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SUMMARY

This dissertation can be essentially divided into two parts. The first, consisting

of Chapters I, II, and III, studies the graph theoretic nature of complex systems. This

includes the spectral properties of such systems and in particular their influence on the

systems dynamics. In the second part of this dissertation, or Chapter IV, we consider a

new class of one-dimensional dynamical systems or functions with an eventual negative

Schwarzian derivative motivated by some maps arising in neuroscience.

To aid in understanding the interplay between the graph structure of a network

and its dynamics we first introduce the concept of an isospectral graph reduction in

Chapter I. Mathematically, an isospectral graph transformation is a graph operation

(equivalently matrix operation) that modifies the structure of a graph while preserving

the eigenvalues of the graphs weighted adjacency matrix. Because of their properties

such reductions can be used to study graphs (networks) modulo any specific graph

structure e.g. cycles of length n, cliques of size k, nodes of minimal/maximal degree,

centrality, betweenness, etc.

The theory of isospectral graph reductions has also lead to improvements in the

general theory of eigenvalue approximation. Specifically, such reductions can be used

to improved the classical eigenvalue estimates of Gershgorin, Brauer, Brualdi, and

Varga for a complex valued matrix. The details of these specific results are found in

Chapter II. The theory of isospectral graph transformations is then used in Chapter

III to study time-delayed dynamical systems and develop the notion of a dynamical

network expansion and reduction which can be used to determine whether a network

of interacting dynamical systems has a unique global attractor.

In Chapter IV we consider one-dimensional dynamical systems of an interval.

x



In the study of such systems it is often assumed that the functions involved have

a negative Schwarzian derivative. Here we consider a generalization of this condi-

tion. Specifically, we consider the functions which have some iterate with a negative

Schwarzian derivative and show that many known results generalize to this larger

class of functions. This includes both systems with regular as well as chaotic dy-

namic properties.
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CHAPTER I

ISOSPECTRAL GRAPH REDUCTIONS

1.1 Introduction

Real world networks, i.e. those found in nature and technology, typically have a com-

plicated irregular structure and consist of a large number of highly interconnected

dynamical units. Coupled biological and chemical systems, neural networks, social

interacting species, and the Internet are only a few such examples [4, 23, 24, 42, 46, 50].

Because of their complex structure, the first approach to capturing the global proper-

ties of such systems has been to model them as graphs whose nodes represent elements

of the network and the edges define a topology (graph of interactions) between these

elements. This a principally a static approach to modeling networks in which only

the structure of the network’s interactions (and perhaps weights associated to them)

are analyzed.

An additional line of research regarding such networks has been the investigation

of their dynamical properties. This has been done by modeling networks via interact-

ing dynamical systems [1, 6, 17]. Important processes studied within this framework

include synchronization [16] or contact processes, such as opinion formation and epi-

demic spreading. These studies give strong evidence that the structure of a network

can have a substantial impact on its dynamics [7].

Regarding this connection between the structure and dynamics of a network, the

spectrum of the network’s adjacency matrix has recently emerged as a key quantity

in the study of a variety of dynamical networks. For example, systems of interacting

dynamical units are known to synchronize depending only on the dynamics of the

uncoupled dynamical systems and the spectral radius of the network adjacency matrix

1



[31, 30]. Moreover, the eigenvalues of a network are important for determining if the

dynamics of a network is stable [6, 1].

To aid in understanding this interplay between the structure (graph of interac-

tions) and dynamics of a network here we introduce the concept of an isospectral graph

transformation. Such transformations allow one to modify a network at the level of

a graph while maintaining properties related to the network’s dynamics. Mathe-

matically, an isospectral graph transformation is a graph operation that modifies

the structure of a graph while preserving the eigenvalues of the graph’s (weighted)

adjacency matrix.

We note here that besides modifying interactions, such transforms can also reduce

or increase the number of nodes in a graph (network). As not to violate the funda-

mental theorem of algebra, isospectral graph transformations preserve the spectrum

of the graph (specifically number of eigenvalues) by allowing edges to be weighted by

rational functions.

We note that by allowing such weights it may appear that our procedure is trading

the complexity of the graph’s structure for complex edge weights. However, this is

not the case. In fact, it is often possible isospectrally reduce a graph in such a way

that the reduced graph’s edges weights belong to a particularly nice set e.g. positive

integers, real numbers, or for unweighted graphs the weight set {1} (see theorem

1.3.4).

For a graph G with vertex set V this is done by reducing or expanding G with

respect to specific subsets of V known as structural sets (see section 1.3.1 for exact

definitions). As a typical graph has many different structural sets it is possible to

consider different isospectral transformations of the same graph as well as sequences

of such transformations as a reduced graph generally will again have its own structural

sets.

In this regard, the flexibility of this procedure is reflected in the fact that for a
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typical graph G it is possible to sequentially reduce G to a graph on any nonempty

subset of its original vertex set. This follows from an existence and uniqueness result

regarding sequences of isospectral reductions. That is a typical graph G can be

uniquely reduced to a graph on any nonempty subset of its vertices (see theorem

1.3.8 and theorem 1.3.10). Because of this uniqueness, isospectral graph reductions

can be used to induce new equivalence relations on the set of all graphs under some

mild assumptions. Namely, two graphs (networks) are spectrally equivalent if they

can by isospectrally reduced to one and the same graph. The implication then is that

this procedure allows for the possibility of studying graphs (networks) modulo any

graph feature that can be uniquely defined.

This itself is motivated by the need when dealing with complex systems to find

ways of reducing complexity while maintaining some important network characteris-

tic(s). Such reductions amount to course graining or finding the right scale at which

to view the network. Isospectral graph transformations, specifically reductions, serve

this need by allowing one to view a network as a smaller network with essentially

the same spectrum. Finding the right scale here then amounts to finding the right

structural set over which to reduce the network.

Chapter I is divided as follows. In section 1.2 we present notation and some general

definitions. Section 1.3 contains the description of an isospectral graph transformation

and results on sequences of such transformations. Graph transformations over fixed

weight sets and spectral equivalence are treated in 1.4. The proof of results contained

in sections 1.3 and 1.4 are then given in section 1.5. Section 1.7 contains some

concluding remarks regarding the applications presented in chapters II and III.

1.2 Preliminaries

In this chapter we are primarily interested in the topology (graph structure) of dy-

namical networks. Here, we consider the most general class of networks (with fixed
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topology i.e. the graph of interactions does not change in time), namely those net-

works whose graph of interactions are finite, directed, with loops and with edge

weights in the set W. Such graphs form the class of graphs we denote by G. A graph

G ∈ G is an ordered triple G = (V,E, ω) where V and E are the vertex set and

edge set of G respectively. Moreover, ω : E → W gives the edge weights of G where

ω(e) = 0 if and only if e /∈ W.

The set W is defined as follows. Let C[λ] be the set of polynomials in the complex

variable λ with complex coefficients. The set W is the set of rational functions of

the form p(λ)/q(λ) where p(λ), q(λ) ∈ C[λ], p(λ) and q(λ) have no common factors

(roots), and q(λ) 6= 0. Here, we note that the set W is a subfield of the field of

rational functions over C.

The vertex set of the graph G = (V,E, ω) is given the labelling V = {v1, . . . , vn}

where we denote an edge from vi to vj by eij. The matrix M(G) = M(G, λ) defined

entrywise by

M(G)ij = ω(eij)

is then the weighted adjacency matrix of G. The spectrum or eigenvalues of a matrix

A(λ) ∈ Wn×n are the solutions including multiplicities to the equation

det(A(λ)− λI) = 0. (1)

For the graph G we let σ(G) be the spectrum of M(G).

The spectrum of a matrix with entries in W is therefore a generalization of the

spectrum of a matrix with complex entries. Moreover, as det
(
M(G) − λI

)
is the

ratio of two polynomials p(λ)/q(λ) ∈ W we let σ−1(G) be the solutions including

multiplicities of the equation q(λ) = 0.

Note both σ(G) and σ−1(G) are lists of numbers. That is,

σ(G) =
{

(σi, ni) : 1 ≤ i ≤ p, σi ∈ C, ni ∈ N
}

4



where ni is the multiplicity of the solutions σi to (1) i.e. eigenvalues, p the number of

distinct solutions, and (σi, ni) the elements in the list. The list σ−1(G) has a similar

formulation.

1.3 Isospectral Graph Reductions and Expansions

In this section we formally describe the isospectral reduction process and the associ-

ated isospectral graph expansions. Once this is in place we then give some specific

examples of this method and present some results regarding sequences of isospectral

reductions and spectral equivalence of graphs.

1.3.1 Setup

As a typical graph G ∈ G cannot be reduced over any arbitrary subset of its vertices

(by means of a single reduction) we define the set of structural sets of a graph or

those vertex sets for which this is possible. If S ⊆ V where V is the vertex set of a

graph we write S̄ = V − S. Also, a loop is an edge that begins and ends at the same

vertex.

Definition 1.3.1. For G = (V,E, ω) let `(G) be the graph G with all loops removed.

The nonempty vertex set S ⊆ V is a structural set of G if `(G)|S̄ contains no cycles

and ω(eii) 6= λ for each vi ∈ S̄.

We denote by st(G) the set of all structural sets of G. To describe how a graph

G = (V,E, ω) is reduced over the structural set S ∈ st(G) we require the following

standard terminology.

A path P in the graph G = (V,E, ω) is an ordered sequence of distinct vertices

v1, . . . , vm ∈ V such that ei,i+1 ∈ E for 1 ≤ i ≤ m − 1. In the case that the vetices

v2, . . . , vm−1 are distinct, but v1 = vm, then P is a cycle. Moreover, we call the vertices

v2, . . . , vm−1 of P the interior vertices of P .
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Definition 1.3.2. For G = (V,E, ω) with structural set S = {v1, . . . , vm} let Bij(G;S)

be the set of paths or cycles with no interior vertices in S from vi to vj. Furthermore,

let

BS(G) =
⋃

1≤i,j≤m

Bij(G;S).

We call the set BS(G) the branches of G with respect to S.

If β = v1, . . . , vm for β ∈ BS(G) and m > 2 let

Pω(β) = ω(e12)
m−1∏
i=2

ω(ei,i+1)

λ− ω(eii)
. (2)

If m = 2 then Pω(β) = ω(e12). We say Pω(β) is the branch product of β.

Definition 1.3.3. Let G = (V,E, ω) with structural set S = {v1 . . . , vm}. The graph

RS(G) = (S, E , µ) where eij ∈ E if Bij(G;S) 6= ∅ and

µ(eij) =
∑

β∈Bij(G;S)

Pω(β), 1 ≤ i, j ≤ m (3)

is the isospectral reduction of G over S.

Theorem 1.3.4. If S ∈ st(G) then σ
(
RS(G)

)
=

(
σ(G) ∪ σ−1(G|S̄)

)
− σ(G|S̄).

To make sense of the formula in theorem 1.3.4 we note that

det
(
M(G|S̄)− λI

)
=

∏
vi∈S̄

(
ω(eii)− λ

)
(4)

since the graph G|S̄ contains no (nonloop) cycles. Hence, σ(G|S̄) are the values at

which the loops weights of S̄ equal λ and σ−1(G|S̄) the values at which these weights

are undefined. Hence, both σ(G|S̄) and σ−1(G|S̄) can be read directly from G.

Figure 1 gives an example of an isospectral reduction of the graph G over the

set S = {v1, v3}. Here, using our list notation, one can compute that the spectrum

σ(G) = {(2, 1), (−1, 1), (1, 2), (0, 2)}. As S̄ has loop weights ω(e22) = 1 , ω(e44) =

6



0, ω(e55) = 1, and ω(e66) = 0 it also follows that σ(G|S̄) = {(1, 2), (0, 2)} and

σ−1(G|S̄) = ∅. Theorem 1.3.4 then implies that σ
(
RS(G)

)
= {(2, 1), (−1, 1)}.

We note that it is also possible to reduce a graph without losing any eigenvalues.

For instance, if Kn = (V,E, ω) where M(Kn)ij = 1 for 1 ≤ i, j ≤ n then σ(Kn) =

{(n, 1), (0, n − 1)}. Hence, for any v ∈ V , σ(RV−{v}(Kn)) = σ(Kn) since σ(Kn|v) =

{(1, 1)} and σ−1(Kn|v) = ∅.

In terms of matrices an isospectral reduction of a graph can be described as follows.

If S ∈ st(G) then the vertices of G can be ordered such that M(G)−λI has the block

form

M(G)− λI =

 A B

C D

 (5)

where A corresponds to the vertices in S̄ and is a triangular matrix with nonzero

diagonal. The matrix A can be made triangular by virtue of the fact that G|S̄ contains

no (nonloop) cycles whereas the nonzero diagonal follows from the condition that

ω(eii) 6= λ for vi ∈ S̄ (see Frobenius normal form in [12]). Hence, A is invertable.

Using the identity

det

 A B

C D

 = det(A) · det(D − CA−1B) (6)

it then follows that

det(D − CA−1B) =
det(M(G)− λI)

det(A)
.

Given D − CA−1B = R − λI, for some R ∈ W|S|×|S| the isospectral reduction,

RS(G) is the graph with adjacency matrix R (see proof of lemma 1.5.3 in section 5).

Moreover, as A corresponds to the vertex set S̄ then by equation (4)

det(A) =
∏
vi∈S̄

(
ω(eii)− λ

)
.

Consequently, it is natural to define an isospectral graph expansion of a graph G

as a graph H where RT (H) = G for some T ∈ st(H). Such expansions can be carried

7



G

v5 v1 v1
v2

v4

v3 v3v6

1
λ−1

1
λ

1
λ−1

λ+1
λ

RS(G)

Figure 1: Reduction of G over S = {v1, v3} where each edge in G has unit weight.

out by simply expanding edges into branches or multiple branches with the correct

products and sums (e.g. (2) and (3)). However, in contrast to graph reductions, such

expansions are nonunique. For unique expansions see section 4.1.

1.3.2 Sequential Reductions

As any reduction RS(G) of a graph G ∈ G is again a graph in G it is natural to

consider sequences of reductions of a graph as well as to what degree a graph can be

reduced. To do so we extend our notation to an arbitrary sequence of reductions.

For G = (V,E, ω) suppose Sm ⊆ Sm−1 ⊆ · · · ⊆ S1 ⊆ V such that S1 ∈ st(G),

R1(G) = RS1(G) and

Si+1 ∈ st(Ri(G)) where RSi+1
(Ri(G)) = Ri+1(G), 1 ≤ i ≤ m− 1.

If this is the case we say S1, . . . , Sm induces a sequence of reductions on G with final

vertex set Sm and write Rm(G) = R(G;S1, . . . , Sm).

Theorem 1.3.5. (Commutativity of Reductions) For G = (V,E, ω) suppose

Sm ∈ st(G). If Sm ⊆ Sm−1 ⊆ · · · ⊆ S1 ⊆ V then S1, . . . , Sm−1, Sm induces a sequence

of reductions on G where R(G;S1, . . . , Sm−1, Sm) = RSm(G).

That is, the final vertex set in a sequence of reductions completely specifies the

reduced graph irrespective of the specific sequence of reductions if this vertex set is a

structural set. To address whether a graph G = (V,E, ω) may be reduced via some

sequence of reductions to a graph on an arbitrary subset V ⊆ V we note the following.

If ω(eii) 6= λ for some vi ∈ V then V − {vi} ∈ st(G) since vi induces no cycles in

`(G). Hence, any single vertex with this property can be removed from the graph. If

8



it is somehow known a priori that no loop of G or any sequential reduction of G has

weight λ then G can be sequentially reduced to a graph on any subset of its vertex

set. To give such a condition we define the set Gπ.

Definition 1.3.6. For p(λ), q(λ) ∈ C[λ] and ω = p(λ)/q(λ) ∈ W define the function

π(ω) = deg(p) − deg(q). Let Gπ ⊂ G be the set of graphs with the property that

G ∈ Gπ if π(M(G)ij) ≤ 0 for each entry of M(G).

Lemma 1.3.7. If G ∈ Gπ and S ∈ st(G) then RS(G) ∈ Gπ. In particular, no loop

of G and no loop of any reduction of G can have weight λ.

By the reasoning above, if G ∈ Gπ then G can be (sequentially) reduced to a

graph on any subset of its vertex set. Moreover, the following holds.

Theorem 1.3.8. (Existence and Uniqueness of Reductions Over Any Set

of Vertices) Let G = (V,E, ω) be in Gπ. Then for any nonempty V ⊆ V any

sequence of reductions on G with final vertex set V reduces G to the unique graph

RV [G] = (V , E , µ). Moreover, at least one such sequence always exists.

The notation RV [G] in the previous theorem is intended to emphasize the fact

that V need not be a structural set of G. Moreover, this notation is well defined given

that there is a unique reduction of G over V in the sense of theorem 1.3.8.

Remark 1. If M(G) ∈ Cn×n then G ∈ Gπ. Therefore, any graph with complex

weights can be uniquely reduced to a graph on any nonempty subset of its vertex set.

This is of particular importance for the estimation of spectra of matrices with complex

entries in [14] which is presented in chapter II.

1.3.3 Unique Reductions

Here we consider specific types of vertex sets that are defined independent of any

graph of G. Our motivation is that every nonempty graph in Gπ will have a unique

9



reduction with respect to this type of vertex set. This will in turn allow us to partition

the graphs in Gπ − ∅ according to their reductions.

Recall that two weighted digraphs G1 = (V1, E1, ω1), and G2 = (V2, E2, ω2) are

isomorphic if there is a bijection b : V1 → V2 such that there is an edge eij in G1

from vi to vj if and only if there is an edge ẽij between b(vi) and b(vj) in G2 with

ω2(ẽij) = ω1(eij). If the map b exists it is called an isomorphism and we write

G1 ' G2. Moreover, we note that if two graphs are isomorphic then their spectra are

identical.

Definition 1.3.9. Let G and H be graphs such that RS(G) = RT (H) for some

S ∈ st(G), T ∈ st(H). Then we say G and H are spectrally equivalent.

As an example, the graphs G in figure 1 and H in figure 4 are spectrally equivalent

since RS(G) = RS(H) for S = {v1, v3}.

Theorem 1.3.10. (Uniqueness and Equivalence Relations) Suppose for any

graph G = (V,E, ω) in Gπ − ∅ that τ is a rule that selects a unique nonempty subset

τ(G) ⊆ V . Then τ induces an equivalence relation ∼ on the set Gπ−∅ where G ∼ H

if Rτ(G)[G] ' Rτ(H)[H].

That is, the relation of being spectrally equivalent under some rule τ is an equiv-

alence relation on the nonempty graphs in Gπ. As an example consider the following

rule. For a graph G = (V,E, ω) where G ∈ Gπ let m(G) ⊆ V be the set of vertices

of minimal out degree. If m(G) 6= V then by theorem 1.3.8 RV−m(G)[G] is uniquely

defined and this process may be repeated until all vertices of the resulting graph have

the same out degree. As the final vertex set of this sequence of reductions is uniquely

defined then the relation of having an isomorphic reduction via this rule induces an

equivalence relation on Gπ.

Note that the relation of simply having isomorphic reductions is not transitive.

That is, if RS[G] ' RT [H] and RU [H] ' RV [K] it is not necessarily the case that

10



v1

v2

1 1 + 1
λ2

G H

v1

v2

v3

v4

v3

v4

K

11
λ2−1

Figure 2: G = RS[H] and RT [H] = K for S = {v1, v2} and T = {v3, v4} but the
graphs G and K do not have isomorphic reductions.

there are sets X and Y , subsets of the vertex sets of G and K respectively, such that

RX [G] ' RY [K]. For instance, in figure 2 both RS[G] = RS[H] and RT [H] = RT [K]

where S = {v1, v2} and T = {v3, v4}. However, one can quickly check that for no

subsets X ⊆ S and Y ⊆ T is RX [G] ' RY [K].

Therefore, a general rule τ that selects a unique set of vertices from each graph

is needed to overcome this intransitivity. However, once a general rule is given this

allows us to study graphs (networks) modulo some particular graph structure. In the

example above this structure is the vertices of strictly minimal out degree.

As an example of a reduction of a real world network, the (unweighted) graph

on the left hand side of figure 3 represents part of the gene interaction network of

a mouse lung [32]. The graph on the right hand side of figure 3 is the isospectral

reduction this network over the its hubs (shown in red) or the vertices with large

in or out degree relative to the other vertices. Alternately, this reduction could be

viewed as reducing the network modulo its non-hub vertices.

1.4 Reductions and Expansions Over Fixed Weight Sets

The graph reductions and expansions of the previous section modify not only the

graph structure but also the weight set associated with each graph. That is, if G =

(V,E, ω) and RS(G) = (S, E , µ) then typically ω(E) 6= µ(E). Thus, one may think

that our procedure simply shifts the complexity of the graph’s structure to its set of

edge weights. However, this is not the case.

11



1
λ2−1

λ2+λ+1
λ2−1

λ2+λ−1
λ3−λ

λ+2
λ

Figure 3: Gene interaction network of a mouse lung (left) reduced over its hubs
(right).

In this section we introduce a procedure of reducing and expanding a graph while

maintaining its set of edge weights where, as before, the procedure preserves the

spectrum of the graph up to a known set (list). Such transformations are of particular

importance in chapter III where dynamical network expansions are discussed.

1.4.1 Branch Expansions

Given a graph G = (V,E, ω) and S ∈ st(G), two branches α, β ∈ BS(G) are said to

be independent if they have no interior vertices in common. Moreover, if the branch

β = v1, . . . , vm let Ω(β) be the ordered sequence

Ω(β) = ω(e12), ω(e22), . . . , ω(ei−1,i), ω(eii), ω(ei,i+1), . . . ω(em−1,m−1), ω(em−1,m).

Definition 1.4.1. For G = (V,E, ω) with structural set S = {v1, . . . , vm} let XS(G) =

(X, E , µ) be the graph where S ∈ st(XS(G)) and the following holds:

(i) There are bijections bij : Bij(XS(G);S) → Bij(G;S) for all 1 ≤ i, j ≤ m such that

if bij(γ) = β then Ω(γ) = Ω(β).

(ii) The branches in BS(XS(G)) are pairwise independent.

(iii) Each vertex of XS(G) is on a branch of BS(XS(G)).

As this uniquely defines XS(G), up to a labeling of vertices, we call this graph the

12



v1 v2

v3v4
H

v5 v1
v6

v7

v3 v8

XS(H)

Figure 4: An expansion XS(H) of H over S = {v1, v3} where each edge in H and
XS(H) has unit weight.

branch expansion of G over S. Essentially, XS(G) is the graph G in which every pair

of branches with respest to S have been made independent.

Theorem 1.4.2. Let G = (V,E, ω) and S ∈ st(G). If each vertex of G is on a branch

of BS(G) then G and XS(G) have the same weight set, RS

(
XS(G)

)
= RS(G), and

|XS(G)| ≥ |G|. Moreover,

det
(
M(XS(G))− λI

)
= det

(
M(G)− λI

) ∏
vi∈S̄

(
ω(eii)− λ

)ni−1

where ni is the number of branches in BS(G) containing vi.

As an example of a branch expansion consider the graph H in figure 4 where

S = {v1, v3}. Given that σ(H) = {(2, 1), (−1, 1), (1, 1), (0, 1))} one can compute

σ(XS(H)) = σ(H) ∪ {(1, 1), (0, 1)} via theorem 1.4.2.

1.4.2 Transformations Over Fixed Weight Sets

Using techniques from both isospectral graph reductions and branch expansions it is

often possible to reduce a graph over some fixed subset of weights U ⊂ W while again

preserving the graph’s spectrum up to some known set (list). To make this precise

we require the following.

Definition 1.4.3. If G and H are spectrally equivalent, |H| < |G|, and both G and

H have weight sets in some subset U ⊆ W we say H is a reduction of G over the

weight set U. If |H| ≥ |G| then H is an expansion of G over the weight set U.
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v1 v2

v3 v4
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K v1 v2

v3 v4

LS(K)

Figure 5: LS(K) is a reduction of K over S = {v1, v2} with weights in Z.

For G = (V,E, ω) and any U ⊆ W containing ω(E) an example of an expansion of

G over the weight set U is any branch expansion of G. Finding reductions over some

set U is more complicated. However, if U is a unital subring of W and we restrict our

attention to specific types of structural sets it is often possible to simply construct a

reduction of G over the set U as follows.

The L-Construction

For G = (V,E, ω) let st0(G) be the collection of all structural sets of G such that

S ∈ st0(G) if ω(eii) = 0 for each vi ∈ S̄. Suppose G = (V,E, ω) and S ∈ st0(G)

where each vertex of G is on a branch of BS(G). If S = {v1, . . . , vm} then for

Bj(XS(G)) =
⋃

1≤i≤m

Bij(XS(G);S)

let βj ∈ Bj(G) be a branch of maximal length for each 1 ≤ j ≤ m.

As a first intermediate step let X̃ be the graph XS(G) with all but the branches

βj removed i.e.

BS(X̃ , S) = {β1, . . . , βm}.

Suppose each βj is denoted by the sequence of vertices βj
`j
, . . . , βj

0 where `j = |βj|− 1

is the length of βj or number of edges. Note each βj
`j
∈ S and βj

0 = vj. We then

reweight the edges of X̃ in the following way.

Make the edge from βj
`j

to βj
`j−1 have weight λ|β

j |−2Pω(βj) for each j and set all

other edges of X̃ to weight 1. Next, for each branch γ ∈ Bj(XS(G)) − βj from vi to

vj attach an edge from vertex vi to vertex βj
|γ|−2 in X̃ with weight λ|γ|−2Pω(γ). If two

14



or more branches correspond to the same edge we reduce these to a single edge with

weight equal to the sum of the corresponding branch products.

We call the resulting graph LS(G) or the L − Construction of G over S. By

construction, if G has weights in U, some unital subring of W, then so does LS(G).

Theorem 1.4.4. Let G have weights in the unital subring U ⊆ W and S ∈ st0(G).

Then G and LS(G) are spectrally equivalent and have the same nonzero spectrum.

Moreover, if |G| > m +
∑m

j=1(|βj| − 2) then LS(G) is a reduction of G over U

otherwise it is an expansion.

An example of an L − Construction is the graph LS(K) in figure 5, which is

constructed from the graph K over S = {v1, v2} ∈ st0(K) having weights in the

unital subring Z ⊂ W.

1.5 Matrix Representation of Isospectral Graph Reductions
and Proofs

In this section we give proofs of the theorems and lemma in sections 3 and 4 of this

chapter. Our strategy will be to develop an analogous theory of matrix reductions

from which such results will follow.

Definition 1.5.1. Let M ∈ Wn×n and I ⊆ {1, . . . , n} be nonempty. If the set

I = {i1, . . . , im} where ij < ij+1 then the matrix M |I given by (M |I)k` = Miki` for

all 1 ≤ k, ` ≤ m ≤ n is the principle submatrix of M indexed by I.

In what follows, we will use the convention that if I = {i1, . . . , im} is an indexing

set of a matrix then ij < ij+1. Moreover, if D = M |I is the principle submatrix of

M ∈ Wn×n indexed by I then there exists a unique permutation matrix P such that

PMP−1 =

 A B

C D


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where A = M |Ī is the principle submatrix of M indexed by Ī = {1, . . . , n} − I.

Assuming A is invertable, then by (6)

det(M) = det(PMP−1) = det(A) det(D − CA−1B).

If this is the case we call the matrix D − CA−1B the reduction of M over I and

write r(M ; I) = D − CA−1B. In the case that I = {1, . . . , n} we let the matrix

r(M ; I) = M . Moreover, if r(M ; I) can be reduced over the index set J we write

the reduction of r(M ; I) over J by r(M ; I,J ), and so on.

We formulate the following lemma related to the reduction of matrices.

Lemma 1.5.2. Let M ∈ Wn×n and I ⊆ {1, . . . , n} be nonempty. If M |Ī is upper

triangular with nonzero diagonal and the sets Im ⊆ Im−1 ⊆ · · · ⊆ I1 ⊆ {1, . . . , n}

then r(M ; I1, . . . , Im−1, Im) = r(M ; Im).

Proof. Without loss in generality suppose Im ⊆ {1, . . . , n} such that the matrix M

has block form

M =

 A B

C D


where A is an upper triangular principle submatrix of M indexed by Īm with nonzero

diagonal. Then for Im ⊆ I1 ⊆ {1, . . . , n} there exists a unique permutation matrix

P such that

PMP−1 =


A0 B0 B2

C0 A1 B1

C2 C1 D


where A0, A1, and D are the principle submatrices indexed by {1, . . . , n}−I1, I1−Im,

and Im respectively. Moreover, both A0 and A1 are upper triangular matrices with

nonzero diagonal as they are principle submatrices of A and are therefore invertable.

It then follows that

r(M ; I1) =

 A1 − C0A
−1
0 B0 B1 − C0A

−1
0 B2

C1 − C2A
−1
0 B0 D − C2A

−1
0 B2

 . (7)
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The claim is then that the matrix C0A
−1
0 B0 is an upper triangular matrix pos-

sessing a zero diagonal. To see this let the sets {1, . . . , n} − I1 = {i1, . . . , is},

I1 − Im = {j1, . . . , jt}, and (A−1
0 )ij = αij. As the inverse of an upper triangular

matrix is upper triangular αij = 0 for i > j. Hence,

(C0A
−1
0 B0)`k =

s∑
p=1

p∑
q=1

(
Aj`iqαqpAipjk

)
1 ≤ `, k ≤ t.

As 1 ≤ q ≤ p then each iq ≤ ip. For each k ≤ ` note that similarly jk ≤ j`. Moreover,

if jk < ip then Aipjk
= 0 since A is upper triangular. If jk > ip then iq < j` implying

Aj`iq = 0 for the same reason. Then, as jk 6= ip, it follows that

(C0A
−1
0 B0)`k = 0 for all k ≤ `

verifying the claim.

A1 − C0A
−1
0 B0 is therefore an upper triangular matrix with nonzero diagonal.

Hence, A1−C0A
−1
0 B0 is invertible and r(M ; I1) can be reduced over Im. In particular,

r(M ; I1, Im) = D − C2A
−1
0 B2 −

(
C1 − C2A

−1
0 B0

)
Γ
(
B1 − C0A

−1
0 B2

)
(8)

where Γ = (A1 − C0A
−1
0 B0)

−1.

To verify that r(M ; I1, Im) = r(M ; Im) note that M has block form

M =

 A B

C D

 and QAQ−1 =

 A0 B0

C0 A1


where Q is the principle submatrix of P indexed by Īm. Therefore,

A−1 = Q−1

 A0 B0

C0 A1


−1

Q = Q−1

 (A0 −B0A
−1
1 C0)

−1 −A−1
0 B0Γ

−1

−Γ−1C0A
−1
0 Γ−1

Q.
Note the matrix (A0−B0A

−1
1 C0)

−1 = A−1
0 −A−1

0 B0ΓC0A
−1
0 by the Woodbury matrix

17



identity [29] and is therefore well defined. From this

r(M ; Im) =D − CQ−1

 A0 B0

C0 A1


−1

QB

=D −
[
C2 C1

] (A0 −B0A
−1
1 C0)

−1 −A−1
0 B0Γ

−1

−Γ−1C0A
−1
0 Γ−1


 B2

B1


=D − C2(A

−1
0 − A−1

0 B0ΓC0A
−1
0 )B2 − C1ΓC0A

−1
0 B2−

C2A
−1
0 B0ΓC0A

−1
0 B1 + C1ΓB1.

From (8) it follows that r(M ; Im) = r(M ; I1, Im)

For Im ⊆ I2 ⊆ I1 the same argument can be repeated to show

r
(
r(M ; I1); Im

)
= r

(
r(M ; I1); I2; Im

)
as r(M ; I1) has the same form as M , i.e. its upper left hand block is an upper

triangular matrix with nonzero diagonal. Hence, r(M ; Im) = r(M ; I1, I2; Im). The

lemma follows by further extending Im ⊆ I2 ⊆ I1 ⊆ {1, . . . , n} to the nested sequence

Im ⊆ Im−1 ⊆ · · · ⊆ I1 ⊆ {1, . . . , n} by repeated use of the above argument.

To establish that graph reductions are analogous to matrix reductions we prove

the following lemma.

Lemma 1.5.3. If S = {vi1 , . . . , vip} is a structural set of G ∈ G then RS(G) is the

graph with adjacency matrix r
(
M(G)− λI; {i1, . . . , ip}

)
+ λI.

Proof. Without loss in generality let S̄ = {v1, . . . , vm}. From the discussion in section

1.3.1, if S is a structural set of G = (V,E, ω) then M(G)− λI has the block form

M(G)− λI =

 A B

C D


where A is the principle submatrix of M(G) − λI indexed by {1, . . . ,m} and is an

upper triangular matrix with nonzero diagonal.
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With this in mind, let Vk = {vk+1, . . . , vn} and Ik = {k+1, . . . , n} for 1 ≤ k ≤ m.

If M(G)ij = ωij for 1 ≤ i, j ≤ n then, proceeding by induction, for k = 1

r(M(G)− λI; I1) =
(
D1 − [ω21, . . . , ωn1]

T 1

ω11 − λ
[ω12, . . . , ω1n]

)
where D1 is the principle submatrix of M(G)− λI indexed by I1. Hence,

r(M(G)− λI; I1)ij =


ωij + ωi1ω1j/(λ− ω11) i 6= j

ωij + ωi1ω1j/(λ− ω11)− λ i = j

(9)

for 2 ≤ i, j ≤ n.

Conversely, note that the set Bij(G;V1) consists of at most the two branches

β+ = vi, v1, vj and β− = vi, vj i.e. the branches from vi to vj with and without interior

vertex v1. As Pω(β−) = ωij and Pω(β+) = ωi1ω1j/(λ−ω11) if the branches β− and β+

are respectively in Bij(G;V1) it then follows from (9) and (3) that r
(
M(G)−λI; I1

)
=

M
(
RV1(G)

)
− λI.

Suppose then for some k ≤ m that r
(
M(G) − λI; Ik−1

)
= M

(
RVk−1

(G)
)
− λI.

Since the principle submatrix of M(G) − λI indexed by Ik is upper triangular with

nonzero diagonal and Ik ⊆ Ik−1 ⊆ {1, . . . , n} an application of lemma 1.5.2 implies

that r(M(G)− λI; Ik) = r(M(G)− λI; Ik−1, Ik). Hence,

r(M(G)− λI; Ik) = r
(
M(RVk−1

(G))− λI; Ik

)
.

Letting M = M(RVk−1
(G)) then by the argument above

r(M(G)− λI; Ik)ij =


Mij +MikMkj/(λ−Mkk) i 6= j

Mij +MikMkj/(λ−Mkk)− λ i = j

for k + 1 ≤ i, j ≤ n. As Mij = M(RVk−1
(G))ij then the entries of M are given by

Mij =
∑

β∈Bij(G;Vk−1)Pω(β).

Observe that ∑
β∈Bij(G;Vk)

Pω(β) =
∑

β∈B−ij(G;Vk)

Pω(β) +
∑

β∈B+
ij(G;Vk)

Pω(β)
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where B+
ij(G;Vk) and B−ij(G;Vk) are the branches in Bij(G;Vk) that contain and do

not contain the interior vertex vk respectively. It then immediately follows that

B−ij(G;Vk) = Bij(G;Vk−1) implying
∑

β∈B−ij(G;Vk)Pω(β) = Mij.

On the other hand, any β ∈ B+
ij(G;Vk) can be written as β = vi, . . . , vk, . . . , vj

where β1 = vi, . . . , vk ∈ Bik(G;Vk−1) and β2 = vk, . . . , vj ∈ Bkj(G;Vk−1). Hence,

equation (2) implies

∑
β∈B+

ij(G;Vk)

Pω(β) =
∑

β∈B+
ij(G;Vk)

Pω(β1)Pω(β2)

λ− ωkk

. (10)

Conversely, if β1 = vi, . . . , vk ∈ Bik(G;Vk−1) and β2 = vk, . . . , vj ∈ Bkj(G;Vk−1)

then β = vi, . . . , vk, . . . , vj ∈ B+
ij(G;Vk). This follows from the fact that β1 and β2

share no interior vertices since otherwise G|V̄k
would contain a cycle, which is not

possible given Vk ∈ st(G). Therefore,

∑
β∈B+

ij(G;Vk)

Pω(β1)Pω(β2) =
∑

β1∈Bik(G;Vk−1)

Pω(β1)
∑

β2∈Bkj(G;Vk−1)

Pω(β2). (11)

Moreover, ωkk = Mkk since Bkk(G;Vk−1) contains at most the cycle vk, vk as

Vk−1 ∈ st(G). From (10) and (11) it then follows that

Mij +MikMkj/(λ−Mkk) =
∑

β∈Bij(G;Vk)

Pω(β)

implying r
(
M(G)− λI; Ik

)
= M

(
RVk

(G)
)
− λI.

By induction it follows that r
(
M(G) − λI; Im

)
= M

(
RS(G)

)
− λI by setting

k = m.

If S = {vi1 , . . . , vim} is a structural set of G then let {i1, . . . , im} be the index set

associated with S. Hence, if S ∈ st(G) is indexed by I then S̄ is indexed by Ī and

there is a unique permutation matrix P such that

P
(
M(G)− λI

)
P−1 =

 A B

C D


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where A is the principle submatrix of M(G) − λI indexed by Ī. Therefore, A =

M(G|S̄)− λI and it follows from lemma 1.5.3 and (6) that

det
(
M(G)− λI

)
= det

(
M(G|S̄)− λI

)
det

(
M(RS(G))− λI

)
. (12)

Letting det(M(G|S̄)− λI) = p(λ)/q(λ) ∈ W then theorem 1.3.4 follows by observing

that σ(G|S̄) and σ−1(G|S̄) are the solutions to p(λ) = 0 and q(λ) = 0 respectively.

We now give proofs of the theorems on isospectral transformations. For a proof

of theorem 1.3.5 we have the following.

Proof. Suppose Sm ⊆ Sm−1 ⊆ · · · ⊆ S1 ⊆ V where Sm is a structural set of G =

(V,E, ω) and let Ii be the index set associated with Si for 1 ≤ i ≤ m. By lemma

1.5.3 the graph R(G;S1) has adjacency matrix r(M(G) − λI, I1) + λI. Hence, and

another application of lemma 1.5.3, the graph R(G;S1, S2) has adjacency matrix

r
(
r(M(G)− λI; I1) + (λ− λ)I; I2

)
+ λI = r(M(G)− λI; I1, I2) + λI.

Continuing in this manner, it follows that R(G;S1, . . . , Sm) has adjacency matrix

given by r(M(G) − λI; I1, . . . , Im) + λI which by lemma 1.5.2 is equivalent to the

matrix r(M(G)− λI; Im) + λI.

Given that r(M(G)− λI; Im) + λI is the adjacency matrix of RSm(G) then again

by use of lemma 1.5.3 it follows that RSm(G) = R(G;S1, . . . , Sm).

We now give a proof of lemma 1.3.7.

Proof. Let w1 = p1/q1 and w2 = p2/q2 be in W such that π(w1), π(w2) ≤ 0. As

π(w1 + w2) = π
(p1q2 + p2q1

q1q2

)
≤ max{π(w1), π(w2)} ≤ 0,

π(w1w2) = π
(p1p2

q1q2

)
= π(w1) + π(w2) ≤ 0, and

π
( 1

λ− w1

)
= π

( q1
(q1λ− p1)

)
< π(w1) ≤ 0

then the result follows from equation (2) and (3).
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In order to prove theorem 1.3.10 we require the following lemma that essentially

implies that the order in which any two vertices are removed from a graph G ∈ Gπ

does not effect the final reduced graph.

Lemma 1.5.4. Suppose G ∈ Gπ with vertex set V = {v1, . . . , vn} for n > 2. If

T = {v1, v2} then R(G;V − {v1}, T ) = R(G;V − {v2}, T ).

Proof. Let G ∈ Gπ and M(G)ij = ωij for 1 ≤ i, j ≤ n. Then M(G) − λI can be

written in the block form

M(G)− λI =


ω11 − λ ω12 B1

ω21 ω22 − λ B2

C1 C2 D

 where A =

 ω11 − λ ω12

ω21 ω22 − λ


is the principle submatrix of M(G)− λI indexed by Ī = {1, 2}.

Note the assumption G ∈ Gπ implies that both ω11 − λ, ω22 − λ 6= 0. Moreover,

if det(A) = 0 then ω22 = ω12ω21(ω11 − λ) + λ. However, equation (9) implies in this

case that

M
(
RV−v1(G)

)
22
− λ = ω22 +

ω21ω12

λ− ω11

− λ = 0.

Hence, M
(
RV−v1(G)

)
22

= λ, which is not possible as it contradicts the conclusion of

lemma 2.3.2. Therefore, det(A) 6= 0 implying

Rij =

(
D − 1

ωjj − λ
CjBj −

ωjj − λ

det(A)
(Ci −

ωji

ωjj − λ
Cj)(Bi −

ωij

ωjj − λ
Bj)

)
is a well defined quantity.

Letting Ii = I ∪ {i} for i 6= j and i, j ∈ Ī then repeated use of (6) implies Rij =

r(M(G)−λI; Ii, I). Moreover, as R12 = R21 then it follows that the graphs R(G;V −

{v1}, T ) = R(G;V − {v2}, T ) since they have the same adjacency matrices.

To simplify the proof of theorem 1.3.10 we note the following. If S1, . . . , Sm induces

a sequence of reductions on G = (V,E, ω) then R(G;S1, . . . , Sm) can alternately be

written as Rem(G;S0 − S1, . . . , Sm−1 − Sm) for V = S0. This notation is meant to
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indicate that at the ith reduction we remove the vertices Si−1 − Si from the graph

Rem(G;S0 − S1, . . . , Si−2 − Si−1) for each 1 ≤ i ≤ m where S−1 − S0 = ∅.

With this notation in place we give a proof of theorem 1.3.10.

Proof. If G = (V,E, ω) ∈ Gπ and {v1, vm} ⊂ V then by the discussion in section

1.3.2 the graph Rem(G; {v1}, . . . , {vm}) is defined. Moreover, for any 1 ≤ i < m, let

Gi = Rem(G; {v1}, . . . , {vi−1}) where G1 = G. Then by lemma 1.5.4 it follows that

Rem
(
Gi; {vi}, {vi+1}

)
= Rem

(
Gi; {vi+1}, {vi}

)
which in turn implies that

Rem
(
G; {v1}, . . . , {vi}, {vi+1}, . . . {vm}

)
=

Rem
(
G; {v1}, . . . , {vi+1}, {vi}, . . . {vm}

)
.

By repeatedly switching the order of any two vertices as above it follows that for any

bijection b : {v1, . . . , vm} → {v1, . . . , vm}

Rem
(
G; {v1}, . . . {vm}

)
= Rem

(
G; {b(v1)}, . . . {b(vm)}

)
. (13)

Suppose S1, . . . , Sm induces a sequence of reductions on G. If S0 = V and each

Si−1 − Si = {vi
1, . . . , v

i
in} then theorem 2.3.5 implies

Rem(G;S0 − S1, . . . , Sm−1 − Sm) =

Rem(G; {v1
1}, . . . , {v1

n1
}, . . . , {vm

1 }, . . . , {vm
nm
}).

If T1, . . . , Tp also induces sequence of reductions on G where T0 = V and each set

Ti−1 − Ti = {ṽi
1, . . . , ṽ

i
iq} then similarly,

Rem(G;T0 − T1, . . . , Tp−1 − Tp) =

Rem(G; {ṽ1
1}, . . . , {ṽ1

q1
}, . . . , {ṽp

1}, . . . , {ṽp
qp
}).

If Sm = Tp then S̄m =
⋃m

i=1

(
Si−1 − Si

)
=

⋃p
i=1

(
Ti−1 − Ti

)
. There is then a bijection

b̃ : S̄m → S̄m such that Rem(G; {v1
1}, . . . , {vm

nm
}) = Rem(G; {b̃(ṽ1

1)}, . . . , {b̃(ṽp
qp

)})

implying R(G;S1, . . . , Sm) = R(G;T1, . . . , Tp−1, Sm) by use of equation (13) complet-

ing the proof.
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The notation RSm [G] = R(G;S1, . . . , Sm) is then well defined for any graph G =

(V,E, ω) in Gπ and nonempty Sm ⊆ V . Moreover, if for any G ∈ Gπ − ∅, τ(G) ⊆ V

is nonempty then the relation G ∼ H if Rτ(G)[G] ' Rτ(H)[H] is an equivalence

relation on Gπ. To see this, note that as the rule τ specifies a unique nonempty

graph Rτ(G)[G] for any G ∈ Gπ −∅, then ∼ is an equivalence relation given that ' is

reflexive, symmetric, and transitive. Hence, theorem 1.3.10 holds.

We now give a proof of theorem 1.4.2.

Proof. Let G = (V,E, ω) and S ∈ st(G) such that each vertex of G is on a branch

of BS(G). It follows then that each e ∈ E is part of the ordered sequence Ω(β) for

some β ∈ Bij(G;S). Given the bijection bij : Bij(XS(G);S) → Bij(G;S) in definition

1.4.1 if XS(G) = (X, E , µ) then ω(e) ∈ µ(E). Hence, ω(E) ⊆ µ(E). Similarly, as each

vertex of XS(G) is on a branch of BS(XS(G)) then µ(E) ⊆ ω(E) implying the weight

sets of G and XS(G) are equal.

Moreover, the assumption that each vertex of G and XS(G) lies on a branch of

BS(G) and BS(XS(G)) respectively implies together with (i) in definition 1.4.1 that

RS(G) = RS(XS(G)). Similarly, |XS(G)| ≥ |G| follows from the fact that branches

of equal length in BS(G) and BS(XS(G)) are in bijective correspondence and that the

branches in BS(XS(G)) are independent.

To compare the spectrum of G and its expansion XS(G) note equation (12) and

the fact that det
(
M(RS(G)− λI)

)
= det

(
M(RS(XS(G))− λI)

)
together imply

det
(
M(G)− λI

)
det

(
M(G|S̄)− λI

) =
det

(
M(XS(G))− λI

)
M(XS(G)|S̄)− λI

) .

By (4) it then follows that det
(
M(XS(G))− λI

)
=

det
(
M(G)− λI

)∏
vi∈X−S

(
µ(eii)− λ

)∏
vi∈V−S

(
ω(eii)− λ

) = det
(
M(G)− λI

)∏
vi∈V−S

(
ω(eii)− λ

)ni∏
vi∈V−S

(
ω(eii)− λ

)
where ni is the number of distinct branches in BS(G) containing vi.

This completes the proof.
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For theorem 1.4.4 we give the following proof.

Proof. Let G = (V,E, ω) and S = {v1, . . . , vm} ∈ st0(G) where each vertex of G

is on a branch of BS(G). By construction, it follows that there exists bijections

b̂ij : Bij(LS(G);S) → Bij(G;S) for all 1 ≤ i, j ≤ n such that if b̂ij(γ) = β then

Ω(γ) = λ|β|−2Pω(β), 0, 1, . . . , 0, 1 and |γ| = |β|. Hence, if LS(G) = (X, E , µ) then

Pµ(γ) = Pω(β) implying

∑
γ∈Bij(LS(G);S)

Pµ(γ) =
∑

β∈Bij(G;S)

Pω(β).

Therefore, RS(G) = RS(LS(G)) or G and LS(G) are spectrally equivalent.

As S ∈ st0(G) and S ∈ st0(LS(G)) then σ(G|S̄) and σ(LS(G)|S̄) are lists of zeros

and both σ−1(G|S̄) and σ−1(LS(G)|S̄) are empty. By theorem 1.3.4 it then follows

that σ(G) and σ(LS(G)) differ by at most a list of zeros.

Moreover, since in the construction of LS(G), |X̄ | = |LS(G)| then we have that

|LS(G)| = |S| +
∑m

j=1

(
|βj| − 2

)
as each βj has |βj| − 2 interior vertices and is

independent of the branch βi for each i 6= j and 1 ≤ j ≤ m. As |S| = m then LS(G)

is a reduction of G over U if |G| > m +
∑m

j=1

(
|βj| − 2

)
and an expansion otherwise

for any unital subring U ⊆ W containing ω(E).

1.6 Concluding Remarks

The goal of this chapter is foremost to introduce the notion of isospectral graph trans-

formations. Specifically, this chapter describes the general process of isospectral graph

reductions in which a graph is collapsed around a specific set of vertices as well as the

inverse process of isospectral expansion. We then considered sequences of isospectral

reductions and showed that under mild assumptions a typical graph could be uniquely

reduced to a graph on any subset of its vertex set.

As is shown in the following chapter, such reductions and sequences of reductions

can be used to improve each of the eigenvalue estimates of Gershgorin et al. [10,
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11, 27, 28, 48] for the general class of matrices with complex entries. That is, such

eigenvalue estimates improve as a graph is reduced using the method of reduction

introduced in this chapter. In this application of isospectral transformations, the

flexibility and commutativity of such reductions is particularly useful.

Additionally, isospectral reductions are also relevant to the theory of networks as

they provide a flexible means of course graining networks (i.e. viewing the network

at some appropriate scale) by introducing new equivalence relations on the space of

all networks. That is, viewing networks modulo some specified graph (or network)

structure.

The second type of transformations we presented in this chapter were isospectral

graph transformations over fixed weight sets. Such transformations allow one to

transform an arbitrary (weighted) graph while preserving the graph’s set of edge

weights along with the its spectrum.

Motivated by this procedure, we will introduce dynamical network expansions in

chapter III. Dynamical network expansions modify a dynamical network in a way

that preserves network dynamics but alters its associated graph structure (graph of

interactions). In this chapter III we will demonstrate that this procedure allows one

to establish global stability of a more general class of dynamical networks than those

previously considered.

Lastly, the results of the present chapter introduce various approaches to simpli-

fying a graph’s structure while maintaining its spectrum. Therefore, these techniques

can be used for optimal design, in the sense of structure simplicity of dynamical net-

works with prescribed dynamical properties ranging from synchronizability to chaotic-

ity [1, 6].
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CHAPTER II

IMPROVED EIGENVALUE ESTIMATES

2.1 Introduction

A remarkable theorem due to Gershgorin [25] states that if the matrix A ∈ Cn×n then

the eigenvalues of A are contained in the union of the n discs

n⋃
i=1

{λ ∈ C : |λ− Aii| ≤
n∑

j=1,j 6=i

|Aij|}.

This simple and geometrically intuitive result moreover implies a nonsingularity result

for diagonally dominant matrices (see theorem 1.4 in [48]), which can be traced back

to earlier work done by Lévy, Desplanques, Minkowski, and Hadamard [34, 22, 39, 27].

More recently, this result of Gershgorin has been improved upon by both Brauer and

Varga [10, 48] whose results are similar in spirit to Gershgorin’s in that each assigns

to every matrix A ∈ Cn×n a region of the complex plane containing the matrix’s

eigenvalues. Moreover, the same holds for a result of Brualdi [11] with the exception

that the associated region is define for a proper subset of the matrices in Cn×n.

These improvements can be summarized as follows. If A ∈ Cn×n let Γ(A), K(A),

and B(A) denote the associated regions given respectively by Gershgorin, Brauer,

and the improvement of Brualdi’s theorem given by Varga. If σ(A) denotes the

eigenvalues of A then it is known that σ(A) ⊆ B(A) ⊆ K(A) ⊆ Γ(A) for any complex

valued matrix A (see [48] for details). Furthermore, if the region br(A) associated

with Brualdi’s original result is defined then σ(A) ⊆ B(A) ⊆ br(A) ⊆ K(A).

The main goal of this chapter is to improve upon each of the estimates of Gersh-

gorin, Brauer, Brualdi, and Varga by considering reductions of the weighted digraphs

associated to each matrix A ∈ Cn×n. To do so we first extend these classical re-

sults to a larger class of square matrices with entries in W consisting of complex
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rational functions. The motivation for considering this class of matrices arises from

the isospectral graph reductions introduced in chapter I along with the observation

that in the study of dynamical networks an important (dynamic) characteristic of a

network is the spectrum of the network’s adjacency matrix [1, 6, 40, 42] (see chapter

III).

Recall that one of the main result of the previous chapter is that the eigenvalues of

the adjacency matrix of a graph and the adjacency matrix of any one of its reductions

differ at most by some set, which is known in advance (see theorem 1.3.4). What is

novel about this process is that it equivalently allows for the reduction of an arbitrary

matrix A ∈ Cn×n to a smaller matrix R ∈ Wm×m (where m < n) such that the

eigenvalues of A and R again differ by at most some set, known in advance.

In the present chapter we show that by using such graph reductions (equivalently

matrix reductions) one can improve each of the eigenvalue estimates associated with

Gershgorin, Brauer, and Brualdi. Specifically, for M(G) ∈ Cn×n the regions in the

complex plane associated with both Gershgorin and Brauer shrink as the graph G

is reduced (see theorems 2.5.1 and 2.5.3 for exact statements). For the estimates

associated with Brualdi and Varga we give sufficient conditions under which such

estimates also improve as the underlying graph is reduced (see theorems 2.5.4 and

2.5.5).

We also note that, for a given graph (equivalently matrix), many graph reductions

are typically possible. Hence, this process is quite flexible. Moreover, as it is possible

to sequentially reduce a graph G, graph reductions on G can be used to estimate the

spectrum of M(G) with increasing accuracy depending on the extent to which G is

reduced.

With this in mind chapter II is organized as follows. Section 2.2 introduces the

notation used in this chapter. Section 2.3 extends the results of Gershgorin, Brauer,
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Brualdi, and Varga to the class of matrices with entries in W. Section 2.4 then sum-

marizes and expands the theory of isospectral graph reductions of chapter I developed

in [14] which will be used to improve the eigenvalue estimates of section 2.3. Section

2.5 contains the main results of the chapter demonstrating that isospectral graph

reductions allow for improved eigenvalue estimates using the methods of Gershgorin,

Brauer, Brualdi, and Varga. Section 2.6 gives some natural applications of the theo-

rems of section 2.5. These include estimating the spectrum of a Laplacian matrix of

graph, estimating the spectral radius of a matrix, and determining useful reductions

to use for a given matrix (or equivalently, graph of a network).

2.2 Notation

In this chapter, as in the previous, we consider two equivalent mathematical objects.

The first is the set of graphs consisting of all finite weighted digraphs with or without

loops having no parallel edges and edge weights in the set W of complex rational

functions (described below as well as in chapter I). We denote this class of graphs by

G where Gn ⊂ G is the set of graphs with n vertices. The second set of objects we

consider are the weighted adjacency matrices associated with the graphs in G. That

is, the class of matrices Wn×n for all n ≥ 1.

As before we let the weighted digraph G ∈ G be the triple (V,E, ω) where for

V = {v1, . . . , vn} the edge from vi to vj is given by eij. Furthermore, the set of weights

W are the set of rational functions of the form p(λ)/q(λ) where p(λ), q(λ) ∈ C[λ]

such that p(λ) and q(λ) have no common factors and the polynomial q(λ) is nonzero.

Additionally, the spectrum associated to a graph G ∈ G are the solutions to the

equation det(M(G)− λI) = 0 including multiplicities.

As we are mainly concerned with the properties of the adjacency matrix of graphs

in G we note, as we have previously suggested, that there is a one-to-one correspon-

dence between the graphs in Gn and the matrices Wn×n. Therefore, we may talk of a
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graph G ∈ Gn associated with a matrix M = M(G) in Wn×n and vice-versa without

ambiguity.

2.3 Spectra Estimation of Wn×n

Here we extend the classical results of Gershgorin, Brauer, Brualdi, and the more

recent work of Varga (see for instance [48]) to matrices in Wn×n. To do so we will

first define the notion of a polynomial extension of a graph G ∈ G.

Definition 2.3.1. If G ∈ Gn and M(G)ij = pij/qij where pij, qij ∈ C[λ] let Li(G)=
∏n

j=1 qij

for 1 ≤ i ≤ n. We call the graph Ḡ with adjacency matrix

M(Ḡ)ij =


Li(G)M(G)ij i 6= j

Li(G)
(
M(G)ij − λ

)
+ λ i = j

, 1 ≤ i, j ≤ n

the polynomial extension of G.

To justify this name note that eachM(Ḡ)ij is an element of C[λ] orM(Ḡ) has complex

polynomial entries. Moreover, we have the following result.

Lemma 2.3.2. If G ∈ G then σ(G) ⊆ σ(Ḡ).

Proof. For G ∈ Gn note that the matrix M(Ḡ)− λI is given by

(M(Ḡ)− λI)ij =


Li(G)M(G)ij i 6= j

Li(G)
(
M(G)ij − λ

)
i = j

for 1 ≤ i ≤ n.

The matrix M(Ḡ) − λI is then the matrix M(G) − λI whose ith row has been

multiplied by Li(G). Therefore,

det
(
M(Ḡ)− λI

)
=

( n∏
i=1

Li(G)
)

det
(
M(G)− λI

)
implying σ(G) ⊆ σ(Ḡ).

30



2.3.1 Gershgorin-Type Regions

As previously mentioned, a theorem of Gershgorin’s, originating from [25], gives a

simple method for estimating the eigenvalues of a square matrix with complex valued

entries. This result is the following theorem which we formulate after introducing the

following.

If A ∈ Cn×n let

ri(A) =
n∑

j=1, j 6=i

|Aij|, 1 ≤ i ≤ n (14)

be the ith row sum of A.

Theorem 2.3.3. (Gershgorin [25]) Let A ∈ Cn×n. Then all eigenvalues of A are

contained in the set

Γ(A) =
n⋃

i=1

{λ ∈ C : |λ− Aii| ≤ ri(A)}.

In order to extend theorem 2.3.3 to the class of matrices Wn×n we use the following

adaptation of the notation given in (14). For G ∈ Gn let

ri(G) =
n∑

j=1,j 6=i

|M(G)ij| for 1 ≤ i ≤ n

be the ith row sum of M(G).

Note that as M(Ḡ) ∈ C[λ]n×n, for any G ∈ G, we can view M(Ḡ) = M(Ḡ, λ) as

a function

M(Ḡ, ·) : C → Cn×n

or entrywise M(Ḡ, ·)ij : C → C. Likewise, we can consider ri(Ḡ) = ri(Ḡ, λ) to be

the function ri(Ḡ, ·) : C → C. However, typically we will suppress the dependence of

M(Ḡ) and ri(Ḡ) on λ for ease of notation.

Theorem 2.3.4. Let G ∈ Gn. Then σ(G) is contained in the set

BWΓ(G) =
n⋃

i=1

{λ ∈ C : |λ−M(Ḡ)ii| ≤ ri(Ḡ)}.
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Figure 6: The graph G (left) and BWΓ(G) (right) where σ(G) = {−1,−1, 2,−i, i} is
indicated.

Proof. First note that for α ∈ σ(G) the matrix M(Ḡ, α) ∈ Cn×n. As Lemma 2.3.2

implies that α is an eigenvalue of the matrix M(Ḡ, α) then by an application of

Gershgorin’s theorem the inequality |α −M(Ḡ, α)ii| ≤ ri(Ḡ, α) holds for some 1 ≤

i ≤ n. Hence, α ∈ BWΓ(G).

Because it will be useful later in comparing different regions in the complex plane,

for G ∈ Gn we denote

BWΓ(G)i = {λ ∈ C : |λ−M(Ḡ)ii| ≤ ri(Ḡ)} where 1 ≤ i ≤ n

and call this the ith Gershgorin-type region of G. Similarly, we call the union BWΓ(G)

of these n sets the Gershgorin-type region of the graph G ∈ G.

As an illustration of theorem 2.3.4 consider the following example. Let G ∈ G be

the graph with adjacency matrix

M(G) =


λ+1
λ2

1
λ

λ+1
λ

2λ+1
λ2

1
λ

1
λ

0 1 0

 . (15)

As det(M(G, λ) − λI) = (−λ5 + 2λ3 + 2λ2 + 3λ + 2)/(λ2) it follows that σ(G) =

{−1,−1, i,−i, 2}. The corresponding Gershgorin-type region BWΓ(G) is shown in
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figure 6 where

M(Ḡ) =


−λ5 + λ3 + λ2 + λ λ3 λ4 + λ3

2λ3 + λ2 −λ5 + λ3 + λ λ3

0 1 0

 .
We note here that BWΓ(G) is the union of the three regions BWΓ(G)1, BWΓ(G)2,

and BWΓ(G)3 whose boundaries are shown in blue, red, and tan (if given in color).

Additionally, the interior colors of these regions reflect their intersections and the

eigenvalues of M(G) are indicated as points. We will use the same technique to

display similar regions in what follows.

2.3.2 Brauer-Type Regions

Following Gershgorin, Brauer was able to give the following eigenvalue inclusion result

for matrices with complex valued entries.

Theorem 2.3.5. (Brauer [48]) Let A ∈ Cn×n where n ≥ 2. Then all eigenvalues

of A are located in the set

K(A) =
⋃

1≤i,j≤n
i6=j

{λ ∈ C : |λ− Aii||λ− Ajj| ≤ ri(A)rj(A)}. (16)

The individual regions given by {λ ∈ C : |λ − Aii||λ − Ajj| ≤ ri(A)rj(A)} in

equation (16) are known as Cassini ovals and may consists of one or two distinct

components. Moreover, there are
(

n
2

)
such regions for any n×n matrix with complex

entries. As with Gershgorin’s theorem we prove an extension to Brauer’s theorem for

matrices in Wn×n.

Theorem 2.3.6. Let G ∈ Gn where n ≥ 2. Then σ(G) is contained in the set

BWK(G) =
⋃

1≤i,j≤n
i6=j

{λ ∈ C : |λ−M(Ḡ)ii||λ−M(Ḡ)jj| ≤ ri(Ḡ)rj(Ḡ)}.

Also, BWK(G) ⊆ BWΓ(G).
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Figure 7: Left: The Brauer region K(G) for G in figure 6. Right: K(G) ⊆ Γ(G).

Proof. As in the proof of theorem 2.3.4, if α ∈ σ(G) then α ∈ σ(Ḡ) and the matrix

M(Ḡ, α) ∈ Cn×n. Brauer’s theorem therefore implies that

|α−M(Ḡ, α)ii||α−M(Ḡ, α)jj| ≤ ri(Ḡ, α)rj(Ḡ, α)

for some pair of distinct integers i and j. It then follows that, α ∈ BWK(G) or

σ(G) ⊆ BWK(G).

Following the proof in [48], to prove the assertion that BWK(G) ⊆ BWΓ(G) let

BWK(G)ij = {λ ∈ C : |λ−M(Ḡ, λ)ii||λ−M(Ḡ, λ)jj| ≤ ri(Ḡ, λ)rj(Ḡ, λ)} (17)

for distinct i and j. The claim then is that BWK(G)ij ⊆ BWΓ(G)i ∪ BWΓ(G)j. To

see this, assume for a fixed λ that λ ∈ BWK(G)ij or

|λ−M(Ḡ, λ)ii||λ−M(Ḡ, λ)jj| ≤ ri(Ḡ, λ)rj(Ḡ, λ).

If ri(Ḡ, λ)rj(Ḡ, λ) = 0 then either λ − M(Ḡ, λ)ii = 0 or λ − M(Ḡ, λ)jj = 0. As

λ = M(Ḡ, λ)ii implies λ ∈ BWΓ(G)i and λ = M(Ḡ, λ)jj implies λ ∈ BWΓ(G)j then

λ ∈ BWΓ(G)i ∪ BWΓ(G)j.

If ri(Ḡ, λ)rj(Ḡ, λ) > 0 then it follows that( |λ−M(Ḡ, λ)ii|
ri(Ḡ, λ)

)( |λ−M(Ḡ, λ)jj|
rj(Ḡ, λ)

)
≤ 1.

Since at least one of the two quotients on the left must be less than or equal to 1 then

λ ∈ BWΓ(G)i ∪ BWΓ(G)j which verifies the claim and the result follows.
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We call the region BWK(G) the Brauer-type region of the graph G and the region

BWK(G)ij given in (17) the ijth Brauer-type region of G. Using theorem 2.3.6 on the

graph G given in figure 6 we have the Brauer-type region shown in the left hand side

of figure 7. On the right is a comparison between BWK(G) and BWΓ(G) where the

inclusion BWK(G) ⊆ BWΓ(G) is demonstrated.

2.3.3 Brualdi-Type Regions

In this section we first extend a result of Varga [48], which is itself an extension of

a result of Brualdi [11] relating the spectrum of a graph with complex weights to its

cycle structure. We then show that the same can be done for the original result of

Brualdi. To do so we require the following.

Recall a path P in the graph G = (V,E, ω) is a sequence of distinct vertices

v1, . . . , vm ∈ V such that ei,i+1 ∈ E for 1 ≤ i ≤ m − 1. In the case that the vertices

v1, . . . , vm are distinct, with the exception that v1 = vm, then P is a cycle. If γ is

a cycle of G we denote it by its ordered set of vertices. That is, if ei,i+1 ∈ E for

1 ≤ i ≤ m − 1 and em1 ∈ E then we write this cycle as the ordered set of vertices

{v1, . . . , vm} up to cyclic permutation. Moreover, we call a cycle consisting of a single

vertex a loop.

A strong cycle of G is a cycle {v1, . . . , vm} such that m ≥ 2. Furthermore, if

vi ∈ V has no strong cycle passing through it then we define its associated weak cycle

as {vi} irregardless of whether eii ∈ E. For G ∈ G we let Cs(G) and Cw(G) denote

the set of strong and weak cycles of G respectively and let C(G) = Cs(G) ∪ Cw(G).

A directed graph is strongly connected if there is a path from each vertex of the

graph to every other vertex. The strongly connected components of G = (V,E) are its

maximal strongly connected subgraphs. Moreover, the vertex set V = {v1, . . . , vn}

can always be labeled in such a way that M(G) has the following triangular block

structure
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M(G) =



M(S1(G)) 0 . . . 0

∗ M(S2(G))
...

...
. . . 0

∗ . . . ∗ M(Sm(G))


where Si(G) is a strongly connected component of G and ∗ are block matrices with

possibly nonzero entries (see [12], [28], or [48] or for more details).

As the strongly connected components of a graph are unique then for G ∈ Gn we

define

r̃i(G) =
∑

j∈N`,j 6=i

|M(S`(G))ij| for 1 ≤ i ≤ n

where i ∈ N` and N` is the set of indicies indexing the vertices in S`(G). That is, r̃i(G)

is ri(G) restricted to the strongly connected component containing vi. Furthermore,

we let r̃i(Ḡ) = r̃i(Ḡ, λ) where we again consider r̃i(Ḡ, ·) : C → C

If A ∈ Cn×n then we write r̃i(G, λ) = r̃i(A) where A = M(G). This allows us to

state the following theorem by Varga which, as previously mentioned, is an extension

of Brualdi’s original theorem [11].

Theorem 2.3.7. (Varga [48]) Let A ∈ Cn×n. Then the eigenvalues of A are

contained in the set

B(A) =
⋃

γ∈C(A)

{λ ∈ C :
∏
vi∈γ

|λ− Aii| ≤
∏
vi∈γ

r̃i(A)}.

As with the theorems of Gershgorin and Brauer this result can similarly be ex-

tended to matrices in Wn×n as follows.

Theorem 2.3.8. Let G ∈ G. Then σ(G) is contained in the set

BWB(G) =
⋃

γ∈C(Ḡ)

{λ ∈ C :
∏
vi∈γ

|λ−M(Ḡ)ii| ≤
∏
vi∈γ

r̃i(Ḡ)}. (18)

Also, BWB(G) ⊆ BWK(G).
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For G ∈ G we call BWB(G) the Brualdi-type region of the graph G and set

BWB(G)γ = {λ ∈ C :
∏
vi∈γ

|λ−M(Ḡ)ii| ≤
∏
vi∈γ

r̃i(Ḡ)}

the Brualdi-type region associated with the cycle γ.

Proof. For G ∈ Gn let Ḡ = Ḡ(λ) where for fixed α ∈ C, Ḡ(α) is the graph with

adjacency matrix M(Ḡ, α) ∈ Cn×n. Moreover, for any γ = {v1, . . . , vm} in C(Ḡ) and

fixed α ∈ C let γ(α) be the set of vertices {v1, . . . , vm} in the graph Ḡ(α).

Using this notation, if α ∈ σ(G) then by lemma 2.3.2 and theorem 2.3.7 there

exists a γ′ ∈ C(Ḡ(α)) such that

∏
vi∈γ′

|α−M(Ḡ, α)ii| ≤
∏
vi∈γ′

r̃i(Ḡ, α). (19)

There are then two possibilities, either γ′ ∈ C(Ḡ) or it is not. If γ′ ∈ C(Ḡ) then the

set of vertices γ′(α) is also a cycle in Ḡ in which case equation (18) and (19) imply

α ∈ BWB(G). Suppose then that γ′ /∈ C(Ḡ).

Note that if γ′ ∈ Cs(Ḡ(α)) then as M(Ḡ, α)ij 6= 0 implies M(Ḡ, λ)ij 6= 0 for i 6= j

then γ′ ∈ Cs(Ḡ), which is not possible. Hence, γ′ ∈ Cw(Ḡ(α)) or γ′ must be a loop

of some vertex vj where the graph induced by {vj} in Ḡ(α) is a strongly connected

component of Ḡ(α). Therefore, equation (19) is equivalent to |α −M(Ḡ, α)jj| ≤ 0

implying α = M(Ḡ, α)jj.

As some cycle γ ∈ C(Ḡ) contains the vertex vj then α is contained in the set

{λ ∈ C :
∏
vi∈γ

|λ−M(Ḡ, λ)ii| ≤
∏
vi∈γ

r̃i(Ḡ, λ)}

implying that α ∈ BWB(G).

To show that BWB(G) ⊆ BWK(G) we again follow the proof in [48]. Let γ ∈

C(Ḡ). Supposing that γ ∈ Cw(Ḡ) then γ = {vi} for some vertex vi of G and

BWB(G)γ = {λ ∈ C : |λ−M(Ḡ, λ)ii| = 0}
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Figure 8: The Brualdi-type region BWB(G) for G in figure 6.

as vi is the vertex set of some strongly connected component of Ḡ. It follows from

(17) that BWB(G)γ ⊆ BWK(G)ij for any 1 ≤ j ≤ n where i 6= j. In particular, note

that if r̃i(Ḡ, λ) = 0 then λ ∈ BWK(G)ij for any 1 ≤ j ≤ n where i 6= j.

If on the other hand, γ ∈ Cs(Ḡ) then for convenience let γ = {v1, . . . , vp} where

p > 1 and note that

BWB(G)γ = {λ ∈ C :

p∏
i=1

|λ−M(Ḡ, λ)ii| ≤
p∏

i=1

r̃i(Ḡ, λ)}. (20)

Assuming 0 < r̃i(Ḡ, λ) for all 1 ≤ i ≤ p then for fixed λ ∈ BWB(G)γ it follows by

raising both sides of the inequality in (20) to the (p− 1)st power that

∏
1≤i,j≤p

i6=j

( |λ−M(Ḡ, λ)ii||λ−M(Ḡ, λ)jj|
r̃i(Ḡ, λ)r̃j(Ḡ, λ)

)
≤ 1 (21)

As not all the terms of the product in (21) can exceed unity then for some pair of

indices ` and k where 1 ≤ `, k ≤ p and ` 6= k it follows that

|λ−M(Ḡ, λ)kk||λ−M(Ḡ, λ)``| ≤ r̃k(Ḡ, λ)r̃`(Ḡ, λ). (22)

Using the fact that r̃i(Ḡ, λ) ≤ ri(Ḡ, λ) for all 1 ≤ i ≤ n we conclude that λ ∈

BWK(G)k` completing the proof.

The Brualdi-type region for the graph G with adjacency matrix (15) is shown in

figure 8. We note that BWB(G) = BWK(G) in this particular case.

38



We now consider Brualdi’s original result which can be stated as follows.

Theorem 2.3.9. (Brualdi [11]) Let A ∈ Cn×n where Cw(A) = ∅. Then the eigen-

values of A are contained in the set

br(A) =
⋃

γ∈C(A)

{λ ∈ C :
∏
vi∈γ

|λ− Aii| ≤
∏
vi∈γ

ri(A)}.

As with the theorems of Gershgorin, Brauer, and Varga this result generalizes to

matrices with entries in W as follows.

Theorem 2.3.10. Let G ∈ G where Cw(G) = ∅. Then σ(G) is contained in the set

BWbr(G) =
⋃

γ∈C(Ḡ)

{λ ∈ C :
∏
vi∈γ

|λ−M(Ḡ)ii| ≤
∏
vi∈γ

ri(Ḡ)}. (23)

Also, BWB(G) ⊆ BWbr(G) ⊆ BWK(G).

Proof. Note for any graph G ∈ G that r̃i(Ḡ) ≤ ri(Ḡ) for all λ ∈ C. Hence,

BWB(G) ⊆
⋃

γ∈C(Ḡ)

{λ ∈ C :
∏
vi∈γ

|λ−M(Ḡ)ii| ≤
∏
vi∈γ

ri(Ḡ)}.

Theorem 2.3.8 then implies that σ(G) is contained in the set BWbr(G). Furthermore,

if r̃i(G) is replaced by ri(G) in the proof of theorem 2.3.8 then in particular (22)

implies that BWbr(G) ⊆ BWK(G), completing the proof.

We will refer to the region BWbr(G), given in (23), as the original Brualdi-type

region of G.

2.4 Sequential Reductions and Principle Submatrices

In this section we extend the theory of isospectral reductions developed in chapter I.

Specifically, to understand how sequential reductions effect the eigenvalues of a graph

(or equivalently matrix) we prove the following.

Theorem 2.4.1. If G = (V,E, ω) ∈ Gπ where V ⊂ V is nonempty then

det
(
M(RV [G])− λI

)
=

det
(
M(G)− λI

)
det

(
M(G|V̄)− λI

) .
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As a special case, if M(G) ∈ Cn×n we have the following immediate corollary.

Corollary 1. Let G = (V,E, ω). If M(G) ∈ Cn×n then for any nonempty V ⊂ V ,

σ(RV [G]) = σ(G)− σ(G|V̄).

In terms of matrices theorem 2.4.1 can be stated as follows. If M ∈ Wn×n then

det
(
r[M ; I]− λI

)
=

det(M − λI)

det(M |Ī − λI)

for any sequence of indexing sets I ⊆ Im−1 ⊆ · · · ⊆ I1 ⊆ {1, . . . , n} for which the

matrix r[M, I] = r(M ; I1, . . . , Im−1, I) is defined.

For a proof of theorem 2.4.1 we give the following.

Proof. For G = (V,E, ω) ∈ Gn
π and V = {v1, . . . , vn} let Vm = {v1, . . . , vm} for some

fixed 1 ≤ m < n. For 1 ≤ k ≤ m denote the matrices Mk = M(RV̄k
(G)) and

Mk = M(G)|{vk}. As V̄1 ∈ st(G) then equation (12) implies that

det(M − λI) = det(M1 − λI) det(M1 − λI).

As both M1 = M(RV̄1
(G)) and V̄2 ∈ st(RV̄1

(G)) equation (12) can again be

used to infer that det
(
M1 − λI

)
= det

(
(M1)2 − λI

)
det

(
(M1)

2 − λI
)
. Given that

(M1)2 = M2 by theorem 1.3.10 then this implies

det
(
M1 − λI

)
= det

(
M2 − λI

)
det

(
(M1)

2 − λI
)
.

As V̄i ∈ st(RVi−1
[G]) for 1 ≤ i ≤ m repeated use of both equation (12) and

theorem 1.3.8 then imply

det(M − λI) = det(Mm − λI)
m∏

i=1

det
(
(Mi−1)

i − λI
)

(24)

where M0 = M .

Denoting the principle submatrix M |Vm = M̃ then, by the same argument, the

characteristic equation of the M̃ is given by

det(M̃ − λI) =
m∏

i=1

det
(
(M̃i−1)

i − λI
)
. (25)
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where M̃0 = M̃ . The claim then is that (M̃i−1)
i = (Mi−1)

i for all 1 ≤ i ≤ m. To

verify this we proceed by induction.

First, note that (M0)jk = (M̃0)jk for all 1 ≤ j, k ≤ m as M̃0 is the principle

submatrix of M0 consisting of its first m rows and columns. Therefore, assume that

the entries (Mi)jk = (M̃i)jk for 1 ≤ j, k ≤ m− i and i < ` ≤ m. For the case i = ` it

follows from this assumption that

(M`)jk = (M`−1)j+1,k+1 +
(M`−1)j+1,1(M`−1)1,k+1

λ− (M`−1)11

= (26)

(M̃`−1)j+1,k+1 +
(M̃`−1)j+1,1(M̃`−1)1,k+1

λ− (M̃`−1)11

= (M̃`)jk (27)

for all 1 ≤ j, k ≤ m − ` where each quotient of (26) and (27) is defined on the basis

that G ∈ Gπ. Hence, (Mi)jk = (M̃i)jk for 1 ≤ j, k ≤ m − i and i ≤ m. This verifies

the claim that (M̃i−1)
i = (Mi−1)

i for all 1 ≤ i ≤ m.

Since det
(
(M̃i−1)

i−λI
)

= det
(
(Mi−1)

i−λI
)

for 1 ≤ i ≤ m equation (24) together

with (25) imply

det(M − λI) = det(Mm − λI) det(M̃ − λI).

As M = M(G), Mm = RV̄m
[G], and M̃ = M(G|Vm) this verifies the proof once it is

known that det(M(G|Vm)− λI) 6= 0.

To see this, note that each matrix M̃i−1 = M(RVi−1
[G|Vm ]). Given that the graph

RVi−1
[G|Vm ] ∈ Gπ then by lemma (1.3.7) the entry (M̃i−1)

i 6= λ. Hence, equation (25)

implies that det(M(G|Vm)−λI) 6= 0 since the product of a number of nonzero rational

functions (in this case (M̃i−1)
i − λ written in the appropriate form) is nonzero.

2.5 Main Results

In this section we give the main results of this paper. Specifically, we show that a

reduced graph (equivalently reduced matrix) has a smaller Gershgorin and Brauer-

type region respectively than the associated unreduced graph. Hence, the eigenvalue
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estimates given in section 2.3.1 and 2.3.2 can be improved via the process of isospectral

graph reduction.

However, for both Brualdi and original Brualdi-type regions the situation is more

complicated. For certain reductions the Brualdi-type (original Brualdi-type) region

of a graph may decrease in size similar to Gershgorin and Brauer-type regions. In

other cases the Brualdi-type (original Brualdi-type) region of a graph may do the

opposite and increase in size when the graph is reduced. We give examples of both

of these possibilities in section 2.5.3. Following this, we present sufficient conditions

underwhich such estimates improve (see theorems 2.5.4 and 2.5.5) as the associated

graph is reduced.

2.5.1 Improving Gershgorin-Type Estimates

We first consider the effect of reducing a graph on its associated Gershgorin region.

Our main result in this direction is the following.

Theorem 2.5.1. (Improved Gershgorin Regions) Let G = (V,E, ω) where V is

any nonempty subset of V . If G ∈ Gπ then BWΓ(RV [G]) ⊆ BWΓ(G).

Gershgorin’s original theorem can be thought of as estimating the spectrum of

a graph by considering the paths of length 1 starting at each vertex. Heuristically,

one can view graph reductions as allowing for better estimates by considering longer

paths in the graph through the vertices which have been removed.

Theorem 2.5.1 together with theorem 2.4.1 have the following corollary.

Corollary 2. If G = (V,E, ω) ∈ Gπ and V is a nonempty subset of V then

σ(G) ⊆ BWΓ(RV [G]) ∪ σ(G|V̄).

In order to understand in which situations BWΓ(RV [G]) is strictly contained in

BWΓ(G), i.e. under which conditions we have a strict improvement in approximating

σ(G), consider the following. For G ∈ Gn
π let

∂BWΓ(G)i = {λ ∈ C : |λ−M(Ḡ)ii| = ri(Ḡ)} for 1 ≤ i ≤ n.
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Figure 9: Left: BWΓ(G0). Middle: BWΓ(G1). Right: BWΓ(G2), where in each the
spectrum σ(G0) = {−1,−1,−i, i, 2} is indicated.

We note here that the notation ∂BWΓ(G)i meant to signify the boundary of the

region BWΓ(G)i is in fact an abuse of standard notation as the true topological

boundary of this region may be a strict subset of ∂BWΓ(G)i. However, the set

∂BWΓ(G)i always contains the boundary of the region BWΓ(G)i.

Theorem 2.5.2. Let G = (V,E, ω) be in Gn
π and suppose the subset of the boundary

∂BWΓ(G)i \
n⋃

j=1,j 6=i

BWΓ(G)j

contains an infinite set of points. Then BWΓ(RV [G]) ⊂ BWΓ(G) for any V ⊂ V with

the property that vi /∈ V.

Note that for a typical G ∈ Gπ there is generically some region BWΓ(G)i whose

boundary is not contained in the union of the other jth Gershgorin regions. In the

nongeneric case this boundary can be a finite set of isolated points but otherwise,

removing vi from the graph G via an isospectral reduction strictly improves the esti-

mates given by theorem 2.5.1.

As an example, consider the graph G0 ∈ Gπ with adjacency matrix

M(G0) =



0 0 1 0 1

0 0 0 1 1

0 1 0 0 0

1 0 0 0 0

1 1 1 1 0


.
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If G1 = R{v1,v2,v3}[G0] and G2 = R{v1,v2}[G1] then one computes

M(G1) =


λ+1
λ2

1
λ

λ+1
λ

2λ+1
λ2

1
λ

1
λ

0 1 0

 and M(G2) =

 λ+1
λ2

2λ+1
λ2

2λ+1
λ2

λ+1
λ2

 .
The Gershgorin regions of G0,G1, and G2 are shown in figure 9. Moreover, as

∂BWΓ(G0)5 \
4⋃

j=1

BWΓ(G0)j and ∂BWΓ(G1)3 \
2⋃

j=1

BWΓ(G1)j

consist of curves in C (as can be seen in the the figure) this implies the strict inclusions

BWΓ(G2) ⊂ BWΓ(G1) ⊂ BWΓ(G0).

In addition, if G1 = G0|{v4,v5} and G2 = G0|{v3,v4,v5} then

M(G1) =

 0 0

0 1

 and M(G2) =


0 0 0

0 0 0

1 1 0


implying σ(G1) = σ(G2) = {0} (not including multiplicities). As the point 0 is

contained in both BWΓ(G1) and BWΓ(G2) then both BWΓ(G1) and BWΓ(G2) contain

σ(G0) by corollary 2. (Note here that M(G1) = M(G) where M(G) is given by (15).)

Also, an important implication of theorem 2.5.1 is that graph reductions on some

G ∈ Gπ can be used to obtain estimates of σ(G) with increasing precision depending

on how much one is willing to reduce the graph G.

With this in mind, suppose v ∈ V is a vertex of G where M(G) ∈ Cn×n. Then

the graph R{v}[G] = ({v}, E , µ) consists of a single vertex v and possibly a loop.

Moreover, BWΓ(R{v}[G]) is a finite set of points in the complex plane. As σ(G|{V \v})

consists of at most n− 1 points this can be summarized as follows.

Remark 2. If G = (V,E, ω) where M(G) ∈ Cn×n and v is any vertex in V then

σ(G) is contained in the finite set of points σ(R{v}[G]) ∪ σ(G|{V \v}). Furthermore,
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Figure 10: Left: BWK(G0). Middle: BWK(G1). Right: BWK(G2), where in each the
spectrum σ(G0) = {−1,−1,−i, i, 2} is indicated.

σ(G) and σ(R{v}[G]) differ at most by the set σ(G|{V \v}) which contains less than n

points.

As an example, let G3 = R{v1}[G0] and G3 = G|{v2, v3, v4, v5}. It follows that

σ(G3) = {−1,−1,−i, i, 2} and σ(G3) = {0, 1.3247,−.6623 ± 0.5622i}. Corollary 2

then implies σ(G0) ⊆ {−1,−i, i, 2, 0, 1.3247,−.6623± 0.5622i}. We note that in this

particular case σ(G0) = σ(G3) or the spectrum of the reduced graph and the original

are exactly the same.

2.5.2 Improving Brauer-Type Estimates

We now consider Brauer-type regions for which we give similar results.

Theorem 2.5.3. (Improved Brauer Regions) Let G = (V,E, ω). If G ∈ Gπ

where V ⊆ V contains at least two vertices, then BWK(RV [G]) ⊆ BWK(G).

Theorem 2.5.3 has the following corollary.

Corollary 3. If G = (V,E, ω) ∈ Gπ and V ⊆ V contains at least two vertices then

σ(G) ⊆ BWK(RV [G]) ∪ σ(G|V̄).

Continuing our example, the Brauer-type regions of G0,G1, and G2 are shown in

figure 10 where by theorem 2.5.3, BWK(G2) ⊆ BWK(G1) ⊆ BWK(G0). Moreover,

theorem 2.3.6 implies BWK(Gi) ⊆ BWΓ(Gi) for i = 0, 1, 2.

45



We also note that if a graph is reduced from n to m vertices then there are(
n
2

)
−

(
m
2

)
less ijth Brauer-type regions to calculate. Hence, the number of regions

quickly decrease as a graph is reduced.

2.5.3 Brualdi-Type Estimates

Continuing on to Brualdi-type regions we note that in the example we have been

considering it happens that we have the inclusions BWB(G2) ⊆ BWB(G1) ⊆ BWB(G0)

(see figure 11). However, it is not always the case that reducing a graph will improve

its Brualdi-type region.

For example, consider the following graph H ∈ Gπ given in figure 12. If H is

reduced over the sets S = {v2, v3, v4} and T = {v1, v2, v3} respectively then

M(RS(H)) =


1
λ

1
10

0

10
λ

0 1

0 1 0

 and M(RT (H)) =


1
λ

1
λ

0

1 0 1

0 1 0

 .
In this example we have the strict inclusions (see figure 12)

BWB(RT (H)) ⊂ BWB(H) ⊂ BWB(RS(H)).

In particular, as BWB(H) ⊂ BWB(RS(H)) then reducing the graph H over S in-

creases the size of its Brualdi-type region. It follows that graph reductions do not

always improve Brualdi-type estimates.

In order to give a sufficient condition under which a Brualdi-type region shrinks

as the graph is reduced we require the following terminology. First, let G = (V,E, ω)

where V = {v1, . . . , vn} for some n ≥ 1 and where G has strongly connected compo-

nents S1(G), . . . ,Sm(G). Define

Escc = {e ∈ E : e ∈ Si(G), 1 ≤ i ≤ m}.

The cycle γ ∈ C(G) is said to adjacent to vi ∈ V if vi /∈ γ and there is some vertex

vj ∈ γ such that eji ∈ Escc.
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Figure 11: Left: BWB(G0). Middle: BWB(G1). Right: BWB(G2), where in each the
spectrum σ(G0) = {−1,−1,−i, i, 2} is indicated.

Second, for any vi ∈ V denote

A(vi, G) = {γ ∈ C(G) : γ is adjacent to vi}.

Moreover, if C(vi, G) = {γ ∈ C(G) : vi ∈ γ} then let S(vi, G) ⊆ C(vi, G) be the set

containing the following cycles.

For G ∈ Gn
π and fixed 1 ≤ i ≤ n, let γ = {vα1 , . . . , vαm} be a cycle in C(vi, G)

where n ≥ m ≥ 1 and vi = vα1 . If m = 1, that is γ = {vi}, then γ ∈ S(vi, G).

Otherwise, supposing 1 < m ≤ n relabel the vertices of G such that vαj
is vj for

1 ≤ j ≤ m and denote this relabelled graph by Gr = (Vr, Er, ωr). Then γ ∈ S(vi, G)

if ej1 /∈ Er for 1 < j < m and emk /∈ Escc
r for m < k ≤ n.

As it will be needed later, we furthermore define the set Sbr(vi, G) to be the set

of cycles in S(vi, G) where γ ∈ Sbr(vi, G) if ej1 /∈ Er for 1 < j < m and emk /∈ Er for

m < k ≤ n.

With this in place we state the following theorem.

Theorem 2.5.4. (Improved Brualdi Regions) Let G = (V,E, ω) where G ∈ Gπ

and V contains at least two vertices. If v ∈ V such that both A(v,G) = ∅ and

C(v,G) = S(v,G) then BWB

(
RV \v(G)

)
⊆ BWB(G).

That is, if the vertex v is adjacent to no cycle in C(G) and each cycle passing

through v is in S(v,G) then removing this vertex improves the Brualdi-type region of
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Figure 12: Top Left: BWB(H). Top Middle: BWB(RS(H)). Top Right:
BWB(RT (H)) where S = {v2, v3, v4} and T = {v1, v2, v3}. σ(H) is indicated.

G. We note that for the graph H in figure 12 the set A(v1,H) = {v2, v3} 6= ∅. Hence,

theorem 2.5.4 does not apply to the reduction of H over S.

However, the vertex v4 in H has the property that both A(v4,H) = ∅ and

S(v4,H) = C(v4,H). Therefore, reducing H over the vertex set T = {v1, v2, v3}

improves the Brualdi-type region of this graph which can be seen on the upper right

hand side of figure 12.

As an example for why the condition C(v,G) = S(v,G) is necessary in theorem

2.5.4 consider the following. Let J ,RS(J ) ∈ G be the matrices given by

M(J ) =



0 1 0 0

0 0 1 0

1 0 0 1

1 0 0 0


, then M(RS(J )) =


0 1 0

1
λ

0 1

1
λ

0 0


where S = {v2, v3, v4}. For this graph one can compute that BWB(RS(J )) *

BWB(J ). Moreover, note that A(v1,J ) = ∅ but S(v1,J ) consists of the cycle

{v1, v2, v3} whereas the cycle set C(v1,J ) = {{v1, v2, v3}, {v1, v2, v3, v4}} i.e. C(v1,J ) 6=

S(v1,J ).

Graph reductions can furthermore increase, decrease or maintain the number of
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cycles a graph has in its cycle set. For instance the graph G0 in our previous example

has 12 cycles in its cycle set whereas G1 has 3 and G2 has 1 (see figure 11). Conversely,

let P, RU(P ) ∈ G with adjacency matrices given by

M(P ) =



0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 1

1 0 1 0 0


, and M(RU(P )) =



0 1 0 0

1
λ

0 1
λ

0

0 0 0 1

1
λ

0 1
λ

0



where U = {v1, v2, v3, v4}. Here C(P ) = {{v1, v2, v5}, {v3, v3, v5}} whereas

C(RU(P )) = {{v1, v2}, {v3, v4}, {v1, v2, v3, v4}}. That is, reducing P over U increases

the number of cycles needed to compute the associated Brualdi-type region from 2 to

3. Hence, reducing a graph may increase the number of regions needed to compute

its Brualdi-type region. This is in contrast to Gershgorin and Brauer type regions

which always decrease in number as the associated graph is reduced.

In adopting the result of theorem 2.5.4 to the case of Brualdi’s original result

(theorem 2.3.10) we must deal with the following complications. First, for a given

graph G ∈ Gπ where Cw(G) = ∅, it may not be the case that Cw(RV \v(G)) = ∅.

Furthermore, as the edges between strongly connected components play a role in the

associated eigenvalue inclusion region (see (23)) this also complicates whether or not

estimates given by the original Brualdi-type region improves as the graph is reduced.

However, the following holds.

Theorem 2.5.5. (Improved Original Brualdi Regions) Let G = (V,E, ω) be

in Gπ where v ∈ V . If A(v,G) = ∅, C(v,G) = Sbr(v,G) and both of the sets Cw(G)

and Cw(RV \v(G)) are empty then BWbr(RV \v(G)) ⊆ BWbr(G).
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2.5.4 Proofs

In order to prove the theorems in section 2.5.1, 2.5.2, and 2.5.3 we will need to

evaluate functions at some fixed λ ∈ C. In each case we consider such functions first

as elements in W with common factors removed then evaluated at the value λ. In

fact most of these functions, once common factors are removed, will be polynomials

in C[λ].

Moreover, to simplify notation we will use the following. For G = (V,E, ω) where

G ∈ Gn
π and n ≥ 2 first note that the vertex set V \ {v1} ∈ st(G). Therefore, let

RV \{v1}(G) = R1, Lk(G, λ) = Lk, Lk(R1, λ) = L1
k, λ−ωkk = λkk andM(G, λ)k` = ωk`.

Also, let ωk` = pk`/qk` for pk`, qk` ∈ C[λ] where we assume qk` = 1 if ωk` = 0. Lastly,

set Rk(G) =
∑

`=1,` 6=k |ωk`Lk|.

Before proceeding we state the following technical lemma.

Lemma 2.5.6. If G ∈ Gn
π for n ≥ 2 then q11qi1L

1
i =

(
qi1(q11λ− p11)

)n−1
L1Li.

Proof. First, note that

M(R1, λ)ij =
pi1p1jqijq11 + qi1q1jpij(q11λ− p11)

qi1q1jqij(q11λ− p11)
, 2 ≤ i, j ≤ n

from which L1
i =

n∏
j=2

qi1q1jqij(q11λ− p11). Therefore,

L1
i =

(
qi1(q11λ− p11)

)n−1
n∏

j=2

q1j

n∏
j=2

qij. (28)

As Lk =
n∏

j=1

qkj for 1 ≤ k ≤ n the result follows by multiplication of q11qi1.

A proof of theorem 2.5.1 is the following.

Proof. Suppose that λ ∈ BWΓ(R1)i for fixed λ ∈ C and 2 ≤ i ≤ n. As each

M(R1)ij = ωij + ωi1ω1j/λ11 for 2 ≤ j ≤ n then

|(λii −
ωi1ω1i

λ11

)L1
i | ≤

n∑
j=2,j 6=i

|(ωij +
ωi1ω1j

λ11

)L1
i |.
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Multiplying both sides of this inequality by |λ11q11qi1| implies, via lemma 2.5.6, that

Qi(G)|λ11L1λiiLi − ωi1ω1iL1Li| ≤ Qi(G)
n∑

j=2,j 6=i

|(ωijλ11 + ωi1ω1j)L1Li|

where Qi(G) = |
(
qi1(q11λ− p11)

)
|n−1. If Qi(G) 6= 0 then, by the triangle inequality,

|λ11L1λiiLi| − |ωi1ω1iL1Li| ≤
n∑

j=2,j 6=i

|λ11L1ωijLi|+
n∑

j=2,j 6=i

|ωi1Liω1jL1|.

Therefore,

|λ11L1λiiLi| −
n∑

j=1,j 6=i

|λ11L1ωijLi| ≤
n∑

j=2

|ωi1ω1jL1Li| − |ωi1Liλ11L1|.

By factoring

|λ11L1|
(
|λiiLi| −Ri(G)

)
≤ |ωi1Li|

(
R1(G)− |λ11L1|

)
. (29)

If we assume λ /∈ BWΓ(G)i ∪ BWΓ(G)1 then both

|λiiLi| −Ri(G) > 0 and R1(G)− |λ11L1| < 0.

These inequalities together with (29) in particular imply that λ11L1 = 0. However,

this in turn implies that λ ∈ BWΓ(G)1, which is not possible.

Hence, λ ∈ BWΓ(G)i ∪ BWΓ(G)1 unless Qi(G) = 0. Supposing then that this is

the case, i.e. Qi(G) = 0 then note that if Lij =
n∏

`=1,` 6=j

qi` for 1 ≤ i, j ≤ n then

BWΓ(G)k = {λ ∈ C : |Lkk(qkkλ− pkk)| ≤
n∑

j=1,j 6=k

|pkjLkj|} for 1 ≤ k ≤ n. (30)

Under the assumption Qi(G) =
(
qi1(q11λ− p11)

)n−1
= 0 note that if qi1 = 0 then

Lii = 0 implying λ ∈ BWΓ(G)i. If q11λ− p11 = 0 then λ ∈ BWΓ(G)1 again by (30).

Therefore, BWΓ(R1)i ⊆ BWΓ(G)1 ∪ BWΓ(G)i implying BWΓ(R1) ⊆ BWΓ(G).

The theorem follows by repeated use of theorem 1.3.8 as it is always possible to

sequentially remove single vertices of a graph in order to remove an arbitrary set V̄

from V .

51



We now give a proof of theorem 2.5.2.

Proof. Let λ ∈ C be fixed such that

λ ∈ ∂BWΓ(G)1 \
n⋃

j=2

BWΓ(G)j. (31)

Then both

|(λ11)L1| = R1(G), (32)

|(λii)Li| > Ri(G), for all 1 < i ≤ n. (33)

Supposing λ ∈ BWΓ(R1)i for some fixed 1 < i ≤ n and that Qi(G) 6= 0 then (29)

holds. Combining (29) with (32) it follows that

|λ11L1|
(
|λiiLi| −Ri(G)

)
≤ 0.

Moreover, as |λiiLi| − Ri(G) > 0 from equation (33) then this together with the

previous inequality imply that λ11L1 must be zero. However, given that λ11L1 is a

nonzero polynomial given that G ∈ Gn
π then this happens in at most finitely many

values of λ ∈ C. Similarly, the polynomial Qi(G) = 0 on only a finite set of C, hence

the assumption that

∂BWΓ(G)1 \
n⋃

j=2

BWΓ(G)j

is an infinite set in the complex plane yields a contradiction to assumption (31)

for infinitely many points in this set. Hence, the result follows in the case that

{v1} = V̄ . By sequentially removing single vertices of V̄ from the graph G repeated

use of theorem 1.3.8 completes the proof.

Next we give the proof of theorem 2.5.3.

Proof. Let G = (V,E, ω) where G ∈ Gn
π and n ≥ 3. The claim then is that

BWK(R1)ij ⊆ BWK(G)1i ∪ BWK(G)1j ∪ BWK(G)ij (34)
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for any pair 2 ≤ i, j ≤ n where i 6= j.

To see this let λ ∈ BWK(R1)ij for fixed i and j from which it follows that

|
(
λii −

ωi1ω1i

λ11

)
L1

i ||
(
λjj−

ωj1ω1j

λ11

)
L1

j | ≤( n∑
`=2
` 6=i

|
(
ωi`+

ωi1ω1`

λ11

)
L1

i |
)( n∑

`=2
` 6=j

|
(
ωj` +

ωj1ω1`

λ11

)
L1

j |
) (35)

Multiplying both sides of (35) by |λ11q11qi1| and |λ11q11qj1|, lemma 2.5.6 implies

∏
k=i,j

Qk(G)|λkkλ11L1Lk − ωk1ω1kL1Lk| ≤

∏
k=i,j

Qk(G)
( n∑

`=2
` 6=k

|
(
ωk`λ11 + ωk1ω1`

)
L1Lk|

)
.

Assuming for now that Qi(G)Qj(G) 6= 0 then from the triangle inequality∏
k=i,j

(
|λ11L1λkkLk| − |ω1kL1ωk1Lk|

)
≤

∏
k=i,j

( n∑
`=2
` 6=k

|λ11L1ωk`Lk|+
n∑

`=2
` 6=k

|ω1`L1ωk1Lk|
)
.

(36)

Suppose λ /∈ BWK(G)1i∪BWK(G)1j. Then |λ11L1||λkkLk| > R1(G)Rk(G) for k = i, j.

Moreover, if |λ11L1| ≤ R1(G) then from (36)∏
k=i,j

(
R1(G)Rk(G)− |ω1kL1ωk1Lk|

)
<

∏
k=i,j

(
R1(G)

n∑
`=2
` 6=k

|ωk`Lk|+
n∑

`=2
` 6=k

|ωk1L1ω1`Lk|
) (37)

From the fact that

R1(G)Rk(G)− |ωk1L1ω1kLk| =

R1(G)
n∑

`=2
` 6=k

|ωk`Lk|+
n∑

`=2
` 6=k

|ωk1L1ω1`Lk|
(38)

it follows that (37) cannot hold. Therefore, if λ ∈ BWK(R1)ij, Qi(G)Qj(G) 6= 0, and

λ /∈ BWK(G)1i ∪ BWK(G)1j then |λ11L1| > R1(G).
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Proceeding as above, we assume again that λ ∈ BWK(R1)ij, so in particular (35)

holds. Note that if λ11 = 0 then λ ∈ BWK(G)1i ∪ BWK(G)1j and claim (34) holds.

In what follows we therefore assume that λ11 6= 0. Moreover, if Qi(G)Qj(G) 6= 0 then

multiplying both side of (35) by |λ11q11qi1| and |λiiLiq11qj1| gives(
|λ11L1λiiLi| − |ω1iL1ωi1Li|

)(
|λiiLiλjjLjL1| − |ω1jL1ωj1Lj

λiiLi

λ11

|
)
≤( n∑

`=2
` 6=i

|λ11L1ωi`Li|+
n∑

`=2
` 6=i

|ω1`L1ωi1Li|
)
·

( n∑
`=2
` 6=j

|λiiLiωj`LjL1|+
n∑

`=2
` 6=j

|ω1`L1ωj1Lj
λiiLi

λ11

|
)
.

(39)

by use of the triangle inequality.

Furthermore, supposing that λ /∈ BWK(G)1i∪BWK(G)ij then both R1(G)Ri(G) <

|λ11L1λiiLi| and Ri(G)Rj(G) < |λiiLiλjjLj|. This together with (39) implies(
R1(G)Ri(G)− |ω1iL1ωi1Li|

)(
Ri(G)Rj(G)L1 − |ω1jL1ωj1Lj

λiiLi

λ11

|
)
<( n∑

`=2
` 6=i

|λ11L1ωi`Li|+
n∑

`=2
` 6=i

|ω1`L1ωi1Li|
)
·

(
|λiiLiL1|

(
Rj(G)− |ωj1Lj|

)
+ |ωj1Lj

λiiLi

λ11

|
(
R1(G)− |ω1jL1|

))
.

If |λiiLi| ≤ Ri(G) then(
R1(G)Ri(G)− |ω1iL1ωi1Li|

)(
Ri(G)Rj(G)L1 − |ω1jL1ωj1Lj

λiiLi

λ11

|
)
<( n∑

`=2
` 6=i

|λ11L1ωi`Li|+
n∑

`=2
` 6=i

|ω1`L1ωi1Li|
)
·

(
Ri(G)|L1|

(
Rj(G)− |ωj1Lj|

)
+ |ωj1Lj

λiiLi

λ11

|
(
R1(G)− |ω1jL1|

))
.

(40)

The claim then is that if λ /∈ BWK(G)1i ∪BWK(G)1j, which implies |λ11L1| > R1(G)

by the above, then the second terms in each product of (40) have the relation

Ri(G)Rj(G)− |ω1jL1ωj1Lj
λiiLi

λ11

| ≥

Ri(G)|L1|
(
Rj(G)− |ωj1Lj|

)
+ |ωj1Lj

λiiLi

λ11

|
(
R1(G)− |ω1jL1|

)
.

(41)
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To see this note that this is true if and only if

Ri(G)|ωj1LjL1| ≥ |ωj1LjλiiLi|
R1(G)

|λ11|
.

As this is true if and only if |λ11L1|Ri(G) ≥ R1(G)|λiiLi| this verifies that (41) holds

since both Ri(G) ≥ |λiiLi| and |λ11L1| > R1(G). Then (40) and (41) together imply

R1(G)Ri(G)− |ω1iL1ωi1Li| <
n∑

`=2
` 6=i

|λ11L1ωi`Li|+
n∑

`=2
` 6=i

|ω1`L1ωi1Li|. (42)

Rewriting the right-hand side of this inequality in terms of Rk(G) (for k = 1, i) yields

R1(G)Ri(G) < |λ11L1|Ri(G)− |λ11L1ωi1Li|+ |ωi1Li|R1(G).

This in turn implies that Ri(G)
(
R1(G)− |λ11L1|

)
< |ωi1Li|

(
R1(G)− |λ11L1|

)
. How-

ever, then

Ri(G) =
n∑

`=1,` 6=i

|ωi`Li| < |ωi1Li|,

which is not possible.

Therefore, if both Qi(G)Qj(G) 6= 0 and λ /∈ BWK(G)1i ∪BWK(G)1j ∪BWK(G)ij

then |λiiLi| > Ri(G). Moreover, as this argument is symmetric in the indices i and j

then it can be modified to show that if both Qi(G)Qj(G) 6= 0 and it is the case that

λ /∈ BWK(G)1i ∪ BWK(G)1j ∪ BWK(G)ij then |λjjLj| > Rj(G).

With this in mind, by multiplying (35) by |q11qi1| and |q11qi1| and assuming once

again that Qi(G)Qj(G) 6= 0, then the triangle inequality implies∏
k=i,j

(
|λkkLk||L1| − |

ωk1ω1k

λ11

L1Lk|
)
≤

∏
k=i,j

( n∑
`=1
` 6=k

|ωk`Lk||L1| − |ωk1LkL1|+
n∑

`=2

|ωk1ω1`

λ11

LkL1| − |
ωk1ω1k

λ11

LkL1|
)
.

(43)

Hence, if λ /∈ BWK(G)1i∪BWK(G)1j∪BWK(G)ij then from the previous calculations

Rk(G) < |λkkLk| for k = 1, i, and j implying together with (43) that∏
k=i,j

(
Rk(G)|L1| − |

ωk1ω1k

λ11

L1Lk|
)
<

∏
k=i,j

(
Rk(G)|L1| − |ωk1LkL1|+ |ωk1Lk|

R1(G)

|λ11|
− |ωk1ω1k

λ11

LkL1|
)
.
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Hence, for either k = i or k = j it follows that

−|ωk1LkL1|+ |ωk1Lk|
R1(G)

|λ11|
> 0.

Therefore, R1(G) > |λ11L1| which is not possible. Note that this implies that λ /∈

BWK(G)1i ∪ BWK(G)1j ∪ BWK(G)ij, unless Qi(G)Qj(G) = 0. Therefore, suppose

the this product Qi(G)Qj(G) is in fact equal to zero.

Then note that by modifying equation (30)

BWK(G)ij = {λ ∈ C :
∏
k=i,j

|Lkk(qkkλ− pkk)| ≤
∏
k=i,j

( n∑
j=1,j 6=k

|pkjLkj|
)
}

for 1 ≤ k ≤ n. Hence, if Qk(G) = 0 for either k = i, j then by calculations analogous

to those given in the proof of theorem 2.5.1 it follows that λ ∈ BWK(G)ik. This then

verifies the claim given in (34).

As in the previous proofs, theorem 1.3.8 can then be invoked to generalize this

result to the reduction over the set V ⊆ V .

In order to prove theorem 2.5.4 we first give the following lemma.

Lemma 2.5.7. Let G ∈ Gn
π for n ≥ 2 and suppose both A(v1, G) = ∅ and C(v1, G) =

S(v1, G). Moreover, let γ = {v1, . . . , vm} and γ′ = {v2, . . . , vm} for m ≥ 2. If

γ ∈ C(G) and γ′ =∈ C(R1(G)) then BWB(R1(G))γ′ ⊆ BWB(G).

Proof. Suppose first that the hypotheses of the lemma hold. We then make the

observation that the edges e ∈ Escc are not used to calculate BWB(G). Furthermore,

any cycle of G is contained in exactly one strongly connected component of this graph.

This implies that the Brualdi-type region of the graph is the union of the Brualdi-

type regions of its strongly connected components. Therefore, we may without loss

in generality assume that G consists of a single strongly connected component.

Suppose that both γ = {v1, . . . , vm} and δ = {v1, vm} are cycles in C(v1, G) for

some 1 < m ≤ n. Note the fact that γ ∈ C(v1, G) implies, in particular, that

γ′ = {v2, . . . , vm} is a cycle in C(R1).
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From the assumption that v1 has no adjacent cycles it then follows that ωmi = 0

for 1 < i ≤ m since otherwise {vi, vi+1, . . . , vm} ∈ A(v1, G). Also, as γ ∈ C(v1, G) =

S(v1, G) then ωi1 = 0 for 1 < i < m as well as ωmi = 0 for m < i ≤ n as G is assumed

to have one strongly connected component. Therefore,

BWB(G)γ = {λ ∈ C :
m∏

i=1

|λiiLi| ≤ |ωm1Lm|
m−1∏
i=1

Ri(G)}, (44)

BWB(G)δ = {λ ∈ C : |λ11L1||λmmLm| ≤ |ωm1Lm|R1(G)}. (45)

Suppose then that λ ∈ BWB(R1)γ′ . It then follows from this that

|(λmm −
ωm1ω1m

λ11

)L1
m|

m−1∏
i=2

|λiiLi| ≤
m−1∑
i=2

|ωm1ω1i

λ11

L1
m|

m−1∏
i=2

Ri(G). (46)

Here, L1
i = Li for 1 < i < m since for each such i the edge ei1 /∈ E.

Multiplying both sides of (46) by |q11q1mλ11| along with the triangle inequality

implies

Qm(G)
(
|λ11L1λmmLm| − |ω1mL1ωm1Lm|

) m−1∏
i=2

|λiiLi| ≤

Qm(G)
(
|ωm1Lm|R1(G)− |ω1mL1ωm1Lm|

) m−1∏
i=2

Ri(G).

(47)

Now by use of equation (30) we have

BWB(G)δ = {λ ∈ C :
∏

k=1,m

|Lkk(qkkλ− pkk)| ≤
∏

k=1,m

( n∑
j=1,j 6=k

|pkjLkj|
)
}.

Hence, if Qm(G) = 0 then by calculations analogous to those given in the proof of

theorem 2.5.1 it follows that λ ∈ BWB(G)δ. Therefore, assume that Qm(G) 6= 0.

Then if
∏m−1

i=2 Ri(G) = 0 it follows from (47) that either
∏m−1

i=2 |λiiLi| = 0 or that

|λ11L1λmmLm| − |ωm1L1ω1mLm| = 0. If the first is the case then λ ∈ BWB(G)γ. If

the latter then λ ∈ BWB(G)δ since |ω1mL1| ≤ R1(G).

If both
∏m−1

i=2 Ri(G) 6= 0 and |λ11L1λmmLm|−|ωm1L1ω1mLm| 6= 0 then (47) implies∏m−1
i=2 |λiiLi|∏m−1
i=2 Ri(G)

≤ |ωm1Lm|R1(G)− |ω1mL1ωm1Lm|
|λ11L1λmmLm| − |ωm1L1ω1mLm|

(48)
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Note that if

|ωm1Lm|R1(G)− |ω1mL1ωm1Lm|)
|λ11L1λmmLm| − |ωm1L1ω1mLm|

≤ |ωm1Lm|R1(G)

|λ11L1λmmLm|

then it follows from (48) together with (44) that λ ∈ BWB(G)γ. On the other

hand if this inequality does not hold then |λ11L1||λmmLm| < |ωm1Lm|R1(G) implying

λ ∈ BWB(G)δ. Therefore, BWB(R1)γ′ ⊆ BWB(G)γ ∪ BWB(G)δ ⊆ BWB(G).

Conversely, if δ /∈ C(G) then ω1mL1 = 0. Equation (47) together with (44) then

imply that BWB(R1)γ′ ⊆ BWB(G)γ. Hence, BWB(G)γ′ ⊆ BWB(G).

We now give a proof of theorem 2.5.4.

Proof. First, as in the previous proof, suppose G consists of a single strongly con-

nected component. Moreover, for the vertex v1 ∈ V suppose both A(v1, G) = ∅

and C(v1, G) = S(v1, G). Also let γ′ = {v2, . . . , vm} be a cycle in C(R1) for some

1 < m ≤ n.

As A(v1, G) = ∅, if γ′ ∈ C(G) then M(G, λ)ij = M(R1, λ)ij for 2 ≤ i ≤ m and

1 ≤ j ≤ n since γ′ would otherwise be adjacent to v1. From this it follows that

BWB(R1)γ′ = BWB(G)γ′ ⊆ BWB(G).

On the other hand, if γ′ /∈ C(G) then at least one edge of the form ei−1,i for

3 ≤ i ≤ m or em2 is not in E. If this is the case then without loss in generality

assume for notational simplicity that em2 /∈ E. Furthermore, let

I = {i : ei−1,i /∈ E, 3 ≤ i ≤ m} ∪ {2}.

We give the set I the ordering I = {i1, . . . , i`} such that ij < ik if and only if

j < k. Then for each 1 ≤ j ≤ ` the ordered sets

γj = {v1, vij , vij+1, . . . , vjα} (49)

are cycles in C(v1, G) where jα = ij+1 − 1 and `α = m. Moreover, by removing the

vertex v1 from G it follows from (49) that each of the ordered sets

γ′j = {vij , vij+1, . . . , vjα}

58



are cycles in C(R1). As both A(v1, G) = ∅ and C(v1, G) = S(v1, G), lemma 2.5.7

therefore implies that ⋃̀
j=1

BWB(R1)γ′j
⊆ BWB(G).

The claim then is that the region

BWB(R1)γ′ ⊆
⋃̀
j=1

BWB(R1)γ′j
. (50)

To see this, let λ1
ii = (λ− ωii −

ωi1ω1i

λ11

)L1
i and R1

i =
n∑

j=2,j 6=i

|M(R̄1, λ)ij|. Then

BWB(R1)γ′ = {λ ∈ C :
m∏

i=2

|λ1
ii| ≤

m∏
i=2

R1
i } and (51)

BWB(R1)γ′j
= {λ ∈ C :

m∏
i∈γj

|λ1
ii| ≤

m∏
i∈γj

R1
i } for 1 ≤ j ≤ `. (52)

As the vertex set γ′ is the disjoint union of the vertex sets of the cycles γ′j then

the assumption that λ /∈ BWB(R1)γ′j
for each 1 ≤ j ≤ ` implies λ /∈ BWB(R1)γ′ by

comparing the product of (52) over all 1 ≤ j ≤ ` to (51). This verifies the claim given

in (50), which implies that BWB(R1)γ′ ⊆ BWB(G).

As γ′ was an arbitrary cycle in C(R1) then it follows that BWB(R1) ⊆ BWB(G).

This completes the proof.

A proof of theorem 2.5.5 is the following.

Proof. If the conditions given in the theorem hold for v = v1 then both BWbr(G)

and BWbr(R1) exist since it is assumed that Cw(G) = ∅ and Cw(R1) = ∅. Moreover,

if S(v1, G) is replaced by Sbr(v1, G) and BWB(·) by BWbr(·) then the conclusions of

lemma 2.5.7 hold by the same proof with the exception that G is not assumed to have

a single strongly connected component. As the same holds for the proof of theorem

2.5.4 the result follows.
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Figure 13: Left: BWΓ

(
L(H)

)
. Right: BWΓ

(
RS(L(H))

)
, where in each the spectrum

σ
(
L(H)

)
= {0, 1, 2, 4, 5} is indicated.

2.6 Some Applications

In this section we discuss some natural applications of using graph reductions to

improve estimates of the spectra of certain graphs. Our first application deals with

estimating the spectra of the Laplacian matrix of a given graph. Following this we

give a method for estimating the spectral radius of a matrix using graph reductions.

Last, we use the results of theorem 2.5.2 as well as some structural knowledge of a

graph to identify particularly useful structural sets.

2.6.1 Laplacian Matrices

It is possible to reduce not only the graph G but also the graphs associated with both

the combinatorial Laplacian matrix and the normalized Laplacian matrix of G. Such

matrices are typically defined for undirected graphs without loops or weights but this

definition can be extended to graphs in G (see remark 3 below). However, here we

give the standard definitions as these are of interest in their own right (see [20, 21]).

Let G = (V,E) be an unweighted undirected graph without loops, i.e. a simple

graph. If G has vertex set V = {v1, . . . , vn} and d(vi) is the degree of vertex vi then
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its combinatorial Laplacian matrix ML(G) of G is given by

ML(G)ij =


d(vi) if i = j

−1 if i 6= j and vi is adjacent to vj

0 otherwise

On the other hand the normalized Laplacian matrix ML(G) of G is defined as

ML(G)ij =



1 if i = j and d(vj) 6= 0

−1√
d(vi)d(vj)

if vi is adjacent to vj

0 otherwise

The interest in the eigenvalues of ML(G) is that σ(ML(G)) gives structural in-

formation about G (see [20]). On the other hand knowing σ(ML(G)) is useful in

determining the behavior of algorithms on the graph G among other things (see [21]).

Let L(G) be the graph with adjacency matrix ML(G) and similarly let L(G) be

the graph with adjacency matrix ML(G). Since both L(G),L(G) ∈ Gπ either may be

reduced over any subset of their respective vertex sets.

For example if H ∈ Gπ is the simple graph with adjacency matrix

M(H) =



0 0 0 0 1

0 0 0 1 1

0 0 0 1 1

0 1 1 0 1

1 1 1 1 0


then the graph L(H), has the structural set S = {v1, v2, v3, v4}. Reducing over this

set yields RS

(
L(H)

)
where

M
(
RS(L(H))

)
=



λ−3
λ−4

1
λ−4

1
λ−4

1
λ−4

1
λ−4

2λ−7
λ−4

1
λ−4

−λ+5
λ−4

1
λ−4

1
λ−4

2λ−7
λ−4

−λ+5
λ−4

1
λ−4

−λ+5
λ−4

−λ+5
λ−4

3λ−11
λ−4


.
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Figure 14: Top Left: BWΓ(K) from which ρ(K) ≤ 3. Top Right:
BWΓ(R{v1,v2,v3}(K)) from which ρ(K) ≤ 2.

Figure 13 shows the Gershgorin regions for L(H) as well as RS(L(H)).

Note that the adjacency matrix of H is symmetric so its eigenvalues must be real

numbers. With this in mind we note that the Gershgorin-type region associated with

simple graphs and their reductions can be reduced to intervals of the real number

line.

Remark 3. It is possible to generalize ML(G) to any G ∈ G if G has no loops and

n vertices by setting ML(G)ij = −M(G)ij for i 6= j and ML(G)ii =
∑n

j=1,j 6=iM(G)ij.

This generalization is consistent with what is done for weighted digraphs in [52] for

example.

2.6.2 Estimating the Spectral Radius of a Matrix

For G ∈ Gπ the spectral radius of G, denoted ρ(G), is the maximum among the

absolute values of the elements in σ(G) i.e.

ρ(G) = max
λ∈σ(G)

|λ|.

For many graphs G ∈ Gπ it is possible to find some structural set S ∈ st(G) such
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Figure 15: Left: The graph N . Right: BWΓ(N).

that each vertex of S̄ has no loop. Via corollary 2, if S is such a set then σ(G) and

σ(RS(G)) differ at most by some number of zeros implying that ρ(G) = ρ(RS(G)).

For example, in the graph K shown in figure 14 the vertices v2, v4, v6 are the ver-

tices of K without loops. As {v1, v3, v5} ∈ st(K) then ρ(K) = ρ(R{v1,v3,v5}(K)).

By employing the region BWΓ(K) we can estimate ρ(K) ≤ 3. However, using

BWΓ(R{v1,v3,v5}(K)) our estimate improves to ρ(K) ≤ 2 (see the top left and right of

figure 14).

It should be noted that for a given graph there is often no unique set of vertices

without loops which is simultaneously a structural set. Therefore, there may be many

ways to reduce a graph such that at each step only vertices without loops are removed

ensuring, as above, that the spectral radius is maintained.

2.6.3 Targeting Specific Structural Sets

As a final application we consider reducing graphs over specific structural sets in

order to improve eigenvalue estimates when some structural feature of the graph are

known. To do so consider G = (V,E, ω).

If the sets BWΓ(G)i for 1 ≤ i ≤ n are known or can be estimated by some

structural knowledge of G then it is possible to make decisions on which structural

sets to reduce over. That is, it may be possible to identify structural sets V ⊂ V such
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that vi /∈ V and

∂BWΓ(G)i *
⋃
j 6=i

BWΓ(G)j.

If this can be done, theorem 2.5.2 implies that a strictly better estimate of σ(G) can

be achieved by reducing over V .

For example consider the graph N = (V,E, ω) in the left hand side of figure 15

where V = {v1, . . . , vn} for some n > 5. If it is known for instance that N is a simple

graph such that d(v1) = 4, d(v2) = d(v3) = d(v4) = d(v5) = 3 and d(vi) ∈ {0, 1, 2, 3}

for all 6 ≤ i ≤ n then the sets BWΓ(G)i are each discs of radius either 0,1,2,3 or 4

(see right hand side of figure 15). Moreover, as

∂BWΓ(G)1 *
n⋃

i=2

BWΓ(G)i = {λ ∈ C : |λ| = 4}

then theorem 2.5.2 implies that RV \{v1}(N ) has a strictly smaller Gershgorin-type

region than does N which can be seen in figure 16. Considering the fact that n may

be quite large this example is intended to illustrate that eigenvalues estimates can be

improved with a minimal amount of effort if some simple structural feature(s) of the

graph are known.

2.7 Concluding Remarks

The major goal of this chapter is to demonstrate that isospectral graph reductions can

be used to improve each of the classical eigenvalue estimates of Gershgorin, Brauer,

Brualdi, and the more recent extension of Brualdi’s theorem by Varga. Of major

importance is the fact that these graph reductions are general enough that this process

can be applied to any graph with complex valued weights (or equivalently matrices

with complex valued entries). Hence, the aforementioned eigenvalue estimates of all

matrices in Cn×n can be improved via the process of isospectral graph reduction.

Additionally, this process can be repeated to improve such eigenvalue estimates to

whatever degree is desired.
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Figure 16: Left: RV \{v1}(N). Right: BWΓ(RV \{v1}(N)).

Aside from this, graph reductions computationally do not seem to require much

effort. In fact, the number of calculations required by such estimates may even be

reduced by our procedure since nontrivial reductions typically produce fewer regions

used to estimate the graph’s spectrum.

Moreover, this chapter also raises new questions related to graph reductions and

eigenvalue estimates. For instance, what algorithms related to choosing structural sets

and sequences of structural sets can be developed to improve the speed or accuracy

of such estimates, etc.
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CHAPTER III

DYNAMICAL NETWORK EXPANSIONS

Of primary interest is the fact that the isospectral network transformations developed

in chapter I suggest other useful transformations on networks of interacting dynamical

systems i.e. dynamical networks. An important example introduced in this chapter

is a dynamical network expansion in which a dynamical network is modified in a way

that essentially preserves its dynamics but alters its associated graph structure.

Such transforms provide a new tool for the study of the interplay between the

structure (topology) and dynamics of dynamical networks. Much as general dynami-

cal systems are investigated via change of coordinates, isospectral network transforms

introduce a mechanism for rearranging the specific (graph) structure of a system while

preserving its dynamics in an essential way. By so doing the original network’s dy-

namics can be investigated by studying the transformed dynamical network. This will

allow us to generalize the results given in [1, 3] by demonstrating that the existence

of a globally attracting fixed point of a network can be established by investigating

one of its expansions when direct investigation of the network does not.

3.1 Dynamical Networks and Global Attractors

Dynamical networks or networks of interacting dynamical systems are composed of

(i) local dynamical systems which have their own (local intrinsic) dynamics, (ii) in-

teractions between these (elements of the network) local systems, and (iii) the graph

of interactions (topology of the network).

Let i, j ∈ I = {1, . . . , n} and Ti : Xi → Xi be maps on the compact metric space
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(Xi, d) where Xi = Xj and

Li = sup
xi 6=yi∈Xi

d(Ti(xi), Ti(yi))

d(xi, yi)
<∞.

Let (T,X) denote the direct product of the local systems (Ti, Xi) over I on the

compact metric space (X, dmax) where dmax is the `∞ metric.

Definition 3.1.1. A map F : X → X is called an interaction if for every j ∈ I there

exists a nonempty collection of indices Ij ⊆ I and a continuous function

Fj :
⊕
i∈Ij

Xi → Xj,

that satisfies the following Lipschitz condition for constants Λij ≥ 0 :

d
(
Fj({xi}), Fj({yi})

)
≤

∑
i∈Ij

Λijd(xi, yi) (53)

for all {xi}, {yi} ∈
⊕

i∈Ij
Xi where {xi} is the restriction of x ∈ X to

⊕
i∈Ij

Xi.

Then the (interaction) map F is defined as follows:

F (x)j = Fj({xi}), j ∈ I, i ∈ Ij.

The constants Λij in definition 3.1.1 form the matrix Λ ∈ Rn×n where the entry

Λij = 0 if i /∈ Ij. As in [1] we assume that interactions are Lipschitz. That is, each Λij

can be thought of as a Lipschitz constant of the function F measuring the maximal

expansiveness of the function Fj in the ith coordinate. In particular, if the interaction

F is continuously differentiable on X then the constants

Λij = max
x∈X

|(DF )ji(x)|

satisfy condition (53) where DF is the matrix of first partial derivatives of F .

Definition 3.1.2. The superposition N = F ◦ T generates the dynamical system

(N,X) which is a dynamical network.
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Let MN = ΛT · diag[L1, . . . , Ln] i.e.

MN =


Λ11L1 . . . Λn1Ln

...
. . .

...

Λ1nL1 . . . ΛnnLn

 .

Moreover, for any A ∈ Wn×n let ρ(A) again denote the spectral radius of the matrix

A.

Theorem 3.1.3. If ρ
(
MN

)
< 1 then the dynamical network (N,X) has a globally

attracting fixed point.

Proof. For x, y ∈ X and 1 ≤ j ≤ n

d
(
N(x)j, N(y)j

)
=d

(
Fj({T (x)i}), Fj({T (y)i})

)
≤

∑
i∈I

Λijd
(
Ti(xi), Ti(yi)

)
≤

∑
i∈I

ΛijLid(xi, yi).

It then follows that enterywise
d
(
N(x)1, N(y)1

)
...

d
(
N(x)n, N(y)n

)
 ≤MN


d
(
x1, y1

)
...

d
(
xn, yn

)
 .

As


d
(
N2(x)1, N

2(y)1

)
...

d
(
N2(x)n, N

2(y)n

)
 ≤MN


d
(
N(x)1, N(y)1

)
...

d
(
N(x)n, N(y)n

)
 ≤M2

N


d
(
x1, y1

)
...

d
(
xn, yn

)


then by induction

dmax

(
Nk(x), Nk(y)

)
≤ ||Mk

N [d(x1, y1) . . . d(xn, yn)]T ||∞

for all k > 0.
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Note that limk→∞Mk
N = 0 if and only if ρ(MN) < 1 (see [28] chapter 8). Then

for any x, y ∈ X,

dmax(N
k(x), Nk(y)) → 0 as k →∞

under the assumption that ρ(MN) < 1. Hence, dmax(N
k(x), Nk+1(x)) → 0 as k →∞

implying the sequence {Nk(x)}k≥1 is Cauchy and therefore convergent. If Nk(x) → x̃

then it follows that Nk(y) → x̃ for all y ∈ X completing the proof.

For an interaction F : X → X we say that F stabilizes the local systems (T,X)

if the local systems are unstable i.e. maxi∈I{Li} ≥ 1 but the dynamical network

N = F ◦ T has a globally attracting fixed point. If maxi∈I{Li} < 1 and N = F ◦ T

has a globally attracting fixed point we say F maintains the stability of (T,X). The

following is then a corollary to theorem 3.1.3.

Corollary 4. For the dynamical network N = F ◦ T let maxi∈I{Li} = L. If the

inequality Lρ(Λ) < 1 holds then the interaction F stabilizes (or maintains the stability

of) the local systems (T,X).

Before proving this we require the following. For A,B ∈ Rn×n we write

A ≤B if Aij ≤ Bij for 1 ≤ i, j ≤ n.

We note that if 0 ≤ A ≤ B then ρ(A) ≤ ρ(B) (see chapter 8 of [28]). We now

give a proof of corollary 4.

Proof. As 0 ≤ ΛT · diag[L1, . . . , Ln] ≤ LΛT then ρ(MN) ≤ ρ(LΛT ). Moreover, given

that LΛT = {Lλ : λ ∈ σ(ΛT )} then ρ(LΛT ) = Lρ(Λ). This in turn implies ρ(MN) ≤

Lρ(Λ). Hence, if Lρ(Λ) < 1 then by theorem 3.1.3 the interaction F stabilizes the

local systems (T,X).

The constant ρ(Λ) related to the interaction F can then be thought of as an

estimate of the interaction’s stability factor or its ability to stabilize a set of local
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systems (T,X). In the following section we will develop techniques similar to branch

expansions (see section 1.4.1) to obtain improved estimates on whether a dynamical

network has a single global attractor.

3.2 Improved Stability Estimates via Dynamical Network
Expansions

The goal of this section is to develop a method of transforming a general dynamical

network to one with a different graph of interactions but dynamically equivalent to

the original system in the sense described below. The transformed network can then

be investigated in order to infer dynamical properties of the original untransformed

network.

For N = F ◦ T the dynamical network N can itself be considered to be the inter-

action Fcomp = F ◦ T , i.e. the composition of the local systems and their interaction.

For simplicity then, in this section we consider only the dynamical network F (or

equivalently interaction F ) with the understanding that all results extend to general

dynamical networks of the form N = F ◦ T .

To every dynamical network F : X → X and some choice of constants Λij satis-

fying (53) there is a corresponding graph of interactions ΓF which is the graph with

adjacency matrix Λ. We note that as the entry Λij = 0 if and only if i /∈ Ij then at

the level of an unweighted graph each ΓF is equivalent for any choice of constants Λij

satisfying (53).

For S ∈ st0(ΓF ) we let IS be the index set of S and let

C = max{|β| − 2 : β ∈ BS(ΓF )}.

Moreover, for x ∈ X let xk+1 = F (xk) where x0 = x.

Definition 3.2.1. For j ∈ IS let (F |S)j be the function Fj({xC
i0
}) where each xC

i0
is

replaced by Fi0({xC−1
i1

}), each xC−1
i1

by Fi1({xC−2
i2

}), and so on for all indices i` /∈ IS.
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We call the function

F |S =
⊕
j∈IS

(F |S)j

the restriction of the dynamical network F to S. As ΓF |S̄ contains no cycles this

recursion cannot continue indefinitely, hence (F |S)j is well defined. Furthermore, the

restriction of F to S is given by F |S : XS → X|S where

X|S =
⊕
j∈IS

Xj, and XS =
{

(x0|S, . . . , xC |S) : x ∈ X
}
.

As an example consider the dynamical network H given by

H(x) =



H1(x2)

H2(x1, x4)

H3(x1)

H4(x1, x3)


. (54)

Here, H has the graph of interactions ΓH = (V,E, ω) given in figure 17 (left) where

eij ∈ E if Hi is a function of the variable xj and each eij ∈ E has weight Λij. That

is, vi ∈ V corresponds to the variable xi where eij ∈ E if Fj depends on xi.

As S = {v1, v2} ∈ st0(ΓH) with C = 2 then

H|S(x0|S, x1|S, x2|S) =

 H1(x
0
2)

H2(x
2
1, H4(x

1
1, H3(x

0
1)))

 .
Importantly, the function H|S : XS → X|S is not strictly speaking a dynamical

network as its range X|S is not a subset of its domain XS. However, the functions H

and H|S have the same dynamics restricted to S in the following sense.

Lemma 3.2.2. For the dynamical network F suppose S ∈ st0(ΓF ). Then for any

x ∈ X

F |S(xk|S, . . . , xC+k|S) = F (xC+k)|S

for k ≥ 0.
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Λ̃12
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1

1

Λ̃72
1 Λ̃52

Figure 17: The interaction graphs of H (left) and its expansion XSH over S =
{v1, v2} (right).

Proof. Let x ∈ X and j ∈ IS. Note that by construction xm+1
i`

= Fi`({xm
i }). Hence,

if each Fi`({xm
i }) nested in (F |S)j is recursively replaced by xm+1

i`
for all i` /∈ IS then

the result is the function Fj({xC
i }) where

Fj({xC
i }) = (F |S)j(x

0|S, . . . , xC |S).

As F |S =
⊕

j∈IS
(F |S)j then F |S(x0|S, . . . , xC |S) = F (xC)|S. As x ∈ X was

arbitrary, replacing it by xk for fixed k ≥ 0 implies

F |S(xk|S, . . . , xC+k|S) = F (xC+k)|S

completing the proof.

We now proceed to define the expansion of a dynamical network F with respect

to S in terms of its restriction F |S. To do so we first index the interior vertices of

BS(ΓF ) by

int(S) =
{
(β, `) : β ∈ BS(ΓF ), 1 ≤ ` ≤ |β| − 2

}
and let the map η : int(S) → {n+ 1, . . . ,N} be a bijection. By abuse of notation we

set η(β, 0) = i if β ∈ Bij(ΓF ;S).

For j ∈ IS define Vj to be the variables that appear in the function (F |S)j in-

cluding multiplicities. Then each xm
i0
∈ Vj is nested in some sequence of functions

Fi1 , . . . Fim , Fj inside of (F |S)j corresponding to the branch

β = vi0 , vi1 . . . , vim , vj ∈ Bj(ΓF ;S).

Hence xm
i0

= xm
η(β,0).
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Modify the function (F |S)j by changing this xm
η(β,0) 7→ xη(β,L−m). If this is done

over all variables in Vj we call the resulting function F̃j and set

FS =
⊕
j∈IS

F̃j and

Fβ =
⊕

1≤`≤|β|−2

Fη(β,`)(xη(β,`−1))

where each Fη(β,`) = Id for 1 ≤ ` ≤ |β| − 1. Here Fβ = ∅ if |β| = 2.

Definition 3.2.3. For the dynamical network F suppose S ∈ st0(ΓF ). We call the

function

XSF = FS

⊕
β∈BS(ΓF )

Fβ

the expansion of F over S.

An expansion is then the dynamical network XSF : X|S
⊕

BS → X|S
⊕

BS

where

BS =
⊕

n+1≤j≤N

Xj.

Again, consider the dynamical network H with structural set S = {v1, v2} in

st0(ΓH) (see figure 17). For this network β1 = v1, v4, v2; β2 = v1, v3, v4, v2; β3 = v2, v1;

and β4 = v1, v2 constitute the set BS(ΓF ). Hence,

int(S) = {(β1, 1), (β2, 1), (β2, 2)}.

Letting η(βi, `) = 3 + i+ ` then

HS =

 H1(x2)

H2(x1, H4(x5, H3(x7)))

 ,
where Hβ1 = H5(x1), Hβ2 = H6(x1)

⊕
H7(x6), and Hβ3 = Hβ4 = ∅. The expansion
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of H over S is then given by

XSH(x) =



H1(x2)

H2(x1, H4(x5, H3(x7)))

H5(x1)

H6(x1)

H7(x6)


.

If the constants Λ̃ij satisfy condition (53) for XSH then ΓXSH is the graph in figure

17 (right) where Λ̃16, Λ̃67, Λ̃15 = 1, as each of H5, H6, H7 = Id. Moreover, we note

that as unweighted graphs ΓXSH is the branch expansion of ΓH with respect to S.

Theorem 3.2.4. For the dynamical network F suppose S ∈ st0(ΓF ). Then the

following hold:

(1) For x ∈ X let b ∈ BS where bη(β,`) = xC−`
η(β,0). If x̃C = xC |S

⊕
b then the restriction

XSF (x̃C+k)|S = F (xC+k)|S for k ≥ 0.

(2) If F satisfies (53) for the constants Λij then there are constants Λ̃ij for XSF

satisfying (53) such that ρ(Λ̃) ≤ ρ(Λ).

We prove parts (1) and (2) of theorem 3.2.4 separately. For part (1) we give the

following.

Proof. Let j ∈ IS and k ≥ 0. Then by changing each variable xm
η(β,0) ∈ Vj to xη(β,L−m)

in (F |S)j we get the map (FS)j. However, note that bη(β,`) = xC−`
η(β,0). Hence, evaluating

(FS)j at x̃k is equivalent to changing each xη(β,`) to xC−`
η(β,0) for each variable xη(β,`) of

the function (FS)j.

As this sequence of operations changes each xm
η(β,0) to xm

η(β,0) then, for xk ∈ X, it

follows that

F |S(xk|S, . . . , xC+k|S) = XSF (x̃C+k)|S.

Lemma 3.2.2 then implies that XS(F (x̃C+k))|S = F (xC+k)|S for k ≥ 0.
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Before giving a proof of part (2) we introduce the following notation. For the

branch β = vi0 . . . , vim , vj ∈ BS(ΓF ) let

xi0,...,im,j = xη(β,|β|−2).

Moreover, for j ∈ IS define the sets Ij ∩ IS = I+
j , Ij − IS = I−j , and

B`
j = {β ∈ Bj(Γ(F );S) : |β| = `+ 1}.

Lastly, define F̃i1,j to be the function in the i1 argument of F̃j. Similarly, define F̃i2,i1,j

to be the function in the i2 argument of F̃i1,j, and so on. We now give a proof of

theorem 3.2.4 part (2).

Proof. For x, y ∈ XS

⊕
BS and β ∈ Bij(ΓF ;S)

d
(
Fη(β,`)({xi}), Fη(β,`)({yi})

)
=


d(xi, yi) ` = 1

d(xη(β,`−1), yη(β,`−1)) 2 ≤ ` ≤ |β| − 1

as each Fη(β,`)(xη(β,`−1)) = Id. As Fη(β,`) = XSF j for some choice of (β, `) ∈ int(S)

then the constants

Λ̃ij =


1 if Fj = Fj(xi)

0 otherwise

(55)

satisfy condition (53) for XSF for each j ∈ {n + 1, . . . ,N}. Before considering the

case where j ∈ IS we first observe the following.

Let ΓF = (V,E, ω). As S ∈ st0 ∈ st(ΓF ) then for β = vi1 , . . . , vim

Pω(β) =

∏|β|−1
`=1 Λi`,i`+1

λ|β|−2
.
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For j ∈ IS it follows that

d
(
F̃j({xi}), F̃j({yi})

)
≤

∑
i1∈Ij

Λi1,jd(F̃i1,j({xi}), F̃i1,j({yi}))

=
∑

i1∈I+
j

Λi1,jd(xi1,j, yi1,j) +
∑

i1∈I−j

Λi1,jd(F̃i1,j({xi}), F̃i1,j({yi}))

≤
∑
β∈B1

j

Pω(β)d(xη(β,0), yη(β,0))+

∑
i1∈I−j

Λi1,j

( ∑
i2∈Ii1

Λi2,i1d(F̃i2,i1,j({xi}), F̃i2,i1,j({yi}))
)
.

As the sum

∑
i1∈I−j

∑
i2∈Ii1

Λi2,i1Λi1,jd(F̃i2,i1,j({xi}), F̃i2,i1,j({yi})) =

∑
i1∈I−j

∑
i2∈I+

i1

Λi2,i1Λi1,jd(xi2,i1,j, yi2,i1,j)+

∑
i1∈I−j

∑
i2∈I−i1

Λi2,i1Λi1,jd(F̃i2,i1,j({xi}), F̃i2,i1,j({yi})) =

∑
β∈B2

j

Pω(β)λ d(xη(β,1), yη(β,1))+

∑
i1∈I−j

∑
i2∈I−i1

Λi2,i1Λi1,jd(F̃i2,i1,j({xi}), F̃i2,i1,j({yi}))

then continuing inductively

d
(
F̃j({xi1}), F̃j({yi1})

)
≤

B∑
`=1

∑
β∈C`

j

Pω(β)λ|β|−2 d(xη(β,|β|−2), yη(β,|β|−2)).

As XSFj({xi}) = F̃j({xi}) then for j ∈ IS the constants

Λ̃ij =


Pω(β)λ|β|−2 i = η(β, |β| − 2)

0 otherwise

(56)

satisfy condition (53) for XSF . Therefore, (55) and (56) give a complete set of the

constants Λ̃ij for XSF .
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Let ΓXSF = (V , E , µ). By construction there are one-to-one correspondences

τij : Bij(ΓF ;S) → Bij(ΓXSF ;S)

given as follows.

Suppose τij(β) = γ. If |β| = 2 then β = vi, vj = γ. Hence, i, j ∈ IS implying

Λ̃ij = Λij by (56). Thus, Pω(β) = Pµ(γ). If |β| > 2 then γ is the branch corresponding

to Fβ. Equations (55) and (56) then imply

Ω(γ) = 1, 0, 1, . . . , 0,Pω(β)λ|β|−2.

As |β| = |γ| then Pω(β) = Pµ(γ). Therefore, RS(ΓF ) = RS(ΓXSF ).

As S ∈ st0(ΓF ) and S ∈ st0(ΓXSF ) by construction then theorem 1.3.4 implies

that ΓF and ΓXSF have the same nonzero spectrum. Hence, ρ(Λ̃) = ρ(Λ) for this

choice of constants. This completes the proof.

Part (1) of theorem 3.2.4 states that the dynamical network F and its expansion

XSF have the same dynamics if we restrict each to the coordinates indexed by S.

However, as there is no such correspondence between the coordinates indexed by S̄

what is unclear is if the systems F and XSF share any dynamic properties. With this

in mind, part (2) of theorem 3.2.4 has the following important interpretation.

Remark 4. Suppose Λij are constants satisfying (53) for F . Then there always

exist better constants Λ̃ij satisfying (53) for the expansion XSF in the sense that

ρ(Λ̃) ≤ ρ(Λ).

Therefore, if one can show that F has a globally attracting fixed point via the

condition ρ(Λ) < 1 then XSF also has a globally attracting fixed point. Moreover,

the converse of this statement holds.

Theorem 3.2.5. If ρ(Λ̃) < 1 where Λ̃ij are constants satisfying (53) for XSF then

F has a globally attracting fixed point.
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Proof. Note that XSF = XSF ◦ T where T = id. As each

Li = sup
xi 6=yi∈Xi

d(Ti(xi), Ti(yi))/d(xi, yi) = 1

then L = maxi∈I Li = 1. Assuming then that ρ(Λ̃) < 1 corollary 4 implies the

expansion XSF has a globally attracting fixed point x̄ ∈ X|S
⊕

BS. For x ∈ X

define x̃C = xC |S
⊕

b where bη(β,`) = xC−`
η(β,0) as in part (1) of theorem 3.2.4. Hence,

XSF (x̃C+k)|S = F (xC+k)|S for k ≥ 0.

As XSF (x̃C+k)|S → x̄|S then similarly F (xC+k)|S → x̄|S as k →∞.

From definition 3.2.1 it follows for each j ∈ I that the function

(F |S)j = (F |S)j(x
0|S, . . . , xCj |S)

for any x0 ∈ X. Here Cj + 2 is the maximal length of any path or cycle from vi to vj

with interior vertices in S̄ where vi is taken over all i ∈ IS.

By an argument similar to that in lemma 3.2.2 we have

xk+1
j = (F |S)j(x

k|S, . . . , xCj+k|S). (57)

From the observation that x`+k|S → x̄|S as k → ∞ for all 0 ≤ ` ≤ Cj then this

together with (57) implies

xk+1
j → (F |S)j(x̄|S, . . . , x̄|S)

for all j ∈ I as (F |S)j is continuous over its domain. Hence, F has a globally

attracting fixed point.

Note that we now have two ways for determining whether or not a given dynamical

network F has a globally attracting fixed point. The first is by finding constants Λij

that satisfy (53) for F and computing ρ(Λ). The second is by finding constants Λ̃ij

that satisfy (53) for XSF and computing ρ(Λ̃). If either ρ(Λ) < 1 or ρ(Λ̃) < 1
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then theorem 3.1.3 or theorem 3.2.5 respectively imply that F has a unique global

attractor.

However, given constants Λij for F it is always possible to find constants Λ̃ij for the

expanded network XSF such that ρ(Λ̃) ≤ ρ(Λij) (see remark 4). This has the following

immediate and important consequence that any dynamical network expansion XSF

can be used to obtain improved stability estimates of any dynamical network F .

Example 1. Let L(x) = 4x(1 − x) be the standard logistic map and let the map

Q(x) = 1 − x2 where both are restricted to the interval [0, 1]. Consider the network

H given in (54) for

H(x) =



1
4
L(x2)

1
4
Q(x1) + 1

4
L(x4)

1
4
Q(x1)

1
4
Q(x1) + 1

4
Q(x3)


.

Note the constants Λij = maxx∈X |(DH)ji(x)| satisfy equation (53) for H and are

given by

Λ =



0 1/2 1/2 1/2

1 0 0 0

0 0 0 1/2

0 1 0 0


.

As ρ(Λ) = 1.08 theorem 3.1.3 does not imply that H has a globally attracting fixed

point. However, the expansion over S = {v1, v2} of H given by

XSH(x) =



1
4
L(x2)

1
4
Q(x1) + 1

4
L

(
1
4
Q(x5) + 1

4
Q(1

4
Q(x7))

)
H5(x1)

H6(x1)

H7(x6)


.
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where H5(x1), H6(x1), H7(x6) = Id has constants Λ̃ij given by

Λ̃ =



0 1/2 1 1 0

1 0 0 0 0

0 0.265 0 0 0

0 0 0 0 1

0 0.012 0 0 0


, satisfying equation (53).

Here, as before, Λ̃ij = max |(DXSH)ji(x)|. As ρ(Λ̃) = 0.90 theorem 3.2.5 implies that

H does in fact have a globally attracting fixed point.

As a final remark, we note that it is possible to sequentially expand a dynam-

ical network and thereby potentially improve ones estimate of whether the sys-

tem has a globally attracting fixed point. Moreover, sequential expansions can

also be used to obtain better estimates of an interaction’s stability factor. For in-

stance, if the network XSH in example 1 (considered as an interaction) was again

expanded over the vertex set T = {v1, v5, v6, v7} then ρ(Λ̂) = 0.76 for the constants

Λ̂ = max(|DXT (XSH)ji(x)|). That is, from this calculation the interaction H has a

stability factor less than or equal to 0.76.

3.3 Time-Delayed Dynamical Systems

The dynamical network expansions of the previous section also have implications to

time-delayed dynamical systems. This is because the restrictions used to define such

expansions are themselves time-delayed systems. Using this connection as a starting

point our goal is to study how time delays effect the dynamic stability of an arbitrary

dynamical system.

One of the main results we obtain in this direction is that the introduction or

removal of time delays does not in fact have an effect on a system’s stability. Moreover,

since any restriction of a dynamical network is itself a delayed dynamical system this

will allow us to define dynamical network reductions by removing these delays.
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As with dynamical network expansions such reductions will allow us to obtain

improved estimates of the original network’s dynamic stability i.e. whether it has a

globally attracting fixed point. However, as the removal or addition of time-delays

to a dynamical system does not correspond to any isospectral transformation the

main obstacle in developing this theory is in determining how time delays effect the

eigenvalues associated with such systems. Moreover, before we can do this we must

first connect the theory developed in section 3.1 for dynamical networks to the more

general class of time-delayed dynamical systems.

Definition 3.3.1. A delayed dynamical system is a function of the form

xk+1 = F (xk−T , xk−T+1, . . . , xk)

for a fixed integer T ≥ 0 where each xj ∈ X =
⊕n

i=1Xi for Xi a compact metric

space. Moreover, the orbit of the initial condition (x−T , x−T+1, . . . , x0) ∈
⊕T

i=0X is

the sequence {xi}i≥−T .

For each delayed dynamical system F = F (xk−T , xk−T+1, . . . , xk) there is a cor-

responding undelayed dynamical network which can be constructed as follows. Let

Vj(F ) be the variables of the form xk−m
i appearing in Fj(x

k−T , xk−T+1, . . . , xk) for all

0 < m ≤ T and 1 ≤ i, j ≤ n. Furthermore, let

I(F ) = {(i, j, l,m) : 1 ≤ j ≤ n, xk−m
i ∈ Vj(F ), 1 ≤ ` ≤ m}.

In Fj replace each xk−m
i ∈ Vj(F ) by xmm

ij and each xk
i by xi. If this is done over

all 1 ≤ j ≤ n we call the resulting function F ∗. We then define the function

NF = F ∗
⊕

(i,j,l,m)∈I(F )

Fm`
ij

where each Fm`
ij (xm,`−1

ij ) = xm,`−1
ij and xm0

ij = xi. Moreover, let

XF =
{
x ∈ X

⊕
(i,j,l,m)∈I(F )

Xm`
ij : xm1`

ij1
= xm2`

ij2
, (i, j1, `,m1), (i, j2, `,m2) ∈ I(F )

}
.
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Figure 18: The graph of the dynamical network NF . Here dashed paths correspond
to the delays in the original system F = F (xk−2, xk−1, xk)

We note that NF : XF → XF by observing that each Fm`
ij (xm,`−1

ij ) = xm,`−1
ij . Hence,

both the sequences of functions Fm11
ij1

, Fm12
ij1

, . . . , Fm1m1
ij1

and Fm21
ij2

, Fm22
ij2

, . . . , Fm2m2
ij2

sequentially pass the value of xi through the coordinates xm11
ij1

, xm12
ij1

, . . . , xm1m1
ij1

and

xm21
ij2

, xm22
ij2

, . . . , xm2m2
ij2

in m1 and m2 steps respectively. Hence, if ỹ ∈ XF then

Fm1`
ij1

(ỹm1,`−1
ij1

) = Fm2`
ij2

(ỹm2,`−1
ij2

) for (i, j1, `,m1), (i, j2, `,m2) ∈ I(F ) implying that

F (ỹ) ∈ XF .

We call the function NF : XF → XF the undelayed dynamical network associated

with F . As an example consider

F (xk−2, xk−1, xk) =

 F1(x
−2
2 , x−1

2 )

F2(x1)

 .
The undelayed dynamical network associated with F is then given by

NF (x) =



F1(x
11
21, x

22
21)

F2(x1)

F 11
21 (x2)

F 21
21 (x2)

F 22
21 (x21

21)


where F 11

21 (x2) = x2, F
21
21 (x2) = x2, and F 22

21 (x21
21) = x21

21. The graph ΛNF corresponding

to NF is given in figure 18.

The motivation behind this construction is the following. Recall that the func-

tions Fm1
ij , Fm2

ij , . . . , Fmm
ij sequentially pass the value of xi through the coordinates

xm1
ij , x

m2
ij , . . . , x

mm
ij in m steps which is the same function performed by the variable
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xk−m
i ∈ Vj(F ) in the time-delayed system F = F (x−T , . . . , xk). Hence, the substi-

tution of xmm
ij for xk−m

i in Fj with the addition of the functions Fm1
ij , Fm2

ij , . . . , Fmm
ij

removes the delay associated with xk−m
i from F . Moreover, we note that there is

a one-to-one correspondence between the domain of the delayed system F and the

dynamical network NF . This can be seen as follows.

For F = F (xk−T , . . . , xk) let δ : XF →
⊕T

i=1X be the function given by δ(ỹ)0
i = ỹi

and δ(ỹ)−`
i = ỹm`

ij for all (i, j, `,m) ∈ I(F ). As the value of any ỹm`
ij depends only

on the indicies i and ` then the function δ is a bijection. This together with the

discussion above implies that for any ỹ ∈ XF where (y−T , y−T+1, . . . , y0) = δ(ỹ), then

the component Fj(y
−T , y−T+1, . . . , y0) = NFj(ỹ) for 1 ≤ j ≤ n. This can be phrased

as follows.

Lemma 3.3.2. Let F = F (xk−T , . . . , xk). Then F k(y−T , y−T+1, . . . , y0) = NF k(ỹ)|V

for V = {v1, . . . , vn} and any (y−T , y−T+1, . . . , y0) = δ(ỹ).

That is, the dynamical network NF restricted to its first n coordinates has the

same dynamics as the delayed dynamical system F . Recall that the original motiva-

tion behind the construction of NF was to study delayed systems using the theory

established in sections 3.1 and 3.2.

With this in mind, a fixed point of a delayed dynamical system F = F (xk−T , . . . , xk)

is a point x̃ ∈ X such that x̃ = F (x̃, x̃, . . . , x̃). Moreover, the point x̃ ∈ X is a global

attractor of the delayed system if for any initial condition (y−T , y−T+1, . . . , y0) we

have

lim
k→∞

||yk − x̃||∞ = 0.

Theorem 3.3.3. The delayed dynamical system F = F (xk−T , . . . , xk) has a globally

attracting fixed point if and only if the dynamical network NF has a globally attracting

fixed point.

Proof. Suppose x̃ ∈ XF is a global attractor of NF . Then for any ỹ ∈ XF this implies
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in particular that

lim
k→∞

d
(
NF k

i (ỹ), x̃i

)
= 0 for 1 ≤ i ≤ n.

By use of lemma 3.3.2 it follows that x̃|V is a global attractor for the delayed system

F .

Conversely, suppose x̄ ∈ X is a global attractor of F . Then for any ỹ ∈ XF where

δ(ỹ) = (y−T , . . . , y0) we have

lim
k→∞

d
(
F k

i (y−T , . . . , y0), x̄i

)
= 0 for 1 ≤ i ≤ n

implying by lemma 3.3.2 that limk→∞NF k
i (ỹ) = x̄i.

As
(
NF k(ỹ)

)`m

ij
= NF k−`

i (ỹ) for each (i, j, `,m) ∈ I(F ) then similarly it follows

that limk→∞
(
NF k(ỹ)

)`m

ij
= x̄i. Hence, the point δ−1(x̄, . . . , x̄) ∈ FX is the unique

global attractor of NF .

Because of theorem 3.3.3 it is possible to investigate the dynamic stability of any

delayed dynamical system F via its associated dynamical network NF . However,

before doing so we note the following.

Let F = F (xk−T , . . . , xk). If we say Λij are constants satisfying equation (53) for

NF then by definition 3.1.1 we mean that for x, y ∈ XF

d
(
NFj(x),NFj(y)

)
≤

n∑
i=1

Λijd(xi, yi) +
∑

xk−m
i ∈Vj(F )

(
Λmm

ij

)
j
d
(
xmm

ij , ymm
ij

)
, 1 ≤ j ≤ n

and d
(
NFm`

ij (x),NFm`
ij (y)

)
≤

(
Λm,`−1

ij

)m`

ij
d(xm,`−1

ij , ym,`−1
ij ), (i, j, `,m) ∈ I(F ).

In particular, the constants of the form
(
Λm,`

ij

)
j
,
(
Λi

)m`

ij
, and

(
Λm1,`1

i1j1

)m2`2

i2j2
that do not

appear in these inequalities are zero.

Theorem 3.3.3 then has the following corollary.

Corollary 5. For the delayed dynamical system F = F (xk−T , . . . , xk) suppose Λij are

constants satisfying (53) for NF . If ρ(Λ) < 1 then F has a globally attracting fixed

point.
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The main goal of this section is to extend as well as improve upon this condition

by investigating how modifying the delays of a dynamical system effects the systems

dynamic stability.

Definition 3.3.4. For the delayed dynamical system F = F (xk−T , xk−T+1, . . . , xk) let

UF : X → X be the undelayed dynamical network given by UF (x) = F (x, x, . . . , x).

Simply put, the system UF is the delayed dynamical system F with its delays

removed. The following result relates the dynamic stability of the undelayed system

UF to the delayed dynamical system F .

Theorem 3.3.5. Let F = F (xk−T , xk−T+1, . . . , xk) be a delayed dynamical system.

If Λij are constants satisfying (53) for NF and ρ(Λ) < 1 then UF has a globally

attracting fixed point. Coversely, if Λ̃ij are constants satisfying (53) for UF and

ρ(Λ̃) < 1 then NF has a globally attracting fixed point.

That is, if either of the dynamical networks NF or UF are known to have a single

global attractor (via theorem 3.1.3) then the same holds for the other as well as for

the original delayed system F . Moreover, the converse of this statement holds in the

following sense.

Definition 3.3.6. The function F = F (xk−T , xk−T+1, . . . , xk) is a delayed version of

the dynamical network H : X → X if H(x) = F (x, x, . . . , x).

An immediate corollary of theorem 3.3.5 is the following.

Corollary 6. If Λij are constants satisfying (53) for the dynamical network H and

ρ(Λ) < 1 then any delayed version of H has a globally attracting fixed point.

To summarize, if a system is known to have a unique global attractor via theorem

3.1.3 then the removal or addition of delays does not change this property. In order

to prove this we will use the well known theorem of Perron and Frobenius and the

following standard terminology.

85



If A ∈ Rn×n then A is said to be irreducible if the graph associated with A is

strongly connected. Moreover, A is nonnegative if A ≥ 0.

Theorem 3.3.7. (Perron-Frobenius) Let A ∈ Rn×n and suppose that A is irre-

ducible and nonnegative. Then

(a) ρ(A) > 0;

(b) ρ(A) is an eigenvalue of A;

(c) ρ(A) is an algebraically simple eigenvalue of A; and

(d) the left and right eigenvectors x and y associated with ρ(A) have strictly pos-

itive entries.

Recall that if a graph is not strongly connected then it has strongly connected

components given by S(G)1 . . . ,S(G)N where

σ(G) =
N⋃

`=1

σ
(
S`(G)

)
. (58)

We call a strongly connected component Sk(G) trivial if it consists of a single vertex

without loop in which case σ
(
Sk(G)

)
= {0}.

For G = (V,E, ω) with V = {v1, . . . , vn} and eij ∈ E define

Gm
ij (t, θ) = (V ∪ {vn+1, . . . , vn+m}, E , µ) for t ∈ [0, 1]

as the graph G in which the weight ω(eij) is replaced by (1 − t)ω(eij) and a path

vi, vn+1, . . . , vn+m, vj is added with weights µ(ei,n+1) = θ, µ(en+`−1,n+`) = θ for each

1 ≤ ` ≤ m and µ(en+m,j) = tω(eij) (see figure 19). In the following if we write

Gm
ij (t, θ) we will implicitly assume eij ∈ E. With this in place we state the following

lemma.

Lemma 3.3.8. If M(G) ≥ 0 then ρ(G) = ρ
(
Gm

ij (t, ρ(G))
)

for all t ∈ [0, 1].

Proof. For simplicity let Gm
ij (t, ρ(G)) = Gm

ij (t). For m = 1 the claim is that ρ(G) ∈

σ(G1
ij(t)) for all t ∈ [0, 1]. To see this suppose that the graph G is strongly connected
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vi vj
G

ω(eij)
vi vjvn+1 vn+m

Gm
ij (t, θ)

. . .

(1− t)ω(eij)

θ θ tω(eij)θ

Figure 19: The edge eij of G (left) and its replacement in Gm
ij (t, θ) (right).

i.e. M(G) is irreducible. Since the Perron-Frobenius theorem implies that the spectral

radius of any nonnegative irreducible matrix is a strictly positive eigenvalue of the

matrix then both ρ(G) > 0 and det(M(G)− ρ(G)I) = 0.

Note that as reducing G1
ij(t) over V = {v1, . . . , vn} implies

M
(
RV (G1

ij(t))
)

pq
=


(
1− t(1− ρ(G)

λ
)
)
M(G)pg for p = i, q = j

M(G)pq otherwise

(59)

then for λ = ρ(G) it follows that

det(M
(
RV (G1

ij(t))
)
− λI) = det(M(G)− λI) = 0

or ρ(G) ∈ σ(RV (G1
ij(t)). Hence, ρ(G) ∈ σ(G1

ij(t)) for all t ∈ [0, 1] since σ(RV (G1
ij(t)) =

σ(G1
ij(t)) − {0} by theorem 1.3.4. By use of equation (59) this furthermore implies

that the spectrum σ(G1
ij(0)) = σ(G) ∪ {0} and in particular that ρ(G1

ij(0)) = ρ(G).

Next, the assumption that G is strongly connected implies that G1
ij(t) is also

strongly connected for all t ∈ (0, 1]. Therefore, as ρ(G) > 0 then M(G1
ij(t)) is a

nonnegative irreducible matrix and the Perron-Frobenius theorem implies

(i) ρ(G1
ij(t)) > 0;

(ii) ρ(G1
ij(t)) is an eigenvector of M(G1

ij(t)); and

(iii) ρ(G1
ij(t)) is a algebraically simple eigenvector of G1

ij(t)

for all t ∈ (0, 1]. Additionally, (i), (ii), and (iii) hold for t = 0 since M(G) satisfies

the conditions of the Perron-Frobenius theorem and σ(G1
ij(0)) = σ(G) ∪ {0}.

Let λ1(t), . . . , λn+1(t) denote the eigenvalues of G1
ij(t) for t ∈ [0, 1]. Then (i)

through (iii) imply for fixed t ∈ [0, 1] that ρ(G1
ij(t)) = λp(t) where λp(t) is the unique
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eigenvalue such that Reλp(t) > Reλq(t) for all q 6= p. Hence, as each Reλq(t) is a

continuous function of t, then assuming the ordering

ρ(G) = Reλ1(0) > Reλ2(0) ≥ · · · ≥ Reλn+1(0)

there can be no first t1 ∈ [0, 1] such that Reλq(t1) = Reλ1(t1) for all q > 1. Therefore,

Reλ1(t) > Reλq(t) for q > 1 and t ∈ [0, 1] implying that λ1(t) = ρ(G1
ij(t)).

Moreover, as ρ(G) ∈ σ(G1
ij(t)) for all t ∈ [0, 1] and ρ(G) = λ1(0) then the conti-

nuity of each Reλq(t) coupled with the fact that λ1(t) > Reλq(t) for q > 1 implies

that λ1(t) = ρ(G) for all t ∈ [0, 1]. Hence, ρ(G1
ij(t)) = ρ(G) for t ∈ [0, 1] under the

assumption that G is strongly connected.

If G is not strongly connected then it has strongly connected components given

by S1 . . . ,SN . If the edge eij belongs to the strongly connected component Sk where

ρ(Sk) = ρ(G) then the previous argument implies that (Sk)
1
ij(t, ρ(G)) = ρ(G). Given

that

σ
(
G1

ij(t)
)

= σ
(
(Sk)

1
ij(t, ρ(G))

) N⋃
`=1,` 6=k

σ(S`) (60)

then in this case ρ(G1
ij(t)) = ρ(G). However, if the spectral radius ρ(Sk) < ρ(G) we

note the following.

For a square matrix M ≤ 0 and α ≥ 0, ρ(αM) = αρ(M). Hence, if T is

the graph Sk where each edge weight is scaled by the constant ρ(G)/ρ
(
Sk

)
then

ρ(T) = ρ(G). As T is strongly connected on the basis that Sk is strongly con-

nected then ρ
(
T1

ij(t, ρ(G))
)

= ρ(G). However, given that ρ(G)/ρ(Sk) > 1 then

M
(
T1

ij(t, ρ(G))
)
≥ M

(
(Sk)

1
ij(t, ρ(G))

)
≥ 0 from which it follows that the spectral

radius ρ
(
T1

ij(t, ρ(G))
)
≥ ρ

(
(Sk)

1
ij(t, ρ(G))

)
(see chapter 8 [28]). Therefore, ρ(G) ≥

ρ
(
(Sk)

1
ij(t, ρ(G))

)
and equation (60) again implies that ρ(G1

ij(t)) = ρ(G) for t ∈ [0, 1].

Lastly, if eij does not belong to a strongly connected component then it follows

that ρ(G1
ij(t)) = ρ(G) since G and G1

ij(t) have the same nontrivial strongly connected

components. This completes the proof for the case m = 1.
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If m = 2 consider the fact that for H = G1
ij(t) the graph

G2
ij(t, ρ(G)) = H1

i,n+1(1, ρ(G)).

Therefore, ρ
(
G2

ij(t, ρ(G))
)

= ρ(G) by the previous argument. If we continue in this

manner the result follows for any finite m.

Hence, Gm
ij (t, θ) is a graph transformation that preserves the spectral radius of

the graph G if θ = ρ(G). However, to relate such transformations to adding and

removing time delays to a given dynamical system we will need the following lemma.

Lemma 3.3.9. Suppose A,B ∈ Rn×n where B is nonnegative and irreducible. If

0 ≤ A ≤ B and Ars < Brs for some 1 ≤ r, s ≤ n then ρ(A) < ρ(B).

To prove this lemma we use the following theorem from [28] (see theorem 6.3.12)

which we restate here for completeness. Here, the notation y∗ denotes the conjugate

transpose of the vector y.

Theorem 3.3.10. Let A(τ) ∈ Rn×n be differentiable at τ = 1. Assume that λ is an

algebraically simple eigenvalue of A(1) and that λ(τ) is an eigenvalue of A(τ), for

small τ , such that λ(1) = λ. Let x be a right eigenvector of A and let y be a left

eigenvector of A. Then

λ′(1) =
y∗A′(1)x

y∗x
.

By way of notation, if A ∈ Rn×n let Ars(τ) be the matrix A in which the rs-entry

Ars is multiplied by τ ∈ R. With in place we give a proof of lemma 3.3.11.

Proof. Suppose that M ∈ Rn×n such that the entry Mrs > 0. Under the assumption

that M ∈ Rn×n is nonnegative and irreducible then the same holds for Mrs(τ) for any

τ > 0. Then the Perron-Frobenius theorem implies that ρ(Mrs(τ)) is an algebraically

simple eigenvalue of Mrs(τ) with strictly positive left and right eigenvectors y(τ) and

x(τ) respectively. Via theorem 3.3.10 it follows that

ρ′
(
Mrs(τ)

)
=
y(τ)∗M ′

rs(τ)x(τ)

y(τ)∗x(t)
for τ > 0.
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As both y(τ)∗M ′
rs(τ)x(τ) = yr(τ)Mrsxs(τ) > 0 and y(τ)∗x(τ) > 0 it follows that

ρ′
(
Mrs(τ)

)
> 0. The lemma follows by noting that if 0 < τ1 < τ2 then this implies

that ρ
(
Mrs(τ1)

)
< ρ

(
Mrs(τ2)

)
.

Hence, the spectral radius of a nonnegative irreducible matrix depends monoton-

ically on each of its nonnegative entries. With this in place we prove the following

lemma.

Lemma 3.3.11. Suppose M(G) ≥ 0 and θ > 0. Then ρ(G) < θ if and only if

ρ
(
Gm

ij (t, θ)
)
< θ.

Proof. For G = (V,E, ω) such that M(G) ≥ 0 denote Ĝ = Gm
ij

(
t, ρ(G)

)
. Lemma

3.3.8 then implies that ρ(Ĝ) = ρ(G). For θ > 0 and assuming 0 < ρ(G) let Ĝ(c) be

the graph Ĝ in which every edge weight has been multiplied by c = θ/ρ(G) > 0. As

cM(Ĝ) = M
(
Ĝ(c)

)
≥ 0 and c > 0 then it follows that ρ(Ĝ(c)) = cρ(G) = θ.

Next, observe that the matrix M(Ĝ(c)) is given by

M(Ĝ(c))pq =


cM

(
Gm

ij (t, θ)
)

pq
1 ≤ p, q ≤ n and p = n+m, q = j

M
(
Gm

ij (t, θ)
)

pq
otherwise

(61)

from which it follows that Ĝ(c) is strongly connected if and only if Gm
ij (t, θ) is

strongly connected. If both Ĝ(c) and Gm
ij (t, θ) are strongly connected then there

exist 1 ≤ r, s ≤ n such that M(Ĝ(c))rs = cM
(
Gm

ij (t, θ)
)

rs
> 0 as Ĝ(c) and Gm

ij (t, θ)

would otherwise contain no cycles. In this case lemma 3.3.9 together with (61) imply

that

(I) if c > 1 then ρ
(
Ĝ(c)

)
> ρ

(
Gm

ij (t, θ)
)
; and

(II) if c ≤ 1 then ρ
(
Ĝ(c)

)
≤ ρ

(
Gm

ij (t, θ)
)
.

As c = θ/ρ(G) and ρ
(
Ĝ(c)

)
= θ then it follows that ρ(G) < θ if and only if

ρ
(
Gm

ij (t, θ)
)
< θ.

If Ĝ(c) is not strongly connected it has strongly connected components given by

S1 . . . ,SN where (58) holds. Hence, if eij belongs to the strongly connected component
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of Sk it follows by substituting Sk for G in (I) and (II) that

(III) if ρ(Sk) < θ then ρ
(
(Sk)

m
ij (t, θ)

)
< θ; and

(IV) if ρ(Sk) ≥ θ then ρ
(
(Sk)

m
ij (t, θ)

)
≥ θ.

Suppose then that ρ(G) < θ. As ρ(Sk) ≤ ρ(G) then (III) implies ρ
(
(Sk)

m
ij (t, θ)

)
< θ.

Given that

σ
(
Gm

ij (t, θ)
)

= σ
(
(Sk)

m
ij (t, θ)

) N⋃
`=1,` 6=k

σ(S`)

then ρ
(
Gm

ij (t, θ)
)
< θ since max1≤`≤N ρ(S`) = ρ(G). Similarly, if ρ(G) ≥ θ then from

(IV) it follows that ρ
(
Gm

ij (t, θ)
)
≥ θ. Hence, ρ(G) < θ if and only if ρ

(
Gm

ij (t, θ)
)
< θ

in Ĝ(c) is not strongly connected.

If eij does not belong to any strongly connected component then ρ(G) = ρ
(
Gm

ij (t, θ)
)

as both graphs have the same nontrivial strongly connected components. In this case

the conclusion of the lemma follows immediately.

For the case when ρ(G) = 0, note that by the Perron-Frobenius theorem a matrix

M(G) ≥ 0 has spectral radius 0 only if G has no cycles since G would otherwise have

a nontrivial strongly connected component with positive spectral radius. Given that

G has no cycles if and only if Gm
ij (t, θ) has no cycles it follows that ρ(G) = 0 if and

only if ρ
(
Gm

ij (t, θ)
)

= 0. Again, this implies ρ(G) < θ if and only if ρ
(
Gm

ij (t, θ)
)
< θ

completing the proof.

The major idea behind lemma 3.3.11 is the following. Adding delays to a system

corresponds to modifying the network’s graph structure as in figure 19 from G to

Gm
ij (t, 1). Conversely, removing delays from a system has the opposite effect (see the

following proof). Lemma 3.3.11 is then the statement that the removal or addition

of time delays does not change the dynamic stability of the system.

Before we give a proof of theorem 3.3.5 we introduce the following. For ease of

notation if NF : XF → XF let vi = vm0
ij , vj = vm,m+1

ij for all xk−m
i ∈ Vj(F ). A proof

of theorem 3.3.5 is the following.

91



Proof. Suppose F = F (xk−T , . . . , xk) and Λij are constants satisfying equation (53)

for NF . Let F be the function F in which the variable xk−m
i ∈ Vj(F ) is replaced by

xi and let the constants ∆ be the matrix given by

∆pg =


Λpg 1 ≤ p, q ≤ n, p 6= i, q 6= j

Λpg + (Λmm
pg )m,m+1

pq p = i, q = j

and

(
∆

m,`−1

pq

)m`

pq
=

(
Λm,`−1

pq

)m`

pq
for all xk−m

p ∈ Vq(F) and zero otherwise. The claim then is

that ∆pg are constants satisfying (53) for NF .

To see this note that as F and F are identical with the exception that the variable

xk−m
i ∈ Vj(F ) has been replaced by xi in F then this claim follows immediately apart

from showing that ∆ij = Λij + (Λmm
ij )m,m+1

ij satisfies equation (53). To see that this

holds as well we note that under the assumption that the constants Λpq satisfy (53)

for NF then for x, y ∈ XF

d
(
NFj(x),NFj(y)

)
≤

n∑
p=1

Λpjd(xp, yp) +
∑

(p,j,M,M)∈I(F )

(ΛMM
pj )M,M+1

pj d(xMM
pj , yMM

pj ).

As substituting xi for xk−m
i ∈ Vj(F ) in Fj substitutes xi for xmm

ij and yi for ymm
ij in

the previous inequality then for x̃, ỹ ∈ XF

d
(
NF j(x̃),NF j(ỹ)

)
≤

(
Λij + (Λmm

ij )m,m+1
ij

)
d(x̃i, ỹi)+

n∑
p=1,p6=i

Λpjd(x̃p, ỹp) +
∑

(p,j,M,M)∈I(F)

(ΛMM
pj )M,M+1

pj d(x̃MM
pj , ỹMM

pj ).

verifying the claim.

Moreover, note that the graphs ΓNF and ΓNF with adjacency matrices Λ and ∆

respectively satisfy the relation

ΓNF = (ΓNF)m
ij (t, 1) for t =

(Λmm
ij )m,m+1

ij

Λij + (Λmm
ij )m,m+1

ij

Lemma 3.3.11 then implies that if ρ(Λ) < 1 then ρ(∆) < 1.

92



Note that if each variable of the form xk−m
i ∈ Vj(F ) is replaced by xi in F then by

repeated use of lemma 3.3.11 the resulting dynamical network UF (x) = F (x, . . . , x)

has the following property. The constants

Λ̃pq = Λpq +
∑

xk−M
p ∈Vq(F )

(ΛMM
pq )M,M+1

ij for 1 ≤ p, q ≤ n

satisfy equation (53) for UF and moreover ρ(Λ̃) < 1. Hence, under the assumption

that ρ(Λ) < 1 it follows that the undelayed network UF has a globally attracting fixed

point.

Conversely, suppose Λ̃pq are constants satisfying (53) for UF such that ρ(Λ̃) < 1.

Let U be the function UF in which the xi in mth slot of (UF )j is replaced by xk−m
i .

Since each NUm`
ij (xm,`−1

ij ) = xm,`−1
ij for all 1 ≤ ` ≤ m then

d
(
NUm`

ij (xm,`−1
ij ),NUm`

ij (ym,`−1
ij )

)
= d

(
xm,`−1

ij , ym,`−1
ij

)
for x, y ∈ XF .

Hence, the constants (Λm,`−1
ij )m`

ij = 1 satisfy (53) for NU for all 1 ≤ ` ≤ m.

Then, by the previous calculations, the matrix of constants ∆ given by

∆pg =


Λ̃pg 1 ≤ p, q ≤ n, p 6= i, q 6= j

(1− t)Λ̃pg p = i, q = j

,

(
∆m,`−1

ij

)m`

ij
=


1 1 ≤ ` ≤ m

tΛ̃ij ` = m+ 1

, and zero otherwise

satisfy (53) for NU . Again, the graphs ΓNU and ΓUF
with adjacency matrices ∆ and

Λ̃ respectively have the relation ΓNU = (ΓUF
)m
ij (t, 1). Therefore, under the assumption

that ρ(Λ̃) < 1 it follows that ρ(∆) < 1 via lemma 3.3.11.

Therefore, by sequentially replacing each xi in (UF )j with the appropriate variable

xk−m
i ∈ Vj(F ) it follows that NF has a globally attracting fixed point if ρ(Λ̃) < 1.

This completes the proof.
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Combining the ideas present in this and the previous section it is possible to define

a dynamical network reduction of a dynamical network F : X → X. This is similar

to defining a restriction of a dynamical network and is done as follows.

Definition 3.3.12. Let S ∈ st0(ΓF ) for the dynamical network F : X → X. For

j ∈ IS let (RSF )j be the function Fj({xi0}) where each xi0 is replaced by Fi0({xi1}),

each xi1 by Fi1({xi2}), and so on for all indices i` /∈ IS. We call the function

RSF : X|S → X|S

the reduction of the dynamical network F over S.

As an example, for the dynamical network H given in equation (54) the reduction

of the dynamical network H over S = {v1, v2} is given by

RSH(x1, x2) =

 H1(x2)

H2

(
x1, H4(x1, H3(x1))

)
 .

Theorem 3.3.13. For S ∈ st0(ΓF ) suppose Λ̃ij are constants satisfying (53) for

RSF . If ρ(Λ̃) < 1 then the dynamical network F has a globally attracting fixed point.

Proof. Let S ∈ st0(ΓF ) for the dynamical network F . Lemma 3.2.2 then implies that

XSF |S(xk−T |S, . . . , xk|S) =
(
XSF (xk)

)
|S (62)

for some T ≥ 0. Hence, if the expansion XSF has a globally attracting fixed point

then the same holds for the restriction XSF |S.

Conversely, suppose that XSF |S has a globally attracting fixed point. If this point

is given by (x̃|S, . . . x̃|S) ∈
⊕T

i=0X|S then by (62)

lim
k→∞

(
XSF

k(y)
)
|S = x̃|S for any y ∈ X.

Note that for any ` ∈ IS̄ that v` lies on a β ∈ Bij(ΓF , S). By construction then

XSF`(x
k+T̃ ) = xk

i for all k ≥ 0 and some T̃ ≤ T . Hence, limk→∞XSF`(y) = x̃i
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implying XSF has a globally attracting fixed point. Therefore, XSF |S has a globally

attracting fixed point if and only if XSF has a globally attracting fixed point.

As theorem 3.2.4 implies XSF |S = F |S then by theorem 3.3.3 the network N (F |S)

has a globally attracting fixed point if and only if the expansion XSF has a globally

attracting fixed point. Suppose then that the constants Λ̃ij satisfy equation (53)

for RSF such that ρ(Λ̃) < 1. As UF |S = RSF , which can be seen by comparing

definitions 3.2.1 and 3.3.12, then the second half of theorem 3.3.5 implies N (F |S)

has a globally attracting fixed point. This in turn implies that XSF has a globally

attracting fixed point.

Lastly, the argument in the proof of theorem 3.2.5 shows that if XSF has a globally

attracting fixed point the same holds for F . This completes the proof.

Theorem 3.3.14. Let S ∈ st0(ΓF ) and suppose Λij are constants satisfying (53) for

the expansion XSF . If ρ(Λ) < 1 then there exist constants Λ̃ij satisfying (53) for

RSF such that ρ(Λ̃) < 1.

Proof. Let Λij be constants satisfying (53) for XSF . By modifying the argument in

the proof of theorem 3.3.5 it follows that the constants

Λ̃ij = Λij +
∑

β∈Bij(ΓXSF ,S)

Λβ

satisfy (53) for UF |S where Λβ denote the weights of the final edge on the path β.

Moreover, from the same argument it follows that if ρ(Λ) < 1 then ρ(Λ̃) < 1.

As UF |S = RSF the result follows.

In the previous section, dynamical network expansion were introduced to give

improved estimates of a dynamical network’s stability. Theorem 3.3.13 together with

theorem 3.3.14 imply that dynamical network reductions can be used for the same

purpose. However, the main advantage to using a reduction rather than an expansion

is that RSF is much easier to construct then XSF making it easier to find ρ(Λ̃) verses

ρ(Λ).

95



As an illustration let H(x) be the dynamical network given in example 1 of section

3.2 where again S = {v1, v2}. Here, it can be computed that

RSH(x1, x2) =

 1
4
L(x2)

1
4
Q(x1) + 1

4
L

(
1
4
Q(x1) + 1

4
Q(1

4
Q(x1))

)


having the associated matrix of constants Λ̃ =

 0 3/4

1 0

 satisfying equation (53).

The constants Λ̃ij = max |(DRSF )ji(x)| from which it follows that ρ(Λ̃) =
√

3
2
< 1.

Theorem 3.3.14 then implies that H does in fact have a globally attracting fixed point.

Note that as with dynamical network expansions it is possible to sequentially

reduce a network to gain better stability estimates. However, if Λij are constants

satisfying (53) for the expansion XSF and ρ(Λ) < 1 then using RSF to estimate the

stability of F may give worse estimates than simply using F itself.

For example let K(x1, x2) =

 Q(x2)

L(x1)

 in which case the matrix of constants

∆ =

 0 2

4 0

 satisfy (53) for K. Hence, ρ(∆) =
√

8 ≈ 2.828.

For S = {v1} the expansion XSK(x1, x2) =

 Q(L(x2))

x1

 where the matrix of

constants Λ =

 0 3.079

1 0

 satisfy (53) for XSK. Note that here ρ(Λ) = 1.754.

However, the reduced dynamical network RSK(x1) = Q(L(x1)) in which case the

best we can do is ρ(Λ̃) = 3.079.
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3.4 Concluding Remarks

The major goal of this chapter has been to use the theory of isospectral graph trans-

formations developed in chapter I to investigate dynamical networks. This has ad-

ditionally lead to investigations of time-delayed dynamical systems specifically the

effect of such delays on the system’s dynamics.

Of particular interest in this section is the fact that to both the graph reductions

and graph expansions of chapter I there are analogous dynamical network reductions

and expansions. Moreover, both network transformations are useful in obtaining

improved estimates of the dynamical stability of any given network. In this way both

types of transformations can be seen as a new tool for investigating interplay between

the dynamics of a network and the network’s structure.

Additionally, as time delays naturally arise in such dynamical network transforma-

tions, this provides a framework for investigating the strictly larger class of systems

with time delays. As it is shown in the second half of this chapter time delays do not

effect the dynamic stability of a system. That is, the addition or removal of delays

to a system does not effect whether the system has a globally attracting fixed point.
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CHAPTER IV

EVENTUALLY NEGATIVE SCHWARZIAN SYSTEMS

4.1 Introduction

Singer was the first to observe that if a function has a negative Schwarzian derivative

then this property is preserved under iteration and moreover that this property puts

restrictions on the type and number of periodic orbits the function can have [45].

These properties, as well as those results derived from them, essentially rely on the

global structure functions with a negative Schwarzian derivative have. For a full list

of such properties see [38].

Later it was found that such functions also possess local properties useful in estab-

lishing certain distortion bounds. For the most part these properties are concerned

with the way in which functions with a negative Schwarzian derivative increase cross

ratios. Because of these special properties some results are known only in the case

where a function has a negative Schwarzian derivative. An exception, however, to this

is the result by Kozlovski [33] where it was shown that the assumption of a negative

Schwarzian derivative is superfluous in the case of any C3 unimodal map with nonflat

critical point. For such functions there is always some interval around their critical

value on which the first return map has a negative Schwarzian derivative. That is

locally all such C3 maps behave as maps with a negative Schwarzian derivative. More

recently using the same technique van Strien and Vargas have generalized this result

to multimodal functions [47]. Also Graczyk, Sands and Swiatek have shown that any

C3 unimodal map with only repelling periodic points is analytically conjugate to a

map with a negative Schwarzian derivative [26]. The main purpose of these results

is to relate functions without a negative Schwarzian derivative to functions with this
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property.

In this chapter we consider those C2 functions on a finite interval of the real line

having some iterate with a negative Schwarzian derivative. This class, which we call

functions with an eventual negative Schwarzian derivative, was originally introduced

by L. Bunimovich (2007) in an attempt to describe some one-dimensional maps which

appear in neuroscience [36, 37]. It is noteworthy that this class of functions is broader

than those previously considered in the study of unimodal and multimodal maps re-

lated to functions with a negative Schwarzian derivative (see for example [33, 47, 26]).

To demonstrate this we will present examples of such functions and further exam-

ples can also be found in [35]. Moreover, as having an eventual negative Schwarzian

derivative is not an asymptotic condition, verifying whether a function has this prop-

erty can often be done by direct computation. Hence, the concept of an eventual

negative Schwarzian derivative has potential to be very useful in applications.

Since this class of functions contains functions with a negative Schwarzian deriva-

tive as a subset we do not attempt to prove stronger results then have already been

proved for this smaller class of functions. With this in mind the large majority of

the results we will present in this chapter will simply be restatements of those al-

ready known with the modification that only some iterate of our function need have

a negative Schwarzian derivative. We note that this by no means is meant to be an

exhaustive list of such results as the purpose of this chapter is to give further evidence

that the useful properties possessed by functions with negative Schwarzian derivative

are not limited to this family of functions.

This chapter is organized as follows. In the next section we formally introduce

the class of functions we are considering and present our main results. Section 3.3

presents the proof of those results that are topological in nature. Specifically, we

prove an analogue of Singer’s theorem in [45] and mention some important concepts

and corollaries that will be useful in what follows. Section 3.4 is comprised of those
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proofs which are more measure theoretic. Specifically, we generalize the main results

in [13, 41, 49] to this larger class of functions. In section 3.5 we give a partial

characterization of functions that have an eventual negative Schwarzian derivative as

well as some examples. The next section is devoted to an application of these results

to a one-parameter family of maps that model the electrical activity in a neuronal

cell near the transition to bursting [36, 37]. Section 3.7 contains some concluding

remarks.

4.2 Iterates and the Schwarzian Derivative

Here we consider only C2 functions f : I → I on some nontrivial compact interval I

of real numbers having a nonempty but finite set of critical points C(f) and use the

notation f ′ to denote the derivative with respect to the spacial variable.

Definition 4.2.1. A C2 function f : I → I is said to have a negative Schwarzian

derivative if on any open interval J ⊂ I, not containing critical points of f , |f ′|−1/2

is strictly convex on J .

If f : I → I is C3 then its Schwarzian derivative is defined off of C(f) by

S(f)(x) =
f ′′′(x)

f ′(x)
− 3

2

(f ′′(x)
f ′(x)

)2

(63)

If S(f)(x) is strictly negative on open intervals not containing critical points of f then

|f ′(x)|−1/2 is strictly convex on these sets or f has a negative Schwarzian derivative.

However, the converse does not always hold.

Definition 4.2.2. We say a C2 function f : I → I has an eventual negative

Schwarzian derivative if there exists k ∈ N such that fk has a negative Schwarzian

derivative. The smallest such number k is said to be the order of the derivative.

Definition 4.2.3. A C2 map f : I → I is called S-multimodal if:

(i) C(f) is nonempty and finite.
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(ii) For every c ∈ C(f), c is nonflat. That is, there exists some ` ∈ (1,∞) and

L ∈ (0,∞) such that

lim
x→c

|f ′(x)|
|x− c|`−1

= L, (64)

where ` is the order of the critical point.

(iii) f has a negative Schwarzian derivative on I.

If f has a single critical point c we call the map S-unimodal.

Definition 4.2.4. A function f : I → I is Sk-multimodal if there exists a smallest

k ∈ N such that fk(x) is S-multimodal. If f is unimodal and has this property we say

it is Sk-unimodal

Note that by the terminology above S-unimodal functions are special S-multimodal

functions and Sk-unimodal functions are special Sk-multimodal functions.

In what follows we will make use of the following standard terminology. The basin

of a periodic point x is the set of points that converge to the orbit of x, and x is

said to be attracting if its basin contains an open set. The immediate basin of x is

the union of connected components of its basin that contain a point of the orbit of

x. Furthermore, we say that the periodic point x of order p is a hyperbolic attractor

if |(fp)′(x)| < 1, a hyperbolic repeller if |(fp)′(x)| > 1, and neutral if |(fp)′(x)| = 1.

Note that it is possible for neutral periodic points to be attracting from one or both

sides. We now state the main results of this chapter.

Theorem 4.2.5. If f : I → I is Sk-multimodal, then the immediate basin of at-

traction of any attracting periodic point contains either a critical point of f or a

boundary point of I. Furthermore, any neutral periodic point of f , except possibly on

the boundary of I, is attracting and there exist no interval of periodic points.

This type of theorem, often called Singer’s theorem as it resembles the result in

[45], is proved in [38] under the assumption that f is C3 with S(f)(x) < 0. In [18]

theorem 4.2.5 is proved in the case that f is S1-multimodal.
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We note here that theorem 4.2.5 indicates a few of the properties that sets this

collection of functions apart from those considered elsewhere. In fact the property of

having an eventual negative Schwarzian derivative cannot be generalized by looking

at first return maps in the sense that it is global in nature and as first return maps

generically introduce discontinuities, i.e. more boundary points, this global structure

is not preserved.

The next result is not a generalization of a known result rather it is a corollary

to the main result in [13] using the restriction on the periodic orbits obtained in the

previous theorem to simplify the hypothesis.

Denote Dn(c) = |(fn)′(f(c))|. Also, for some measure µ let ϕ and ψ be bounded

Hölder continuous functions on I and denote the nth correlation function by

Cn = Cn(ϕ, ψ) =

∣∣∣∣∫ (ϕ ◦ fn)ψdµ−
∫
ϕdµ

∫
ψdµ

∣∣∣∣ .
Furthermore, if for a multimodal f : I → I there is a closed proper subinterval J of

I and an n ≥ 2 such that

(i) the interiors of J, . . . , fn−1(J) are disjoint,

(ii) fn(J) ⊂ J, fn(∂J) ⊂ ∂J ,

(iii) at least one of the intervals J, . . . , fn−1(J) contains a point of C(f),

then f is called renormalizable on any set J̃ where J ⊆ J̃ ⊆ I.

Theorem 4.2.6. Let f : I → I be C3 with an eventual negative Schwarzian deriva-

tive, and a finite nonempty critical set C(f). If every point of C(f) has order ` ∈

(1,∞) and f satisfies ∑
n

D−1/(2`−1)
n (c) <∞ for all c ∈ C(f) (65)

then there exists an f -invariant probability measure µ with support supp(µ) abso-

lutely continuous with respect to Lebesgue measure (an “acip”). Furthermore, if f is

not renormalizable on supp(µ) then (supp(µ), µ, f) is mixing and Cn decays at the

following rates:
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Polynomial: If there is C > 0, α > 2`− 1 such that Dn(c) ≥ Cnα

for all c ∈ C(f) and n ≥ 1, then for any α̃ < α−1
`−1

− 1 we have Cn = O(n−α̃).

Exponential: If there is C > 0, β > 0 such that Dn(c) ≥ Ceβn

for all c ∈ C(f) and n ≥ 1, then there is a β̃ > 0 such that Cn = O(e−β̃).

In the original result given in [13] the function f was assumed to have no attract-

ing or neutral periodic points. In effect, the previous theorem says that instead of

requiring the function to have no such periodic orbits we may assume that it has

an eventual negative Schwarzian derivative. The advantage here is that having an

eventual negative Schwarzian derivative is a nonasymptotic condition so it is poten-

tially easier to verify a function has this property than to show it has no attracting

or neutral periodic points by some other means.

However, if all that is needed is the existence of an acip, we have different orders

of critical points, or the function is C2 but not C3 then we may use the following

result which generalizes the main result in [41] to functions with an eventual negative

Schwarzian derivative.

Theorem 4.2.7. If f is an Sk-multimodal function and satisfies the condition

∑
n

D−1/(`max)
n (c) <∞ for all c ∈ C(f) (66)

where `max is the largest order of the critical points in C(f) then f admits an absolutely

continuous invariant probability measure.

The next theorem deals with one-parameter families of maps. In the theory pre-

sented in [49] there is a special class of functions denoted by M having strongly ex-

pansive properties. This set of functions is helpful in proving under what conditions

one-parameter families of functions have absolutely continuous invariant measures for

positive Lebesgue measure sets of parameters. Specifically, a technical but generically
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satisfied transversality condition in the parameter which will be denoted by (PT ) is

required for this to be the case. We refer the reader to the article for details.

Theorem 4.2.8. Let fa : I → I be a one-parameter family of C3 functions where a

belongs to some interval A of the real line. If, for some parameter value β ∈ A, fβ

has a finite nonempty critical set C(fβ) and

(i) fβ has an eventual negative Schwarzian derivative of order k

(ii) f ′′β (c) 6= 0, c ∈ C(fβ)

(iii) if fm
β (x) = x, then |(fm

β )′(x)| > 1

(iv) infi>0d(f
i
β(c), C(fβ)) > 0, c ∈ C(fβ)

then fβ has an absolutely continuous invariant measure. In particular fk
β ∈M and if

fk
β satisfies the condition (PT) then on a positive Lebesgue measure set of parameters

the family of functions fa has an absolutely continuous invariant probability measure.

Theorem 4.2.8 is an extension of the results in [49] with the modification that we

require only an eventual negative Schwarzian derivative of order k ≥ 1 instead of a

negative Schwarzian derivative.

4.3 Topological Properties

In this section we prove theorem 4.2.5 along with some corollaries that will be needed

in the following sections but are of interest in their own right. We now give a proof

of theorem 4.2.5.

Proof. Let f : I → I be an Sk-multimodal function of order k ≥ 1. From the proof

of Singer’s theorem in [18] the results of theorem 4.2.5 holds for fk. Hence, if x̃ ∈ I

is an attracting periodic point of fk then in its immediate basin of attraction B(x̃)

there is either an endpoint of I or a critical point c̃ of fk. Since any point that is

attracted to the orbit of x̃ under fk is also attracted to the orbit of x̃ under f the

immediate basin of attraction of x̃ under f contains B(x̃) hence either an endpoint
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of I or c̃. As the critical set of fk is given by

C(fk) = {x ∈ I : ∃ 0 ≤ i ≤ k − 1 where f i(x) ∈ C(f)}

then c̃ is the preimage of some critical point of f and the first and second statement of

theorem 4.2.5 follows from the fact that f has an attracting periodic orbit containing

x̃ if and only if the same is true of fk. Since this is true for general periodic points

the result follows.

Definition 4.3.1. Let f : I → I be a C1 map with nonempty critical set C(f). Let

a = inf
n≥0
{fn(c) : c ∈ C(f)}, b = sup

n≥0
{fn(c) : c ∈ C(f)}.

We call the interval [a, b] the critical interval of the function f . That is, the smallest

closed interval that contains the forward orbit of all critical points of f .

By a simple argument it follows that if f has a critical interval Ĩ then f(Ĩ) ⊆ Ĩ.

A more complicated result is the following.

Lemma 4.3.2. Let f : I → I be C1 with a nonempty critical set. Then the endpoints

of the critical interval of f are either attracting periodic points of period 1 or 2 that

attract some critical point of f or else lie on the orbit of a critical point of f .

Proof. For simplicity let I = [0, 1] which can always be achieved by some affine change

of coordinates. Let I = L∪C∪R where C = [cl, cr] is the smallest interval containing

C(f), L = [0, cl], and R = [cr, 1]. Also cmax and cmin are the critical points of f with

largest and smallest function values respectively. For the critical interval [a, b] suppose

in the following cases that b is not on the orbit of any critical point.

Case 1 : Let f be increasing on L and R. If f 2(cmax) ≤ f(cmax) then it follows

that f([0, f(cmax)]) ⊆ [0, f(cmax)] so either b = f(cmax) or b = cr, which violates

the supposition. As it follows then that f 2(cmax) > f(cmax) then cr < f(cmax)

implying that f is strictly increasing on [f 2(cmax), 1]. Hence, by monotonicity any
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orbit containing a point in [f 2(cmax), 1] is attracted to a fixed point of this interval.

The least of these fixed points pmust be b since cmax is attracted to it and as f([0, p]) ⊆

[0, p].

Case 2 : Let f be decreasing on L and R. Consider f 2 where we define L2, C2,

R2, c2max analogous to L,C,R and cmax for f 2. Note that f 2(c2max) = f(cmax) < b.

Also if f 2 is decreasing on L2 this implies that f(L) ⊆ [cl, cr] and f 2 decreasing on

R2 implies that f(R) ⊆ [cl, cr]. If either of these is the case then either f(cmax) or

f 2(cmin) is equal to b. As neither of these is possible then f 2 is increasing on both L2

and R2 and the analysis reduces to that of Case 1. Therefore, c2max is attracted to b

which implies the critical point cmax of f is attracted to a two cycle of f containing

b.

Case 3 : Let f be decreasing on L and increasing on R. If f 2(cmax) ≤ f(cmax) and

f 2(cmin) ≤ f(cmax) then f([f(cmin), f(cmax)]) ⊆ [f(cmin), f(cmax)] implying b lies on

the orbit of cmax or cr, which violates the supposition. If f 2(cmax) > f(cmax) then as

in Case 1 either cmin or cmax is attracted to a fixed point in the interval [f 2(cmax, 1)]

which must be b. If f 2(cmin) > f(cmax) but f 2(cmax) ≤ f(cmax) then f 2(cmin) = b.

Case 4 : Let f be increasing on L and decreasing on R. This however implies that

b = f(cmax).

Repeating this argument with appropriate modifications implies the same is true

for the endpoint a.

Corollary 7. An Sk-multimodal map f can have at most |C(f)|+2 attracting periodic

orbits. If no critical point of f is attracted to a periodic orbit then all periodic points

in the critical interval are hyperbolic repelling.

Proof. The first statement is immediate from theorem 4.2.5. To prove the second

note that lemma 4.3.2 implies fk restricted to its critical interval Ĩ has the property

that each of its attracting periodic orbits attracts a critical point. Hence, if no critical

point of fk is attracted to a periodic orbit, fk can have no attracting periodic points

106



in its critical interval, in particular no hyperbolic attractors as well as no neutral

periodic points in the interior of Ĩ. If an endpoint of Ĩ is a neutral periodic point not

on the orbit of a critical point it attracts an open set of points in the critical interval

and the corollary follows for fk. Hence, all periodic orbits of f in Ĩ are hyperbolic

repelling and as the critical interval of f is contained in Ĩ the proof follows.

4.4 Measure Theoretic Properties

In this section we prove theorems 4.2.6, 4.2.7, and 4.2.8, that is those results that are

more measure theoretic in nature. We also give some related corollaries that will be

used in section 3.6 in our discussion of neuronal models. We now give the proof of

theorem 4.2.6.

Proof. Assuming condition (65) on f implies the critical interval of f is not a single

point as a critical point of f cannot be a fixed point of the function. Let f̃ be the

restriction of f to its critical interval and suppose x̃ is either a hyperbolic attracting

or neutral fixed point of f̃ . Then theorem 4.2.5 together with lemma 4.3.2 imply

that some critical point c̃ ∈ C(f̃) is attracted to x̃. In both the hyperbolic attracting

and neutral case there is an N and a closed interval J 3 x̃ on which |(f̃)′(x)| ≤ 1

containing f̃n(c̃) for n ≥ N . Hence, there is a finite C ≥ 0 such that for n ≥ N ,

Dn(c̃) ≤ C implying ∑
n

D−1/(2`−1)
n (c̃) ≥

∑
n≥N

C−1 = ∞.

As this violates (65) it follows that every fixed point of f̃ is hyperbolic repelling and

a slight modification of this argument implies the same for all periodic orbits of f̃ as

well. The main result of [13] then implies the result of the theorem for f̃ . This result

can then be trivially extended to f .

For the proof of theorem 4.2.7 we require the following lemma.
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Lemma 4.4.1. Let f be C1 with a finite critical set. If for some k ∈ N there is

an fk-invariant probability measure µ absolutely continuous with respect to Lebesgue

measure (acip) then f admits an invariant measure also absolutely continuous with

respect to Lebesgue measure.

Proof. Suppose f, k, and µ are as above. Consider the measure υ given by

υ(A) =
1

k

k−1∑
i=0

µ(f−i(A)).

To see that υ is f -invariant note

υ(f−1(A)) =
1

k

k−1∑
i=1

µ(f−i(A)) +
µ(f−k(A))

k
=

1

k

k−1∑
i=1

µ(f−i(A)) +
µ(A)

k
= υ(A).

For absolute continuity of the measure note that a C1 function with a finite critical

set is non-singular. Therefore, absolute continuity of the measure υ follows from that

of µ.

We now give the proof of theorem 4.2.7

Proof. For any c̃ ∈ C(fk) only one of c̃, f(c̃), f2(c̃), . . . , fk−1(c̃) can be a critical point

of f since if f eventually maps any point of C(f) back to this set then condition

(66) does not hold. Hence, for any c̃ ∈ C(fk) there exists a unique m < k such that

fm(c̃) = c where c ∈ C(f). Consider

lim
x→c̃

|(fk)′(x)|
|x− c̃|`−1

=
k−1∏

i=0,i6=m

|f ′(f i(c̃))| lim
x→c̃

|f ′(fm(x))|
|x− c̃|`−1

. (67)

Let A =
∏k−1

i=0,i6=m |f ′(f i(c̃))| which is strictly positive and note that

lim
x→c̃

|f ′(fm(x))|
|fm(x)− fm(c̃)|`−1

= lim
x→fm(c̃)

|f ′(x)|
|x− fm(c̃)|`−1

> 0

where the inequality follows from definition 2.3(ii). Setting this limit to B, the right

side of equation (67) is

A lim
x→c̃

|f ′(fm(x))|
|fm(x)− fm(c̃)|`−1

|fm(x)− fm(c̃)|`−1

|x− c̃|`−1
= AB lim

x→c̃

( |fm(x)− fm(c̃)|
|x− c̃|

)`−1

.
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An application of L’Hospital’s rule implies that this limit is strictly positive. That is,

the collection of orders of C(f) is the same as those for C(fk) implying their maximum

`max is equal. In what follows let

Dn,k(c̃) = |((fk)n)′(fk(c̃))|,

Cm,k(c̃) =
k−m−1∏

i=1

|f ′(f i(c̃))|

and note by repeated use of the chain rule that

Cm,k(c̃)Dn,k(c̃) =
nk−m−1∏

i=1

|f ′(f i(c))| = Dnk−m−1(c), n ≥ 1.

The important observation here is Cm,k(c̃) 6= 0 and does not depend on n. Since all

the quantities involved are positive it follows that

C−`max
m,k (c̃)

∑
n

D−`max
n,k (c̃) ≤

∑
n

D−`max
n (c) <∞

or fk satisfies condition (66). This implies fk has an acip via the main result in [41]

and lemma 4.4.1 implies the same for f .

We now proceed to the proof of theorem 4.2.8.

Proof. As each point in C(fk
β ) is the preimage of some critical point c of fβ then

infi>0d((f
k
β )i(c), C(fk

β )) > 0 for all c ∈ C(fk
β ) as this would otherwise violate condition

(iv) on f . Second, for c ∈ C(fβ) note that (fβ)′′(c) 6= 0 implies c is nonflat with order

` = 2. As infi>0d((f
k
β )i(c), C(fk

β )) > 0 for all c ∈ C(fk
β ) then the same argument used

in the proof of theorem 4.2.7 implies that the critical points of fk
β are also nonflat of

order ` = 2. Therefore, (fk
β )′′(c) 6= 0 for all c ∈ C(fk

β ). Also note that property (iii)

of theorem 4.2.8 means fβ(x) has no attracting or neutral periodic orbit. But this is

true if and only if fk
β (x) has none itself.

From the assumption that fk
β has a negative Schwarzian derivative it follows from

[49] that fk
β ∈M. In particular, fk admits an invariant absolutely continuous measure
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µ. And an application then of lemma 4.4.1 implies that fβ also has an acip. Moreover,

if fk
β satisfies (PT ) then on a positive Lebesgue measure set of parameters the family

of functions fk
a has an acip and lemma 4.4.1 can again be used to show the same for

fa.

As we will be concerned specifically with unimodal maps in section 3.6 we give

the following corollary.

Corollary 8. Let f : I → I be C3 and Sk-unimodal with critical point c of order

` = 2 to the left of which f is increasing and to the right of which is decreasing. If the

orbit of c contains a repelling periodic orbit and f has no fixed points on the boundary

of its critical interval or outside of its critical interval then fk ∈M.

Proof. Assuming these conditions then f(c) > c since c is otherwise attracted to the

rightmost hyperbolic attracting or neutral fixed point of f . Also if f 2(c) ≥ c the

forward orbit of c is contained in the interval [c, f(c)] so c is attracted to a fixed point

or a periodic cycle neither of which can be repelling. Similarly, if f 3(c) < f 2(c) then

c is also attracted to a nonrepelling fixed point, this implies that the critical interval

Ĩ of f is [f 2(c), f(c)].

Note that if f has no fixed points on the boundary or outside Ĩ then there is some

n ∈ N such that for all x ∈ I \ Ĩ, fn
β (x) ∈ Ĩ since Ĩ is forward invariant and all orbits

fall on this set after some bounded number of iterations. Therefore, f has no periodic

points outside Ĩ and the proof of theorem 4.2.6 implies that on I, f satisfies condition

(iii) of theorem 4.2.8 as c is mapped to an unstable periodic orbit. Condition (iv)

follows for the same reason, (ii) follows from the proof of theorem 4.2.8 and condition

(i) is assumed to hold.

4.5 Characterizing Sk-multimodal Functions

As not every C2 function has the characteristics given in theorem 4.2.5 it is not

the case that every function will be either a function with a negative Schwarzian
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derivative or have an eventual negative Schwarzian derivative. That is, it is possible

for a function to have a Schwarzian derivative that is mixed for all of its iterates. If

however a function does have an eventual negative Schwarzian derivative it would be

useful to have a way of identifying this. Specifically, we would like to have sufficient

conditions under which a function has this property.

The simplest case to consider is the one in which |f ′|−1/2 is convex but not strictly

convex. To do so we mention the following.

Definition 4.5.1. Let g : J → K be continuous and monotone where U ⊂ V ⊂ J

are open bounded intervals in K. If V \U consists of the intervals L and R the cross

ratio of the intervals U and V is given by

CR(U, V ) =
|U ||V |
|L||R|

.

The function g is said to expand cross ratios on J if for any intervals U ⊂ V in J ,

CR(U, V ) < CR(g(U), g(V )).

Suppose f is C2 on the open, bounded interval J containing no critical points

of f . It is known that f increases cross ratios on J if and only if it has a negative

Schwarzian derivative on this set (see [18]). Furthermore, if a function is a Möbius

transform, that is a function of the form g(x) = (ax+ b)/(cx+ d) where ad− bc 6= 0,

then this function preserves cross ratios i.e. CR(U, V ) = CR(g(U), g(V )) (see [38]).

Proposition 1. Let f : I → I be C2. Suppose M ⊂ I is a finite union of closed inter-

vals on which f is a Möbius transform and off of which f has a negative Schwarzian

derivative. Furthermore, assume there is a k ≥ 2 such that for every x ∈ M ,

{f i(x) : 1 ≤ i < k} ∩ I \ M 6= ∅. Then f has an eventual negative Schwarzian

derivative of order less than or equal to k.

Proof. If B are the boundary points of M let Bk = {x ∈ I : f i(x) ∈ B for some 0 ≤

i < k}. Let J ⊂ I be an open interval containing no points in C(fk) or Bk. Then
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there is a first 0 ≤ ` < k such that f `(J) ⊂ I \M . As the composition of a Möbius

transform with itself is again such a function then f `(x) restricted to J does not

change cross ratios. However, f `(J) ∩ C(f) = ∅ and f `(J) ⊆ I \M on which f has a

negative Schwarzian derivative implying f `+1 increases cross ratios on J . Since cross

ratios on J are either maintained or increased by further iteration of f it follows that

fk also increases cross ratios on J or |(fk)′|−1/2 is strictly convex on J . Note that as

|(fk)′|−1/2 is C1 on J it then has a strictly increasing derivative on this interval. Since

Bk is a finite set it follows that on any open interval of I, not containing critical points

of fk, |(fk)′|−1/2 is also strictly convex or fk has a negative Schwarzian derivative on

I.

It follows directly from this proposition that the C2 family of unimodal functions

fa(x) =


(x− 1/2) + a, x ∈ [0, 1/2]

−4(2a+ 1)(x− 1/2)3 + (x− 1/2) + a, x ∈ (1/2, 1]

(68)

has an eventual negative Schwarzian derivative for a ∈ (1/2, 7/8] (see Fig. 1). A C3

example of a similar family is given by ga(x) = (ax− 1/4) + (ax− 1/4)4 + 4a/11 for

x ∈ [0, 1] and a ∈ [1, 11/8]. The reason for (68) is that it serves as a simple example

of a family of functions for which many results, which refer only to C3 functions, are

not applicable. For example, as fa(x) is only C2 it is not directly possible to use the

main results in [26] to show this family is conjugate to a function with a negative

Schwarzian derivative.

It is also worthwhile to recall, as mentioned in the introduction, the motivation

as well as the inspiration for the study of this new class of functions with eventual

negative Schwarzian derivatives comes from the analysis of one-dimensional maps

which appear in some models in neuroscience. These maps, given in [36, 37] in

particular, have a part that is linear (or almost linear). Therefore, our example above

also includes this feature although, as implied by proposition 1, this is not a necessary
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|f ′|−1/2 |(f 2)′|−1/2

|(f 3)′|−1/2

Figure 20: f = f7/8 in equation (68)
.

condition to have an eventual negative Schwarzian derivative.

From (63) it follows that if f is C3 then

S(fk)(x) =
k−1∑
i=0

(
(f i)′(x)

)2(
S(f)(f i(x))

)
. (69)

Note that if in the previous proposition the function was assumed C3 with S(f)(x) <

0 on I \M , this equation would have immediately implied the result. However, this

equation suggests a method for identifying C3 functions which have an eventual neg-

ative Schwarzian derivative.

If I =
⋃n

i=1 Ii, where the Ii are nonintersecting intervals, let A = (aij) be the

transition matrix of this partition with respect to f . That is, aij = 1 if there is an

x ∈ Ii such that f(x) ∈ Ij and aij = 0 otherwise. Let a sequence x̄ = (x0x1x2 . . . xk−1)

of length k be admissible with respect to this partition if each xi ∈ {1, 2, . . . , n} and

xj can follow xi in this sequence if and only if axixj
= 1. Let T (i) = supx∈Ii

{S(f)(x)},

m(i) = infx∈Ii
{|f ′(x)|2}, M(i) = supx∈Ii

{|f ′(x)|2} and for some admissible x̄ of length
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k and 0 < j < k define

Rj(x̄) =


[∏j−1

i=0 m(xi)
]
T (xj), T (xj) ≤ 0[∏j−1

i=0 M(xi)
]
T (xj), otherwise

letting R0(x̄) = T (x0). From equation (69) we have the following proposition.

Proposition 2. Let f : I → I be C3 and I =
⋃n

i=1 Ii a partition of I. If there is a

k ≥ 1 such that for every admissible sequence x̄ of length k,

k−1∑
i=0

Ri(x̄) < 0

then f has an eventual negative Schwarzian derivative of order less than or equal to

k.

Using this proposition it can be shown that the one parameter family of functions

ga(x) = 1− a tan
(π

4
x2

)
, x ∈ [−1, 1], (70)

which mimics the logistic function, has an eventual negative Schwarzian derivative of

order k = 2 in a parameter neighborhood of a = 1.7. This can be done by using the

partition with endpoints {−1,−0.95,−0.7,−0.47,−0.18, 0.18, 0.47, 0.7, 0.95, 1} for in-

stance.

4.6 Application to a Neuronal Model

The motivation for considering functions having some iterate with a negative Schwarzian

derivative comes from a model for the electrical activity in neural cells specifically in

behavior described as bursting. This model given first in [36] and later in [37] is a

reduction of a system of three nonlinear differential equations to a 1-d map.

The model is initially given by the following fast-slow system of three differential

equations which describe the dynamics of the membrane potential υ and two gating
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variables η and ω of a neuronal cell:

ευ̇ = f(υ, η, ω; δ) (71)

η̇ = g(υ, η) (72)

ω̇ = βh(η, ω) (73)

Here the parameter δ can be viewed as a control parameter of the full system where δ ∈

[δmin, δmax]. Also the time constant β represents the slowest time scale in the dynamics

of (10)-(12) so in the limit β → 0+ the system uncouples into a fast subsystem (10),

(11) and a slow subsystem (12). As is explained in [37] the trajectory of the full

system is drawn towards a surface foliated by periodic orbits of the fast subsystem

where the evolution along this surface is determined by the dynamics of the slow

subsystem.

As the state of the fast subsystem depends on the value of the slow variable ω, it is

sufficient to know how ω changes after each oscillation of the fast subsystem. Knowing

these changes is precisely the reduction of the system to a 1-d map denoted by Fδ.

To achieve this a Poincaré section Pδ is placed transversal to the surface of periodic

orbits and the map is defined by Fδ(ωn) = ωn+1 where ωn+1 is the ω-coordinate of

the next point on the flow to pass through Pδ.

In [36] Fδ is shown to have the following properties (see Fig. 2):

I For fixed δ, Fδ(x) is a piecewise C0 map with two intervals of continuity,

I1 = I− ∪ I0 and I2 = I+, between which there is a single discontinuity

d(δ).

II Fδ is unimodal on 0 ≤ x < d(δ) = I1, with critical point c(δ) of order

` = 2.

III Fδ is nearly linear on its left outer region I− with slope slightly less than

1 and in the limit β → 0+ is linear with slope 1.
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c(δ) α(δ)

Iδ

d(δ)

Fδ(x)

I− I0 I+

Figure 21: First Return Map Near Bursting δ ≈ δb

IV On the inner region I0, Fδ is unimodal with slope tending toward −∞ as

d(δ) is approached from the left.

V In the second region I+ the function is nearly constant and between 0 and

Fδ(c(δ)).

VI Fδ has a unique fixed point α(δ) continuous in δ on the interval I0.

VII There is a δ0 ∈ (δmin, δmax) where α(δ0) = c(δ0) and for δ ∈ (δ0, δmax],

c(δ) < α(δ).

VIII There is a δb ∈ (δ0, δmax) such that Fδb
(c(δb)) = d(δb) and for δ ∈ [δ0, δb),

Fδ(c(δ)) < d(δ).

IX There is a δn > δ0 such that for δ ∈ (δn, δb), F
′
δ(α(δ)) < −1.

Remark 5. As the map Fδ depends on the placement of Pδ then locally Fδ also

corresponds to this placement. This variability in the placement of Pδ is one of the

main obstacles in verifying whether Fδ has an eventual negative Schwarzian derivative.

However, at a global level the nearly linear part of Fδ on I− and the fact that orbits
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leave this interval in a finite number of iterations suggests that if off I− the function

has a negative Schwarzian derivative then for β small enough Fδ will have an eventual

negative Schwarzian derivative (see (68) for the linear case).

Our aim in this section is to give sufficient conditions under which this one pa-

rameter family of functions has an acip for a positive Lebesgue measure set of its

parameters. Also under what conditions these functions exhibit a mixing property

with respect to these measures. These conditions will ultimately include the assump-

tion that Fδ has an eventual negative Schwarzian derivative in order to illustrate the

usefulness of this concept.

To simplify notation denote F n
δ (c(δ)) = cn(δ), Fδ restricted to its critical interval

by F̃δ, and let O = {(δ, x) : δ ∈ (δ0, δb), x ∈ (0, c1(δ))}. In what follows we will often

consider Fδ(x) = F (δ, x) to be a function of two variables on O. It will be the set O

on which we will focus our attention. The reason being is that for parameter values

δ ≤ δ0 the map Fδ has a global attracting fixed point and for parameters larger than

δb the map Fδ is not continuous so the previous theory does not apply. Specifically,

we make the observation that so long as δ ∈ (δ0, δb) then c1(δ) < d(δ) implying the

critical interval Iδ of Fδ is either

(i) [c(δ), c1(δ)] if c(δ) ≤ c2(δ) in which case F̃δ is a diffeomorphism or

(ii) [c2(δ), c1(δ)] if c(δ) > c2(δ) and F̃δ is unimodal.

The following lemma is meant to establish basic continuity properties of the family

of functions Fδ under variation of parameters.

Lemma 4.6.1. Suppose Fδ(x) = F (δ, x) is C2 on O and there exist a closed interval

J with endpoints δ1, δ2 ∈ (δ0, δb) such that for all δ ∈ J , c3(δ) < α(δ). If there is

also an m ∈ N where cm(δ1) = c1(δ1) and cm(δ2) = α(δ2) then on an infinite set of

parameters ∆ ⊂ J the orbit of c(δ) contains α(δ).

Proof. If δ ∈ J then c(δ) > c2(δ) implying Iδ = [c2(δ), c1(δ)] on which Fδ is unimodal.

Also every point in (α(δ), c1(δ)) has exactly two preimages; one preimage in l(δ) =
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(c2(δ), c(δ)) and the other in r(δ) = (c(δ), α(δ)). As every point in l(δ) and r(δ) has a

unique preimage in s(δ) = (α(δ), c1(δ)) it is possible to specify a preimage of α(δ) by

some finite sequence made up of l, r, and s which stand for whether the fixed point is

reached by tracing its forward orbit through these sets in this manner. We say a finite

sequence of l, r, and s is admissible if and only if an s separates every l or r, s does

not follow itself, and the sequence ends with an l. This corresponds to the structure

above and uniquely defines a preimage of α(δ). Note we need not assign a symbol to

c(δ), c1(δ), c2(δ) ∈ Iδ since no preimage of α(δ) with an admissible sequence has an

orbit containing these points for δ ∈ J .

Under the assumption that Fδ(x) = F (δ, x) is C2 the Implicit Function Theorem

applied on the open set {(δ, x) : δ ∈ (δ0, δb), x ∈ (0, α(δ))} guarantees that c(δ) is a

C1 function of δ ∈ (δ0, δb) as the critical point of Fδ is to leading order quadratic. As

this implies O is open, similar calculations imply the same is true for α(δ), and cm(δ)

for all m ≥ 1. Also important is that this is true for any preimage of α(δ) having an

admissible sequence. This follows as well from the Implicit Function Theorem using

the fact that the orbit of these particular preimages cannot contain the critical point.

As there are infinitely many sequences which can end in either l, r, s then infinitely

many admissible preimages of the fixed point α(δ) are in each of l(δ), r(δ), and s(δ)

and each vary continuously in δ. As the first letter in the sequence of a preimage

determines whether it is in l(δ), r(δ), or s(δ) it must stay in that interval for all

δ ∈ J .

Continuity, specifically of the admissible preimages in s(δ), and the assumption

that cm(δ1) = c1(δ1) and cm(δ2) = α(δ2) then imply the existence of the infinite set

∆ ⊆ [δ1, δ2] on which the orbit of the critical point c(δ) contains the fixed point

α(δ).

Theorem 4.6.2. Suppose Fδ(x) = F (δ, x) is C0 on O and assume that there are

δ1, δ2 ∈ (δ0, δb) and m ≥ 3 such that
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(i) c(δ1) ≤ cm(δ1),

(ii) cm(δ2) ≤ c(δ2) and c3(δ2), c
m+1(δ2) < α(δ2).

Then there is an infinite set ∆ ⊂ [δ1, δ2] on which the orbit of c(δ) contains α(δ).

Furthermore, if for some δ ∈ ∆

(iii) F̃δ has an eventual negative Schwarzian derivative of order k and

(iv) δ > δn then the following is true:

(A) F̃δ has an acip.

(B) If F̃δ is C3 in x then some iterate of F̃δ is mixing with exponential decay of

correlations.

Proof. As in the proof of lemma 4.6.1 the assumption that Fδ is C2 implies α(δ), c(δ),

and ci(δ) for i ≥ 1 all vary continuously in the parameter. Without loss in generality

if δ1 < δ2 since both c(δ1) ≤ cm(δ1) and cm(δ2) ≤ c(δ2) then there is a largest

δ∗ ∈ [δ1, δ2] such that c(δ∗) = cm(δ∗). As this implies c1(δ∗) = cm+1(δ∗) then δ∗ 6= δ2.

Note that if at some β ∈ [δ∗, δ2], c
3(β) ≥ α(β) the assumption c3(δ2) < α(δ2) implies

there is a γ ∈ [β, δ2] at which c3(γ) = α(γ) in turn implying cm(γ) = α(γ) > c(γ)

contradicting the maximality of δ∗. Lemma 4.6.1 therefore guarantees the existence

of the set ∆ ⊂ [δ∗, δ2] as cm+1(δ∗) = c1(δ∗) and cm+1(δ2) < α(δ2).

If δ ∈ ∆ and condition (iv) holds then there is C > 0 such that Dn(c(δ)) =

C|F̃ ′
δ(α(δ))|n for n large enough where |F̃ ′

δ(α(δ))| > 1. Hence, inequality (66) of

theorem 4.2.7 holds. This together with condition (iii) implies (A) via theorem 4.2.7.

For (B) if F̃δ is C3 in x then from the calculation of Dn(c(δ)) above theorem 4.2.6

implies some iterate F̃δ is mixing with exponential decay of correlations.

Corollary 9. For δ ∈ (δ0, δb) let hδ(x) = (bδ − aδ)x+ aδ where [aδ, bδ] is the critical

interval of Fδ. Also denote by Hδ : [0, 1] → [0, 1] the family of functions F̃δ conjugated

by hδ. If F̃δ satisfies conditions (i)-(iv) of theorem 4.6.2, is C3, and for some δ ∈ ∆,

Hk
δ has property (PT), then on a positive set of parameters Fδ has an acip.
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Proof. Note that the one parameter family of functions Hδ = h−1
δ ◦ Fδ ◦ hδ when

restricted to the interval [0, 1] is a linearly scaled version of the family Fδ restricted to

their critical intervals. It follows by a simple calculation that S(Hk
δ )(x) = S(F k

δ )(hδ(x))

or the property of having an eventual negative Schwarzian derivative is preserved un-

der this change of coordinates. Furthermore, Hk
δ has a finite number of nonflat critical

points and as the orbit of c(δ) contains α(δ) corollary 8 implies that Hk
δ ∈ M. It

follows directly from [49] that if Hk
δ satisfies property (PT) then on a positive set of

parameters Hδ has an acip which implies the same for Fδ.

Numerically, as δ → δb the number of iterates the orbit of a point can stay on

Iδ

⋂
I− increases from 1 near δ0 to around 5 near δb (see Fig.3 in [37]). From this

point of view conditions (i) and (ii) of the previous theorem are a natural way to

ensure this family of maps have a parameter set ∆ mentioned above. More than this,

however, it allows for some latitude in selecting how close ∆ is to δb which is useful

since for parameters near δb, the map Fδ is more likely to have a repelling fixed point.

Again, because of the variability in the placement of Pδ it would take some work to

verify whether or not for a particular placement condition (iii) holds.

It should be noted that functions with the property that their critical points are

mapped to repelling periodic orbits, often called Misiurewicz maps, are very rare

both in a topological and metric sense [44]. From this the previous theorem seems to

imply that mixing is a rare event for Fδ. However, the conditions of theorem 4.2.6 are

generically satisfied on a larger set of parameters than just ∆. The problem which is

generally encountered is in showing for a particular parameter value or set of values

that the derivatives along the orbits of the critical points have the requisite growth.

However, one reason to expect that (B) holds for a much larger set of parameters

than just ∆ is the very large negative slope of Fδ near d(δ), for δ ≈ δb.
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4.7 Concluding Remarks

The goal of this chapter was first and foremost to study a general class of functions

that behave in significant ways like those with a negative Schwarzian derivative. It is

surprising that this class of functions with an eventual negative Schwarzian derivative

has not been previously considered as it naturally combines the nondynamic condition

of having a negative Schwarzian derivative with the dynamics of the function. One

result is that this enlarges the class of known functions with local and global properties

similar to those of a function with a negative Schwarzian derivative. Moreover, as

having an eventual negative Schwarzian derivative is not an asymptotic property,

verification of this can often be done by direct computation. This last property makes

functions with an eventual negative Schwarzian derivative a potentially useful tool in

dealing with applications. Recall, that the introduction of this class was motivated

by the maps arising in some models in neuroscience.
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CHAPTER V

FUTURE WORK

In the preceding chapters we have considered principally two types of results; those

related to isospectral graph reductions and those related to functions with an eventual

negative Schwarzian derivative. For the latter it is possible that many other results

known to hold for functions with a negative Schwarzian derivative could be extended

to this larger class of functions. Following the pattern established in Chapter IV,

the most natural way of establishing such results would likely involve proving that a

certain property of fk can in some way be pulled back to the original function f if

f ∈ Sk-multimodal. We note that this strategy would almost certainly lead to further

resultsin this direction.

However, the research that seems the most promising involves exploring appli-

cations and extentions of our theory developed in chapters I, II, and III. Natural

extensions of isospectral transformations include transformations that preserve spe-

cific subsets of a graph’s adjacency matrix as opposed to its entire spectrum. An

important example currently being investigated are so called isoradial graph transfor-

mations that modify a graph while preserving its spectral radius (a subset of which

are discussed in section 3.3). Such transformations have potential to lead to more

general mechanisms than those considered in chapter III for investigating the stabil-

ity of dynamical networks. More general graph transforms that preserve or modify

subsets of a graphs spectrum would moreover have implications for instance in the

study of finite Markov chains as the spectrum of such chains influences important

aspects of such processes.

In terms of applications of isospectral graph reductions one of the most natural is to
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systematically investigate the statistics of real as well as theoretic graphs modulo some

structure. For instance, isospectral graph reductions could be used to investigate the

statistical properties of scale-free networks reduced over their hubs as is demonstrated

in figure 3.

Other current research involves extending the work done in chapter III to con-

tinuous time dynamical networks i.e. systems of differential equation. This would

again involves determining under what conditions such continuous time systems have

a unique global attractor which includes investigating systems of delayed differential

equations. However, we note that the major difference in investigating such systems

is that time delays in this setting corrrespond to path of infinite length. Hence, a our

theory would need to be extended to a framework involving the spectrum of infinite

graphs.

Moreover, as network synchronization can be interpreted as a globally attracting

fixed point of an associated dynamical network it is possible to investigate this type of

dynamic behavior via the theory developed in this dissertation. However, the graph

theoretic nature of such investigations is different than in the networks studied here

requiring some new theory.

Additionally, one of the main objectives in future work is to use isospectral graph

transformations and the transforms they induce on dynamical networks to investigate

how the structural evolution of a network influences its dynamics. This is natural

for two reasons. The first is that isospectral transformations and those they induce

evolve the structure of a dynamical network. Second, such transformations preserve

characteristics associated with the dynamical behavior of the network much as real

networks to large degree preserve their functionality as their structure evolves. In

this way, isospectral transformations may provide a useful tool in understanding the

structural evolution of networks.

Beyond this, it is possible to investigate open dynamical systems or systems in
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which orbits can escape through holes using techniques developed for network analy-

sis. This is possible since any open system with a Markovian hole can be considered a

dynamical network in which orbits escape through particular nodes [2]. Specifically,

future work here would involve using techniques analogous to the dynamical network

expansions of chapter III to estimate the survival properties in such open dynamical

systems.

Lastly, many computational questions related to isospectral graph reductions have

yet to be resolved. For example, how to optimally select structural sets when esti-

mating the spectra of a matrix by Gershgorin, Brauer, and Brualdi-type methods or

minimizing the difference between the spectrum of a graph and its possible reductions.
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