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indicates expression of the mKATE2 internal standard and 
green indicates expression of eGFP. Scale bars: 20 µM 
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heme for 5 min, 15 min, 30 min, 1 h, 4 h, or 24 h. B. Mean 
eGFP:mKATE2 ratio plotted over time. C. Time course of 
Akt phosphorylation in response to 25 µM heme or control 
conditions, quantified via Luminex analysis. (error bars, 
mean ± SEM; *p<0.05,**p<.0.01, Student’s t-test) D. As in 
C for mTOR phosphorylation. 
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(error bars, mean ± SEM; **p<.0.01, Student’s t-test) 
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Figure 3-11 Illustration of the PI3K/Akt/mTOR signaling network, 
depicting nodes involved in mediating 
immunomodulatory and phagocytic functions. This 
figure was modified from its original publication in the 
Journal of Biological Chemistry. Sankar et al. Heme and 
hemoglobin suppress amyloid β–mediated inflammatory 
activation of mouse astrocytes. J. Biol. Chem. 2018; 293: 
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Each column is z-scored and each row represents an 
individual sample. Each individual animal is identified by 
numbers 8-10. B. PLSDA identified a latent variable (LV1), 
which consisted of a weighted combination of cytokines 
which best separated groups. C. Scoring each sample on 
LV1 revealed that heme injection upregulated this profile 
compared to vehicle injection. 
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Aβ1-42 injection site 4 days after injection. Arrow 
indicates Aβ1-42 aggregate. Scale bar, 50 μM. 

94 

Figure 4-6 Activated astrocytes expressing GFAP are recruited to 
Aβ1-42 injection site 7 days after injection. Scale bar, 20 
μM 

95 

Figure 4-7 Iba-1 positive microglia are present in the vicinity of the 
Aβ1-42 injection site 7-days after injection but do not 
engulf Aβ1-42. Scale bar, 50 μM. 

96 

Figure 4-8 Representative images of Aβ1-42 injections 4 days after 
injection into the cortex. Aβ1-42 burden is higher when 
injected in combination with heme (right) compared to on its 
own (left). Scale bar, 50 μM. 

98 

Figure 4-9 Representative images of Aβ1-42 injections 7 days after 
injection into the cortex. Aβ1-42 burden is higher when 
injected in combination with heme (right) compared to on its 
own (left). Scale bar, 50 μM. 

98 

Figure 4-10 Intracranial injection of Aβ1-42 with heme into WT mice 
suppresses Aβ1-42 clearance. A. Quantification of Aβ 4 
days after injection into the cortex. Aβ burden trends 
towards increased when Aβ1-42 is injected in combination 
with heme. B. As in A for 7 days after injection (n=3; mean 
± SEM, *p<0.05; Student’s t-test). 

99 

Figure 4-11 Total heme in cortex and liver is reduced after 14-day 
daily SA injection. A. Total heme in the cortex of WT mice, 
as quantified by a porphyrin fluorescence assay, is 
significantly reduced after 14-day daily IP injection of 40 
mg/kg SA (mean ± SEM, Student’s t-test). B. As in A for 
liver. Porphyrin fluorescence assay courtesy of Dr. Rebecca 
Donegan. 

100 
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Luminex analysis. Each column is z-scored and each row 
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****p<.0.0001, Student’s t-test). 
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(error bars, mean ± SEM; **p<.0.0001, Student’s t-test). 
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SUMMARY 

The prevalence of Alzheimer’s disease (AD) is rapidly increasing, yet there are 

currently no effective therapies to halt or slow disease progression. In light of the vast 

failures of therapies targeting traditional AD hallmarks, such as amyloid beta (Aβ), it is 

becoming increasingly recognized that a combination of many complex pathological 

events, including neuroinflammation, contributes to AD. Thus, it is necessary to pursue 

novel therapeutic strategies to address multiple pathological aspects of AD.  

Recent findings of vascular permeability early in AD implicate blood-derived factors 

in AD pathology. Indeed, hemoglobin (Hb) and its co-factor, heme, are upregulated in AD 

brain tissue and physically bind Aβ, suggesting a role for these molecules in AD 

pathogenesis. However, to date there is little understanding of how these factors affect 

disease progression. Although less appreciated than their roles in oxygen transport, heme 

and Hb have potent immunomodulatory signaling functions, but these functions have not 

been established in the context of the brain immune cells, astrocytes and microglia. Given 

the importance of neuroinflammation to AD pathology, the objective of this work is to 

elucidate the contribution of heme to neuroinflammatory signaling in AD environments.  

The present work accomplishes this by using in vitro and in vivo models to determine 

the effects of heme, Hb, and their interactions with Aβ on glial immune function and to 

interrogate heme-mediated intracellular signaling mechanisms. Our findings suggest that 

heme and Hb suppress a myriad of critical glial immune functions, including cytokine 

expression, expression of scavenger receptors, and clearance of Aβ. Furthermore, we found 

that heme exerts these effects through modulation of the PI3K/AKT/mTOR signaling 
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pathway. This work is the first to identify mechanisms through which heme contributes to 

glial dysfunction in AD environments and suggests that heme could serve as a novel 

therapeutic target for AD. 
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CHAPTER 1. INTRODUCTION 

1.1 Current Alzheimer’s disease landscape 

Alzheimer’s disease (AD) is a chronic, neurodegenerative disease which affects 

more than 40 million people worldwide and is the most common cause of dementia [1, 2]. 

With an aging population, the prevalence of AD is rapidly increasing, with AD currently 

affecting twice as many people as in 1990 [3]. By 2050, the prevalence of AD is projected 

to more than triple to affect 130 million people globally [1]. Symptoms of AD are 

debilitating, including gradual loss of memory, language, and cognitive abilities, which 

affect a patient’s ability to perform everyday tasks [2]. In the advanced stages of AD, 

patients lose the ability to carry out even basic bodily functions such as walking and 

swallowing, and ultimately the disease is fatal [2]. Although decades of research have gone 

into uncovering the mechanisms underlying AD, there is still no effective therapy to halt 

or slow disease progression. In fact, in the United States, AD is the only leading cause of 

death that cannot be prevented, cured, or slowed, and deaths due to AD have increased by 

89% since the year 2000 [2]. Furthermore, the worldwide cost of AD is over $800 billion, 

and is expected to surpass $1 trillion in the coming years [1]. Thus, AD presents a 

formidable challenge for healthcare and society globally, urging the rapid development of 

effective therapies.  

While numerous efforts have been made towards therapeutic intervention in AD, 

there are several major roadblocks inhibiting their success. AD is unlike many other 

modern diseases in that the mechanisms defining it are incredibly multifaceted and remain 

poorly understood. While familial AD is well-characterized by mutations in the amyloid 
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precursor protein (APP), presenilin1, and presenilin2 genes, more common is sporadic AD, 

which still lacks a clear etiology and is likely caused by a combination of genetic and 

environmental factors [4]. AD is comorbid with a diverse array of other medical conditions 

spanning from psychiatric disorders, (ie. chronic depression [5]), acute traumatic brain 

injuries [6], vascular disorders (ie. hypertension [7], ischemia [8], and diabetes mellitus 

[9]), osteoporosis [10], and glaucoma [11], again suggesting complexity in the molecular 

factors contributing to its onset and progression. Further complicating therapeutic 

development is delivery across the blood brain barrier (BBB), which typically protects the 

brain from circulating molecules and limits cross talk between the brain and the periphery 

[12].  Added to these complexities, AD molecular pathology can begin years, sometimes 

decades before symptoms are apparent, making early intervention and optimal drug 

evaluation difficult [13].  Taken together, it is clear that there are still major challenges to 

overcome in the face of treating AD, but further unraveling the molecular underpinnings 

associated with the disease is necessary to inform therapeutic development.      

1.2 Pathological hallmarks of Alzheimer’s disease 

1.2.1 Amyloid beta 

For the past twenty years, the amyloid cascade hypothesis has dominated AD 

research and therapeutic development [14]. This hypothesis postulates that the primary 

causative factor driving AD pathogenesis is the accumulation of amyloid beta (Aβ) protein 

deposits in the brain parenchyma and on cerebral vasculature [14-16]. Specifically, the Aβ 

isoform Aβ1-42, which is formed by sequential processing of amyloid precursor protein 

(APP) by β- and γ-secretases aggregates extracellularly to form oligomers and plaques [15]. 
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This triggers a cascade which is hypothesized to involve downstream activation of brain 

immune cells, dysregulation of neuronal homeostasis, and formation of 

hyperphosphorylated tau tangles, ultimately leading to neuronal death and dementia [14] 

(Figure 1-1).  

 

Figure 1-1. The amyloid cascade hypothesis. The amyloid cascade hypothesis suggests 
that Aβ1-42 aggregates in the brain and ultimately triggers the formation of tau tangles and 
neuronal dysfunction and death in AD. This figure was originally published open access in 
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EMBO Molecular Medicine and is permitted to be reproduced in any medium [17]. Selkoe 
and Hardy. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 
2016; 8:595-608. © 2016 Selkoe and Hardy 

Indeed, the vast contributions of Aβ pathology on neurodegeneration in AD have 

been well established. In vitro studies have found that Aβ can trigger neuronal apoptotic 

cell death [18] and alter neuronal calcium homeostasis, rendering cells susceptible to 

calcium-dependent neurotoxicity [19]. Aβ also induces mitochondrial dysfunction and 

degeneration in neurons, resulting in decreased adenosine triphosphate production and 

impairment of neuronal energetics [20, 21]. Furthermore, studies of both humans with AD 

and mouse models transgenic for human APP have found that Aβ drastically disrupts 

neuronal networks and synapses, which ultimately leads to cognitive impairment [22].  

Despite the clear involvement of Aβ in neurodegeneration in AD, targeting Aβ 

processing and clearance as a therapeutic strategy has proven to be troublesome. In the last 

decade, dozens of once-promising drugs targeting Aβ processing or clearance have proven 

to be futile in clinical trials [23-25].  In 2012, Pfizer and Johnson and Johnson both ran 

phase III clinical trials for the anti-Aβ antibody, bapineuzumab, which specifically targeted 

Aβ oligomers and plaques [25]. Both trials failed due to lack of efficacy in improving 

cognition, despite bapineuzumab having successfully reduced amyloid burden, total tau, 

and phosphorylated tau in cerebrospinal fluid [26-28].  Soon after, Eli Lilly launched a 

phase III clinical trial for solanezumab, another anti-Aβ monoclonal antibody, this time 

targeting monomeric Aβ with hopes that intervening earlier in AD progression may be the 

answer [25].  However, solanezumab again failed to improve cognition in patients with 

mild AD [23]. More recently, in 2017, Merck disbanded its phase III clinical trial for 

verubecestat, a β-secretase 1 (BACE1) inhibitor, after concluding that the drug may 
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actually worsen cognitive function [29]. Earlier this year, Biogen and Eisai ended a pair of 

parallel phase III trials for aducanumab, another monoclonal antibody targeting Aβ, which 

had proven to be successful in clearing Aβ in AD mouse models and an earlier human 

clinical trial [30, 31].  In fact, AD therapeutic development has been so devastating that it 

is has ultimately led to the closure of several prominent neuro-pharmaceutical research and 

development programs, including those of Pfizer and Eli Lilly [32, 33].  

In light of the repeated failures of such clinical trials, it is becoming increasingly 

recognized that AD is multifaceted, and that Aβ is only one of many complex pathological 

events that contributes to AD pathogenesis. Along these lines, recent studies of postmortem 

human brain tissue have identified “resilient” individuals with high Aβ loads who did not 

experience neuronal death or dementia, revealing that Aβ burden on its own may not be 

sufficient for driving neurodegeneration [34]. Furthermore, similar studies have shown that 

there are distinct, molecular signatures associated with patients demonstrating this 

“resilience” to AD, suggesting that a combination of Aβ and other molecular factors may 

be necessary for neurodegeneration to occur [35].  

1.2.2 Neuroinflammation 

As per the traditional amyloid cascade hypothesis (Figure 1-1), 

neuroinflammation, characterized by the activation of microglia and astrocytes, is 

hypothesized to be a mere consequence of Aβ1-42 extracellular deposition. However, it is 

becoming increasingly recognized that neuroinflammation may play a causal role in AD 

pathogenesis. Whether glial activation is protective or deleterious remains a matter of 
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debate, and it is likely that in reality, glial immune activity carries a range of positive to 

negative implications to AD pathology.  

 

Figure 1-2. Alzheimer’s disease pathology is multifaceted. Alzheimer’s disease is 
complex, involving the combination of many pathologies. This includes the formation of 
extracellular Aβ plaques, intra-neuronal hyper-phosphorylated tau, immune activity of 
microglia and astrocytes, and dysregulation of the BBB. This figure was originally 
published in Integrative Biology and was reproduced with permission from Oxford 
University Press [36]. Wood et al. Systems biology of neurodegenerative diseases. Integr. 
Biol. 2015; 7: 758-775. © Oxford University Press 

1.2.2.1 Cytokines and chemokines 

Expression of a wide range of cytokines and chemokines by both astrocytes and 

microglia is one of the key neuroinflammatory phenotypes observed in AD environments. 
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In Aβ transgenic mouse models, pro-inflammatory cytokine expression (ie. TNF-α, IL-6, 

IL-12p40, IL-1β, IL-1α and GM-CSF) is upregulated and correlates with Aβ load [37]. The 

chemokine interferon-inducible protein-10 (IP-10) is upregulated and co-localizes with Aβ 

plaques in Tg2576 mice [38]. Such findings are mirrored in vitro, with Aβ upregulating a 

vast array of pro-inflammatory cytokines in both astrocyte and microglial cultures [39, 40]. 

In vitro, Aβ also upregulates microglia and astrocyte expression of chemokines including 

C-C motif ligand (CCL) 2, CCL3, C-X-C motif ligand (CXCL) 8, and MCP-1 [41-43]. 

Conversely, Aβ also induces the expression of anti-inflammatory cytokines, including 

transforming growth factor (TGF)-β and IL-10 [44]. Ultimately, AD pathological severity 

correlates with upregulation of profiles of cytokines including both pro- and anti- 

inflammatory factors [45].  

Further work has shown that cytokine upregulation is not exclusively a 

consequence of Aβ deposition. Studies of patients with only mild cognitive impairment 

(MCI) have found upregulation of TNF-α and TGF-β protein in cerebrospinal fluid (CSF) 

when no significant changes in CSF Aβ levels were yet detectable [46]. Similar studies of 

cytokine messenger ribonucleic acid (mRNA) expression from postmortem human brain 

tissue found upregulation of IL-1, IL-2, IL-6, IL-8, Macrophage-Colony Stimulating Factor 

(M-CSF), TNF-α, and TGF-β upregulated prior to clinical manifestation of AD [47]. 

Moreover, analysis of cultured human peripheral blood mononuclear cells found that cells 

derived from MCI patients more robustly expressed a panel of cytokines than those derived 

from patients with AD [48]. Together, these data suggest that neuroinflammation could be 

an early pathological event rather than merely consequential, and that neuroinflammation 

can actually modulate the transition from MCI to overt AD and dementia.  
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Upregulation of pro- and anti- inflammatory cytokines and chemokines has 

multifaceted consequences to AD pathogenesis. For example, the pro-inflammatory TNF-

α has been shown to have a myriad of neurodegenerative effects, suppressing long-term 

potentiation (LTP) of synaptic transmission [49] and correlating with increased risk of 

progression from MCI to dementia [46]. Conversely, overexpression of TNF- α has been 

shown to decrease Aβ plaque burden, suggesting an ameliorative role in AD [50]. 

Similarly, IL-10, a traditionally anti-inflammatory cytokine has been shown to enhance 

neurogenesis and improve spatial learning in the APP/PS1 Aβ mouse model [51], while 

simultaneously worsening Aβ plaque burden and cognitive function in the TgCRND8 Aβ 

mouse model [52]. Numerous other factors such as VEGF [45, 53] and IL-4 [54, 55] have 

also been shown to impart seemingly contradictory effects in the context of AD. Taken 

together, it is clear that upregulation of cytokines and chemokines is an important aspect 

of neuroinflammation in AD, and likely contributes both positively and negatively to 

disease progression.  

1.2.2.2 Scavenger activity 

Uptake and clearance of pathogens through scavenger activity is an important 

function of astrocytes and microglia, which becomes particularly relevant in an AD 

environment. Notably, activated glial cells are important mediators in the clearance of Aβ 

plaques. Reactive astrocytes are known to migrate towards and co-localize with Aβ plaques 

in vitro and in vivo [56, 57] and contribute to Aβ clearance by internalizing and degrading 

it [58, 59]. This suggests that scavenger activity concomitant with astrocyte activation can 

improve AD pathology. However, it is debated as to whether these functions are net 

beneficial and whether they translate to human AD pathology. Analysis of postmortem 
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human AD brain tissue has revealed that although astrocytes uptake Aβ, they can 

selectively lyse and deposit their Aβ loads, resulting in astrocyte-derived Aβ plaques and 

worsening amyloid pathology [60]. Furthermore, astrocytic Aβ clearance may ultimately 

contribute to “fatigue,” meaning that over time, important physiological astrocyte functions 

may be lost in exchange for Aβ clearance functions [61]. Like so, a subset of reactive 

astrocytes, called A1 astrocytes, which are prevalent in AD, have been reported to lose 

phagocytic function, particularly in their abilities to uptake synaptosomes and myelin 

debris [62]. 

Similar dichotomous findings are paralleled in microglia. In vivo, activated 

microglia are recruited to Aβ plaques and eliminate Aβ deposits through phagocytosis [63]. 

However, as animals age and the disease progresses, microglia can also become fatigued, 

with expression of genes involved in Aβ clearance becoming downregulated, resulting in 

increased Aβ accumulation [64]. Furthermore, important physiological microglial 

functions such as phagocytic capacity and directed process motility are impaired in AD 

mice and loss of function correlates with Aβ burden [65]. In summary, reactive glia in AD 

environments experience changes to scavenger capacity, which contribute to most 

neuroprotection and neurodegeneration. 

1.2.3 Blood brain barrier dysregulation 

Although previously unappreciated, BBB dysregulation is emerging as an early 

pathological event in AD. The BBB, which refers to the blood vessels that vascularize the 

brain, typically functions to regulate the transport of cells, molecules, and ions between the 

blood and the brain, selectively permitting transport of factors that are required for 
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maintaining brain homeostasis [66, 67]. BBB dysfunction can contribute to unregulated 

extravasation of cells and molecules into the brain, resulting in a myriad of pathological 

consequences (Figure 1-3).  

 

Figure 1-3. The blood-brain barrier is dysregulated in Alzheimer’s disease. Blood-
brain barrier dysregulation in Alzheimer’s disease results in extravasation of blood-derived 
factors into the parenchyma and initiation of an inflammatory response. This figure was 
originally published in Nature Reviews Neurology and was reproduced with permission 
from Springer Nature [68]. Sweeney et al. Blood-brain barrier breakdown in Alzheimer 
disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018; 14:133-150. © 
Springer Nature 

Studies of human AD patients have identified BBB breakdown to be an early 

feature of AD. Dynamic contrast-enhanced magnetic resonance imaging studies have 

found altered blood–brain–CSF compartmental kinetics and increased BBB leakage in 

patients with even early AD [69, 70]. BBB leakage rates also correlated with cognitive 

decline [70]. Furthermore, temporal studies of CSF biomarkers in humans with AD 

identified biomarkers associated with vascular dysfunction to manifest early in disease, 

prior to cognitive impairment and amyloid deposition [71]. These data suggest that BBB 

dysfunction can precede amyloid deposition, potentially contributing as a causal aspect of 
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AD. Cerebral amyloid angiopathy, or deposition of Aβ on the walls of brain vasculature, 

has also been reported to contribute to BBB leakage, suggesting that leakage may start 

early in AD but worsen with disease progression [72] 

1.3 Relevance of heme and hemoglobin to Alzheimer’s disease 

1.3.1 Heme and hemoglobin are implicated in AD  

The aforementioned findings of vascular permeability in AD have implicated 

blood-derived cells and proteins as important contributors to disease progression. Indeed, 

the blood protein hemoglobin (Hb) and its cofactor heme, are gaining attention for their 

implications in AD. Hb is predominantly known for its role as the oxygen-carrying protein 

abundant in red blood cells [73]. One Hb molecule is composed of four subunits: two alpha 

subunits and two beta subunits, each of which contains one heme group [73].  Each heme 

group contains one iron atom which can bind one oxygen molecule [74]. In instances of 

vascular permeability, such as in AD, red blood cells can extravasate through the disrupted 

BBB and lyse, resulting in accumulation of Hb and Hb-derived free heme in the brain [75]. 

Indeed, increased brain tissue levels of both Hb and heme are characteristic of AD, 

in both human disease and AD mouse models [76-79]. Analysis of postmortem human AD 

tissue has shown increased heme in the temporal lobe [78] and increased Hb mRNA and 

protein in the inferior temporal gyrus and parietal gray and white matter [79], respectively. 

Furthermore, Hb-derived peptides have been shown to be elevated and preferentially 

localized to blood vessels in the cerebellum of AD patients [80]. Similar findings have been 

observed in the APP/PS1 AD mouse model, which also presents vascular permeability 
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[81]. Specifically, APP/PS1 mice have elevated levels of Hb protein in the primary motor 

cortex, entorhinal cortex, and hippocampus [76]. 

In addition to being elevated in AD, heme and Hb are highly relevant to AD due to 

their well-established physical interaction with Aβ. In the brains of humans with AD, heme 

has been found to physically bind Aβ [78]. In APP/PS1 mice, Hb binds with Aβ in a heme-

dependent manner [76]. In vitro studies also demonstrate heme and Hb binding with Aβ, 

and in the case of heme, this binding results in an Aβ-heme complex with unique 

peroxidase activity [76, 82, 83]. This peroxidase activity can result in oxidation of 

neurotransmitters, thus contributing to neurodegeneration in AD [82, 84]. 

While vascular permeability is likely a strong contributor to elevated levels of heme 

and Hb in AD, mounting evidence suggests that other pathological events may further 

contribute to this environment. Although red blood cells are the predominant cell type for 

Hb localization, Hb is also expressed in non-erythroid cells [85]. Of particular relevance to 

AD are findings of Hb expression by rodent and human neuronal cells [85-88] and 

astrocytes [85, 87]. Along these lines, in APP/PS1 mice with upregulated levels of Hb, Hb 

protein expression co-localizes with neurons, and to a lesser extent, glia, suggesting that 

neurodegenerative and neuroinflammatory processes could be affected by excess Hb 

synthesis [76, 79] (Figure 1-4).  
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Figure 1-4. Hb colocalizes with astrocytes and neurons in APP/PS1 mice. Twelve 
month old APP/PS1 mice exhibit Hb (red) colocalization with astrocytes (top) and neurons 
(bottom), which are identified by GFAP and NeuN immunoreactivity, respectively. Scale 
bars, 20 μM. 

With regards to heme, Hb-derived heme is not the only source of heme which is 

relevant to AD pathology. Heme is synthesized endogenously in almost all tissues, 

including the brain, and is an essential molecule for numerous living organisms [89]. 

Indeed, given its involvement in protein complex assembly and signal transduction, deficits 

in heme function and synthesis adversely affect numerous body systems, including the 

nervous system [89]. Heme regulates processes such as gene expression, RNA processing, 

energy production, and ion transport, all of which are relevant to neurodegeneration [90, 

91]. Disrupted heme metabolism, through a combination of defects in heme import, export, 

and synthesis have been linked to several neurodegenerative conditions, including AD [90]. 

Additional hypotheses suggest that neuronal loss in AD may contribute to excess free heme 

in the brain, for example as a result of cytochrome c release [75]. It is also plausible that 
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excess heme is biosynthesized by neuronal cells, which also produce Aβ in AD, thus 

resulting in Aβ-heme complexes in AD brains [84].  

Concomitant with these reports are findings that heme oxygenase pathway activity, 

which is responsible for heme degradation, may also be implicated in AD pathology. Heme 

oxygenase 1 (HO-1) correlates with cognitive decline in AD [92, 93], and both HO-1 and 

heme oxygenase 2 are elevated in APP/PS1 mouse brains [94]. Taken together, these 

findings suggest multiple mechanisms through which heme and Hb may become elevated 

in AD and contribute to AD pathology. 

1.3.2 Heme and hemoglobin have immunomodulatory and cell signaling functions 

Although less appreciated than their roles in oxygen transport, heme and Hb have 

potent immunomodulatory functions and can act on a number of cellular targets, 

contributing both pro- and anti-inflammatory effects. These functions have been widely 

studied in peripheral macrophages and endothelial cells [95, 96]. With regards to pro-

inflammatory effects, extracellular heme binds toll-like receptor 4 (TLR4), resulting in 

inflammatory cytokine expression and cell activation [95-97]. Heme has also been shown 

to enhance chemokine expression and chemotaxis of immune cells [98]. Pro-inflammatory 

activity is mediated by activation of intracellular signaling pathways, including mitogen 

activated protein kinases (MAPKs) [97, 99, 100], protein tyrosine kinases [101, 102], and 

the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [97] (Figure 

1-5). Heme further exerts pro-inflammatory effect through activating inflammatory 

transcription factors, including p53 [103, 104], and Rev-erbα [105-110] (Figure 1-5). 
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Moreover, independently of heme, Hb has been shown to activate pro-inflammatory genes 

through the NF-κB pathway [111].           

With respect to anti-inflammatory effects, catabolism of heme by the inducible 

enzyme, HO-1, generates anti-inflammatory byproducts [112]. These include carbon 

monoxide (CO) and bilirubin, which suppress pro-inflammatory cytokine expression and 

upregulate anti-inflammatory cytokine expression, among many other anti-inflammatory 

activities [112-116]. HO-1 anti-inflammatory activity is also mediated by canonical 

phospho-signaling cascades, including MAPK [112, 113], NF-κB [112, 117], Janus kinase 

- Signal Transducer and Activator of Transcription proteins (Jak-STAT) [112, 118] and 

phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) [112, 119]. 

 

Figure 1-5. Heme is a potent immunomodulatory signaling molecule. Heme can drive 
immunomodulatory signaling through numerous intracellular and extracellular 
mechanisms. Heme can activate transcription factors and phospho-signaling pathways that 
regulate immune function. Heme can also be degraded by HO-1 into its by-products, 
carbon monoxide, biliverdin, and bilirubin, which have immunomodulatory functions.    

Further complicating heme signaling are the differential action mechanisms for 

extra- and intra-cellular heme. For example, extracellular heme and Hb can trigger 
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signaling cascades by binding to cell surface receptors [96, 97], while cellular 

internalization of heme is required for direct activation of the HO-1 pathway via heme 

binding of the transcription repressor Bach1 [120]. A number of heme and Hb scavenger 

receptors and transporters, including Cluster of Differentiation (CD)163 [121-123], CD91 

[123, 124], heme responsive gene protein 1 (HRG-1) [125], and feline leukemia virus 

subgroup C cellular receptor family, member 2 (FLVCR2) [126], mediate the import and 

export of extra- and intracellular heme, respectively. 

Taken together, the mechanisms for heme and Hb signaling are intricate, and 

consist of both pro- and anti-inflammatory signaling. However, it is clear that there are 

numerous signaling mechanisms that they could contribute to neuroinflammation and 

neurodegeneration characteristic of AD. Identifying pathological perturbations in heme 

signaling in AD presents a formidable challenge, but is critical to therapeutic development. 

1.4 Scope and organization of this thesis 

Although heme and Hb are well established in their relevance to AD, there is very 

little understanding of how they may contribute to AD pathogenesis. Moreover, heme and 

Hb are potent immunomodulatory signaling molecules, but these functions have not been 

characterized in the context of the brain. Since glial immune activity is a prominent aspect 

of AD, heme and Hb may exert glial immunomodulatory functions that drive AD 

pathogenesis. The goal of this thesis is to address this gap by elucidating the role heme 

may play in modulating the neuroimmune system in AD environments. As such, the 

overarching hypothesis is that heme and Hb impair glial immune function through 

modulation of intracellular signaling pathways.  
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The subsequent chapters investigate this hypothesis using both in vitro and in vivo 

model systems. Chapter 2 of this thesis examines how heme and Hb affect inflammatory 

activation of astrocytes and microglia in vitro, in both Aβ-dependent and Aβ-independent 

contexts. Chapter 3 hones in on astrocytes to identify intracellular immune signaling 

mechanisms dysregulated by heme. Finally, Chapter 4 extends these studies in vivo, 

examining how heme affects neuroinflammation in wild type (WT) mice, with and without 

the presence of Aβ. 
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CHAPTER 2. DETERMINING THE EFFECTS OF HEME, 

HEMOGLOBIN, AND THEIR INTERACTIONS WITH AMYLOID 

BETA ON GLIAL INFLAMMATORY ACTIVATION IN VITRO 

This chapter was adapted from [127] Sankar et al. (2018). J. Biol. Chem., 293(29):11358-

11373. © the American Society for Biochemistry and Molecular Biology 

2.1 Introduction 

Neuroinflammation is becoming increasingly recognized as an important aspect of 

AD pathology, but whether glial activity promotes pathogenesis [128] or is neuroprotective 

[129] remains contested. Glial activity plays an important role in neuroprotection and 

maintaining tissue homeostasis by regulating metabolism [130], pruning neurites and 

synapses [131], secreting neuroprotective cytokines [44], and clearing pathogens such as 

Aβ, the hallmark protein of AD [56, 57, 132]. However, glial inflammatory activity can 

also promote a neurotoxic microenvironment via overexpression of neurotoxic cytokines 

[62, 133] and reactive oxygen species [134], among other factors. Moreover, there is 

increasing evidence that glia efficiently clear Aβ early in AD but that they become 

dysfunctional with time, perhaps due to changes in environmental factors and 

immunomodulatory signaling during AD progression [56, 64, 65]. As both astrocytes and 

microglia have been reported to migrate toward Aβ plaques and uptake and degrade Aβ 

[56, 63, 135-137], deficits in glial immune function may contribute to AD pathogenesis. 

Furthermore, both astrocytes and microglia secrete chemokines, which function in further 

recruiting immune cells to Aβ plaque sites [138, 139]. Expression patterns of chemokines 



 19 

can vary with disease progression, and loss of chemokine expression could further 

contribute to impaired clearance mechanisms [140].   

Increased brain tissue levels of the blood-derived factors, Hb and heme, are 

characteristic of AD [76-79] and are associated with a number of AD risk factors, including 

age, brain injury, and stroke [141, 142]. Notably, analysis of post-mortem human AD tissue 

has shown increased heme in the temporal lobe [78] and increased Hb mRNA and protein 

in the inferior temporal gyrus and parietal gray and white matter [76], respectively. In fact, 

heme has been shown to colocalize with Aβ deposits in AD tissue [143], and Hb has been 

found within senile plaques and cerebral amyloid angiopathy [79]. Furthermore, both heme 

and Hb have been reported to bind Aβ and alter its aggregation state [78, 79].  

Although traditionally known for their oxygen carrying properties [73], both heme 

and Hb have diverse immunomodulatory capabilities. Studies in macrophages and 

endothelial cells indicate that heme stimulates the immune response via TLR4 signaling 

[97]. Moreover, Hb can promote inflammation independently of heme [111].  However, 

the immunomodulatory potential of heme and Hb on immune cells of the brain, namely 

astrocytes and microglia, remain uncharacterized. Despite the aforementioned observations 

pointing to potential roles for heme and Hb in modulating AD pathogenesis, the effects of 

heme and Hb on Aβ-mediated inflammatory response and the physiologic consequences 

of heme and Hb interactions with Aβ remain unknown. 

Herein, we elucidate the effects of heme and Hb on astrocyte and microglial 

immune function in vitro and delineate how heme and Hb specifically affect astrocyte and 

microglial inflammatory response to Aβ. Surprisingly, our data reveal that heme and Hb, 
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which are pro-inflammatory in macrophages [97, 144, 145], largely suppress the Aβ-

mediated astrocyte expression of a broad collection of pro-inflammatory cytokines. In 

microglia, we observed dose-dependent responses, resulting in suppression of cytokines in 

some contexts and upregulation of cytokines in others. Our data further show that 

differences in Aβ speciation contribute to differences in cytokine expression in astrocytes, 

and that physical interaction between heme/Hb with Aβ and resulting immunomodulatory 

effects are Aβ species dependent. Moreover, we determined that heme and Hb exert 

immunomodulatory effects via Aβ-independent mechanisms, as evident by suppression of 

scavenger activity of both astrocytes and microglia without the presence of Aβ. Taken 

together, these data suggest that heme and Hb modulate immune function in astrocytes and 

microglia through both Aβ-dependent and Aβ-independent mechanisms. Graphical 

representations of the experimental designs and approaches in this chapter are depicted in 

Figure 2-1 and Figure 2-2.  
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Figure 2-1. Experimental design for determining the effects of heme, hemoglobin, and 
amyloid beta on astrocyte immune function in vitro. Experimental strategy consists of 
deriving primary mouse astrocyte cultures and quantifying their immune activity in 
response to individual species of heme, Hb, and Aβ as well as physically bound species of 
heme or Hb with Aβ. Astrocyte immune activity is quantified in terms of cytokine 
expression and scavenger activity.  

 

Figure 2-2. Experimental design for determining the effects of heme, hemoglobin, and 
amyloid beta on microglial immune function in vitro. Experimental strategy consists of 
deriving both SIM-A9 and primary mouse microglial cultures and quantifying their 
immune activity in response to individual species of heme, Hb, and Aβ. Microglial immune 
activity is quantified in terms of cytokine expression and scavenger activity. 
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2.2 Materials and Methods 

2.2.1 Recombinant Aβ1–42 preparation 

For all experiments, hexafluoroisopropyl alcohol (HFIP)-pretreated Aβ1-42 

(rPeptide, Watkinsville, GA) was diluted from stocks of 50 or 500 μM Aβ in 1% NH4OH 

that were stored at −80 °C. Before reconstitution, Aβ1-42 was retreated with 500 μl HFIP 

per milligram of Aβ1-42 overnight to prevent pre-aggregation. HFIP was evaporated before 

dilution in 1% NH4OH. 

2.2.2 Primary mouse astrocyte cultures 

Astrocyte cultures were derived from postnatal day 0–1 CD1 mice (Charles River 

Laboratories) under a protocol approved by the Georgia Institute of Technology 

Institutional Animal Care and Use Committee. Cortices were isolated following an existing 

protocol [146] and triturated in plating medium with a 1-ml sterile pipette tip. Plating 

medium consisted of minimum essential medium (Thermo Fisher Scientific) with 10% 

horse serum (Sigma), 1% antibiotic/antimycotic solution (Sigma), and 0.3% glucose 

solution (Sigma). Cells were left to attach overnight to T-75 flasks coated in 0.1 mg/ml 

poly-D-lysine (Sigma). After 24 h, flasks were knocked to remove debris and rinsed with 

PBS, and plating medium was replaced with astrocyte medium (ScienCell) with 2% fetal 

bovine serum (ScienCell), 1% penicillin/streptomycin solution (ScienCell), and 1% 

astrocyte growth serum (ScienCell), in which cultures were maintained for up to four 

passages for conditioning. Cultures were maintained in a 37 °C, 5% CO2 humidified 

incubator. 
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2.2.3 SIM-A9 microglial cultures 

SIM-A9 cells (American Type Culture Collection (ATCC), Manassas, VA) were 

cultured in Dulbecco's modified Eagle's medium (DMEM)/F-12 (ATCC) supplemented 

with 10% heat-inactivated bovine serum (Thermo Fisher Scientific) and 5% heat-

inactivated horse serum (Thermo Fisher Scientific). Cultures were maintained in a 37 °C, 

5% CO2 humidified incubator. 

2.2.4 Primary mouse microglial cultures 

Microglial cultures were derived from postnatal P0-3 CD1 mice (Charles River 

Laboratories) under a protocol approved by the Georgia Institute of Technology 

Institutional Animal Care and Use Committee. Brains were harvested from pups and 

triturated in trypsin-ethylenediaminetetraacetic acid solution, then incubated for 15 min at 

37 °C. DMEM with 10% FBS was added to halt enzymatic digestion. Tissue was 

resuspended, then cell suspension was centrifuged at 800xg for 5 min at 15 °C. Debris was 

removed using a pipette, and remaining cell suspension was filtered through a 40 µm cell 

strainer. Cell suspension was again centrifuged at 800xg for 5 min at 15 °C, washed with 

PBS, and re-centrifuged to pellet cells. The cell pellet was resuspended in PBS and then 

incubated with CD11b+ magnetic microbeads (Miltenyi Biotec, Bergisch Gladbach, 

Germany) at 4 °C for 15 min. Meanwhile, a miniMACS® CD11b+ purification column 

(Miltenyi Biotec) was washed with PBS and fixed in a miniMACS® magnetic separator 

(Miltenyi Biotec). The cell suspension was then added to the column. After elution, the 

column was washed twice with DMEM, then detached from the magnet. Cells were 

dispensed into a collection tube and plated in DMEM + 10% FBS in 96 well plates coated 
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with 0.1 mg/ml poly-D-lysine (Sigma). After 24 h, half the media was replaced with fresh 

DMEM + 10% FBS. Cultures were maintained in a 37 °C, 5% CO2 humidified incubator. 

2.2.5 RAW 264.7 macrophage cultures 

RAW 264.7 cells (ATCC) were cultured in Dulbecco's modified Eagle's medium 

(Lonza, Walkersville, MD) supplemented with 10% fetal bovine serum (Thermo Fisher 

Scientific) and 1% antibiotic/antimycotic solution (Sigma). Cultures were maintained in a 

37 °C, 5% CO2 humidified incubator. 

2.2.6 Cell conditioning and lysis 

For cytokine expression, phosphoprotein signaling, and Western blot analyses, 

primary astrocytes were plated in 6-well plates and conditioned with combinations of 

hemin chloride (50 nM; EMD Millipore), human hemoglobin (50 nM; Sigma), rapamycin 

(10 nM; Selleck Chemicals, Houston, TX), and Aβ1-42 (50 nM; rPeptide) in 1% (w/v) 

NH4OH. For CD36 analysis, cells co-conditioned with rapamycin were first preconditioned 

with rapamycin for 1 h. Conditions were applied at 75% confluence for 24 h, after which 

conditioning medium was collected for cytokine analysis, and cell lysates were collected 

for phosphoprotein signaling and Western blotting analyses using the Bio-Plex cell lysis 

kit (Bio-Rad), with the addition of one cOmplete mini protease inhibitor tablet (Roche, 

Basel, Switzerland) and 20 μl of phenylmethylsulfonyl fluoride (PMSF) (Sigma) per 5 ml 

of lysis buffer. Lysates were placed in microcentrifuge tubes and inverted at 4 °C for 10 

min. Lysates and medium were centrifuged at 4 °C for 10 min at 13,200 rpm, and 

supernatant was collected and stored at −80 °C until analysis. 
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2.2.7 Multiplexed cytokine signaling analysis 

For cytokine signaling analysis, conditioned medium was thawed on ice and 

centrifuged at 4 °C for 10 min at 13,200 rpm. All samples were diluted 2:3 (conditioned 

medium/assay buffer), because this dilution fell within the linear range of bead 

fluorescence intensity versus protein concentration for detectable analytes. Multiplex 

cytokine analysis was conducted by adapting the protocol provided for the Milliplex® 

MAP mouse cytokine/chemokine 32-Plex kit, with beads for Eotaxin, G-CSF, GM-CSF, 

interferon-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p40, IL-

12p70, IL-13, IL-15, IL-17, IP-10, KC, LIF, LIX, MCP-1, M-CSF, MIG, MIP-1α, MIP-

1β, MIP-2, RANTES, tumor necrosis factor-α (TNF-α), and vascular endothelial growth 

factor (VEGF). Beads were read on a MAGPIX® system (Luminex, Austin, TX). 

2.2.8 Western blot 

Cell lysates, obtained as described above, were thawed on ice and then centrifuged 

for 10 min at 10,000 rpm and 4 °C. Protein concentration was determined using a Pierce 

BCA protein assay and equal amounts of protein were dissolved in reducing sample buffer, 

boiled, and loaded onto sodium dodecyl sulfate (SDS)-polyacrylamide gels. Following 

separation by electrophoresis, proteins were transferred to a Hybond P 0.45-μm 

polyvinylidene fluoride membrane (GE Healthcare). Membranes were blocked at room 

temperature (RT) for 1 h with 5% milk in Tris-buffered saline containing 0.01% Tween 20 

(TBST). Membranes were probed at 4 °C overnight with rabbit anti-CD36 (1:500; Novus 

Biologicals, Littleton, CO) and mouse anti-α-tubulin (1:2000; Sigma). Membranes were 

then incubated with Alexa Fluor–conjugated secondary antibodies (1:2000; Thermo Fisher 
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Scientific) for 2 h at RT. Imaging of blots was performed using an Odyssey CLx imager 

(LI-COR Biosciences, Lincoln, NE). Protein quantification was performed using Image 

Studio Lite version 5.2 (LI-COR Biosciences). 

2.2.9 Aβ1-42 internalization assay 

Primary astrocytes were plated in 0.1 mg/ml poly-D-lysine–treated half-area 96-

well, glass-bottom plates at a density of 10,000 cells/well and maintained in a 37 °C, 5% 

CO2 humidified incubator. At 75% confluence, cells were conditioned with either 50 nM 

Aβ1-42, 50 nM Aβ1-42 plus 50 nM hemin chloride, or 50 nM Aβ1-42 plus 50 nM human 

hemoglobin in astrocyte medium for 24 h. Cells were fixed with 4% paraformaldehyde 

(PFA), permeabilized for 10 min at RT with 0.1% Triton X-100, and blocked with a 5% 

bovine serum albumin (BSA), 3% goat serum (Sigma) solution for 1 h. Primary antibody 

incubation was performed overnight at 4 °C, using the 6E10 antibody (1:200; BioLegend) 

in 0.5% BSA wash buffer. After washing with wash buffer, fixed cells were incubated with 

Alexa Fluor 488 goat anti-mouse secondary antibody (1:200; Thermo Fisher Scientific) for 

2 h at RT. Cells were co-stained with 4′,6-diamidino-2-phenylindole (DAPI) (100 ng/ml; 

Thermo Fisher Scientific) for nuclei and Alexa Fluor 555 phalloidin (1:40; Thermo Fisher 

Scientific) for actin. 

Confocal microscopy was performed on a Zeiss LSM 700 laser-scanning inverted 

microscope to obtain 15–30 optical sections with 1-μm interval thickness. Orthogonal 

projections were rendered using Zen version 2.3 software (Zeiss, Oberkochen, Germany). 

2.2.10 E. coli particle internalization assay 
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Primary astrocytes or SIM-A9 microglia were plated on 96-well plates at a density 

of 10,000 cells/well and left to adhere overnight in a 37 °C, 5% CO2 humidified incubator. 

Cells were treated with either control, 50 nM hemin chloride, or 50 nM human hemoglobin 

conditions for 4 h. Conditioning medium was aspirated, and cells were incubated with the 

E. coli fluorescent BioParticle suspension from the VybrantTM phagocytosis assay kit 

(Thermo Fisher Scientific) for 1 h. Extracellular fluorescence was quenched with trypan 

blue. Fluorescence was read on a SpectraMax M3 microplate reader (λex = 480 nm; λem 

= 520 nm) (Molecular Devices, Sunnyvale, CA). 

2.2.11 Phagocytosis assay 

Primary astrocytes or SIM-A9 microglia were plated in 0.1 mg/ml poly-D-lysine–

treated half-area 96-well, glass-bottom plates at a density of 10,000 cells/well and left to 

adhere overnight in a 37 °C, 5% CO2 humidified incubator. Cells were treated with either 

control, 50 nM hemin chloride, or 50 nM human hemoglobin conditions for 24 h. 

Conditioning medium was aspirated, and cells were incubated with a fluorescent pHrodo™ 

Red Zymosan BioParticle suspension (Thermo Fisher Scientific) diluted in astrocyte 

medium for 2 h. After removing BioParticle suspension, cells were fixed with 4% 

paraformaldehyde, permeabilized for 10 min at RT with 0.1% Triton X-100, and blocked 

with a 5% BSA, 3% goat serum (Sigma) solution for 1 h. Primary antibody incubation was 

performed overnight at 4 °C, with rabbit anti-glial fibrillary acidic protein (GFAP) (1:1000; 

Novus Biologicals). After washing with wash buffer, fixed cells were incubated with Alexa 

Fluor 488 goat anti-mouse secondary antibody (1:200; Thermo Fisher Scientific) for 2 h at 

RT. Cells were co-stained with DAPI (1 ng/ml; Thermo Fisher Scientific) for nuclei. 
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Fluorescence microscopy was performed on a Zeiss Axio Observer Z.1 inverted 

microscope and quantified using ImageJ. 

2.2.12 Partial least squares discriminant analysis 

Partial least squares discriminant analysis (PLSDA) was performed in MATLAB 

using the partial least squares algorithm by Cleiton Nunes available on the Mathworks File 

Exchange. All data were z-scored before inputting into the algorithm. For all analyses, an 

orthogonal rotation in the latent variable (LV) 1-LV2 plane was performed to identify LVs 

that best separated conditions. 

2.2.13 Statistics 

All statistical analyses were performed using GraphPad Prism version 7 (GraphPad 

Software, La Jolla, CA). Values are presented as mean ± standard error of the mean (SEM). 

Statistical significance was determined, as appropriate, using Student's t test, ordinary one-

way analysis of variance (ANOVA) followed by Dunnett's or Sidak's post hoc test, or 

Kruskal–Wallis ANOVA followed by Dunn's post hoc test. Normality of data was tested 

using the Shapiro–Wilk test of normality. Levels of significance were set as follows: *p < 

0.05; **p < 0.01; ****p < 0.0001. 

2.3 Results 

2.3.1 Heme and hemoglobin modulate Aβ1–42-induced astrocyte inflammatory cytokine 

expression 
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Canonical markers of astrocyte activation, such as glial fibrillary acidic protein 

(GFAP) [147, 148], are not reliable activation markers in culture due to high baseline 

expression. Therefore, we used a multiplexed immunoassay to robustly quantify astrocyte 

activation in terms of protein expression of 32 cytokines into the culture medium. As 

expected, astrocytes conditioned for 24 h with Aβ1–42 increased expression of numerous 

pro-inflammatory cytokines, including Interleukin (IL)-1β [149], Regulated on Activation, 

Normal T Cell Expressed and Secreted (RANTES) [39], and Granulocyte-Macrophage 

Colony Stimulating Factor (GM-CSF) [37] (Figure 2-3A). Because we measured a total 

of 32 cytokines, we aimed to create a cytokine profile that could be used to discern 

differences between groups. To do so, we utilized a PLSDA [150], an approach which has 

previously used to identify a cytokine profile distinguishing post-mortem human control 

and AD brain tissues [45]. Applying this analysis here identified an axis called a latent 

variable (LV1) that distinguished Aβ1–42 conditioned wells from all other conditions 

(Figure 2-3B). The LV1 axis consisted of a profile of cytokines that were most different 

between groups (Figure 2-3C), whereas LV2 defined a second axis of cytokines that were 

most different in the heme + Aβ1–42 condition (Figure 2-3D). By plotting each sample in 

terms of its score on LV1 (representing a composite indicator of cytokine expression), we 

found that Aβ1–42 induced cytokine expression was significantly increased compared with 

controls or Aβ1–42 wells that were co-treated with heme or Hb (Figure 2-3E). Plotting of 

selected individual cytokines revealed a trend where certain pro-inflammatory cytokines, 

such as RANTES and GM-CSF [151], were downregulated by heme and Hb, whereas 

others, such as keratinocyte chemoattractant (KC) [152] and Monocyte Chemoattractant 
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Protein (MCP)-1 [153], were not substantially modulated (Figure 2-3F), reflecting our 

multivariate analysis (Figure 2-3,B-E). 

 



 31 

 

Figure 2-3. Heme and Hb suppress Aβ1–42-induced cytokine protein expression in 
primary mouse astrocytes. A. Quantification of 32 cytokines expressed into the medium 
of primary mouse astrocyte cultures via Luminex analysis. Each column is z-scored. 
Compared with vehicle control (0.001% NH4OH), cytokine expression is increased in 
response to 50 nM Aβ1-42. Moreover, co-conditioning of Aβ1–42 with either 50 nM heme 
or 50 nM Hb suppressed cytokine expression (n = 3 wells). B. A partial least squares 
discriminant analysis, generated from the cytokine expression data set, identified a latent 
variable (LV1), based on cytokine expression, which separates Aβ1–42-only treated 
astrocytes from all other conditions along the horizontal axis. C. LV1 depicts a linear 
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combination of cytokines that correlate with the Aβ1-42 only condition and identifies 
RANTES as the top correlate with Aβ1–42 treated astrocytes in the panel of 32 cytokines. 
D. LV2 depicts a linear combination of cytokines that correlate with the heme + Aβ1–42 
condition. E. Plotting LV1 scores for each group shows that the LV1 profile segregates 
Aβ1–42 treated astrocytes from all other conditions (**p < 0.01; ordinary one-way ANOVA 
with Dunnett's post hoc test). F. Plotting cytokine expression for six consistently measured 
cytokines, RANTES, M-CSF, IL-1β, IP-10, KC, and MCP-1, reveals that heme and Hb 
suppress expression of some, but not all, cytokines. Data are presented as mean ± SEM. 
This figure was originally published in the Journal of Biological Chemistry. Sankar et al. 
Heme and hemoglobin suppress amyloid β–mediated inflammatory activation of mouse 
astrocytes. J. Biol. Chem. 2018; 293: 11358-11373. © the American Society for 
Biochemistry and Molecular Biology 

2.3.2 Inflammatory activation of astrocytes by soluble Aβ1-42 aggregates is reversed by 

association with heme or hemoglobin 

Recent studies of isolated Aβ from post-mortem human tissues have revealed that 

different species have distinct cytotoxicities and ligand affinities [154, 155]. We therefore 

sought to identify the inflammatory effects of various Aβ1–42 species assess the effect that 

heme or Hb association with these species had on inflammatory activation of astrocytes. 

Toward this end, we conditioned astrocytes with 50 nM preparations of three distinct Aβ1–

42 species, which were isolated through a combination of centrifugation and size exclusion 

chromatography [127]. These species included a soluble >75-kDa high molecular weight 

(HMW) oligomer, a soluble <6.5 kDa low molecular weight (LMW) oligomer, and a 

fibrillar pellet [127].  Astrocytes were conditioned with these species for 24 h and assayed 

for their ability to stimulate the expression of inflammatory cytokines relative to a 50 nM 

concentration of the unseparated, Aβ1–42 stock mixture and vehicle control. Most 

interestingly, we found that application of the soluble >75-kDa oligomer is highly 

inflammatory and comparable with that of the application of the unseparated Aβ1–42 stock 

mixture (Figure 2-4). In marked contrast, preparations of the Aβ1–42 pellet or the soluble 
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LMW species yielded minimal cytokine expression in astrocytes compared with the 

unseparated Aβ1–42 stock mixture (Figure 2-6). 

 Since heme and Hb have been reported to physically interact with Aβ1-42 [76, 78, 

82], we next sought to determine what role heme and Hb association play in mediating 

Aβ1-42 inflammatory activation. Since the HMW Aβ1–42 oligomer was discovered to be the 

only species capable of physically binding heme and Hb [127], we assessed the effects of 

either heme or Hb binding with this species on astrocyte cytokine expression. Strikingly, 

we found that upon binding with heme, the pro-inflammatory response of the HMW Aβ1–

42 oligomer was almost entirely suppressed (Figure 2-4). A similar trend was observed, 

although to a lesser extent, with Hb-bound oligomer (Figure 2-5). Together these data 

suggest that heme and Hb may be downregulating astrocyte inflammatory activity through 

physically modifying Aβ1-42. 
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Figure 2-4. Heme binding suppresses inflammatory capacity of HMW Aβ1–42. 
Heatmap of z-scored cytokine expression by primary mouse astrocytes upon incubation 
with 50 nM unseparated, stock Aβ1–42, HMW Aβ1–42, and Heme-bound HMW Aβ1–42. This 
figure was originally published in the Journal of Biological Chemistry. Sankar et al. Heme 
and hemoglobin suppress amyloid β–mediated inflammatory activation of mouse 
astrocytes. J. Biol. Chem. 2018; 293: 11358-11373. © the American Society for 
Biochemistry and Molecular Biology 

 
Figure 2-5. Hb binding suppresses inflammatory capacity of HMW Aβ1–42. Heatmap 
of z-scored cytokine expression by primary mouse astrocytes upon incubation with 50 nM 
unseparated, stock Aβ1–42 and Hb-bound HMW Aβ1–42. This figure was originally 
published in the Journal of Biological Chemistry. Sankar et al. Heme and hemoglobin 
suppress amyloid β–mediated inflammatory activation of mouse astrocytes. J. Biol. Chem. 
2018; 293: 11358-11373. © the American Society for Biochemistry and Molecular Biology 
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Figure 2-6. LMW and pellet Aβ1-42 are minimally inflammatory. Quantification of 32 
cytokines (expressed as z-scored cytokine expression) secreted from primary mouse 
astrocytes shows that 50 nM soluble LMW Aβ1-42 is not inflammatory and that the insoluble 
50 nM Aβ1-42 pellet is minimally inflammatory compared to the unseparated 50 nM Aβ1-42 
stock. This figure was originally published in the Journal of Biological Chemistry. Sankar 
et al. Heme and hemoglobin suppress amyloid β–mediated inflammatory activation of 
mouse astrocytes. J. Biol. Chem. 2018; 293: 11358-11373. © the American Society for 
Biochemistry and Molecular Biology 

2.3.3 Heme and hemoglobin reduce astrocyte scavenger activity  

Since heme and Hb reduced Aβ1-42-induced expression of multiple inflammatory 

cytokines (Figure 2-3), we next investigated their effects on astrocytic capacity to 

scavenge Aβ1-42 and other substrates. First, we conditioned astrocytes with 50 nM Aβ1-42, 

either alone or together with heme or Hb. We then used immunocytochemistry to stain for 

Aβ1-42 using the 6E10 antibody (1:1000; BioLegend, San Diego, CA). Astrocytes treated 

with Aβ1-42 alone showed Aβ1-42 localized within the plane of the cell (Figure 2-7A, 

arrows). In contrast, astrocytes co-conditioned with heme, and to a lesser extent Hb, 

showed little Aβ1-42 within the plane of the cell and substantial labeling on the cell surface, 

suggesting that heme and Hb suppress Aβ1-42 internalization (Figure 2-7A, arrows). 
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Figure 2-7. Heme and Hb suppress astrocyte internalization of Aβ1–42 and phagocytic 
capacity. A. Confocal imaging of primary astrocytes incubated with 50 nM Aβ1–42 (left) 
stained with DAPI (blue), Alexa Fluor 555 phalloidin (red), and anti-Aβ 6E10 (green) 
reveals Aβ1–42 within the plane of the cell. Co-incubation with 50 nM heme (center) or 50 
nM Hb (right) reduced Aβ1–42 internalization. Arrows indicate Aβ1–42 localization inside 
the cell (left) or on the cell surface (center, right). B. Primary astrocytes, preincubated with 
50 nM heme or 50 nM Hb, were incubated with trypan-quenched, fluorescein-labeled, 
killed E. coli particles. Particle internalization, measured by fluorescence intensity using a 
microplate reader, significantly decreased upon incubation with 50 nM Hb (n = 28 wells; 
*p < 0.05; ordinary one-way ANOVA with Dunnett's post hoc test, vehicle versus Hb). C. 
Primary astrocytes, preincubated with 50 nM heme or 50 nM Hb, were incubated with pH-
sensitive pHrodo beads to assess phagocytic capacity. The percentage of total cells 
uptaking beads, quantified by fluorescence microscopy (Figure 2-8), was significantly 
reduced upon treatment with Hb (n = 30-33 images; ****p < 0.0001; Kruskal-Wallis 
ANOVA with Dunn's post hoc test; vehicle versus Hb). D. Primary astrocytes conditioned 
with vehicle control, 50 nM heme, and 50 nM Hb were lysed and analyzed via Western 
blotting for CD36 expression. Quantification, normalized by α-tubulin, reveals that both 
heme and Hb down-regulate expression of CD36 (n = 4 wells; *p < 0.05; **p < 0.01; 
ordinary one-way ANOVA with Dunnett's post hoc test). E. Western blotting depicting 
CD36 expression. Data are presented as mean ± SEM. Scale bars, 50 μm. This figure was 
originally published in the Journal of Biological Chemistry. Sankar et al. Heme and 
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hemoglobin suppress amyloid β–mediated inflammatory activation of mouse astrocytes. J. 
Biol. Chem. 2018; 293: 11358-11373. © the American Society for Biochemistry and 
Molecular Biology 

To determine if heme or Hb affected scavenger activity for other substrates, we 

next interrogated their effects on astrocyte internalization of killed E. coli particles. We 

treated astrocyte cultures with killed E. coli microparticles that were labeled with a trypan-

quenched fluorescein (Thermo Fisher). Fluorescent intensity (λex = 480 nm; λem = 520 nm) 

was quantified on a microplate reader and revealed that Hb, and to a lesser extend heme, 

reduced microparticle internalization compared to control (Figure 2-7). To determine if 

these effects also modulated phagocytosis, we incubated astrocytes with pH-sensitive 

pHrodo® Zymosan particles, which fluoresce in phagosomes. Quantification of phagocytic 

cells using fluorescence microscopy (Figure 2-8) demonstrated a significant reduction of 

phagocytosis in Hb-treated astrocytes and a non-significant reduction by heme (Figure 

2-7C), mirroring our observations with killed E. coli particles.  

Since heme and Hb appeared to have similar effects, though to differing degrees, 

we next wanted to determine if these effects were associated with changes in astrocyte 

phagocytic receptor expression. Key astrocyte scavenger receptors include CD36, RAGE, 

and CD47 [156]. Of these, we chose to quantify CD36 expression since it mediates both 

phagocytosis and inflammatory signaling in astrocytes [157]. Indeed, western blot analysis 

revealed decreased CD36 expression in the presence of heme or Hb (Figure 2-7D-E). This 

finding is consistent with heme and Hb mediated modulation of Aβ-induced inflammation 

(Figure 2-3), since CD36 is required for astrocyte activation [157] and mediates Aβ-

induced inflammatory signaling [158]. 
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Figure 2-8. Representative fluorescent microscopy images of pHrodo bead (red) 
phagocytosis by control, heme, and Hb treated primary astrocytes. Astrocytes are co-
stained for GFAP (green) and DAPI (blue). Arrows indicate cells with internalized beads. 
Scale bars: 50 μm. This figure was originally published in the Journal of Biological 
Chemistry. Sankar et al. Heme and hemoglobin suppress amyloid β–mediated 
inflammatory activation of mouse astrocytes. J. Biol. Chem. 2018; 293: 11358-11373. © 
the American Society for Biochemistry and Molecular Biology 
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2.3.4 Heme modulates Aβ1-42 induced microglial cytokine expression and suppresses 

microglial scavenger activity 

In order to assess the effects of heme and Hb on microglial immune function, we 

performed a similar analysis on the SIM-A9 spontaneously immortalized microglial cell 

line. While primary microglia provide the most physiologically relevant in vitro  platform, 

they do not readily proliferate in culture and thus require large animal numbers for 

experiments of this nature [159]. Therefore, we initially performed these experiments with 

the SIM-A9 cell line. The SIM-A9 cell line is suitable for this study because it is expected 

to behave more comparably to primary microglia than virally transformed lines, as it is 

well characterized to phagocytose Aβ, express key activation markers (CD68, Iba-1), and 

undergo M1/M2 polarization as assessed via inducible nitric oxygen synthase and 

Arginase-1 expression [160]. 

Using similar methodology to the primary astrocytes, we conditioned cells with 

combinations of 50 nM recombinant Aβ1-42, equimolar (50 nM) heme or Hb, and high (25 

μM) dose heme, and used a multiplexed immunoassay to quantify protein expression of a 

panel of 32 cytokines into the culture medium. Similar to primary astrocytes, application 

of Aβ1-42 broadly increased expression of numerous pro-inflammatory cytokines, while 

neither Hb nor high or low doses of heme significantly modulated cytokine expression 

compared to control (Figure 2-9A-D). Although to a lesser degree than primary astrocytes, 

low doses of heme and Hb suppressed expression of several cytokines, including IL-4, IL-

10, and IL-2 (Figure 2-9E). Furthermore, in stark contrast to astrocytes, 25 μM heme 

applied together with Aβ1-42 significantly amplified expression of certain cytokines, 

including TNF-α, IL-6, and MIP-1α, compared to treatment with Aβ1-42 alone (Figure 
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2-9E).  Repeating this experiment using primary microglia derived from mouse pups 

yielded a very similar cytokine expression panel in response to all conditions (Figure 

2-10). Lastly, cytokine expression in response to just 25 μM heme was compared between 

primary mouse microglia and RAW 264.7 macrophages, which have been previously 

reported to express pro-inflammatory factors in response to heme [97, 145]. Consistent 

with these prior findings, heme on its own was robustly inflammatory in the RAW 264.7 

macrophages, but only upregulated few analytes (ie. IP-10, KC), in microglia (Figure 

2-11), a surprising finding given the similar developmental lineage between astrocytes and 

microglia [161].  



 41 

 

Figure 2-9. Heme and Hb modulate Aβ1-42 induced cytokine expression in SIM-A9 
microglia. A. Quantification of 32 cytokines expressed into the medium of SIM-A9 
microglia cultures via Luminex analysis. Each column is z-scored. Compared to vehicle 
control, cytokine expression is increased in response to 50 nM Aβ1-42. Co-conditioning of 
Aβ1-42 with either 50 nM heme or 50 nM Hb suppressed expression of some cytokines, 
while 25 µM heme increased expression of some cytokines. B. A PLSDA generated from 
the cytokine expression dataset, identified a latent variable (LV2), based on cytokine 
expression, which separates Aβ1-42-only treated SIM-A9 microglia from all other 
conditions along the vertical axis. C.  LV2 depicts a linear combination of cytokines that 
correlate with the Aβ1-42-only condition, and identifies TNF-α as the top correlate with Aβ1-

42 treatment. D. Plotting LV2 scores for each group shows that the LV2 profile segregates 
Aβ1-42 treated astrocytes from all other conditions and further segregates the 25 µM heme 
+ Aβ1-42 from the Aβ1-42-only condition. E. Plotting cytokine expression for 3 consistently 
measured cytokines reveals that heme suppresses expression of some cytokines and 
increases expression of others. Data are presented as mean ± SEM. ****I<0.0001 (vs. 
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vehicle control); ††† p<0.001 (vs Aβ1-42); ordinary one-way ANOVA with Dunnett’s post-
hoc test. 

 

Figure 2-10. Heme modulates Aβ1-42 induced cytokine expression in primary mouse 
microglia in a dose dependent manner. Quantification of 32 cytokines expressed into the 
medium of primary mouse microglia cultures via Luminex analysis. Each column is z-
scored. 
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Figure 2-11. Cytokine expression by RAW 264.7 macrophages and primary mouse 
microglia in response to 25 µM heme. A. Quantification of 32 cytokines expressed into 
the medium of RAW 264.7 macrophage cultures via Luminex analysis. Each column is z-
scored. Compared to vehicle control, cytokine expression is broadly increased in response 
to 25 μM heme. B. As in A for primary microglia. Compared to vehicle, cytokine 
expression of only a few cytokines is upregulated in response to 25 μM heme.   

Since, in contrast to astrocytes, the effect of heme on Aβ1-42-mediated cytokine 

expression was dose-dependent in SIM-A9 microglia, we sought to look at whether other 

immune functions has dose-dependent phenotypes as well. We again quantified SIM-A9 

internalization of fluorescein-labeled, E. coli particles and found that both 50 nM and 25 

µM heme suppressed bead uptake (Figure 2-12A). To determine if these effects were 

mirrored in phagocytic uptake specifically, we incubated SIM-A9 microglia with pH-

sensitive pHrodo® Zymosan particles and found that indeed, both high and low doses of 

heme dramatically decreased phagocytosis (Figure 2-12B-C). 
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Figure 2-12. High and low doses of heme suppress SIM-A9 phagocytic capacity. A. 
SIM-A9 microglia, pre-incubated with 50 nM or 25 μM heme, were incubated with trypan-
quenched, fluorescein labeled, killed E.coli particles. Particle internalization, measured by 
fluorescent intensity using a microplate reader, significantly decreased upon incubation 
with both heme concentrations (n=45-48 wells, p=0.002; vehicle vs. 50 nM heme, p=0.012; 
vehicle vs 25 μM heme). B. SIM-A9 microglia, pre-incubated with 50 nM or 25 μM heme, 
were incubated with pH sensitive pHrodo beads to assess phagocytic capacity. The 
percentage of total cells uptaking beads, quantified by fluorescence microscopy and 
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ImageJ, was significantly reduced upon treatment with Hb (n=32 images; p<0.0001; 
vehicle vs. 50 nM heme and vehicle vs. 25 μM heme). C. Representative fluorescent 
microscopy images of pHrodo bead (red) phagocytosis by control, 50 nM heme, and 25 
μM heme treated SIM-A9 microglia co-stained for phalloidin (green) and DAPI (blue). 
Scale bars: 50 μm. This figure was originally published in the Journal of Biological 
Chemistry. Sankar et al. Heme and hemoglobin suppress amyloid β–mediated 
inflammatory activation of mouse astrocytes. J. Biol. Chem. 2018; 293: 11358-11373. © 
the American Society for Biochemistry and Molecular Biology 
 

2.4 Discussion 

Glial immune activity is recognized as a key component of AD pathology [162], 

but it remains debated whether glial activity is deleterious [128] or neuroprotective [129, 

163]. In reality, it is likely that the consequences of neuroinflammation occupy a continuum 

between neuroprotective and neurodegenerative. In terms of protective effects in the 

context of AD, glial activation is essential for clearance of cytotoxic Aβ species [58, 59]. 

On the contrary, in terms of aggravating AD pathogenesis, excessive neuroinflammation 

contributes to a number of detrimental effects, including “fatigued” glia that are unable to 

clear Aβ, generation of toxic reactive oxygen species, and hyperactivated microglia that 

indiscriminately phagocytize neurons [56, 62, 64, 134]. Further complicating matters is the 

reality that different species of Aβ may affect neuroinflammation in very different ways, 

and the effects of each species may be modulated by other aspects of tissue pathology. In 

the work described in this chapter, we have identified heme and Hb as key AD-relevant 

immunomodulators and have probed mechanisms that mediate the inflammatory activation 

of astrocytes, both in Aβ1–42 dependent and independent capacities. Moreover, we have 

identified key Aβ1-42 species that are responsible for astrocyte activation and the effects of 

heme and Hb on the inflammatory potential of these species. Overall, our data indicate that 

heme and Hb suppress the Aβ1–42-mediated inflammatory activation of astrocytes, 
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suggesting that these factors contribute to AD pathogenesis by impairing Aβ clearance 

mechanisms. 

Simultaneous analysis of the relative expression of 32 cytokines into culture media 

provided a broad view of astrocyte inflammatory response to Aβ1–42, heme, Hb, and heme 

or Hb-bound species of Aβ1–42. First, we applied a HFIP pretreated Aβ1–42 alone and in 

combination with either heme or Hb to astrocyte cultures (Figure 2-3A). PLSDA identified 

a latent variable, which is a composite variable including all analytes measured (Figure 

2-3B-C). Scoring each sample on this latent variable demonstrated that both heme and Hb 

reduced cytokine expression which was highly upregulated by Aβ1–42 (Figure 2-3E). From 

this analysis, Aβ1–42 conditioning strongly correlates with RANTES, GM-CSF, and IL-1β, 

which were all downregulated in cultures co-treated with heme or Hb (Figure 2-3F). Of 

these, RANTES is a pro-inflammatory chemokine and involved in microglial recruitment 

[164, 165], GM-CSF promotes microglial proliferation [166], and IL-1β is a highly pro-

inflammatory cytokine up-regulated early in AD [167] that has been shown to promote Aβ 

clearance in a mouse model [168]. Interestingly, application of heme or Hb at low 

concentration (50 nM) did not strongly suppress expression of other cytokines, including 

IP-10, KC, and MCP-1, which are all involved in immune cell recruitment [152, 153, 169]. 

However, application of a high dose of heme (25 μM) reduced these cytokines as well, 

suggesting that dose-dependent effects are associated with heme/Hb suppression of Aβ1-42-

induced inflammatory response. Since few changes in cytokine expression were observed 

in response to Hb or either dose of heme alone, it is likely that these dose-dependent 

changes are indicative of dose-dependent modifications to Aβ. Notably, the cytokines 
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modulated by heme and Hb are well-established to modulate immune activity, but have not 

generally been found to be neurotoxic. 

Performing similar analysis on SIM-A9 microglia produced markedly different 

results. Similarly to astrocytes, Aβ1–42 broadly upregulated cytokines and neither Hb nor 

high or low doses of heme produced robust cytokine effects on their own (Figure 2-9A-

D). However, in stark contrast to the astrocytes, modulation of Aβ1–42-induced cytokine 

expression by heme was highly dichotomous with respect to dosage. In the case of 50 nM 

heme or Hb, many cytokines were downregulated compared to the Aβ1–42 only condition 

(Figure 2-9A). Several cytokines, including IL-4, IL-9, and KC were suppressed upon co-

treatment of Aβ1–42 with either 50 nM and 25 μM doses of heme. However, as identified 

by PLSDA (Figure 2-9B-D), many cytokines which were either suppressed or unchanged 

in response to 50 nM heme were in fact upregulated in response to co-treatment with 25 

µM heme, including TNF-α, IL-6, and MCP-1. Notably, these results were very consistent 

between primary mouse microglia and the SIM-A9 microglia (Figure 2-10), suggesting 

that the SIM-A9 cell line is highly representative of the behavior of primary cells. 

Interestingly, in contrast to the astrocytes, heme shifted Aβ1–42-induced cytokine 

expression towards a more neurotoxic profile, particularly when considering the dose-

dependent effects. Cytokines such as IL-4 and IL-9, which were suppressed by both low 

and high doses of heme are known to be involved in neuroprotection [55, 170]. Conversely, 

TNF-α and IL-6, which were upregulated by co-treatment with high heme are known to 

contribute to neurotoxicity in the context of AD [171, 172]. Taken together, heme could 

promote Aβ-induced neurotoxicity by microglia, by both downregulating secretion of 

neuroprotective factors and upregulating secretion of neurotoxic factors.  
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Concerning differences in modulation of cytokine expression between astrocytes 

and microglia, one possible explanation is that heme imparts dose-dependent modifications 

to Aβ, which results in distinct Aβ species/aggregation states between 50 nM and 25 µM 

heme. It is possible that the cellular targets of these species are distinct between astrocytes 

and microglia, which are known to present different extracellular receptors [62, 173], 

resulting in very different downstream effects. A similar argument can be made regarding 

the differences in cytokine expression in response to 25 µM heme alone between RAW 

264.7 macrophages and microglia. Although peripheral macrophages and microglia share 

a common myeloid origin, environmental factors ultimately cause difference in receptor 

expression, ultimately leading to differing responses to external stimuli such as heme [174].  

As previously postulated, mechanisms of heme and Hb immunomodulatory activity 

produced by binding or physically modifying Aβ1–42 represent one possible explanation for 

dose-dependent effects on cytokine expression. Evidence for heme and Hb downregulating 

astrocyte inflammatory activity through physically modifying Aβ1–42 stems from our 

finding that heme and Hb bind to a particularly inflammatory species of Aβ1–42 [127]. 

Indeed, our analysis revealed that a soluble HMW oligomeric species of Aβ1–42 (>75 kDa) 

produced the principal inflammatory response compared with other fractions (Figure 2-4, 

Figure 2-5, Figure 2-6). Moreover, the Aβ1–42 HMW soluble oligomer was found to be 

the only species that was verified to be associated with heme or Hb [127] and strongly 

suppressed cytokine expression compared with the unbound oligomer. Further, this result 

is particularly important because it provides a physiological context to previously described 

Aβ–heme and Aβ–Hb interactions, as soluble Aβ oligomers are abundant in human AD 

brain tissue and have high binding affinities and neurotoxic properties [155, 175]. 
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Altogether, the isolation of distinct Aβ1–42 species and the effect of heme or Hb on their 

distribution and inflammatory activation of astrocytes highlight the complex and nuanced 

nature of Aβ-mediated immune signaling. Indeed, the observation of changes in 

neuroinflammation over the course of AD may reflect the competing effects of multiple 

Aβ, Aβ–heme, and/or Aβ–Hb species that have differing immunomodulatory activities. 

Additionally, the peroxidase activity of heme–Aβ complexes may further act to modulate 

the inflammatory response [82]. 

A second mechanism of heme/Hb control of inflammatory activity is via direct 

action on astrocyte signaling, which is supported by our observations that heme and Hb 

suppressed killed E. coli particle internalization, phagocytosis, and CD36 expression 

(Figure 2-7, Figure 2-8) in experiments free of Aβ1–42. Our results in astrocytes generally 

point toward heme as having anti-inflammatory effects at both low and high heme 

concentrations. Moreover, we found that scavenger activity of astrocytes was inhibited by 

low (50 nM) heme concentrations and that both low and high (25 μM) heme concentrations 

inhibited scavenger activity of SIM-A9 microglia (Figure 2-12). Nevertheless, the 

canonical role of heme in immune signaling, primarily delineated in macrophages and 

endothelial cells, is that it stimulates inflammation via receptors such as TLR4 [97]. As 

such, it is clear that the immunomodulatory roles of heme and Hb are distinct in the context 

of the brain.  

Altogether, our data indicate that Hb and heme are potent modulators of astrocyte 

and microglial immune activity by both Aβ-independent and Aβ-dependent mechanisms.  

Given reports of increased Hb in late-stage AD and in transgenic mouse models, Hb and 

heme signaling and physical activity represent possible mechanisms responsible for 
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astrocyte fatigue in AD tissues, thereby permitting amyloid pathogenesis. Additionally, 

recent findings of BBB leakage early in AD suggest that Hb concentration may be locally 

increased at the vascular wall [176]. By extension, Hb and heme activity may be 

responsible for a high prevalence of cerebral amyloid angiopathy in AD patients [176]. 

Taken together, this work suggests that intervening in Hb/heme signaling may represent a 

novel therapeutic strategy for AD. Furthermore, this approach establishes a rigorous 

methodology to analyze the immunomodulatory effects of diverse proteins and other 

molecules that co-localize or associate with Aβ. 
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CHAPTER 3. DETERMINING THE EFFECTS OF HEME ON 

ASTROCYTE IMMUNE SIGNALING MECHANISMS IN VITRO 

3.1 Introduction 

While Hb and heme have been traditionally known for their oxygen-carrying 

properties [73, 74], recent work has implicated them as potent immunomodulatory 

signaling molecules, mediating both pro- and anti-inflammatory effects. In many 

pathological conditions, heme and Hb directly induce the expression of a wide array of 

pro- and anti-inflammatory cytokines [177, 178] and heme has also been shown to enhance 

chemokine expression and chemotaxis of immune cells [98]. Heme-mediated 

immunomodulatory signaling may occur through both extra- and intra-cellular 

mechanisms. With regards to extracellular mechanisms of action, heme has been 

characterized to activate TLR4 in multiple cell types, resulting in inflammatory cytokine 

expression and cell activation [95-97]. Exogenous heme has also been reported to promote 

cytokine expression via activating TLR2 [179].  Furthermore, Hb has been shown to 

modulate IL-10 expression via the scavenger receptor CD163 [177]. Heme further exerts 

pro-inflammatory effects intracellularly, through activating inflammatory transcription 

factors, including p53 [103, 104], and Rev-erbα [105-110]. Conversely, catabolism of 

heme via HO-1 also occurs intracellularly, producing anti-inflammatory by-products 

including, CO, biliverdin, and bilirubin, which suppress pro-inflammatory cytokine 

expression and upregulate anti-inflammatory cytokine expression, among many other anti-

inflammatory activities [112-116].   
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Mechanistically, modulation of pro- and anti-inflammatory activation by heme and 

Hb can occur through kinase signaling pathways. In various contexts, heme has been 

reported to modulate phospho-signaling through the MAPK pathway [97, 99, 100, 180], 

protein tyrosine kinases [101, 102], the NF-κB pathway [97, 180], and the 

PI3K/Akt/mTOR pathway [180]. Heme degradation products, specifically bilirubin, have 

also been shown to modulate phospho-signaling in multiple contexts [181-183]. Moreover, 

independently of heme, Hb has been shown to modulate the NF-κB pathway [111].  

Phospho-signaling pathways are heavily involved in neuroinflammatory processes 

linked to AD. The MAPK and NF-κB pathways are both strong inflammatory regulators, 

due to their direction transduction of cytokines and their downstream regulation of 

transcription factors that promote expression of pro-inflammatory cytokines and other 

mediators of  inflammation [184, 185]. Most relevant to AD is the PI3K/Akt/mTOR 

pathway, which is involved in both early and late pathological stages of the disease. With 

regards to modulating neuroinflammation in AD, this pathway is well established to 

modulate glial activation and cytokine expression [186, 187] and is a critical regulator of 

autophagy in astrocytes [188].   

Having previously observed numerous changes in astrocyte immune function in 

response to heme (CHAPTER 2) [127], herein, we elucidate the immunomodulatory 

signaling mechanisms driven by heme in astrocytes. Our data reveal that both exogenous 

and intra-cellular heme robustly modulate phosphorylation of the Akt/mTOR signaling 

pathway. Interestingly, we found that extracellularly, heme activates Akt/mTOR signaling 

through activating Insulin-like growth factor 1 receptor (IGF1R). Finally, we found that 

dysregulation of the Akt/mTOR pathway by heme was directly linked to expression of 
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CD36 and HO-1, suggesting that astrocyte immune mechanisms disrupted by heme are at 

least partially regulated by the Akt/mTOR pathway. 

3.2 Materials and Methods 

3.2.1 Primary mouse astrocyte cultures 

Primary mouse astrocyte cultures were derived and maintained as described in 

Chapter 2.2.2. Briefly, astrocytes were derived from postnatal day 0–1 CD1 mice (Charles 

River Laboratories) under a protocol approved by the Georgia Institute of Technology 

Institutional Animal Care and Use Committee. Astrocytes were cultured in astrocyte 

medium (ScienCell) with 2% fetal bovine serum (FBS) (ScienCell), 1% 

penicillin/streptomycin solution (ScienCell), and 1% astrocyte growth serum (ScienCell), 

for up to four passages for experiments. 

3.2.2 Cell conditioning and lysis 

For phospho-protein signaling experiments, primary mouse astrocytes were plated in 

6-well plates. At 80% confluency, cells were serum starved for 1 hour in serum free 

astrocyte media.  For receptor or phospho-signaling inhibition experiments, cells were 

serum starved in combination with either BMS536924 (100 nM; Selleck Chemicals, 

Houston, TX), or rapamycin (10 nM; Selleck Chemicals). Cells were conditioned for 

indicated time points between 5 min and 24 h with combinations of hemin chloride (25 

µM; EMD Millipore), ALA (800 µM, Sigma Aldrich), BMS536924 (100 nM; Selleck 

Chemicals), and rapamycin (10 nM; Selleck Chemicals). Cell lysates were collected using 

the Bio-Plex cell lysis kit, with the addition of one cOmplete mini protease inhibitor tablet 
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and 20 µl of PMSF per 5 ml of lysis buffer. Lysates were placed in microcentrifuge tubes 

and inverted at 4 °C for 10 min, then centrifuged at 4 °C for 10 min at 13,000 rpm. 

Supernatant was collected and stored at -80 °C. 

3.2.3 Multiplexed phospho-protein signaling analysis 

Cell lysates were thawed on ice and centrifuged at 4 °C for 10 min at 13,000 rpm. 

Protein concentrations were determined using a Pierce BCA protein assay (Thermo Fisher 

Scientific) and normalized with Milliplex® MAP assay buffer (EMD Millipore) to 2 μg of 

protein/25 μl for Akt/mTor pathway analysis, 0.75 μg of protein/25 μl for MAPK pathway 

analysis, or 0.75 μg of protein/25 μl for NFκB pathway analysis. These protein 

concentrations were selected because they fell within the linear range of bead fluorescence 

intensity versus protein concentration for detectable analytes. Multiplexed phospho-protein 

quantification was conducted for the Akt/mTOR, MAPK, and NF-κB signaling pathways 

using the Milliplex® MAP Akt/mTOR 11-Plex (p-Akt, p-GSK3α/β, p-IGF1R,p-IR, p-

IRS1, p-mTOR, p-p70S6K, p-PTEN, p-RPS6, and p-TSC2), MAPK/SAPK 10-Plex (p-

ATF2, p-Erk1/2, p-HSP27, p-JNK, p-c-Jun, p-MEK1, p-MSK1, p-p38, p-p53), and NFκB 

6-Plex (c-Myc, p-FADD, p-IκBα, p-IKKα/β, p-NF-κB, TNFR1) phospho-signaling 

magnetic bead kits (EMD Millipore). All kits were read on a MAGPIX® system (Luminex, 

Austin, TX).  

3.2.4 Heme uptake quantification 

Primary astrocytes were plated in T-75 flasks in complete astrocyte medium. At 

70% confluency, cells were transfected with 10 µg of pcDNA3.1-HS1 [189] using 

Lipofectamine LTX with PLUS Reagent (Invitrogen), in astrocyte media containing 10% 
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heme depleted (HD) FBS and 0.5 mM succinylacetone (SA) (Sigma), to inhibit  heme 

synthesis. After 24 hours, the media was replaced with fresh astrocyte media containing 

10% HD FBS and 0.5 mM SA. Cells were then conditioned with either fresh 0.5 mM SA, 

800 µM ALA, or 25 µM heme in astrocyte media with 10% HD FBS, for one of the 

following time points: 5 min, 15 min, 30 min, 1 h, 4 h, 8 h, 24 h. After conditioning, media 

was aspirated, cells were rinsed with Dulbecco’s PBS (DPBS), and lifted with Trypsin-

EDTA solution (Sigma). Cells were washed three times with DPBS to remove trypsin, 

resuspended in 500 µL DPBS, and pushed through a 35µm nylon mesh strainer prior to 

analysis. Cells were analyzed via flow cytometry on a BD LSRFortessa™ flow cytometer 

(BD, Franklin Lakes, NJ), equipped with a 488 nm argon laser and a 561 nm yellow-green 

laser. EGFP was excited via the 488 laser and emission filtered using a 530/30 nm bandpass 

filter while mKATE2 was excited via the 561 laser and emission filtered using a 610/20 

nm bandpass filter. Data was analyzed using FlowJo v10.4.2 (BD, Franklin Lakes, NJ). 

Astrocyte were gated using forward and side scatter parameters and transfected cells were 

gated using negative gating on an untransfected control, ensuring that only transfected 

astrocytes were considered for analysis. 

3.2.5 Immunofluorescent staining 

Cells were fixed with 4% PFA, permeabilized for 10 min at RT with 0.1% Triton 

X-100, and blocked with a 5% BSA, 3% goat serum (Sigma) solution for 1 h. Primary 

antibody incubation was performed overnight at 4 °C, using the HO-1 antibody (1:200; 

Novus) in 0.5% BSA wash buffer. After washing with wash buffer, fixed cells were 

incubated with Alexa Fluor 555 goat anti-mouse secondary antibody (1:200; Thermo 

Fisher Scientific) for 2 h at RT. Cells were co-stained with DAPI (100 ng/ml; Thermo 
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Fisher Scientific) for nuclei. Cells were imaged using epifluorescent microscopy on a Zeiss 

Axio Observer Z.1 inverted microscope. 

3.2.6 Western blot 

Cell lysates, obtained as described above, were thawed on ice and then centrifuged 

for 10 min at 10,000 rpm and 4 °C. Protein concentration was determined using a Pierce 

BCA protein assay and equal amounts of protein were dissolved in reducing sample buffer, 

boiled, and loaded onto sodium dodecyl sulfate (SDS)-polyacrylamide gels. Following 

separation by electrophoresis, proteins were transferred to a Hybond P 0.45-μm 

polyvinylidene fluoride membrane (GE Healthcare). Membranes were blocked at room 

temperature (RT) for 1 h with 5% milk in Tris-buffered saline containing 0.01% Tween 20 

(TBST). Membranes were probed at 4 °C overnight with rabbit anti-CD36 (1:500; Novus 

Biologicals, Littleton, CO) and mouse anti-α-tubulin (1:2000; Sigma). Membranes were 

then incubated with Alexa Fluor–conjugated secondary antibodies (1:2000; Thermo Fisher 

Scientific) for 2 h at RT. Imaging of blots was performed using an Odyssey CLx imager 

(LI-COR Biosciences, Lincoln, NE). Protein quantification was performed using Image 

Studio Lite version 5.2 (LI-COR Biosciences). 

3.2.7 Partial least-squares discriminant analysis 

As in Chapter 2.2.12, PLSDA was performed in MATLAB using the partial least 

squares algorithm by Cleiton Nunes available on the Mathworks File Exchange. All data 

were z-scored before inputting into the algorithm. For all analyses, an orthogonal rotation 

in the LV1-LV2 plane was performed to identify a new LV1 that better separated groups. 



 57 

LV1 error bars were generated by iteratively excluding samples without replacement 1000 

times and report the mean ± SD computed across all regenerated models. 

3.2.8 Statistics 

All statistical analyses were performed using GraphPad Prism version 8 (GraphPad 

Software, La Jolla, CA). Values are presented as mean ± SEM. Statistical significance was 

determined, as appropriate, using Student's t test or ordinary one-way ANOVA followed 

by either Sidak's or Holm-Sidak’s post hoc test. Normality of data was tested using the 

Shapiro–Wilk test of normality. Levels of significance were set as follows: *p < 0.05, **p 

< 0.01, ***p < 0.001, ****p < 0.0001. 

3.3 Results 

3.3.1 Exogenous heme modulates the Akt/mTOR pathway in astrocytes in the presence of 

Aβ 

Because phospho-protein signaling occurs on a much faster time scale (on the order 

of minutes) than other phenotypic responses [190], we analyzed phosphoproteins from 

astrocytes conditioned with combinations of Aβ1–42, 50 nM heme, and 50 nM Hb at 5- and 

15-min time points (Figure 3-1, Figure 3-2). To simultaneously account for data from both 

time points, we concatenated the time point data and used PLSDA to identify signaling 

differences between conditions. Analyzing the effects of heme alone identified two axes of 

interest with respect to heme and Aβ1–42 (Figure 3-1A). First, LV1 separated heme + Aβ1–

42 to the right with all other conditions to the left. Among other signals in the pathway, LV1 

consisted of phospho-Akt, phospho-PTEN, and phospho-TCS2 at the 5-min time point as 
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top correlates with the heme + Aβ1–42 condition (Figure 3-1B). The PLSDA also 

determined that both heme and heme + Aβ1–42 were increased along LV2 (Figure 3-1A), 

which consisted of phospho-mTOR at 15 min, and phospho-IRS1 at both 5- and 15-min 

time points as top correlates with heme or heme + Aβ1–42 (Figure 3-1C). Plotting all 

condition groups along LV1 revealed that heme + Aβ1–42 was significantly different from 

heme alone (Figure 3-1D), whereas plotting along LV2 revealed that treatment either with 

heme alone or with heme + Aβ1–42 was significantly different from vehicle controls (Figure 

3-1E). Thus, these data indicate that heme can significantly shift signaling within the 

Akt/mTOR signaling pathway, which is modulated by Aβ1–42. Applying the same analysis 

to Hb revealed that Hb did not significantly modulate signaling within the pathway 

compared with either control or Aβ1–42 alone (Figure 3-2). 
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Figure 3-1. Akt/mTOR pathway signaling is modulated by heme and Aβ at 5 and 15 
minutes. A. PLSDA of astrocyte Akt/mTOR phospho-protein signaling identifies a latent 
variable (LV1) that separates the heme + Aβ1-42 condition from the heme-only condition 
along the horizontal axis and, second, a latent variable (LV2) that separates all heme 
conditions from the vehicle condition along the vertical axis. B. LV1 depicts a linear 
combination of phosphoproteins at the 5- and 15-min time points that correlate with the 
heme + Aβ1–42 or heme-only conditions. LV1 identifies upstream elements of the pathway, 
including p-PTEN, p-Akt, and p-TSC2, at 5 min as top correlates with the heme + Aβ1–42 
condition. C. LV2 depicts a linear combination of phosphoproteins at the 5- and 15-min 
time points that correlate with the heme and heme + Aβ1–42 conditions or the vehicle 
control. LV2 identifies p-mTOR at 15 min and p-IRS at 15 and 5 min as top correlates with 
both heme conditions. D. Plotting LV1 scores for each group shows that the LV1 profile 
significantly segregates the heme + Aβ1–42 signaling effects from heme-only signaling 
effects (**p<0.01, Kruskal-Wallis test with Dunn’s multiple comparisons test). E. Plotting 
LV2 scores for each group shows that the LV2 profile significantly segregates all heme 
conditions from the vehicle control (*p<0.05, ordinary one-way ANOVA with Sidak’s 
multiple comparisons test, compared to vehicle control). This figure was modified from its 
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original publication in the Journal of Biological Chemistry. Sankar et al. Heme and 
hemoglobin suppress amyloid β–mediated inflammatory activation of mouse astrocytes. J. 
Biol. Chem. 2018; 293: 11358-11373. © the American Society for Biochemistry and 
Molecular Biology 
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Figure 3-2. Akt/mTOR pathway signaling is not significantly modulated by Hb and 
Aβ at 5 and 15 minutes.  A. PLSDA analysis of astrocyte Akt/mTOR phospho-protein 
signaling identifies a latent variable (LV1) which separates the Hb+Aβ condition from the 
Hb-only condition along the horizontal axis, and second a latent variable (LV2) which 
separates, to a lesser extent, the Hb+Aβ condition from the vehicle condition along the 
vertical axis. B. LV1 depicts a linear combination of phospho-proteins at the 5 and 15 min 
time points that correlate with the Hb+Aβ1-42 or Hb-only conditions. LV1 identifies p-
mTOR at the 15 min time point as the top correlated with Hb+Aβ1-42. C. LV2 depicts a 
linear combination of phospho-proteins at the 5 and 15 min time points that correlate with 
the Hb+Aβ1-42 or vehicle conditions. D. Plotting LV1 scores for each group shows that the 
LV1 profile significantly segregates the Hb+Aβ1-42 signaling effects from Hb-only 
signaling effects (n=3, p=0.0097; Hb vs. Hb+Aβ1-42). E. Plotting LV2 scores does not show 
any significant differences between groups on this axis. Data represented as mean ± SEM. 
**p<0.01; ordinary one-way ANOVA with Sidak’s post hoc test.This figure was modified 
from its original publication in the Journal of Biological Chemistry. Sankar et al. Heme 
and hemoglobin suppress amyloid β–mediated inflammatory activation of mouse 
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astrocytes. J. Biol. Chem. 2018; 293: 11358-11373. © the American Society for 
Biochemistry and Molecular Biology 
 

3.3.2 Exogenous heme upregulates the Akt/mTOR, NF-κB, and MAPK phospho-protein 

signaling pathways in astrocytes 

In order to more robustly examine the effects of heme on phospho-signaling outside 

of the context of Aβ, we conducted more thorough analyses of heme-driven phospho-

signaling using a higher concentration of heme (25 µM), which is within a concentration 

range characteristic of hemolytic disorders [145, 191]. Since peak Akt/mTOR activation 

has been previously reported to occur on the order of 30 min in many cell types [192-194], 

we quantified astrocyte Akt/mTOR pathway phosphorylation in response to 30 min of 25 

µM heme treatment (Figure 3-3A). PLSDA revealed that a profile of phospho-proteins in 

the Akt/mTOR pathway was robustly upregulated in response the heme treatment (Figure 

3-3B-C). Individually plotting top analytes from this analysis, including p-mTOR, p-TSC2, 

p-PTEN, p-GSK3β, p-GSK3α, and p-Akt revealed that these changes were also significant 

on an individual protein level (Figure 3-3D). Similar analysis of the NF-κB signaling 

pathway revealed modest upregulation of a panel of phospho-proteins in this pathway, with 

top correlates with heme treatment including p-IκBα and p-NF-κB (Figure 3-4). 

Since the MAPK pathway has been reported to be upregulated more quickly than 

the Akt pathway in astrocytes, we conducted a similar analysis of MAPK signaling using 

a 15 min time point [195]. Again, PLSDA analysis revealed modest upregulation of a 

profile of phospho-proteins in response to heme, with top correlates including p-Erk1/2 

and p-Atf2 (Figure 3-5).  
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Figure 3-3. Heme upregulates the Akt/mTOR pathway in astrocytes after 30 minutes. 
A. Quantification of phosphorylation of 11 Akt/mTOR pathway phospho-proteins in 
primary astrocytes via Luminex analysis. Each column is z-scored and each row represents 
an individual sample. B. PLSDA identified a latent variable, which consisted of a weighted 
combination of phospho-proteins which best separated groups. Error bars are generated 
using a LOOCV (mean ± SD). C. Scoring each sample on this latent variable (LV1) 
revealed that heme treated samples were significantly upregulated on LV1 (error bars, 
mean ± SEM; ****p<.0.0001, Student’s t-test). D. Individually plotting top analytes from 
LV1 reveals significant upregulation of p-mTOR, p-GSK3β, p-TSC2, p-GSK3α, p-PTEN, 
and p-Akt (error bars, mean ± SEM; ****p<.0.0001, ***p<.0.001, **p<.0.01, *p<.0.05, 
Student’s t-test). 
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Figure 3-4. Heme upregulates the NF-κB pathway in astrocytes after 30 min. A. 
Quantification of phosphorylation of 6 NF-κB pathway phospho-proteins in primary 
astrocytes via Luminex analysis. Each column is z-scored and each row represents an 
individual sample. B. PLSDA identified a latent variable, which consisted of a weighted 
combination of phospho-proteins which best separated groups. C. Scoring each sample on 
this latent variable (LV1) revealed that heme treated samples were significantly 
upregulated on LV1 (error bars, mean ± SEM; *p<.0.05, Student’s t-test). 
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Figure 3-5. Heme upregulates the MAPK pathway in astrocytes after 15 min. A. 
Quantification of phosphorylation of 10 MAPK pathway phospho-proteins in primary 
astrocytes via Luminex analysis. Each column is z-scored and each row represents an 
individual sample. B. PLSDA identified a latent variable, which consisted of a weighted 
combination of phospho-proteins which best separated groups. C. Scoring each sample on 
this latent variable (LV1) revealed that heme treated samples were significantly 
upregulated on LV1 (error bars, mean ± SEM; ***p<.0.001, Student’s t-test). 
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3.3.3 Heme uptake by astrocytes is rapid 

To begin to elucidate the extracellular vs. intracellular contributions of heme on 

modulating Akt/mTOR phospho-signaling, we utilized a novel, genetically encoded 

ratiometric heme sensor, HS1 [189], to monitor heme uptake dynamics in astrocytes. HS1 

is composed of an internal fluorescent standard, mKATE2, and the heme reporter, eGFP, 

whose fluorescence is quenched upon binding the heme-binding domain. Thus, labile heme 

can be quantified in terms of the eGFP:mKATE2 fluorescence ratio, with a lower 

eGFP:mKATE2 ratio indicating a relatively higher intracellular labile heme pool. 

Performing fluorescence microscopy determined successful expression of both mKATE2 

and eGFP by primary mouse astrocytes after transfection with HS1 (Error! Reference 

source not found.). 

In order to obtain information on an individual cell basis for a large volume of cells, 

we used flow cytometry to analyze heme uptake dynamics in astrocytes using HS1. HS1 

transfected astrocytes were conditioned with either succinylacetone (SA) as a heme 

depleted control or 25 µM heme for either 5 min, 15 min, 30 min, 1 h, 4 h, or 24 h time 

points. Plotting histograms of eGFP to mKATE2 ratio and calculating mean eGFP to 

mKATE2 ratio  for each time point revealed that exogenous heme uptake was rapid, with 

~50% saturation of HS1 occurring within the first 30 minutes and HS1 saturation occurring 

within 4 h (Figure 3-7A-B).  

To determine how Akt/mTOR signaling dynamics corresponded with heme uptake 

dynamics, phosphorylation of critical nodes of the pathway, namely Akt and mTOR, was 

conducted over a similar time course. Interestingly, this analysis identified that peak Akt 
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and mTOR phosphorylation upregulation occurs early, from 15-30 min, when HS1 is ~50% 

saturated (Figure 3-7B-D). Moreover, from 4 - 24 h when HS1 is fully saturated, Akt and 

mTOR phosphorylation is decreased compared to control conditions (Figure 3-7B-D). 

Together, these findings suggest that early phospho-signaling upregulation may be due to 

extracellular effects of heme while later downregulation of signaling may be due to 

intracellular effects.  

 

Figure 3-6. HS1 is expressed by primary mouse astrocytes. Red indicates expression of 
the mKATE2 internal standard and green indicates expression of eGFP. Scale bars: 20 µM 
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Figure 3-7. Heme uptake dynamics in astrocytes. A. Histograms depicting 
eGFP:mKATE2 ratio of astrocytes transfected with HS1 and treated with either SA for 24 
hours or 25 µM heme for 5 min, 15 min, 30 min, 1 h, 4 h, or 24 h. B. Mean eGFP:mKATE2 
ratio plotted over time. C. Time course of Akt phosphorylation in response to 25 µM heme 
or control conditions, quantified via Luminex analysis. (error bars, mean ± SEM; 
*p<0.05,**p<.0.01, Student’s t-test) D. As in C for mTOR phosphorylation.     

3.3.4 Upregulation of intracellular labile heme downregulates the Akt/mTOR pathway 

To further elucidate the specific Akt/mTOR pathway signaling effects of 

intracellular heme, we sought to upregulate intracellular labile heme independently of 
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applying extracellular heme. To do so, we treated astrocytes with 800 µM δ-aminolevulinic 

acid  (ALA), which is the first compound in the heme biosynthesis pathway (Figure 3-8). 

As a result, ALA is uptaken by cells and intracellular heme synthesis is increased. In order 

to determine the time required for ALA to upregulate labile heme in astrocytes, we used 

HS1 to compare labile heme levels for time points between 4 and 24 hours after ALA 

treatment (Figure 3-9). This revealed that HS1 saturation, and therefore labile heme 

upregulation, occurred between 4 and 8 hours after ALA treatment (Figure 3-9). 

 

Figure 3-8. Heme biosynthesis pathway. Heme synthesis consists of a series of enzymatic 
steps, initiated by the synthesis of  δ-aminolevulinic acid  (ALA) from glycine and succinyl 
CoA. Succinylacetone inhibits the second step of heme synthesis by inhibiting the 
enzymatic activity of ALA dehydratase.  
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Figure 3-9. ALA upregulates intracellular labile heme in astrocytes. Histograms 
depicting eGFP:mKATE2 ratio of astrocytes transfected with HS1 and treated with either 
SA for 24 hours or 800 µM ALA for 4, 8, or 24 h.  

 To determine how labile heme upregulation affected Akt/mTOR signaling, we 

quantified Akt/mTOR pathway phospho-signaling at 6 and 8 hours after ALA treatment, 

which were within the window of labile heme upregulation as indicated by HS1. 

Interestingly, performing a PLSDA for both 6 hours (Figure 3-10A-C) and 8 hours (Figure 

3-10D-F) revealed that upregulation of labile heme by ALA significantly suppressed 

expression of panels of phospho-proteins in the Akt/mTOR pathway at both time points. 

This is in stark contrast to the significant upregulation of the pathway observed 30 min 

after treatment with exogenous heme (Figure 3-3). 
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Figure 3-10. Upregulating intracellular heme using ALA suppresses Akt/mTOR 
pathway phosphorylation. A. Quantification of phosphorylation of 11 Akt/mTOR 
pathway phospho-proteins in primary astrocytes via Luminex analysis, after 6 hour ALA 
treatment. Each column is z-scored and each row represents an individual sample. B. 
PLSDA identified a latent variable, which consisted of a weighted combination of 
phospho-proteins which best separated groups. C. Scoring each sample on this latent 
variable (LV1) revealed that ALA treated samples were significantly downregulated on 
LV1 (error bars, mean ± SEM; ****p<.0.001, Student’s t-test). D. As in A, for 8 hour after 
ALA treatment. E. As in B, for 8 hour ALA treatment. F. As in F, for 8 hour ALA treatment 
(error bars, mean ± SEM; **p<.0.01, Student’s t-test) 
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3.3.5 Exogenous heme activates the Akt/mTOR pathway through activation of IGF1R 

Due to rapid upregulation of Akt/mTOR signaling in response to exogenous heme 

(Figure 3-7) and distinctly different signaling effects in response to upregulation of 

intracellular heme (Figure 3-10), we hypothesized that  heme may activate the Akt/mTOR 

pathway through activating cell surface receptors. Since IGF1R and insulin receptor (IR) 

are well characterized as receptors upstream of Akt and mTOR (Figure 3-11), we used 

BMS536924, a competitive inhibitor for IGF1R and IR, to block ligand-induced 

phosphorylation of these receptors [196]. Excitingly, we found that blocking IGF1R/IR 

attenuated Akt/mTOR pathway upregulation by heme, as determined by PLSDA (Figure 

3-12). Since PLSDA identified IGF1R, and not IR, as a top correlate with heme treatment 

(Figure 3-12B), it is likely that IGF1R may be predominantly involved in this response. 

This suggests a novel role for heme as an agonist of IGF1R. 
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Figure 3-11. Illustration of the PI3K/Akt/mTOR signaling network, depicting nodes 
involved in mediating immunomodulatory and phagocytic functions. This figure was 
modified from its original publication in the Journal of Biological Chemistry. Sankar et al. 
Heme and hemoglobin suppress amyloid β–mediated inflammatory activation of mouse 
astrocytes. J. Biol. Chem. 2018; 293: 11358-11373. © the American Society for 
Biochemistry and Molecular Biology. 
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Figure 3-12. Inhibition of IGFIR/IR suppresses Akt/mTOR pathway activation in 
response to heme. A. Quantification of phosphorylation of 11 Akt/mTOR pathway 
phospho-proteins in primary astrocytes via Luminex analysis, after 30 minutes of heme 
treatment. B. PLDSA identified LV1, which separates heme treated astrocytes from all 
other groups. Error bars are generated using a LOOCV (mean ± SD). C. Scoring each 
sample on LV1 reveals that 25 μM heme significantly upregulates LV1 while inhibition of 
IGFIR/IR with BMS536924 attenuates this effect. (mean ± SEM, *p<0.05, ordinary one-
way ANOVA, with Holm-Sidak’s post-hoc test.) 
 

3.3.6 The Akt/mTOR pathway is linked to immune function in astrocytes 

Given the robust modulation of the PI3K/Akt/mTOR signaling pathway in response 

to heme and the strong link between this pathway and regulation of immune expression, 

we next investigated whether perturbing Akt/mTOR signaling would restore immune 

phenotypes dysregulated by heme. We began by looking at CD36 expression, which we 

previously found to be strongly suppressed in response to heme (Figure 2-7). We 
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hypothesized that inhibition of the pathway would restore astrocyte scavenger receptor 

expression. To test this, we used rapamycin, which inhibits signaling through mTOR, a 

central node within the PI3K/Akt pathway (Figure 3-11). Indeed, co-treatment of heme + 

Aβ1-42 with 10 nM rapamycin yielded partial recovery of CD36 expression. 

 

Figure 3-13. CD36 expression by astrocytes is partially recovered in response to 
rapamycin treatment.  A. Co-treatment of astrocytes with heme + rapamycin increases 
CD36 expression compared with heme treatment alone. B. Western blot depicting CD36 
expression (mean ± SEM, **p<0.01, Student’s t-test). This figure was modified from its 
original publication in the Journal of Biological Chemistry. Sankar et al. Heme and 
hemoglobin suppress amyloid β–mediated inflammatory activation of mouse astrocytes. J. 
Biol. Chem. 2018; 293: 11358-11373. © the American Society for Biochemistry and 
Molecular Biology 
 

Since we observed numerous anti-inflammatory phenotypes in response to heme in 

astrocytes, we hypothesized that HO-1 activity may be involved in mediating these 
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processes, since it heme-inducible and is known to have anti-inflammatory roles [112-116]. 

Given the involvement of the Akt/mTOR pathway in regulating immune activity the link 

between HO-1 and kinase signaling [117, 119], we further hypothesized that the 

Akt/mTOR pathway may regulate HO-1 expression in astrocytes. Indeed, we found that 

HO-1 expression was significantly upregulated after 24 hours of heme treatment, 

suggesting that it could be downstream of Akt/mTOR pathway activation and responsible 

for anti-inflammatory phenotypes in astrocytes (Figure 3-14A). Moreover, we found that 

inhibiting mTOR with rapamycin significantly decreased HO-1 expression in response to 

heme (Figure 3-14B-C), suggesting that HO-1 expression is partially regulated by the 

Akt/mTOR pathway.  
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Figure 3-14. Upregulation of HO-1 in astrocytes by exogenous heme is mTOR 
dependent. A. Time course of HO-1 expression by astrocytes in response to exogenous 
heme (mean ± SEM, ****p<0.0001, Student’s t-test). B. HO-1 expression after 24 hours 
of heme treatment is suppressed upon co-treatment with rapamycin (mean ± SEM, 
****p<0.0001, ordinary one-way ANOVA with Sidak’s post-hoc test) C. Representative 
images of astrocyte HO-1 expression after 24 hours for control, heme and rapamycin + 
heme conditions.  

3.4 Discussion 

Heme is increasingly recognized for its role as a modulator of immune signaling, 

but to date this role has not been well-studied in the context of the brain. Excess heme in 

the brain is associated with a number of pathological conditions including, but not limited 

to, AD, ischemic stroke, and traumatic brain injury [78, 141, 197].  Thus, unraveling the 

signaling mechanisms of heme in the brain can provide broad insight into heme-mediated 

neuroinflammatory dysfunction, which is applicable to a variety of conditions. Elevated 

levels of heme in AD and related conditions could be due to a number of factors, including 

extravasation and lysis of red blood cells through a leaky brain vasculature and hyper-
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production of heme by glia and neurons under pathological conditions [75, 84]. Thus, both 

intracellular and extracellular heme may contribute to modulation of the neuro-immune 

environment in AD. 

To begin to elucidate the signaling roles heme may exert on astrocytes, we began by 

broadly quantifying how heme alters phospho-signaling in the PI3K/Akt/mTOR, MAPK, 

and NF-κB pathways. These pathways were selected due to their importance in modulating 

immune phenotypes including cytokine expression and scavenger activity [184-186]. 

Furthermore, these pathways have been reported to be modulated by heme in a variety of 

other cell types, including peripheral immune cells [97, 99, 100, 180]. Performing 

multiplex Luminex assays and PLSDA, we found that heme modestly upregulated the 

MAPK and NF- κB pathways, and robustly upregulated the Akt/mTOR pathway (Figure 

3-5, Figure 3-4, Figure 3-3). Interestingly, modulation of the Akt/mTOR pathway 

occurred in both Aβ-dependent and Aβ-independent manners (Figure 3-1, Figure 3-3), 

and changes were exclusive to free heme, not Hb (Figure 3-2).  

Findings of robust upregulation of the Akt/mTOR pathway in astrocytes are 

particularly interesting given the numerous immune functions in astrocytes it regulates 

which are relevant to AD. The Akt/mTOR pathway regulates expression of cytokines 

[198], scavenger activity [199], and autophagy [188, 200], and is also involved in 

regulating migration [198] and glial scar formation [201]. These findings are particularly 

consistent with our earlier findings of suppressed phagocytic capacity and scavenger 

activity in response to heme in astrocytes (Figure 2-7). In addition, this pathway regulates 

numerous homeostatic functions in astrocytes, including viability [202], growth [203], and 

glutamate transport [204].  
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Since both extra- and intra-cellular heme are pathologically relevant to AD, we 

further sought to elucidate the distinct signaling contributions of extra- vs. intra- cellular 

heme. To do this, we began by characterizing exogenous heme uptake dynamics using a 

genetically encoded, ratiometric, fluorescent heme sensor, HS1. Quantification of 

eGFP:mKATE2 ratio over a time course indicated that HS1 was ~50% saturated within 30 

min of exogenous heme treatment and was fully saturated between 4 and 24 h (Figure 

3-7A-B). Compared with heme uptake dynamics, time courses of Akt and mTOR 

phosphorylation revealed significant increases in phosphorylation within 30 min, and 

decreases at 24 hours when compared to controls (Figure 3-7C-D). Taken together with 

the heme uptake dynamics data, this suggests that rapid Akt/mTOR signaling within the 

first 30 min may be driven by extracellular heme, while intracellular heme may be 

responsible for suppression of the pathway at longer time points. Further supporting these 

data were our findings that upregulating intracellular heme synthesis with ALA 

downregulated Akt/mTOR pathway signaling compared to controls (Figure 3-9, Figure 

3-10), consistent with findings of Akt and mTOR downregulation 24 h after exogenous 

heme treatment (Figure 3-7C-D). Taken together, these data indicate diverse signaling 

capabilities for intracellular vs. extracellular heme. One plausible explanation for this 

dichotomy is that extracellular heme triggers phospho-signaling through binding 

extracellular cell surface receptors and intracellular heme may elicit anti-inflammatory 

responses through activating HO-1.  

Given that heme has been shown to bind and activate cell surface receptors in other 

contexts [95-97], we sought to identify whether similar mechanism could be responsible 

for the extracellular signaling effects produced by heme. Since IGF1R and IR are canonical 
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receptors upstream of Akt and mTOR (Figure 3-11) and are implicated in AD pathology, 

we used a pan inhibitor of IGF1R and IR to block these receptors in the presence of heme. 

Excitingly, we found that blocking IGF1R/IR attenuated Akt/mTOR pathway upregulation 

in response to heme at 30 min (Figure 3-12). Since PLSDA identified IGF1R to be the top 

correlate with heme upregulation and IR to correlate poorly, it is likely that IGF1R is 

responsible for producing this effect (Figure 3-12B). Thus, these data suggest a novel 

mechanism for heme as an agonist of IGF1R in astrocytes.  This finding is highly relevant 

given that dysfunctional IGF1R and IR signaling are characteristic of AD [205]and other 

pathologies comorbid with AD, such as diabetes. Moreover, IGF1R has shown to modulate 

Aβ clearance [206], suggesting that heme may inhibit astrocytic Aβ uptake through 

IGF1R/Akt/mTOR signaling. 

Finally, our data suggest a mechanistic link between dysregulation of Akt/mTOR 

pathway signaling and immune phenotypes in astrocytes. Specifically, we found that CD36 

and HO-1 expression, which are decreased and increased by heme, respectively, are 

partially restored to control-like conditions in response to inhibition of mTOR by 

rapamycin.  Beyond neuroinflammation, kinase signaling can potentiate AD pathology 

through driving other pathological events. For example, both the MAPK and Akt/mTOR 

pathways are involved in modulating tau pathology [207, 208]. Thus, the findings of 

dysregulated phospho-signaling in response to heme could have implications to AD beyond 

modulating neuroinflammation.  
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CHAPTER 4. DETERMINING THE EFFECTS OF HEME ON 

NEUROINFLAMMATION IN VIVO 

4.1 Introduction 

Neuroinflammation is emerging as an important aspect of AD pathology, yet 

whether its contributions to AD pathogenesis are harmful or beneficial remains debated 

[128, 129, 162]. Among the beneficial contributions of neuroinflammation, activated 

astrocytes and microglia in AD migrate toward Aβ plaques and uptake and degrade Aβ 

[56, 63, 135-137]. Moreover, both astrocytes and microglia secrete chemokines, which 

function in further recruiting immune cells to Aβ plaque sites [138, 139]. However, glia 

can also become “fatigued” at later stages of AD, ultimately losing phagocytic capacity 

and increasing Aβ burden [61, 62]. In reality, it is likely that the consequences of 

neuroinflammation span a range from positive to negative effects, yet the factors that 

contribute to mediating this balance are not well established.  

Elevated levels of Hb and heme are characteristic of AD [76-79] and physically 

bind Aβ, thereby modifying Aβ aggregation state and imparting unique peroxidase activity 

[78, 79, 82]. With relevance to inflammation, heme and Hb have been shown to 

demonstrate immunomodulatory signaling capabilities in peripheral macrophages and 

endothelial cells [95-97]. However, the immunomodulatory roles they may take on in the 

brain, specifically in an AD environment, remain unknown. 

Herein, we elucidate the effects of heme on Aβ-dependent and Aβ-independent 

neuroinflammation in vivo, to expand upon our in vitro findings from Chapter 2. 
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Interestingly, our in vivo data show that many similarities to our in vitro results, suggesting 

that heme suppresses Aβ-induced cytokine expression and Aβ clearance. Additionally, our 

data show that depletion of heme synthesis in vivo robustly upregulates cytokines and 

chemokines in the cortex. Taken together, these data show for the first time in vivo that 

heme alters the neuro-immune environment, both in an out of the context of Aβ.  

4.2 Materials and Methods 

4.2.1 Recombinant Aβ1–42 preparation 

Unlabeled Aβ1-42 was prepared as in Chapter 2.2.1. Briefly, HFIP-pretreated Aβ1-42 

(rPeptide) was diluted from a stock of 500 μM Aβ in 1% NH4OH that was stored at −80 

°C. Before reconstitution, Aβ1-42 was retreated with 500 μl HFIP per milligram of Aβ1-42 

overnight to prevent pre-aggregation. HFIP was evaporated before dilution in 1% NH4OH. 

HiLyte™ Fluor 555 labeled Aβ1-42 (Anaspec, Fremont, CA) was also reconstituted to a 500 

μM stock but received no HFIP pre-treatment. 

4.2.2 Stereotactic injections and tissue collection 

Eight to ten week old female CD-1® IGS mice from Charles River Laboratory 

(Strain code 022) were used. All procedures were approved by the Georgia Institute of 

Technology Institutional Animal Care and Use Committee. Mice were housed in a 

pathogen free facility with a twelve-hour light/dark cycle for a minimum of three days after 

arrival. Food and water were provided ad libitum. Mice were anesthetized with 5% inhaled 

isoflurane (0.8 L/min) in a small induction chamber and maintained at 1% to 3% isoflurane. 

After induction, 0.8 mg/kg sustained release buprenorphine was delivered via 
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intraperitoneal (IP) injection and 7 mg/kg 2% lidocaine was injected subcutaneously to the 

scalp. Mice were then mounted onto a stereotaxic instrument (David Kopf Instruments, 

Tujunga, CA) and secured with a head holder and non-rupture ear bars. Two symmetrical 

0.25mm craniotomies were made in the skull with a micromotor high-speed drill (Stoelting 

Co., Chicago, IL) at coordinates roughly 3 mm caudal at 2 mm lateral from bregma 

according to stereotactic measurements. Either 0.002% NH4OH, 1 µM hemin chloride, 1 

µM unlabeled Aβ1-42, or 1 µM HiLyte™ Fluor 555 labeled Aβ1-42 was loaded into a 

Hamilton Neuros syringe with a point style 4 needle (Hamilton Company, Reno, NV). 

Using a 10 µm resolution stereotaxic arm (David Kopf Instruments), the syringe was 

descended into the tissue at a depth of 800 µm. Each animal was injected twice, each time 

with 100 nL of the appropriate solution at a rate of 25 nL/min, using a Quintessential 

Stereotaxic Injector (Stoelting). After the injection, the syringe remained in place for an 

additional 2.5 minutes before being removed from the brain. Craniotomies were left to heal 

naturally. The skull was sealed using 5-0 vicryl sutures (Ethicon Inc, Somerville, NJ). 

Antibiotic ointment was applied on top of the sutures. All surgical procedures were 

performed using sterile surgical technique in a positive pressure operating room. After 

surgery, mice were recovered under a heat lamp and housed in cages with post-operative 

bedding. Either 4 or 7 days after surgery, mice were sacrificed via cervical dislocation 

under anesthesia and the brain removed. For amyloid burden quantification experiments, 

brains were fixed in 4% PFA. For cytokine quantification experiments, injection regions 

were microdissected and lysed using the Bio-Plex cell lysis kit, with the addition of one 

cOmplete mini protease inhibitor tablet and 20 µl of PMSF per 5 ml of lysis buffer. Lysates 
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were placed in microcentrifuge tubes and inverted at 4 °C for 10 min, then centrifuged at 

4 °C for 10 min at 13,000 rpm. Supernatant was collected and stored at -80 °C. 

4.2.3 SA treatment and tissue collection 

Eight week old male C57BL/6 mice from Jackson Laboratory (stock no. 000664) 

were used. All procedures were approved by the Georgia Institute of Technology 

Institutional Animal Care and Use Committee. Mice were housed in a pathogen free facility 

with a 12 h/12 h light/dark cycle for a minimum of three days after arrival. Food and water 

were provided ad libitum. For IP injection experiments, mice were subjected to IP injection 

of 40 mg/kg SA diluted in physiologic saline, daily for 14 days. Control mice were injected 

daily with physiologic saline. For delivery of SA via drinking water, SA was diluted to a 

final concentration of 0.3 mg/mL in drinking water, which was replaced once weekly for 

14 days. For tissue collection, mice were sacrificed via cervical dislocation under 

anesthesia and the brain (frontal cortex) and liver tissues collected and flash frozen with 

liquid nitrogen. Tissues were lysed using the Bio-Plex cell lysis kit, with the addition of 

one cOmplete mini protease inhibitor tablet and 20 µl of PMSF per 5 ml of lysis buffer. 

Lysates were placed in microcentrifuge tubes and inverted at 4 °C for 10 min, then 

centrifuged at 4 °C for 10 min at 13,000 rpm. Supernatant was collected and stored at -80 

°C. 

4.2.4 Multiplexed phospho-protein and cytokine signaling analysis 

Cell lysates were thawed on ice and centrifuged at 4 °C for 10 min at 13,000 rpm. 

Protein concentrations were determined using a Pierce BCA protein assay (Thermo Fisher 

Scientific) and normalized with Milliplex® MAP assay buffer (EMD Millipore) to 4 μg of 
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protein/25 μl for Akt/mTor pathway analysis and 6 μg of protein/25 μl for cytokine analysis 

because these dilutions fell within the linear range of bead fluorescence intensity versus 

protein concentration for detectable analytes. Multiplex Akt/mTOR pathway phospho-

signaling analysis was conducted by adapting the protocol provided for the Milliplex® 

MAP Akt/mTOR 11-Plex with beads for p-Akt, p-GSK3α/β, p-IGF1R,p-IR, p-IRS1, p-

mTOR, p-p70S6K, p-PTEN, p-RPS6, and p-TSC2. Multiplex cytokine analysis was 

conducted by adapting the protocol provided for the Milliplex® MAP mouse 

cytokine/chemokine 32-Plex kit, with beads for Eotaxin, G-CSF, GM-CSF, interferon-γ, 

IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, 

IL-15, IL-17, IP-10, KC, LIF, LIX, MCP-1, M-CSF, MIG, MIP-1α, MIP-1β, MIP-2, 

RANTES, TNF-α, and VEGF. Cytokine and phospho-protein signaling kits were read on 

a MAGPIX® system. 

4.2.5 Immunohistochemistry and imaging 

Brains were fixed in 4% PFA, paraffin processed, and embedded. Tissue slices were 

cut into 7 μm thick coronal or sagittal sections using a rotary microtome (Thermo Fisher) 

and affixed onto glass microscope slides (Electron Microscopy Sciences, Hatfield, PA). 

Tissue slices were deparaffinized in xylenes and rehydrated by washing with 100% ethanol, 

95% ethanol, and deionized water. Antigen retrieval was performed in a microwave by 

boiling slides in 10 mM sodium citrate buffer at pH 6.0. Slides were rinsed in TBST. A 

hydrophobic ring was drawn around each individual tissue slice using an 

immunohistochemistry PAP pen (Enzo Life Sciences, Farmingdale, NY), after which 

samples were blocked for 1 h in Odyssey blocking buffer (OBB). Samples were incubated 

at 4 °C overnight with primary antibodies diluted in OBB: either with anti-GFAP (1:1000, 
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Novus) or anti-Iba1 (Invitrogen, 1:200), as appropriate. Slides were rinsed again in TBST 

and incubated with the Alexa Fluor 647 secondary antibody, diluted 1:200 in OBB. Slides 

were counterstained with 1 μg/uL DAPI, rinsed, and mounted with VECTASHIELD 

Antifade Mounting Medium (Vector Laboratories, Burlingame, CA). Samples were 

imaged using epifluorescent microscopy on a Zeiss Axio Observer Z.1 inverted 

microscope.  

4.2.6 Quantification of Aβ burden 

Aβ burden was quantified using Fiji [209]. Briefly, for each brain, the full region 

containing the injection site was coronally sectioned. Aβ burden for each slice and injection 

site was quantified in terms of integrated density. Total Aβ burden for each animal and 

injection site was quantified by summing integrated density for each tissue slice containing 

Aβ. 

4.2.7 Partial least-squares discriminant analysis 

As in Chapters 2.2.12 and 3.2.7, PLSDA was performed in MATLAB using the 

partial least squares algorithm by Cleiton Nunes available on the Mathworks File 

Exchange. All data were z-scored before inputting into the algorithm. For all analyses, an 

orthogonal rotation in the LV1-LV2 plane was performed to identify a new LV1 that better 

separated groups.  

4.2.8 Statistics 

All statistical analyses were performed using GraphPad Prism version 8 (GraphPad 

Software, La Jolla, CA). Values are presented as mean ± SEM. Statistical significance was 
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determined using Student's T-test. Normality of data was tested using the Shapiro–Wilk 

test of normality. Levels of significance were set as follows: *p < 0.05, **p < 0.01, ***p 

< 0.001, ****p < 0.0001. 

4.3 Results 

4.3.1 Intracranial injection of Aβ and heme modulates local cytokine expression in WT 

mice 

In order to isolate the specific neuroinflammatory effects of heme and Aβ1-42 in 

vivo, we stereotactically injected combinations of heme and Aβ1-42 into the cortex and 

quantified cytokine expression in the cortical tissue 4 days after injection (Figure 4-1). To 

account for surgical variabilities from animal to animal, two injections were made in each 

animal, one in each hemisphere of the brain, with each injection corresponding to a 

different experimental group. This allowed for direct comparison of two conditions in a 

single animal. The experimental design and groups are delineated in Figure 4-1 and Table 

4-1. 
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Figure 4-1. Experimental timeline for intracranial injection experiments. On day 0, 
mice were injected once in each hemisphere with combinations of vehicle, heme, Aβ1-42, 
and heme + Aβ1-42. On either day 4 or day 7, brains were harvested for analysis. 

 

Table 4-1. Experiment groups for quantification of cytokines after intracranial injection of 
Aβ1-42 and heme 

Strain Left Hemisphere Right Hemisphere Days 

CD-1 1 µM Aβ1-42 0.002% NH4OH 

(Vehicle) 

4 

CD-1 1 µM Heme + 

0.002% NH4OH 

(Vehicle) 

0.002% NH4OH 

(Vehicle) 

4 

CD-1 1 µM Aβ1-42 1 µM Aβ1-42 + 1 µM 

Heme 

4 
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We first examined the in vivo inflammatory effects of Aβ1-42 by itself, as compared 

to a vehicle control injection. In order to do so, we used a Luminex assay to quantify 

expression of a panel of 32 cytokines into the tissue surrounding the injection site 4 days 

after 100 nL of 1 µM Aβ1-42 or vehicle was stereotactically injected (Figure 4-2A).  Using 

PLSDA, we found identified a profile of cytokines (LV1) that separated the vehicle 

injection samples from the Aβ1-42 injection samples. Plotting each sample in terms of its 

score on LV1 revealed that Aβ1-42 upregulated expression of this profile of cytokines 

(Figure 4-2B-C). Interestingly, several of the top cytokines upregulated by Aβ1-42 from 

this analysis (ie. IL-9, IL-4, IL-1α, IL-1β) were previously identified to be robustly 

upregulated in response to Aβ1-42 by microglia and astrocytes in our in vitro experiments 

(Figure 2-3, Figure 2-9, Figure 2-10).   

 

 



 90 

 

Figure 4-2. Intracranial injection of Aβ1-42 broadly upregulates expression of 
cytokines in surrounding tissue. A. Quantification of 32 cytokines expressed into the  
cortex via Luminex analysis. Each column is z-scored and each row represents an 
individual sample. Each individual animal is identified by numbers 1-3. B. PLSDA 
identified a latent variable (LV1), which consisted of a weighted combination of cytokines 
which best separated groups. C. Scoring each sample on LV1 revealed that Aβ injection 
upregulated this profile compared to vehicle injection. 

Since our in vitro studies found that heme modulates Aβ1-42-induced cytokine 

expression in both astrocytes and microglia, we next sought to investigate whether these 

findings were mirrored in vivo. Thus, we again used a multiplex Luminex assay, this time 

to compare cytokine expression in the tissue surrounding the injection site between 

injection of 1 µM Aβ1-42 and injection of 1 µM Aβ1-42 + 1 µM heme (Figure 4-3A). Again 

performing PLSDA, we identified LV1 which best separated the Aβ1-42 group from the Aβ1-

42 + heme group (Figure 4-3B). Plotting each sample in terms of its score on LV1 revealed 

that Aβ1-42 + heme downregulated expression of this profile of cytokines with respect to 

Aβ1-42 alone (Figure 4-3C). This analysis identified that top cytokines downregulated in 

response to co-treatment of heme and Aβ1-42 included M-CSF, IL-7, and IL-9, again very 

consistent with cytokines that were downregulated by heme in earlier in vitro experiments 
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(Figure 2-3, Figure 2-9, Figure 2-10). While LV1 revealed that most cytokines were 

downregulated in response to heme, it also showed that a few cytokines, most notably the 

IP-10, were downregulated (Figure 4-3B).  

Performing a similar analysis comparing cytokine expression in response to vehicle 

vs. heme injection revealed that heme on its own modestly upregulated a panel of 

cytokines, the top of which included IL-10, Macrophage Inflammatory Protein (MIP)-2, 

and Interferon gamma (IFNγ) (Figure 4-4A-C). However, these changes were much more 

variable and less robust that the Aβ1-42 injection experiments. The lack of  strong changes 

in cytokine expression in response heme is in line with our in vitro findings which indicated 

that heme on its own did not stimulate cytokine expression changes in astrocytes or 

microglia (Figure 2-3, Figure 2-9, Figure 2-10, Figure 2-11).  
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Figure 4-3. Intracranial injection of equimolar heme with Aβ1-42 suppresses 
expression of some cytokines in surrounding tissue. A. Quantification of 32 cytokines 
expressed into the cortex via Luminex analysis. Each column is z-scored and each row 
represents an individual sample. Each individual animal is identified by numbers 4-6. B. 
PLSDA identified a latent variable (LV1), which consisted of a weighted combination of 
cytokines which best separated groups. C. Scoring each sample on LV1 revealed that heme 
+ Aβ injection downregulated this profile compared to Aβ injection. 
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Figure 4-4. Intracranial injection of heme upregulates expression of some cytokines 
in surrounding tissue. A. Quantification of 32 cytokines expressed into the cortex via 
Luminex analysis. Each column is z-scored and each row represents an individual sample. 
Each individual animal is identified by numbers 8-10. B. PLSDA identified a latent 
variable (LV1), which consisted of a weighted combination of cytokines which best 
separated groups. C. Scoring each sample on LV1 revealed that heme injection upregulated 
this profile compared to vehicle injection. 

4.3.2 Activated astrocytes are recruited to Aβ injection sites 

In order to determine which cell types could be responsible for producing cytokine 

responses in the area surrounding the injection site, immunohistochemistry was performed 

to identify microglia and astrocytes in the vicinity of the injection site. Staining for 

activated astrocytes using GFAP as a marker revealed that at both the 4 day and 7 day time 

points, injection of Aβ produced a robust local astrocytic response. Specifically, activated 

astrocytes were recruited to the injection site and could be seen to engulf Aβ plaques 

(Figure 4-5, Figure 4-6). Conversely, Iba1 staining revealed minimal microglial activation 

in the area surrounding the injection site at day 7 and no activated microglia were seen to 

surround Aβ plaques (Figure 4-7). 
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Figure 4-5. Activated astrocytes expressing GFAP are recruited to Aβ1-42 injection site 
4 days after injection. Arrow indicates Aβ1-42 aggregate. Scale bar, 50 μM.  
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Figure 4-6. Activated astrocytes expressing GFAP are recruited to Aβ1-42 injection site 
7 days after injection. Scale bar, 20 μM 
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Figure 4-7. Iba-1 positive microglia are present in the vicinity of the Aβ1-42 injection 
site 7-days after injection but do not engulf Aβ1-42. Scale bar, 50 μM. 

4.3.3 Intracranial injection of Aβ and heme suppresses Aβ clearance in WT mice 

Having observed that heme modulated Aβ1-42-induced cytokine changes in vivo, we 

were next interested in assessing whether heme would also affect clearance of Aβ, 

particularly since our in vitro studies found that scavenger activity was suppressed in both 

astrocytes and microglia in response to heme (Figure 2-7, Figure 2-12). Again, we used 

stereotactic injection of Aβ1-42 into WT mice as our model to investigate this, this time 

using HiLyte Fluor 555, fluorescently labeled Aβ1-42. As before, animals each received two 

intracranial injections, one of 1 µM Aβ1-42 in the left hemisphere and the other with 1 µM 

Aβ1-42 + 1 µM heme in the right hemisphere (Table 4-2). Aβ burden was quantified at either 
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4 days or 7 days after injection (Figure 4-1).  Quantification revealed that at 4 days after 

injection, there was a trend towards higher Aβ burden in the presence of heme (Figure 4-8, 

Figure 4-10A). At the 7 day time-point, Aβ burden in the presence of heme was 

significantly increased compared to injection without heme (Figure 4-9, Figure 4-10B).   

Table 4-2. Experiment groups for quantification of Aβ burden after intracranial injection 
of Aβ1-42 (HiLyte Fluor 555) and heme 

Strain Left Hemisphere Right Hemisphere Days 

CD-1 1 µM Aβ1-42 

(HiLyte Fluor 555) 

1 µM Aβ1-42 

(HiLyte Fluor 555) 

+ 1 µM Heme 

4 

 CD-1 1 µM Aβ1-42 

(HiLyte Fluor 555) 

1 µM Aβ1-42 

(HiLyte Fluor 555) 

+ 1 µM Heme 

7 
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Figure 4-8. Representative images of Aβ1-42 injections 4 days after injection into the 
cortex. Aβ1-42 burden is higher when injected in combination with heme (right) compared 
to on its own (left). Scale bar, 50 μM. 

 

Figure 4-9. Representative images of Aβ1-42 injections 7 days after injection into the 
cortex. Aβ1-42 burden is higher when injected in combination with heme (right) compared 
to on its own (left). Scale bar, 50 μM. 
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Figure 4-10. Intracranial injection of Aβ1-42 with heme into WT mice suppresses Aβ1-

42 clearance. A. Quantification of Aβ 4 days after injection into the cortex. Aβ burden 
trends towards increased when Aβ1-42 is injected in combination with heme. B. As in A for 
7 days after injection (n=3; mean ± SEM, *p<0.05; Student’s t-test).    

4.3.4 Suppression of heme synthesis with succinylacetone upregulates cytokine 

expression and suppresses Akt/mTOR signaling in WT mice 

Since upregulation of intracellular heme synthesis is suspected to contribute to 

elevated heme levels in AD [84] and upregulating heme synthesis in primary astrocytes 

suppressed Aβ1-42-induced cytokine expression much like extracellular heme, we next 

sought to examine whether suppressing heme synthesis in vivo could promote 

neuroinflammatory activation. To do this, we delivered 40 mg/kg SA daily to WT C57BL/6 

mice via IP injection daily for 2 weeks. Quantifying total heme in the liver and the brain 

cortex after these two weeks revealed that heme was indeed significantly reduced in these 

tissues in response to daily SA injection (Figure 4-11). In order to determine the 

neuroinflammatory effects of heme depletion in the brain, we again performed multiplexed 

quantification of a panel of 32 cytokines from cortical tissue using a Luminex 

immunoassay and analysed this data using PLSDA (Figure 4-12). Our analysis identified 

pro-inflammatory cytokine profile, LV1, which separated SA-injected mice from saline-
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injected mice (Figure 4-12B). Plotting each animal in terms of its score on this profile 

revealed that SA-injected mice were significantly upregulated on this profile compared to 

saline-injected mice (Figure 4-12C). Top correlates with SA-injection included IL-6, 

MCP-1, M-CSF, and MIP-1β, all of which are known to have strong chemotactic properties 

[210-214]. Interestingly, similar findings, although less robust, were observed with SA 

delivery in drinking water for 14 days (Figure 4-13Figure 4-13). Again, top correlates with 

SA possessed highly chemotactic functions, this time including G-CSF [215] and GM-CSF 

[216] in addition to MCP-1, M-CSF, and IL-6.  

 

Figure 4-11. Total heme in cortex and liver is reduced after 14-day daily SA injection. 
A. Total heme in the cortex of WT mice, as quantified by a porphyrin fluorescence assay, 
is significantly reduced after 14-day daily IP injection of 40 mg/kg SA (mean ± SEM, 
Student’s t-test). B. As in A for liver. Porphyrin fluorescence assay courtesy of Dr. Rebecca 
Donegan.  
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Figure 4-12. Cortical cytokine expression is upregulated in WT mice after 14-day 
daily SA injection. A. Quantification of expression of 32 cytokines in WT mouse cortices, 
via Luminex analysis. Each column is z-scored and each row represents an individual 
animal. B. PLSDA identified a latent variable (LV1), which consisted of a weighted 
combination of cytokines which best separated groups. Error bars are generated using a 
LOOCV (mean ± SD). C. Scoring each sample on LV1 revealed that SA treated samples 
were significantly upregulated on LV1 (error bars, mean ± SEM; ****p<.0.0001, Student’s 
t-test). 

 



 102 

 

Figure 4-13. Cortical cytokine expression is upregulated in WT mice after 14-day SA 
treatment via drinking water. A. Quantification of expression of 32 cytokines in WT 
mouse cortices, via Luminex analysis. Each column is z-scored and each row represents an 
individual animal. B. PLSDA identified a latent variable (LV1), which consisted of a 
weighted combination of cytokines which best separated groups. Error bars are generated 
using a LOOCV (mean ± SD). C. Scoring each sample on LV1 revealed that SA treated 
samples were significantly upregulated on LV1 (error bars, mean ± SEM; **p<.0.0001, 
Student’s t-test). 
 

 Given the intra- and extra-cellular effects heme exerted on the Akt/mTOR pathway 

in vitro (CHAPTER 3). A multiplexed Luminex immunoassay was used to quantify 11 

phospho-proteins from the Akt/mTOR pathway in cortical tissue from mice injected daily 

with SA for 14-days (Figure 4-14A). Again, PLSDA identified a profile of phospho-

proteins, LV1, which best separated groups (Figure 4-14B). Scoring each sample in terms 

of this profile revealed that mice receiving daily SA injections had significantly reduced 

LV1 scores (Figure 4-14C).  



 103 

 

Figure 4-14. Cortical Akt/mTOR pathway phospho-signaling in suppressed in WT 
mice after 14-day daily SA injection. A. Quantification of phosphorylation of 11 
Akt/mTOR pathway phospho-proteins in WT mouse cortices, via Luminex analysis. Each 
column is z-scored and each row represents an individual animal. B. PLSDA identified a 
latent variable (LV1), which consisted of a weighted combination of phospho-proteins 
which best separated groups. Error bars are generated using a LOOCV (mean ± SD). C. 
Scoring each sample on LV1 revealed that SA treated samples were significantly 
downregulated on LV1 (error bars, mean ± SEM; *p<.0.05, Student’s t-test). 
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4.4 Discussion 

Hb and its cofactor heme, are gaining attention for their implications in AD. 

Notably, both Hb and heme have been shown to be upregulated in the brains of AD patients 

as well as in Aβ mouse models [76, 78, 79]. Numerous factors likely contribute to this 

upregulation. Since vascular dysfunction is a prominent feature of AD, red blood cells can 

extravasate into the brain parenchyma and lyse, resulting in accumulation of Hb and Hb-

derived free heme in the brain [75].  Further evidence suggests that heme and Hb synthesis 

by neurons and glia may be upregulated in AD environments [76, 79, 84]. Further 

increasing their relevance to AD pathogenesis, these factors have been shown to physically 

bind the AD hallmark protein, Aβ [78, 79]. Moreover, heme has potent immunomodulatory 

capabilities [95-97], suggesting its involvement in neuroinflammation in AD. However to 

date, the role heme plays in modulating neuroinflammation in in vivo AD environments 

remains unknown. 

Although there are transgenic mouse models available that exhibit Aβ pathology as 

well as Aβ co-localization with Hb, [76, 79] such models have many limitations. 

Specifically, commonly used models such as the 5XFAD and APP/PS1 lines develop 

multiple pathologies in addition to Aβ plaques [217, 218], making it difficult to interrogate 

the specific effects of one pathology alone. Since we were specifically interested in 

isolating the effects of heme and Aβ on neuroinflammation, we began by using WT CD-1 

mice intracranially injected with different combinations of heme and Aβ as our model. 

Similar approaches have been previously used to study isolated effects of Aβ in vivo [219-

221]. 
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In order to broadly assess local changes to the neuroinflammatory environment in 

response to Aβ1-42, we began by isolating cortical tissue surrounding the injection site 4 

days after injection and quantifying expression of 32 cytokines using a multiplexed 

immunoassay (Figure 4-2A). Using PLSDA, we found that expression of a highly pro-

inflammatory profile of cytokines (LV1) was robustly upregulated in response to injection 

of Aβ1-42, as compared to contralateral injection of a vehicle control in the same animal 

(Figure 4-2B-C). This analysis identified IL-9, IL-4, and IL-12p40 upregulation to most 

strongly correlate with Aβ1–42 injection. This finding is highly consistent with our in vitro 

experiments, which revealed that primary mouse astrocytes, primary mouse microglia, and 

SIM-A9 microglia all upregulated production of IL-9 and IL-4 in response to Aβ1–42 

treatment (Figure 2-3, Figure 2-9, Figure 2-10).  While our in vitro experiments did not 

demonstrate robust changes in IL-12p40 in response to Aβ1–42 treatment, IL-12p40 has 

been shown to correlate with Aβ burden in APP/PS1 mouse models and be elevated in 

humans with AD [37, 222]. Among other cytokines highly upregulated by Aβ1–42 injection 

are those with highly pro-inflammatory and chemotactic properties, including MIG, IL-6, 

IL-1α, and IL-1β. Again, these cytokines are highly upregulated by astrocytes and 

microglia in response to Aβ1-42 in vitro (Figure 2-3, Figure 2-9, Figure 2-10), in transgenic 

AD mouse models [37, 223], and in humans with AD [224-226]. Thus, taken together, 

these data suggest that intracranial Aβ1–42 injection produces a localized, yet highly 

physiologically relevant model of neuroinflammation in AD and can be utilized to 

interrogate the Aβ-dependent immunomodulatory effects of molecules that co-localize or 

associate with Aβ. 
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Having established that intracranial injection of Aβ1-42 produces a 

neuroinflammatory response both consistent with our in vitro models and relevant to AD; 

we next sought to examine how heme modulated this response. As such, we again used 

multiplexed cytokine quantification and PLSDA to compare the cytokine expression 

profiles in response to injection of Aβ1–42 on its own and in combination with equimolar 

heme (Figure 4-4). Notably, this analysis revealed that several cytokines were 

downregulated in response to co-injection of heme with Aβ1–42 when compared with 

injection of Aβ1–42 on its own. Among the top downregulated cytokines identified by the 

analysis were M-CSF, IL-7, and IL-9 (Figure 4-3B), all of which were also robustly 

suppressed by heme in in vitro astrocyte and microglia experiments (Figure 2-3, Figure 

2-9, Figure 2-10). Given that M-CSF is known to contribute to microglial activation, 

recruitment, and  phagocytosis of Aβ [210, 211, 227], IL-7 is expressed by reactive 

microglia and astrocytes [228, 229], and IL-9 can promote immune cell recruitment [230], 

suppression of these factors by heme in vivo further suggests a role for heme in suppressing 

glial activation and Aβ clearance. Furthermore, minimal in vivo modulation these cytokines 

in response to heme outside of the context of Aβ (Figure 4-4) suggests that these effects 

are Aβ-dependent. While most cytokines that were modulated in the presence of heme were 

downregulated, LV1 identified that IP-10 on its own was inversely correlated with the 

heme + Aβ1-42 condition. Since IP-10 was not strongly up- or down-regulated in response 

to heme + Aβ1-42 in vitro (Figure 2-3, Figure 2-9, Figure 2-10), it is possible that there are 

feedback mechanisms apparent exclusively in vivo that are responsible for this effect. 

Taken together, the cytokine expression profiles produced in response to heme, 

Aβ1-42, and heme + Aβ1-42 injections were largely consistent with, although less robust than, 
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in vitro microglia and astrocyte experiments performed in Chapter 2. Both astrocytes and 

microglia demonstrated robust upregulation of cytokine expression in response to Aβ1-42 

and suppression of many cytokines in response to co-treatment with equimolar heme in 

vitro (Figure 2-3, Figure 2-9, Figure 2-10). Differences present between in vitro and in 

vivo cytokine responses to heme and Aβ may be explained by the presence of multiple cell 

types in vivo. While individual cell types can produce distinct responses in monoculture, 

cross talk between cell types in vivo can dramatically alter responses. For example, 

astrocytic calcium signaling can be modulated by Aβ [231] and cytokines [232, 233], and 

can affect microglia responses [234, 235]. Furthermore, microglia can activate astrocytes 

astrocytes can inhibit microglia via secretion of cytokines and other molecular factors [235, 

236].  Finally, neurons can produce cytokines in response to certain pathological 

conditions, further contributing to complex signaling mechanisms distinct from in vitro 

conditions  [227, 237-239].  

Interestingly, immunohistochemistry revealed that in vivo, activated astrocytes are 

more strongly recruited to Aβ1-42 injection sites at 4 day and 7 day time points than 

microglia (Figure 4-5, Figure 4-6, Figure 4-7), suggesting that the cytokine responses 

observed may be predominantly secreted by astrocytes. This finding is surprising, since 

microglia are widely acknowledged as the primary immune cells of the brain [240]. 

However, since microglia typically respond more rapidly to injury and astrocytes at later 

recovery stages [235, 241, 242], it is plausible that microglial activity is robust immediately 

after injection (ie. within 24 hours), and that astrocytic responses dominate after several 

days. These findings further support the role for astrocytes in mediating neuroinflammation 

in AD.  
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Having earlier determined that heme suppresses scavenger activity of astrocytes 

and microglia in vitro (Figure 2-7, Figure 2-12), we hypothesized that Aβ clearance would 

be suppressed in vivo in the presence of heme. Indeed, we found that injecting Aβ into the 

cortex with equimolar heme significantly increased Aβ burden 7 days after injection, 

compared to injection of Aβ alone (Figure 4-9, Figure 4-10). This suggests that in vivo 

inhibition of Aβ clearance mechanisms in the presence of heme, likely by astrocytes given 

their recruitment to the injection site and engulfment of injected Aβ (Figure 4-5, Figure 

4-6). As discovered in our earlier in vitro experiments, suppression of scavenger receptor 

expression, specifically CD36, in response to heme could contribute to this reduction in 

Aβ uptake by astrocytes (Figure 2-7). Taken together, these findings suggest that heme 

may contribute to the glial fatigue that is observed in AD [61, 64]. 

Although heme is well established to be upregulated in AD tissues [78], the 

mechanisms through which this occurs are still unclear. While leakage of brain vasculature 

is likely a strong contributor, upregulation of intracellular heme synthesis is also suspected 

to contribute to elevated heme levels in AD [84]. Thus, to determine specifically how 

elevated heme synthesis can alter neuroinflammatory conditions, we depleted heme using 

the heme synthesis inhibitor, SA. Daily injection of SA for 14 days significantly reduced 

heme in the cortex of the brain as well as in the liver (Figure 4-11), which is one of the 

primary heme synthesis organs [243]. Remarkably, PLSDA analysis revealed that heme 

depletion via SA treatment robustly upregulated expression of a profile of cytokines 

(Figure 4-12). Moreover, cytokines were similarly upregulated when SA was delivered via 

drinking water for 14 days (Figure 4-13). Top correlates with SA treatment using both 

delivery methods include IL-6, MCP-1, M-CSF, MIP-1β, G-CSF, and GM-CSF and are 
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well known for their highly chemotactic properties [210-216]. This strong upregulation of 

chemotactic factors, which function in recruiting immune cells, suggests that suppressing 

heme synthesis could upregulate activation and recruitment of astrocytes and microglia, 

ultimately contributing to increased clearance of Aβ in an AD environment.  

The Akt/mTOR pathway is known to be involved in regulating a number of critical 

immune functions, including cytokine expression, and was found to be robustly modulated 

by intra- and extra-cellular heme in Chapter 3. Therefore, we sought to extend this analysis 

in vivo and quantified Akt/mTOR pathway signaling in response to 14-day daily SA 

injection. PLSDA revealed significant suppression of Akt/mTOR pathway signaling with 

SA treatment (Figure 4-14). Interestingly, these findings were in contrast to in vitro 

astrocyte signaling experiments, which conversely showed that increasing intracellular 

labile heme using ALA suppressed Akt/mTOR signaling (Figure 3-10). However, our in 

vitro studies clearly identified that heme-driven Akt/mTOR signaling is rapid and highly 

dynamic (Figure 3-7). Since in vivo Akt/mTOR signaling was quantified after a period of 

14 days, it is conceivable that feedback mechanisms led to long-term suppression of 

Akt/mTOR signaling, but that upregulation may have occurred at earlier time points, 

triggering a cascade of signaling events that led to cytokine upregulation. Additionally, 

mTOR was previously found to regulate HO-1 expression in astrocytes (Figure 3-14), 

which typically has anti-inflammatory functions, Suppression of Akt/mTOR signaling by 

SA could downregulate HO-1 expression, thereby contributing to increased cytokine 

expression indirectly. Alternatively, cytokine upregulatation may have occurred through 

mechanisms independent of the Akt/mTOR pathway. 
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Moreover, since phospho-protein signals were quantified from bulk tissue, they are 

representative of the combined responses of multiple cell types in the brain. Various cell 

types can have distinct signaling responses to the same stimuli, as evident by differences 

in astrocytic and neuronal Akt/mTOR signaling dynamics in response to exogenous heme 

(Figure 3-1, Figure A-).  

Altogether, our data indicate that heme is a potent modulator of neuroinflammation 

in vivo, both via by both Aβ-independent and Aβ-dependent mechanisms. Heme-driven 

neuroinflammatory signaling could contribute to glial fatigue and suppression of glial 

activation, thereby exacerbating amyloid pathogenesis. Due to vascular leakage in AD, 

implications of heme signaling are particularly pertinent to the build-up of Aβ on vascular 

walls [176]. Lack of clearance of Aβ on vascular walls could contribute to aggravated BBB 

breakdown, ultimately creating a cycle where heme pathology and Aβ pathology 

exacerbate each other and worsen AD pathogenesis.  
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CHAPTER 5. CONCLUSION 

The prevalence of AD is rapidly increasing, yet we still lack effective means by 

which to halt or slow disease progression. Repeated failures of clinical trials targeting Aβ 

have brought to light that AD pathogenesis is complex and multifaceted, involving the 

contribution of many pathological events. Thus, successful therapeutic strategies will likely 

involve simultaneously targeting multiple pathologies that manifest during the course of 

the disease. Along these lines, neuroinflammation is emerging as a prominent aspect of 

AD, yet whether it is beneficial or deleterious remains a matter of debate. Furthermore, the 

molecular factors which could be involved in modulating that balance remain poorly 

understood.  

Hb and its cofactor heme are gaining importance for their roles in modulating AD 

pathology. These factors have both been shown to be elevated in AD, likely due to a 

combination of extravasation of red blood cells through leaky brain vasculature [75] and 

excess production of these factors by neurons and glial cells [76, 79, 84]. In addition to 

their oxygen-carrying roles, heme and Hb have potent immunomodulatory and cell 

signaling functions [95-97]. However, to date, these roles have not been characterized in 

the context of the brain. Given that heme and Hb also physically binds the inflammatory 

AD hallmark protein Aβ, they may play significant roles in modulating the 

neuroinflammatory environment in AD. The work described in this dissertation sought to 

address this gap and improve the current understanding of the neuroinflammatory signaling 

roles of these factors in the context of AD.  
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5.1 Major contributions 

This work identified unique roles of heme and Hb in modulating the neuroimmune 

environment in the context of AD, using both in vitro and in vivo models. We began by 

broadly characterizing the effects of heme and Hb on astrocyte and microglial immune 

function in vitro. Notably, we identified that heme and Hb suppress astrocyte and 

microglial activation in both Aβ-dependent and Aβ-independent manners. With regards to 

Aβ-dependent effects, we found that heme and Hb suppress Aβ-induced cytokine protein 

expression in cultured primary astrocytes and microglia. Moreover, we found that both 

heme and Hb bind a highly inflammatory HMW Aβ oligomer, which reverses Aβ- induced 

inflammation. Independently of Aβ, we found that exogenous heme and Hb suppress 

astrocyte and microglia phagocytosis and astrocytic expression of scavenger receptor 

CD36.  

Given our findings that heme has diverse immunomodulatory effects in astrocytes, 

this work further identified intracellular signaling pathways heme acts through to exert 

these effects. We uniquely identified that the PI3K/Akt/mTOR phospho-signaling pathway 

is robustly modulated by both exogenous heme and intracellular labile heme in astrocytes. 

Interestingly, using the HS1 heme sensor to monitor heme uptake, we found that exogenous 

heme and intracellular heme have distinct signaling capabilities, specifically, that 

exogenous heme upregulates the PI3K/Akt/mTOR pathway while intracellular heme 

downregulates it. This work is also the first to utilize the HS1 heme sensor [189] as a tool 

to study heme signaling in the context of the brain.  Furthermore, our work demonstrated 

a link between heme-induced PI3K/Akt/mTOR pathway dysregulation and immune 

dysfunction in astrocytes. Specifically, we found that mTOR partially regulates CD36 and 
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HO-1 expression in astrocytes, which are down- and up-regulated upon heme treatment, 

respectively. 

Finally, our work validated the effects of heme on neuroinflammation using in vivo 

mouse models. Paralleling our in vitro findings, our data revealed that intracranial injection 

of heme with Aβ into the cortex suppressed Aβ-induced cytokine protein expression. 

Moreover, we found that co-injection of heme with Aβ suppresses Aβ clearance in vivo, 

suggesting for the first time in vivo that heme may worsen Aβ pathology. Additionally, 

independently of Aβ, we found that depletion of heme synthesis by SA treatment 

upregulates cortical cytokine expression. This suggests for the first time the possibility to 

harness the neuro-immune system by targeting heme synthesis. 

Taken together, the cumulative findings of this dissertation delineate numerous 

roles for heme in modulating neuroinflammation in AD environments. Overall, our data 

suggest that heme dysregulates inflammatory signaling mechanisms which suppress 

critical immune functions of both astrocytes and microglia. Most notably, our data indicate 

that heme may worsen Aβ clearance mechanisms, thus potentially contributing to 

exacerbated Aβ pathology and cognitive decline in AD. This work sets the stage for heme 

as a novel therapeutic target for AD and other acute and chronic neuroinflammatory 

conditions.  

5.2 Future directions 

This dissertation characterizes how heme and Hb modulated numerous Aβ-

dependent and Aβ-independent neuroinflammatory processes in vitro and in vivo.  This 

work sets the stage for future studies in several different directions both in and out of the 
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context of AD. With regards to AD, there is much to be learned regarding the effects of 

heme on neuronal function in AD environments. Hb, heme and HO activity have previously 

been shown to have important regulatory roles in neurons, particularly in response to stress 

[91, 244]. Thus, in addition to dysregulating neuroinflammatory processes in AD, heme 

may be involved in modulating neuronal function and viability in AD, which are ultimately 

linked to cognitive function. Along these lines, preliminary experiments (Appendix A) 

have shown that heme can alter neuronal phospho-protein signaling and post-synaptic 

density expression, suggesting that elevated levels of heme could promote AD 

pathogenesis through neurodegenerative mechanisms in addition to the neuroinflammatory 

mechanisms, which are relevant to astrocytes and microglia. Future directions may also 

interrogate how crosstalk between astrocytes, microglia, and neurons may be disrupted in 

the presence of heme. 

Our work for first time utilizes the HS1 heme sensor to study heme signaling in the 

context of the brain. The present work demonstrates proof of concept for the utility of the 

HS1 sensor in studying heme signaling in the brain, using astrocytes as a model, setting 

the stage for diverse use of this sensor in various cell types and pathological environments. 

Future studies can utilize HS1 and its variants [189] to conduct elaborate studies regarding 

heme signaling in AD environments. For example, having demonstrated in Chapter 3 that 

HS1 can be used to study heme uptake dynamics, future work can employ similar methods 

to study how factors associated with AD pathology (ie. Aβ) can affect heme uptake and 

labile heme pools. Particularly of interest is the possibility to study organelle-specific heme 

signaling in AD environments using HS1 variants [189]. Finally, current work to develop 

protocols to apply HS1 to histological analysis of brain tissue sections will allow for 
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imaging of free heme in tissue slices for the first time. Applying this technology to human 

AD brain tissue sections can allow for powerful studies involving the localization of heme 

with respect to Aβ plaques, within specific cell types, and within subregions of the brain. 

Since physiologically relevant concentrations of heme in the brain are currently unknown, 

optimizing this sensor for this application can lead to profound, quantitative insights into 

how heme concentrations are altered in the brain in disease.  

Further with regard to heme in AD, in vivo studies can be translated to transgenic 

AD mouse models, including the 5XFAD and APP/PS1 models which present both Aβ and 

neuroinflammatory pathology [217, 218]. The APP/PS1 model specifically has been shown 

to exhibit elevated levels of Hb, which co-localizes with neurons and glial cells [76, 79], 

making it a relevant model to these studies. Given that our findings in WT mice showed 

that heme depletion robustly upregulated cytokine and chemokine expression, it will be 

important to see whether these findings translate to AD mouse models. Furthermore, 

whether upregulation of chemotactic factors contributes to increased Aβ clearance in these 

models remains an open question. Ultimately, findings of decreased Aβ burden in response 

to heme depletion in AD model mice could define a new paradigm for the development of 

heme-based therapeutics for AD. 

Although the focus of this dissertation was to elucidate the role of heme in AD 

environments, this work sets the stage for studies on the involvement of heme in brain-

related pathologies beyond AD. Heme is implicated in numerous other neuropathological 

conditions, most notably traumatic brain injury and ischemic stroke which are 

characterized by blood leakage into the brain and therefore excess exogenous heme [245, 

246]. Our findings of robust Akt/mTOR phospho-protein signaling dysregulation in 
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response to exogenous heme are largely translatable to these scenarios, since they were 

observed outside of the context of Aβ. Since this pathway is strongly linked to 

inflammation and immune function, it is possible that heme may have neuroinflammatory 

consequences in these acute neuropathological conditions as well. Furthermore, our 

findings that the Akt/mTOR pathway regulates HO-1 expression is particularly relevant to 

these conditions, in which HO-1 induction is observed [247, 248]. Lastly, our findings of 

the neuroinflammatory consequences of Aβ and heme physical association may be 

translatable to Parkinson’s disease, which is characterized by the aggregation of α-

synuclein protein [249]. Since these aggregates are also neuroinflammatory [250], 

association between α-synuclein and heme could modulate the neuroinflammatory 

environment in Parkinson’s disease.  

Taken together, the work reported in this dissertation paves the way for a myriad 

of future studies with respect to the neuroimmunomodulatory roles of heme in AD, and 

other neuropathologies. Given the vast neuroinflammatory and immunomodulatory 

signaling capabilities of heme reported in this work and others, targeting heme could 

ultimately be a therapeutic strategy for neurodegenerative conditions. 
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APPENDIX A. EFFECTS OF HEME ON PRIMARY NEURONS IN 

VITRO 

A.1  Neuronal culture methods 

Neuron cultures were derived from E14–15 CD1 embryos (Charles 

River), according to a protocol approved by the Georgia Institute of Technology 

Institutional Animal Care and Use Committee. Embryo cortices were isolated 

according to an existing protocol [251] and triturated in plating medium 

consisting of Neurobasal media (Invitrogen) with 10% FBS, 1% Glutamax 

(Gibco) and 1% antibiotic/antimycotic solution (Sigma). Cells were plated at a 

density of 6.5*105 cells/well in poly-d-lysine (Sigma)-coated 6 well plates. Cells 

were left to attach overnight after which media was changed to Neurobasal media 

with 2% B-27 supplement (Gibco) and 1% antibiotic/antimycotic solution. After 

3 more days in culture, 1 µM cytosine β-D-arabinofuranoside (Sigma) was added 

to prevent mitosis of non-neuronal cells. Neurons were used for experiments 

between days 10 and 14 in culture. For conditioning experiments, conditions 

were applied together with a change of one-half of the medium in each well. 
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A.2  Results 

 

Figure A-1. Neuronal cytokine expression is stimulated by Aβ1-42 and suppressed by 
heme. A. Quantification of 32 cytokines expressed into the medium of primary mouse 
neuron cultures via Luminex analysis. Each column is z-scored and each row represents an 
individual well. B. PLDSA identified LV1 which separates Aβ treated neurons from all 
other groups. C. Scoring each sample on LV1 reveals that Aβ (50 nM) treated neurons are 
significantly upregulated on LV1 while co-treatment with equimolar heme suppresses 
expression of this cytokine profile (mean ± SEM, **p<0.01; ordinary one-way ANOVA 
with Sidak’s test.) 
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Figure A-2. Postsynaptic density 95 (PSD95) protein expression is significantly 
reduced in primary mouse neurons after treatment with 25 µM heme for 24 h, as 
quantified by western blot (mean ± SEM, ; ordinary one-way ANOVA with Dunnett’s 
test). 
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Figure A-3. Akt and mTOR phosphorylation time course in response to 25 µM heme. 
A. Heme upregulates Akt phosphorylation after 5 minutes but suppresses it after 24 h. B. 
As in A for mTOR.  
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Figure A-4. Primary neuron transfected to express HS1. mKATE2 fluorescence is 
depicted in red. Scale bar, 20 μM. 
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APPENDIX B. HEME MODULATES ASTROCYTE LAMP-1 

EXPRESSION 

 

Figure B-1. Heme (25 µM) upregulates LAMP-1 expression in astrocytes. A. Heme 
upregulates LAMP-1 expression after 72 hours. Co-treatment with 10 nM rapamycin 
further upregulates LAMP-1 (mean ± SEM, ***p<0.001, *p<0.05, ordinary one-way 
ANOVA with Sidak’s test). B. Representative images of LAMP-1 staining in control and 
heme treated conditions. Scale bar, 20 µm. 
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Figure B-2. Heme (25 µM) and ALA upregulate LAMP-1 expression in astrocytes 
after 72 hours (mean ± SEM, ****p<0.0001, ordinary one-way ANOVA with Dunnett’s 
test). 
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APPENDIX C. INTRACELLULAR HEME UPREGULATION 

SUPPRESSES AMYLOID BETA- INDUCED ASTROCYTE 

CYTOKINE EXPRESSION 

 

Figure C-1. ALA suppresses Aβ1-42-induced cytokine expression in primary mouse 
astrocytes.  A. Quantification of 32 cytokines expressed into the medium of primary mouse 
astrocyte cultures via Luminex analysis. Each column is z-scored  and each row represents 
an individual sample. B. PLDSA identified LV1 which separates Aβ treated astrocytes 
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from all other groups. C. Scoring each sample on LV1 reveals that Aβ (50 nM) treated 
astrocytes are significantly upregulated on LV1 while co-treatment with 800 µM ALA 
suppresses expression of this cytokine profile (mean ± SEM, *p<0.05, **p<0.01; ordinary 
one-way ANOVA with Holm-Sidak’s test.) 
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