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SUMMARY 
Measurement of turbulence components of velocities in water has long been a problem. This study is an attempt to correlate results of turbulence components of velocities measured by the United States Geological Survey with similar measurements made in wind tunnels. An investigation is also made of the velocity profiles and the boundary layer growth. The first part of this paper gives a description of the water tunnel, contraction cones, and turbulence probea A discussion of instrumentation and experimental techniques is then given. Measurements of isotropic turbulence behind a 1/2 inch gird were obtained and compared with wind tunnel data. The results indicated that the center portion of the tunnel was free of velocity gradients, and hence, apparently free from viscous shear and could theorectically have isotropic turbulence. The results showing decay of isotropic turbulence are presented. It was concluded that the magnitude of u'/u versus R was in the 

m 
right order of magnitude, but that the decay of isotropic turbulence was less than expected when compared to wind tunnel tests. 
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CHAPTER I 

INTRODUCTION 

The purpose of this investigation was to study the feasibility 

of a water tunnel as a tool for calibrating turbulence probes at the 

Georgia Tech Hydraulics Laboratory. Turbulence measuring devices can 

only be calibrated in known turbulence fields. Isotropic turbulence 

is a known type of turbulence with definite and predictable character

istics. 

Decay of isotropic turbulence in wind tunnels has been conducted 

many times. However, an investigation of the decay of isotropic turbulence 

in a water tunnel has not been performed satisfactorily to date. Attempts 

have been made to measure turbulence in water by means of hot film anemome

ters, total head tubes, etc., but all have failed to give consistently 

satisfactorily results. 

The investigation was performed in a water tunnel designed and 

built in the Georgia Tech Hydraulics Laboratory, using a total-head type 

probe developed by the United States Geological Survey. 



CHAPTER II 

REVIEW OF THE LITERATURE - PART I 

Characteristics of Fluid Turbulence 

Fluid turbulence is a phenomenon in which eddies generated in 

an initial zone of instability spread rapidly over the entire flow 

section, thereby producing a complex pattern of motion which varies 

continuously with time. The complex secondary motion superimposed 

upon the primary motion of translation is the major distinction be

tween turbulent and laminar flow. After the flow is established and 

everywhere rotational, the influence of wall friction is felt through

out the flowfield (l)*. When this happens the rate of energy dis

sipation is greatly increased™ If a sensitive velocity meter is im

mersed in the turbulent stream, continual deviations from the mean 

would result due to these eddies which move in every direction. There 

will be a statistical lower limit to the size of the smallest eddy 

due to greater velocity gradients of the smaller eddies and greater 

viscous shear stress (2). 

Osbrone Reynolds, in order to simplify the continuity equation 

and the Navier-Stokes equation, substituted for every instantaneous 

velocity component the sum of the temporal mean exponent u and the 

instantaneous component u. Introduction of these identities and 

elimination of all terms having a mean value of zero, resulted in 

*Numbers in parentheses refer to items in the Bibliography. 
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the continuity equation 

3 u 3 v 9w n 

and three equations of the form. 

2 — 2 — 2 — 2 — — / ̂  u + \^ u ^ u v _ u " "^uv uw 
r 3 x 2

 ^ T 2 * 3 z 2 " 3 x 
( 3 ) 

The effect of the turbulence is embodied In the three mean products 

of the components of fluctuation. 

The basic significance of the Reynolds equation in steady, uniform 

turbulence flow results when they are reduced to 

The contribution of the turbulent motion to the local shear depends upon 

the magnitude of the mean product uv„ Only if there is an appreciable 

correlation of the two components can the mean product have a definite 

magnitude„ In isotropic turbulent flow behind a screen or grid, these 

Reynolds stresses are zero, showing complete lack of correlation and 

hence, zero shear. 

If the analogy between microscopic molecular motion and macro

scopic eddy motion of fluid turbulence is made, it will be seen that the 

eddy viscosity 7j should depend upon the density of the fluid, the mean 



eddy size 1 of the eddies, and the root-mean-square u ! of the instan

taneous velocity deviation from the mean velocity. Accordingly, 

Boussinesq reasoned that 

The parameter^ is a characteristic of fluid motion whereas yn. is a fluid 

property. If ̂  is divided by P there is obtained a factor which is 

characteristic of the flow alone, 

du/dy 

The factor£ is a kinematic eddy viscosity comparable to V", the kin

ematic molecular viscosity. 

The actual interrelationship of the Reynolds and the Boussinesq 

parameters is clarified by Prandtl's mixing length theory. Prandtl pro

posed that small aggregations of fluid particles are transported by 

turbulence a certain mean distance 1 (mixing length), from regions of 

one velocity to regions of another and in so doing, suffer changes in 

their general velocities of motion• Prandtl suggested that the change 

in velocity du/dy incurred by a fluid particle moving through the dis

tance 1 was proportional to u' and v'. That is 

dy 

The idea underlying Prandtl's hypothesis is Fage and Townend's obser

vations that the three components of turbulent velocity tend to be equal 



to one another in the center of the pipe ( 6 ) . If the assumption is made 

that the mean product of the components may be replaced by the respective 

terms of the foregoing proportionalities, it will follow that 

From statistical processes in a circular pipe, it has been shown that 

the proceeding product is a maximum approximately midway tetween the wall 

of the pipe and the centerline. The product is frequently called the 

diffusion coefficient and is important in analysis of energy dissipation, 

problems of heat transfer, and the suspension of finely divided material 

by the process of turbulent convection. 

The velocity characteristic can be determined from statistical 

analysis of the RMS values of the instantaneous velocity fluctuations. 

The length scale involves the measurement of the correlation between 

two neighboring velocity Indicators as the distance between them is 

varied. The indicators would show perfect correlation when they are 

superimposed. The correlation would approach zero as the indicators 

are moved apart until their spacing exceeded the mean eddy size. The 

correlation coefficient is given by 

A plot of the correlation coefficient (ordinate) against spacing of the 

indicators (abscissa) will jield a curve, the area of which is equal to 

1 (mean eddy slze)„ If a parabola is fitted to the peak of the correlation 

1 u' 

1 / 
( u ) 1 C u ) 2 
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curve and allowed to intercept the abscissa, there is a value ^ o b 

tained which is defined as the mean si ze of the smaller eddies involved 

in the process of dissipation of energy. With the RMS value and the 

mean eddy size determined by statistical method, the diffusion coeffi

cient can be determined,, 

Eddies of various sizes of which turbulent motion is composed, 

have a certain kinetic energy determined by the intensity of the ve

locity fluctuation of the corresponding frequency. Although in real 

turbulence a distinct frequency is not permanently present, it is 

possible on the average to allocate a certain amount of the total 

energy to a distinct frequency,, A distribution of the energy be

tween the frequencies is called an energy spectrum* The largest eddies 

will cause fluctuations of low frequencies and the smallest eddies will 

cause fluctions of high frequencies- There is a minimum scale of tur

bulence that corresponds to a maximum frequency in the turbulent motion. 

One may anticipate that when the correlation curve has a small spread 

in the abscissa co-ordinate, the spectrum curve will extend to large 

values of n (frequency) and vice versa- The spectrum curve and the 

correlation curve are Fourier transforms of one another, G 0 I. Taylor 

(7) found these related equations to be: 

and 
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where F(n) is the mean energy spectrum* It should be pointed out that 

the area covered by the energy spectrum curve should be equal in unity. 

That is, 

Isotropic turbulence may be defined by the condition that the 

average value of any function of the velocity components and their 

space derivatives at a particular point, defined in relation to a par

ticular set of axes, is unaltered by any rotation or reflection of the 

axes of reference (8). 

Isotropic turbulence is studied extensively because a knowledge 

of its characteristics may still form a fundamental basis for the study 

of actual, nonisotropic turbulent flows. Isotropic turbulence is more 

amenable to theorectical treatment and theorectical relations may be 

checked more easily by suitable experiments than any other type of 

turbulence. In wind tunnel technique it is of great importance to be 

able to estimate the degree of turbulence on the application of tunnel 

results to the problems confronting the designer. 

Screens or grids may be used to augment the turbulence in a wind 

tunnel„ Isotropic turbulence in a water tunnel can only exist so long 

as the boundary layer, which is a region near the surface of the wall 

of the tunnel where the velocity changes from that of the body right at 

the surface to the velocity of the free stream some distance away, does 

not interfer with the central portion of the tunnel ( 9 ) . In conduit 

flow, the thickness of this boundary layer increases downstream until 

Isotropic Turbulence 
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it becomes equal to the radius of the conduit* Until this happens the 

frictional aspects of the flow are confined to the boundary layer where 

the flow is rotational,, Outside the boundary layer the viscosity of 

the fluid is inoperative and the flow here is frictionless or irrotation-

al and the Reynolds' stresses are zero. In this cone of fluid the total 

head may be considered constant. Since the flux across any section is 

constant, and since the boundary layer thickness is increasing, this 

cone is accelerated, accompanied by a corresponding fall in pressure (10). 

Isotropic turbulence can be produced in a tunnel by means of a 

grid of wire mesh placed at the upstream end* Such grids are used when 

turbulence effects are being studied, since they are the only convenient 

way of producing varying degrees of turbulence in the same tunnel. This 

grid causes eddies to be shed equally in all directions, a condition 

necessary for isotropic turbulence* See Figure 1 for an illustration. 

Turbulent motion is here considered to be a mixture of eddies of all sizes 

from the largest, where dimensions are comparable to the grid of bars in 

the tunnel, down to the smallest eddies0 When turbulent motion starts, 

the eddies produced by the grid break up the flow into smaller eddies and 

so on. The grid will set up at first an eddy motion of a nonuniform and 

nonisotropic character* Further downstream where the individual wakes of 

the bars (called "shadow" of the grid by G* I. Taylor) has disappeared 

and the imposed pattern has been wiped out, the mean velocity becomes 

uniform and there is a strong tendency toward isotropy (11). 

As reported by C* Cometta (12), an anamalous behavior of the flow 

characteristics was observed when wall effects interferred* In the design 

of an experimental apparatus, the turbulence created at the side walls 
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and diffused into the main stream must be kept to a minimum. 

The rate at which the energy of isotropic turbulence is dissi

pated is directly proportional to the velocity of fluctuation and in

versely proportional to the scale of the eddiese The general expres

sion for the mean rate of dissipation is 

W = 1 5 / * ( ~ £ p ) 2 

Since u° and A can be measured by turbulence instruments, the relation

ship can be verified if W can be measured by another method. The mean 

rate of loss of kinetic energy per unit volume in isotropic turbulence 

is - 5 / 2 P u d(u')^/dx. This must be equal to W so that 

and all the quantities in this equation can be measured. 
a 3 -1 

In a pipe the dissipation of energy is proportional to r ( u O r , 
where r is the radius of the pipe c It was supposed that the dissipation 
of turbulence W behind geometrically similar girds is proportional to 

3 -1 

C u " ) L where L is any linear dimension which defines the scale of 

the turbulence producing mechanism0 The mesh length M was taken as the 

typical length L , Therefore, 

— _ A f 
M " lVMu' 

where is a constant to be determined by experiment. 

With the expression 
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_2L . A rz? 
M ~ 1 J Hu' 

G. I, Taylor ( 1 3 ) integrated the equation 

P - d(u°) 2 / u N 2 

for ^ to give 

u 3x + constant 
»' 

where is a constant ranging from 1.95 to 2.20 by experiment. 

There are certain limitations to this law which are: 

(1) It cannot be applied when Mu'4- is small. 

(2) It does not apply immediately behind the grid where the 

"shadow" of the grid is stiil distinct, 

( 3 ) The lav/ does not apply where the existing turbulence is 

not entirely due to the gird. 

This theorectical law for the decay of turbulence behind grids has been 

verified many times by different investigators. There have also been 

other laws developed similar to Taylor5s„ but none appear to have been 

an improvement. 

A. A. Hall (1*0 has found that the accuracy of the mesh size is 

important, particularly if the decay of the turbulence is traced to low 

values. The lack of accuracy may lead to the production of eddies having 

a much larger scale than those corresponding to the mesh size owing to 

the existance of small cells which can couple with large cells several 
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mesh lengths away. In order to obtain the necessary accuracy, Hall 

found that the rods of the mesh should have the same diameter and that 

the resulting mesh be very accurately squared. These large eddies, 

which Cometta believed were caused by wall interference, will be of very 

low intensity and Will therefore have no effect near the mesh, but owing 

to their slow rate of decay, they will become Important when the total 

intensity of the turbulence has reached a low value. 

A doubtful factor In the comparison between theorectical laws 

of decay of turbulence and experimental results is the extent to which 

turbulence initially present In the stream and wall-produced turbulence 

can Interfere with turbulence produced by a mesh. For example, Hall 

obtained an increase of 10 to 20 per cent in u' with an increase in the 

initial turbulence from 0.2 to 1.3 per cent (13). 

Isotropic turbulence decays with increasing distance from the 

turbulence producing sources. Typical results of the decay of isotropic 

turbulence behind square mesh grids were reported by Batchelor and 

Townsend (l6), Corrsin (17), Simmons and Salter (l8), Ducoffee (19) s 

Baines and Peterson (20), Frenkiel (21), and others. The data indi

cated that the decay is essentially linear over a range of distances 

from the grid for 20 -rr-=• 80. 
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CHAPTER III 

REVIEW OF THE LITERATURE - FART II 

Measurement of Turbulence 

In the proceding chapter turbulence and some of the theorectical 

relationships concerning turbulence, were discussed* In this chapter 

methods, instruments and techniques to measure such quantities as tur

bulence intensities, correlations, energy spectrums, probability densities, 

and various terms in the kinetic-energy balance and so forth, will be dis

cussed. 

The various methods„ instruments and techniques may be divided into 

two groups for discussion- In the first group, a detecting element is 

int roiuced into the flowing fluid* The turbulence quantities are measured 

by the changes of a mechanical, physical, or chemical nature that occur in 

this element* This group will further be broken into instruments for gas 

and instruments for liquids* The instruments discussed which are used 

with gas are the constant-current and constant-temperature anemometer, and 

the glow discharge anemometer,, The instruments discussed which are used 

in liquid are the hot-film anemometer, electromagnetic induction technique, 

and total head tube0 

In the second groups a tracer or other indicator Is Introduced into 

the fluid to make the flow pattern visible or observable by a suitable de

tecting apparatus outside the field of flow* The instruments used in gas 

that will be discussed in this group are the electric spark and the shadow

graph* The ultramicroscope will be discussed as an instrument used in liquid* 



Hot-Wire Anemometer 

The hot-wire anemometer consists essentially of a wire of small 

diameter and short length placed in the air stream with its long dimen

sion perpendicular to the direction of the mean flow and heated to a 

suitable temperature by means of an electric current» Fluctuations in 

the speed of the air stream produce fluctuations in the temperature of 

the wire and, hence, in its resistance* 

Preliminary experiments on the use of a platinum wire heated by 

an electric current for the measurement of wind-velocity were carried 

out by G„ A* Shakespear as early as 1 9 0 2 , but were discontinued for 

lack of facilities in the erection of a suitable whirling table for 

the calibration of the wires ( 2 2 )« Measurement of the current required 

to keep a wire at a given temperature as a method of measuring air 

velocity was independently suggested by A 0 E* Kennelly in 1 9 0 9 ( 2 3 ) • 

Electrical anemometry was also developed independently by J* T« Morris and 

U o Sordini about 1 9 1 2 „ Actual measurements were carried out by Morris and 

Sordini (2k)0 The above instruments were suited to the measurement of 

average velocities over a considerable areae 

Lo V„ King in England in 191^ is given credit for first using the 

hot-wire technique for measuring the instantaneous velocity of moving 

fluids ( 2 2 ) o, (23)o The special type of instrument developed by King was 

called a linear anemometer and consisted only of a single wire. It was 

especially suited for the study of turbulent flow and the analysis of 

sharp velocity gradients such as to be found in the neighborhood of ob

stacles in streams and In jets0 An important application of this method 

Is to be found in aerotechnical problems such as the analysis of propeller 



wakes, distribution of velocities over planes of various dimensions and 

camber, etc King's careful measurements and analysis furnished a firm 

foundation which had been lacking up to that time. 

King Js method has been used in several widely separated places 

and repeatedly modified. An important step forward was made by Mock and 

Dryden in 1 9 3 2 ( 2 5 ) • They used electrical networks to compensate for the 

reduced sensitivity and phase lag which introduced error in the response 

of the wire to higher frequency fluctuations. 

Most of the earlier measurements used the constant-current anemom

eter. More recently, use has been made of the constant-temperature 

anemometer. These two methods will be discussed in the following ma

terial. 

Constant-Current Anemometer 

This method requires that the electric current I remain constant 

and that the temperature and, hence, the electric resistance change with 

fluctuating velocity. 

The response of the hot-wire to a fluctuating air flow must be 

determined. Into the relation 

I 2 R 

* = A , + Bjir 
R - R ( ? ) w g 12J 

where A „ and B are coefficients of hot-wire characteristics, R is the 
2 * w 

electrical resistance of the wire<> R is the electrical resistance of 
S 

the hot wire at gas temperature, and U is the Eulerian velocity, are 

introduced 



15 

u + u and R = R * 2 w w 

where R is the time-mean value and r is the electrical resistance of w w 

the turbulent fluctuation,. If a low relative intensity of turbulence is 

assumed, the relation 

can be obtained where e is the voltage across the hot-wire and s Is the 

sensitivity of the hot-wire,, 

velocity fluctuations oweing to the finite thermal inertia of the hot

wire, and decreases for large values of frequency. There Is a certain 

value called the time constant about which the sensitivity of the hot

wire becomes noticeable. The smaller the time constant, the higher the 

frequency of the velocity fluctuation to which the hot-wire may respond. 

These relations apply to a wire with uniform velocity and temper
ature distribution along it and with no thermal effects. The response 

of the wire is, however, affected by the finite thermal inertia of the 

wire, the cooling action of the wire support, and the nonuniform velocity 

distribution along the wire. 

The thermal inertia of the wire has a finite value causing a delay 

between the rapid fluctuations of the gas velocity and the corresponding 

temperature fluctuations of the wire. The thermal lag will cause the 

Intensity of the turbulence to be too low,, the micro scale ?\ to be too 

high, and the dissipation to be too low„ Dryden and others developed 

electronic compensation circuits for thermal inertia lag. 

R ) 2 

The sensitivity of the hot-wire depends on the frequency of the 
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The wire supports are thick compared with the wire,, so their 

temperature is practically equal to that of the ambient air. Because 

of the temperature difference between the wire supports, a cooling 

effect is exerted on the wire by conduction of heat to the support thus 

reducing the effective length of the wire. 

In turbulent flow the velocity distributions are not uniform in 

regions down to the microscale of turbulence0 Therefore,, the wire 

should be as short as possible for making true "point" measurements. 

Considering the effects of wire diameter., length, and length-

diameter ratio9 the acceptable sizes of wires range from 0.0025 to 

0.005 mm in diameter and from 0.5 to 1 mm in length. 

Constant-Temperature Method 

In this method the electric resistance and temperature are kept 

constant as far as possible. By means of an electronic feedback system 

any slight variation in temperature and thus in electrical resistance due 

to the cooling effect of the turbulent-flow fluctuations,is compensated 

forw Much of the criterion for the use of the constant-temperature method 

Is the same as the constant-current method so will not be discussed again* 

There are certain definite advantages to the constant-temperature 

method which are; 

( 1 ) The time constant at constant-temperature operation Is much 

smaller than that at constant-current operation. 

( 2 ) The thermal lag for most turbulent flows does not have to be 

compensated for. 

( 3 ) The constants A. and B In the equation 



JUL - A , + B /TP 
R 2 

g 

are really constant. 

(*f) The signal-to-noise ratio is greatly reduced by the constant-

temperature method. 

(5) The error due to nonlinear temperature effect involved with 

high relative turbulence intensities, is reduced by a factor of roughly 

three by use of the constant-temperature method. 

On the other hand, the electronic equipment required for the 

constant-temperature method is much more complicated than that used in 

constant-current operation. 

The hot-wire anemometer has been used extensively by a great many 

investigators to study such things as turbulence intensity In three d;-

rections,correlations, energy spectrums, probability densities, the various 

terms In the turbulent kinetic-energy balance, and so forth (26). The 

material accumulated by these Investigators is too much to be discussed 

in this study. 

The hot-wire anemometer satisfies best the following requirements 

of a turbulence measuring instrument: 

(l) The instrument must be sufficiently strong and rigid to 

exclude vibrations caused by the flow. 

( 3 ) The detecting element introduced into the flow must cause a 

minimum of disturbance. 

(2) The calibration parameters must not change during a test run. 

( 4 ) The detecting element must be smaller then the dimensions of 
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the microscale of turbulence. 

( 5 ) The instrument must be sensitive enough to record small 

differences in the fluctuations. 

(6) The inertia of the insturment must be low. 

Glow Discharge Anemometer 

The glow discharge offers possibilities for measuring turbulence 

in gases based on the potential-electric-current characteristics of an 

electric discharge between two electrodes. For electrodes of a given 

shape and gap, the characteristics depend on the nature, pressure, temper

ature, humidity and velocity of the gas. 

F. G. Lindvall ( 2 7 ) developed an instrument with a minute glow 

discharge. This discharge at atmospheric pressure was characterized by 

a cathode glow a few thousandths of a centimeter in length and a potential 

difference of 3 0 0 volts and a positive zone having a voltage gradient of 

1 , 5 0 0 volts per centimeter. The corresponding discharge current ranged 

from 1 0 to 3 0 ma. The total voltage across the electrodes was about kOO 

volts. 

Lindvall found a useful working range for the gaps to be 0 . 0 1 0 to 

0 . 0 2 5 cm. An extremely short gap was insensitive to air velocity while 

a long discharge was blown downstream into a bow shape having a greatly 

lengthened positive zone with corresponding abnormally high voltage. 

The electrodes were 0 , 1 5 cm in diameter which was comparable to 

the dimensions of the glow Itself. This was necessary so that the 

velocity, as measured, be definitely that of the stream flow and not 

the true velocity modified by the presence of bulky electrodes. The 
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electrodes were made of platinum because platinum gave a more con

sistently stable discharge as well as better reproducibility in data 

than did platinum-iridium or tungsten which were also tried. 

This type of discharge was found to have agreement with the 

hot-wire anemometer when both were subjected to the well-known tur

bulence behind a cylinder in subsonic flow ( 2 8 ) . Also, the electrical 

discharge had several advantages over the hot-wire anemometer, notably 

in calibration and simplicity of the amplifying equipment and the 

thermal time lag. The glow discharge had no lag in its response to air 

velocity change. The glow discharge had one outstanding defect because 

the electrical discharge will inevitably result in some slow loss of 

electrode material throixgh sputtering and chemical modification in the 

presence of air. 

Hot-Film Anemometer 

S. C. Ling ( 2 9 ) in his Ph.D. Dissertation presented the original 

work using the hot-film anemometer which was very similar to the hot-wire 

anemometer. 

The probe consisted of a thin platinum film fused on the wedge-

shaped end of a glass or ceramic support. The support was prepared for 

the film by grinding, drawing, or otherwise forming it to the desired 

shape and dimensions. Wires for the electrical connections were imbed

ded in the support so that the platinum coating was the only metal ex

posed to the fluid (30). The hot-film anemometer has several superior 

mechanical characteristics which make it much better suited for measure

ments in liquids and high-temperature or supersonic flow of gases. 
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Ling and Hubbard (31) claim the wedge form minimizes the col

lection of microscopic dirt carried by the fluid and provides a more 

efficient and uniform heat-transfer surface. Heat transfer is con

centrated at the front stagnation zone of the hot-film anemometer mak

ing it very sensitive to minute surface contamination in this area. 

The hot-film anemometer also has the advantages of a high signal-to-

noise ratio and superior dynamic response. The high signal-to-noise 

ratio was contributed to several factors: 

(1) The mechanical arrangement of the film supported by a 

glass or ceramic base eliminates extraneous signals due to stress and 

local vibrations which are present with the hot-wire anemometer. 

(2) The thickness of the film can be varied at will to con

trol the total resistance Independently of Its linear dimensions. 

The dynamic response of the hot-film anemometer was very good at high 

frequencies, but at low frequencies it did not respond well. 

Electromagnetic Induction 

This method of investigating the flow of liquids has the advan

tage of using the very simple and universally valid relation which 

exists between the velocity and the induced electromotive force. Since 

the electromotive force is induced Instantaneously and depends upon the 

direction of the velocity as well as its magnitude, the method can dif

ferentiate between motions in different directions and can represent 

velocity-alterations of high frequency as well as those of low frequency 

(32). 

The physical principle upon which the experimental method was 
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based was Faraday's law of electromagnetic induction which indicates 

that electromotive forces are induced in a liquid conductor moving 

relative to a magnetic field. If U is the velocity component perpen

dicular to an electromagnetic field with strength H, and V is the 

strength of the induced electric field, then 

V = - ~ HU 

where a Is the relative magnetic permeability of the liquid and c 

is the velocity of light ( 3 3 ) * 

Grossman has developed a useful technique for determining the 

RMS turbulent-velocity fluctuations, the Reynolds stresses, and the 

Lagrangian velocity correlations ( 3 3 ) » (3*0« He developed a probe of 

sufficiently small electrode spacing that could be arranged to traverse 

the flow field to yield the distribution and character of the velocity 

components. Grossman's flow system consisted of a 3 0 foot long, 1 . 7 3 2 

inch inside diameter Lucite pipe fed from a constant head tank and dis

charging into another tank provided with overflow head control«= The 

liquid used was water. A steady magnetic field was produced by a direct-

current electromagnet. 

This method has the disadvantage that the quantity measured direct

ly by experiment is the difference in potential between two points in the 

liquid and not the emf, and these are not equal due to the flow of cur

rents existing in a liquid of finite conductivity by virtue of the induced 

electric field. These currents are not dependent on the velocity, but 

on the velocity gradients, and not on the local conditions, but on the 

entire field. 
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The magnitude of the background noise varied from 10 to 100 per 

cent of the induced signal, but a method was worked out to correct this. 

The method of electromagnetic induction has the advantage of 

being independent of such physical parameters as pressure, density, tem

perature, composition, electrical conductivity, etc. This method does 

not have the problem of thermal lag, and the necessary compensation 

circuits familiar in hot-wire anemometry. 

Total Head Tube with Ceramic Pressure Transducer 

The earlier work with this type of turbulence probe in water was 

done by Ippen ( 3 5 ) , Ruetenik ( 3 6 ) , and Perkins ( 3 7 )« This particular 

probe discussed below is the one used by Eagleson and co-workers ( 3 8 ) « 

Eagleson's probe Is discussed here because it is essentially the same as 

the other probes except that It embodies the latest improvements in this 

type of instrument. 

In order to measure the turbulence characteristics, a traversing 

system with a strut going completely through the pipe was developed. 

This streamlined strut contained three probes for the measurement of total 

head, static pressure and turbulent pressure fluctuations. 

The total head tube used in the transversing strut was a standard 

Pitot-static tube. Actually, only the total head was measured with the 

Pitot-static tube because theorectical calculations showed that an error 

of about 6 . 5 per cent was introduced into the measured mean velocities 

if this tube was to be used to measure static pressure. The actual error 

involved in measuring the static pressure with the Pitot-static tube was 

5 per cent. 



A static pressure probe separate from the total head tube was de

signed in order to procure the desired measurements in the immediate 

vicinity of the trailing edge of the test plates. The static pressure 

probe showed an error of only 2 per cent over the entire range of tunnel 

operation. 

A total head tube with a circular disc-shaped barium titanate 

ceramic pressure transducer 0 * 1 2 5 inch in diameter and 0 . 1 0 inch thick was 

developed to assist in the experimental approach to the study of turbulence 

in the flow of water. The crystal was placed in a "cup" which plugged in

to a coaxial cable which formed an electrical connection by pressure con

tact between the silvered faces of the crystal and the silver-plated 

plug and silver-plated external diaphragm. A low capacitance cable was 

used and was kept as short as possible. 

Because of the large ceramic transducer and the mounting arrange

ment;, a liquid filled nose cone which tapered down to 1 / 1 6 inch diameter 

for "point" measurements was added forward of the crystal. The nose cone 

of the turbulence probe fitted over the tip cover and was made airtight 

by a thin layer of sealing wax. 

The instantaneous response of a total head tube aligned with the 

direction of mean flow is given by; 

This equation assumes that velocity components perpendicular to the mean 

flow have no effect and that the length scale of the turbulence is large 

compared to the diameter of the probe tip. The turbulence probe was also 

insensitive to mean quantities because of Its low frequency responses. 

(u + u) 
2g 
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The output of the probe is 

H _ - E l + HEl + H l f 

tg a g 2g 
A disadvantage of the probe is its indiscriminate response to 

pressure fluctions of any variety including those of acoustical origin* 

The probe also does not respond to static pressure changes, consequently 

limiting its use for pressure measurement. Because of the water-filled 

nose cone, the high natural frequency of the crystal, due to the inertia 

of the liquid thereins was reduced to 1 0 , 0 0 0 cps. 

The relative turbulence Intensity due to free stream flow con

ditions, ranged from 5° 7 per cent to 7°8 per cent which was rather high. 

Perkins (37) indicated a turbulence level in the same water tunnel of 

only 2.8 per cent* The reason for the higher turbulence level was ex

plained by the difference in the probes used. The probe developed by 

Eagleson and co-workers (38) measured a large amount of energy at the 

low frequencies which could have an appreciable effort on the determina

tion of turbulent intensity0 In some cases the turbulence intensity 

tended to increase in the downstream direction which was unexpected 

because viscous decay of the small scale turbulence introduced by the 

grids should cause a decrease In intensity in the downstream direction. 

The spectra of the longitudinal turbulence energy was the general 

form of the spectra obtained in air„ However, it was noted that 

j^E(n) dn should have been equal to u if ail the energy was recorded 

in the measured energy spectrum. E(n) is the spectral distribution 

function of longitudinal turbulence kinetic energy density per unit mass 



i n f t / s e c c p s „ B u t S &n w a s n o t e q u a l t o u , s o t h e 2 5 p e r c e n t 

o f t h e u n r e c o r d e d e n e r g y m u s t b e i n t h e s p e c t r a f r o m 0 t o 2 * 5 c p s o r 

p o s s i b l y a b o v e 7 5 0 c p s w h i c h w a s t h e u p p e r l i m i t o n t h e w a v e a n a l y z e r 

e m p l o y e d i n E a g l e s o n c s w o r k * 

E l e c t r i c S p a r k 

T o w n s e n d (39 ) d e v e l o p e d a m e t h o d o f m e a s u r i n g t h e t u r b u l e n t c o m 

p o n e n t s o f t h e v e l o c i t y i n a s t r e a m o f a i r b y p r o d u c i n g a s p a r k b e t w e e n 

v e r y f i n e e l e c t r o d e s s i t u a t e d a t a p o i n t i n t h e f l o w w h i c h h e a t e d s m a l l 

e l e m e n t s o f a i r i n i t s i m m e d i a t e n e i g h b o r h o o d * B y m e a n s o f t h e S c h l i e r e n 

m e t h o d o f p h o t o g r a p h y * , t h i s h o t s p o t o f a i r c o u l d b e m a d e v i s i b l e a n d i t s 

s u b s e q u e n t m o t i o n s p h o t o g r a p h e d * T h e a b i l i t y t o p r o d u c e a r e g u l a r s e r i e s 

o f i d e n t i f i a b l e e l e m e n t s o f t h e f l u i d p r o v i d e d t h e o p p o r t u n i t y o f m e a s u r 

i n g t h e v a l u e s o f v, v, a n d w a s w e l l a s t h e i r m a x i m u m v a l u e s . T h e 

v e l o c i t y d i s t r i b u t i o n s a c r o s s t h e p i p e w e r e s t u d i e d b y p l a c i n g a r o w o f 

s e v e n s p a r k g a p s a c r o s s t h e p i p e * 

C i n e m a t o g r a p h r e c o r d s w e r e m a d e w h i c h c o u l d b e a n a l y z e d t o o b t a i n 

t h e m e a n v e l o c i t y a n d t h e t h r e e c o m p o n e n t s o f t h e d e v i a t i o n s f r o m t h e 

m e a n v e l o c i t y d u e t o t u r b u l e n c e a t a n y p o i n t i n t h e s t r e a m * A t e a c h 

p o i n t t h e v e l o c i t i e s w e r e d e r i v e d f r o m a f i l m h a v i n g a b o u t 2 0 0 p i c t u r e s * 

T h i s w a s a c u m b e r s o m e p r o c e s s a n d i n v o l v e d a g r e a t d e a l o f l a b o r * 

T h e a c c u r a c y w i t h w h i c h t h e p o s i t i o n o f t h e h o t s p o t c o u l d b e 

r e a d f r o m t h e f i l m w a s r a t h e r l o w b e c a u s e t h e i m a g e o f t h e s p o t w a s i l l -

d e f i n e d a n d t h e s p o t w a s o f t e n r a p i d l y d i s t o r t e d a n d s o m e t i m e s b r o k e n u p 

i n t o t w o o r m o r e d i s c r e t e f r a g m e n t s . H o w e v e r , t h e e r r o r s p r o b a b l y c a n 

c e l e d w h e r e l a r g e n u m b e r s o f s p o t s w e r e m e a s u r e d o 
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T h e m a x i m u m v a l u e s o f u , v , a n d w m e a s u r e d b y a n e l e c t r i c s p a r k 

c o m p a r e d f a v o r a b l y w i t h u ^ , v ^ , a n d w. m e a s u r e d b y t h e n i l ' " - i c r o s c o p e 

w h i c h w i l l b e d i s c u s s e d l a t e r . I t w a s a l s o f o u n d t h a t t h e m a x i m u m v a l u e 

a t a n y p o i n t w a s r o u g h l y t h r e e t i m e s t h e R M S v a l u e o f t h e t u r b u l e n t c o m 

p o n e n t s o r 3-75 t i m e s t h e a v e r a g e v a l u e . A d i s t r i b u t i o n o f t u r b u l e n c e 

w a s f o u n d t o b e a m i n i m u m n e a r t h e a x i s a n d a m a x i m u m n e a r t h e w a l l s 

w h i c h a g r e e d w i t h t h e m e a s u r e m e n t s m a d e b y t h e u l t r a m i c r o s c o p e . 

S h a d o w g r a p h 

K o v a s z n a y (kO) h a s d e v i s e d a m e t h o d o f o b t a i n i n g i n f o r m a t i o n c o n 

c e r n i n g t h e t u r b u l e n c e s t r u c t u r e f r o m a r e f r a c t i o n i m a g e . T h e s h a d o w 

g r a p h m e t h o d w a s d e v e l o p e d b e c a u s e t h e h o t - w i r e a n e m o m e t e r c o u l d n o t 

m e a s u r e t h e f r e q u e n c y r e s p o n s e s o f h i g h s u b s o n i c a n d s u p e r s o n i c s p e e d s . 

T h e m o s t o b v i o u s l i m i t a t i o n o f t h e h o t - w i r e m e t h o d I s t h e t h e r m a l 

c a p a c i t y o f t h e w i r e i t s e l f . B y s u i t a b l e e l e c t r o n i c c o m p e n s a t i o n , t h e 

h o t - w i r e a n e m o m e t e r c a n m e a s u r e f r e q u e n c i e s o n t h e o r d e r o f 10,000 c p s . 

T h i s c o r r e s p o n d s t o a w a v e l e n g t h o f t h e o r d e r o f a n i n c h w h e r e a s , i n 

s u p e r s o n i c f l o w s , t h e w a v e l e n g t h s a r e m u c h s m a l l e r . 

T h e s h a d o w g r a p h m e t h o d I s a n o p t i c a l m e t h o d . T h e r e a r e t w o m a i n 

o b j e c t i o n s t o t h e u s e o f a n y t y p e o f o p t i c a l m e t h o d : 

(1) T h e r e i s n o p o i n t - t o - p o i n t r e l a t i o n s h i p b e t w e e n t h e p i c t u r e 

o b t a i n e d a n d t h e t h r e e d i m e n s i o n a l f l o w . 

(2) T h e o p t i c a l m e t h o d g i v e s i n f o r m a t i o n o n l y a b o u t d e n s i t y 

f l u c t u a t i o n . 

H o w e v e r , t h e s h a d o w m e t h o d r e s p o n d s t o s e c o n d d e r i v a t i v e s o f t h e 

d e n s i t y f l u c t u a t i o n , s o t h e r e f o r e h a s t h e g r e a t e s t p r o s p e c t s o f r e s o l v i n g 
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very high frequency components of turbulence,, If parallel incident light is assumed and the turbulent region deflects the light randomly, then small density disturbances In the turbulence field act as small convex or concave lenses that turn the parallel light into convergent or divergent beams. Hence, the light arriving at the photographic plate will be more or less Intense than the original parallel light according to the distortion„ If two transparent pictures are made from the shadowgraph and placed face to face, the combined pattern is the same as for the single plate if there is complete coincidence of the pictures. If the pictures are shifted a little with respect to each other, a decrease In transparence Is obtained. Now the resultant transparence of the two pictures Is equal to the product of the transparences of each individual picture. This fact offers the possibility of determining the correlation between densities at two neighboring points of the flow field, Hinze (2) has derived an expression for the relation between the turbulent component of velocity and the density of the fluid. Therefore, a correlation between density variations must be identical to a correlation between corresponding turbulence velocities at two points, hence, this method offers a means of measuring the velocity correlation o Kovasznay found that the scale of turbulence measured was very small thus indicating that the corresponding frequency would be of the order of a few hundred kilocycles. He found that the shadowgraph method does not give good measurement of the turbulence level but does give better resolution in spatial statistical properties at high velocities 
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than do previous methods* 

Ultramieroseope 

Fage and Townend (6) developed a method using the ultra-

microscope to study microturbulence* Previously, turbulent fluid 

had been studied by introducing particles of extraneous matter such as 

aluminum particles, oil drops, etc«s into the flow* Fage and Townend 

reasoned that if the particles introduced were comparable in size with 

the molar masses, their internal motions may not be correctly represent

ed* Therefore, it was desirable to avoid any such interference with 

the flow* The ultramicroscope offered a means of doing this. 

The principle of the ultramicroscope depends on the fact that 

minute particles can become visible as bright points of light when in

tensely illuminated against a drab background* 

The experiments were made on the flow in a square brass pipe 

and in a circular pipe* A uniform flow of tap water through the ex

perimental pipe was maintained by means of a constant difference of 

head between water levels in the supply and exhaust tanks* A special 

pump was designed so that rust or dirt, inevitable with an ordinary 

pump, would not be present in the system* 

Reliable observations with the ultramicroscope of the maximum 

values of the angular deviation of flow In the horizontal plane and In 

the vertical plane (denoted by © and Q ) and of the instantaneous 

velocity (denoted by u ^ ) t at any point in the fluid were obtained ex

cept near the boundary* The ultramicroscope was not capable of obtain

ing continuous records of the variations of the velocity components 
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with time or their deviations of flow from the mean flow. The maximum 

value of the components of the velocity disturbance v^, and w^ could 

be deduced from the observations if use was made of the relationship 

v 1, w x = (u + u) tan ( 9 , 0 ^ ) 

The angular deviation of flows which showed as an illuminous 

streak, was measured by means of a fine platinum wire mounted In the 

focal plane of the eyepiece. To facilitate observation the wire was 

rendered luminous by electrically heating it to a dull red glow* Ob

servations showed that the flow along the axis of either pipe was more 

disturbed over the critical range of Reynolds numbers than either above 

or below It. The Reynolds number used here was ~ , where m is the 

hydraulic mean depth. When turbulence was fully established, the value 

of the angular deviation of flow was not greatly influenced by a change 

of Reynolds number. This indicated that there was no growth in the de

gree of turbulence. 

A method based on the principle that a microscope moving at 

the same speed as a particle would make it appear as a bright stationary 

point instead of a streak was used to observe the maximum deviations u^ 

from the mean speeds Instead of moving the microscope, the same view 

could be obtained if the eyepiece and the microscope tube were fixed 

relatively to the pipe and the objective only was moved in the same 

direction as the particlea If at the instant of observation the velocity 

components due to the moving objective were the same as those of a par

ticle, that particle would appear as a point; likewise, if the objective 
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was moving with an effective speed, equal to (u + u), the particle 

would appear as a short streak0 The value of (u - uO could be ob

tained by slowly increasing the speed of the microscope until 

"stationary" particles first appeared, and the value of (u + u^) 

could be obtained by increasing the speed further until they just 

ceased to appear0 It was found that the greatest velocity fluctua

tions occured in a cylindrical region of the fluid approximately midway 

between the centerline and side of the pipe* It was also found that 

near the center of the pipe the ratios u.̂ / u, v^/ u, and w^/ u were 

approximately equal; but as the wail was approached, the ratio v^/u 

obtained from the velocity disturbance normal to the wall decreased 

to zero while the other two ratios û /u, and w^/u increased„ No 

information about the mean turbulence could be obtained* 

Fage and Townend (39) performed further experiments with the 

ultramicroscope at much higher Reynolds numbersa The evidence In this 

work supported the results obtained m their earlier work (6)* 



CHAPTER IV 

EXPERIMENTAL APPARATUS 

Figures 2 and 3 show the experimental flow system consists of a 

constant head tank, head bay, contraction cone, square mesh grid, test 

section, and a tail water bay. This system was designed by Dr. P. G. 

Mayer and built in the Georgia Tech Hydraulics Laboratory. 

Flow through the test section was controlled by maintaining a con

stant water surface elevation between the two tanks and manipulating the 

valve at the downstream end of the system. The required discharge was 

determined by an elbow meter located between the constant head tank of 

the laboratory and the head bay of the water tunnel. 

Both the head bay (8 feet long, 4 feet wide, and 4 feet deep) 

and the tail water bay ( 4 feet cubed) were made of 3 / 4 inch plywood and 

lined with fiberglass. The entire system was supported on eight 2 x 4 

inch legs approximately 2 feet tall. 

The test section consists of an 8 inch inside diameter plexi

glass tube 5 0 inches in length. Both the entrance and outlet to the test 

section were fitted with a bell-shaped contraction cone made of fiberglass. 

A 1 / 2 inch square mesh grid with 1 / 1 6 inch diameter wire was placed at the 

upstream junction of the tube and the contraction cone. 

Five test sections numbered one to five from the head bay were 

located at distances of 2 . 1 2 5 , 1 2 . 2 5 , 2 2 . 1 2 5 , 3 2 . 2 5 , and 4 2 . 2 5 inches 

downstream from the grid. Both the turbulence probe and the velocity tube 

were inserted through stuffing box fittings located on the top of the test 

section. 
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The Contracting Cone 

In designing a contracting cone for a wind tunnel the geometric 

form of the cone must be such that a uniform velocity distribution is 

obtained at the tunnel entrance. However, if the velocity at the end of 

the contraction cone Is about 0 . 9 that of sound, the danger of compres

sibility shock occurs„ This danger can be avoided by keeping the velocity 

In the contraction cone below that of sound„ The highest velocity is 

reached at the wall of the cone6 Therefore, if the velocity at the wall 

is made to increase monotonically from the beginning of the cone to the 

end, the velocity in the cone will always be less than that of sound pro

vided the velocity at the entrance to the tunnel is less than tnat ui 

sound6 Also, if the curvature of the wall of the contraction cone Is 

too large at certain points, local velocities at these points may exceed 

the uniform velocity at the end of the contraction cone causing an adverse 

pressure gradient and? perhaps, boundary layer separation from the wall. 

However^ with a monotonically increasing velocity the pressure along the 

wall will be decreasing monotonically and the danger of boundary layer 

separation Is avoided (4l)„ 

For the water tunnel, the anticipated velocities were very much 

less than the speed of sounds The coordinates of the axi-systemtric 

contraction cone are given in Table 1. The distance from the P. T. is 

designated X, and the radial distance by r (42)0 A photograph of the 

contraction cone is given in Figure 4C 

Test Tunnel 

In designing a water tunnel the turbulence created at the walls 

and diffused into the m a m stream must be kept at a minimum» This means 
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that the boundary layer in the water tunnel must not interfere with the 

turbulence structure behind a grid if the turbulence measurements are to 

be used for comparison with other studies. Therefore, the test tunnel 

was designed so that it could have a satisfactory portion of the cross 

section of the 8 inch inside diameter pipe free ô  interference from tur

bulence created at the pipe walls. 

Since most studies of boundary layer growth were conducted in air, 

a corresponding Reynolds number of a similar tunnel would depend essential

ly on the ratio of the kinematic viscosities. 

To estimate the boundary layer growth in water, it was assumed 

that the ratio ^/D was small and that the test section would behave ap

proximately as a flat plate. 

Boundary layer growth on a flat plate in turbulent flow is 

expressed by: 

£/x = .377 C-jg->1/5 (k) 
The values of Table 2 (based on 68°F) indicate that the mean 

velocity of 1.5 ft/sec will generate a boundary layer thickness of 

about 2 inches at a distance of approximately 7 feet from the leading 

edge. Therefore, a test tunnel 50 inches long should provide a sufficient 

portion of the cross section for the study of isotropic turbulence. 

Pitot-Static Tube 

A standard pitot-static tube was used to measure the mean velocity 

at the centerline of the pipe and to measure the velocity profiles across 

the pipe. 



Velocity profiles were taken at all five longitudial stuffing box 

stations for three different pipe Reynolds numbers which were ,6l6 xlO , 

1 . 0 7 xlO 5, and 1.68 xlO 5, 

Turbulence Probe 

The turbulence probe used in these tests was developed by George 

F. Smoot of the United States Geological Survey A3)* It consisted of a 

1 . 4 inch diameter L shaped tube with a one-mil-thick beryllium-copper 

diaphram mounted on the tip. A four arm strain gage bridge of a special 

design was bonded to the inner surface of this diaphram. This trans

ducer was used in conjunction with Sierra Electronic Corporation Model 

1 8 8 carrier power supply and Model Ilk carrier amplifier. 

It is well known that a thermocouple voltmeter is the most accurate 

means of measuring the root-mean-square value of a random electronic 

signal. Therefore, a Sensitive Research Instrument Corporation's Model A 

thermocouple voltmeter was chosen. Caution had to be exercised in using 

an instrument of this type to filter any D e C. components out of the 

signal, as the thermocouple was unable to discriminate between A. C. and 

D. C, voltages. To eliminate the D. C. portion of the signal, a filter 

was designed to cut off the extreme low frequencies (below about 2 cycles 

per second). 

To provide the necessary power for the thermocouple voltmeter, a 

Tektronix, Inc., Type 1 3 3 power supply unit with a Type A wide-band D. C. 

preamplifier was used. This unit served both as a cathode-follower and 

as an additional amplifier. 

A General Radio Type 1554-A Sound and Vibration Analyzer was used 

to determine the mean energy spectrum. This analyzer had a frequency 
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range of 2 . 5 to 2 5 0 0 cycles per second. 

This equipment was not accessible to the writer, but some tests 

were carried out previously In the Georgia Tech tunnel by personnel of the 

United States Geological Survey, The turbulence measurements made by the 

personnel of the United States Geological Survey were used In conjunction 

with the measurements obtained by the writer. 



E X P E E I K KIN T A L P R O C E D U R E 

Baffling 

In order to have isotropic turbulence in a pipe, it is necessary 

to have a uniform velocity profile in a flow initially free of turbulence 

on which to superimpose the generated turbulence. 

Large eddies were created as the water discharged from the con

stant head tank into the head bay. The inflow was directed toward the 

back wall of the head bay. These eddies created swirls and distorted 

the velocity profiles in the test tunnel. 

In order to eliminate eddies in the head bay, large rolls of wire 

mesh of two different sizes were placed beside the discharge pipe and at 

different locations in the head bay along with a floating wooden grid 

(see Figure 2) to facilitate eddy break-up. Red dye was used to facil

itate placing these wire rolls so that the eddies could be eliminated. 

Mean Velocity Calibrations 

It was first thought that the mean pipe velocities plotted as a 

function of the manometer elbow meter deflection would produce a different 

curve for each of the five stations because of boundary layer growth and 

that these curves would be increasing in magnitude as succeeding stations 

downstream were calibrated. However, this was found not to be the case. 

Mean velocities as a function of elbow meter manometer deflections for 

all five stations were found to plot on one curve. Points for the curve 
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were taken for manometer deflections varying from 0.1 feet to 3 feet giving 

a variation in mean velocity of 0.4 ft/sec to 2.7 ft/sec as can be seen in 

Figure 5» This curve was also used in conjunction with the turbulence com

ponents of velocities measured by the United States Geological Survey person

nel o 

Profile Velocity Calibrations 

The primary purpose of measuring the velocity profiles was to de

termine the degree of uniformity of flow in the test tunnel. Only If the 

pipe flow consists essentially of uniform flow is it possible to have 

isotropic turbulence. Velocity profiles were taken for pipe Reynolds 
5 5 5 numbers of .616 x 10 , 1.07 x 10 , and 1.68 x 10 at all five stations. 

The measurements were made with a pitot-static tube. Readings could be 

obtained to the nearest one-thousandth of an inch. 

Turbulence Behind a Grid 

Isotropic turbulence was generated behind a grid with bar sizes of 

1/16 inch diameter and mesh sizes of 1/2 inch placed at the end of the 

entrance contraction cone. The RMS values of velocities were measured by 

the United States Geological Survey at stations 2 and 4 along the center 

line of the pipe. The ratio u ! to the mean velocity u is plotted against 

mesh Reynolds numbers in Figure 9 which shows the trends and the magnitudes 

of the u' component. The decay of turbulence behind the grid is Illustrated 
u 2 x 

by plotting ( — ) against in Figure 10c Some reference data are 

also shown for comparison. 
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CHAPTER VI 

DISCUSSION OF RESULTS 

Tunnel Calibrations 

The results of the tunnel calibrations are shown in Figure 5 as 

a plot of manometer deflections (from the elbow meter) versus indicated 

velocity (from the pitot-static tube). The data shown are for the longi-

tudial stations 1 , 2 , 3 « 4 , and 5 . As was mentioned in Chapter V, it was 

first thought that a different curve for each of the five stations would 

result. As the boundary layer grows, continuity considerations require 

that the fluid in the center of the pipe accelerates, thus, increasing 

the mean or centerline velocity which in turn ought to cause curves of 

progressively longer magnitude to develop as succeeding stations down

stream are calibrated. However, this was not the case. The data points 

for a particular manometer deflection setting were sufficiently close to 

indicate that a single curve could be used for setting the speed at any 

stuffing box station without introducing appreciable error ( 1 9 ) . 

A great deal of trouble was encountered in finding a fluid to 

give sufficient deflection in the pitot-static tube. A Meriam manometer 

fluid of specific gravity 2 . 9 ^ was finally used. 

Velocity Profiles 

The velocity profiles obtained from pipe Reynolds numbers of 
5 5 5 . 6 l 6 x 1 0 , 1 . 0 7 x 1 0 , and 1 . 6 8 x 1 0 can be seen in Figures 6 , 7 . 

and 8 respectively. Although there were small variations in the velocity 

profiles which were due to difficulties with the fluid in the pitot-static 



tube, the velocity profiles indicated uniform flow at each succeeding 

downstream station* The variations were random, A theorectical plot of 

the growth of the turbulent boundary layer on a flat plate has been in

cluded in these figures since the flat plate criterion had been used in 

the preliminary design. From Figures 6 , 7» and 8 , it can be seen that 

the flat plate criterion was a reasonable assumption and that a tunnel 

5 0 inches long is satisfactory for the study of isotropic turbulence. 

These profiles indicate that the entrance conditions are very good and 

that isotropic turbulence can be expected in the center portion of the 

tunnel cross section. 

Turbulence Behind Grids 

The ratio of the RMS value u' to the mean velocity u is plotted 

against the mesh Reynolds numbers in Figure 9 and shows the general 

trends and the magnitudes of the u' component. This figure shows that 

the turbulence is in correct order of magnitude. 

The decay of turbulence behind the grid is illustrated by plot

ting (u/u')^ against x/M in Figure 10, By comparing the results of 

other investigations, it is seen that the decay rate is much smaller 

than was expected from isotropic turbulence. A definite trend is 

observed, for it can be seen that as the mesh Reynolds number in

creases, the decay curves tend to become steeper and approach the 

work of other investigators. 

The mean energy spectrum was measured and plotted It 

showed that the general trends were sound. However, the scatter of 

points at low frequency was large and it was not feasible to compute 

the correlation coefficient from the mean energy spectrum by the 



formula 

R = cos dn 
u 

Because the background noise was not measured, the area covered by the 

energy spectrum was not equal to unity as it should be according to the 

formula 

The initial turbulence levels were not measured in the head bay 

and the approach section. The deviation from wind tunnel results may 

be caused by free stream turbulence initially in the system. As the 

mesh Reynolds number Is Increased, the superimposed turbulence due to 

the grid is increased in magnitude and tends to overshadow the free 

stream turbulence. However, this has not been verified because the 

United States Geological Survey did not measure the turbulent inten

sities without the gird. The United States Geological Survey also had 

trouble with the noise level due to external vibration of the test 

system, with reading the RMS voltages, and with pressure fluctuations 

from the tail box. All of these could have contributed to turbulence 

intensity measurements in these tests. 

F(n) dn = 1 



CHAPTER VII 

CONCLUSIONS 

From the calibrations and turbulence measurements obtained In this 

investigation, the following conclusions can be drawn for the performance 

of the water tunnel, 

( 1 ) The velocity profiles indicate uniformity, a condition neces

sary but not sufficient for the presence of isotropic turbulence, 

(2) The magnitude of u'/ u versus R m was in the right order of 

magnitude when compared to wind tunnel tests, 

(3) The decay of isotropic turbulence was less than expected 

when compared to wind tunnel tests. 

(k) The mean energy spectrum showed that the general trends 

were sound, 

( 5 ) This water tunnel can be used as a calibrating device for 

turbulence probes provided a few alterations which are mentioned in 

Chapter VIII, are made. 



CHAPTER VIII 

RECOMMENDATIONS 

The writer feels that further tests of this type should be per

formed with certain modifications. These modifications are: 

(1 ) An improved instrument for measuring turbulence in water is 

needed. The instrument should be able to measure higher as well as lower 

frequencies than the present total head tube. When this is available, 

the turbulence intensities, correlation functions, and energy spectrums 

should be measured over a greater range of discharge Reynolds numbers, 

(2) The free stream turbulence without a grid should be measur

ed. 

(3 ) The grid should be precisely made for the reasons given in 

reference lA. 

(k) Various grid sizes should be tested. The values of M/d 

from 3 to 11 are suggested. 

( 5 ) The decay of turbulence should be determined at all five 

stuffing box stations. 

( 6 ) The tail bay should be enlarged and reinforced so that 

pressure fluctuation is reduced to a minimum. 

( 7 ) The test system should be placed on a more rigid founda

tion so that vibrations are reduced. 
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Table 1 . Cone Coordinates 

x t f t . r , f t . 

0.0 0.333 
0.2 0o333 
0.4 0„337 
0.6 0.351 
0.8 0.374 
1.0 0.443 
1.2 0.519 
1.4 0.615 
1.6 0.729 
1.8 Oo859 
2.0 1.009 



Table 2 . Boundary Layer Growth 

tt ft/sec n ft/sec 

X, ft for& = 1 " for £ = 2 " 
1 0 . 0 2 0 . 0 0 0 6 
2 0 . 3 3 0 . 0 1 
3 1 . 6 6 0 . 0 5 
4 5 . 2 5 0 . 1 6 
5 1 2 . 8 1 0.40 
6 2 6 . 6 2 0 . 8 2 
7 4 9 . 3 0 1 . 5 2 
8 8 4 . 0 0 2 . 6 0 



V , 

Table 3 . Turbulence Intensities 

Sun 
No. 

Man. 
Def. u U'1 u' 

a ' 

11 0 . 7 6 0 1 . 3 4 . 0 3 9 0 . 0 2 9 1 1 1 1 9 . 5 5 9 

1 2 1 . 4 0 0 1 . 7 7 . 0 4 0 3 . 0 2 2 * 1 9 2 7 • 7 3 9 

13 0 . 4 7 2 1 . 0 8 . 0 3 7 5 . 0 3 4 7 8 3 1 . 4 5 1 

1 4 0 . 2 9 5 0 . 8 5 . 0 3 3 5 . 0 3 9 4 6 4 5 . 3 5 5 
3 5 1 . 0 8 1 . 5 8 . 0 3 7 1 . 0 2 3 4 1 8 2 3 . 6 6 0 
1 6 0 . 1 1 4 0 . 5 0 . 0 3 6 9 . 0 7 3 9 1 8 3 . 2 0 9 
1 7 0 . 1 1 2 0 . 4 9 . 0 4 , 1 0 • 0 8 3 7 1 4 3 . 2 0 4 

1 8 0 . 3 0 2 0 . 8 6 , 0 4 4 5 . 0 5 1 7 3 7 4 . 3 5 9 
1 9 0 . 4 6 2 1 . 0 7 . 0 4 4 6 . 0 4 1 7 5 7 5 . 4 4 7 
2 0 0 . 7 7 0 1 . 3 5 . 0 4 4 8 . 0 3 3 2 9 0 7 . 5 6 4 
2 1 1 . 1 0 5 1 . 5 9 . 0 3 9 4 . 0 2 4 8 1 6 2 8 . 6 6 4 

22 1 . 4 3 0 1 . 7 9 . 0 4 2 3 . 0 2 3 6 1 7 9 7 . 7 4 8 

23 3 . 2 2 0 2 . 7 7 . 0 5 0 3 . 0 1 8 2 3 0 2 0 1 . 1 5 7 
2H 1 . 1 0 0 1 . 5 9 . 0 4 2 1 , 0 2 6 5 1 4 2 3 . 6 6 4 

2 5 0 . 4 6 9 1 . 0 7 . 0 4 2 4 . 0 3 9 6 6 3 7 . 4 4 7 
2 6 0 . 4 8 2 1 . 0 9 . 0 4 7 6 , 0 4 3 6 5 2 4 . 4 5 5 
2 7 0.2Q6 O . 8 5 . 0 4 8 3 . 0 5 6 9 3 0 9 . 3 5 5 
28 1 0 8 0 1 . 3 2 . 0 5 0 3 . 0 3 8 1 6 8 8 . 5 5 2 

2 9 3 . 1 o 0 2 . 7 4 . 0 6 9 9 . 0 2 5 5 1 5 3 8 1 . 1 4 4 

Sta, 
No. £ 

2 4 ! , 5 
6 4 . 5 

6 4 . 5 
2 ^ - , 

;• ; , , 1 9 6 

196 
5 1 6 

5 1 6 
1 9 6 

2 4 ! 5 196 

•Assume an average of the temperatures to calculate the kinematic 
viscosity. T - 7 4 , 4°F , 9 9 7 x 1 0 " ^ 



Figure 1 . Grid Forming Isotropic Turbulence 
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Figure 2. Side View of Water Tunnel 





Figure 4„ Photograph of Contraction Cone 
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Figure 9. Turbulence Intensity 
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