

V (G1), V (K) ⊆ V (G2), and (G2, r
′, u′, y1, z

′
1, z
′
2, u
′′) is planar, contradicting Lemma 2.1.3.

Next, y′′1 ∈ L0[z
′
1, u
′). For, suppose y′′1 /∈ L0[z

′
1, u
′). Then y′′1 ∈ L0[u

′, a]. Now, G has

a separation (G1, G2), such that V (G1 ∩G2) = {r′, y1, u′, z′1, z′2, u′′}, {a0, a1, a2, b1, b2} ⊆

V (G1), V (K) ⊆ V (G2), and (G2, r
′, y1, u

′, z′1, z
′
2, u
′′) is planar, contradicting Lemma 2.1.3.

We further claim K − z′2 − L0[z
′
1, y
′′
1 ]− L0[y

′
1, a] contains a path X ′ from u′′ to u′. For

otherwise, by the planar structure of K, there exist c1 ∈ V (L0[y
′
1, a]), c2 ∈ V (L0[z

′
1, y
′′
1 ])∪
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{z′2}, such that c1, c2 are incident with some finite face of K, and {c1, c2} is a 2-cut in K

separating u′ from u′′. By the existence of the path u′′v′′ ∪ W [v′′, v′] ∪ v′u′ from u′′ to

u′, we may assume c2 = v′. Moreover, v′ 6= v′′; otherwise, {v′, u′, u′′, r′, y1} is a cut in

G∗ separating A′(u′, u′′) from {a0, a1, a2, b1, b2}, a contradiction. Now G has a separation

(G1, G2), such that V (G1 ∩ G2) = {r′, c1, v′, z′1, z′2, u′′}, {a0, a1, a2, b1, b2} ⊆ V (G1),

V (A′[c1, u
′′]) ∪ {v′′} ⊆ V (G2), and (G2, r

′, c1, v
′, z′1, z

′
2, u
′′) is planar, which contradicts

Lemma 2.1.3.

Now, the pathA′[a1, u′]∪X ′∪A′[u′′, a2] from a1 to a2, the pathB′[b1, r′]∪e∪L0[a, y
′
1]∪

y′1y1 ∪ y1y′′1 ∪ L0[y
′′
1 , z
′
1] ∪ Y ∪ B′[y2, b2] from b1 to b2, and the path A∗0 from B′(r′, y1) to

a0 contradict (i) of Lemma 2.2.2. 2

(7) G[K + y1]− V (L0) ∪ {z′2} contains a path Y1 from y1 to u′′.

Note that, by (6), there exists v ∈ NG(y1) ∩ V (K) such that v /∈ V (L0) ∪ {z′2}. So if (7)

fails then, K− z′2−L0 has no path from v to u′′; so there exist c1, c2 ∈ V (L0)∪{z′′2}, such

that c1, c2 are incident with some finite face of K, and {c1, c2} is a 2-cut in K separating

v from u′′. Thus, by (3) and the choice of a, {c1, c2, y1, u′, z′1} is a cut in G∗ separating v

from {a0, a1, a2, b1, b2}, a contradiction. 2

(8) b1 = r1 = r′, and G has no A′-B′ path from A′[a1, u
′) to B′(r′, y1] and internally

disjoint from H ′.

First, G has no A′-B′ path from A′[a1, u
′) to B′(r′, y1] and internally disjoint from H ′, to

avoid forming a double cross with e, Y ∪ L, Y1.

Next we show b1 = r1 (and so a1 = x1 by (iii) of Lemma 2.4.4). For, suppose b1 6= r1.

By Lemma 2.3.7 and (iv) of Lemma 2.4.2, G′0 − r′ − B′[y2, b2] contains disjoint paths

B1, A0 from b1, a0 to q′, y1, respectively. Now, A′[a1, r] ∪ R ∪ e ∪ A′[a, a2] ∪ Y1 ∪ A0 and

B1 ∪Q ∪ A′[q, u′] ∪ L ∪ Y ∪B′[y2, b2] show that γ is feasible, a contradiction.

Moreover, r1 = r′. For, suppose r1 6= r′. By (iii) of Lemma 2.4.2, there exists an A′-B′

bridgeM with feet l∗, r∗, such thatM is internally disjoint fromR, and r′ ∈ B′(l∗, r∗). Let
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P ∗ be the path from l∗ to r∗ in M and internally disjoint from A′, B′, and let A′0 be the path

from a0 to y1 inG′0 and internally disjoint fromB′. ThenA′[a1, r]∪R∪e∪A′[a, a2]∪Y1∪A′0

and B′[b1, l′4] ∪ P ∗ ∪B′[r′4, q′] ∪Q ∪A′[q, u′] ∪ L ∪ Y ∪B′[y2, b2] show that γ is feasible,

a contradiction. 2

Now, by (1), (3), (8), Lemma 2.4.3, and Lemma 2.4.8, {b1, u′, a2, y1, b2} is a cut in G∗

separating a0 from a1, a contradiction. 2

Lemma 2.4.10 y1 is a cut vertex in G′0 separating b2 from {a0, b1}, α(A′, B′) = 1, and

G′0 −B′(b1, r′]−A′0 has a path B′1 from b1 to q′, where A′0 is the path from a0 to y1, which

is in the outer walk of G′0 and disjoint from B′ − y1.

Proof. Recall the path Z1 from Lemma 2.4.7. We claim that H ′ − {y1, y2} contains a path

X0 from x1 to x2 and disjoint from Z1 ∪ W [z1, w1] ∪ A′(x1, x2). For otherwise, by the

planar structure of H ′− y1, there exists a vertex v ∈ V (Z1 ∪W [z1, w1]∪A′(x1, x2)), such

that y2, v are incident with some finite face of H0. By Lemma 2.4.5, v /∈ A′(x1, x2), and

so v ∈ V (Z1 ∪W [z1, w1]). If v ∈ W [z1, w1] then (i) of Lemma 2.4.8 holds and the 2-cut

{z′1, z′2} can be chosen with z′2 = y2; so z′1 ∈ A′[x1, w1] by Lemma 2.4.9, contradicting

Lemma 2.4.5. So v ∈ Z1 − z1, which implies that y1 has a neighbor in H0 −W ; so (i)

of Lemma 2.4.8 holds and the 2-cut {z′1, z′2} still can be chosen with z′2 = y2. Again,

z′1 ∈ A′[x1, w1] by Lemma 2.4.9, contradicting Lemma 2.4.5.

Now suppose y1 is not a cut vertex in G′0 separating b2 from {a0, b1}. Then y2 = b2 by

Lemma 2.4.8. If G′0 − B′[b1, r′] − B′(y1, b2) contains disjoint paths A0, B2 from a0, b2 to

q′, y1, respectively, then A′[a1, x1]∪X0∪A′[q, a2]∪Q∪A0 and B′[b1, r′]∪R∪A′[r, w1]∪

W [w1, z1] ∪ Z1 ∪ B2 show that γ is feasible, a contradiction. Thus, such paths do not

exist. Then by planarity, G′0 has a 3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b1, r′] and b′2 ∈ B′(y1, b2),

which separates B′(b′1, b
′
2) from {a0, b1, b2}. Since y1, b2, b′2 are incident with some finite

face of G′0, then a′0, b2 are incident with some finite face of G′0, and so {b′1, a′0, b2} is a

3-cut in G′0. Moreover, since y1 is not a cut vertex in G′0, then a′0 6= a0. But now, by (iv)
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of Lemma 2.4.2, b′1 /∈ B′(r1, r
′], and therefore, b′1 ∈ B′[b1, r1]. Now, by Lemma 2.3.7,

b′1 = b1. Then {b1, b2, a′0} is a cut in G∗ separating a0 from {a1, a2}, a contradiction.

Thus, y1 is a cut vertex in G′0 and, hence, α(A′, B′) ≤ 1. Indeed, α(A′, B′) = 1. To

see this, let A′0 be the path from a0 to y1, which is in the outer walk of G′0 and disjoint

from B′ − y1. When y2 = b2, let B∗ := A′[a1, x1] ∪X1; when y2 6= b2, by Lemma 2.4.8,

x1b2 ∈ E(G), and we let B∗ := A′[a1, x1] ∪ x1b2. Then by Lemma 2.2.1, the following

paths show α(A′, B′) = 1: the path A′0 ∪ B′[q′, y1] ∪ Q ∪ A′[q, a2] from a0 to a2, the path

B′[b1, r
′]∪R ∪A′[r, w1]∪W [w1, y2]∪B′[y2, b2] from b1 to b2, and the path B∗ from a1 to

b2.

Finally, suppose G′0 − B′(b1, r′]− A′0 has no path B′1 from b1 to q′. Then by planarity,

G′0 has a 2-cut {a′0, b′1}with a′0 ∈ V (A′0), b
′
1 ∈ V (B′(b1, r

′]), and a′0, b
′
1 cofacial, which sep-

arates b1 from q′. Hence, {a′0, b′1, b2} is a 3-cut in G′0 separating B′[b′1, b2] from {a0, b1, b2}.

By Lemma 2.3.7, b′1 /∈ B′(b1, r1], and so b′1 ∈ (r1, r
′]. But, by (iv) of Lemma 2.4.2, r1 = b1,

a′0 = a0, and G′0 has no path from a0 to b1 and internally disjoint from B′. Therefore,

α(A′, B′) = 0, a contradiction. 2

Lemma 2.4.11 Suppose (i) of Lemma 2.4.8 does not hold and (ii) of Lemma 2.4.8 holds.

Then NG(y1) ∩ V (H0) ⊆ V (W [w1, w2]) (seen at Figure 2.10).

Proof. Note that in this case, y1z1, y2z2 ∈ E(G). Since z1 /∈ V (X2) (by Lemma 2.4.7),

z1 /∈ W [wm, y2]; so (ii) of Lemma 2.4.8 implies the existence of j ∈ [m− 1] with z1, z2 ∈

W [wj, wj+1] and z2 6= wj . We may assume j ≥ 2 as otherwise the assertion holds. Thus,

since (i) of Lemma 2.4.8 does not hold, H0 − W [x1, w1] − W [z2, wm] contains a path

Y2 from y2 to w2. Recall from Lemma 2.4.8 that a2 = x2, and recall paths B′1, A
′
0 from

Lemma 2.4.10.

(1) b2 = y2.

For, suppose b2 6= y2. Then by Lemma 2.4.8, G has an edge from b2 to x1, and a1 6= x1.

Let a1b ∈ E(G) with b ∈ V (B′(b1, r1]). Now α(A′, B′) = 2 by applying Lemma 2.2.1
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a1 x1 x2 a2p q

p′ q′
b1 b2

y2y1

a0

Figure 2.10: Structures in a core frame II

with the following paths: the path A′0 ∪ y1z2 ∪W [z2, wm] ∪ wma2 from a0 to a2, the path

B′1∪Q∪A′[w1, q]∪W [w1, w2]∪Y2∪B′[y2, b2] from b1 to b2, the path a1b∪B′[b1, b] from

a1 to b1, and the path A′[a1, x1]∪x1b2 from a1 to b2 show that α(A′, B′) = 2, contradicting

Lemma 2.4.10. 2

Let u2 ∈ NG(w2) ∩ V (A′) with A′[u2, a2] is maximal. Then

(2) u2 6= x2.

For, suppose u2 = x2. Then G has an A′-B′ path T from t ∈ V (A′[a1, w1)) to t′ ∈

V (B′[b1, y1]) and internally disjoint from H ′; as otherwise, {a1, w1, x2, y1, y2} is a cut in

G∗ separating H0 from {a0, a1, a2, b1, b2}, a contradiction. We choose T so that B′[b1, t′] is

minimal and, subject to this, A′[a1, t] is minimal.

Then t′ ∈ B′[b1, r′] and G has no A′-B′ path from A′[a1, t) to B′[b1, y1] and internally

disjoint from H ′. For, if t′ ∈ B′(r′, y1] then, by the choice of T , we have T ∩ R = ∅ and

r ∈ A′[w1, q); now T,R, y1z2 ∪W [z2, wm] ∪ wmx2, and Y2 ∪W [w2, w1] form a double

cross, a contradiction. Now if G has an A′-B′ path S from s ∈ A′[a1, t) to s′ ∈ B′[b1, y1]

and internally disjoint from H ′, then by the choice of T , T ∩ S = ∅ and s ∈ B′(t′, y1]; so

T, S, y1z2 ∪W [z2, wm] ∪ wmx2, and Y2 ∪W [w2, w1] form a double cross, a contradiction.
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Now V (T ∩ Q) = ∅. Otherwise, T,Q are contained in a same A′-B′ bridge. Since

w1 ∈ A′(t, q), the path from w1 to y2 in H ′ − y1 contradicts (v) of Lemma 2.3.9.

Next, we show that H0 − (A′[x1, t] ∪X1[x1, y2) ∪W [z1, wj]) contains a path Y ′2 from

y2 to w1. For otherwise, by the planar structure of H0, there exist c1 ∈ V (W [z1, wj]) and

c2 ∈ V (A′[x1, t]) ∪ V (X1[x1, y2)), such that {c1, c2} is a cut in H0 separating y2 from w1.

Recall that j < m and z1 /∈ V (X2), and so z1 ∈ W [wj, wm). In fact, c2 ∈ A′(x1, t];

as otherwise {c1, c2, y1, y2, x2} is a cut in G∗ separating wm from {a0, a1, a2, b1, b2}, a

contradiction. Hence, t ∈ A′(x1, w1). Since G has no A′-B′ path from A′[a1, t) to

B′[b1, y1] and internally disjoint from H ′, G has a separation (G1, G2) such that V (G1 ∩

G2) = {x1, y2, x2, y1, c1, c2}, {a0, a1, a2, b1, b2} ⊆ V (G1), V (X1 ∪ X2) ⊆ V (G2), and

(G2, x1, y2, x2, y1, c1, c2) is planar, which contradicts Lemma 2.1.3.

Hence, by Lemma 2.2.1, the path A′0 ∪ z1y1 ∪W [z1, wj]∪wja2 from a0 to a2, the path

B′1∪Q∪A′[w1, q]∪Y ′2 from b1 to b2, the path A′[a1, t]∪T ∪B′[b1, t′] from a1 to b1, and the

path A′[a1, x1] ∪ X1 from a1 to b2 show that α(A′, B′) = 2, contradicting Lemma 2.4.10.

2

(3) G has no A′-B′ path from A′(u2, a2] to B′(b1, r′].

For, suppose G has an A′-B′ path S from s ∈ A′(u2, a2] to s′ ∈ B′(b1, r′]. Then, A′[a1, r]∪

R∪B′[s′, r′]∪S∪A′[s, a2]∪x2wm∪W [wm, z2]∪z2y1∪A′0 andB′1∪Q∪A′[q, u2]∪u2w2∪Y2

show that γ is feasible, a contradiction. 2

(4) G has no disjointA′-B′ pathsC,D from c, d ∈ V (A′[x1, x2)) to c′, d′ ∈ V (B′[b1, y1])

and internally disjoint fromH ′, such that a1, c, d, a2 occur onA′ in order, and b1, d′, c′,

y1 occur on B′ in order.

For, suppose such C,D exist. Then c /∈ A′[a1, u2); otherwise, C,D, y1z2 ∪W [z2, wm] ∪

wmx2, and Y2 ∪ w2u2 form a double cross, a contradiction. So d ∈ A′(u2, x2).

Then, by Lemma 2.4.3, D = dd′ and d′ = r′. Moreover, by (3), b1 = r′.
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Now, G has no A′-B′ path from A′[a1, u2) to B′(b1, y1] and internally disjoint from H ′;

otherwise, replace C by this path we have a contradiction to our claim that c /∈ A′[a1, u2).

But then, by Lemma 2.4.3, {b1, b2, y1, u2, a2} is a cut in G∗ separating a1 from a0, a con-

tradiction. 2

(5) H0 − A′(x1, w1]−W [z2, y2] has a path X ′ from x1 to wj .

For otherwise, by planarity of H0, there exist c1 ∈ V (A′(x1, w1]) and c2 ∈ V (W [z2, y2]),

such that {c1, c2} is a cut in H0 separating x1 from wj . But then, (i) of Lemma 2.4.8 holds,

a contradiction. 2

(6) H0 − (A′[x1, w1] ∪X1[x1, y2) ∪W [z2, wm)) contains a path Y ∗2 from y2 to w2.

For otherwise, by planarity ofH0, there exist c1 ∈ V (W [z2, wm)) and c2 ∈ V (A′[x1, w1])∪

V (X1[x1, y2)), such that {c1, c2} is a 2-cut in H0 separating y2 from w2. Now c2 ∈

X1[x1, y2); as otherwise c2 /∈ A′[x1, w1] and (i) of Lemma 2.4.8 holds, a contradiction.

Letwi ∈ W (c1, y2) such that i is minimum, and let ui ∈ NG(wi)∩V (A′) withA′[u2, ui]

minimum. Then G has an A′-B′ path S from s ∈ V (A′(ui, x2)) to s′ ∈ V (B′[b1, y1]) and

internally disjoint from H ′; otherwise, {ui, c1, c2, y2, x2} is a cut in G∗ separating wm from

{a0, a1, a2, b1, b2}, a contradiction.

By Lemma 2.4.3, S is an edge with s′ ∈ {r′, y1}. If s′ = r′ then S,Q contradict (4).

So s′ = y1. Then A′[a1, w1] ∪W [w1, z1] ∪ z1y1 ∪ A′0 ∪ s′s ∪ A′[s, a2] and B′[b1, q′] ∪Q ∪

A′[q, ui] ∪ uiwi ∪W [wi, y2] show that γ is feasible, a contradiction. 2

(7) z1, x2 are incident with some finite face of H ′ − y1.

For otherwise, there exist k ∈ {j + 1, · · · ,m} and a vertex uk ∈ V (A′[u2, x2)), such that

wkuk ∈ E(G). We choose k with k minimum and choose uk so that A′[uk, a2] is maximal.

Clearly, k = j + 1 or k = j + 2.

Suppose G has an A′-B′ path S from a2 to s′ ∈ V (B′[b1, y1]). By (3), s′ /∈ B′(b1, r′].

Moreover, s′ /∈ B′(r′, y1]; otherwise, S,R, ukwk ∪W [wk, y2], and X ′ ∪W [wj, z1] ∪ z1y1
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force a double cross. So s′ = b1. Note that |V (S)| ≥ 3 as a2b1 /∈ E(G); so S is contained

in an A′-B′ bridge N and let n1, n2 be the extreme hands of N . Since we forced s′ = b1,

we see that b1 is the only foot of N . By Lemma 2.4.3, V (N ∩ A′(u2, x2)) = ∅. By (v)

of Lemma 2.3.9, n1 /∈ A′[a1, u2), and so n1 = u2. But then, {n1, n2, b1} is a cut in G

separating V (N) from {a0, a1, a2, b1, b2}, a contradiction.

Then G has no A′-B′ path from a2 to B′[b1, y1] and internally disjoint from H ′. Since

the degree of a2 in G is at least 4, G has an edge from a2 to some w ∈ V (W [wk, wm)).

We derive α(A′, B′) = 2 by Lemma 2.2.1 and the following paths: the path A′[a1, r]∪R∪

B′[b1, r
′] from a1 to b1, the path A′[a1, x1]∪X1 from a1 to b2, the path B′1∪Q∪A′[q, u2]∪

u2w2 ∪ Y ∗2 from b1 to b2, and the path a2w ∪W [w, z2] ∪ z2y1 ∪ A′0 from a2 to a0. This

contradicts Lemma 2.4.10. 2

(8) Let vj ∈ NG(wj) ∩ V (A′) with A′[vj, a2] is minimal. Then G has two disjoint A′-B′

paths from A′(x1, vj) to B′[b1, y1] and internally disjoint from H ′.

For otherwise, there exists v ∈ V (G) such that G − v does not contain any A′-B′ path

from A′(x1, vj) to B′[b1, y1] and internally disjoint from H ′. But then, combined with (6),

G has a separation (G1, G2), such that V (G1 ∩ G2) = {v, x1, y2, x2, u, vj} with u = y1

(when z1 6= z2) or u = z1 (when z1 = z2), {a0, a1, a2, b1, b2} ∪ V (A′[vj, x2]) ⊆ V (G1),

and A′[x1, vj] ∪X1 ⊆ G2.

By Lemma 2.1.3, (G2, v, x1, y2, x2, u, vj) is not planar. So, clearly, v /∈ A′, and there

exists anA′-B′ bridgeN with feet n′1, n
′
2 and extreme hands n1, n2, such that v ∈ N . By (v)

of Lemma 2.3.9,H ′−y1 does not contain a path fromA′(n1, n2) to y2 and internally disjoint

from A′. Suppose v /∈ B′. Then N has a separation (N ′, N ′′) of order 1, such that V (N ′ ∩

N ′′) = {v}, n1, n2 ∈ V (N ′ −N ′′), and n′1, n
′
2 ∈ V (N ′′ −N ′). Now V (N ′) = {n1, n2, v};

or else, {n1, n2, v} is a cut in G separating V (N ′) − {n1, n2, v} from {a0, a1, a2, b1, b2},

a contradiction. This implies that (G2, v, x1, y2, x2, u, vj) is planar, a contradiction. So

v ∈ B′. But then, by (v) of Lemma 2.3.9 and the definition of v, n′1 = n′2 = v and there
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exist n∗1 ∈ A′[a1, n1] and n∗2 ∈ A′[n2, a2], such that {n∗1, n∗2, v} is a cut in G∗ separating

V (N) from {a0, a1, a2, b1, b2}, a contradiction. 2

By (8), let T1, T2 be disjoint A′-B′ paths from t1, t2 ∈ A′(x1, vj) to t′1, t
′
2 ∈ B′[b1, y1],

respectively, which are internally disjoint from H ′, such that B′[t′1, t
′
2] is maximal and,

subject to this, A′[t1, t2] is maximal. We may choose notation so that a1, t1, t2, a2 occur on

A′ in order. Then by (4), b1, t′1, t
′
2, b2 occur on B′ in order.

(9) t′1 ∈ B′[b1, r
′], and there exist c1 ∈ V (B′[b1, t

′
1]) and c2 ∈ V (B′[t′2, y1]) such that

c1, c2 are incident with some finite face of G′0.

First, suppose such {c1, c2} does not exist. ThenG′0 contains a path from a0 toB′(t′1, t
′
2) and

internally disjoint from B′. This contradicts Lemma 2.2.2 along with the path A′[a1, x1] ∪

X ′∪wjvj∪A′[vj, a2] from a1 to a2 and the pathB′[b1, t′1]∪T1∪A′[t1, t2]∪T2∪B′[t′2, y1]∪

y1z2 ∪W [z2, y2] from b1 to b2.

Now suppose t′1 /∈ B′[b1, r′]. Then t′1 ∈ B′(r′, y1]. First, assume R is internally disjoint

from T1, T2. If r ∈ A′(t1, x2] then R, T1 contradict (4). So r ∈ A′[a1, t1] and, then, R, T2

contradict the choice of T1, T2. So there exists v ∈ V (R ∩ (T1 ∪ T2)), and we choose v so

that R[r′, v] is minimal. If v ∈ V (T1), then R[r′, v] ∪ T1[v, t1], T2 contradict the choice of

T1, T2; if v ∈ V (T2), then T1, R[r′, v] ∪ T2[v, t2] form a cross, contradicting (4). 2

Now, we further choose c1, c2 in (9) so that B′[c1, c2] is maximal.

(10) G′0 − A′0 − B′(b1, c1) ∪ B′[c2, y1] contains a path B′0 from b1 to c1, and G′0 − A′0 −

B′(b1, c2) ∪B′(c2, y1] contains a path B′′0 from b1 to c2.

Suppose B′0 does not exist. Then B′(b1, c1) 6= ∅ and, by planarity of G′0, there exist b′1 ∈

V (B′(b1, c1)) and a′0 ∈ V (B′[c2, y1])∪V (A′0) such that b′1, a
′
0 are incident with some finite

face of G′0. If a′0 ∈ B′[c2, y1] then b′1, a
′
0 contradict the choice of c1, c2; if a′0 ∈ A′0 then

{b′1, a′0, b2} is a 3-cut in G′0, contradicting Lemma 2.3.7.
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Now supposeB′′0 does not exist. Then by planarity ofG′0, there exist b′1 ∈ V (B′(b1, c2))

and a′0 ∈ V (B′(c2, y1]) ∪ V (A′0), such that b′1, a
′
0 are incident with some finite face of

G′0. Now, if a′0 ∈ V (B′(c2, y1]) then b′1, a
′
0 or c1, a′0 contradict the choice of c1, c2. So

a′0 ∈ V (A′0). Then b′1 ∈ B′(c1, c2) and b1 = c1; otherwise, {b′1, a′0, b2} or {c1, a′0, b2} is a

3-cut inG′0, contradicting Lemma 2.3.7. But now, a0, b1, b′1, c2 are incident with some finite

face of G′0; so α(A′, B′) = 0, a contradiction to Lemma 2.4.10. 2

(11) G has no A′-B′ path from B′(b1, c1) to A′, but G has an A′-B′ path T from t′ ∈

B′(c2, y1) to t ∈ A′[x1, x2].

Note that c1 ∈ B′[b1, r1], since c1 ∈ B′[b1, t
′
1] and t′1 ∈ B′[b1, r1]. Thus, if G has an

A′-B′ path from B′(b1, c1) to A′, it should be an edge ab with b ∈ V (B′(b1, c1)) and

a ∈ V (A′[a1, x1])∪{a2}. By (3), a ∈ A′[a1, x1]. Now by Lemma 2.2.1, the following paths

show α(A′, B′) = 2: the path A′[a1, a] ∪ ab ∪ B′[b1, b] from a1 to b1, the path A′[a1, x1] ∪

X1 from a1 to b2, the path A′0 ∪ B′[q′, y1] ∪ Q ∪ A′[q, a2] from a0 to a2, and the path

B′0 ∪B′[c1, r′] ∪R ∪ A′[r, w1] ∪W [w1, y2] from b1 to b2. This contradicts Lemma 2.4.10.

Now the path T must exist; otherwise {b1, c1, c2, y1, b2} is a cut in G∗ separating a0

from {a1, a2}, a contradiction. 2

We choose T in (11) so that A′[t, a2] is minimal. Then

(12) t 6= a2, T is internally disjoint from T1, T2, and t = u2 = vj .

First, suppose there exists v ∈ V (T ∩ (T1 ∪ T2)), and choose v with T [v, t′] minimal.

If v ∈ T1 then T1[t1, v] ∪ T [v, t′], T2 contradict (4); if v ∈ T2 then T1, T2[t2, v] ∪ T [v, t′]

contradict the choice of T1, T2. So T is internally disjoint from T1, T2.

Now suppose t = a2. By Lemma 2.2.1, the following paths show that α(A′, B′) = 2:

the path A′[a1, t1]∪ T1 ∪B′[b1, t′1] from a1 to b1, the path A′[a1, x1]∪X1 from a1 to b2, the

path T ∪B′[t′, y1]∪A′0 from a2 to a0, and the path B′′0 ∪B′[t2, c2]∪T2∪A′[t2, u2]∪u2w2∪

W [w2, y2] from b1 to b2. This contradicts Lemma 2.4.10.
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By (4), t ∈ A′[t2, a2). By the choice of T1, T2, t /∈ A′[t2, vj). By Lemma 2.4.3, we have

t /∈ A′(u2, a2), and so t = u2 = vj . 2

(13) t1 ∈ A′[a1, w1).

For otherwise, t1 ∈ A′[w1, vj). Suppose that G has no A′-B′ path from A′(x1, w1) to

B′[b1, y1] and internally disjoint from H ′. By (7) and u2 = vj in (12), G has a separation

(G1, G2), such that V (G1 ∩ G2) = {x1, w1, u2, u, x2, y2} with u = y1 (when z1 6= z2) or

u = z1 (when z1 = z2), {a0, a1, a2, b1, b2} ∪ V (A′[u2, x2]) ⊆ V (G1), X1 ∪X2 ⊆ G2, and

(G2, x1, w1, u2, u, x2, y2) is planar. This contradicts Lemma 2.1.3.

SoG has anA′-B′ path T0 from t0 ∈ A′(x1, w1) to t′0 ∈ B′[b1, y1] and internally disjoint

from H ′. If T0 is disjoint from T1, T2 then either T0, T2 contradict the choice of T1, T2, or

T0, T1 contradict (4). So there exists v ∈ V (T0 ∩ (T1 ∪ T2)), and we choose v with T0[v, t′0]

minimal. If v ∈ T1 then T1[t1, v] ∪ T0[v, t′0], T2 contradict the choice of T1, T2; if v ∈ T2

then T1, T2[t2, v] ∪ T0[v, t′0] contradict (4). 2

Now, by (13) and Lemma 2.2.1, the following paths show α(A′, B′) = 2: the path from

A′[a1, t1] ∪ T1 ∪ B′[b1, t′1] from a1 to b1, the path A′[a1, x1] ∪ X1 from a1 to b2, the path

A′[t, a2]∪ T ∪B′[t′, y1]∪A′0 from a2 to a0, and the path B′′0 ∪B′[t2, c2]∪ T2 ∪A′[w1, t2]∪

W [w1, y2] from b1 to b2. This contradicts Lemma 2.4.10. 2

Lemma 2.4.12 There is no fat A′-B′ connector in γ.

Proof. For, otherwise, (i) or (ii) of Lemma 2.4.8 holds. Then

(a) if (i) of Lemma 2.4.8 holds then, by Lemma 2.4.9, we may choose the 2-cut {z′1, z′2}

so that z′1 ∈ A′[x1, w1].

(b) if (i) of Lemma 2.4.8 does not hold but (ii) of Lemma 2.4.8 holds then, by Lemma 2.4.11,

NG(y1) ∩ V (H0) ⊆ V (W [w1, w2]) and let z′1 := w1 and z′2 := z1.

(1) z′2 /∈ V (X2).
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For, suppose z′2 ∈ V (X2). Since z1 /∈ V (X2) by Lemma 2.4.7, (a) holds. Then z′1 = x1;

or else, it contradicts Lemma 2.4.1 that H ′ − A′(x1, x2) contains disjoint paths from y1, y2

to x1, x2, respectively. But now, {x1, y2, z′2} is a cut in G∗ separating X1(x1, y2) from

{a0, a1, a2, b1, b2}, a contradiction. 2

By (1), wm ∈ W (z′2, y2). Let h ∈ {2, · · · ,m} be minimum with wh ∈ W (z′2, y2), and

let uh ∈ NG(wh) ∩ V (A′[q, x2]) with A′[q, uh] minimal. Let Y2 := W [y2, wh] ∪ whuh,

which is a path from y2 to uh.

(2) G[H0 + y1]− A′(x1, w1] contains a path Y1 from y1 to x1 and disjoint from Y2.

Let v ∈ NG(y1) ∩ V (H0) such that v /∈ A′. Them v /∈ W [wh, y2]. If H0 −W [wh, y2] −

A′(x1, w1] contains a path Y from v to x1 then Y ∪vy1 gives the desired Y1. So assume such

Y does not exist. Then, by the planar structure of H0, there exist z′′1 ∈ V (A′[x1, z
′
1]), z

′′
2 ∈

V (W [wh, y2]) such that z′′1 , z
′′
2 are incident with some finite face of H0, and {z′′1 , z′′2} is a

2-cut in H0. But then, {z′′1 , z′′2} contradicts the choice of {z′1, z′2}. 2

Let Y ′1 := Z2 ∪W [z2, wm] ∪ wmvm, which is a path from y1 to x2. Then

(3) H0 − Y ′1 has a path Y ′2 from y2 to z′1 and internally disjoint from A′.

For otherwise, by the planar structure ofH0, we may assume there exist z′′1 ∈ V (A′[x1, z
′
1)),

z′′2 ∈ V (W [z2, wm]) such that z′′1 , z
′′
2 are incident with some finite face of H0, and {z′′1 , z′′2}

is a 2-cut in H0. But {z′′1 , z′′2} contradicts the choice of {z′1, z′2}. 2

Now, the following statement holds to avoid forming a double cross with Y ′1 , Y
′
2 :

(4) G has no disjoint A′-B′ paths from c, d ∈ V (A′) to c′, d′ ∈ V (B′[b1, y1]), re-

spectively, and internally disjoint from A′ ∪ B′ ∪ H ′, such that c ∈ V (A′[a1, z
′
1)),

d ∈ V (A′(c, x2)), and b1, d′, c′, y1 occur on B′ in order.

(5) If uh 6= x2 and G has an A′-B′ path S from s ∈ A′(uh, x2] to s′ ∈ B′[b1, y1] and

internally disjoint from H ′, then b1 = r1 = r′ = s′ and S is an edge from s to s′.
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Firs, S ∩ R = ∅; otherwise, S,R are contained in some A′-B′ bridge, which contradicts

(v) of Lemma 2.3.9 due to the path uhwh ∪W [wh, y2] from uh to y2. Now, s′ ∈ B′[b1, r′];

otherwise, S,R, Y1, Y2 form a doublecross as we assume uh 6= x2. Thus, G has no A′-B′

path from A′(uh, x2] to B′(r′, y1], which further implies that S ∩Q = ∅.

We claim b1 = r1 and so a1 = x1 by (iii) of Lemma 2.4.4. For, suppose b1 6= r1. Then

s′ 6= b1; otherwise, s = x2 = a2, and S = a2b1, a contradiction. But then, A′[a1, r] ∪ R ∪

B′[s′, r′] ∪ S ∪ A′[s, a2] ∪ Y1 ∪ A′0 and B′1 ∪Q ∪ A′[q, uh] ∪ Y2 ∪B′[y2, b2] show that γ is

feasible, a contradiction. (Recall B′1, A
′
0 from Lemma 2.4.10.)

Now suppose r1 6= r′. By Lemma 2.4.2, there exist an A-B core H ′′ with feet r1, r2

and r′ ∈ B′(r1, r2), and an A′-B′ bridge M with extreme hands l0, r0 and feet l′0, r
′
0, such

that R is internally disjoint from M , l0 = r0 = xi for some i ∈ [2], and r′ ∈ B′(l′0, r
′
0).

Since G has no A′-B′ path from A′(uh, x2] to B′(r′, y1], then i = 1, x1 is an extreme hand

of H ′′, and S is internally disjoint from M . If s′ = r′ then let P ∗ be the path from l′0 to r′0

in M and internally disjoint from A′, B′; now A′[a1, r]∪R∪ S ∪A′(uh, a2]∪ Y1 ∪A′0 and

B′[b1, l
′
0]∪P ∗∪B′[r′0, q′]∪Q∪A′[q, uh]∪Y2 show that γ is feasible, a contradiction. Thus,

s′ ∈ B′[r1, r
′) and s = x2 (by the definition of r′). Now, we see that S is not contained

in an A′-B′ bridge. For otherwise, by (ii) of Lemma 2.3.9, S is contained in H ′′, which

further implies x2 is an extreme hand of H ′′. So H ′′ is a main core of A,B, a contradiction

to Lemma 2.3.8. So S = x2s
′. If s′ ∈ B′(r1, r′) then S ∈ E(H ′′), which implies that x2

is an extreme hand of H ′′, still a contradiction to Lemma 2.3.8. So s′ = r1 and S = x2b1,

which implies a2 6= x2, a contradiction to Lemma 2.4.8.

Therefore, b1 = r1 = r′ = s′. To complete the proof of (5), we need to prove that

S = ss′. For, suppose S 6= ss′. Then S is contained in some A′-B′ bridge N , and let n1, n2

be the extreme hands of N . Note that V (N ∩ B′) ⊆ {b1}, as b1 = r1 = s′ = r′ for any

choice of S. Moreover, by Lemma 2.4.3, V (N ∩ A′(uh, x2)) = ∅. Hence, n1 ∈ A′[x1, uh]

and n2 = x2. By (v) of Lemma 2.3.9,H ′−y1 does not have a path fromA′(n1, n2) to y2 and

internally disjoint from A′. So, by the existence of path Y2, n1 /∈ A′[x1, u2). So n1 = uh.
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But then, {n1, n2, b1} is a cut in G∗ separating N from {a0, a1, a2, b1, b2}, a contradiction.

2

(6) x1 6= z′1, and b2 = y2.

First, suppose x1 = z′1. Since w1 6= x1 then (a) holds. Now G has an A′-B′ path from

A′(uh, x2) to B′[b1, y1] internally disjoint from H ′ − y1; otherwise, {x1, z′2, uh, x2, y2}

is a cut in G∗ separating {a0, a1, a2, b1, b2} from V (X1 ∪ X2), a contradiction. Hence,

A′(uh, x2) 6= ∅ and, by (5), b1 = r1 = r′ and a1 = x1 (by (iii) of Lemma 2.4.4). But then,

G has a separation (G1, G2) of order 6, such that V (G1 ∩ G2) = {x1, z′2, uh, x2, y2, b1},

{a0, a1, a2, b1, b2} ⊆ V (G1), V (X1 ∪ X2) ⊆ V (G2), and (G2, x1, y2, x2, b1, uh, z
′
2) is pla-

nar, a contradiction to Lemma 2.1.3.

Now suppose b2 6= y2. By Lemma 2.4.8, NG(b2) = {y2, x1} and a1 6= x1. Let a1b′ ∈

E(G) with b′ ∈ V (B′(b1, r1]) ∪ V (B′[y2, b2)). By (i) of Lemma 2.4.4, b′ ∈ B′(b1, r1].

Since x1 6= z′1, we have α(A′, B′) = 2 by Lemma 2.2.1 and the followin paths: the path

A′0 ∪ Y ′1 ∪A′[x2, a2] from a0 to a2, the path B′1 ∪Q ∪A′[z′1, q] ∪ Y ′2 ∪B′[y2, b2] from b1 to

b2, the path a1b′ ∪ B′[b1, b′] from a1 to b1, and the path A′[a1, x1] ∪ e from a1 to b2. This

contradicts Lemma 2.4.10. 2

(7) G has an A′-B′ path from A′[a1, z
′
1) to B′(b1, y1] and internally disjoint from H ′.

For, suppose (7) fails. Then by Lemma 2.4.10 and by (5) and (6) (b2 = y2), if (a) holds

then {b1, b2, z′1, z′2, uh} is a cut in G∗ separating a1, a2 from a0, a contradiction; if (b) holds

then {b1, b2, z′1, y1, uh} (when z1 6= w2) or {b1, b2, z′1, z1, uh} (when z1 = w2) is a cut in G

separating a1, a2 from a0, a contradiction. 2

(8) If uh 6= x2, then G has no A′-B′ path from A′(uh, x2] to B′[b1, y1] and internally

disjoint from H ′.

For, otherwise, it follows from (5) that b1 = r1 = r′ = s′ and G has an edge sb1 with

s ∈ V (A(uh, x2]). So s 6= a2. Now sb1 and a path from (7) contradict (4). 2
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(9) G has disjoint A′-B′ paths from A′[a1, z
′
1) to B′[b1, y1] and internally disjoint from

H ′.

For otherwise, there exists a vertex v ∈ V (G) such that G − v has no A′-B′ path from

A′[a1, z
′
1) toB′[b1, y1] and internally disjoint fromH ′. Then by (8), there exists a separation

(G1, G2) in G such that V (G1 ∩G2) = {v, z′1, u, uh} (with u = z′2 if (a) holds and u = y1

if (b) holds), b1, a0 ∈ V (G1), and a1, a2, b2 ∈ V (G2).

Suppose (G2, v, z
′
1, u, uh, a2, b2, a1) is planar. If v = a1, uh = a2 then {v, z′1, u, uh, b2}

is a cut in G∗ separating V (X1 ∪ X2) from {a0, a1, a2, b1, b2}, a contradiction; if v 6=

a1, uh = a2 or v = a1, uh 6= a2, then Lemma 2.1.3 applies; if v 6= a1, uh 6= a2, then

Lemma 2.1.4 applies.

So (G2, v, z
′
1, u, uh, a2, b2, a1) is not planar. Clearly, v /∈ A′, and there exists an A′-

B′ bridge N with feet n′1, n
′
2 and extreme hands n1, n2, such that v ∈ N . By (v) of

Lemma 2.3.9, H ′ − y1 does not contain a path from A′(n1, n2) to y2 and internally dis-

joint from A′. Suppose v /∈ B′. Then N has a separation (N ′, N ′′) of order 1, such

that V (N ′ ∩ N ′′) = {v}, n1, n2 ∈ V (N ′ − N ′′), and n′1, n
′
2 ∈ V (N ′′ − N ′). Now

V (N ′) = {n1, n2, v}; or else, {n1, n2, v} is a cut in G separating V (N ′) − {n1, n2, v}

from {a0, a1, a2, b1, b2}, a contradiction. This implies that (G2, v, z
′
1, u, uh, a2, b2, a1) is

planar, a contradiction. So v ∈ B′. But then, by (v) of Lemma 2.3.9 and the definition of

v, n′1 = n′2 = v and there exist n∗1 ∈ A′[a1, n1] and n∗2 ∈ A′[n2, a2], such that {n∗1, n∗2, v} is

a cut in G∗ separating V (N) from {a0, a1, a2, b1, b2}, a contradiction. 2

By (9), let T1, T2 be disjoint A′-B′ paths from t1, t2 ∈ A′[a1, z′1) to t′1, t
′
2 ∈ B′[b1, y1],

such that a1, t1, t2, a2 occur on A′ in order, T1, T2 are internally disjoint from H ′ and, sub-

ject to this, A′[t1, t2] ∪ B′[t′1, t′2] are maximal. Then by (4), b1, t′1, t
′
2, y1 occur on B′ in

order.

(10) t′1 ∈ B′[b1, r′], t′2 /∈ B′(q′, y1], and Q is internally disjoint from T1, T2.

Suppose Q is not internally disjoint from Tj for some j ∈ [2], then Q, Tj are contained in
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some A′-B′ bridge. But then, the existence of the path from z′1 to y2 in H ′ − y1 contradicts

(v) of Lemma 2.3.9.

So Q is internally disjoint from T1, T2. Hence, by (4), t′2 /∈ B′(q′, y1]. Now suppose

t′1 ∈ B′(r′, t′2). If R ∩ (T1 ∪ T2) = ∅, then R, T2 contradict the choice of T1, T2 (when r ∈

A′[a1, t1]) or T1, R contradict (4) (when r ∈ A′(t1, q)). So there exists u ∈ V (R∩(T1∪T2)),

and we choose u so thatR[r′, u] is minimal. If u ∈ T1, thenR[r′, u]∪T1[u, t1], T2 contradict

the choice of T1, T2. If u ∈ T2, then T1, R[r′, u] ∪ T2[u, t2] contradict (4). 2

We letQ0 be anA′-B′ path from q0 ∈ A′(z′1, a2] to q′0 ∈ B′[b1, y1] and internally disjoint

from H ′, such that B′[q′0, y1] is minimal. By the existence of Q, q′0 ∈ B′[q′, y1].

(11) No finite face of G′0 is incident with both a vertex of B′[b1, t′1] and a vertex of

B′[q′0, y1].

For, suppose c1 ∈ V (B′[b1, t
′
1]) and c2 ∈ V (B′[q′0, y1]) such that c1, c2 are incident with

a finite face of G′0. We choose c1, c2 so that B′[c1, c2] is maximal. Since t′1 ∈ B′[b1, r
′],

c1 ∈ B′[b1, r′]. We may further assume c1 ∈ B′[b1, r1]; otherwise, r′ 6= r1, c1 ∈ B′(r1, r′],

and by (iii) of Lemma 2.4.2, r′ ∈ B′(r1, r2) for some r2 ∈ V (B′(r′, y1]) and r′, r1, r2 are

incident with some finite face of G′0, implying c1 ∈ B′[b1, r1] by the choice of c1, c2, a

contradiction.

Note that G has an A′-B′ path T3 from t′3 ∈ B′(b1, c1) ∪ B′(c2, y1) to t3 ∈ A′, to avoid

the cut {b1, b2, c1, c2, y1} in G∗, separating a0 from {a1, a2}.

Note that t′3 ∈ B′(c2, y1). For, suppose t′3 ∈ B′(b1, c1). Then t′3 ∈ B′(b1, r1) and, by

the choice of T1, T2 and by (4) and (8), we have t3 = uh = a2. Thus, A′[a1, t1] ∪ T1 ∪

B′[t′3, t
′
1]∪T3∪Y ′1 ∪A′0 and B′1∪Q∪A′[z′1, q]∪Y ′2 show that γ is feasible, a contradiction.

Moreover, t3 = z′1, as t3 /∈ A′(z′1, a2] (by the choice of Q0), and t3 /∈ A′[a1, z′1) (so that

T3, Q0 do not contradict (4)).

IfG′0−B′[t′1, q′0]−A′0 contains a pathB∗3 from b1 to t′3, then A′[a1, t1]∪T1∪B′[t′1, q′0]∪

Q0 ∪ A′[q0, a2] ∪ Y ′1 ∪ A′0 and B∗3 ∪ T3 ∪ Y ′2 show that γ is feasible, a contradiction.
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So such B∗3 does not exist. Then, by the maximality of B′[c1, c2], there exists c3 ∈

V (A′0) such that {c2, c3} is a cut in G′0 separating b1 from t′3, and there does not exist any

A′-B′ bridge with one foot in B′[b1, c2) and another in B′(c2, y1]. Hence, {z′1, c2, c3, y1} is

a cut in G∗ separating t′3 from {a0, a1, a2, b1, b2}, a contradiction. 2

(12) G′0 −B′(b1, t′1]− (B′[q′0, y1] ∪ A′0) contains a path B∗1 from b1 to B′(t′1, q
′
0).

For otherwise, b1 6= t′1, and there exist c1 ∈ V (B′(b1, t
′
1]) and c2 ∈ V (B′[q′0, y1]) ∪ V (A′0)

such that c1, c2 are incident with a finite face of G′0. By (11), c2 ∈ A′0. By Lemma 2.3.7,

c1 /∈ B′(b1, r1]. So c1 ∈ B′(r1, r
′] as t′1 ∈ B′[b1, r

′]. Hence, by (iv) of Lemma 2.4.2,

c2 = a0, b1 = r1, and α(A′, B′) = 0, contradicting Lemma 2.4.10. 2

(13) If (a) holds then H ′− y1− z′2−X1[x1, y2) has a path Y ∗2 from z′1 to y2 and internally

disjoint from A′.

For otherwise, there exists u ∈ V (A′[x1, z
′
1)∪X1[x1, y2)), such that u, z′2 are incident with a

finite face ofH ′−y1. By the choice of {z′1, z′2}, u ∈ V (X1(x1, y2)). Now {u, z′2, uh, x2, y2}

is a cut in G∗ separating X2 from {a0, a1, a2, b1, b2}, a contradiction. 2

(14) If (a) holds then H ′ − y1 −A′(x1, z′1)−W [z′2, y2] has a path X∗ from x1 to z′1; if (b)

holds then H ′ − y1 − A′(x1, z′1)−W [z2, y2] has a path X∗ from x1 to z′1.

For otherwise, let v = z′2 when (a) holds; and let v = z2 when (b) holds. Then there exist

z′′1 ∈ V (A′(x1, z
′
1)) and z′′2 ∈ V (W [v, y2]) such that z′′1 , z

′′
2 are incident with a finite face of

H0. Hence, (a) holds, and {z′′1 , z′′2} contradicts the choice of {z′1, z′2}. 2

(15) G− T1 −Q0 has no A′-B′ path from A′(t1, z
′
1] to B′(t′1, q

′
0).

For, supposeG−T1−Q0 has an A′-B′ path T from t ∈ V (A′(t1, z
′
1]) to t′ ∈ V (B′(t′1, q

′
0)).

When (a) holds, we let B∗ be the path from b1 to b2 in B∗1 ∪B′(t′1, q′0)∪ T ∪A′[t, z′1]∪ Y ∗2 ;

when (b) holds, we let B∗ be the path from b1 to b2 in B∗1 ∪ B′(t′1, q′0) ∪ T ∪W [t, y2]. By
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Lemma 2.2.1, the following paths show that α(A′, B′) = 2: the path B∗ from b1 to b2, the

path A′[q0, a2]∪Q0∪B′[q′0, y1]∪A′0 from a2 to a0, the path A′[a1, t1]∪T1∪B′[b1, t′1] from

a1 to b1, and the path A′[a1, x1] ∪X1 from a1 to b2. This contradicts Lemma 2.4.10. 2

(16) t′2 = q′0, t
′
1 = r′, and G has an A′-B′ path R∗ from r′ to A′(x1, z′1).

For, suppose t′2 6= q′0. By (15), T2, Q0 are contained in an A′-B′ bridge. But the existence

of the path from z′1 to y2 in H ′ − y1 contradicts (v) of Lemma 2.3.9.

Note that G has an A′-B′ path from r′ to A′(x1, z′1); for otherwise, R ∩ T2 = ∅, and

R, T2 contradicts (4).

Next t′1 = r′. For otherwise, r′ ∈ B′(t′1, q′0). Now, by (15), R∗ ∩ (T1 ∪Q0) 6= ∅. By the

definition of r′, R∗ ∩ T1 = ∅. Thus, R∗, Q0 are contained in some A′-B′ bridge. But then,

the path from z′1 to y2 in H ′ − y1 contradicts (v) of Lemma 2.3.9. 2

Now, the path A′[a1, x1] ∪ X∗ ∪ A′[z′1, a2] from a1 to a2 and the path B′[b1, r′] ∪ R ∪

A′[r, t2]∪T2∪B′[t′2, y1]∪Z2∪W [z2, y2] from b1 to b2 show thatG′0 does not contain a path

from B′(t′1, t
′
2) to a0 and internally disjoint from B′; or else, it contradicts (i) of Lemma

2.2.2. So, there exist c1 ∈ B′[b1, t′1] and c2 ∈ B′[t′2, y2], such that c1, c2 are incident with

some finite face of G′0, a contradiction to (11). 2

2.5 Slim connectors

In this section, we let γ := (G, a0, a1, a2, b1, b2), and assume that γ is infeasible and no

ideal frame in γ admits a fat connector (seen at Figure 2.11).

Recall that b1b2 /∈ E(G), aibj /∈ E(G) for i = 0, 1, 2 and j = 1, 2, and G∗ :=

G + b1b2 + {aibj : i = 0, 1, 2 and j = 1, 2} is 6-connected. Let A,B be an ideal a0-frame

in γ. Let G0 := G − A. By Lemma 2.1.6 and the structure of slim connectors, G0 has a

disk representation with B and a0 occurring on the boundary of the disk, and any A-B path

in G is induced by a single edge.

Lemma 2.5.1 Let a−1 := a2 and a3 := a0. Then the following statements hold:

72



a1 a2

b1 b2

a0

Figure 2.11: An ideal frame with only slim connectors

(i) G cannot be obtained from a planar graph H by identifying two vertices of H , such

that b1, b2 and two of {a0, a1, a2} are incident with a face of H .

(ii) For any i ∈ {0, 1, 2}, (G − ai−1, ai, b1, ai+1, b2) or (G − ai+1, ai, b1, ai−1, b2) is not

planar.

(iii) There do not exist a permutation π of {0, 1, 2}, a graph H and distinct vertices

s, t, s′, t′ ∈ V (H), such that (H, aπ(0), b1, aπ(1), s, t, s′, t′, aπ(2), b2) is planar, and G

is obtained from H by identifying s with s′ and t with t′, respectively.

Proof. Let n = |V (G)|. Since G∗ is 6-connected, |E(G)| ≥ 3n − 7. First, we see that (i)

holds. For, otherwise, there exist i ∈ {0, 1, 2}, graph H with (H, ai−1, b1, ai+1, b2) planar,

and distinct s, s′ ∈ V (H), such that G is isomorphic to the graph obtained from H by iden-

tifying s with s′. Then |E(H)| ≥ |E(G)| ≥ 3n−7, andH ′ := H+{ai−1b1, ai−1b2, ai+1b1,

ai+1b2, b1b2} is planar. However, |E(H ′)| ≥ 3n− 2 = 3|V (H ′)| − 5, a contradiction.

Now suppose (ii) fails. Then for some i ∈ {0, 1, 2}, both (G− ai−1, ai, b1, ai+1, b2) and

(G− ai+1, ai, b1, ai−1, b2) are planar. Without loss of generality, we assume i = 0 and that
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dG(a1) ≤ dG(a2). Let G′ := G + {a2b1, a2b2, a0b1, a0b2, b1b2}. Then G′ − a1 is planar.

Since G∗ is 6-connected, dG′(a2) ≥ dG(a1) + 2, dG′(a0) ≥ 6, dG′(bj) ≥ 5 for j ∈ [2], and

dG′(x) ≥ 6 for all x ∈ V (G′) \ {a0, a1, a2, b1, b2}. Hence,

|E(G′ − a1)| = (6(n− 5) + 6 + 5 + 5 + 2)/2 = 3n− 6 = 3|V (G′ − a1)| − 3,

contradicting the planarity of G′ − a1.

Finally, suppose (iii) fails. So there exists a permutation π of {0, 1, 2}, a graph H

and distinct vertices s, t, s′, t′ ∈ V (H), such that (H, aπ(0), b1, aπ(1), s, t, s′, t′, aπ(2), b2) is

planar, and G is obtained from H by identifying s with s′ and t with t′, respectively. Now

|E(H)| ≥ |E(G)| ≥ 3n − 7, aπ(0)aπ(1), aπ(0)aπ(2), aπ(0)t, aπ(0)s′ /∈ E(H), and H ′ :=

H + {b1aπ(0), b1aπ(1), b2aπ(0), b2aπ(2), aπ(0)aπ(1), aπ(0)aπ(2), aπ(0)t, aπ(0)s′} is planar. Thus,

|V (H ′)| = n+ 2 and |E(H ′)| ≥ 3n+ 1 = 3(n+ 2)− 5, contradicting planarity of H ′. 2

We now investigate the edges between A and B. Let a′b′, a′′b′′ ∈ E(G) with a′, a′′ ∈

V (A) and b′, b′′ ∈ V (B) all distinct. We say that a′b′, a′′b′′ form a cross (w.r.t. A,B) if

a1, a
′, a′′, a2 occur onA in order, and b1, b′′, b′, b2 occur onB in order. We say that a′b′, a′′b′′

are parallel if a1, a′, a′′, a2 occur on A in order, and b1, b′, b′′, b2 occur on B in order.

Two sets of edges of G between A and B play critical roles in the remainder of this

section. For i = 5, 6, 7, let ei = aibi ∈ E(G) with ai ∈ V (A) to bi ∈ V (B); we say

that (e5, e6, e7) is a 3-edge configuration if b6 ∈ B(b5, b7) and a1, a2, a6 /∈ A[a5, a7]. For

i = 3, 4, 5, 6, 7, let ei = aibi ∈ E(G) with ai ∈ V (A) and bi ∈ V (B); we say that

(e3, e4, e5, e6, e7) is a 5-edge configuration (seen at Figure 2.12) if

• (e5, e6, e7) is a 3-edge configuration,

• A[a5, a7] ⊆ A(a3, a4), and

• b3, b4 ∈ B(bj, b5) ∩B(bj, b7) for some j ∈ [2].
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a1 a2

b1 b2

a0

e3 e4

e5e6 e7

Figure 2.12: (e3, e4, e5, e6, e7) is a 5-edge configuration

Lemma 2.5.2 There exists a 5-edge configuration.

Proof. (1) For i ∈ [2], G has a cross from A− ai to B.

For, suppose G has no cross from A − ai to B and, without loss of generality, let

i = 2. Let a′b′ ∈ E(G) with a′ ∈ V (A[a1, a2) and b′ ∈ V (B[b1, b2]), such that B[b′, b2]

is minimal. Then G has an edge from a2 to B[b1, b
′), as otherwise, (G, a1, a2, b2, a0, b1)

is planar, contradicting (i) of Lemma 2.5.1. Let a2ui ∈ E(G), with ui ∈ V (B[b′1, b
′)) for

i ∈ [2], such that B[u1, u2] is maximal and b1, u1, u2, b2 occur on B in order.

Then there exists ab ∈ E(G) with b ∈ V (B(u1, u2)) and a ∈ V (A[a1, a2)). For,

otherwise, let H be obtained from G by splitting a2 to s, s′, such that H has no edge from

B[u1, u2] to s′ and no edge from B[b′, b2] to s. Now (H, a1, b2, a0, b1) is planar and G can

be obtained from H by identifying s and s′, contradicting (i) of Lemma 2.5.1.

We see that a = a1. For, otherwise, let a1b∗ ∈ E(G) with b∗ 6= b. Since G has no cross

from A−a2 to B, b∗ ∈ B(b1, b). Now, (a1b∗, u1a2, ab, u2a2, a′b′) is a 5-edge configuration.

So all edges from B(u1, u2) to A[a1, a2) end with a1. But now, (G − a1, a2, b2, a0, b1)

and (G− a2, a1, b2, a0, b1) are planar, contradicting (ii) of Lemma 2.5.1. 2
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We let b′1, b
′
2 ∈ B[b1, b2], such that b1, b′1, b

′
2, b2 occur on B in order, G has an edge from

b′i to A for each i ∈ [2], and subject to this, B[b′1, b
′
2] is maximal. By relabelling notation,

we may assume that

(2) G has no edge from b′1 to A(a1, a2), and has an edge e3 := b′1a1.

First, suppose there exist b′ia
′
i ∈ E(G) with a′i ∈ V (A(a1, a2)) for each i ∈ [2]. Since

dG(ai) ≥ 4 for i ∈ [2], there exists aib′′i ∈ E(G) with b′′i ∈ V (B(b′1, b
′
2)). Now b′1a

′
1, b
′
2a
′
2,

b′′1a1, b
′′
2a2 form a double cross in γ, a contradiction.

Thus, for some i ∈ [2], G has no edge from b′i to A(a1, a2). By symmetry, we may

assume i = 1 and b′1a1 ∈ E(G). 2

By (1), there exist e4 = a4b4, e5 = a5b5 ∈ E(G) with a4, a5 ∈ V (A(a1, a2]) and b4, b5 ∈

V (B[b′1, b2]), such that e4, e5 form a cross, and b1, b4, b5, b2 occur on B in order. We further

choose e4, e5 so thatB[b′1, b4]∪A[a1, a5] is minimal and, subject to this,B[b5, b2]∪A[a4, a2]

is minimal. Then

(3) G has no edge from B[b1, b4) to A(a5, a2], no edge from A(a1, a5) to B(b4, b2], no

edge from b4 to A(a4, a2], and no edge from a5 to B(b5, b2].

To avoid forming a double cross with e4, e5,

(4) G has no cross from B[b1, b4] to A[a1, a5] or from B[b5, b2] to A[a4, a2].

(5) G has no edge B(b5, b2] to A(a1, a4), or no edge from B(b4, b5) to A(a1, a4)− a5.

For, suppose there exists ab, a′b′ ∈ E(G) with b ∈ V (B(b5, b2]), a ∈ V (A(a1, a4)), b′ ∈

V (B(b4, b5)) to a′ ∈ V (A(a1, a4)− a5). By (3), a, a′ ∈ A(a5, a4). Now (e3, e4, b
′a′, e5, ba)

is a 5-edge configuration. 2

Let e′5 = a5b
′
5 ∈ E(G) with b′5 ∈ V (B(b4, b5]) such that B[b′5, b2] is maximal. If G has

an edge e from B(b′5, b5) to A− a5, then (e3, e4, e
′
5, e, e5) is a 5-edge configuration. Hence,

we may assume that
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(6) G has no edge from B(b′5, b5) to A− a5.

We may also assume that

(7) G has no cross from B[b′5, b2] to A(a5, a2] not involving the possible edge a4b′5.

For, suppose G has a cross e′ = a′b′, e′′ = a′′b′′ avoiding a4b′5, with a′, a′′ ∈ V (A(a5, a2]),

b′, b′′ ∈ V (B[b′5, b2]), and a5, a′, a′′, a2 on A in order. Then a′′ ∈ A(a5, a4], to avoid the

double cross e4, e′5, e
′, e′′. Hence, we may assume b′′ = b′5; as otherwise, (e3, e4, e′5, e

′′, e′)

is a 5-edge configuration. Then a′′ ∈ A(a5, a4), as e′′ 6= a4b
′
5.

Let e∗ = a′′b∗ ∈ E(G) with b∗ ∈ V (B[b1, b2]). Since G∗ is 6-connected, we can choose

e∗ so that b∗ /∈ {b′, b′′, b4}. Now b∗ ∈ B[b4, b2], to avoid the double cross e∗, e′, e4, e′5.

If b∗ ∈ B(b4, b
′
5) then (e3, e4, e

∗, e′5, e
′) is a 5-edge configuration. If b∗ ∈ B(b′5, b

′) then

(e3, e4, e
′
5, e
∗, e′) is a 5-edge configuration. If b∗ ∈ B(b′, b2] then (e3, e4, e

′′, e′, e∗) is a

5-edge configuration. 2

If a4 6= a2 then there exist e∗i = a∗i b
∗
i ∈ E(G), i ∈ [2], with a∗i ∈ A(a4, a2] and

b∗i ∈ V (B(b4, b2]), and we choose them so that B[b∗1, b
∗
2] is maximal, and b1, b∗1, b

∗
2, b2 occur

on B in order.

(8) If a4 6= a2, then G has no edge from B(b∗1, b
∗
2) to a5.

We show that if (8) fails, then the desired 5-edge configuration exists, or splitting a5 or b5

results in a graph H such that (H, a1, b2, a0, b1) is planar, contradicting (i) of Lemma 2.5.1.

So assume a4 6= a2 and that G has an edge e∗5 from b∗5 ∈ B(b∗1, b
∗
2) to a5. We see that

b∗2 6= b2. For otherwise, b∗2 = b2 and a∗2 6= a2. By (3), G has no edge from a2 to B[b1, b4],

and so G has an edge from a2 to B(b4, b2), which together with e4, e∗2, e
∗
5 forms a double

cross.

We may assume that G has no edge from B(b4, b
∗
1) to A[a1, a2]− a4. For otherwise, let

e = ab ∈ E(G) with b ∈ V (B(b4, b
∗
1)) and a ∈ V (A[a1, a2] − a4). Then by the definition
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of b∗1, b
∗
2, we have a /∈ A(a4, a2]. Moreover, a 6= a1 to avoid the double cross e, e4, e∗5, e

∗
1.

But then a ∈ A(a1, a4), and so (e3, e4, e, e
∗
1, e
∗
5) is a 5-edge configuration.

Hence, by (3) and (4), we may assume that G has no edge from B[b1, b
∗
1) to A(a4, a2]

and G has no cross from B[b1, b
∗
1) to A[a1, a2].

We may also assume that G has no edge from B(b∗2, b2] to A[a1, a2]. For, suppose G

has an edge e from b ∈ B(b∗2, b2] to a ∈ A[a1, a2]. Note a 6= a4 to avoid the double cross

e4, e
∗
1, e
∗
5, e, and a /∈ A(a4, a2] by the definition of b∗1, b

∗
2. If a = a1 then (e, e∗2, e

∗
5, e
∗
1, e4) is

a 5-edge configuration. If a ∈ A(a1, a4) then (e3, e4, e
∗
5, e
∗
2, e) is a 5-edge configuration.

Moreover, we may assume that G − {a5, b∗5} − a4b
∗
1 has no edge from B[b∗1, b

∗
2] to

A[a1, a4]. For, suppose there exists e = ab ∈ E(G) with e 6= a4b
∗
1, a ∈ V (A[a1, a4] −

a5), and b ∈ V (B[b∗1, b
∗
2] − b∗5). First, assume b ∈ B(b∗5, b

∗
2]. Then a ∈ A[a1, a5) to

avoid the double cross e4, e∗5, e, e
∗
1. Hence a = a1 by (3), and (e∗2, e, e

∗
5, e
∗
1, e4) is a 5-

edge configuration. So b ∈ B[b∗1, b
∗
5). Then a ∈ A(a5, a4] to avoid the double cross

e4, e
∗
5, e, e

∗
1. We may assume b = b∗1; or else, b ∈ B(b∗1, b

∗
5), and (e∗2, e

∗
5, e, e

∗
1, e4) is a 5-

edge configuration. Since e 6= a4b
∗
1, a ∈ A(a5, a4). Let e0 = ab0 ∈ E(G) with b0 ∈

V (B[b1, b2])\{b4, b∗1, b∗5} (as dG(a) ≥ 6). By (3), b0 /∈ B[b1, b4). Now b0 /∈ B(b∗1, b
∗
2]−b∗5 as

b = b∗1, and b0 /∈ B(b∗2, b2] as G has no edge from B(b∗2, b2] to A[a1, a2]. So b0 ∈ B(b4, b
∗
1),

and (e3, e4, e0, e
∗
1, e
∗
5) is a 5-edge configuration.

We may further assume that G has no cross from A(a4, a2] to B[b∗1, b
∗
5) ∪ B(b∗5, b

∗
2].

For, suppose G has a cross e′ = a′b′, e′′ = a′′b′′ with a′, a′′ ∈ A(a4, a2] and b′, b′′ ∈

B[b∗1, b
∗
5) ∪ B(b∗5, b

∗
2], such that a1, a′, a′′, a2 occur on A in order. Then b′ ∈ B[b∗1, b

∗
5) to

avoid the double cross e4, e∗5, e
′, e′′, and so b′′ ∈ B[b∗1, b

∗
5). Moreover, a∗2 ∈ A[a′′, a2] to

avoid the double cross e4, e∗5, e
′′, e∗2. But now, (e∗2, e

∗
5, e
′, e′′, e4) is a 5-edge configuration.

Let e′ = a′b′, e′′ = a′′b′′ ∈ E(G) with b′ ∈ V (B[b∗1, b
∗
5)), b

′′ ∈ V (B(b∗5, b
∗
2]), and

a′, a′′ ∈ V (A(a4, a2]), such that B[b′, b′′] is minimal. Then there exists e0 = b∗5a0 ∈ E(G)

with a0 ∈ V (A[a1, a
′)) ∪ V (A(a′′, a2]) \ {a5}; for otherwise, by (6) and above claims, we

can split a5 to obtain a graph H from G such that (H, a1, b2, a0, b1) is planar, contradicting
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(i) of Lemma 2.5.1. In fact, a0 ∈ A[a1, a′) to avoid the double cross e∗5, e0, e
′′, e4.

We may assume that G has no edge from a5 to B(b4, b2]− b∗5 (and, hence, b5 = b∗5). For,

suppose e = a5b ∈ E(G) with b ∈ V (B(b4, b2] − b∗5). If b ∈ B(b∗5, b2] then b ∈ B(b∗5, b
∗
2]

by (6) and a0 ∈ A(a5, a
′) to avoid the double cross e0, e, e4, e′; now (e∗2, e, e0, e

′, e4) is a

5-edge configuration. We may thus assume b ∈ B(b4, b
∗
5). Then a0 ∈ A[a1, a5) to avoid the

double cross e, e0, e4, e′. Let e6 = a5b6 ∈ E(G) with b6 /∈ {b4, b′, b∗5}. Then b6 /∈ B(b∗5, b2]

to avoid the double cross e6, e0, e4, e′. Moreover, b6 /∈ B(b′, b∗5); or else, (e∗2, e0, e6, e
′, e4) is

a 5-edge configuration. By (6), b6 /∈ B(b4, b
′). So b6 ∈ B[b1, b4). But then (e∗2, e0, e, e4, e6)

is a 5-edge configuration.

Hence, by above claims, we can obtain a new graph H from G by splitting b∗5 such that

(H, a1, b2, a0, b1) is planar, which contradicts (i) of Lemma 2.5.1. 2

We let u1, u2 ∈ B[b1, b2], such that b1, u1, u2, b2 occur on B in order, G has an edge fi

from a2 to ui for i ∈ [2], and subject to this, B[u1, u2] is maximal. By dG(a2) ≥ 4, u1 6= u2.

(9) If a4 6= a2, then G has an edge from a2 to B(b5, b2].

For, suppose a4 6= a2 and G has no edge from a2 to B(b5, b2]. By the choice of e4, u1, u2 ∈

B(b4, b5].

We may assume that G has no edge from B(u1, u2) to A[a1, a2). For, suppose there

exists ab ∈ E(G) with b ∈ V (B(u1, u2)) and a ∈ V (A[a1, a2)). Then a 6= a5 by (8),

and a ∈ A(a5, a2) to avoid the double cross e, e4, e5, f1. If b5 6= b2 then (e5, f2, e, f1, e4)

is a 5-edge configuration. So b5 = b2. Then u2 6= b5 and (e3, f1, e, f2, e5) is a 5-edge

configuration.

We may also assume that G has no cross from A[a1, a2) to B[b1, u1]. For, suppose there

exist e′ = a′b′, e′′ = a′′b′′ ∈ E(G) with a′, a′′ ∈ A[a1, a2) and b′, b′′ ∈ B[b1, u1], such

that e′, e′′ form a cross, and a1, a′, a′′, a2 occur on A in order. If b′′ ∈ B[b1, b4) then by the

choice of e4, e5, we have a′′ ∈ A[a1, a5] and a′ = a1; now e′, e′′, e4, e5 form a double cross,

a contradiction. So b′′ ∈ B[b4, u1]. Let f denote an edge from a2 toB(u1, u2). Then a′ 6= a1

to avoid the double cross e′, f, e4, e5. Now (e3, e
′′, e′, f, e5) is a 5-edge configuration.
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By (i) of Lemma 2.5.1, (G, a1, b2, a0, b1) is not planar. So there exist e′ = a′b′, e′′ =

a′′b′′ ∈ E(G) with a′, a′′ ∈ V (A[a1, a2)) and b′, b′′ ∈ V (B[u2, b2]), such that e′, e′′ are

parallel, and a1, a′, a′′, a2 occur onA in order. Now a′ ∈ A[a4, a2) to avoid the double cross

e′, e′′, e4, f1, and b′′ ∈ B[u2, b5] to avoid the double cross e5, e′′, e4, f1. We may assume

b5 = b2; otherwise, (e5, e′′, e′, f1, e4) is a 5-edge configuration. So u2 6= b5. Now, let e =

a′′b ∈ E(G) with b /∈ {b′, b′′, b5}. Then b /∈ B[b1, u1] to avoid the double cross e, e′′, f2, e′.

We may assume b /∈ B[u2, b
′); otherwise, (e3, f1, e, e′, e′′) is a 5-edge configuration. Since

G has no edge from B(u1, u2) to A[a1, a2), b ∈ B(b′, b5). But now, (e3, f1, e′, e, e5) is a

5-edge configuration. 2

(10) G has no edge from B(b5, b2] to A(a1, a4).

For, suppose there exists e = ab ∈ E(G) with b ∈ V (B(b5, b2]) and a ∈ V (A(a1, a4)). We

choose e so that B[b, b2] is minimal. By (3), a ∈ A(a5, a4). By (5), G has no edge from

B(b4, b5) to A(a1, a4) − a5. Moreover, since the degree of a in G is at least 6, then we let

e0 = ab0 with b0 ∈ B[b1, b2] and b0 /∈ {b4, b5, b}. Now, by (3) and (5), and by the definition

of b, we have b0 ∈ B(b5, b).

G has no edge from A(a4, a2] to B[b1, b). For, suppose there exists e′ = a′b′ ∈ E(G)

with a′ ∈ A(a4, a2] and b′ ∈ B[b1, b). Then by (3), b′ /∈ B[b1, b4]. So b′ ∈ B(b4, b). But

then, e, e′, e4, e5 form a double cross.

G has no edge from b4 to A(a5, a4) or no edge from a4 to B(b4, b); otherwise, such two

edges together with e5, e form a double cross, a contradiction.

Now, we see that G has an edge e′ from a1 to b′ ∈ B(b4, b2]; otherwise, since G has

no edge from b4 to A(a5, a4) or no edge from a4 to B(b4, b), then combined with (3), (4),

(6), and (7), we can obtain a new graph H from G by splitting a4 or b4 as s, s′, such that

(H, a1, a2, b2, a0, b1) is planar, a contradiction to (i) of Lemma 2.5.1.

We also see that G has no edge from a1 to B(b′5, b); otherwise, such an edge together

with e3, e4, e′5, e forms a 5-edge configuration, a contradiction.
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Hence, b′ ∈ B(b4, b
′
5] ∪ B[b, b2]. We further choose e′ so that B[b′, b2] is maximal.

Moreover, we let e′′ = a1b
′′ ∈ E(G) with b′′ ∈ B(b4, b

′
5] ∪ B[b, b2] so that B[b′′, b2] is

minimal.

Now, assume b′′ ∈ B(b4, b
′
5]. Then by the choice of e′′, G has no edge from a1 to

B[b, b2]. Moreover, G has no edge from B[b1, b4) to A(a1, a2]; otherwise, by (3), such an

edge must end in A(a1, a5], which together with e′, e4, e5 forms a double cross. Hence,

G has an edge e6 from a4 to b6 ∈ B(b4, b5); or else, we can obtain a new graph H

from G by splitting b4 as s, s′, such that (H, a1, a2, b2, a0, b1) is planar, a contradiction

to (i) of Lemma 2.5.1. Now, G has no edge from b4 to A(a1, a4); or else, such an edge

together with e5, e
′, e6 forms a double cross. So we may assume a2 6= a4; otherwise,

(G − a1, a2, b2, a0, b1) and (G − a2, a1, b2, a0, b1) are planar, a contradiction to (ii) of

Lemma 2.5.1. Then u2 ∈ B[b, b2] (by (7) and (9)). Moreover, b6 /∈ B(b′, b5]; otherwise,

(f2, e, e6, e
′, e4) is a 5-edge configuration. SoG has no edge from a4 toB(b′, b5]. Therefore,

we can obtain a new graph H from G by splitting a4 as s, s′, such that (H, a1, a2, b2, a0, b1)

is planar, a contradiction to (i) of Lemma 2.5.1.

So we may assume b′′ ∈ B[b, b2]. Now, a2 = a4; otherwise, u2 ∈ B[b, b2] (by (7) and

(9)) and (f2, e
′′, e0, e5, e4) is a 5-edge configuration.

We also claim that G has an edge e6 from a6 ∈ A(a1, a2) to b6 ∈ B[b1, b4]; other-

wise, (G− a1, a2, b2, a0, b1) and (G− a2, a1, b2, a0, b1) are planar, a contradiction to (ii) of

Lemma 2.5.1.

Then b6 /∈ B[b1, b4); otherwise, a6 ∈ A(a1, a5], and (e, e′′, e5, e4, e6) is a 5-edge con-

figuration. Hence, b6 = b4, and G has no edge from a5 to B[b1, b4), which further implies

b′5 6= b5 (as the degree of a5 in G is at least 6).

Now, we may assume u2 /∈ B[b, b2]. For, suppose not. Then G has no edge from

{a1, a2} to B(b4, b5); otherwise, such an edge together with f2, e′′, e5, e6 forms a 5-edge

configuration. Moreover, a6 /∈ A(a5, a2); otherwise, (f2, e′′, e0, e5, e6) is a 5-edge configu-

ration. But now, (G−a1, a2, b2, a0, b1) and (G−a2, a1, b2, a0, b1) are planar, a contradiction
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to (ii) of Lemma 2.5.1.

Since u2 /∈ B[b, b2], then G has no edge from a2 to B[b, b2]. By (7), G has no edge

from a2 to B(b′5, b). By (3), G has no edge from a2 to B[b1, b4). Since the degree of a2 in

G is at least 4, then G has an edge e′2 from a2 to B(b4, b
′
5). Now, a6 /∈ A(a5, a2); other-

wise, e6, e5, e, e′2 form a double cross. Moreover, b′ /∈ B(b4, b) to avoid the double cross

e′, e′2, e6, e. Hence, combined with (6), we can obtain a new graph H from G by splitting

a2 as s, s′, such that (H, a1, b2, a0, b1) is planar, a contradiction to (i) of Lemma 2.5.1. 2

Now, by (3), (8), (9), and (10), we have

(11) G has no edge from A(a1, a5) ∪ A(a4, a2] to B(b4, b5) and no edge from B[b1, b4) ∪

B(b5, b2] to A(a5, a4).

We may assume that

(12) G− {a5b4, a4b5} has no parallel edges from A[a5, a4] to B[b4, b5].

For, otherwise, let e′ = a′b′, e′′ = a′′b′′ ∈ E(G) be parallel with a′, a′′ ∈ V (A[a5, a4]) and

b′, b′′ ∈ V (B[b4, b5]), such that a1, a′, a′′, a2 occur on A in order, e′ 6= a5b4, and e′′ 6= a4b5.

We may further assume b′ = b4 for any choice of e′, e′′. For, suppose b′ 6= b4. If b′′ 6= b5

then (e3, e4, e
′, e′′, e5) is a 5-edge configuration. So assume b′′ = b5. Then a′′ 6= a4. Since

dG(a
′′) ≥ 6, there exists e = a′′b ∈ E(G) with b ∈ V (B[b1, b2]) \ {b4, b′, b5}. By (11),

b ∈ B(b4, b5) − b′. If b ∈ B(b4, b
′) then (e3, e4, e, e

′, e′′) is a 5-edge configuration. If

b ∈ B(b′, b5) then (e3, e4, e
′, e, e5) is a 5-edge configuration.

Thus, G− a4b5 has no parallel edges from B(b4, b5] to A[a5, a4]. Now, since e′′ 6= a4b5

and dG(a′′) ≥ 6, then by (11), we may choose e′′ so that b′′ ∈ B(b4, b5). Since e′ 6= a5b4,

a′ ∈ A(a5, a4). Moreover, since dG(a′) ≥ 6, there exists e = a′b ∈ E(G) with b ∈

V (B[b1, b2]) \ {b4, b′′, b5}. By (11), b ∈ B[b4, b5]. If b ∈ B(b4, b
′′) then (e3, e4, e, e

′′, e5) is

a 5-edge configuration. So assume b ∈ B(b′′, b5).

We may assume that G has no edge from a2 to B[b5, b2]; otherwise, (f2, e5, e, e′′, e′) is

a 5-edge configuration. Hence, a4 = a2 (by (9)). Moreover, G has no edge from a1 to
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B(b4, b5), to avoid forming a double cross with e′, e5, e′′. Therefore, since G− a4b5 has no

parallel edges from B(b4, b5] to A[a5, a4], it follows from (3), (4), and (11) that there is no

cross from B[b1, b4] to A and no parallel edges from B(b4, b2] to A. Now (G, a1, b2, a0, b1)

is planar, contradicting (i) of Lemma 2.5.1. 2

If G has no edge from a1 to B(b4, b2] then by (3), (4), (11), and (12), we can split a5, a4

to s, s′ and t, t′, respectively, in G to obtain a graph H such that (H, a0, b1, a1, s, t, s′, t′, a2,

b2) is planar, contradicting (iii) of Lemma 2.5.1. So let e0 = a1b0 with b0 ∈ V (B(b4, b2]).

Choose e0 with B[b0, b2] maximal, and let e′0 = a1b
′
0 ∈ E(G) with b′0 ∈ B(b4, b2] so that

B[b′0, b2] is minimal.

(13) a4 = a2 implies A(a5, a2) 6= ∅.

For, suppose a4 = a2 and A(a5, a2) = ∅. Then there exists e = ab ∈ E(G) with b ∈

V (B[b1, b4]) and a ∈ V (A(a1, a5]); or else, by (3), (4) and (6), (G − a1, a2, b2, a0, b1) and

(G− a2, a1, b2, a0, b1) are planar, contradicting (ii) of Lemma 2.5.1.

Suppose there exists e′ = a2b
′ ∈ E(G) with b′ ∈ V (B(b4, b5)). Then G has no edge

from a1 to B(b4, b5), as such an edge would form a double cross with e, e′, e5. So b0 ∈

B[b5, b2]. Now G has an edge e∗ from a2 to B(b′5, b2]; otherwise, by (3), (4) and (6),

(G, a1, b2, a0, b1) is planar, contradicting (i) of Lemma 2.5.1. Hence, (e∗, e0, e′5, e
′, e) is a

5-edge configuration.

So assume that G has no edge from a2 to B(b4, b5). Then, since dG(a2) ≥ 4, u2 ∈

B(b5, b2].

Assume b0 ∈ B(b4, b5). Then b /∈ B[b1, b4) to avoid the double cross e0, e, e4, e5. Since

dG(a5) ≥ 6, then b′5 6= b5, and there exists e′′5 = a5b
′′
5 ∈ E(G) with b′′5 ∈ V (B(b′5, b5)). By

(6), b0 ∈ B(b4, b
′
5]. We may assume that G has no edge from a1 to B[b5, b2]; otherwise,

such an edge together with f2, e′′5, e0, e forms a 5-edge configuration. Hence, by (3), (4)

and (6), we can obtain a new graph H from G by splitting b4 such that (H, a1, a2, b2, a0, b1)

is planar, contradicting (i) of Lemma 2.5.1.
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Therefore, b0 /∈ B(b4, b5) for any choice of b0. Then G has an edge from B[b1, b4) to

A(a1, a5]; otherwise, (G−a1, a2, b2, a0, b1) and (G−a2, a1, b2, a0, b1) are planar, contradict-

ing (ii) of Lemma 2.5.1. Hence, we may choose e so that b ∈ B[b1, b4). If b′0 ∈ B(b5, b2] or

b′5 6= b5 then (f2, e
′
0, e
′
5, e4, e) is a 5-edge configuration. So assume b0 = b′0 = b5. Then we

can obtain a new graph H from G by splitting b5 such that (H, a1, a2, b2, a0, b1) is planar,

contradicting (i) of Lemma 2.5.1. 2

(14) We may assume a4 6= a2.

For, suppose a4 = a2. By (13), let a6 ∈ V (A(a5, a2)). Since dG(a6) ≥ 6, there exist

distinct e′6 = a6b
′
6, e
′′
6 = a6b

′′
6 ∈ E(G) with b′6, b

′′
6 ∈ V (B) \ {b4, b5} such that B[b′6, b

′′
6]

is maximal. Without loss of generality, assume b1, b′6, b
′′
6, b2 occur on B in order. By (11),

b′6, b
′′
6 ∈ B(b4, b5).

Suppose there exists e′′ = b′′a′′ ∈ E(G) with b′′ ∈ V (B[b1, b4]) and a′′ ∈ V (A(a1, a5]).

Then b0 /∈ B(b4, b
′
6] to avoid the double cross e0, e′′, e5, e′′6. We may assume b0 /∈ B(b′6, b5);

otherwise, (e3, e4, e′6, e0, e5) is a 5-edge configuration. Hence, b0 ∈ B[b5, b2] and G has

no edge from a1 to B(b4, b5). We also see that G has no edge from a1 to B(b5, b2] or no

edge from a2 to B(b5, b2]; otherwise, such two edges form a 5-edge configuration with

e5, e
′
6, e
′′. By (3), (4), (11), and (12), we can obtain a graph H from G by splitting a2 such

that (H, a1, b2, a0, b1) is planar, contradicting (i) of Lemma 2.5.1.

Thus, we may assume that G has no edge from B[b1, b4] to A(a1, a5]. Hence, by

(11) and (12), (G − a1, a2, b2, a0, b1) is planar. Now, by (ii) of Lemma 2.5.1, (G −

a2, a1, b2, a0, b1) is not planar; hence, there exist e = a1b, e
′ = a′b′ ∈ E(G) with b ∈

V (B(b4, b5)), b′ ∈ V (B[b1, b)), and a′ ∈ V (A(a1, a2)). We may assume b /∈ B(b′6, b5),

as otherwise (e3, e4, e
′
6, e, e5) is a 5-edge configuration. Moreover, G has no edge from a2

to B(b4, b5), as such an edge would form a double cross with e, e′, e5. Since dG(a2) ≥ 4,

u2 ∈ B[b5, b2]. But now, (f2, e5, e′′6, e, e
′) is a 5-edge configuration. 2

Now, by (9) and (14), u2 ∈ B(b5, b2]. By (3), (11) and (14), G has no edge from a2 to

B[b1, b5), and so u1 ∈ B[b5, b2].
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(15) b0 ∈ B(b4, b5).

For, otherwise, b0 ∈ B[b5, b2]. Note that b′0 6= b5; otherwise, b0 = b′0 = b5, and by (3),

(4), (11), (12), and (14), we can obtain a new graph H from G by splitting a4 such that

(H, a1, a2, b2, a0, b1) is planar, contradicting (i) of Lemma 2.5.1.

We may assume that G has no edge from B[b1, b4) to A(a1, a5], as such an edge forms

a 5-edge configuration with f2, e′0, e5, e4. Hence, A(a1, a5) = ∅ and, since dG(a5) ≥ 6,

b′5 6= b5. We may thus assume that G has no edge from B[b5, b
′
0) to A[a4, a2), as such an

edge forms a 5-edge configuration with f2, e′0, e
′
5, e4. We may also assume that if b4a5 ∈

E(G) then G has no edge from B(b4, b5) to A(a5, a2], as such an edge forms a 5-edge

configuration with f2, e′0, e5, b4a5.

Suppose u1 /∈ B[b5, b
′
0). Then by definition, G has no edge from B[b5, b

′
0) to A[a4, a2].

Now, by (3), (4), (11), (12), and our previous statements, we can obtain a new graphH from

G by splitting a1, a4 as s, s′ and t, t′, respectively, such that (H, a0, b1, a1 = s, t, s′, t′, a2, b2)

is planar, contradicting (iii) of Lemma 2.5.1.

So u1 ∈ B[b5, b
′
0) and, hence, G has no edge from B[b5, b2] to A[a4, a2). By (3), (4),

(11), (12), and our previous statements, (G − a1, a2, b2, a0, b1) and (G − a2, a1, b2, a0, b1)

are planar, contradicting (ii) of Lemma 2.5.1. 2

Suppose there exists a ∈ V (A(a5, a4)). Since dG(a) ≥ 6 and because of (11), there

exists e = ab ∈ E(G) with b ∈ V (B[b4, b5]) \ {b4, b5, b0}. If b ∈ B(b4, b0) then

(e3, e4, e, e0, e5) is a 5-edge configuration; if b ∈ B(b0, b5) then (f2, e5, e, e0, e4) is a 5-

edge configuration.

So we may assume A(a5, a4) = ∅. Then G has no edge from A(a1, a5] to B[b1, b4), as

such an edge would form a double cross with e0, e4, e5.

Then we may assume thatG has no edge fromB(b0, b
′
0) toA(a1, a2]. For, suppose there

exists e = ab ∈ E(G) with b ∈ V (B(b0, b
′
0)) and a ∈ V (A(a1, a2]). If b′0 ∈ B(b5, b2], then

(f2, e
′
0, e5, e0, e4) is a 5-edge configuration. So assume b′0 ∈ B(b4, b5]. Then b ∈ B(b4, b5)

and, by (11), a ∈ A[a5, a4]. But then, (f2, e′0, e, e0, e4) is a 5-edge configuration.
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If G has no edge from a4 to B(b4, b5) then, by (3), (4), (6), (11), and our previous state-

ments, we can obtain a new graph H from G by splitting b4 such that (H, a1, a2, b2, a0, b1)

is planar, contradicting (i) of Lemma 2.5.1. So let e = a4b ∈ E(G) with b ∈ V (B(b4, b5)).

We may assume b /∈ B(b0, b5); otherwise (f2, e5, e, e0, e4) is a 5-edge configuration. More-

over, G has no edge from b4 to a5, to avoid forming a double cross with e5, e0, e. Now by

(3), (4), (6), (11), and our previous statements, we can obtain a new graph H from G by

splitting a4 such that (H, a1, a2, b2, a0, b1) is planar, contradicting (i) of Lemma 2.5.1. 2

Lemma 2.5.3 Suppose (e3, e4, e5, e6, e7) is a 5-edge configuration in an ideal a0-frame

A,B in γ with b1, b3, b4, b5, b6, b7, b2 onB in order. LetG0 := G−A, where (G0, a0, b1, B, b2)

is planar. Then G0 has a separation (G1, G2) with |V (G1) ∩ V (G2)| ≤ 3, {a0, b1, b2} ⊆

V (G1), and B[b′1, b
′
2] ⊆ G2, |V (G1 − G2)| ≥ 1, such that one of the following holds for

b′1, b
′
2 ∈ V (G1) ∩ V (G2):

(i) |V (G1) ∩ V (G2)| = 3, b′1 ∈ B[b3, b4], b′2 ∈ B[b7, b2], and G0 has a path from a0 to

B(b′1, b
′
2) and internally disjoint from B.

(ii) |V (G1) ∩ V (G2)| = 2, b′1 ∈ B[b3, b4], and b′2 ∈ B[b7, b2].

(iii) |V (G1) ∩ V (G2)| = 2, b′1 ∈ B[b3, b4], and b′2 ∈ B[b6, b7).

(iv) |V (G1) ∩ V (G2) = 2, b′1 ∈ B(b4, b5], and b′2 ∈ B[b7, b2].

Proof. By planarity of G0, it is easy to see that if the assertion fails then G0 − (B[b3, b4] ∪

B[b7, b2]) contains disjoint paths B1, A0 from b1, a0 to b5, b6, respectively. Now (A −

A[a5, a7])∪ e3 ∪B[b3, b4]∪ e4 ∪ e6 ∪A0 and B1 ∪ e5 ∪A[a5, a7]∪ e7 ∪B[b7, b2] show that

γ is feasible, a contradiction. (See Figure 2.13.) 2

In the remainder of this section, we will assume the following: P := (e3, e4, e5, e6, e7)

is a 5-edge configuration in A,B, where ei = aibi ∈ E(G) with ai ∈ V (A) and bi ∈ V (B)

for i = 3, 4, 5, 6, 7, such that a1, a3, a4, a2 occur on A in order, b1, b3, b4, b5, b6, b7, b2 occur

on B in order, and the following are satisfied in order listed:
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a1 a2

b1 b2

a0

e3 e4

e5e6 e7
a1 a2

b1 b2

a0

e3 e4

e5e6 e7

a1 a2

b1 b2

a0

e3 e4

e5e6 e7
a1 a2

b1 b2

a0

e3 e4

e5e6 e7

(a) (b)

(c) (d)

Figure 2.13: A 5-edge configuration with a 2-cut or a 3-cut

• B[b4, b7] is maximal,

• B[b6, b7] is minimal,

• B[b4, b5] is minimal,

• A[a5, a7] is minimal,

• A[a3, a4] is maximal,

• B[b1, b3] is minimal, and

• A[a6, a5] ∩ A[a6, a7] is maximal.

Lemma 2.5.4 Suppose a7 ∈ A[a1, a5], a6 ∈ A(a5, a2], andG has no edge fromB(b4, b5] to

A[a1, a5) or from B[b7, b2] to A(a5, a2]. Then G0 admits no separation (G1, G2) such that
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V (G1∩G2) = {b∗1, b∗2}with b∗1 ∈ V (B[b1, b4]) and b∗2 ∈ V (B[b6, b2]), {a0, b1, b2} ⊆ V (G1),

B[b∗1, b
∗
2] ⊆ G2, and |V (G1 −G2)| ≥ 1.

Proof. For, suppose such a separation does exist. Then we choose such (G1, G2) so that

B[b∗1, b
∗
2] is maximal. Note that G has no parallel edges from B[b6, b2] to A[a1, a5], as such

edges and e5, e6 would form a double cross.

Next, we show that all edges from A(a5, a2] to B must end in B[b4, b6]. For, suppose

there exists e = ab ∈ E(G) with a ∈ V (A(a5, a2]) and b ∈ V (B) \ V (B[b4, b6]). Then

b ∈ B[b1, b4); for, otherwise, b ∈ B(b6, b7) (as G has no edge from B[b7, b2] to A(a5, a2])

and, hence, (e3, e4, e5, e, e7) contradicts the choice ofP . If a ∈ A(a5, a4) then b ∈ B[b3, b4)

to avoid the double cross e, e3, e4, e5; thus b3 6= b4 and (e3, e, e5, e6, e7) contradicts the

choice of P . Hence, a ∈ A[a4, a2]. Then b = b1 as, otherwise, (e3, e, e5, e6, e7) contradicts

the choice of P . Now a 6= a2 and there exists e′ = a2b
′ ∈ E(G) with b′ ∈ V (B)−{b1, b2}.

Note that b′ /∈ B[b7, b2] as G has no edge from B[b7, b2] to A(a5, a2]. But then e, e′, e3, e7

form a double cross, a contradiction.

Let e8 = a8b8 ∈ E(G) with a8 ∈ V (A[a1, a5]) and b8 ∈ V (B(b∗1, b
∗
2)), so that A[a1, a8]

is minimal. Since G∗ is 6-connected, there exists e∗ = a∗b∗ ∈ E(G) with a∗ ∈ A(a8, a2]

and b∗ ∈ B−B[b∗1, b
∗
2]. Since all edges from A(a5, a2] to B end in B[b4, b6], a∗ ∈ A(a8, a5]

and, hence, a8 ∈ A[a1, a5).

Moreover, b8 ∈ B(b∗1, b4] ∪ B[b6, b
∗
2). For otherwise, b8 ∈ B(b4, b6). Since a8 ∈

A[a1, a5) and G has no edge from B(b4, b5] to A[a1, a5) (by assumption), b8 ∈ B(b5, b6).

Then a8 ∈ A[a7, a5) to avoid the double cross e5, e6, e7, e8. Since a∗ ∈ A(a8, a5], we have

b∗ ∈ B[b1, b
∗
1) to avoid the double cross e8, e∗, e5, e6, and b∗ /∈ B[b1, b3) to avoid the double

cross e3, e∗, e6, e7. Hence, b3, b∗ ∈ B(b1, b4), and (e3, e
∗, e8, e6, e7) contradicts the choice

of P .

Case 1. b8 ∈ B[b6, b
∗
2). So b∗ ∈ B[b1, b

∗
1) to avoid the double cross e8, e∗, e5, e6.

We claim that G has no edge from B(b∗1, b4] to A[a1, a5). For suppose e = ab ∈ E(G)

with a ∈ A[a1, a5) and b ∈ B[b∗1, b4]. Note that b∗1 and b∗2 are feet of some connector J , and
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B[b∗1, b
∗
2] ⊆ J . Let u1, u2 denote the extreme hands for J . Note that e∗ is from A(x1, x2)

to B[b1, b
∗
1); so we know (J − b∗1, u1, A(u1, u2), u2, b∗2) is planar by Lemma 2.2.4. But this

cannot be the case because of e, e4, e5.

Let (G′1, G
′
2) be a separation inG0 such that V (G′1∩G′2) = {b′1, b′2}with b∗1, b

′
1, b4, b6, b

′
2,

b∗2 on B in order, B[b′1, b
′
2] ⊆ G′1, and {a0, b′1, b′2} ⊆ V (G′2). (Possibly G′i = Gi for

i = 1, 2.) We choose (G′1, G
′
2) such that B[b6, b

′
2] is minimal and, subject to this, B[b∗1, b

′
1]

is minimal.

Let e′8 = a′8b
′
8 ∈ E(G) with a′8 ∈ A[a1, a5] and b′8 ∈ B(b′1, b

′
2), and choose e′8 so

that A[a1, a′8] is minimal. Since G∗ is 6-connected, there exists e′ = a′b′ ∈ E(G) with

a′ ∈ A(a′8, a2] and b′ ∈ B − B[b′1, b
′
2]. Then b′8 ∈ B[b6, b

′
2) (by the claim above) and

b′ ∈ B[b1, b
∗
1]− b′1 (to avoid the double cross e5, e6, e′8, e

′). So (e′8, e6, e5, e4, e
′) is a 5-edge

configuration. By Lemmas 2.1.9 and 2.5.3, G0 has a cut that contradicts the choice of

(G1, G2) or (G′1, G
′
2).

Case 2. b8 ∈ B(b∗1, b4]. Then b∗ ∈ B(b∗2, b2] to avoid the double cross e8, e∗, e4, e5.

We claim that G has no edge from B[b6, b
∗
2) to A[a1, a5). For suppose e = ab ∈ E(G)

with a ∈ V (A[a1, a5)) and b ∈ V (B[b6, b
∗
2)). Note that b∗1 and b∗2 are feet of some connector

J , and B[b∗1, b
∗
2] ⊆ J . Let u1, u2 denote the extreme hands for J . Note that e∗ is from

A(u1, u2) to B(b∗2, b2]; so we know (J−b∗2, u1, A(u1, u2), u2, b∗1) is planar by Lemma 2.2.4.

But this cannot be the case because of e, e5, e6.

Let (G′1, G
′
2) be a separation inG0 such that V (G′1∩G′2) = {b′1, b′2}with b∗1, b

′
1, b4, b6, b

′
2,

b∗2 on B in order, B[b′1, b
′
2] ⊆ G′1, and {a0, b′1, b′2} ⊆ V (G′2). We choose (G′1, G

′
2) such that

B[b′1, b4] is minimal and, subject to this, B[b′2, b
∗
2] is minimal.

Let e′8 = a′8b
′
8 ∈ E(G) with a′8 ∈ A[a1, a5] and b′8 ∈ B(b′1, b

′
2), and choose e′8 so

that A[a1, a′8] is minimal. Since G∗ is 6-connected, there exists e′ = a′b′ ∈ E(G) with

a′ ∈ A(a′8, a2] and b′ ∈ B − B[b′1, b
′
2]. Then b′8 ∈ B(b′1, b4] (by the above claim) and

b′ ∈ B[b∗2, b2]− b′2 (to avoid the double cross e′, e′8, e4, e5). So (e′8, e4, e5, e6, e
′) is a 5-edge

configuration. By Lemmas 2.1.9 and 2.5.3, G0 has a separation that contradicts choice of
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(G1, G2) or (G′1, G
′
2). 2

Lemma 2.5.5 Suppose G0 has a 2-cut {b′1, b′2} with b′1 ∈ B[b1, b4] and b′2 ∈ B[b6, b7)

separating B[b′1, b
′
2] from {a0, b1, b2}. Then G0 has a separation (G1, G2) with |V (G1 ∩

G2)| ≤ 3 and b∗1, b
∗
2 ∈ V (G1 ∩ G2) ∩ V (B) such that b∗1 ∈ B[b1, b4], b∗2 ∈ B[b6, b2],

{a0, a1, a2} ⊆ V (G1), B[b∗1, b
∗
2] ⊆ G2, and if b∗2 ∈ B[b6, b7) then |V (G1 ∩G2)| = 2 and G

has no edge from B(b∗2, b7) to A− a7.

Proof. We choose {b′1, b′2} such that {b′1, b′2} is a 2-cut (with b′1 ∈ B[b1, b4] and b′2 ∈

B[b6, b2]) separating B[b′1, b
′
2] from {a0, b1, b2}, subject to this, B[b′1, b4] is minimal and,

subject to this, B[b′2, b2] is minimal.

Clearly, we may assume b′2 ∈ B[b6, b7), and there exists e8 = a8b8 ∈ E(G) with

a8 ∈ V (A − a7) and b8 ∈ V (B(b′2, b7)). We choose e8 so that A[a8, a5] is minimal. Note

that a8 ∈ A[a5, a7), for otherwise, (e3, e4, e5, e8, e7) contradicts P .

Case 1. a5 ∈ A(a7, a2].

Then G has no edge from A(a8, a5] to B[b1, b3) to avoid forming a double cross with

e3, e8, e4. Also G as no edge from A(a5, a2] to B(b1, b
′
1); for suppose e is such an edge then

(e3, e, e5, e6, e7) contradicts the choice of P .

(1) G has no edge from A(a8, a2] to B(b′2, b2) + b1.

For, suppose there exists e = ab ∈ E(G) with a ∈ A(a8, a2] and b ∈ B(b′2, b2) + b1.

If b = b1 then a 6= a2 and there exists e2 = a2b
′ ∈ E(G) with b′ ∈ B(b1, b2); now

b′ ∈ B[b7, b2) to avoid the double cross e, e3, e7, e2 and, hence, (e2, e7, e5, e3, e) contradicts

the choice of P .

Thus, b ∈ B(b′2, b2). In fact b ∈ B[b7, b2), otherwise, a ∈ A(a5, a2] (by the minimality

of A[a8, a5]) and (e3, e4, e5, e, e7) contradicts the choice of P . Now a ∈ A(a5, a2], as

otherwise (e3, e4, e5, e6, e) contradicts the choice of P . Hence, (e, e7, e8, e6, e5) is a 5-edge

configuration. By Lemmas 2.1.9 and 2.5.3 and by the choice of {b′1, b′2}, G0 has the desired

separation. 2
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(2) G has no edge from A(a7, a2] to b2.

For, let e = ab2 ∈ E(G) with a ∈ A(a7, a2]. Then a 6= a2. Moreover, a ∈ A(a5, a2); as

otherwise, (e3, e4, e5, e6, e) contradicts the choice of P .

Suppose a ∈ A[a4, a2). Then let e2 = a2b
′
2 ∈ E(G) with b′2 ∈ V (B) − {b1, b2}. Now

b′2 ∈ B(b1, b4] to avoid the double cross e2, e, e4, e8. So (e3, e2, e5, e6, e7) contradicts the

choice of P .

Thus a ∈ A(a5, a4). Now b7 = b2, or else (e3, e4, e5, e7, e) contradicts the choice of P .

Moreover, a8 = a5, or else (e3, e4, e5, e8, e) contradicts the choice of P .

Suppose a6 ∈ A[a1, a7). Let e′7 = a7b
′
7 ∈ E(G) with b′7 ∈ V (B − b7). Then b′7 /∈

B[b1, b6) to avoid the double cross e6, e′7, e7, e8. If b′7 = b6 then (e3, e4, e
′
7, e8, e7) contradicts

the choice of P . If b′7 ∈ B(b6, b2) then (e3, e4, e5, e
′
7, e7) contradicts the choice of P .

So a6 ∈ A(a5, a2] for all choices of e6. Then a6 ∈ A[a4, a2], or else (e3, e4, e6, e8, e)

contradicts the choice of P . Let e′ = ab′ ∈ E(G) with b′ ∈ V (B − b2). Then b′ 6= b6 as

a6 ∈ A[a4, a2] for all choices of e6. So b′ ∈ B(b6, b2) to avoid the double cross e8, e6, e, e′.

But then (e3, e4, e5, e
′, e7) contradicts the choice of P . 2

(3) There exists e9 = a9b9 ∈ E(G) with a9 ∈ A[a1, a8) and b9 ∈ B(b′1, b
′
2].

For, suppose such an edge does not exist. Then a6 ∈ A(a5, a2] and G has no edge from

B(b4, b5] to A[a1, a5) by the choice of P . Note that we have a5 6= a7 and a7 ∈ A[a1, a5]

and that, by (1) and (2), G has no edge from B[b7, b2] to A(a5, a2]. This contradicts

Lemma 2.5.4. 2

(4) b9 ∈ B(b4, b
′
2] and a9 = a3; so all edges from B(b′1, b

′
2] to A[a1, a8) must be from

B(b4, b
′
2] to a3.

First, suppose b9 ∈ B(b′1, b4]. Then (e9, e4, e5, e6, e8) is 5-edge configuration. Thus, by

Lemma 2.1.9 and 2.5.3 and by the choice of {b′1, b′2}, G0 has the desired separation.
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So we may assume b9 ∈ B(b4, b
′
2]. Suppose a9 6= a3. Then a9 ∈ A(a3, a4), to avoid the

double cross e3, e9, e5, e7. But now (e3, e4, e9, e8, e7) is a 5-edge configuration contradicting

the choice of P . 2

Suppose a4 6= a2. Let e∗2 = a2b
∗
2 ∈ E(G) with b∗2 ∈ V (B). Then b∗2 ∈ B(b1, b4] to avoid

the double cross e∗2, e4, e9, e8. Now (e3, e, e5, e6, e7) contradicts the choice of P .

Thus,G has no edge e fromB[b1, b
′
1) to v ∈ V (A(a8, a2]); for, if v 6= a2 then e, e9, e8, e4

would form a double cross, and if v = a2 then (e3, e, e5, e6, e7) contradicts the choice of P .

Hence, by (1) and (4),G has a 5-separation (H1, H2) such that V (H1∩H2) = {b′1, b′2, a8,

a3, a2}, V (A[a8, a2])∪V (B[b′1, b
′
2])∪{a3} ⊆ V (H1), and V (A[a3, a8])∪{a0, a1, a2, b1, b2}

⊆ V (H2), a contradiction as G∗ is 6-connected.

Case 2. a5 ∈ A[a1, a7).

Then a6 /∈ A(a4, a2) to avoid the double cross e4, e6, e5, e7, and a6 /∈ A(a7, a4) as,

otherwise, (e3, e4, e6, e8, e7) contradicts the choice of P . Hence, a6 ∈ A[a1, a5) or a6 = a4.

(1) For some v ∈ {a4, b4}, all edges from A(a8, a2] to B(b′1, b
′
2] are incident with v.

To prove (1), we first claim that G has no edge from A(a8, a2] − a4 to B(b′1, b
′
2] − b4.

For otherwise, suppose there exists e9 = a9b9 ∈ E(G) with a9 ∈ A(a8, a2] − a4 to b9 ∈

B(b′1, b
′
2]−b4. If b9 ∈ B(b′1, b4) then a9 ∈ A(a4, a2] to avoid the doublecorss e9, e4, e7, e8; so

(e3, e9, e5, e6, e7) contradicts the choice of P . Hence, b9 ∈ B(b4, b
′
2). Then a9 ∈ A(a8, a4)

to avoid the double cross e4, e9, e8, e7. Now (e3, e4, e9, e8, e7) contradicts the choice of P .

Next, observe that, by the choice of P , any edge from b4 to A(a8, a2]− a4 must end in

A(a8, a4), and any edge from a4 to B(b′1, b
′
2] − b4 must end in B(b4, b

′
2]. Thus, G has no

edge from b4 to A(a8, a2]− a4 or no edge from a4 to B(b′1, b
′
2]− b4; as such two edges and

e7, e8 would form a double cross, a contradiction. 2

Define a′1 ∈ V (A[a1, a8]) such that G has no edge from A[a1, a
′
1) to B(b′1, b

′
2] and,

subject to this, A[a1, a′1] is maximal. By the definition of a′1, there exits e1 = a′1b ∈ E(G)

with b ∈ B(b′1, b
′
2].
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We claim that a′1 ∈ A[a3, a8). For, suppose a′1 ∈ A[a1, a3). Then b ∈ B(b1, b3] to avoid

the double cross e1, e3, e4, e8. Now (e1, e4, e5, e6, e7) contradicts the choice of P .

(2) G has no edge from A(a′1, a8) to B −B[b′1, b
′
2].

For, otherwise, a′1 6= a8, and there exists e9 = a9b9 ∈ E(G) with a9 ∈ V (A(a′1, a8)) to

b9 ∈ V (B) \ V (B[b′1, b
′
2]). Then b9 /∈ B[b1, b

′
1) to avoid the double cross e1, e9, e4, e7.

We claim b9 = b2 and a9 /∈ A[a5, a8). For, if b9 ∈ B(b′2, b7) then a9 ∈ A(a′1, a5) by the

choice of e8 (that A[a5, a8] is minimal); now (e3, e4, e5, e9, e7) contradicts the choice of P .

Hence, b9 ∈ B[b7, b2]. Thus, a9 /∈ A[a5, a8); as otherwise (e3, e4, e5, e8, e9) contradicts the

choice of P . Now suppose b9 6= b2. Then (e7, e9, e8, e6, e5) is a 5-edge configuration. Thus,

by Lemmas 2.1.9 and 2.5.3 and by the choice of {b′1, b′2}, G0 has the desired separation.

Now a8 = a5; otherwise, (e3, e4, e5, e8, e9) contradicts the choice of P . Moreover, a4 =

a2; for otherwise, G has an edge e′ from a2 to B, then either (e3, e′, e5, e6, e7) contradicts

the choice of P or e′, e4, e5, e7 form a double cross.

Next, we claim that all edges from A(a8, a2) to B must end in {b4, b2}. Note that G

has no edge from A(a8, a2) to b1, to avoid forming a double cross with e7, e3, e4. G has no

edge from A(a8, a2) to B(b1, b4); otherwise, such an edge together with e3, e5, e1, e9 forms

a 5-edge configuration contradicting the choice of P . G has no edge from A(a8, a2) to

B(b4, b8); otherwise, such an edge together with e3, e4, e8, e7 forms a 5-edge configuration

contradicting the choice of P . G has no edge from A(a8, a2) to B[b8, b2); otherwise, such

an edge together with e3, e4, e5, e9 forms a 5-edge configuration contradicting the choice of

P .

Therefore, since a7 ∈ A(a8, a2), {a2, a8, b2, b4} is a 4-cut in G separating a7 from

{a0, a1, a2, b1, b2}, a contradiction as G∗ is 6-connected. 2

By (1) and (2), G has a separation (H1, H2) such that V (H1 ∩H2) = {b′1, b′2, a8, a′1, v},

b5 ∈ V (H2 −H1), and {a0, a1, a2, b1, b2} ⊆ H1, a contradiction as G∗ is 6-connected. 2
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Lemma 2.5.6 Suppose G0 has a 2-cut {b′1, b′2} separating B[b′1, b
′
2] from {a0, a1, a2} with

b′1 ∈ B(b4, b5] and b′2 ∈ B[b7, b2]. Then G0 has a separation (G1, G2) with |V (G1∩G2)| ≤

3 and b∗1, b
∗
2 ∈ V (G1 ∩G2) ∩ V (B) such that b∗1 ∈ B[b1, b5], b∗2 ∈ B[b7, b2], {a0, a1, a2} ⊆

V (G1), B[b∗1, b
∗
2] ⊆ G2, and if b∗1 ∈ B(b4, b5] then |V (G1 ∩ G2)| = 2 and G has no edge

from B(b4, b
∗
1) to A− a4.

Proof. We choose {b′1, b′2} such that {b′1, b′2} is a 2-cut (with b′1 ∈ B[b1, b5] and b′2 ∈

B[b7, b2]) separating B[b′1, b
′
2] from {a0, b1, b2}, and, subject to this, B[b′1, b

′
2] is maxi-

mal. Clearly, we may assume b′1 ∈ B(b4, b5], and there exists e8 = a8b8 ∈ E(G) with

a8 ∈ V (A− a4) and b8 ∈ V (B(b4, b
′
1)).

We claim that a8 ∈ A[a1, a3] ∪ A(a4, a2]. For, suppose a8 ∈ A(a3, a4). Then a6 ∈

A[a7, a8] and a8 /∈ A[a7, a5]; for otherwise (e3, e4, e8, e6, e7) contradicts the choice of P .

Therefore, a5 /∈ A[a6, a8] (since a6 /∈ A[a5, a7]). So (e3, e4, e8, e5, e6) is a 5-edge configu-

ration. Thus, by Lemmas 2.1.9 and 2.5.3 and by the choice of {b′1, b′2}, G0 has the desired

separation.

Case 1. a8 ∈ A(a4, a2].

Choose e8 so that A[a8, a2] is minimal. Note that a6 ∈ A[a8, a2] and a7 ∈ A(a3, a5],

since, otherwise, e4, e8 and two of {e5, e6, e7} force a double cross.

(1) G has no edge from A(a5, a2] to B[b1, b4) ∪B(b6, b2].

For, let e = ab ∈ E(G) with a ∈ A(a5, a2] and b ∈ B[b1, b4) ∪B(b6, b2].

Suppose b ∈ B(b6, b2]. Then a ∈ A[a8, a2] to avoid the double cross e, e4, e5, e8. So

b ∈ B[b7, b2], or else (e3, e4, e5, e, e7) contradicts the choice of P . If b = b2 then a 6= a2

and there exists e′ = a2b
′ ∈ E(G) with b′ ∈ V (B(b1, b2)); e4, e5, e, e′ form a double cross

(when b′ ∈ B(b4, b2)) or (e3, e′, e5, e6, e7) contradicts the choice ofP (when b′ ∈ B(b1, b4]).

Thus, b 6= b2. Now (e, e7, e5, e8, e4) is a 5-edge configuration. Hence, by Lemmas 2.1.9

and 2.5.3 and by the choice of {b′1, b′2}, G0 has the desired separation.
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Thus, b ∈ B[b1, b4) for every choice of e = ab. If a ∈ A(a5, a4) then either e3, e4, e5, e

form a double cross, or (e3, e, e5, e6, e7) contradicts the choice of P . So a ∈ A[a4, a2].

Then b = b1, or else, (e, e3, e5, e6, e7) contradicts the choice of P . Now, since G has no

edge from B(b6, b2] to A(a5, a2], G has an edge from a2 to B(b1, b7), which forms a double

cross with e, e3, e7. 2

(2) G has no edge from B(b1, b3) to A.

For otherwise, let e = ab ∈ E(G) with a ∈ A and b ∈ B(b1, b3). If a ∈ A[a1, a3],

then (e, e4, e5, e6, e7) contradicts the choice of P; if a ∈ A(a3, a4), then e, e3, e4, e7 form a

double cross; if a ∈ A[a4, a2], then (e3, e, e5, e6, e7) contradicts the choice of P . 2

(3) b′2 = b2 and G0 has a separation (G′1, G
′
2) that V (G′1 ∩ G′2) = {b1, b′′2, a0}, b′′2 ∈

B(b′1, b
′
2), B[b1, b

′′
2] ⊆ G′1, and {a0, b1, b2} ⊆ V (G′2).

First, suppose b5 ∈ B(b′1, b
′
2) and there exist e′5 = a5b

′
5, e
′′
5 = a′5b5 ∈ E(G) with

a′5 ∈ A[a1, a8) and b′5 ∈ B(b′1, b
′
2) such that a′5 6= a5 and b′5 6= b5. Then e′5, e

′′
5 form a cross

to avoid the double cross e′5, e
′′
5, e4, e8. Hence, b′5 ∈ B(b5, b

′
2) by the choice of P , and so

(e6, e
′
5, e
′′
5, e8, e4) is a 5-edge configuration. By Lemmas 2.1.9 and 2.5.3 and by the choice

of {b′1, b′2}, we see that (3) or the assertion of the lemma holds.

So the above case will not happen. Then we claim that there exists v ∈ {a5, b5} such

that all edges from B(b′1, b
′
2) to A[a1, a8) in G contain v. For, otherwise, there exists

e = ab ∈ E(G) such that a ∈ V (A[a1, a8) − a5) and b ∈ V (B(b′1, b
′
2) − b5). Suppose

b ∈ B(b′1, b5). Then a ∈ A(a5, a8) to avoid the double cross e, e5, e4, e8, and, hence,

(e6, e5, e, e8, e4) is a 5-edge configuration. Now by Lemmas 2.1.9 and 2.5.3 and by the

choice of {b′1b′2}, (3) or the assertion of the lemma holds. So assume b ∈ B(b5, b
′
2). Then

a /∈ A(a5, a8) to avoid the double cross e4, e5, e8, e. Hence, (e, e6, e5, e8, e4) is a 5-edge

configuration. Again by Lemmas 2.1.9 and 2.5.3 and by the choice of {b′1b′2}, (3) or the

assertion of the lemma holds.
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Now, since {v, a8, a2, b′1, b′2} is not a cut in G∗, there exists e = ab ∈ E(G) with

a ∈ V (A(a8, a2)) and b ∈ V (B − B[b′1, b
′
2]). By (1), b ∈ B[b4, b

′
1). Now b = b4 by the

choice of e8. Hence, (e3, e, e5, e6, e7) contradicts the choice of P . 2

By (3), α(A,B) ≤ 1. Choose b′′2 so that B[b′′2, b7] is minimal. We may assume

(4) b′′2 /∈ B[b7, b2], and either b7 = b2 (in which case let B0 = B[b′′2, b2]) or b7 6= b2 and

G0 − (B[b1, b
′′
2) ∪B[b7, b2)) has a path B0 from b′′2 to b2.

Clearly, b′′2 /∈ B[b7, b2] as otherwise the conclusion of the lemma holds. Now suppose b7 6=

b2 and the desired path B0 in G0 − (B[b1, b
′′
2) ∪ B[b7, b2)) does not exist. Then there exist

b∗2 ∈ V (B[b7, b2)) and a separation (H1, H2) in G0 such that V (H1∩H2) = {b1, b∗2, a0}; so

the conclusion of this lemma holds. 2

(5) G has two nonadjacent edges from B(b′1, b2] to A[a1, a5].

For otherwise, b′1 = b5, and there exists v ∈ {a7, b7} such that all edges in G from B(b′1, b2]

to A[a1, a5] are incident with v. Then G has no edge from B(b′1, b6] to A(a5, a8), to avoid

forming a double cross with e4, e5, e8. Since {v, b′1, b2, a8, a2} is not a cut in G∗, it follows

form (1) that there exists e = ab ∈ E(G) with b ∈ V (B[b4, b
′
1)) and a ∈ V (A(a8, a2]). By

the choice of e8, b = b4. But then, (e3, e, e5, e6, e7) contradicts the choice of P . 2

Note that no two edges of G from B(b′1, b2] to A[a1, a4] can be parallel, as such edges

would form a double cross with e4, e8. Therefore, by (5), G has two nonadjacent edges

e′9 = a′9b
′
9, e

′′
9 = a′′9b

′′
9 with a′9, a

′′
9 ∈ A[a1, a5] and b′9, b

′′
9 ∈ B(b′1, b2] such that b1, b′9, b

′′
9

occur on B in order, and a1, a′′9, a
′
9 occur on A in order. We further choose e′9, e

′′
9 so that

A[a′9, a2] ∪B[b′′9, b2] is minimal. Because of e7, we have a′9 ∈ A[a7, a2] and b′′9 ∈ B[b7, b2].

(6) G has two parallel edges e′ = a′b′, e′′ = a′′b′′ with b′, b′′ ∈ V (B(b3, b
′
1)), a

′, a′′ ∈

V (A[a4, a2]), and b1, b′, b′′, b2 on B in order.

We may assume b3 = b4; as otherwise e4, e8 give the desired edges for (6). Let e =

a1b ∈ E(G) with b /∈ {b1, b2, b3, b7}. Then b /∈ B(b1, b3); otherwise, (e, e4, e5, e6, e7)
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contradicts the choice of P . Moreover, b /∈ B(b3, b7) to avoid the double cross e, e4, e7, e8.

So b ∈ B(b7, b2).

Now, since (e, e6, e5, e8, e4) is a 5-edge configuration, b′′2 ∈ B[b6, b7); or else, the de-

sired separation of G0 follows from Lemmas 2.1.9 and 2.5.3, the choice of {b′1, b′2}, and the

choice of b′′2.

Now, let a∗ ∈ A[a1, a2], such that G has an edge e∗ from b∗ ∈ B(b′′2, b7) ∪ B(b7, b2) to

a∗, subject to this, A[a∗, a2] is minimal, and subject to this, B[b′′2, b
∗] is minimal.

We claim that a∗ /∈ A(a5, a2]. For otherwise, suppose a∗ ∈ A(a5, a2]. Now, if b∗ ∈

B(b′′2, b7), then (e3, e4, e5, e
∗, e7) is a 5-edge configuration contradicting the choice ofP . So

b∗ ∈ B(b7, b2). If a∗ ∈ A(a5, a8), then e4, e5, e8, e∗ form a double cross; if a∗ ∈ A[a8, a2],

then (e, e∗, e5, e8, e4) is a 5-edge configuration contradicting the choice of P .

We further claim that G has no edge from A(a1, a
∗) to B[b1, b3) ∪ B(b3, b

′′
2). (Recall

that b3 = b4.) For otherwise, let e′ = a′b′ ∈ E(G) with a′ ∈ A(a1, a∗) and b′ ∈ B[b1, b3) ∪

B(b3, b
′′
2). Then b′ /∈ B(b3, b

′′
2) to avoid the double cross e4, e8, e′, e∗. So b′ ∈ B[b1, b3).

But then a′ /∈ A(a3, a
∗) to avoid the double cross e3, e4, e′, e7. So a′ ∈ A[a1, a3], and

(e′, e4, e5, e6, e7) is a 5-edge configuration contradicting the choice of P .

We may assume G has an edge e′7 from b7 to a′7 ∈ A(a∗, a2] and an edge e′3 from b3 to

a′3 ∈ A(a1, a∗). For otherwise, G has a separation (H1, H2) of order 5, such that V (H1 ∩

H2) = {a1, a∗, v, b′′2, b2}, v ∈ {b3, b7}, {a0, a1, a2, b1, b2} ⊆ V (H1), and V (A[a1, a
∗] ∪

B[b′′2, b2]) ⊆ V (H2), a contradiction.

ThenG has a separation (H1, H2) of order 6, such that V (H1∩H2) = {a1, a∗, b3, b′′2, b7,

b2}, {a0, a1, a2, b1, b2} ⊆ V (H1), and V (A[a1, a
∗] ∪ B[b′′2, b2]) ⊆ V (H2). Any two edges

fromA[a1, a
∗] toB[b′′2, b2] are not parallel; or else, such two edges together with e4, e8 form

a double cross. Moreover, by the choice of P , we can further assume a′7 ∈ A(a5, a2].

Now, assume b∗ /∈ B(b′′2, b7). Then since any two edges from A[a1, a
∗] to B[b′′2, b2]

are not parallel, then, combined with the choice of e∗, we have (H2, a1, b3, a
∗, b7, b

′′
2, b2) is

planar, a contradiction to Lemma 2.1.3.
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So b∗ ∈ B(b′′2, b7). But then (e′7, e, e
∗, e6, e

′
3) is a 5-edge configuration. Now, by Lem-

mas 2.1.9 and 2.5.3 and by the choice of b′′2, G0 has the desired separation. 2

We choose e′, e′′ in (6) such that B[b3, b
′] is minimal and, subject to this, B[b′′, b′1] is

minimal.

SupposeG0−B(b1, b3]−B(b′1, b2] has disjoint paths P1, P2 from b1, a0 to b′, b′′, respec-

tively. Let A′ := P2 ∪ e′′ ∪ A[a′′, a2] and B′ := P1 ∪ e′ ∪ A[a′9, a′] ∪ e′9 ∪ B[b′9, b
′′
2] ∪ B0.

Now, since A,B is a good frame, the existence of A′, B′, A[a1, a′′9] ∪ e′′9 ∪ B[b′′9, b2], and

A[a1, a3] ∪ e3 ∪B[b1, b3] shows α(A,B) = 2, a contradiction.

Thus, such P1, P2 do not exist. Then G0 has a separation (H1, H2) with V (H1 ∩H2) =

{b∗1, b∗2} such that b∗1 ∈ B(b1, b3], B[b∗1, b
′′] ⊆ H1, and {a0, b1, b2} ⊆ H2. We may assume

b∗2 ∈ B[b′′, b′1) as otherwise G0 has the desired separation.

Since G∗ is 6-connected, {b1, b∗1, b∗2, b′1, a0} is not a cut in G; so there exists e0 = a0b0 ∈

E(G) with b0 ∈ V (B(b∗2, b
′
1)) and a0 ∈ V (A). By the choice of e′, e′′, a0 ∈ A[a4, a′′). So

(e3, e
′′, e0, e6, e7) is a 5-edge configuration. Now, by Lemma 2.1.9 and 2.5.3, and by the

choice of {b′1, b′2} and the existence of {b∗1, b∗2}, G0 has the desired separation.

Case 2. a8 ∈ A[a1, a3].

Note that if b3 = b4 we have symmetry between e3 and e4; so by Case 1, we may assume

that if b3 = b4 then there exists e9 = a4b9 ∈ E(G) with b9 ∈ B(b4, b
′
1). Next, G has no

edge from B(b3, b7) to A[a1, a3), to avoid the double cross e3, e9, e′, e7 (when b3 = b4) or

e3, e4, e
′, e7 (when b3 6= b4). So a8 = a3, and all edges from B(b4, b

′
1) to A must end in

{a3, a4}. Moreover, G has no edge from B(b4, b7) to A(a4, a2] to avoid forming a double

cross with e4, e7, e8. So a6 /∈ A(a4, a2].

(1) For some v ∈ {a4, b4}, all edges from B[b1, b
′
1) to A(a3, a2] are incident to v.

Now, we claim that G has no edge from B[b1, b4) to A(a3, a2]. For, let e = ab ∈ E(G)

with b ∈ B[b1, b4) and a ∈ A(a3, a2]. Then a ∈ A[a4, a2], to avoid the double cross

e, e4, e5, e8. So b = b1 by the choice of P . Then a 6= a2; so G has an edge e2 = a2b
′ with
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b′ ∈ B(b1, b2). Then b′ ∈ B[b7, b2) to avoid the double cross e2, e7, e8, e′. If b3 6= b4 then

(e2, e7, e4, e3, e) contradicts the choice of P . So b3 = b4. Then e9 is defined by (2.2.1).

Hence, (e2, e7, e9, e3, e) contradicts the choice of P .

Thus, suppose (1) fails, since all edges from B(b4, b
′
1) to A must end in {a3, a4}, then

there exist e′ = a4b
′, e′′ = a′′b4 with a′′ ∈ A(a3, a2]− a4 and b′ ∈ B(b4, b

′
1). By the choice

of P , a′′ ∈ A(a3, a4). So e8, e′, e′′, e7 form a double cross, a contradiction. 2

(2) a1 = a3.

For, suppose a1 6= a3. Then there exists e1 = a1b ∈ E(G) with b ∈ V (B(b1, b2)). Note that

b /∈ B(b3, b7) by observation above (1), and b /∈ B(b1, b4] as otherwise (e1, e4, e5, e6, e7)

contradicts the choice of P . So b ∈ B[b7, b2). Moreover, b3 = b4, for, otherwise,

(e7, e1, e8, e4, e3) contradicts the choice of P . Thus the edge e9 is defined, and hence

v = a4.

NowG has no edge fromB[b′1, b7) toA(a1, a7). For such an edge and e1, e7, e9, e3 form

a 5-edge configuration. Hence, by Lemmas 2.1.9 and 2.5.3 and by the choice of {b′1, b′2},

G0 has the desired separation.

Thus, a6 ∈ A(a7, a4] by (1). So (e6, e1, e5, e9, e3) is a 5-edge configuration. If b′2 6= b2

then by Lemmas 2.1.9 and 2.5.3 and by the choice of {b′1, b′2},G0 has the desired separation.

So b′2 = b2. Since G∗ is 6-connected, {b1, b2, b′1, a3, a4} is not a cut in G. Hence, there

exists e∗ = a∗b∗ ∈ E(G) with a∗ ∈ V (A[a1, a2]) \ {a3, a4} and b∗ ∈ V (B(b1, b
′
1)).

By (1) and by the existence of e9, a∗ ∈ A[a1, a3). Then b∗ /∈ B(b1, b3]; otherwise,

(e∗, e4, e5, e6, e7) contradicts the choice of P . But then, b∗ ∈ B(b3, b
′
1), and e∗, e3, e6, e7

form a double cross. 2

Let e2 = a′2b
′ ∈ E(G) with a′2 ∈ V (A) and b′ ∈ V (B(b′1, b

′
2)), such that A[a2, a′2]

is minimal. Since G∗ is 6-connected, {b′1, b′2, a1, a′2} is not a cut in G; so there exists

e0 = a0b0 ∈ E(G) with a0 ∈ V (A(a1, a
′
2)) and b0 ∈ V (B −B[b′1, b

′
2]).

We claim that b0 ∈ B[b1, b
′
1) for every choice of e0. For, otherwise, b0 ∈ B(b′2, b2].
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Then a0 ∈ A(a1, a4) to avoid the double cross e4, e8, e2, e0. Also, a6 ∈ A[a5, a0]; oth-

erwise (e3, e4, e5, e6, e0) contradicts the choice of P . Moreover, a7 ∈ A[a6, a0]; or else

(e3, e4, e6, e7, e0) contradicts the choice of P . But this shows that a6 ∈ A[a5, a7], a contra-

diction.

Therefore, by (1), {a1, a′2, b′1, b′2, v} is a cut in G∗ separating {a0, a1, a2, b1, b2} from

A[a1, a
′
2] ∪B[b′1, b

′
2], a contradiction. 2

Thus by Lemmas 2.5.3, 2.5.5, and 2.5.6, G0 has a separation (G1, G2) with |V (G1) ∩

V (G2)| ≤ 3, |V (G1 −G2)| ≥ 1, {a0, a1, a2} ⊆ V (G1), and B[b′1, b
′
2] ⊆ G2 where b′1, b

′
2 ∈

V (G1) ∩ V (G2), such that one of the following holds:

(a) |V (G1) ∩ V (G2)| = 3, b′1 ∈ B[b1, b4], b′2 ∈ B[b7, b2], and G0 has a path from a0

to B(b′1, b
′
2) and internally disjoint from B. In this case, let t1 := b′1, t2 := b′2, and

a′0 = t0 ∈ V (G1 ∩G2) \ {b′1, b′2}.

(b) |V (G1) ∩ V (G2)| = 2, b′1 ∈ B[b1, b4], and b′2 ∈ B[b7, b2]. In this case, let t0 = t1 :=

b′1, and t2 := b′2.

(c) |V (G1) ∩ V (G2)| = 2, b′1 ∈ B[b1, b4], b′2 ∈ B[b6, b7), and G has no edge from

B(b′2, b7) to A−a7. In this case, let t1 := b′1 and t0 = b′2. Moreover, if G has no edge

from B(b′2, b7) to a7 then let t2 := b7, and if G has an edge f7 from b∗7 ∈ B(b′2, b7) to

a7 then let t2 := a7, B(t1, t2) := B(b′1, b
′
2] and B(t2, b2] := B[b7, b2].

(d) |V (G1) ∩ V (G2)| = 2, b′1 ∈ B(b4, b5], b′2 ∈ B[b7, b2], and G has no edge from

B(b4, b
′
1) toA−a4. In this case, let t0 := b′1 and t2 := b′2. Moreover, ifG has no edge

from B(b4, b
′
1) to a4 then let t1 := b4, and if G has an edge f4 from b∗4 ∈ B(b4, b

′
1) to

a4 then let t1 := a4, B(t1, t2) := B[b′1, b
′
2) and B[b1, t1) := B[b1, b4].

We choose b′1, b
′
2 so that b′1, b

′
2 satisfy (a) or (b) whenever possible, subject to this,

B[b1, b
′
1] is minimal, and subject to this, B[b7, b

′
2] is minimal.
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Let fi = a∗i b
∗
i ∈ E(G), i ∈ [2], with a∗i ∈ V (A) and b∗i ∈ V (B(t1, t2)) such that

A[a∗1, a
∗
2] is maximal. Then A[a5, a6] ⊆ A[a∗1, a

∗
2]. Without loss of generality, we may

assume that a1, a∗1, a
∗
2, a2 occur on A in order.

Lemma 2.5.7 G− e4 has an edge from B[b1, t1) to A(a∗1, a
∗
2).

Proof. For, supposeG−e4 has no edge fromB[b1, t1) toA(a∗1, a
∗
2). Then, since {t0, t1, t2, a∗1,

a∗2} is not a cut in G∗ separating A(a∗1, a
∗
2) ∪ B(t1, t2) from {a0, a1, a2, b1, b2}, there exists

e8 = a8b8 ∈ E(G) with b8 ∈ V (B(t2, b2]) and a8 ∈ V (A(a∗1, a
∗
2) − t2). Obviously,

b8 ∈ B(b′2, b2] ∩B[b7, b2].

We claim that a8 ∈ A(a3, a4). For, otherwise, a8 ∈ A(a1, a3] ∪ A[a4, a2). If a8 ∈

A(a1, a3], then a∗1 ∈ A[a1, a3), and so e3, f1, e5, e8 force a double cross, or (f1, e4, e5, e6, e7)

contradicts the choice of P . Therefore, a8 ∈ A[a4, a2). Then b∗2 ∈ B(b′1, b4]; otherwise

e4, e5, f2, e8 force a double cross. But now, (e3, f2, e5, e6, e7) contradicts the choice of P .

If b8 ∈ B(b7, b2] then (e3, e4, e5, e6, e8) (when a6 /∈ A[a5, a8]) or (e3, e4, e6, e7, e8)

(when a6 ∈ A[a5, a8]) contradicts the choice of P .

Hence b8 = b7 and, thus, t2 = a7 6= a8 and G has an edge f7 = a7b
∗
7 with b∗7 ∈

V (B(b′2, b7)). Let e = a8b ∈ E(G) with b ∈ V (B[b1, b2]) \ {b4, b7}, which exists as G∗ is

6-connected.

We claim that b ∈ B[b1, b4). Note that b /∈ B(b′2, b7) (as t2 = a7) and b /∈ B(b7, b2]

(as b8 = b7). So if the claim fails then b ∈ B(b4, b
′
2]; now (e3, e4, e, f7, e8) contradicts the

choice of P .

Thus, a8 ∈ A(a3, a7) to avoid the double cross e, e4, f7, e8. Then a7 ∈ A[a1, a5];

otherwise, (e3, e4, e5, f7, e8) contradicts the choice of P . Now a6 ∈ A(a5, a2], for, if a6 ∈

A[a1, a8) then e4, e6, e8, e form a double cross, and if a6 ∈ A[a8, a7) then (e3, e4, e6, f7, e8)

contradicts the choice of P .

Suppose there exists e9 = a9b9 ∈ E(G) with a9 ∈ V (A[a1, a5)) and b9 ∈ V (B(b4, b5]).

Then a9 /∈ A[a1, a8) to avoid the double cross e, e4, e8, e9. Moreover, a9 /∈ A[a8, a7), or else
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(e3, e4, e9, f7, e8) contradicts the choice of P . So a9 ∈ A[a7, a5). Now (e3, e4, e9, e6, e7)

contradicts the choice of P .

Hence,G has no edge fromB(b4, b5] toA[a1, a5). By Lemma 2.5.4 and by the existence

of {b′1, b′2}, there exists e9 = a9b9 ∈ E(G) with a9 ∈ V (A(a5, a2]) and b9 ∈ V (B[b7, b2]).

Then (e9, e8, f7, e6, e5) is a 5-edge configuration. Then G0 has a cut {b′′1, b′′2} or {b′′1, b′′2, a′′0}

satisfying the conclusion of Lemma 2.5.3 (with respect to (e9, e8, f7, e6, e5)), such that

b1, b
′′
1, b
′′
2, b2 occur on B in order. But then, by Lemma 2.1.9, G0 has a cut that would

contradict the choice of {b′1, b′2}. 2

Thus, by Lemma 2.5.7, there exists e8 = a8b8 ∈ E(G− e4) with b8 ∈ V (B[b1, t1)) and

a8 ∈ V (A(a∗1, a
∗
2)). Note that b8 ∈ B[b1, b4] ∩B[b1, b

′
1).

Lemma 2.5.8 a8 ∈ A(a∗1, a5].

Proof. For otherwise, a8 ∈ A(a5, a∗2), and we choose e8 so that A[a8, a2] is maximal. Then

(1) b8 /∈ B(b1, b4] for all choices of b8.

First, suppose b8 ∈ B(b1, b4). Then a8 /∈ A(a5, a7] to avoid the double cross e8, e4, e5, e7.

Now, b3 = b4 and a8 ∈ A[a1, a4); otherwise, (e3, e8, e5, e6, e7) contradicts the choice of P .

But then, e3, e4, e7, e8 form a double cross.

Now assume b8 = b4. Then t1 = a4 and there exists f4 = a4b
∗
4 ∈ E(G) with b∗4 ∈

V (B(b4, b
′
1)). Note that a8 ∈ A(a5, a4); otherwise, by e8 6= e4, we have a8 ∈ A(a4, a2] and

(e3, e8, e5, e6, e7) contradicts the choice of P .

G has no edge fromA(a5, a4) toB(b5, b2], to avoid forming a double cross with e5, e8, f4.

Hence, a7 ∈ A(a3, a5] and a6 /∈ A(a5, a4). Moreover, a6 /∈ A[a1, a7) to avoid the double

cross e6, e7, e8, f4. So a6 ∈ A[a4, a2].

Since dG(a8) ≥ 6, there exists e′8 = a8b
′
8 ∈ E(G) with b′8 ∈ V (B[b1, b2])−{b1, b4, b5}.

Since b8 /∈ B(b1, b4) and G has no edge from A(a5, a4) to B(b5, b2], then b′8 ∈ B(b4, b5).

But then, (e3, e4, e′8, e6, e7) contradicts the choice of P . 2
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Hence, b8 = b1 and b′1 6= b1. Now, a8 ∈ A[a4, a∗2) to avoid the double cross e8, e4, e3, e7.

And b∗2 ∈ B[b7, b
′
2) to avoid the double cross e8, f2, e3, e7. Then b3 = b4; otherwise,

(f2, e7, e4, e3, e8) contradicts the choice of P .

Note that a5 ∈ A[a1, a7], or else (f2, e7, e5, e3, e8) contradicts the choice of P . More-

over, a6 ∈ A[a1, a5), as, otherwise, e8, e6, e3, e7 (when a6 ∈ A(a8, a2]) would form a double

cross, or (f2, e7, e6, e3, e8) (when a6 ∈ A[a5, a8]) contradicts the choice of P .

(2) G has no cross from B[b6, b2] to A[a5, a2] and G has no edge from B(b6, b2] to

A[a1, a5).

Note that G has no cross from B[b6, b2] to A[a5, a2], to avoid forming a double cross

with e5, e6. Now suppose there exists e = ab ∈ E(G) with b ∈ V (B(b6, b2]) and

a ∈ V (A[a1, a5)). Then b = b2; or else, (e3, e4, e5, e, e7) (when b /∈ B(b6, b7)) or

(f2, e, e5, e3, e8) (when b ∈ B[b7, b2)) contradicts the choice of P . But then a 6= a1, and

e, e8 and two edges from a1, a2 to B(b1, b2) would form a double cross. 2

(3) G has no edge from B(b1, b3) to A.

For, otherwise, let e = ab ∈ E(G) with a ∈ A and b ∈ B(b1, b3). Then a ∈ A[a4, a8];

or else, (f2, e7, e4, e, e8) contradicts the choice of P . But now, (e, e3, e5, e6, e7) contradicts

the choice of P . 2

(4) G has no edge from A(a4, a2] to B(b1, b7).

For, otherwise, let e = ab ∈ E(G) with a ∈ A(a4, a2] and b ∈ B(b1, b7). Then b /∈

B(b4, b7) to avoid the double cross e4, e6, e7, e. But then b ∈ B(b1, b4], and (e, e3, e5, e6, e7)

contradicts the choice of P . 2

Let e∗ = a2b
∗ ∈ E(G), such that b∗ ∈ B(b1, b2), and B[b∗, b2] is minimal. Then by (2)

and (4), b∗ ∈ B[b7, b2) and G has no edge from B(b∗, b2] to A.

Let e′ = a′b′ ∈ E(G) with a′ ∈ A(a8, a2] and b′ ∈ B(b6, b2], such that B[b′, b2] is

maximal. Note that e′ exists because of e∗. And b′ ∈ B[b7, b
∗] by (2).
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Now, by (2), (4), and the choice of e∗, e′, we have

(5) G has no edge from B(b∗, b2] to A and no edge from B(b1, b
′) to A(a8, a2].

(6) G has no edge from b1 to A[a1, a8).

For, suppose there exists e = ab1 ∈ E(G) with a ∈ V (A[a1, a8)). Then, by the choice of

e8, a /∈ A(a5, a8). Hence, a ∈ A[a1, a5]. Since a 6= a1, there exists e0 = a1b0 ∈ E(G)

with b0 ∈ V (B(b1, b2)). Then b0 ∈ B[b7, b2) to avoid the double cross e0, e4, e7, e. So

(e0, e
∗, e5, e4, e) contradicts the choice of P . 2

(7) If there exists f ′8 = a′8b
′
8 ∈ E(G) with a′8 ∈ V (A[a5, a2]) and b′8 ∈ V (B(b6, b2]), then

G has no edge from B(b4, b
′
8) to A(a′8, a2].

For, suppose such f ′8 exists, and let f ′9 = a′9b
′
9 ∈ E(G) with a′9 ∈ A(a′8, a2] and b′9 ∈

B(b4, b
′
8). Then b′9 /∈ B(b5, b

′
8) to avoid the double cross e5, e6, f ′8, f

′
9. So b′9 ∈ B(b4, b5].

Moreover, b′9 /∈ B(b4, b5); otherwise, (e3, e4, f ′9, e6, e7) contradicts the choice of P . So

b′9 = b5. Now, we see that a7 ∈ A[a5, a′9); or else, (e3, e4, f ′9, e6, e7) contradicts the choice

of P . But then (e∗, e7, f
′
9, e3, e8) is a 5-edge configuration contradicting the choice of P . 2

(8) There do not exist b′′ ∈ V (B[b6, b
′]) and a cut S of G0 such that |S| ≤ 3, {b3, b′′} ⊆

S, and S separates B[b3, b
′′] from {a0, b1, b2}.

For, suppose such b′′ and S do exist. Let f ′9 = a′9b
′
9 ∈ E(G), such that a′9 ∈ V (A[a1, a2]),

b′9 ∈ V (B(b3, b
′′)), and subject to this, A[a′9, a2] is minimal. Then a′9 ∈ A[a5, a2], by the

existence of e5.

We claim that a′9 /∈ A(a8, a2], and so by (6), G has no edge from b1 to A[a1, a′9). For

otherwise, b′9 /∈ B(b3, b7) to avoid the double cross e6, e7, e8, f ′9. But then b′9 ∈ B[b7, b
′),

and f ′9 contradicts the choice of e′.

By (2) and (7), G has no edge from B(b′′, b2] to A[a1, a′9). Thus, S ∪ {a1, a′9} is a cut

in G∗ separating A[a1, a′9] ∪B[b3, b
′′] from {a0, a1, a2, b1, b2}, a contradiction. 2
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Since (e′, e6, e5, e3, e8) is a 5-edge configuration, G0 has a cut S ′ := {b′′1, b′′2} or S ′ :=

{b′′1, b′′2, a′′0} satisfying the conclusion of Lemma 2.5.3 (with respect to (e′, e6, e5, e3, e8)),

such that b1, b′′1, b
′′
2, b2 occur on B in order.

Case 1. Conclusions (i), or (ii), or (iii) of Lemma 2.5.3 holds for S ′ and (e′, e6, e5, e3,

e8).

Since (e3, e4, e5, e6, e7) is a 5-edge configuration, G0 has a cut S# := {b#1 , b
#
2 } or

S# := {b#1 , b
#
2 , a

#
0 } satisfying the conclusion of Lemma 2.5.3 (with respect to (e3, e4, e5, e6,

e7)), such that b1, b
#
1 , b

#
2 , b2 occur on B in order.

We may assume conclusion (iv) of Lemma 2.5.3 holds for S# and (e3, e4, e5, e6, e7),

and so b#1 ∈ B(b4, b5] and b#2 ∈ B[b7, b2]. For otherwise, assume conclusions (i), or (ii),

or (iii) of Lemma 2.5.3 holds for S# and (e3, e4, e5, e6, e7). Then by the choice of {b′1, b′2}

and b′1 6= b1, and by Lemma 2.1.8 and 2.1.9, we could find a cut {b3, b′′} or {b3, b′′, a′′} with

b′′ ∈ B[b6, b
′] in G0, which separates B[b3, b

′′] from {a0, b1, b2}, a contradiction to (8).

Suppose conclusion (i) of Lemma 2.5.3 holds for {b′′1, b′′2, a′′0} and (e′, e6, e5, e3, e8).

Then b′′2 ∈ B[b6, b7) by b′1 6= b1 and the choice of {b′1, b′2}. Moreover, by Lemma 2.1.9,

b#2 = b2, and b#1 , b
′′
2, b2, a0 are incident with a finite face of G0. Let f ′8 = a′8b

′
8 ∈ E(G)

with a′8 ∈ V (A[a1, a2]) and b′8 ∈ V (B(b′′2, b2]), such that A[a′8, a2] is maximal. Now, by

(2), (3), and (7), G has a separation (H1, H2), such that V (H1 ∩H2) = {b1, b2, b4, b′′2, a′8},

{a0, a1, b1, b2} ⊆ V (H1), and V (A[a′8, a2] ∪B[b′′2, b2]) ⊆ V (H2), a contradiction.

Now suppose conclusion (ii) of Lemma 2.5.3 holds for {b′′1, b′′2} and (e′, e6, e5, e3, e8).

So b′′1 = b1 and b′′2 ∈ B[b6, b
′]. Then by Lemma 2.1.9, {b1, b#2 } is a cut in G0 separating

B[b1, b
#
2 ] from {b1, b2, a0}, which contradicts the choice of {b′1, b′2} (as b′1 6= b1).

So conclusion (iii) of Lemma 2.5.3 holds for {b′′1, b′′2} and (e′, e6, e5, e3, e8). Now b′′1 ∈

B(b1, b3] and b′′2 ∈ B[b6, b
′]. Then by Lemma 2.1.9, {b′′1, b

#
2 } is a cut in G0 separating

B[b′′1, b
#
2 ] from {b1, b2, a0}. Let f ′9 = a′9b

′
9 ∈ E(G), with a′9 ∈ V (A[a4, a2]) and b′9 ∈

V (B[b4, b
#
2 )), such that A[a′9, a2] is minimal. If G has no edge from B(b#2 , b2] to A[a1, a′9)

then {b1, b′′1, b
#
2 , a

′
9} is a cut in G∗ separating {a0, a2, b1, b2} from A[a1, a

′
9] ∪ B[b′′1, b

#
2 ],
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a contradiction. So there exists f ′8 = a′8b
′
8 ∈ E(G) with a′8 ∈ V (A[a1, a

′
9)) and b′8 ∈

V (B(b#2 , b2]). Then a′8 /∈ A[a5, a4); or else, (e3, e4, e5, e6, e′8) contradicts the choice of P .

So a′8 ∈ A[a4, a2] by (2), and b′9 = b4 by (7). But now, (e3, f ′9, e5, e6, e7) contradicts the

choice of P .

Case 2. Conclusion (iv) of Lemma 2.5.3 holds for S ′ and (e′, e6, e5, e3, e8).

Then b′′2 ∈ B[b5, b6), b′′1 = b1, and {b1, b′′2} is a cut in G0 separating B[b1, b
′′
2] from

{a0, b1, b2}. By Lemma 2.1.9, the choice of {b′1, b′2}, and b′1 6= b1, we have b′2 = b2, b′1 ∈

B(b1, b3], and b′1, b
′′
2 are cut vertices of G0 separating b1 from {a0, b2}. So α(A,B) ≤ 1.

Recall e∗ = a2b
∗ with B[b∗, b2] minimal. If b∗ = b7, then, by (4) and (5), {b1, b7, a4}

is a cut in G∗ separating {a0, a1, b1, b2} from A(a4, a2], a contradiction. So b∗ 6= b7. Then

b∗ ∈ B(b7, b2]. Note that no finite face of G0 is incident with both b′′2 and some vertex

u ∈ B[b∗, b2); or else, {b′′1, b′′2, u} is a 3-cut in G0 separating B[b′′1, u] from {a0, b1, b2},

contradicting the choice of {b′1, b′2}.

We claim that G0 −B[b1, b
′′
2]−B[b∗, b2) has disjoint paths B2, A0 from b2, a0 to b7, b6,

respectively. For otherwise, since we may assume that Case 1 does not hold, it follows

from the planar structure of G0 and the choice of {b′1, b′2} that there exist u0 ∈ V (G0), u2 ∈

B[b∗, b2), such that {b′′2, u0, u2} is a cut inG0 separatingB[b′′1, b
′′
2)∪B(b′′2, u2) from {a0, b2}.

By (5), {b′′2, u′0, u2} is a cut in G∗ separating {a0, b2} from {a1, a2, b1}, a contradiction.

Now, let A′ := A[a1, a6] ∪ e6 ∪ A0 and B′ := B[b1, b5] ∪ e5 ∪ A[a5, a7] ∪ e7 ∪ B2.

Then the existence of A′, B′, e8 ∪ A[a8, a2], and e∗ ∪ B[b′, b2] implies α(A,B) = 2 (by

Lemma 2.2.1), a contradiction. 2

Thus by Lemma 2.5.8, a8 ∈ A(a∗1, a5] for all choices of e8. Choose e8 so that A[a8, a5]

is minimal and, subject to this, B[b8, b
′
1] is minimal. Then G has no edge from B[b1, b4] ∩

B[b1, b
′
1) to A(a8, a∗2).

(1) G has no cross from B[b1, b4] to A[a1, a5]; so b8 ∈ B[b3, b4].

For, such a cross would form a double cross with e4, e5. 2
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(2) G has no edge from B(b8, b7) to A[a1, a8) ∩ A[a1, a7); so b∗1 ∈ B[b7, b2) if a8 ∈

A[a1, a7].

For, such an edge would form a double cross with e4, e7, e8 (when b8 6= b4) or f4, e7, e8

(when t1 = a4 and b8 = b4). 2

(3) a7 ∈ A[a1, a5].

For, suppose a7 ∈ A(a5, a2]. Then b∗1 ∈ B[b7, b2) by (2). So b7 6= b2 (as b∗1 6= b2). Now,

we may assume t1 = a4 and b8 = b4; otherwise, b8 ∈ B[b1, b4) and (f1, e7, e5, e4, e8)

contradicts the choice of P . But then (f1, e7, e5, f4, e8) is a 5-edge configuration. So by

Lemmas 2.1.9 and 2.5.3, G0 has a cut contradicting the choice of {b′1, b′2}. 2

(4) G has no edge from B(b5, b7) to A[a1, a7), and so a6 ∈ A(a5, a2].

For, otherwise, let e9 = a9b9 ∈ E(G) with a9 ∈ V (A[a1, a7)) and b9 ∈ V (B(b5, b7)). Then

a8 ∈ A[a1, a9] and b∗1 ∈ B[b7, b2) by (2). So b7 6= b2 (as b∗1 6= b2) and (f1, e7, e9, f4, e8) is

a 5-edge configuration. Now t1 = a4 and b8 = b4; otherwise, (f1, e7, e9, e4, e8) contradicts

the choice of P . So by Lemmas 2.1.9 and 2.5.3, G0 has a cut contradicting the choice of

{b′1, b′2}. 2

(5) G has no edge from B(b4, b5] to A[a1, a5).

For, otherwise, let e9 = a9b9 ∈ E(G) with a9 ∈ V (A[a1, a5)) and b9 ∈ V (B(b4, b5]). Then

a9 /∈ A[a7, a5); otherwise, (e3, e4, f9, e6, e7) contradicts the choice of P . Moreover, a8 ∈

A[a1, a9] and b∗1 ∈ B[b7, b2) by (2). So b7 6= b2 (as b∗1 6= b2) and (f1, e7, e9, f4, e8) is a 5-

edge configuration. Now, t1 = a4 and b8 = b4; otherwise, (f1, e7, e9, e4, e8) contradicts the

choice of P . But then, b9 = b5 and by Lemmas 2.1.9 and 2.5.3, G0 has a cut contradicting

the choice of {b′1, b′2}. 2

(6) G has no edge from B(b6, b2] to A(a5, a2].
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For, otherwise, let e9 = a9b9 ∈ E(G) with a9 ∈ V (A(a5, a2]) and b9 ∈ V (B(b6, b2]). Then

b9 ∈ B[b7, b2]; or else, (e3, e4, e5, e9, e7) contradicts the choice of P .

Suppose b9 = b2. Then a9 6= a2 and let e = a2b ∈ E(G) with b ∈ V (B(b1, b2)) and

b 6= b4. If b ∈ B(b1, b4) then (e3, e, e5, f1, e9) contradicts the choice of P; if b ∈ B(b4, b2)

then e8, e9, f1, e form a double cross, a contradiction.

So b9 ∈ B[b7, b2) and b7 6= b2. So (e9, e7, e5, e4, e8) (when a7 ∈ A[a1, a8)) or

(e9, f1, e5, e4, e8) (when a8 ∈ A[a1, a7] and by (2)) is a 5-edge configuration. Hence, by

the choice of P , t1 = a4 and b8 = b4. Now by Lemma 2.1.9 and 2.5.3, G0 has a cut

contradicting the choice of {b′1, b′2}. 2

Now, by (3)–(6) and by Lemma 2.5.4,

(7) G0 does not contain a cut {b′′1, b′′2} separating B[b′′1, b
′′
2] from {a0, b1, b2} with b′′1 ∈

B[b1, b4] and b′′2 ∈ B[b6, b2].

By (7), we have

(8) (b) and (c) do not hold.

(9) G has no edge from B[b1, b4) to A(a5, a2].

For, suppose there exists e = ab ∈ E(G) with b ∈ V (B[b1, b4)) and a ∈ V (A(a5, a2]). If

b ∈ B(b1, b4) then a ∈ A(a5, a4) and b3 ∈ B(b, b4]; or else, (e3, e, e5, e6, e7) contradicts the

choice of P . But then e3, e4, e, e5 form a double cross.

So b = b1 and, hence, a 6= a2. Let e0 = a2b0 ∈ E(G) with b0 ∈ V (B(b1, b2)). By (6),

b0 ∈ B(b1, b7). But then e0, e, e3, e7 form a double cross, a contradiction. 2

(10) G has no parallel edges fromA[a1, a8] toB[b4, b2] and no parallel edges fromA[a1, a5]

to B[b6, b2].

For, such parallel edges would form a double cross with e4, e8 or e5, e6. 2

Let e′7 = a′7b
′
7 ∈ E(G) with a′7 ∈ A[a1, a7] and b′7 ∈ B[b7, b2], such that A[a1, a′7] ∪

B[b′7, b2] is minimal. Then
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(11) a′7 ∈ A[a1, a8), and G has no edge from B(b′7, b2] to A.

For, if a′7 /∈ A[a1, a8) then, since a∗1 ∈ A[a1, a8), b∗1 ∈ B(b8, b
′
7) by the choice of e′7; so

e8, e4, f1, e
′
7 form a double cross, a contradiction. Thus, by (6) and (10) and by the choice

of e′7, G has no edge from B(b′7, b2] to A. 2

Let e′ = a′b′ ∈ E(G) with a′ ∈ A[a1, a5] and b′ ∈ B[b1, t1), such that A[a1, a′] ∪

B[b1, b
′] is minimal. By (1) and (9) and by the choice of e′, we have

(12) e′, e8 do not form a cross, and G has no edge from B[b1, b
′) to A, and no edge from

B(b′, b8) to A[a1, a′) ∪ A(a8, a2].

(13) If (d) holds then there does not exist a 3-cut {b′′1, b′′2, a′′0} in G0 with b′′1 ∈ B[b1, b4] and

b′′2 ∈ B(b5, b2), which separates B[b′′1, b
′′
2] from {a0, b1, b2}.

For, suppose (d) holds and the cut {b′1, b′′2, a′′0} in (13) exists. Then b′1 ∈ B(b4, b5], b′2 ∈

B[b7, b2], and G has no edge from B(b4, b
′
1) to A− a4. Now, by the choice of {b′1, b′2} and

by Lemma 2.1.9, b′′1 = b1, b
′′
2 ∈ B(b5, b7), a′′0 = a0, b′2 = b2, and α(A,B) ≤ 1.

By the choice of {b′1, b′2} and by the planar structure of G0, G0−a0−B[b′7, b2) contains

a path B2 from b2 to b′′2. Let e′4 = a4b
′
4 ∈ E(G) with b′4 ∈ B[b4, b

′
1) such that B[b′4, b

′
1] is

minimal. Since b8 ∈ B[b1, t1), then b8 6= b′4.

We claim that if b′4 6= b4 then G has no edge from B[b1, b
′
4) to A(a5, a2] − a4. For,

suppose b′4 ∈ B(b4, b
′
1) and there exists e = ab ∈ E(G) from b ∈ V (B[b1, b

′
4)) to a ∈

V (A(a5, a2] − a4). Now b = b4 by (9) and (d). So a ∈ A(a5, a4) by the choice of P . Let

e0 = ab0 ∈ E(G) with b0 ∈ V (B[b1, b2]) \ {b4, b5}. Then b0 /∈ B[b1, b4) by (9). Moreover,

b0 /∈ B(b5, b2] to avoid the double cross e, e0, e′4, e5. So b0 ∈ B(b4, b5). If a6 ∈ A(a5, a4)

then e, e6, e′4, e5 form a double cross; if a6 ∈ A[a4, a2] then (e3, e4, e0, e6, e7) contradicts

the choice of P .

Hence, by the choice of e8, (1), (9), and (d), if b′4 = b4, then G has no edge from

B(b8, b
′
4) to A; if b′4 6= b4, then G has no edge from B(b8, b

′
4) to A− a4.
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Now e′ is not adjacent with e8. For, suppose v is a vertex incident with both e′ and

e8. Then, by (12), (d), and our previous analysis, {b1, v, b4, b′1, b2} (when b′4 = b4) or

{b1, v, a4, b′1, b2} (when b′4 6= b4) is a cut in G∗ separating a0 from A, a contradiction.

G0−B(b1, b
′]−B[b′1, b2] contains disjoint pathsB1, A0 from b1, a0 to b8, b′4, respectively.

For, suppose there exists a cut vertex v inG0−B(b1, b
′]−B[b′1, b2] separating {b1, a0} from

{b8, b′4}. Then v /∈ B[b′, b8]; otherwise, v and b′1 are incident with some finite face of G0,

and so {v, b′1, b′2} is a 3-cut in G0 separating B[v, b′2] from {a0, b1, b2}, contradicting the

choice of {b′1, b′2}. Moreover, v /∈ B[b′4, b
′
1]; for otherwise, there exists v1 ∈ V (B(b1, b

′])

such that v1, v are incident with some finite face of G0 and, by (12), (d), and the choice of

e′4, {v1, v, b′1} is a cut in G separating {a0, b1} from {a1, a2, b2}, a contradiction. Hence,

v /∈ V (B) and there exists v1 ∈ V (B(b1, b
′]) such that v1, v are incident with some finite

face of G0, and v, b′1 are incident with some finite face of G0. But then, by (12), {v1, v, b′1}

is still a cut in G separating {a0, b1} from {a1, a2, b2}, a contradiction.

Now, by Lemma 2.2.1, we have α(A,B) = 2 by the follwoing paths: the path B1∪e8∪

A[a8, a5]∪ e5 ∪B[b5, b
′′
2]∪B2 from b1 to b2, the path A[a4, a2]∪ e′4 ∪A0 from a2 to a0, the

path A[a1, a′] ∪ e′ ∪ B[b1, b
′] from a1 to b1, and the path A[a1, a′7] ∪ e′7 ∪ B[b′7, b2] from a1

to b2. This is a contradiction. 2

(14) (a) holds, b8 6= b4, and G has no edge from B[b1, b
′
1) to A(a8, a2].

First, (a) holds. For, otherwise, (d) holds by (8). So b′1 ∈ B(b4, b5] and b′2 ∈ B[b7, b2]. By

(1) and (5), b∗1 ∈ B(b5, b2). Hence, (f1, e6, e5, e4, e8) (when t1 = b4) or (f1, e6, e5, f4, e8)

(when t1 = a4) is a 5-edge configuration. However, by Lemma 2.1.9 and 2.5.3, G0 has a

cut contradicting (13) or the choice of {b′1, b′2}.

Thus, b′1 ∈ B[b1, b4]. Since b8 ∈ B[b1, b
′
1), b8 6= b4. By (9), G has no edge from

B[b1, b
′
1) to A(a5, a2]. Now, by the choice of e8, G has no edge from B[b1, b

′
1) to A(a8, a2].

2

(15) G has no edge from B(b8, b6) to A[a1, a8), and so (f1, e6, e5, e4, e8) is a 5-edge con-
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figuration with b∗1 ∈ B[b6, b2).

First, suppose there exists e = ab ∈ E(G) with b ∈ V (B(b8, b6)) and a ∈ V (A[a1, a8)).

Then a7 ∈ A(a1, a] to avoid the double cross e4, e7, e8, e. But now, since a3 ∈ A[a1, a7),

then b3 ∈ B(b1, b8] by (1), and so (e3, e8, e, e6, e7) contradicts the choice of P .

Thus, b∗1 ∈ B[b6, b2) and, hence, (f1, e6, e5, e4, e8) is a 5-edge configuration. 2

We choose f1 so that B[b6, b
∗
1] is minimal. Moreover, we let e′5 = a′5b

′
5 ∈ E(G) with

a′5 ∈ A(a∗1, a6) and b′5 ∈ B[b5, b6) so thatB[b′5, b6] is minimal. Now, since (f1, e6, e′5, e4, e8)

is a 5-edge configuration (by (15)), G0 has a cut S# := {b#1 , b
#
2 } or S# := {b#1 , b

#
2 , a

#
0 }

satisfying the conclusion of Lemma 2.5.3 (with respect to (f1, e6, e
′
5, e4, e8)), such that

b1, b
#
1 , b

#
2 , b2 occur on B in order.

By (7), we have

(16) Conclusions (ii) and (iii) of Lemma 2.5.3 do not hold for S# and (f1, e6, e
′
5, e4, e8).

Case 1. (i) of Lemma 2.5.3 does not hold for S# and (f1, e6, e
′
5, e4, e8).

Then b#1 ∈ B[b1, b8] and b#2 ∈ B[b′5, b6). By Lemma 2.1.9 and by the choice of {b′1, b′2},

we have b#1 = b1, b
′
2 = b2, a0 = a′0, and α(A,B) ≤ 1. We further choose {b#1 , b

#
2 } so that

B[b#2 , b2] is minimal.

By the choice of {b′1, b′2} and the planar structure of G0, G0− a0−B(b1, b
′
1) contains a

path B1 from b1 to b′1. Let e′6 = a′6b
′
6 ∈ E(G) with a′6 ∈ A(a5, a2] and b′6 ∈ B(b#2 , b6], such

that A[b′6, b2] is maximal.

Now G has no edge from B(b′5, b
′
6) to A. For, suppose G has an edge from B(b′5, b

′
6) to

some a ∈ V (A). Then a ∈ A[a1, a5] by the choice of e′6, and a /∈ A(a∗1, a6) by the choice

of e′5. So a ∈ A[a1, a∗1], contradicting (15).

Let A0 be the path from a0 to b′6 on the boundary of G0 − B[b1, b
#
2 ] without going

through b2. Since we are in Case 1, A0 ∩B(b6, b2] = ∅ by the choice of {b#1 , b
#
2 }.

Note that there exists e = ab ∈ E(G) with a ∈ V (A[a1, a8)) and b ∈ V (B[b′1, b2]) \

{b6}, such that e and e′7 are nonadjacent. For, otherwise, by (1) and (10), there exist u ∈
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{a′7, b′7} and a separation (G1, G2) in G, such that V (G1 ∩ G2) = {b1, b′1, a8, b6, u, a1},

A[a1, a8] ∪ B[b1, b
′
1] ⊆ G1, {a0, a1, a2, b1, b2} ⊆ V (G2), and (G1, b1, b

′
1, a8, b6, u, a1) is

planar. This contradicts Lemma 2.1.3.

Then there exists e′′7 = a′′7b
′′
7 ∈ E(G) with a′′7 ∈ V (A(a′7, a8)) and b′′7 ∈ V (B(b6, b

′
7)).

In fact, b /∈ B(b8, b6) by (15) and, hence, b ∈ B(b6, b2]. Thus, by (10) and the choice of e′7,

a ∈ A(a′7, a8) and b ∈ B(b6, b
′
7). So e gives the desired e′′7.

We further choose e′′7 with a′′7 ∈ A(a′7, a8) and b′′7 ∈ B(b6, b
′
7) so that A[a1, a′′7] is max-

imal. Then a′′7 ∈ A(a′, a8). For otherwise, a′′7 ∈ A[a1, a′]. By (10), (15), and the choice of

e′′7, {b1, b′1, a′, a8, b6} is a cut in G∗ separating A[a′, a8] ∪ B[b1, b
′
1] from {a0, a1, a2, b1, b2},

a contradiction.

Note that G0−A0−B[b′7, b2) contains a path B2 from b2 to b′′7. For otherwise, b′7 6= b2,

and there exist v1 ∈ V (A0) and v2 ∈ V (B[b′7, b2)), such that v1, v2 are incident with

some finite face in G0. If v1 = a0 then {v1, v2, b2} is a cut in G∗ separating NG(b2) from

{a0, a1, a2, b1, b2}, a contradiction; if v1 6= a then by (11), {b1, b#2 , v1, v2, b2} is a cut in G∗

separating a0 from {a1, a2}, a contradiction.

Hence, α(A,B) = 2 by Lemma 2.2.1 and the following paths: the path B1∪B[b′1, b5]∪

e5 ∪ A[a′′7, a5] ∪ e′′7 ∪ B2 from b1 to b2, the path A[a′6, a2] ∪ e′6 ∪ A0 from a2 to a0, the path

A[a1, a
′] ∪ e′ ∪B[b1, b

′] from a1 to b1, and the path A[a1, a′7] ∪ e′7 ∪B[b′7, b2] from a1 to b2.

This is a contradiction. 2

Case 2. (i) of Lemma 2.5.3 holds for S# := {b#1 , b
#
2 , a

#
0 } and (f1, e6, e

′
5, e4, e8).

Then b#1 ∈ B[b1, b8] and b#2 ∈ B[b6, b
∗
1]. Moreover, we choose {b#1 , b

#
2 } so that

B[b#1 , b
#
2 ] is maximal. By (7), G0 contains a path from a0 to B(b4, b6) and internally dis-

joint from B. Then by Lemma 2.1.8 and the choice of {b′1, b′2}, we have b#1 = b1, b
′
2 = b2,

and one of the following holds:

(N1) a0 = a′0 = a#0 , and so c(A,B) ≥ 2.

(N2) a#0 = a0, b
#
2 is a cut vertex of G0 separating b2 from {a0, b1}, a′0, a

#
0 , b

#
2 , b

′
2 are
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incident with some finite face of G0; so α(A,B) ≤ 1.

(N3) a′0 = a0, b′1 is a cut vertex ofG0 separating b1 from {a0, b2}, a′0, a
#
0 , b

#
1 , b

′
1 are incident

with some finite face of G0; so α(A,B) ≤ 1.

In particular, there exists a vertex a∗0 ∈ {a′0, a
#
0 }, such that {b′1, b

#
2 , a

∗
0} is a 3-cut in G0

separating B[b′1, b
#
2 ] from {a0, b1, b2}. Let e9 = a9b9 ∈ E(G) with b9 ∈ B(b′1, b

#
2 ) and

a9 ∈ A[a1, a2], such that A[a1, a9] is minimal. There also exists e′9 = a′9b
′
9 ∈ E(G) with

a′9 ∈ V (A(a9, a2]) and b′9 ∈ V (B[b1, b
′
1))∪V (B(b#2 , b2]); for otherwise, {a∗0, b′1, b

#
2 , a9, a2}

is a cut in G separating A[a9, a2] ∪B[b′1, b
#
2 ] from {a0, a1, a2, b1, b2}, a contradiction.

Note that a9 /∈ A[a1, a8); for otherwise, b9 /∈ B(b8, b6) by (15) and, hence, b9 ∈

B[b6, b
#
2 ), contradicting the choice of f1. Next, b′9 ∈ B(b#2 , b2]; as otherwise, a′9 /∈ A(a5, a2]

by (9) and, hence, a′9 ∈ A(a9, a5], contradicting the choice of e8. By (6), a′9 /∈ A(a5, a2];

so a′9 ∈ A(a9, a5]. Furthermore, b′9 ∈ B(b#2 , b7]; or else, (e3, e4, e5, e6, e′9) contradicts the

choice of P .

Now, since a′9 ∈ A(a9, a5], a9 6= a5; so a9 ∈ A[a8, a5). Moreover, b9 /∈ B(b5, b
#
2 ) to

avoid the double cross e′9, e5, e6, e9. By (5), b9 /∈ B(b4, b5]. So b9 ∈ B(b′1, b4].

We choose e′9 so that B[b#2 , b
′
9] is minimal. Since a′9 ∈ A(a9, a5], a5 6= a9. Then we

will derive a contradiction by showing that α(A,B) = 2.

Subcase 2.1. (N1) holds.

By the choice of {b′1, b′2} and the planar structure of G0, G0−B(b1, b
′
1)− a0 contains a

path B1 from b1 to b′1. Moreover, by the choice of {b#1 , b
#
2 } and by planar structure of G0,

G0 −B(b#2 , b2)− a0 contains a path B2 from b#2 to b2.

Note that there exist f8 = a∗8b
∗
8, f9 = a∗9b

∗
9 ∈ E(G) with a∗8, a

∗
9 ∈ V (A(a1, a8))

and b∗8, b
∗
9 ∈ V (B(b′1, b2]) such that a∗8 6= a∗9 and b∗8 6= b∗9. For otherwise, there exist

v ∈ V (G) and a separation (G1, G2) in G, such that V (G1 ∩ G2) = {b′1, a0, b1, a1, v, a8},

{a0, a1, a2, b1, b2} ⊆ V (G1), A(a1, a8) ∪ B(b1, b
′
1) ⊆ G2, and (G2, b

′
1, a0, b1, a1, v, a8) is

planar. This contradicts Lemma 2.1.3.
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Now b∗8, b
∗
9 ∈ B[b6, b2] by (15), and f8, f9 form a cross by (10). So a1, a∗8, a

∗
9, a2 occur

on A in order, and b1, b∗9, b
∗
8, b2 occur on B in order. We further choose f8, f9 with A[a∗8, a

∗
9]

maximal. By the existence of e′9 and by (10), b∗8 ∈ B(b#2 , b2].

There exists f5 = a∗5b
∗
5 with b∗5 ∈ V (B[b1, b

′
1)) and a∗5 ∈ V (A(a1, a

∗
9)). For otherwise,

all edges from B[b1, b
′
1) will end in {a1} ∪ V (A[a∗9, a8]). By the choice of f8, f9, G has no

edge from A(a∗9, a8) to B(b8, b2]. Hence, G has a separation (G1, G2), such that V (G1 ∩

G2) = {b′1, a0, b1, a1, a∗9, a8}, {a0, a1, a2, b1, b2} ⊆ V (G1), A(a∗9, a8)∪B(b1, b
′
1) ⊆ G2, and

(G2, b
′
1, a0, b1, a1, a

∗
9, a8) is planar. By Lemma 2.1.3, |V (G2−G1)| = 1. So V (G2−G1) =

{b8}, and G has edges from b8 to b′1, a0, b1, a1, a
∗
9, a8, respectively. But then, b1 has degree

1 in G, a contradiction.

By (7), there exists a path A0 from a0 to B(b4, b6) in G0 and internally disjoint from

B. Now, α(A,B) = 2 and c(A,B) = 0 by Lemma 2.2.1 and the following paths: the path

B1 ∪B[b′1, b9]∪ e9 ∪A[a∗9, a9]∪ f9 ∪B[b∗9, b
#
2 ]∪B2 from b1 to b2, the path B[b1, b

∗
5]∪ f5 ∪

A[a∗5, a
∗
8] ∪ f8 ∪ B[b∗8, b2] from b1 to b2, and the path A0 ∪ B(b4, b6) ∪ e5 ∪ A[a5, a2] from

a0 to a2. This is a contradiction.

Subcase 2.2. (N2) holds.

Then there exists e′′7 = a′′7b
′′
7 ∈ E(G) with a′′7 ∈ V (A[a1, a8)) and b′′7 ∈ V (B(b′1, b2])

such that a′′7 6= a′7 and b′′7 6= b′7. For otherwise, by (1), (10) and (15), G has a separation

(G1, G2), such that V (G1 ∩ G2) = {v, a8, b′1, a′0} with v ∈ {a′7, b′7}, a0, a1, b1 ∈ V (G2),

|V (G2 −G1)| ≥ 4, a2, b2 ∈ V (G1), and (G2, a0, b1, a1, v, a8, b
′
1, a
′
0) is planar. This contra-

dicts Lemma 2.1.3 (when v = a′7 = a1) or Lemma 2.1.4 (when v 6= a1).

By (10) and (15), a′′7 ∈ A(a′7, a8) and b′′7 ∈ B[b6, b
′
7). We further choose e′′7 so that

A[a1, a
′′
7] is maximal. Then a′′7 ∈ A(a′, a8). For otherwise, a′′7 ∈ A[a1, a

′] and, by the

choice of e′′7, G has no edge from A(a′, a8) to B(b′1, b2]. Hence, G has a separation

(G1, G2) such that V (G1 ∩ G2) = {a′, a8, b′1, a′0, a0, b1}, {a0, a1, a2, b1, b2} ⊆ V (G1), and

(G2, a
′, a8, b

′
1, a
′
0, a0, b1) is planar. This contradicts Lemma 2.1.3.

By the choice of {a#0 , b
#
1 , b

#
2 } and the planar structure of G0, G0 −B[b′7, b2) contains a
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path B2 from b2 to b#2 . Let A0 be the path from a0 to B(b4, b6) in G0, which is internally

disjoint from B. Moreover, we further choose A0 such that A0[a0, a
′
0] is on the boundary

of G0 without going through b1.

Then G0 − B(b1, b
′] − A0 contains a path B1 from b1 to b′1. For otherwise, b′1 6= b1

and there exist v1 ∈ V (A0[a0, a
′
0]) and v2 ∈ V (B(b1, b

′]), such that v1, v2 are incident

with some finite face of G0. Now, by (12), {b1, v1, v2, b2} (if v1 6= a0) is a cut in G∗

separating a0 from {a1, a2}, or {v1, v2, b1} (if v1 = a0) is a cut in G∗ separating NG(b1)

from {a0, a1, a2, b1, b2}. This is a contradiction.

Hence, α(A,B) = 2 by Lemma 2.2.1 and the following paths: the path B1∪B[b′1, b9]∪

e9∪A[a′′7, a9]∪e′′7∪B[b′′7, b
#
2 ]∪B2 from b1 to b2, the pathA0∪B(b4, b6)∪e5∪A[a5, a2] from

a0 to a2, the pathA[a1, a′]∪e′∪B[b1, b
′] from a1 to b1, and the pathA[a1, a′7]∪e′7∪B[b′7, b2].

This is a contradiction.

Subcase 2.3. (N3) holds.

Then there exists e′′7 = a′′7b
′′
7 ∈ E(G) with a′′7 ∈ V (A(a′, a8)) and b′′7 ∈ V (B(b′1, b2]),

such that a′′7 6= a′7 and b′′7 6= b′7. For otherwise, by (10) and (15), there exist v ∈ {a′7, b′7} and

a separation (G1, G2) inG, such that V (G1∩G2) = {v, a′, a8, b1, b′1},A[a′, a8]∪B[b1, b
′
1] ⊆

G1, and {a0, a1, a2, b1, b2} ⊆ V (G2), a contradiction.

By (10) and (15), a′′7 ∈ A(a′7, a8) and b′′7 ∈ B[b6, b
′
7). By the choice of {a′0, b′1, b′2} and

the planar structure of G0, G0 − B(b1, b
′] contains a path B1 from b1 to b′1. Let A0 be the

path from a0 toB(b4, b6) inG0, which is internally disjoint fromB, and we chooseA0 such

that A0[a0, a
#
0 ] is on the boundary of G0 without going through b2.

Then G0 − B[b′7, b2) − A0 contains a path B2 from b2 to b#2 . For otherwise, b′7 6= b2,

and there exist v1 ∈ V (A0[a0, a
#
0 ]) and v2 ∈ V (B[b′7, b2)), such that v1, v2 are incident

with some finite face of G0. Now, by (11), {b1, v1, v2, b2} (if v1 6= a0) is a cut in G∗

separating a0 from {a1, a2}, or {v1, v2, b2} (if v1 = a0) is a cut in G∗ separating NG(b2)

from {a0, a1, a2, b1, b2}. This is a contradiction.

Now, α(A,B) = 2 by Lemma 2.2.1 and the following paths: the path B1 ∪ B[b′1, b9] ∪
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e9∪A[a′′7, a9]∪e′′7∪B[b′′7, b
#
2 ]∪B2 from b1 to b2, the pathA0∪B(b4, b6)∪e5∪A[a5, a2] from

a0 to a2, the pathA[a1, a′]∪e′∪B[b1, b
′] from a1 to b1, and the pathA[a1, a′7]∪e′7∪B[b′7, b2].

This is a contradiction. 2
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CHAPTER 3

FUTURE WORK

3.1 A characterization of two-three linked graphs

In fact, Robertson and Seymour asked for a characterization of two-three linked graphs.

Here, we believe we have such a characterization, although it is quite complicated (even to

state) and its proof is longer.

We say that (G, a0, a1, a2, b1, b2) is reducible, if one of the following holds:

(R1) G has an edge e with one end in {a0, a1, a2} and one end in {b1, b2}.

(R2) There exists a separation (G1, G2) in G of order at most 1.

(R3) There exists a separation (G1, G2) in G of order 2, satisfying one of the following

properties:

(a) {a0, a1, a2, b1, b2} ⊆ V (G1) and V (G2 −G1) 6= ∅; or

(b) |V (G2 −G1) ∩ {a0, a1, a2, b1, b2}| = 1 and |E(G2)| ≥ 3; or

(c) for some i ∈ {0, 1, 2} and some j ∈ {1, 2}, V (G1 ∩ G2) = {c1, c2}, ai, bj ∈

V (G2 − G1), {a0, a1, a2, b1, b2} − {ai, bj} ⊆ V (G1), and (G2, ai, bj, c2, c1) is

planar; or

(d) for some j ∈ {1, 2} and some permutation π of {0, 1, 2}, V (G1 ∩ G2) =

{c1, c2}, aπ(0), aπ(1), bj ∈ V (G2 −G1), aπ(2), b3−j ∈ V (G1), and (G2, aπ(0), bj,

aπ(1), c2, c1) is planar; or

(e) for some i ∈ {0, 1, 2}, V (G1 ∩ G2) = {c1, c2}, ai, b1, b2 ∈ V (G2 − G1),

{a0, a1, a2, b1, b2} − {ai, b1, b2} ⊆ V (G1), and (G2, b1, ai, b2, c2, c1) is planar.
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(R4) There exists a separation (G1, G2) in G of order 3, satisfying one of the following

properties:

(a) {a0, a1, a2, b1, b2} ⊆ V (G1) and V (G2 −G1) 6= ∅; or

(b) V (G1∩G2) = {c1, c2, c3}, {d} = {a0, a1, a2, b1, b2}∩V (G2−G1), (G2, d, c3, c2,

c1) is planar, and |V (G2 −G1)| ≥ 2; or

(c) for some i ∈ {0, 1, 2} and some j ∈ {1, 2}, V (G1 ∩G2) = {c1, c2, c3}, ai, bj ∈

V (G2 − G1), {a0, a1, a2, b1, b2} − {ai, bj} ⊆ V (G1), (G2, ai, bj, c1, c2, c3) is

planar, and |V (G2 −G1)| ≥ 3; or

(d) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, c3}, aπ(0), aπ(1), bj ∈

V (G2 − G1), aπ(2), b3−j ∈ V (G1), and (G2, aπ(0), bj, aπ(1), c3, c2, c1) is planar;

or

(e) for some i ∈ {0, 1, 2}, V (G1 ∩ G2) = {c1, c2, c3}, b1, ai, b2 ∈ V (G2 − G1),

{a0, a1, a2} − {ai} ⊆ V (G1), and (G2, b1, ai, b2, c3, c2, c1) is planar.

(R5) There exists a separation (G1, G2) in G of order 4, satisfying one of the following

properties:

(a) let W be a graph with V (W ) = {w0, w1, w2, w3, w4}, E(W ) = {w0wi; i =

1, 2, 3, 4} ∪ {w1w2, w1w3}, then a0, a1, a2, b1, b2 ∈ V (G1), V (G2 − G1) 6= ∅,

and G2 is not a subgraph of W ; or

(b) V (G1 ∩ G2) = {c1, c2, c3, c4}, a0, a1, a2, b1, b2 ∈ V (G1), V (G2 − G1) = {c},

G has edges from c to c1, c2, c3, c4, G has edges from c1 to c2, c3, and for some

i ∈ {0, 1, 2} and some j ∈ {1, 2}, ai, bj ∈ V (G1 ∩G2); or

(c) for some i ∈ {0, 1, 2} and some j ∈ {1, 2}, V (G1 ∩ G2) = {c1, c2, ai, bj},

a0, a1, a2, b1, b2 ∈ V (G1), V (G2 −G1) = {c}, G has edges from c to c1, c2, ai,

bj , and G has an edge from c1 to c2; or
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(d) V (G1 ∩ G2) = {c1, c2, c3, c4}, a0, a1, a2, b1, b2 ∈ V (G1), V (G2 − G1) = {c},

G has edges from c to c1, c2, c3, c4, G has an edge from c1 to c2, and for some

permutation π of {0, 1, 2}, {aπ(0), aπ(1)} ⊆ V (G1 ∩ G2) and {aπ(0), aπ(1)} ∩

{c1, c2} 6= ∅; or

(e) for some i ∈ {0, 1, 2}, {ai} = V (G2−G1)∩{a0, a1, a2, b1, b2}, V (G1∩G2) =

{b1, b2, c1, c2}, (G2, ai, b1, c1, c2, b2) is planar, and |V (G2 −G1)| ≥ 2; or

(f) for some permutation π of {0, 1, 2} and some j ∈ {1, 2}, {bj} = V (G2−G1)∩

{a0, a1, a2, b1, b2}, V (G1∩G2) = {aπ(1), aπ(2), c1, c2}, (G2, bj, aπ(1), c1, c2, aπ(2))

is planar, and |V (G2 −G1)| ≥ 2; or

(g) for some permutation π of {0, 1, 2} and some j ∈ {1, 2}, {aπ(0)} = V (G2 −

G1)∩{a0, a1, a2, b1, b2}, V (G1∩G2) = {bj, aπ(1), c1, c2}, (G2, aπ(0), bj, c1, aπ(1),

c2) is planar, and |V (G2 −G1)| ≥ 2; or

(h) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, c3, aπ(0)}, aπ(1), bj ∈

V (G2 − G1), aπ(2), b3−j ∈ V (G1), (G2, c1, c2, aπ(0), c3, aπ(1), bj) is planar, and

|V (G2 −G1)| ≥ 3; or

(i) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, c3, aπ(0)}, aπ(1), bj ∈

V (G2 − G1), aπ(2), b3−j ∈ V (G1), (G2, aπ(0), bj, aπ(1), c3, c2, c1) is planar, and

|V (G2 −G1)| ≥ 3; or

(j) for some i ∈ {0, 1, 2} and some j ∈ {1, 2}, V (G1 ∩ G2) = {c1, c2, c3, bj},

ai, b3−j ∈ V (G2 − G1), {a1, a2, a3} − ai ⊆ V (G1), (G2, b3−j, ai, bj, c3, c2, c1)

is planar, and |V (G2 −G1)| ≥ 3; or

(k) for some permutation π of {0, 1, 2}, V (G1 ∩G2) = {c1, c2, c3, c4}, aπ(0), aπ(1),

bj ∈ V (G2 − G1), aπ(2), b3−j ∈ V (G1), (G2, aπ(0), bj, aπ(1), c4, c3, c2, c1) is

planar, and |V (G2 −G1)| ≥ 4; or

(l) V (G1 ∩ G2) = {c1, c2, c3, c4}, ai, b1, b2 ∈ V (G2 − G1), {a1, a2, a3} − ai ⊆

V (G1), (G2, b1, ai, b2, c4, c3, c2, c1) is planar, and |V (G2 −G1)| ≥ 4; or

119



(m) for some permutation π of {0, 1, 2}, aπ(0), aπ(1), b1, b2 ∈ V (G1), {aπ(0), aπ(1), b1,

b2} ∩ V (G2) 6= ∅, aπ(2) ∈ V (G2) − V (G1), and G1 has a disk representation

in which aπ(0), b1, aπ(1), b2 occur on the boundary of the disk in the order listed

and the vertices in V (G1) ∩ V (G2) are incident with a common finite face.

(R6) There exists a separation (G1, G2) in G of order 5, satisfying one of the following

properties:

(a) V (G1 ∩G2) = {c1, c2, c3, c4, c5}, {a0, a1, a2, b1, b2} ⊆ V (G1), E(G[{c1, c2, c3,

c4, c5}]) ⊆ E(G1), (G2, c1, c2, c3, c4, c5) is planar, and |V (G2 −G1)| ≥ 2; or

(b) V (G1 ∩ G2) = {c1, c2, c3, c4, c5}, {a0, a1, a2, b1, b2} ⊆ V (G1), and for some

permutation π of {0, 1, 2},G1 has a disk representation with the vertices aπ(0), b1,

aπ(1), b2, aπ(2), c1, c2, c3, c4, c5 drawn on the boundary of the disk in the order

listed; or

(c) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, b1, b2, aπ(1)}, aπ(2) ∈

V (G1 −G2), aπ(0) ∈ V (G2 −G1), (G2, b1, c1, aπ(1), c2, b2, aπ(0)) is planar, and

|V (G2 −G1)| ≥ 4; or

(d) for some j ∈ {1, 2} and some permutation π of {0, 1, 2}, V (G1 ∩ G2) =

{c1, c2, c3, aπ(1), bj}, aπ(2) ∈ V (G1−G2), aπ(0), b3−j ∈ V (G2−G1), (G2, aπ(1),

c1, c2, c3, bj, aπ(0), b3−j) is planar, and |V (G2 −G1)| ≥ 3.

Actually, we can prove that if (G, a0, a1, a2, b1, b2) is reducible, then we could either

easily determine whether or not (G, a0, a1, a2, b1, b2) is feasible, or reduce (G, a0, a1, a2, b1,

b2) to (G′, a′0, a
′
1, a
′
2, b
′
1, b
′
2) with (|V (G)|, |E(G)|) > (|V (G′)|, |E(G′)|) in lexicographic

order, such that (G, a0, a1, a2, b1, b2) is feasible iff (G′, a′0, a
′
1, a
′
2, b
′
1, b
′
2) is feasible.

With all these, we can state our main result.

Theorem 3.1.1 Let (G, a0, a1, a2, b1, b2) be a rooted graph. Then one of the following

conclusions holds:
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(C1) There exists a cluster {X1, X2} in G such that {a0, a1, a2} ⊆ X1 and {b1, b2} ⊆ X2.

(C2) (G, a0, a1, a2, b1, b2) is reducible.

(C3) For some i ∈ {0, 1, 2},G−ai has no cluster {X1, X2} such that {a0, a1, a2}−{ai} ⊆

X1 and {b1, b2} ⊆ X2.

(C4) There exist a permutation π of {0, 1, 2}, a graph H and vertices s, t, s′, t′ ∈ V (H)

such thatG is obtained fromH by identifying s with s′ and t with t′, respectively, and

H has a disk representation with the vertices aπ(0), b1, aπ(1), b2, aπ(2), s, t, s′, t′ drawn

on the boundary of the disk in the order listed.

(C5) G has a separation (G1, G2) inG of order 4, such that V (G1∩G2) = {c1, c2, c3, c4},

a0, a1, a2, b1, b2 ∈ V (G1), and there exist a permutation π of {0, 1, 2}, a graph H

and vertices c′2, c
′′
2 ∈ V (H), where G1 is obtained from H by identifying c′2 with c′′2,

(H, aπ(1), b1, aπ(0), b2, aπ(2), c
′′
2, c4, c3, c

′
2, c1) is planar, and c2 ∈ V (G1) is the vertex

obtained by identifying c′2 with c′′2.

3.2 Clarifying (C3)

Note that if (C4) or (C5) holds, then (C1) will not hold. However, if (C3) holds,

(G, a0, a1, a2, b1, b2) may be feasible or may be infeasible. Although by using 2-linkage

algorithms, it is easy to judge whether (G, a0, a1, a2, b1, b2) admits (C3), we want to give a

more precise characterization of feasible rooted graphs when (C3) holds.

We will still assume G is not reducible. So by applying Seymour’s version of 2-

linkage theorem in [37], when (C3) holds, there exists i ∈ {0, 1, 2}, such that (G −

ai, ai+1, b1, ai−1, b2) is planar. So G actually is an apex graph.
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3.3 A practical algorithm

Another possible future work is to develop a practical polynomial time algorithm for

the two-three linkage problem.

Note that the existence of such an algorithm with polynomial running time is guaranteed

by the work of Robertson and Seymour in [40]: Given a graph G and k ≥ 1 pairs of

vertices {si, ti}, i = 1, · · · , k of G with k fixed, there exists a polynomial time algorithm

for deciding if there are k mutually internally vertex-disjoint paths in G joining si and ti,

i = 1, · · · , k. In fact, to resolve the two-three linkage problem, we just need to check:

(i) whether for some i ∈ {0, 1, 2},G contains 3 mutually internally vertex-disjoint paths

joining the pairs {b1, b2}, {ai−1, ai} and {ai, ai+1}; or

(ii) whether for some vertex v ∈ V (G) − {a0, a1, a2, b1, b2}, G contains 4 mutually

vertex-disjoint paths to join the pairs {b1, b2}, {v, a0}, {v, a1} and {v, a2}.

Clearly, the answer is yes iff (G, a0, a1, a2, b1, b2) is feasible. The disjoint paths algo-

rithm of Robertson and Seymour has running time O(|V (G)|3). So the above algorithm

runs O(|V (G)|4) time.

However, the disjoint paths algorithm of Robertson and Seymour is not practical, since

it involves an enormous constant. Hence, it is meaningful to come up with a practical

algorithm for the two-three linkage problem. In fact, to the best of our knowledge, Tholey

[41] found the O(|E(G)| + |V (G)|α(|V (G)|, |V (G)|))-time algorithm, the currently best

known nearly linear time bound, of 2-linkage problem, where α denotes the inverse of

the Ackermann function. By repeatedly using 2-linkage algorithm, we expect to obtain a

O(|V (G)|3)-time two-three linkage algorithm.

3.4 A related conjecture

A graph G is apex if G − v is planar for some vertex v ∈ V (G). Jørgensen [34]

conjectured that every 6-connected graph with no K6-minor is apex.
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In the two-three linkage problem, we only consider finding disjoint connected sub-

graphs G1, G2 such that {a0, a1, a2} ⊆ V (G1) and {b1, b2} ⊆ V (G2). However, it is also

natural to ask whether we can find such disjoint connected subgraphs G1, G2 satisfying

additional properties. For example, we have the following conjecture.

Conjecture 3.4.1 Any 6-connected non-apex graph G with distinct vertices a0, a1, a2, b1,

b2 ∈ V (G) contains disjoint connected subgraphs G1, G2 such that {a0, a1, a2} ⊆ V (G1),

{b1, b2} ⊆ V (G2), and the following properties hold:

(P1) there exists a vertex v ∈ V (G1) − {a0, a1, a2} such that G1 has three internally

disjoint paths from v to a0, a1, a2, respectively;

(P2) for each vertex v ∈ G1, {a0, a1, a2}−{v} are contained in one component ofG1−v.

One observation is that if (G−a0, a1, b1, a2, b2) is planar, then there do not exist disjoint

connected subgraphs G1, G2 in G such that {a0, a1, a2} ⊆ V (G1), {b1, b2} ⊆ V (G2), and

G1 satisfies (P1) and (P2). Note that such G is apex, and G can be 6-connected.

If Conjecture 3.4.1 is true, we may prove that given a 6-connected graphG and triangles

aib1b2ai for i = 0, 1, 2, G − b1b2 − {aibj : i = 0, 1, 2 and j = 1, 2} contains disjoint

connected subgraphs G1, G2 such that {a0, a1, a2} ⊆ V (G1), {b1, b2} ⊆ V (G2), and G1

satisfies (P1) and (P2). Such properties could be useful in resolving Jørgensen’s conjecture

for 6-connected graph in which some edge is contained in three triangles.
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