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I. BACKGROUND 

Numerous evaluations of the acoustic field radiating from a 
baffled transducer have appeared in the published literature. An 
important feature is that these theories are applicable for a 
wide range of parameters. Approximations, such as those describ-
ing an axisymmetric sound beam in the far field (Fraunhofer zone) 
can substantially reduce computational cost, but they are not 
necessary. Linear theory is valid when the source level is 
sufficiently low. Even then, diffraction effects in the near 
field, which lead to localized cancellations and reinforcements, 
complicate the task of correlating near field measurements to far 
field propagation properties. 

The situation becomes more complicated when one tries to 
increase the propagation range by raising the source level. It 
is logical to try to overcome effects such as dissipation and 
scattering by generating higher level signals. Such attempts 
inevitably lead to a greater role for nonlinear effects. One of 
the effects of nonlinearity is to divert energy from the fun-
damental signal to higher harmonics, which is equivalent to 
lowering the efficiency of the transducer. In the face of these 
concurrent effects it is apparent that developing a unified 
theory for nonlinear effects in sound beams is a challenging 
matter. However, such a theory is necessary if understanding of 
the distortion phenomena is to be enhanced. A prime example of 
the prior lack of insight is the observed differences between the 
distortion of the compression and rarefaction phases of a signal, 
which had no analog in simpler types of acoustic waves. 

A variety of approaches have been employed to study the 
effects of nonlinearity in this system. One approach has relied 
on a conventional perturbation solution of an approximate non-
linear wave equation. Such an analysis seems to give very good 
results near the transducer face. However, it quickly breaks 
down with increasing range due to assumptions that are made in 
the perturbation steps. 

An investigation of properties in the far field was 
developed based on an approximation as a quasi-spherical wave. 
Such a formulation assumes that the wave arrives at the transi-
tion to the far field (e.g. the Rayleigh distance) without 
substantial prior distortion. Hence, the spherical wave descrip-
tion is inherently limited to cases where the transducer 
excitation is comparitively low level. This type of analysis 
also leads to certain anomalies, such as the fact that the level 
of distortion is dependent on the choice for the spherical tran-
sition distance, which may be arbitrarily chosen beyond the 
Rayleigh distance. 

Another approach that has been widely employed in the 
Russian literature is founded on a version of Burgers' equation 
that has been modified to account for spreading and diffraction. 
This nonlinear partial differential equation has been solved 
numerically for several types of boundary motion. The primary 
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limitation of this approach are the approximations on which the 
model equation are based, and computational difficulties stemming 
from rapid transition due to diffraction. An alternative treat-
ment of this nonlinear parabolic equation based on Fourier series 
expansions has reduced the computational problems, but quaestions 
regarding the adequacy of the model equation still remain. 

II. RESEARCH TECHNIQUE 

The primary goal of this project was to develop an analyti-
cal description of transducer radiation in which finite amplitude 
effects, diffraction, and spherical spreading are treated consis-
tently, without limitation to a speciific spatial domain. The 
technique employed singular perturbation theory in conjunction 
with asymptotic analysis. 

The general approach uses the King integral in linear 
theory, which is a Fourier-Bessel integral transform, to develop 
the second order source terms that generate nonlinearities in the 
response. There are two kinds of nonlinear effects that arise at 
the second order. Some produce terms that remain bounded as the 
signal propagates. (One such effect is associated with the fact 
that the input from the transducer originates from a moving 
boundary, rather than the much simpler description, z = 0.) The 
smallness of the acoustic Mach number leads to the conclusion 
that these fixed magnitude effects cannot account for measured 

-levels of distortion. The other group of nonlinear effects arise 
from resonance-like phenomena. These terms lead to distortion 
that grows with increasing distance. Shocks ultimately form from 
this effect, unless dissipation is adequate to overcome the 
nonlinear distortion process. It is this cumulative growth 
effect that needs to be evaluated. 

The growth effects in the second order terms are evaluated 
by using asymptotic integration techniques to identify the por-
tion of the second order terms that grow most rapidly with 
increasing range. The aforementioned breakdown of conventional 
(i.e. regular) perturbation solutions is avoided by introducing 
coordinate transformations that essentially are based on recogni-
tion that cumulative growth is a singularity. 

This approach was the basis for a variety of studies. Some 
were devoted to developing efficient numerical algorithms for 
quantitative evaluation. Others increased the generality of the 
transducer vibration, including linkage with the effects of 
elastic behavior. Another group of studies endeavored to obtain 
insight into the nature of physical processes. These efforts are 
surveyed below. 

3 



III. RESEARCH ACHIEVEMENTS 

A. Axisymmetric Monochromatic Excitation  

The analysis described in the previous section involved a 
large effort to place some of the steps on a firm mathematical 
foundation. This effort has also clarified the physical under-
standing of the manner in which a continuous spectrum of modes 
interact to create distortion. The initial presentation [2] was 
improved substantially in the published version [6, 7]. Those 
works compared the analytical results to series of independent 
measurements. The predictions for amplitude levels of the har-
monics were well within the identifiable experimental error. 
Furthermore, a comparison of waveforms showed that the analysis 
does describe the different shape of the waveform in the compres-
sion and arefaction phases. The comparison also confirmed a 
change in this asymmetry associated with the transition from the 
near field to the far field. No prior analysis had anticipated 
this phenomenon. 

The original version of the computer program for this model 
was quite inefficient. It required a relatively large amount of 
computer memory and long execution times. Of even greater con-
cern was the dependence of the analysis on a hypothesis regarding 
the nature of the distortion process far from the axis in com-
parison to very close to the axis. Both matters were effectively 
treated by a recently completed Ph. D. thesis [12, 14]. That work 
developed independent solutions in each region by using different 
asymptotic approximations. The signal in the paraxial region was 
found to behave like a spectrum of quasi-planar waves, whereas 
the off-axis signal was found to consist of spectra of inward and 
outward propagating conical waves. The individual responses were 
then matched to obtain uniformly accurate expressions. 
Significantly, the results agreed with the earlier mathematical 
forms. A key benefit of the analysis was that the new perspec-
tive led to a Fourier series representation that decreased 
computational time by as much as a factor of one hundred. 

This improved computational power was exploited to test the 
theoretical predictions against several prior series of 
measurements. The agreement was generally very close, with one 
exception. Experiments by Gould in the late 1960's investigated 
the signal very close to the transducer face at a high reduced 
frequency, ka = 114. The measured second harmonic distribution 
was quite different from the theory. This discrepancy is now 
under investigation. Current indications are that the dis-
crepancies between theory and measurement correspond to the 
second order terms that are discarded in the analysis because 
they have minor influence far from the transducer. 

The ease with which computations could be performed made it 
possible to generalize the nature of the excitation. A study of 
particular interest considered the case where the transducer is 
actually a membrane that is subjected to steady-state harmonic 
excitation [11]. The response of the membrane and the surface 
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pressure are fully coupled in this situation. The analysis of 
the finite amplitude sound beam was combined with a vibration 
analysis of the membrane to determine all aspects of the 
response. It was shown that the vibration analysis could be 
safely performed without recourse to nonlinear theories for the 
acoustic signal, but that the acoustic signal required knowledge 
of the effects of nonlinear elasticity when the excitation was at 
a system resonance. 

B. Nonsymmetric Monochromatic Excitation 

The recent analysis of axisymmetric waves [12] also con-
sidered a situation in which the transducer vibration consists of 
the superposition of an axisymmetric component and an azimuthally 
travelling nonsymmetric part. The latter corresponds to a spa-
tially phased rocking motion that resembles the wobbling of a 
rolling coin as it falls to the ground. The analysis was much 
like that for the axisymmetric case. One benefit of the greater 
generality was a clarification in the task of matching the off-
axis and paraxial signals. This study is apparently the first to 
address nonsymmetric finite amplitude sound beams. Indeed, 
nonsymmetric situations have not been extensively explored in the 
linear case. It was shown that because azimuth dependent signals 
must vanish along the beam axis, the interaction with axisym-
metric effects cannot affect the signal on-axis. 

C. Dual Frequency Axisymmetric Excitation  

A major generalization was achieved in analyses of the 
propagation of a signal generated by axisymmetric excitation at 
two arbitrary frequencies. In the limit as the difference be-
tween these primary frequencies decreases, one obtains a 
parametric array. The analysis followed the line of investiga-
tion originally developed for the single frequency case. The 
initial study of harmonic formation [5] identified the mechanism 
by which the primary signals interact, but it was limited to very 
short ranges. The innovative aspects of the subsequent research 
[13, 15] was in the identification of the approrpriate set of 
coordinate transformations. It is such properties that represent 
the actual interaction effects. It was shown that the distortion 
of each primary signal is dependent in equal part on the signal 
in both primaries. 

The analytical results were prohibitive for extensive 
numerical evaluation, particularly at long ranges. For this 
reason, an interface with a spherical propagation model was 
developed. The same type of interface had been explored earlier 
for monochromatic waves [4], but had been abandoned when the 
Fourier series form of that signal was identified. The remark-
able aspect of the dual frequency study was that it showed far 
better agreement than earlier theories with a variety of prior 
experiments on parametric arrays. It even reproduced features in 

5 



the difference frequency signal that had earlier seemed to be 
anomolous. 

D. Validation  

An initial series of experiments was performed by Dr. Mark 
Moffett in July 1982 at the NUSC facility at Newport, Rhode 
Island in order to obtain data for a comparison with the 
theoretical model [1]. Agreement between theory and experiment 
for amplitudes of the harmonics was reasonably good. The 
hydrophones employed for measurement showed substantial ir-
regularity in their frequency response and no phase calibration 
was performed. The discrepancies between theory and experiment 
were shown to be less than the uncertainty in the response of the 
transducer. 

In September 1983, Moffett endeavored to improve his measure 
ments by resurrecting the special purpose transducers that were 
utilized by Browning and Mellen. The data was sent to Georgia 
Tech in its original digital form in order to provide a complete 
data base for comparison. There was a great deal of difficulty 
in reading the tapes due to limitations of the available 
equipment. Eventually, the data were displayed as waveforms and 
analyzed for frequency content. 

As the data was being analyzed, it became apparent that the 
receiving hydrophone exhibited extremely anamolous behavior at 
high sound pressure levels, such as third harmonic levels that 
execeeded the second, and fourth harmonics that exceeded the 
third. The causes of this behavior that have not yet been 
identified. However, an extremely important verification was 
obtained at a far field location. The signal there had decayed 
to a level that seemed to be within the tolerance of the 
receiver, even though the source was being driven to a high 
amplitude--it was found that the measured and predicted signals 
coincided at that location [8]. 

E. Other Viewpoints  

A key aspect of the King integral for linear radiation is 
that it treats the signal as a superposition of a continuous 
spectrum of modes. The physical significance of the nonlinear 
interaction of these modes is obscured by the lack of a discrete 
mode that could be traced through the anaalysis. The continuous 
spectrum of modes in the King integral arises because the baffled 
system is essentially a circular wave guide of infinite diameter. 

A finite diameter waveguide has a discrete spectrum of 
modes. By exciting only one such mode in a linear sense, it 
would be possible to follow closely the manner in which resonant 
interactions take place nonlinearly. Analyses of this problem in 
circular [3] and two-dimensional waveguides [9, 10] followed 
steps that were suggested by the analysis of sound beams. In the 
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circular geometry the modes excited by the nonlinearities were 
similar to the directly excited one. As a result, all of the 
harmonics were in phase. This is manifested by identical types 
of distrortion for the compression and rarefaction phases of a 
signal. 

The two-dimensional study disclosed the existence of an 
internal resonance that had not been identified in earlier 
investigations. Specifically, it was found that the transverse 
variation nonlinearly excites the planar mode, as well as second 
and higher spatial harmonics. At high frequencies, the phase 
speeds of the various modes coalesce, which results in nonlinear 
dispersive interaction between the modes. Significantly, the 
signal in this case was shown to be display waveform distortion 
of the type observed in sound beams. This verifies the nonlinear 
King integral approach to sound beams, which treats the signal as 
the dispersive interaction of neighboring modes in an infinite 
waveguide. 

F. Parameter Studies  

The main computer program for sound beams was modified to 
provide predictive capabilities for an assortment of transducer 
vibration patterns f(R). Propagation curves showing the depend-
ence of the amplitudes and phase angles in the region from the 
transducer to the far field have been carried out [8, 11, 14] for 
a piston transducer, in which the particle velocity across the 
piston face is uniform. Results for a hypothetical transducer, 
in which the pressure is uniform across the face, were also 
obtained, because that had been the basis for studies using the 
modified Burgers' equation. Another configuration receiving 
consideration was the elastic membrane, in which case the pattern 
for the transducer vibration is a Bessel function. 

The effect of diffraction decreases with the progression 
from the piston to the membrane configuration because spatial 
transitions are less severe. It was found that, although the 
fundamental frequency signal inside the Rayleigh length is sub-
stantially different between the cases of uniform particle 
velocity and pressure, the second and higher harmonics were quite 
close. In the membrane case, the rapid spatial variations in the 
fundamental were substantially reduced, and the higher harmonics 
varied quite smoothly. This could prove to be useful for ap-
plications requiring near field measurements. 

A noteworthy aspect of this study is the fact that there had 
been no prior extensive evaluations of phase shifts for the 
higher harmonics in the near field and the transition region. 
The evaluations revealed an interesting trend for the phase 
angles. The higher harmonics are close in phase to the fundamen-
tal near the source. As the wave propagates, each harmonic tends 
to lag further behind its predecessor, until there is a 90% phase 
difference in the far field. This is significant because a true 
spherical wave also undergoes a 90% phase shift in the transition 



from the near field to the far field. The implication of this 
observation is that asymmetrical distortion results from spheri-
cal transitions for higher harmonics which are delayed by the 
higher frequencies. 
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V4. Finite-amplitude waveforms produced by a circular piston projector. 
Mark B. Moffett (Naval Underwater Systems Center, New London, CT 
06320) and Jerry H. Ginsberg (Georgia Institute of Technology, Atlanta, 
GA 30332) 

Measurements were made of the waveforms produced at six different 
locations on the axis of a 0.51-m-diam projector driven at 60 kHz in the 
NUSC/Newport large acoustic tank facility. The locations were at the 
last three pressure maxima in the nearfield, a quasifarfield point at 5 m, 
and two farfield positions at 10 m and 15 rn. The projector was driven at 
several levels, and yielded waveforms ranging from sinusoidal at the low-
est levels and shortest ranges to shock formation at the highest levels and 
longer ranges. Two different hydrophones were used, but neither had a 
flat enough response to avoid ringing when shocks were present. The 
waveforms exhibit the asymmetry (sharp pressure peaks and rounded 
pressure troughs) previously observed by Browning and Mellen [J. 
Acoust. Soc. 44, 644-646 (1968)] and predicted by recent work of Gins-
berg which accounts for diffraction as well as nonlinear propagation ef-
fects. [Work supported by ONR Code 425 UA.] 
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I would like to describe some work Mark Moffett and I have 

been doing with finite-amplitude waveforms in cases where 

diffraction occurs. No doubt you are all aware of what happens 

to one-dimensional finite amplitude waves, such as plane waves or 

spherically-spreading waves. In such cases, the pressure peaks 

travel slightly faster than the troughs, and it is an easy matter 

to predict the waveform via weak-shock theory. For example, a 

waveform which is initially sinusoidal distorts in an antisywmetric 

way and eventually can become a sawtooth shape because the peaks 

move as far ahead as the troughs lag behind. A much more difficult 

problem is the prediction of the waveforms resulting when diffraction 

is present, as in the nearfield of a piston projector. The 

propagation is not one-dimensional. It is no longer a simple matter 

to follow a pressure signal as it propagates from one point in space 

to another, because the diffracted field at any point results from 

contributions from several source regions. 

Diffracted fields are normally calculated via linear theory, 

and so nonlinear effects like distortion can't be handled readily. 

We have been working at Georgia Tech on a new approach which can 

account for diffraction and nonlinear distortion simultaneously, 

under an ONR contract. We needed some experimental data for 

comparison with the theory for the case of a circular piston 

projector. Mark Moffett was asked to see if he could provide some 

data. I will show you some of those results shortly. 



<< Viewgraph 1 - Browning and Mellen Waveforms >> 

First, I'd like to show the kind of thing that happens when 

diffraction and distortion operate together. These pictures are 

from a 1962 letter to the editor by Browning and Mellen. They used 

a tiny, 8/10ths-of-a-millimeter-diameter microprobe as a hydrophone 

and looked at the waveforms on the axis of a 40-centimeter square 

projector driven at 150 kHz. The top left picture shows the 

waveforms measured at three different levels at the longest range, 

which was 8 meters. Then the next two photos down the left hand 

side and the three down the right hand side show the progressive 

distortion of the pressure waveform as the range was increased from 

1 meter to 5 meters. 

Positive pressure is up in these pictures, and so you can see 

that the pressure peaks are sharp while the troughts become rounded. 

In other words, we are not evolving toward the sawtooth shape which 

would be expected for plane or spherical waves. Diffraction and 

geometric dispersion shift the phase of the harmonics relative to 

the fundamental. 



Fn. 7. Waveform at 3 m (Po ■0.3 bar). 

sr tot4- 1 
LETTERS TO THE EDITOR 

Flo. 4. Pressure waveform at a as as a twitch= of P.. Po ••1 bar max. 

Pm. 3. Waveform at 1 m (Po ■ 0.5 bar). 

FIG. IL. Waveform at 2 m (Pa 	bar). 

FIG. 8. Waveform at 4 m (Pa . 03.5 bar). 

FIG. 1. Waveform at 5 m (Po -.0.5 bar). 

so as to minimize wall reflections. For the projector dimensions 
and wavelength of this experiment, the Freanel zone extends to 
about 4 m but the Fraunhofer zone spreading is quite insignificant 
over the remaining tank length.' The hydrophone is then set on 
the projector axis, and waveform observations are made at 
appropriate distances. 

Figure 3 gives a comparison of two waveforms; the more 
sinusoidal one was measured at 2 m and the more distorted, at 
8 m. The initial peak pressure Po  measured at I m was appresi-
mately I bar. The oscillations on the trailing side of the 8-m trace 
are art:Icts caused by "shock" excitation of hydrophone reso-
nances that fall above the useful frequency range. 

Josnell of ties Acoustic:0 Society of America 	645 



« Viewgraph 2 - Block Diagram >> 

Unfortunately, we couldn't use the Browning and Mellen data 

for comparison with the theory, because the theory hasn't been 

worked out yet for a square projector, which is a three-dimensional 

problem. We therefore decided to repeat the experiment using a 

circular projector. The projector was a 20-inch-diameter array of 

60-kHz tonepiltz elements made by Raytheon Sub Signal Division. 

The projector was driven with 60-kHz pulses which were amplified 

with one of Bill Konrad's 20-kilowatt drivers. The hydrophone 

output was captured with a Biomation transient recorder, which is 

actually a digital machine containing an A-to-D converter. After 

capturing and storing the waveform, it was plotted on an X-Y recorder 

The experiment was done at NUSC/s large tank facility at Newport, 

Rhode Island. 

It would have been nice if we could have used one of the 

Browning and Mellen microprobe hydrophones, but we would have had 

to operate the projector just below the surface. Also, we weren't 

sure any of the probes were still working. We tried three different 

hydrophones, hoping that one of them would have a flat enough respons 

to accurately reproduce the waveform. The first was an LC-5 hydroph 

made by Celesco, or what used to be Atlantic Research. The LC-5 is 

1/16th-inch cylinder. It is just about the smallest commercially-

available hydrophone there is. The second was lent to us by Gerry 

Harris of the Bureau of Radiological Health. It consisted of a 

polymer membrane stretched over a metal hoop. This hydrophone 

turned out not to be useful below a megahertz, apparently, because 

of resonances involving the supporting hoop. 



X - 
recorder 



<< Viewgraph 3 - Raytheon Hydrophone Sensitivity >> 

The third hydrophone we had was also a polymer-type used in 

medical ultrasonics, but in this case the polymer is backed with 

a silicone rubber absorber. This hydrophone was made by the 

Raytheon Research Division and lent to us by Roger Tancrell and 

Dave Wilson. This is a plot of its sensitivity and you can see 

that it's not bad, but it's not really flat either. Nevertheless, 

the Raytheon hydrophone turned out to be the best of the three. 
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<< Viewgraph 4 - Waveforms at 2.63 m>> 

Here are some typical results. They are waveforms on the 

projector axis at 5 meters. The waveforms correspond to 

approximately 10-dB increments in drive. The receiving amplifier 

was also changed in 10-dB steps to make the signal levels 

comparable. Positive pressure is up in these plots. 

You can see that the waveform goes from nearly sinusoidal 

at the lowest level (shown in black) to a form with sharp peaks 

and rounded troughs (shown in red). 

You can also see that the zero crossings on the ascending 

part of the wave shifts back as the level increases. In contrast, 

zero crossings are unchanged in one-dimensional waves. The rise 

in the peak pressure which accompanies the narrowing of the 

compression phase is consistent with conservation of momentum, 

as is the broader and shallower form of the rarefaction phase. 





<< Viewgraph 5 - Waveforms At All Ranges » 

This shows how the waveform evolves with increasing range 

from half a meter to a little over 15 meters from the projector. 

All measurements were made on the projector axis. The upper 

three waveforms were taken at axial maxima. (Probing was done 

to make sure that they were maxima). The 5-meter point is 

beyond the last axial maximum at 2.63 meters, but is not yet 

in the true farfield. The 10 and 15 meter distances do qualify 

as genuine farfield measurements. 

These plots are for a source level of approximately 243 dB 

with respect to one micropascal-meter. You can again see the 

sharpening of the peaks and the rounding of the troughs as the 

propagation distance is increased. Each plot begins at an 

instant where the pressure is zero. You can see that the first 

zero crossing moves back in retarded time as the range increases. 

I should explain that the zero of the retarded time was determined 

by referring to the signal at a very low drive level, where it was 

sinusoidal. 

In order to be sure that the nonlinear distortion we measured 

was not due to hydrophone nonlinearity, we determined the second 

order sentitivity in a subsequent measurement. It was low enough 

that we didn't have to worry about it. Also, we can see that the 

waveform close to the projector is nearly sinusoidal. Since the 

highest levels were measured at short ranges, the short-range 

waveforms would be more distorted than those farther away if the 

hydrophone were behaving in a nonlinear way. 
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<< Viewgraph 6 - Raytheon and LC - 5 Waveforms >> 

Unfortunately, since we did not have a hydrophone with a flat 

response from 60 kHz to 600 kHz or so, we did not know that the 

hydrophone did not introduce some artifacts into the signal. Here 

is a comparison of the Raytheon hydrophone (the solid curve) and 

the LC-5 (the dotted curve) at the highest source level and longest 

range. 

The sharp rise corresponds to the formation of a shock. There 

is some ringing just after the shocked portion of the LC-5, so the 

Raytheon seems to have done a better job. However, the analytical 

results indicate that the secondary lump on the Raytheon hydrophone 

waveform is a result of the second harmonic (120 kHz) emphasis in 

the hydrophone response. 

In computing results of the analytical model, we found that 

the computational time to evaluate the diffraction integral 

became excessive at the larger distances. Also we encountered 

convergence difficulties at the larger distances. Accordingly, 

we focused on the predictions for the smaller ranges. 
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« Viewgraph 7-Computed Waveform >> 

Here is a comparison of the computed waveform (shown in 

black) and the measured one (shown in red) at 2.63 meters. The 

irregularities in the analytical result arise from nonconvergence, 

but the results are reliable at most time 	instants,I should 

mention that this is pretty much the worst case. The other 

computed waveforms were much more regular. 

When we compare this result to the measured waveform we note 

some significant discrepancies. However, we must also account 

for the hydrophone response. We did not have a phase calibration 

for the Raytheon. Instead, we wrote a microcomputer program that 

describes the analytical result in terms of its frequency response. 
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<< Viewgraph 8 - Frequency Response >> 

A Fourier analysis of the computed waveform was used to 

reconstruct the signal from the lowest five harmonics. This is 

the green curve. Using the known amplitude sensitivity and 

modifying the relative phases of the harmonics yielded the 

result shown in black. For comparison, the experimental result 

is shown in red. The agreement with the measured signal is remarkabl 

good. 

Similar analyses for the other cases indicated that the 

theory over-predicts the distortion very close to the source, 

but it seems to be quite accurate beyond one transducer 

diameter. 
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FINITE AMPLITUDE ACOUSTIC WAVE PROPAGATION IN A CYLINDRICAL WAVEGUIDE 

GINSBERG, Jerry H. and MIAO, H. C. 

Georgia Institute of Technology 
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USA 

Introduction 

A signal propagating through a hard-walled circular duct can undergo 
significant nonlinear distortion, even if the acoustic Mach number is a 
small fraction. Keller and Millman [1] and Nayfeh [2] investigated this 
problem under the assumption that other duct modes are not resonantly 

--excited by driven modes. The present work discloses that there is a non-
linear mechanism in which cumulative distortion is generated. The method 
for analyzing this phenomenon is a direct perturbation scheme using 
coordinate straining transformations. Much of the development draws on 
techniques used by the first author to analyze cylindrically propagating 
waves [3,4]. For simplicity, only axisymmetric duct modes are considered 
here. 

Analytical Formulation 

Let (z/k, R/k) denote dimensional axial and transverse coordinates, 
respectively, for the cylindrical duct, and let dimensional time be t/Q, 
where Q is the frequency of an excitation at z = 0 and k = Q/c , with c0  0 
being the speed of sound in the reference state. 

The nonlinear wave equation governing the potential function in 
this case is 

20 	 D(1) 2 
V2 — 	= 2 	— 1) 7 	(1) + 7  (V • V(1)) + 0 (q) 3 ) 	(1) 

Dt 
where (3

0 
 is the coefficient of nonlinearity (= 1 + B/2A for a liquid). For 

a hard-walled duct the potential function must satisfy 

= c vR 	0 DR 	
= 0 	 (2) 

 
R=ka 	R=ka 

where a is the dimensional radius of the duct. The harmonic excitation 
considered here gives rise to only one duct mode in a linearized analysis, 
which is the case when 

D(1) vzi 	= c0 
	cc

0  J0 
 (uR) cos t. J 0  '(uka) = 0 , 

z=0 	0 az! z=0 
(3) 
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where J denotes the Bessel function of the first kind of order zero. Note 
that pka

0  
 > 0 can be any of the zeroes of J 0 1 . 

The acoustic Mach number e is much less than unity. It is used as 
the perturbation parameter for the potential function. 

= ECbl 	
2 

Cb 2 	— • 
	 (4) 

The leading term in this expansion is 

(15
1 

= -
.1 
a sin(t - az) J0 

 (pR) 
	

(5) 

where the wave number a is found by satisfying the linear wave equation to 
be 

a = (1 - p 2) (6) 

Second Order Analysis 

Using the first order solution c1) 1  to form the source terms exciting 
the second order potential c1)2 obviously leads to products of Bessel func-
tions. Such terms are not amenable to conventional techniques for finding 
particular solutions. Consider instead the region off-axis where pR is 

—sufficiently large to replace the Bessel function by its asymptotic 
expansion. Such a region exists if ka is sufficiently large. In cases 
where ka is not large, the analysis may be conceptualized as temporarily 
removing the walls of the duct, thereby converting the system to an 
infinite half plane in z > O. Carrying out the analysis in the fictitious 
region where pR is large nevertheless leads to a response which satisfies 
the boundary conditions for the original problem. 

When pR >> 1, eq. (5) may be represented as 

1 	 4 = - 
1 
 (iT1-1

2 % 
i) 2  sin(t - az) cos(1R - 2) + 0[(pR)

-3/2
] (7) 

Substituting this expression into the second order part of the wave 
equation yields 

	

2 	D
2

(1) 	
1 	

00 

	

02 	- 	 [ 	- 211
2) + 3

0 
 sin(2pR)] sin(2t - 2az) 

at 	Ira  pR 2  

(8) 

Only the part of the particular solution which exhibits growth with 
increasing z need be evaluated. The remainder of the particular solution, 
as well as the complementary solution, remain very small in the entire 
domain. The result is that in the region where pR >> 1, for all z, 

0  
cP2 	 z cos(2t - 2az) sin(2pR) + 0[(pR) -1

] 	 (9) 
47a3pR 

The foregoing is recognizable as the asymptotic expansion for large pR of 

cl) 2 = - 03 
z cos(2t - 2az) [J

0  (pR)
2 

- J
0  '(pR)

2
] + 0(1) 	(10) 

8a  

+ 0[(pR) 
-2

] 
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where 0(1) represents terms that are bounded for all z. This expression 
is descriptive of the most significant part of the second order potential 
at all pR. 

Renormalization 

Expressions for the particle velocity components v, v
R 

and the 
pressure p may be obtained by taking the appropriate derivatives of the 
potential function as obtained from eqs. (4), (5), and (9). The general 
form of these variables is 

= Ef
1
(t - az, pR) + E

2
z f2

(t - az, pR) + 0(E 2 ) 	 (11) 

where f
1 
and f denote bounded functions. These expressions lose validity 

when z = 0(1/ET, where the second order term is no longer small. This 
situation is corrected by replacing the independent variables by a set of 
strained coordinates. Because time appears only in combination with az, no 
separate transformation of t is required. The general form of this 
transformation is 

az = C + Ezgl (C,n), pR = n + Ezg 2 (C,n) 	 (12) 

Equations (12) are substituted into the expressions described by eqs. (11). 
- Then the functions g l  and g2  may be determined by requiring that the 0(E 2 ) 
terms in a Taylor series expansion remain bounded for all z. The result of 
this procedure is that 

e$ 
az = E +- 

2a20 
z cos(t - l;) JO (nR) 

The particle velocity and pressure resulting from this transformation are 
p 2 
0c 0 	P0c0 

P = 	v = e 	cos(t - E)J
0 
 (n) + 0(e

2 ) 
P 	z 	P  

vR = - Ec0 a 
 sin(t - C)J

0  T
(n) + 0(E2 ) 

Discussion and Example 

Equations (13) and (14) jointly describe the signal. For the 
purpose of interpreting the results it is instructive to first observe 
that the coordinate transformation may be rewritten as 

O , z, 	 a 0 , 	 (15) az =E+ B 	 ; pR = +— 
2a 	co 	

2pa cR0  

Lines of constant E and n represent wavefronts and rays of constant phase, 
respectively, for the signal described by eqs. (14). Thus eq. (15) 
describes a process of self-refraction, in which rays (constant n) are 
bent by the transverse velocity. This is in addition to the amplitude 
dispersion which shifts the wavefronts (constant E) in one-dimensional waves. 

(13) 
ES 

pR = n - --f z sin(t - C)J 0 1 (T'TR) 
2a 

(14)  
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The waveforms in Figure 1 describe a signal in air when the funda-
mental nonplanar duct mode is excited. The corresponding sound pressure 
level at the source is 156.5 dB (re 20 TiPa) and ka = 9.5. Each waveform 
is plotted in retarded time, such that the linearized signal for each case 
would appear in the figure as one period of a sine curve having essentially 
the same amplitude as that for the nonlinear signal. The signal at R = 6.0 
shows a predominant second harmonic because the position is near a nodal 
ray for the linear signal. This is one of the effects of self-refraction. 

Figures 2 and 3 describe the amplitudes P of the first six harmonics 
as a function of the source amplitude P 0 . Figur

n 
 e 2 (on-axis) is reminiscent 

of the result for planar waves. Figure 3 is for an off-axis location near 
a nodal line for the linear theory. The higher harmonics grow much more 
rapidly than the fundamental here, as a result of self-refraction of the 
nodal ray. The gap in the plot of P

1 
corresponds to a thus far unexplained 

null when P 0 
 = 156 dB. 
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nonlinear King integral for arbitrary axisymmetric sound beams at 
finite amplitudes. I. Asymptotic evaluation of the velocity potential 

Jerry H. Ginsberg 
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 

(Received 15 August 1983; accepted for publication 22 May 1984) 

This paper initiates the derivation of a general analytical model for nonlinear effects in sound 
beams driven at high source pressure levels. The excitation is generated by a planar transducer 
that is in harmonic motion in an arbitrary axisymmetric pattern. The analysis develops a 
perturbation solution of a nonlinear equation for the velocity potential. The first-order term, 
which is derived with the aid of a Hankel transform to represent the transverse dependence, is the 
King integral for a linear sound beam. Using this integral to form the source terms exciting the 
second-order potential leads to a dual Hankel transform. Reduction to a single integral is achieved 
with the aid of an asymptotic integration following Laplace's method. The second-order term that 
is derived in this manner describes the tendency for the second harmonic to grow with increasing 
distance from the source. This result is an intermediate step in the overall development, because 
the integrand loses validity in the spectrum of transverse wavenumbers near the transition 
between evanescent and propagating wavelets, as well as for increasing distance from the 
transducer. 

PACS numbers: 43.25.Cb 

■ITRODUCTION 

Recent surveys'` have noted that the "infinite baffle" 
roblem has been described by several alternative formula-
ons. The specific concern in this subject is the signal gener-
ted within a fluid by small amplitude oscillations of a trans-
ucer which is contained within an infinite planar boundary. 
uch results are valid for very weak signals, in which case 
iaterial and convective nonlinearities are negligible effects. 
'wo basic formulations of the linear problem are the Ray-
!igh and King integrals. 

The Rayleigh integral' treats the signal as a superposi-
on of spherical wavelets which are generated by infinitesi-
ial sources on the transducer face. In contrast, the King 
itegral4  results from a Hankel (Fourier—Bessel) integral 
-ansform transverse to the axis of symmetry. The acoustical 
tedium in such an analysis becomes a waveguide of infinite 
iameter. The transducer then seems to generate a spectrum 
f guided planar mode wavelets whose strength varies with 
le transverse position. The significant aspect of both qua-
rature solutions is that they provide a convenient frame-
ork for quantitative evaluations of the signal at any loca-
on. They also lead to analytical approximations that are 
slid in certain ranges, such as the Fraunhofer (farfield) re-
on. 

The same is not true for treatments of nonlinear effects 
hich arise when the transducer is driven to large ampli-
ides. One type of analysis of this question was performed by 
ockwood et al.' They considered the case where the excita-
on is reasonably small, so that nonlinearity is not signifi-
int in the nearfield. Such a restriction leads to a farfield 
.tscription based on Lockwood's analysis of nonuniform 
therical waves!' Obviously, such an analysis provides no 
formation regarding nonlinear effects in the nearfield. 

The nearfield was the specific concern of the analysis 
performed by Ingenito and Williams.' They employed a per-
turbation series for the potential function, in which the lead-
ing term was described by the Rayleigh integral. That result 
was then used to evaluate the source terms exciting the sec-
ond-order potential. Neglecting backscattering at the second 
order and introducing some additional approximations then 
led to a description of second harmonic formation that had a 
quadrature form. 

One limitation of that analysis is that it is valid only for 
very high frequencies: ka > 100 according to Ref. 7. Another 
shortcoming is one that is often encountered in perturbation 
analyses. Specifically, if a dependent variable is expanded in 
a perturbation series, then the results are only valid when the 
second-order terms are very small compared to the first or-
der ones. The analysis performed by Ingenito and Williams 
indicated that the second harmonic grows with increasing 
axial distance, whereas the first harmonic (i.e., linear result) 
shows no such growth. It follows that these results shed light 
on how harmonics begin to form, but further extrapolation 
might lead to errors. (This seems to be the case for their Fig. 
1.) 

Another formulation of finite amplitude sound beams, 
which has been prominent in the Soviet literature, employs a 
modified Burgers' equation. The basic assumption made in 
the derivation of this equation 8 . 9  is that there are three spa-
tial scales for the signal. The shortest scale is the axial wave-
length and the longest scale describes the development of 
nonlinear effects axially. The intermediate scale describes 
the variation transverse to the axis of symmetry. 

These approximations seem reasonable for the high-fre-
quency limit. Unfortunately, solutions for monochromatic 
transducer motion have only been obtained by finite-differ-
ence techniques. Typical of such investigations are Refs.10— 
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12, which all seem to have employed the same (incompletely 
described) computer code. It is significant that this group of 
investigations have only considered situations where the 
boundary excitation is a prescribed pressure. Extending 
those analyses to cases where the particle velocity on the 
boundary is known, as is the case for most transducers, re-
quires a relation between pressure and velocity that is not 
contained in the basic theory. Also, it should be noted that 
the small scale of some diffraction effects" introduces some 
doubt regarding the length scales assumed to derive the 
modified Burgers' equation. 

The present investigation is a perturbation analysis, as 
was the work by Ingenito and Williams, although the King 
integral is used here to describe the first-order term. The 
analysis is founded on the recognition that nonlinearities 
arise in two forms when the signal level is moderately high. 
Some nonlinear effects maintain their level or die out as the 
signal propagates away from the transducer. Typical of such 
an effect is the fact that the transducer face represents a mov-
ing, rather than a fixed boundary, for satisfying continuity of 
particle velocity. 

Order of magnitude considerations indicate that such 
effects are too small to describe the levels of higher harmon-
ics that have been measured."'" As is the case for planar and 
other one-dimensional waves,' significant distortion phe-
nomena stem from cumulative growth of higher harmonics. 
Such action is a result of the fact that the acoustic medium is 
nondispersive, so that higher harmonics propagate with, and 
resonantly interact with, the primary signal. 

The present analysis consistently accounts for cumula-
tive growth effects. The sole assumption introduced in the 
course of the analysis is that the nonlinear mechanism caus-
ing harmonic generation has the same behavior at all loca-
tions in the acoustic field. The first part of the investigation, 
described in this paper, obtains an expression for the first 
two orders of approximation of the velocity potential. The 
second part of the investigation" will employ coordinate 
straining transformations to correct irregularities in the re-
sponse associated with the derived potential function. The 
acoustic signal will be described in a quadrature form that is 
reminiscent of the linear King integral. A quantitative exam-
ple will compare the harmonic content of the waveform to 
measurements recently reported by Gallego-Juarez and 
Gaete-Garreton.' 

The overall analytical procedure may be traced back to 
the author's previous investigation of two-dimensional radi-
ation from a boundary: 8 ' 19  However, the use of complex 
functional forms and the introduction of Hankel transforms 
to treat the axisymmetrical geometry require substantial al-
terations from previous work. 

I. FUNDAMENTAL EQUATIONS 

The propagation speed of infinitesimal planar waves is 
denoted as c0, and — 1) is the nonlinearity parameter in 
the pressure-density relation at fixed entropy 3  

2 

	

P = PocO[(P 	P° ) + ($o 	1 )(P 	/90) + ...1. 	( 1 ) 
Po 	 Po  

Thus Qo = (y + 1)/2 for an ideal gas, where y is the ratio of 
specific heats. Let (R, z) denote nondimensional cylindrical 
coordinates (axisymmetric), with R = 0 corresponding to 
the center of the transducer which is on the boundary z = 0. 
Also, denote the nondimensional time variable as t. The cor-
responding dimensional position coordinates are (R /k,z/k) 
and the dimensional time is t/o.), where w is the frequency of 
the monochromatic excitation and k = co/co  is the wave-
number for a nominal planar wave. 

The dimensionless velocity potential 0 is related to the 
particle velocity components by 

	

dqh 	deiS V. = co — , UR = Co- . 	 (.2) 

	

dz 	aR 
The boundary condition corresponding to the axisymmetric 
motion of an arbitrary transducer may then be written in 
complex form as 

dz 
dqh 

=0 	
c f (R )exp(it ) + c.c., 	 ( 3 ) = — 

z 	2i 

where f(R) is any complex function whose magnitude ap-
proaches zero with increasing R. In general, c.c. will be used 
to denote the complex conjugate of the preceding term. 
(Forming products of complex functions necessitates retain-
ing conjugate parts, rather than identifying only real parts.) 
For weakly nonlinear waves, the acoustic Mach number c is 
a finite parameter with 1E141. The nonlinear wave equation 
governing 0 is' 

V 20 —(15  = 2 $0 — 1.)—
dt

V 249  at 2  
e3 + —(VO.V0)± 0(0 3) , 	(4a) 
at 

where 

	

a 2.0 	acA , 3 20 N720 = 	aR az2aR 

vo.vo = (PRI ± (t) 2  
In addition to Eq. (3), the other boundary condition for q5 is 
that the signal should be either an outgoing wave or an 
evanescent wave at large z, and that it show suitable decay 
with increasing R. 

The velocity potential is expanded in a perturbation se- 
ries 

= 	+6202+.... 	 (5) 
The equations governing 0, and 02 are found by collecting 
like powers of c in Eqs. (3) and (4a). The first-order equations 
are 

a  2d, 
V20, 	= 0, 

at 2  
(6) 

= 
z =0 	

1  f(R )exp(it ) + c.c. 
az 	

— 

2i 

Equations (6) are the statement of the linearized prob-
lem. The nonlinear effects are contained in 02 and succeed-
ing terms. A complete solution for 0 2  requires satisfaction of 
the boundary conditions, which involves evaluation of the 

(4b) 
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0< n <1, 
n> 1. 

(12b) 

omplementary solution, as well as of the particular solution 
ssociated with the source terms arising from 0,. However, 
he complementary solution is bounded and therefore repre-
ents a noncumulative 0(e-2 ) contribution to the signal at all 
Dcations. As noted earlier such effects are usually insignifi-
ant compared to the observed levels of nonlinear distortion. 
'hus it is only necessary to find a particular solution of the 
econd-order equation. The first of Eqs. (6) provides a simple 
ientity for V 20,. The resulting second-order equation aris-
lg from Eq. (4a) is 

a 20  
v202 
	ate 

	— 1)(— 
at

1)2 VO.V0 	( 7 ) 2  == 
at [

V3  

. LINEARIZED SOLUTION 

Two approaches that have been employed to solve the 
nearized problem, Eqs. (6), are the Rayleigh integral and 
le King integral. The latter, which is essentially an inver-
on of a Hankel (Fourier-Bessel) transform, is more suitable 
)r the task of evaluating 0 2 . Hence let 

( = 	ncP ,(n,z,t).1„(nR )dn + c.c. 	 ( 8 ) 
0 

ubstituting this expression into Eqs. (6) and using the fact 
► at Jo(nR) is a solution of Bessel's equation leads to 

8 20, 	8 20, n20  = 09  

at 
( 9 ) 

= F exp(it ), 

III. SECOND-ORDER POTENTIAL 

The first-order solution 0, in Eq. (13) is used to form the 
source terms driving 02  in Eq. (7). Forming quadratic pro-
ducts of 0, requires that different symbols be used to repre-
sent the transverse wavenumber forming each term in the 
product. Also, care must be taken to include the complex 
conjugate parts in the product. A quadratic product of sinu-
soidal terms generally leads to a term having a nonzero mean 
value, but the time derivative appearing on the right side of 
Eq. (7) removes such an effect. The result is 

8 202  

at 2  

= 	r  mnF„,F„) 

Jo Jo 	y mit I ) 

XJ0(mR)J0(nR)- mnJ i (mR)J,(nR)] 

X exp [2it - (g,„ + g„)z]dm dn + c.c., 	(14) 

where the symmetry of the integrand has been exploited to 
reduce the integration over the first wavenumber to a finite 
range. (This introduces an additional factor of two.) 

It is consistent with the form of Eq. (14) to try to con-
struct the particular solution for 0, as the sum of two dual 
Hankel transforms. The kernel of one transform would be 
mn Jo(mR)Jo(nR) and the kernel of the second would be mn 
J,(mR )J,(nR ). The following equivalent form, which utilizes 
linear combinations of the aforementioned kernel functions, 
leads to significant analytical simplifications. 80, 

dz = 0 

here 

v 21.1, 2  

[V3'0— 1  - 	) 

F„ = 1 R f(R)J0(nR)dR 
21 o 

(10) 
02 = 02 dn, 

0 
where 

(15a) 

the transform of the (complex) spatial excitation function 
(R). 

The solution of Eqs. (9) is a propagating wave when 
<n < 1, or an evanescent wave when n > 1. This solution is 

	

= - 	)exp(it -,u„z), 	 (11) 

here 

	

 ti n  = n 2 	1  - 1. 	 (12a) 

itisfying the radiation condition as 	00 leads to the fol- 
wing choice for the branch cuts: 

- n2)I 

Fi n 1(n 2  - 1) 1 / 2 , 

le result of substituting Eq. (11) into Eq. (8) is 

cb 
( 

- f nF, 
	

- - kt,z)Jo(nR)dn + c.c. (13) 
0 	fih 

its is the King integral representation of the potential func-
for the linearized sound beam. 

02= n f m021(z,t,rnm )[.10(mR)Jo(nR) 

- J,(mR)J,(nR)]dm + n f m,P 22(z,t,m,n) 

X[Jo(mR)Jo(nR)+ J ,(mR )J ,(nR )]dm. 	(15b) 

The following identities, which are derived from the 
recursion relations for Bessel functions,' are useful for eval-
uating the transverse derivatives of 0 2 . 

	

( 3 2 	1 a  

UR 2 
 R dR)J0(mR).10(nR) 

	

_ (rn 2 	ja(mR  )J0(nR ) + 2mnJ i (mR )J,(nR ), 

( 

—cm 2  + -R- (9R  ).11 ( m R )J,(nR) 

	

3 2 	1 a 	 (16) 

=2mn.10(mR)J0(nR)- (m 2  + - 4/ R 2)J,(mR) 

X J,(nR ) - 2(m/ R ).1 0(mR )J ,(nR ) 

- 2(n/ R)J,(mR)J 0(nR). 

In view of these relations, the result of substituting Eqs. (15) 
into Eq. (14) and matching the integrands on either side of 
the equality sign is 
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r  320 21 	.32021 	(m + n)20211[4(mR Wo(nR) — 1 (mR ,(nR)] 
C9Z2 	at 2  

+ [3
2 °22 	32°22  

az2 	at 2 
	(m — n)2022] Vo(mR o(nR) + l (mR 11(nR)) 

— [1 4/R 2 ). 1 1 (mR)J,(nR) —  2(m/ R ).1 0(mR )J1(nR) — 2(n/ R)J,(mR )J o (nR )]( 021 — 022) 

= — 4i(F„,F,,/,(L„,12 .)[W0 — 1  ium lu,,Wo(mR)J0(nR)— mn.1 1 (mR)J,(nR)lexp [ 2it —V-`m  + 	)z + c.c. 	(17) 

If the last bracketed term on the left side of this equation 
was not present, it would be a simple matter to match like 
functions of R on either side. In order to address this matter, 
note that the functions 0 21  and 022  are independent of R. 
Conditions governing them in a specific region of R should 
be applicable for all R. This is significant because the brack-
eted term causing difficulty in Eq. (17) decreases at a rate 1/ 
R faster than the other terms as R increases. The foregoing 
argument suggests that because the term is negligible at large 
R, it should be negligible in the evaluation of 021 and 022  at 
any R. 

The validity of this hypothesis might be questioned for 
situations where n and m are small. In that case, the asymp-
totic decay of Bessel functions having arguments mR or nR 
might be approached at unacceptably large values of R. This 
question may be examined by using the series expansions of 
the Bessel functions for small arguments. Specifically, when 
mR41 and nR 41, it may be shown that 

—
4

JI (mR)J 1 (nR)— 2—
m

Jo(mR)J,(nR)— 2—
n

J,(mR) 

XJ0(nR).= — mn [ i  _ 1(m 2 n 2 )1?  

4(5m 2n 2 m 4 n .$ )R  4 	 (18)  

Thus the third bracketed term in Eq. (17) is 0 (mn) when mR 
and nR are small, whereas other terms in that equation are 
order unity. Thus the troublesome bracketed term should 
have negligible influence in this region also. 

Neglecting the aforementioned term has a physical jus-
tification. Recall that in the King integral formulation, the 
acoustic signal is viewed as a spectrum of modes in an infinite 
waveguide. The wavenumbers m and n are merely param-
eters characterizing the transverse rate of variation of these 
modes. It is reasonable to expect that the nonlinear mecha-
nism generating the second-order contributions to these 
modes are described by the same differential equations at all 
values of R, and for all values of M and n. 

When the third bracketed term in Eq. (17) is ignored, 
matching like functions of R in that equation leads to 

	

(3 2 0,1 	32 021  
(m 	n)2  (P2 , 

az2 	di 2  

Fn  Fm  
— 2i 	(flo  1 any„, + nm) 

X exp [ 2it — ("4„ + ,a„,)z] + c.c., 

	

3 2022  32°22 	
(M n)2(22 

az2 	at  2 

F„F„, 
- 21. 	 A l 	— nm) 

12 .12 m 
X exp [ 2it — (ju n  +,u„,)z] + c.c. 

The virtue of constructing the solution for 02  in the form of 
Eqs. (15) is now evident; any other form would not have 
resulted in uncoupling of the equations for the transform 
variables 021  and 022 . 

The form of the solution of Eqs. (19) is suggested by the 
physical implication of the linear King integral, which con-
sists of a continuous spectrum of modes in a circular wave-
guide of infinite extent. The axis of the sound beam (i.e., the z 
axis) is the direction in which these modes propagate. In 
general, nonlinear generation of harmonics increases with 
increasing propagation distance. Hence the particular solu-
tions may be written as 

021  = a(z,m,n)exp[2it — (kt„ + 1.1„,).z] + c.c., 
(20) 

022= b(z,m,n)exp[2it — (Lin + a,, )z] + c.c., 

where cumulative growth will be manifested by increasing 
values of the amplitudes a and b. Substitution of Eqs. (20) 
into Eqs. (19) leads to a set of uncoupled ordinary differential 
equations for these amplitudes. 

—2(y„ + p„,)— 
dz 

da
+ [(1.4„ +f  „,)2  — (m + n) 2  + 4]a 

— 2iF
'F'm   (flo 1—^nIUm+  nm), 	(21a) 

1242 m 

deb 
	 db 

— 2tun + 11 „,i
dz 

+ NY. + kim) 2  (m — n) 2  + 4  ] b 
dz2  

F 
— F

/
" " 	(130 	1 ling „, — nm). 	(21b) 

P./2 m 

At this stage, it is appropriate to recall that the analysis 
of 02  requires evaluation of only the portion that exhibits 
growth. If the values of m and n are such that the coefficient 
of a or b in Eqs. (21) does not vanish, then the particular 
solution is independent of z. In contrast, if this coefficient 
should vanish, then the corresponding particular solution 
for a or b is proportional to z. (Vanishing of the coefficient is 
equivalent to secularity in perturbation analyses of nonlinear 
vibrations.) It is found with the aid of Eq. (12b) that the 
condition of a vanishing coefficient only occurs when m = n 
in Eq. (19a). Therefore only the contribution of a needs to be 
evaluated. The magnitude of b is bounded at all z, which 
means that b does not represent a cumulative distortion ef-
fect. 

IV. INTEGRATION BY LAPLACE'S METHOD 

The condition where the solution to Eq. (21a) grows 
with increasing z has been shown to arise as m-->n. In con-
trast, regions far from m = n represent contributions that do 
not change in overall magnitude with increasing distance. 

(19) 

d 2a 

dz2  
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The contribution of the region around m = n may be deter-
mined by following Laplace's asymptotic integration meth-
odn  based on an expansion using 

m n — qd, 441, q = O(1), 	 (22a) 

where 4 and q are positive because m <n for the integrals in 
Eqs. (15). Note that d is a fixed parameter indicating the 
scale of the difference between m and n. The Taylor series for 
the coefficient /2„, defined in Eq. (12b) is found to be 

/1„, =p,(1 — nq 

	

/µn — .
724 2/24T 	...). 	(22b) 

These expressions for m and A m  lead to the following 
representation of Eq. (21a) in the region where mi n: 

q242 + 0 (A 3) )da 
— 2,a„ (2 — nqd 

 dz2 	 4, 	2,a", 	dz /  

— [q2 2  /14 + 0 (4 )] a = — 24,F / . 	(22c) 

Now observe that when q = 0 (m = n), the particular solu-
tion of this equation is 

a I q =0 = 	 (23) 

In contrast, the general solution for a when q00 has the 
form 

a = A , exp(u ,z) + A, exp(u 2z) 2460F 2„ /q2A 2, 	(24) 

where the coefficients o, and u2  are the roots of the charac-
teristic equation governing the complementary solution: 

	

— 2g„ (2 — nqd /14 — q 2A 2  / 2,14)a — 	2/µ2, = 0. 

Solving this quadratic equation yields 

g 	— q 24 2/4y 3„ 0 (4 3), 02  = 4.tn  + 0 (4 ). 
(26) 

As q-00, Eq. (24) must approach Eq. (23). Because a 2  is 
0 (1) and Eq. (23) has no term that varies exponentially in z, 
set A„ = 0. Also, because u, is 0 (4 2 ), exp(o,z) may be re-
placed by the leading terms in a series. The condition that 
Eq. (24) approach Eq. (23) then leads to 

	

lim[A ,(1 + ,z) + 21f301,/ q2  LI 2 ] = (if3oF2„/2y,ii )z. 	(27) 
--0 

The first of Eqs. (26) shows that this condition is satisfied at 
all values of z by 

A, = —2if3 oF/ .9,2A 2 . 	 (28) 

Substituting this expression into Eq. (24) yields the general 
solution 

a  = (2#30F 2 
/a24  2) [ 	exp( q24 2z/4/.1 3,,  ) . 	(29)  

The next step is to evaluate the total contribution to 0 2 
 pf the value of a associated with all wavenumbers m. For this 

Jetermination the first wavenumber n is held constant at an 
arbitrary value. The combined effect is defined by Eqs. (15) 
and (20) to be 

f0
P2 = n

n 

m{a(z,m,n)exp[2it — 	+ a„,)z]-1- c.c.} 

X [Jo(mR)Jo(nR)— J i (mR)J,(nR)]dm + 0 (1). 
(30) 

Equation (29) gives the behavior of a in the region where 
m n. According to Laplace's integration technique, the be-
havior at large z may be found by using that relation only. In 
order to demonstrate this feature, the region of integration is 
broken into two intervals. The boundary between these in-
tervals is defined to be m = n — 5, where S is a small finite 
quantity. Then 

n — 6 

02 — d02 f d02• 	 (31) 
0 	 n — 6 

Because the first domain of integration does not contain the 
secularity condition, the oscillatory nature of the integrand 
results in boundedness of the first integral for all z. 23  This 
term, like comparable effects that occurred earlier, does not 
contribute to the cumulative distortion process, so it is dis-
carded. In essence, this region features destructive interfer-
ence between the m and n waves. 

In order to evaluate the second integral, Eqs. (22) and 
(29) are substituted into Eq. (30). The difference between m 
and n is less than S in the region of integration, so m may be 
replaced by n in the Bessel function. Similarly, ,a,„ may be 
replaced by g„ in the exponential term in Eq. (30). The inte-
gral arising from Eq. (31) then simplifies to 

= {2113011 2F,E (Sod ,z/ /.4,)exp(2it — 2p.„z) c.c.} 

X [10(nR ) 2 — J I (nR ) 2 ] 	 (32) 

(4 dq). 

(33) 

Evaluation of the function E introduces a square root of 
z/kt 3,„ for which it is important to account for the fact that/4 
is imaginary when n < 1. Specifically, 

z  y2 f ki,,z  )1/2 	(xi z)1/2 

C /fin 	n 2 _ 
/414 

where an overbar denotes the complex conjugate of the 
marked quantity. Integration by parts of Eq. (33) then gives 

rryn  z  112) rfriz,,z) 1/2 
E (84,z/12!) =( 2.kts-z, 	2/2n 	 

— (1/(5) [ 1 — exp( — 6 2z/ 414,)], 	(35) 

where erf denotes the error function. 
One noteworthy feature of Eqs. (32) and (35) is that the 

only remaining parameter associated with the asymptotic 
integration is the integration limit 5, which is finite value. 
Consider Eq. (35) as z increases while (5 is held fixed. An 
expansion of the error function for large arguments leads to 

e
i(5(y„z2/2  / 1 

5 (cr 

 

‘A 2114in 	yn  z)1/2 exp( 21u u,

- 

, — 52z  ) 

/ 
(36) 

E (SA ,z41 .)— [( 177 nz) 1122141: — 1 /5. 
The growth effect comes from the first term in E above. 

In general, the behavior as z-0.00 is said to be the "dominant 
term."22  The dominant term in 02  originates from the por-
tion of the particular solution associated with the region of 

where 

(25) 	E (64,z/  ) f (1  - 	exp( — q2d 2z/4/.t,)) 
.7 24 2 

(34) 
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nFn n 2F2  
= — e—exp(it — /4„z)J0(nR ) + €2430-2 (7772„z) 112  

/L ,, 	 n n 
X exp(2it — 2/4„z)[,10(nR ) 2  — J i (nR ) 2 ] 

+ c.c. + subdominant terms. (37b) 

secularity, m =-. n. Subdominant terms, such as the particular 
solution associated with m On, have already been neglected 
because they do not represent a growth effect. Thus the func-
tion E in Eq. (32) may be replaced by its dominant term, as 
given by Eq. (36) when 11(5 is neglected. When the resulting 
expression for 02  is used to form the second-order potential 
according to Eq. (15a), and then combined with the first-
order potential in Eq. (13), the result is 

cb = 	dn, 	 (37a) 
0 

where 

V. CLOSURE 

An expression for the pressure may be obtained by dif-
ferentiating Eqs. (37) with respect to time, but the result has 
some problematical aspects. First, it is clear that the 0 (62 ) 
term grows as z 1 / 2 , while the 0 (c) term remains bounded. 
Thus the second-order term satisfies the smallness assump-
tions inherent to a perturbation series only when z is small 
compared to 1/6 2 . 24  From a practical viewpoint this limits 
the validity of the result to distances that are very small com-
pared to the shock formation distance. 

Another aspect relating to the validity of the result is 
less obvious. Consider the situation where n—).1, in which 
case µ n —+0. The expression for pressure derived from Eq. 
(37) has ft„ in the denominator, so it is singular at n = 1. The 
key aspect of the singularity is that the 0 (c) term will contain 
a factor 1/µ„, while the 0 (€2) term will contain a factor 
1/,u4.1„1/2 . Thus, the 0(0 term grows more rapidly than the 
0 (c) term as n-0.1. This is another instance where the magni-
tude of the second-order term grows relative to the first-
order term. As was true for the z' /2  dependence, nonuniform 
accuracy limits the usefulness of the pressure derived from 
Eqs. (37). 

The lack of uniform accuracy in z is not surprising, be-
cause it is the equivalent of secular terms in nonlinear vibra-
tion analyses. The nonuniform accuracy in the wavenumber 
n is a result of the analytical procedure that was followed. 
The integration by Laplace's method assumed that Ix, I is 
not very small. This is most clearly indicated in Eq. (22b), 
where the truncation of the series expansion is appropriate 
only if Iqd /,a2„ I <1. Only very small values of q satisfy this 
criterion when n-0-1 ( ,,-40). Therefore, the contribution to 
the second-order potential from the region around n = 1 is 
not well described asymptotically. 

There are other shortcomings in the form of Eq. (37b). 
First, the 0 (e) term is the same as that obtained from linear 
theory, i.e., it is the conventional King integral. Thus the 
relation does not indicate that there is depletion of the funda-
mental harmonic as energy is transferred to higher harmon-
ics. 25  Another important limitation is that Eq. (37b) de-
scribes only the second harmonic, but higher harmonics are 
known to be significant to the distortion process. 

The aforementioned items lead to concern regarding 
the validity of any prediction of pressure. This would cer-
tainly be the case if Eqs. (37) were to be used directly. The 
analysis in the next part of this investigation” overcomes 
these difficulties. It treats the response obtained from Eqs. 
(37) as the asymptotic representation for small ez 1/2  and 
n01 of functional forms that are uniformly accurate. Such 
an analysis is not applied directly to the velocity potential 
because there are situations where a portion of the potential 
may exhibit nonuniform growth while the pressure and oth-
er state variable do not. 26  
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Nonlinear King integral for arbitrary axisymmetric sound beams at 
finite amplitude. II. Derivation of uniformly accurate expressions 

Jerry H. Ginsberg 
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 

(Received 15 August 1983; accepted for publication 23 May 1984) 

The first part of this investigation [J. Acoust. Soc. Am. 76, 1201-1207 (1984)] derived a 
perturbation representation of the velocity potential for an axisymmetric, monochromatic sound 
beam in the form of a complex function. That result, which used Hankel transforms to describe 
the dependence on transverse position, lacked uniform validity in the corresponding 
wavenumber, as well as the distance from the transducer. Expressions for the state variables 
derived from the potential have the same behavior. The example of a planar wave is used to adapt 
the singular perturbation method of renormalization to the case where the potential is in complex 
form. The resulting technique is used to obtain a coordinate straining transformation that makes 
the state variables uniformly accurate. The expression for the pressure is similar to the King 
integral in linear theory, except that the integrand is a function of the strained coordinates. 
Comparison of the predicted waveform properties with experimental data [Gallego-Juarez and 
Gaete-Garreton, J. Acoust. Soc. Am. 73, 761-765 (1983)] shows good correlation. Further 
evaluations disclose some new features of the distortion phenomena in both the time and 
frequency domains. 

PACS numbers: 43.25.Cb 

INTRODUCTION 

A general analysis of axisymmetric sound beams was 
initiated in Part I of this study.' The overall goal of the inves-
tigation is to develop a theory that can be used to evaluate 
how various features of harmonic transducer motion are 
manifested within the entire acoustic field. This intent obvi-
ates the use of theories founded on effects that arise only in 
the near- or farfield. 

It was found in Part I that combining a consistent non-
linear wave equation with a Hankel integral transform and 
an asymptotic integration technique led to a representation 
of the velocity potential in the form of a perturbation series. 
The second part of the analysis, presented here, will utilize 
that potential function to derive an integral expression for 
the acoustic pressure. This integral reduces to the King inte-
gral of linear theory' in the limit of an infinitesimal source 
pressure level. 

Numerical evaluation of this integral permits compari-
son of the theoretical predictions to those in one series of 
experiments. In addition to providing validation, the exam-
ple will yield some insight into the unusual distortion phe-
nomena that have been observed in sound beams? 

I. NONUNIFORMLY ACCURATE EXPRESSIONS 

In the first part of this investigation z and R were nondi-
mensional cylindrical coordinates for a transducer centered 
at z = R = 0, and t was nondimensional time. The corre-
sponding dimensional quantities are obtained by using 1/co 
to define the time scale and 1/k = c o/co to define the length 
scale, where oi is the frequency of the monochromatic mo-
tion of the transducer and co  is the linearized speed of sound. 
The transducer motion was written in complex form as 

u z  = (e /2i)c f (R ) exp(it ) + c.c., 	 (1)  

where f (R) is an arbitrary complex function whose magni-
tude goes to zero as 00 . The acoustic Mach number 6 is 
small compared to unity, so it is a convenient parameter for a 
perturbation series. In general, c.c. will denote the complex 
conjugate of the preceding terms. 

A Hankel transform was used to describe the first-order 
effects transverse to the axis of the sound beam. For a speci-
fied transverse wavenumber n, which is the parameter for 
the transform, there is a corresponding Hankel transform F„ 
of the shape function f (R ), 

F = 1  R f (R) J o(nR )dR 	 (2) 
o 

as well as a (nondimensional) axial wavenumber y„, where 
the radiation condition is satisfied by 

= 	n2)112; 0<n<1, 
( 3 ) 

tin  = (n 2 	1)112; n >1.  

As a result of employing a Hankel transform, the first-
order velocity potential was expressed in terms of the King 
integral. This first-order result led to an inhomogeneous 
wave equation for the second-order potential. An asympto-
tic integration by Laplace's method was crucial to the eva-
luation of second-order effects. The expression for the veloc-
ity potential that was derived by this method retained only 
the part of the second-order terms that displayed cumulative 
growth of higher harmonics. Thus, it did not evaluate any 
term whose magnitude is 0 (e') at all values of z. The derived 
velocity potential was written as 

= dn, 	 (4) 
0 

where, for ly„ 1 3/2  > 0 (6), 
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nF 	 riz.F2 
= - 6-= exp(it - u „z)Jo(nR ) 	 n-u„z) 112  

fl n 

X exp(2it - 2,u „z)[Jo (nR ) 2  - J,(nR ) 2 ] 	C.C. + SDT, 
( 5 ) 

where SDT represents subdominant terms that do not grow 
with increasing z, and an overbar denotes the complex conju-
gate. Note that /3, is the coefficient of nonlinearity, equal to 

+ 1) for an ideal gas, where y is the ratio of specific heats. 
The limitation on the value of,u,, for Eq. (5) means that 

the expression is not applicable in the vicinity of n = 1. This 
is a consequence of the asymptotic expansion that led to Eq. 
(5), for which it was assumed that µ„ = 0(1). Equation (5) is 
said to lack uniform accuracy in both n and z, because the 
magnitude of the second-order term grows relative to the 
first-order term as n-01 and as z- ►  co . The primary task here 
is to obtain from Eq. (5) expressions that are uniformly accu-
rate. 

Differentiating Eqs. (4) and (5) yields expressions for the 
particle velocity components and pressure. As suggested by 
the form of Eq. (4), let V„VR, and P denote the contribution 
of a specific wavenumber n to the axial velocity u, , trans-
verse velocity u, , and pressure p, according to 

= co  f 	dn, v, = I V, dn, 	 (6) 

p = poco f P dn. 	 ( 7 ) 

In the evaluation of the expression for V$ 1  the factor z' 12  in 
the 0 (62 ) term of 0 may be considered to be constant, be-
cause its derivative leads to an 0 (62z -112 ) term, which de-
creases in importance as z increases. The physical variables 
associated with Eqs. (5) and (6) are then found to be, for n not 
close to 1, 

, 

r = -- 
dz 

enF,, exp(it - ,u„z)1.10(nR)-2iel30(nFn iii.) 

X(n -,u„z) 112  exp(it - ,u „z)[Jo(nR ) 2  — i(nR ) 2 ] I 

c.c SDT, 	 (8) 

VR  = 
30 

 = - 6(n2F„/11,„)exp(it 14„z)ff ,;(nR) 
812 

-2i6,60(nFnifin)(11.14„z)112 exp(it — p.„z) 

X [J0(nR )J  (nR) - J ,(nR )J ;(nR)]] 

+ c.c. + SDT, 	 (9 ) 

P = (i/y„)Vz• 	 (10) 

It is convenient for later operations to denote the derivatives 
of Bessel functions by primes, rather than making use of 
identities for derivatives. 

I. CORRECTION OF THE DEPENDENCE ON THE 
TRANSVERSE WAVEN UMBER 

Equations (8)-(10) suffer from the same lack of uniform 
iccuracy as that associated with Eq. (5). Such behavior is not 
acceptable for state variables such as particle velocity and  

pressure." The recognition that the integration regarded 
ly„ to be substantially larger than zero is crucial to correct-
ing the dependence on n. It leads to the conclusion that Eqs. 
(8)-(10) are the asymptotic representation for nonsmally, of 
alternative functional forms that behave properly as y„ 
Note that each 0 (e2 ) term contains a factor /4„-  1/2  higher 
than the corresponding 0 (6) term. It follows that the alterna-
tive forms must feature a function whose expansion for large 
,u n z is proportional to 	1/2 . 

A variety of functions, such as Bessel functions, are pos-
sible candidates in this regard. However, recall that ,u„ is 
either real or imaginary, depending on the value of n. Most 
functions whose asymptotic behavior is appropriate for real 
y„ introduce new singularities for imaginary ft,„ , or vice 
versa. The only function that was found to be acceptable for 
all values of n was the complementary error function. Spe-
cifically, it is known 5  that for large ft,,z, 

erfc [ (y„z) 1/2 ] 

= (iry„z)-112  exp( -u„z)[ 1 + 0 (1///,„z)] 	(11) 

Using Eq. (11) to recast the 0 (6-2) terms in Eqs. (8)-(10) 
leads to 

= enF exp(it - ,u„z)1J0(nR)- 2iirefio(11,,/ 	• 

X nF „z erfc [ (,u„z) 1/2 ] exp(it )(.10(nR ) 2  — J,(nR ) 2 ] 1 

+ c.c. + SDT, 	 (12)  

n 2F 

VR  = - e = exp(it 
r n 

X nF„z erfc [ (y„ z) I / 2 ] exp(it )[Jo(nR)J ,;(nR) 

- J,(nR)J ;(nR)[} + c.c. + SDT, 	 (13) 

P = (04,)Vz . 	 (14) 

Note that the coefficient y„ /fi n  is merely + 1 or - 1 
depending on whether y„ is real (n > 1) or imaginary (n < 1). 
Thus Eqs. (12)-(14) have the same degree of singularity 
for the first- and second-order terms; they are descriptive of 
the response for all n. 

III. DERIVATION OF RENORMALIZATION USING 
COMPLEX VARIABLES 

Although Eqs. (12)-(14) are valid for all n, they still are 
not uniformly accurate for all z. One method for correcting 
this situation is the renormalization version of the method of 
strained coordinates. 6  The general basis for this method is 
the argument that nonuniform behavior relative to one of the 
independent variables (space or time) is the result of improp-
er truncation of a Taylor series expansion in powers of e. A 
much simpler example is to expand sin(z + ez) in powers of e, 
and to truncate such an expansion. The original function is 
periodic, but the truncated representation shows cumulative 
growth in ez. 

As a consequence of the foregoing argument, it may be 
anticipated that there is a transformation of the space-time 
variables for which the response does not exhibit cumulative 
growth. The difference between the magnitude of the phys-
ical variables and the transformed ones will grow cumula-
tively in the same manner as the 0 (62 ) terms in Eqs. (12)-(14). 

209 	J. Acoust. Soc. Am., Vol. 76, No. 4, October 1984 
	

Jerry H. Ginsberg: Beams at finite amplitude, II. Uniform 	1209 



The transformed variables therefore represent a straining of 
the physical space—time grid. 

All prior applications of the renormalization technique 
seem to have employed real functional forms. In order to 
adapt the method to the complex functions in Eqs. (12)—(14), 
it is useful to consider the analogous steps for a finite ampli-
tude planar wave. Consider such a wave propagating in the z 
direction, due to a harmonic particle velocity imposed at 
z = 0. The potential function in this case is governed by 
320 	320 	30  320  

2(/30 	1)— — 	— 
30  320  

2— 	+ 0 (0 3 ), + 
c9z2 	dt 2  at 3.z2  az azdt 

(15) 

3f 
= (—

c 	exp(it ) + c.c., 
az z =0 2i 

where the scales for nondimensionalizing position and time 
are the same as those for the sound beam. 

Carrying out a perturbation analysis based on 

0 = 60 + 6-202 + 

yields a homogeneous wave equation for 0,, which is solved 
for a wave propagating in the positive z direction. This solu-
tion is used to form the source terms in an inhomogeneous 
wave equation for 0 2 . The particular solution of the latter is 
readily obtained by elementary methods, with the result that 

0 = ZE exp[i(t — z)] + 8c2130z exp [2i(t — z)] 

+ c.c + 0 (0, 	 (17) 

where the 0 (0 terms not appearing explicitly are bounded 
for all z. 

The expressions for particle velocity and pressure cor-
responding to Eq. (17) are 

30 	1 
v z  = co— = —cc o  exp [i(t — z)] 

dz 	2i 

X11 + icigoz exp [ i(t — z)]] + c.c. + 0 (0, 

280 
P = — Poco — = Pocov z • 

These are not uniformly accurate because the 0 (e2 ) term 
grows with increasing z relative to the 0 (c) term. It is postu-
lated that the dependence on the strained coordinate varia-
bles is uniformly accurate. Because t only occurs in conjunc-
tion with z, it is adequate to strain only the space variable. 
The strained coordinate 4-  approaches z when so the 
transformation is considered to have the form 

z =C+ c[S(4",t)+3(4-,t)] +.... 	 (19) 

The task now is to evaluate the function S. The first new 
feature of the complex variable formulation of the planar 
wave is that S is considered to be complex, in agreement with 
the form of Eq. (18). It is necessary to introduce the complex 
conjugate ofS in Eq. (19) because the transformation must be 
real. 

Presumably, expressing v z  and p in terms of 4" rather 
than z leads to uniform accuracy. This should be the result of 
substituting Eq. (19) into Eq. (18). Because the earlier analy-
sis considered only the first two orders of c, enforcing unifor-
mity will involve considering only those powers in a series 
expansion. First note that for c 41, 

exp( — iz) = exp[ — i(C + ES + ES )] 

= exp( — 	- ie(S +S)] + 0 (0. 	(20) 

Substitution of Eq. (19) into Eq. (18) in conjunction with Eq. 
(20) leads to the following c and 6-2  terms: 

P/PocO = v, /co 

(1/2i)c exp[i(t — )]{ 1 — /OS + 3) 

+ 1004' exp[i(t — C )] + c.c. + 0 (c2), 	(21) 

where 0 (e2 ) means terms having that order of magnitude at 
all z. 

Equation (21) will be nonuniform in 4' unless the 64' term 
is canceled. This is the criterion for the straining function S. 
Thus, set 

S = (1/24804 exp[i(t — 4-)]. 	 (22) 

P  = 	exp [i(t 4)1(1 — ic3 ) + c.c. + 0 (e2 ) 
Poco 	2i 

2i

1 

 4i 
e

2 _ 
exp [i(t — )] + — fig-  + c.c. + 0 (c2). (23) 

z = ( 1 + flovz/ ca 
	

(26) 

Solving this relation for 4' and substituting the result back 
into Eq. (24) then yields 

Poci) 	co 
= — = c sin t 

1.1 z  

( 1 +flovz/co)l .  

z 	

(27) 

Except for the fact that z and t are nondimensional here, Eq. 
(27) is identical to Earnshaw's closed form solution for finite 
amplitude planar waves' in the case of harmonic excitation 
at a boundary. The same result using real functions was ob-
tained previously.' 

The perturbation analysis of the velocity potential pro-
vided an indication of how higher harmonics tend to be 
formed. Although the expressions that resulted were not 
uniformly accurate, the information the analysis provided 
was sufficient to permit the coordinate straining procedure 
to identify the more general signal. The exactness of the re-
sult in this case was fortuitous. In general, all that can be 
expected from the procedure is that the error in the uniform-
ly accurate prediction will be no larger than 0 (62 ) at any 
location. 

(16) The terms remaining in Eq. (21) are 

Note that the E 2  term appearing above is imaginary. Ac-
counting for the complex conjugate of each term yields 

P 	vz = — = E sin(t — 4. ) + 0 (62 ) 	 (24) 
PocO 	co 

and the transformation obtained by subStituting S and 3 into 
Eq. (19) is 

z = + c‘804' sin( t — ). 	 (25) 

In order to demonstrate the correctness of the wave 
(18) 	described by Eqs. (24) and (25), Eq. (24) is used to eliminate 

the sine term in Eq. (25): 
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IV. APPLICATION OF RENORMALIZATION TO THE 
SOUND BEAM 

Only a few modifications are required to apply the 
method in the preceding section to Eqs. (12)-(14). As was 
true for the planar wave, t only occurs in combination with z, 
so no transformation of the time scale shall be introduced. 
However, R is an independent coordinate, so a straining 
transformation for that spatial variable is also needed. Thus 
the coordinate straining to be tried is 

z = 4„ + [S „,a rot,12) 	c.c.], 
(28) 

R =an  + e[SR (C„,a„,t,n) + c.c.]. 

Note that a subscript n has been associated with the strained 
coordinates in order to emphasize that the strained coordi-
nate describes only one transverse wavenumber in a contin-
uous spectrum. 

In order to focus on the conceptual aspects of renormal-
ization, Eqs. (12) and (13) are written in the standard form, 

V;  = 64(z,R,t,n)+ 62zg,(z,R,t,n) + c.c. + 0 (62 ); 

= 1,2. 	 (29) 

Substituting Eqs. (28) into Eq. (29) and retaining the E and E 2 
 terms in a Taylor series expansion leads to 

+ 62 0.5z  +3 z)
34'„

4(4-„,a „,t,n) 

+ (SR  +3,)—
a

4(4' „ ,a „,t,n) 
d„ 

+ „gi (' „ ,a, ,t,n)) + c.c. + 0 (E2);  j = 1,2. 

(30) 

The foregoing is analogous to Eq. (21) for the case of planar 
waves. The straining functions S, and SR must annihilate 
the nonuniform C„ term in Eq. (30). Hence, set 

5,f(4"„,a„,t,n)+ SR —f (4'„,a„,t,n) ac, ' 	 da„ ' 

= — 4-ng) (Cn ,an,t,n); j = 1,2. 	 (31) 

It is necessary to find functions S=  and SR that satisfy 
Eq. (31) for both values of j. This is achieved by using trial 
forms that are suggested by comparing the functions g, to 
the derivatives off; . The actual transformation obtained by 
satisfying Eq. (31) and then forming Eqs. (28) is 

z= 	— 2ire/304"„ fi(nFn /Fin  ) exp(it 

X erfc [(,u„4"„ ) 1/2 ] + c.c.1.10(na.,), 

R = a„ + 2ref 304 -,711(F 41,4'4) exp(it ) 

xerfc[(4,S,) 1/2 ] + c.c.1.1,(nan ). 

This expression is comparable to Eq. (23) for a planar wave. 
The E2  term in that case was imaginary, so that no such terms 
appeared explicitly when the real form of the solution was 
written. The expressions for the sound beam are more com-
plicated, primarily due to the presence of Besse] functions 
describing the transverse variation of the sound beam. Here, 
renormalization removes any 0 (62 ) terms in V, that depend 
explicitly on time. 

In other words, the coordinate straining transformation 
derived from Eq. (31) is based on matching the tendency for 
generation of higher harmonics. Such a transformation in-
troduces a mean value over one period. The e -2  terms appear-
ing in Eq. (33) cancel that mean value at all locations. 

All of the state variables may be obtained from Eq. (33). 
The quantity of primary interest is the pressure, for which 
the proportionality in Eq. (14) is used to determine P. The 
contribution of all transverse wavenumbers n is obtained by 
integrating according to Eq. (6), with the result that 

inF 
p -= 	

( 
ef Aexp( — 144 „)[ exp( it )4(na n ) 

o 

- 2irrcgonT„C„ erfc [(i.-2„;„ ) 1/2 ] 

	

X [Jo(na)z — (i2„/y„)J,(na„)2 11cIn + c.c. 	(34) 

Equations (32) and (34) jointly describe the pressure at 
specified values of z, R, and t. Because of the complicated 
nature of these relations, quantitative evaluations require 
numerical algorithms for solving the coordinate transforma-
tion, and for integrating over all values of n. When n < 1, in 
which case,u,, is imaginary, evaluating the pressure accord-
ing to Eqs. (32) and (34) requires computing the complement 
of the error function for complex arguments. Useful identi-
ties' for this task are 

erfc[(iu) 1/2 1 

2 1/2  exp( — iir/4) I — .32(a)] + 	— C 2(a)11, 
(35)

 erfc[ — (i.c4 1/2 ] 

=2“ 2  exp( — iir/4)[[1 — C2(cr)] + 	— S 2 (cr)](, 

where 52(a) and C2(a) denote Fresnel integrals, defined as 

1  r x 
S2(0) = 

(27)112

si 

 x 1

n 

 /2 
dx, 

 

(36) 

1 	cos x 
C2(cr)=- 	dx. 

(27) 112  f xii 2 

The occurrence of Fresnel integrals here is intuitively ap-
(32) 	pealing, because such functions are known to enter into the 

evaluation of diffraction effects in the linear infinite baffle 
problem. g  

a 
+SR 

(3a 	
„,a„,t,n))+ c.c. + 0(62 ). 

„ 

V. RESULTS FOR A PISTON 

Expressions describing the response in terms of real 
functions may be obtained from Eqs. (32) and (34). In view of 
Eqs. (35), different expressions are required for the propagat-
ing modes (n < 1) and the evanescent modes (n > 1). The sin-

(33) gularity in Eq. (34) at n = 1 is regular. Numerical evaluation 
of the pressure integral therefore presents no unforeseen dif- 

In general, the terms remaining in Eq. (30) when Eq. 
;31) holds are 

74  v 	cf.  ,a ,t,n) + SZ 
a 

J 	inn 
n  
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ficulties. As is usual for diffraction integrals, the pressure 
integrand in Eq. (34) oscillates rapidly as a function of n at 
large distances from the transducer (large z or R ). The tran-
scendental nature of the coordinate transformation, Eqs. 
(32), at a specified n makes the usual numerical algorithms 
for efficiently evaluating such integrals unsuitable. How-
ever, a Gauss—Chebychev integration formula 9  is particular-
ly well-suited to the 1/p.„ singularity. This matter, as well as 
the algorithm by which the coordinate transformation is 
evaluated at discrete values of n, will be described elsewhere. 

The net result is an algorithm that is relatively costly for 
extensive computation. Nevertheless, it yields a prediction 
of the instantaneous acoustic pressure that can be utilized to 
generate waveforms or spatial profiles of the signal. 

Such predictions are limited to locations where shocks 
do not form in the individual duct modes. Shocks are mani-
fested by a vanishing value of the Jacobian of the coordinate 
transformation, correspianding to a multivalued solution. 
Selecting the appropriate solution in the presence of a shock 
requires considerations not addressed in the present study. 

The experiments recently reported by Gallego-Juarez 
and Gaete-Garreton 10  for propagation in air provide useful 
data for validating the analysis. The transducer for those 
experiments was a circular plate whose spatial vibration pat-
tern was combined with steps on the plate in order to simu-
late a piston. For a piston of diameter 2a, the shape function 
f(R) in Eq. (1) is 

1' R <ka, 
f (R)  = 0 

	

	 (37) 
R> ka, 

which leads to the following Hankel transform amplitude: 

F„ 	(ka/2in).1,(n ka). 	 (38) 
The transducer diameter in the aforementioned study 

was 200 mm and the frequency was 20.4 kHz. This corre-
sponds to ka = 37.1 when c, = 345 m/s. (The ambient con-
ditions were not specified.) Only measurements beyond a 
distance z/k = 900 mm were reported, whereas the last axial 
maximum on axis occurred at z/k = 218 mm. Comparing 
the experimental and computed results will therefore indi-
cate how well farfield propagation properties are predicted. 

Figures 1-3 reproduce the amplitude response curves in 
Ref. 10 for the fundamental frequency and the first three 

80 r  

95 	115 	135 	155 
SOURCE SPL (dB) 

FIG. 2. Amplitude response at 2 m on-axis. Harmonic number as indicated. 
k = 371 m 	a = 0.1 m, /30  = 1.2. 	: Theory for source 
SPL = 132.5 dB. — : Ref. 10. 	 : Linearized response. 

higher harmonics obtained at three locations on the axis of 
symmetry. The sloping dotted line is the closed form linear 
solution of the Rayleigh integral for the pressure amplitude 
on-axis. 2 ' 8  Comparing the measured fundamental at low 
source pressure levels with the Rayleigh prediction for Fig. 2 
causes concern. Mechanisms such as dissipation which af-
fect the fundamental at very low source levels, where linear 
theory is valid, do not explain why the measured amplitude 
should be higher than the theoretical one. Also, increasing 
the source level in the linear domain ( < 115 dB) did not ex-
actly increase the received fundamental SPL in the experi-
ments by the same amount. 

Because of this uncertainty regarding the measure-
ments, comparisons with the present analysis based on 
source SPL might be erroneous. The method used for com-
parison was to evaluate the analytical waveform at a nominal 
source level. The waveform was then Fourier analyzed to 
determine the corresponding amplitude levels (and phase an-
gles) for all harmonics. The comparable experimental data 
point was selected by matching the predicted and measured 
amplitudes of the fundamental. This matching is indicated 
by the dotted horizontal lines marked by the number 1. 

Figure 1, which is for the most remote location, shows 
that the second and third harmonic levels agree to within 2 
dB between theory and experiment, while the fourth har- 

FIG. 1. Amplitude response at 3.2 m on-axis. Harmonic number as indicat- 
ed. k = 371 m - ', a= 0.1 m, /30  = 1.2. 	 : Theory for source 
SPL = 132.5 dB. 	 : Ref. 10. 	 : Linearized response. 

FIG. 3. Amplitude response at 1.2 m on-axis. Harmonic number as indicat-
ed. k = 371 m- ', )5'0  = 1.2.   Theory for source SPL = 142.5 dB. 
- — - — : Theory for source SPL = 132.5 dB. — : Ref. 10. • • • • • • : 
Linearized response. 
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•,\ 

-Ionics are even closer. The discrepancies between theory 
nd experiment are slightly larger in Fig. 2, but they are well 
,ithin the uncertainty associated with the difference 
etween the measured fundamental and the prediction of 
near theory at low levels. It is possible that the disagree-
lent results from the experimental configuration, which 
mployed a stepped transducer face. Even though the funda-
mental was believed to match well with an ideal piston," 
iinor discrepancies might have a substantial effect on the 
igher harmonics. Also, it is conceivable that the motion of 
le transducer face was not exactly axisymmetric. This 
ould substantially alter the on-axis diffraction effects. 

Figure 3 presents the response curves for the closest 
>cation in the experiments. As indicated by the amount of 
eduction in the fundamental amplitude, most measure-
tents of the third and fourth harmonics were taken at 
)urce levels for which the effects of shock formation are 
gnificant. The coordinate transformation for a range of val-
es of the transverse wavenumber n has multiple solutions 
hen shocks are present. The theory is not formally valid in 
Lis case, but the numerical algorithm was implemented to 
!lest the value of the strained coordinate 4 -„ closest to the 
due of z when a shocks occurs. 

Two source levels were evaluated for Fig. 3. The dashed 
aes for a theoretical 142.5 dB SPL correspond to significant 
Locking effects. The agreement between theory and experi-
.ent for the lowest three harmonics is remarkable, especial-
in view of the uncertainty about how shocks should be 

eated theoretically. The broken line for a theoretical SPL 
132.5 dB show the same degree of agreement for the sec-

id harmonic. Extrapolating the curve for the third har-
onic back to this level would show that the theory closely 
edicts this harmonic also. 

Figures 1-3 do not provide a complete picture. First, 
ey describe locations which are in the farfield. Further-
ore, the response curves do not display the phase angles for 
.e various harmonics. The higher harmonics for planar 
ayes are in-phase with the fundamental, as are cylindrical 
id spherical waves in the farfield. Asymmetry between the 
Impression and rarefaction phases, which was observed by 
:ellen and Browning,' corresponds in the frequency do-
ain to out-of-phase conditions. 

Figures 4 and 5 display waveforms at axial locations in 
e nearfield and in the farfield, respectively. Reference 10 

2. 0 

1. 0 / 

0. 0 

- 1.0- 

- 2.0 

1 

TIME (nondim. ) / 2rr 

5. 4. Waveform at 0.184 m on-axis for 142.5 dB source SPL. k = 371 
, a = 0.1 m, Qo  = 1.2. 	 : Theory. 	 : Linearized response. 

0 	 1 	 2 
TIME (nondim. ) / 2rr 

FIG. 5. Waveform at 2.1 m on-axis for 133.5 dB source SPL. k = 371 rn -  , 
a = 0.1 m, 	= 1.2. 	: Theory. 	: Measured in Ref. 10 for 
130.5 dB source SPL. 	 : Linearized response. 

measured a waveform at the same location as that described 
by Fig. 5, but for a source level of 130.5 dB. The theoretical 
waveform obtained from the present analysis for the same 
source level would show less distortion than the observed 
one. This discrepancy is consistent with those discussed in 
regard to Fig. 2, which describes a nearby location. For this 
reason, the theoretical source SPL was increased by 3 dB for 
the comparison. The source level for Fig. 4 was selected to 
give a comparable amount of distortion at the closer loca-
tion. 

Several features of the measured waveform in Fig. 5 
must be noted. Although an interval of two periods is shown, 
the shape for the second period does not duplicate that for 
the first. Also the null pressure level was not indicated in 
Ref. 10; the experimental waveform reproduced in Fig. 5 has 
been plotted to give a zero mean value. Finally, the original 
waveform was drawn to a very small scale, so its enlarge-
ment to obtain Fig. 5 may have introduced additional inac-
curacies. In view of these uncertainties, the agreement 
between the experimental and theoretical waveforms is quite 
good, particularly for the second period. 

The distortion of the waveform in Fig. 4 is the type 
reported by Browning and Mellen.' One effect of nonlinear-
ity is to shift the extrema in the manner that a plane wave 
distorts. Nonlinearity also enhances and narrows the com-
pression phase, while it has the opposite effect on the rarefac-
tion phase. 

The waveform in Fig. 5 is for a lower source level than 
the one for Fig. 4, so less of the distortion is associated with 
the nearfield. This gives rise to a phenomenon that is some-
what different from the one appearing in Fig. 4. It is instruc-
tive to compare the waveforms in both figures to the corre-
sponding linearized signals. It seems that the maximum 
compression, which occurs sooner than the linear signal in 
the nearfield, is retarded as it propagates until it matches the 
linear maximum. Also, the maximum rarefaction is retarded 
more in the farfield. Recall that in the Rayleigh formulation, 
the individual harmonics appear to be nonuniform spherical 
waves in the farfield. The aforementioned retardation effect 
might be a consequence of the 90° phase shift that spherical 
waves undergo in the transition from the nearfield to the 
farfield. In addition, the fact that Fig. 4 describes a nearfield 
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TABLE I. Fourier series data for the waveforms in Figs. 4 and 5. 

Location 

Harmonic 

number 
103  p, 

Amplitude 
received 

SPL (dB) 

Phase lag tb 

re: fundamental 
Pori; 

z/k = 0.184 m linear 2.646 142.5 -- 4.1° 
1 2.479 142.0 
2 0.426 126.7 6.9° 
3 0.208 120.4 54.8° 
4 0.083 112.4 47.2° 
5 0.055 108.8 66.6° 

z/k = 2.1 m linear 0.4010 126.1 - 7.0° 
0.3384 124.7 

2 0.0623 110.0 64.2° 
3 0.0247 101.9 122.3° 
4 0.0103 94.3 177.1° 
5 0.0044 86.9 129.6° 

location suggests that the asymmetry is produced by diffrac-
tion associated with cancellations of the wavelets emanating 
from the various points on the piston. The generality of these 
observation needs to be explored further. 

The waveforms were Fourier analyzed using a retarded 
time in which the fundamental is a pure sine. The form of 
this representation is 

00 

p = 	sin [At - to) - b.J, 
J= I 

111 1 =- 0, - 180° < < 180°. 

The amplitudes pi  and the phase lags of the higher har-
monics relative to the fundamental are presented in Table I. 
There is no obvious pattern to the phase lags in the nearfield 
case, but the farfield location shows that the increment in the 
phase lag from a harmonic to next higher one is nearly uni-
form. This same pattern was observed in the computed 
waveforms at other farfield locations, with the increments 
ranging between 400  and 70°. The underlying mechanism for 
this effect is open to conjecture at this time. 

VI. CONCLUSION 

The theory for finite amplitude sound beams developed 
in Part I and here provides a versatile algorithm for evaluat-
ing the effects of nonlinearity. The theory has been shown to 
agree well with experimental data for on-axis responses,  

both qualitatively and quantitatively. The derived expres-
sions are applicable to off-axis responses, but no such results 
have been computed thus far. 

Comparisons with other available experiments are now 
underway, but past experiments have been limited in scope. 
Measurement of am')litude levels in the higher harmonics 
has received more attention than measurement of the corre-
sponding phase angles and overall waveforms (for under-
standable reasons). Also, measurements in the true nearfield 
have been sparse. Hence the theory has not yet been fully 
confirmed, but insight into basic phenomena has already 
been gained. 
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VV4. Analysis of nonlinear harmonic generation for arbitrary dual 

frequency transducer excitation. Mosaad A. Foda and Jerry 
H. Ginsberg (School of Mechanical Engineering, Georgia Institute of 
Technology, Atlanta, GA 30332) 

An earlier study of finite amplitude axisymmetric sound beams [J. H. 
Ginsberg, J. Acoust. Soc. Am. Suppl. I 73, S83 (1983)] considered the case 
of monochromatic excitation. That work featured a singular perturbation 
analysis combining asymptotic integration and the renormalization ver-
sion of the method of strained coordinates. The present paper initiates an 
extension of those techniques to the case of a dual frequency source. The 
parametric array, in which the primary beams are at closely spaced fre-
quencies, has already received much attention. The system discussed here 
permits disparate frequencies. Aside from a restriction to axisymmetry, 
the excitation at each frequency is arbitrary. The analysis thus far has 
obtained the first two orders of approximation for the velocity potential. 
This expression describes the manner in which nonlinear effects accumu-
late for the various sum and difference frequencies. It is the foundation for 
a future derivation of an expression for the pressure that is descriptive of 
the entire field. In addition, the trend for harmonic generation indicated 
by the analysis suggests that conversion efficiency in the parametric array 
might be improved by altering the transverse vibration pattern of the 
individual primary beams. [Work supported by ONR, code 425-IJA.] 
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K7. Evaluation of the overall sound field properties for a finite amplitude 
sound beam. J. H. Ginsberg (School of Mechanical Engineering, Georgia 
Institute of Technology, Atlanta, GA 30332) 

The nonlinear King integral [J. H. Ginsberg, J. Acoust. Soc. Am. (to 
be published)] provides a general algorithm for finite amplitude axisym :- 
metric waves radiating from a harmonically vibrating transducer. The 
derivation of that result was based on asymptotic analyses of the trans-
verse wavenumber spectrum near the axis for almost planar modes and far 
off axis. The validity of the analysis is confirmed here by a change of 
variables that yields an overall measure of the associated error. Previous 
evaluations using the nonlinear King integral provided temporal and fre-
quency spectrum predictions at selected locations, primarily on axis. The 
present paper reports on an extensive mapping of the field for a moderate-
ly high frequency in terms of amplitude and relative phase lags for the 
fundamental and several higher harmonics. This mapping is cross-refer-
enced to waveform displays that show the changing nature of the asym-
metrical distortion process associated with transition from the nearfield to 
the farfield. [Work supported by ONR, Code 425-UA.] 



EVALUATION OF THE OVERALL 
SOUND FIELD PROPERTIES FOR A 
FINITE AMPLITUDE SOUND BEAM 

J. H. GINSBERG 

School of Mechanical Engineering 
Georgia Institute of Technology 

Work supported by ONR, code 425-UA 
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NUMERICAL ALGORITHM 

Angular spectrum: remove singularity 
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FOURIER ANALYSIS 
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HARD-WALLED WAVEGUIDE 

Excite Fundamental symmetric mode: 



LINEAR SOLUTION 

Solve wave equation. 
Boundary conditions at wall . 
Match pressure input at z = 0. 
Radiation condition: propagation in positive z 

frequency above cutoff =4>L > 2 /k 
Standing wave in x direction = superposition of 

two planar waves 

IMPLICATIONS 

1. Waveform is monochromatic. 
2. Sinusoidal variation in transverse direction. 
3. Constant pressure along any axial line. 



FINITE AMPLITUDE EFFECTS 

Nonlinear wove equation: 

C OY 22 	))21L 2  
= quadratic source terms 

2 nd harmonic of wove 1 

2 nd harmonic of wave 2 
sum of wave 1 and wave 2 

No dispersion misa,  2 nd harmonics resonate 



ANOMOLY 

Ginsberg 1976, 1979 
Noyfeh & Kelly 1978, 1979 
Kluwick 1980 

Very large L =r4 kx—i>0 == 2nd harmonics 
only give 1/2 the distortion in a true 
planar wave. 

Explanation: 
Sum wave 
Singular 

= 	2 K 
os 	

x 
 

Beating response: 
Planar driven term: wavelength = Kz 
Planar eigenmade : wavelength = 27t 

kz —>k os kx 



VARIATION OF PARAMETERS 

q52 [VD EX P 2 i (Wt KzZ - Kx X)] 

+ &OE X P [2 i (wt - Kz Z + Kx>0] 

B3(z)E X P [2i Cwt - KzZ 

NOTE: Ehdepend on z only because: 
1. Periodic in time. 
2. Hard wall condition 	x =± L/2 

Result: 
B. and 82 : . particult3r solution only. 
[33: particular solutlion •-----, 1/ k)i 

complementary solution + planar ei9enmode 

1. 2 nd harmonice-,Jz for all k 
2. Sum signal is bounded if kx = 0(1), 

but 	z for kx 
3. Planar limit now satisfied. 



RENORMAL I ZAT I ON 

Evaluate p. 
Identify cumulative growth terms. 

Change independent variables ===> KxX, Kz Z 
coordinate straining 

Propagation distance parameters: 

Wave 1: 	kxx -0- kz z mon> cAl 

Wove 2: -- kxx 	kz z = 	0(2 
Sum Wove: 	 - 

Result: 

AC! 	2 CS I N (GA -0<i) + SI NO4 - o<2)1 

Kz Z 	Kx X - c)<, 	
K2 €(--f  -2 )COS[wt- cx/  + 	0(2)A 
Kz 

Simi lar transformation for - kxx 	kz z 	c7<2 

EZ S I 1■1(Lot o<j) 	AND 



TRENDS 

Lar 942 kL : kx —> 0 3=411. quas i p 1 °mar wave 

iet & f — It 2 t o /4 z p) cos (A x  

Sma 1 1 kL : k x = 0 (1) =4. quasi-irideperscierit WOVEDS 

=1-- P2 9 	Pj 	E 
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A Co - 2 
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+C 	 r II 

Alternate form: standing wave in x direction 
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Finite Amplitude Distortion and Dispersion 
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Abstract 

The perturbation method of renormalization is used to study the effect of 

nonlinearity in a hard-walled waveguide. The excitation would induce only the 

fundamental symmetric mode if the system was linear. The analysis develops a 

solution that satisfies a nonlinear wave equation for the velocity potential, 

as well as all boundary conditions. The response consists of a pair of 

oblique planar waves that interact through second order excitation of the true 

planar mode. 

The investigation discloses that when the transverse width is much larger 

than the axial wavelength, the signal has a quasi-planar behavior. In 

contrast, when the axial wavelength is large, the oblique waves are 

essentially independent. The distortion is then a result of self-refraction, 

in which the particle motion shifts the wavefronts and rays. The transition 

between the long and the short wavelength approximations is marked by the 

appearance of nonlinear frequency dispersion which produces asymmetrical 

distortion of the waveform. 



1. INTRODUCTION 

Finite amplitude effects in a waveguide feature multidimensional 

phenomena involving interacting waves. In linear theory a mode in a 

hardwalled waveguide may be constructed from pairs of oblique planar waves 

that are reflected from the walls. The present study will employ the same 

type of decomposition to show that distortion resulting from nonlinearity 

displays a phenomenological change as the excitation frequency is increased. 

This transition is associated with an anomaly contained in previous studies, 

which only considered the low frequency case. 

Initial explorations of finite amplitude nonplanar modes in waveguides 

employed the perturbation method of multiple scales in a rudimentary fashion 

that considered selected aspects of wave interaction [1-3]. A different 

method of investigation was developed to study waves radiating from a flat 

plate [4-9]. 	To a certain extent the latter studies were academic in 

nature. 	The system they treated featured a periodically supported plate of 

infinite extent. 	They assumed periodicity of the signal parallel to the 

plate, which meant that energy was propagating inward from infinite 

boundaries. This apparent violation of the uniqueness condition nevertheless 

proved to be instructive, because the system could be studied by a variety of 

analytical techniques. The perturbation methods of multiple scales and of 

renormalization, and the method of characteristics mutually agreed for the 

case of a spatially sinusoidal excitation. One significant aspect of their 

result was the prediction of self-refraction, in which the wavefronts and rays 

of constant phase are distorted by the particle velocity. 

Although the plate problem did not treat a physically realizable system, 

the relevance of these investigations to waveguides was recognized in a 

subsequent investigation [10]. The basis of that work was that there are 
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nodal lines in the plate system along which the velocity component parallel to 

the surface of the plate vanishes. Such lines are perpendicular to the plate, 

as they are in linear theory. This observation led to the conclusion that the 

infinite plate analyses had actually derived a single mode in a waveguide. 

The treatment of general excitation in a waveguide performed in Reference 

[10], which was a straightforward extension of the method of 

renormalization, disclosed a type of superposition principle. Modes having 

identical phase speed were found to form distinct groups whose distortion in 

self-refraction was a consequence of only the particle velocity arising from 

that group. The overall response consisted of a linear combination of the 

response in each group. 

A similar analysis had been used to study waves radiating from cylinders 

[11-14]. One of those studies [12] identified a paradox associated with very 

long axial wavelengths. One would expect that if the wavelength along the 

axis of a cylinder is large, so that the rate of variation in that direction 

is very gradual, then the response would approach that for the case of a two-

dimensional system, in which the axial wavelength is actually infinite. This 

was found to be the case, except that the distortion phenomena in the limit 

were found to be too weak by a factor of one half. This dilemma was resolved 

by noting that distinct modes in the case of axial variation coalesce only 

when the wavelength is actually infinite. 

These observations also apply to the investigation of waveguides [10]. 

For example, as the width of a waveguide is increased, the earlier analysis 

predicts that the distortion of the planar mode will be twice as strong as 

that of the fundamental symmetric (2,0) mode. Although the explanation of 

coalescing effects for infinite transverse wavelength (i.e., the planar mode) 

is plausible, it nevertheless is unsettling from a physical viewpoint. 
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Distortion arises from higher harmonic sources that are generated by 

nonlinearity in the entire acoustic field. Could it be that minor 

discrepancies between the long and infinite wavelength cases accumulate to 

create the discrepancy? Lack of experimental data prevented an earlier 

response to this question, but discussions with researchers currently involved 

in such activity [15] sparked the present authors' interest in exploring these 

concerns. 

The analysis presented herein treats an excitation of only the (2,0) mode 

in a hard-walled waveguide. It will be shown that this mode excites the 

planar mode in an insignificant fashion, unless w L/C 0  >> 2ff, where L is the 

transverse width, w  is the (circular) frequency, and co  is the linear speed of 

sound. The phase speed of the (2,0) mode then differs slightly from that of 

the planar mode. This sets up a spatial beating phenomenon that leads to a 

smooth transition to the planar mode response in the manner one would 

expect. 	The analysis will confirm the earlier theory for waveguides 

when wL/c
o 
is not large. 	It will also show that the transition from the 

earlier theory to the short wavelength case is marked by frequency dispersion, 

in which the waveforms are remarkably similar to those observed in the 

nearfield of intense beams of sound [16]. 

2. FORMULATION 

A pressure excitation of the fundamental, symmetric, two-dimensional mode 

in a hard-walled waveguide may be written as 

p 	= 0  = ep oC 20  Sin(wt)COS(k x X), e << 1, - L/2 4 x < L/2 	(1) 

where 	Po 
	is the ambient pressure, co  is the speed of sound at ambient 
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conditions, and the transverse wave number k x  is related to the duct width L 

by 

k = 2n/L (2) 

The question to be addressed here is the effect of nonlinearity associated 

with the finiteness of c on the waves that propagate in the positive z 

direction as a result of this excitation. 

The equations of continuity, momentum, and state may be combined to form 

a single nonlinear wave equation governing the velocity potential [17] under 

isentropic conditions. 

 cot 7
2
0  	3 	

2 
( a  - 1) ( 	)

2 
 + vs- 70] + 0(0 3 ) 

at 
at 	co  

at 
c
o 	

o (3)  

where the nonlinearity coefficient (3 0  is the constant associated with the 

second order term in a polynomial expansion of the pressure perturbation p as 

a function of the density perturbation p at fixed entropy. 

p/(p o  c0 ) = prp o 	(R 0  - 1) (p/p 0 2 ) 

The pressure is related to the potential by 

• • • (4) 

0 

++ 1  V6 • 6 = 0 at 	2 	• 	• - (5) 

From equations (4) and (5) p, p and • have the same order of magnitude, so 

elimination of p from these relations yields 



P = -P 	 'Vq) 	7/4)
1 	(N ] + 0(4) 3 ) 

o 	2 	 2 ;t 
ath 

2co 

	
2 	

(6) 

The boundary conditions for co 	are obtained by making the particle 

velocity normal to the walls vanish, 

ax = 0 at x = + 
	

(7) 

as well as by matching Eq. (6) at z = 0 to Eq. (1). Also, for uniqueness, it 

is required that the signal consist of a wave propagating in the positive z 

direction. 

The initial 	stage of the solution technique employs a regular 

perturbation expansion of the potential in terms of the small parameter e, 

(t)  = 	4)1 	62 (1) 2 I- 
	

(8) 

Matching like powers of 	e 	in the differential equation and boundary 

conditions leads to a sequence of equations in the usual manner. The order e 

terms are 

2 
3 4'1 

= 0 
at

2 
(9a) 

41 	 0 
DX ' X 

= + L/2 
(9b) 



where 

terms. 

2 
V
2 

ao, 

6 

2 
= 	

. 	c o 

of all 

(9c) 

preceding 

(10a) 

(10b) 

(10c)  

at 

CC 	in 

The order 

[i(wt 	kxx)] 1 	{exp 	- 
z = 0 

+ exp 	[i(wt + k
x
x)]) 	+ CC 

general 	shall 	denote 	the 	complex 	conjugate 

E
2 	

perturbation equations are 

2 	
4 	2 

(1)22  02 - :t 

a4) 
2 

- at 	[-17 o - 1 ) 	FL) 	v01 	• VO 1 ] 

0 

= 0 
x = + L/2 

2 
1 	1  

ax 

(1) 2 
at 	I = 	[ "— Z 	) 	vol 	• v(Pill z=0 	c

o 	 z = 0 

3. EVALUATION OF THE POTENTIAL 

It is a straightforward matter to solve Eqs. (9) by separation of variables, 

with the result that 

2 

0 1  = 	{exp [i(wt - k x  x - k z  z)] 

+ exp [ i(wt + k x  x - k z  z)]} + CC 	 (11) 

where 

k = w/c0  , o = sin
-1 
 (kx/k), k z  = k cos 0 = (k

2 
- kx

2
)
1/2 	

(12) 



Only the case of propagating, rather than evanescent, waves is of interest, 

which means that k x 
< k. This condition is obtained whenever w exceeds the 

cutoff frequency for the fundamental mode, w > 2y c o/L 

Equation (11) represents the first order solution as two trains of planar 

waves propagating symmetrically relative to the centerline x = O. These waves 

are depicted in Figure 1, where e
1 

and e
2 
are the individual directions. The 

angle e measures the direction in which these waves propagate relative to the 

centerline. Each wave represents the reflection of the other from the rigid 

walls. Increasing either the frequency w or width L decreases e. 	In the 

limit 	0, the two trains of waves merge into the planar mode. 

The first step in deriving 4, 2 	is to use Eq. (11) to form the 

inhomogeneous terms in Eq. (10a). This yields 

2 
2 2 	a 4)2 

co 	V cl),)  
at 2  

i 	2 
c
o w$o 

 {exp [21(wt -k xx-k z z)] 

+ exp [2i (wt + kx x - k z z)]} 

k 2  k
x i 	2 - 71- co  03(13 0  - 2 	)exp [2i(wt - k z z)] 	+ CC (13) 

The first two exponentials in Eq. (13) excite second harmonics. Such signals 

propagate parallel to the two waves forming 	(p i , 	which are homogeneous 

solutions of the linearized wave equation. 	The corresponding particular 

solution may be obtained by the method of variation of parameters, in which 

the amplitude of the homogeneous solution is considered to be an unknown 
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function. 	The last inhomogeneous term is a planar second harmonic. Such an 

excitation matches the planar mode for the waveguide when k z  = k. 	Hence, 

decreasing k x  brings the planar part of the excitation into close coincidence 

with the planar mode for that frequency, which means that this excitation is 

nearly resonant at small k x . The method of variation of parameters will also 

yield the solution associated with this term. Thus, let 

4) 2  = u(x,z) exp (2iwt) + CC 

u = C(z) {exp [- 2i (k z z + k x x)] + exp [-21 (k z z - k x x)]) 

+ D(z) exp (-2ik zz) 	 (14) 

It should be noted that the unknown functions C and D depend on the axial 

distance only. The periodic nature of the excitation eliminates dependence of 

these functions on t. 	Similarly, the rigid wall conditions, Eq. (10b), 

imposed along x = + ff/k x , 	could not be satisfied if C or D were functions of 

x. 

The result of requiring that Eq. (14) satisfy Eq. (13) is a set of 

uncoupled differential equations for the amplitude functions. After Eq. (12) 

for k
z is applied, these equations are found to be 

C" - 4 ik
z 
C' = - 	if3 w 

8 o 
(15) 

1 
D" - 4i k

z 
D' + 4k

x
2 
D = - 4 — iw(13

o 
 - 2 k x

2 
 /k

2 
 ) 
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where a prime denotes differentiation with respect to z. 

The particular solutions of Eqs. (15) are readily found to be 

B o w 
C 

32 k
z  

	

D = - iw 	( B° 	2 
) 

	

p 	 k 2 
x 

 

	

16 	 k
2 
	 (16) 

It is convenient to let the constant coefficients of C 	and D 	appear 

explicitly in the corresponding complementary solutions, which are therefore 

written as 

ow 
[C 1  + C2  exp (4ik z  z)] 

	

Cc 	32 k
z 

	

iw 	B o 
- ?2 )  [0 1 

exp(x
1 

z) 

	

D c 
	- 16 	k2 	k 2  

x 

+ D
2 

exp (x
2 

z)] 
	

(17) 

where A
1 

and x
2 

are roots of the characteristic equation 

x 
 ,2 

 - 4 
ikz1,2 

+ 4 k
x
2 

= 0 
1 

(18a) 

The roots are found with the aid of Eqs. (12) to be 

X
1 
= 2i(k

z 
- k), x

2 
= 2i(k

z 
+ k) 
	

(18b) 
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The expressions for 4, 2  obtained by substituting Eqs. (16) and (17) into 

Eqs. (14) must satisfy the radiation condition. In order for 4) 2  to 

represent an out-going wave in the z-direction, it must only contain negative 

imaginary exponentials in the z variable. Satisfaction of this condition 

requires that C 2  = 0 2  = 0. 	The remaining terms yield 

F!, ow 
u = 

32 k 	
(z + C 1 ) { exp [- 2i(k

z 
z + k

x x)] 
z 

+ exp [-2i(k z  z - k x  x)]} 

iw 	5o 	2 
16 	

( 2  - 2 ) Cexp (-2ik z z) + D i  exp(-2ikz)] 
k
x 	

k 

	 (19) 

Note that C 1 describes complementary solutions of the wave equation associated 

with second harmonics of the oblique waves, whereas D i  is the planar eigenmode 

at the second harmonic frequency. 

The case k
x 

a 0 	corresponds to a true planar mode, which is governed 

by the Earnshaw solution for a nonlinear planar wave. However, 

letting k x  + 0 in Eq. (19) results in a singularity in the coefficient of the 

last terms. 

Such behavior resembles the case of resonance in a one-degree-of-freedom 

oscillator whose equation of motion is 

x + w
2
x = F sin sit 
	

(20) 
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When 11, 	w, 	the amplitude of the particular solution for a = w seems to 

become infinite. This ignores the presence of the complementary solution, 

which forms a beating response when it is added to the particular solution. 

In the limit a = w, the resonant response reduces to a harmonic at 

frequency w whose amplitude grows in proportion to t. 

In the same manner the singularity of Eq. (19) at k x 	0 may be removed 

by an appropriate selection of the coefficient of the homogeneous solutions. 

The coefficient C 1 is not used for this purpose because the singularity is 

associated with the planar mode. 

	

In order to study k x 	0, the troublesome terms in Eq. (19) are expanded 

in a Taylor series about k x /k. 

2 

	

k E (k 2  - k 2 )
1/2 

= k - 1x  + 	• 
2 k 

k 2 

exp(-ik z z) = exp [-i(k  - 	+ ...] 

ik 2  
= (1 	z + ••• ) exp(-ikz)2k x 

The corresponding asymptotic form of the planar terms in Eq. (19) is 

iw 

 

s 

16 	
2 

( 

2  - 2 ) [exp(-2ik z) + D
1 
 exp(-2ikz)] 

k
x 	

k 

ik
2
z iw 	o 	2 1 1_, 	x + D ] exp (-211<z) 

	

16 ( 
k 2 	

k
2 

	[1 
	2k 	1 	1 

x 
 

(21) 

(22) 

The singularity for k x 	0 	is cancelled if the leading term in D i  = -1. 
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Thus let 

D
1 
 = -1 + D* 	 (23a)  

where the coefficient D* may depend on k
x 

in any manner that satisfies the 

condition 

lim 	D* _ 

k
x 	

0 k
2 - 
x 

6 	 (23b) 

where 6 is a bounded number. 	Similarly the coefficient C 1  is restricted to 

depend on k x 	in any manner that is not singular as k x 	0. 

The second order potential is now found from Eqs. (14) and (19) to be 

s ow 
(z + C1 )exp(2iwt) [exp(-241 ) + exp(-24 2 )] 

= 32k z  

iw 	, 13  
- 16 	o 2 - --- 22

) 
, 

exp (2iwt) (exp[-i(* 1  + * 2 )] 
. 

k x 	K 

+ (-1 + D* ) exp [-i(* 1  + *2 )k/k z ]1 + CC 	 (24) 

where 

*
1 	

k
z
z + k

x
x 

*
2 

= k
z
z - k

x
x 
	

(25) 

The foregoing expression for * 2  satisfies the wall conditions, Eqs. (10h). 

At this juncture, * 2  does not satisfy the boundary condition, Eq. (10c), 
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which specifies that there should be no second order contribution to the 

pressure at z = 0. This condition could be satisfied by appropriate selection 

of the coefficients C 1 and D*. 	However, both of these describe homogeneous 

solutions for 4 2 , and they are not singular as k x 	0. Thus, they represent 

effects that are 0(e
2
) at all locations. In contrast, observable distortion 

phenomena are associated with second order terms that grow with increasing 

distance. Therefore, setting 

C
1 
= D* = 0 
	

(26) 

leads to insignificant errors. 	The corresponding potential function then 

obtained from Eqs. (8), (11), and (24) is 

2 
c 
o = e 	exp(iwt)[exp(-4 1 ) + exp(-4 2 )] 

2 $w 
z exp(2iwt) [exp(-24 1 ) + exp(-242 )] 

6 32k
z  

iwo 	2 
e2 17(T  ( 	 - 	 exp(2iwt) {exp[ -1( 10 1 	,p 2 )] 

k x 	k 

exp[-i(11) 1  + 10 2 )k/k z ]) 	CC + 0(e 2 ) 	 (27) 

where 0( e
2 

) refers to terms having that order of magnitude at all locations. 

4. EVALUATION OF THE PRESSURE 

Prior formulations of nonlinear propagation using the velocity potential 

have generated the potential in the form of a separation of variables 

solution. Specifically, the expression was a product of functions of each 
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space variable and time. 	In that situation, it was necessary to consider 

individually the state variables of particle velocity and pressure. 

The present case is different because the potential is now represented as 

two planar waves, each of which is described by a single propagation distance 

	

parameter. 	In general, proper behavior of the expression for pressure in a 

simple planar wave ensures comparable results for the other state variables. 

The pressure is related to the potential function by Eq. (6). Omission of the 

quadratic products in that relation ignores terms that are uniformly 0(e 2
) 

which is comparable to the error in Eq. (27) for cp . Thus, 

p 	_ 	1 2.+_ 	
O(e2) 

	

A C2 - 	c

- 

2 at  
00 	0 

1 	. 
= ---4- el exp(iwt)[exp(-4 1 ) + exp(-4 2 )] 

2 

- 1 
1 
6 
 2 iOP 

 k
o k z exp(2iwt)[exp(-24

1
) 

z 
 

1 + exp(-24 	-8- 2 )] - 	E
2 
 ( 
	k

- 2) exp(2ialt) 
k x  

x {exp[-i(11 1  + p 2 )] - exp(,y 1 + q) 2 )k/k z )} 

+ CC + 0(e
2

) 
	

(28) 

The first set of 0(
2 

) terms grows with increasing z in all cases, and 

the second set grows when k x/k is very small. Such functional behavior is a 

result of using z and x as position variables, neither of which consistently 

match the spatial scaling of the nonlinear processes. In order to ascertain 

the correct spatial dependence, a near-identity transformation in the form of 

2 
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a coordinate straining is employed. A different transformation is introduced 

for each wave variable 4 1  and 4, 2 . 

The presence of 0(c 2 ) terms in Eqs. (27) that depend on 4, 1  + 4,2 

 indicates that the waves interact. Further examination of the form of Eq. 

(27) suggests the trial transformations 

1p.
J 
 = a.

J 
 + E EFj (a

102) 
 exp(iwt) 

+17j(al' a
2 
 ) exp(-iwt)] + ...; j = 1,2 
	

(29) 

where the complex conjugate term, denoted by an overbar, is introduced in 

order to ensure that the transformation is real. Substitution for 4, 1  and 4)2 

 in Eq. (28), followed by expansion in Taylor series in powers of E, yields 

p 	
1 

2 
- 	

T 
El exp(iwt)[ex0(-ia

1 
 ) + exp(-ia

2
)] 

p c 
0 0 

1 2 
- 71  e [F 1  exp(2iwt 	jai ) + Fl  exp(-ia l ) 

+ F 2  exp(2iwt 

	

	ia 2 ) + F 2  exp(-ia 2 )] 

2 
1 	2 40 

e xp(2iwt) exp(2iwt) [exp(-2ia 1 ) 1 6 	' Po k
z 

2 
+ exp(-2ia2)] 

	

	1 
E 2  ( SO 

k
0  --a  - 2) exp(2iwt) 

kx  

x {exp[-i(a l  + a 2 )] 	eXPE-i(a l  + a2) 10 z1) 

+ CC + 0(e
2

) 

(30) 
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The task now is to determine the functions F 1 
and F2 that cancel all 

0(E
2
) second harmonic terms which grow with increasing z. For this, the terms 

that depend on a l  + a2  are apportioned equally between F 1  and F2 . The 

appropriate choice is found to be 

ia
o
k
2 

1 	k
2 

F1 	4 k 	 B o z exp(-ia1 
	7l '
l - 	( 	2) {exp(-ia2 ) 

z 	 k
x 

(31) 

- exp 	 - 1) -
ja2 

z 	 z 

ia
o
k
2 

1 	k
2 

F2 = - 4 k 	
z exp(-ia 2 ) - 

x 

- exp [-ia 2 	- 1) - jai 
z 	 z 

These straining functions do not cancel all 0(E
2
) terms in the 

pressure. The remaining terms, which are created by the complex conjugates of 

F 1 and F 2, contain combinations of the a
1 

and a
2 
variables. Their presence is 

not a problem, because they are independent of t. Their role is to cancel a 

mean value of the pressure that is created by the cordinate transformation. 

It is convenient at this juncture to write the coordinate transformations 

and pressure resulting from Eqs. (28) - (30) in real functional form. The 

pressure is governed by 

2) {exp(-ia ) 
4 (13o 

k
2 - 	 1 



17 

- P2 	2 Esin(wt - al ) + sin(wt - a 2 )] 
P C 0 0 

1 e2  (so 	e o 	2 	2) 12 cos(a l  - a2 ) 

x 

- cos [2a 1  - 	(a l  + a 2 )] 

- cos [2a - 	(a l  + a2)]} 

	

2 	z  

where 

to 1 	kz
z + k

x
x 

1 	k2 • 7  e 00 	z sin(wt - a l ) 

t 	2  
- c oo k  2- - 2) {cos(wt 	a2 ) 

k x 

- cos [wt - a2  - 	- 1) (a l  + a2 )il 

2 - k z z - k xx 

1 	k
2 

a2  + 7 egoz sin(wt - a2 ) 

1 	k
2 

- 	(5 o 	- 2) 1cos(wt - a l ) 
k x  

2 

(32) 

(33a) 

- cos [wt - a l  - 	
z 

- 1) (a l  + a2)]} 
	

(33b) 
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The foregoing relations fully define the pressure. 	The value of p at 

specified x, z, and t may be determined by solving Eqs. (33) simultaneously 

for the values of a l  and a 2  , and then using those values to compute p. It 

will be noted that the terms in which a
1 
and a

2 
couple do not explicitly grow 

with z. However, their magnitude increases as k x/k 0, so the spatial 

beating phenomena created by this interaction takes on the appearance of 

growth in the limit. This matter is treated in detail in the next section. 

5. ASYMPTOTIC TRENDS 

Equations (32) and (33) are generally valid, but examination of the 

behavior at limiting values of k x/k provides important insights. 

For k
x
/k « 1 (A/c

o 
>> 2w), the coordinate transformation may be expanded in 

a power series in k x/k. First, apply the identity for the cosine of a sum to 

the last term in Eq. (33a). 

1 	k
2 

101 = a l 	—2- ca o 	z sin(wt - a l ) 

k
2 

e(P. -77 - 2) sinEwt - a 2  - 1 
° k 4  x 

x sin [77 k - 1)(a l  + a 2 )] (34) 
z 

- 1)(a l 	a2)] 

Since k/k
z 	

1 + k
x
2
/2k

2 
+ ..., 	the leading terms 	in a Taylor series 

expansion of Eqs. (33) are 

1 
1 	 1 

- a1 
	2 

 + — 	o kz sin(wt - a 1
) 
) + — 	o(1 + a2  )sin(wt - a2 ) (35a) 
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When the same operations are performed on Eq. (33b), the result is 

a2 	2 
 + —1 

613 
0
kz sin(wt - a

2
) 

1 
+-T oo

(a
l  + a

2
) sin(wt - a l ) 1 

(35b) 

According to these relations the values of a l  and a2  may be estimated 

as a
1 	

*
i 
+ 0(e kz). 	Hence, 	the 	factor e(a

1 
+ a

2
) may 	be 	replaced 

by c(11, 1 	tp 2 ) E 2 E k zz , which is approximately 26kz because of the smallness 

of k
x
/k. 	Thus, the coordinate transformations have the common limiting form 

ai  + 1 o okz [sin(wt - a l ) + sin(wt - a 2 )] 

a + a 	a
1 

- a
2  a . +

o
kz sin (wt 	

1 
2  2

) cos ( 	2 	) (36) 

from which it follows that 

1p
1 

- ip
2 

E 2 k
x
x - a

l 
- a

2 

* 1  + *2  E 2 k zz 	al  + a 2  + 20 okz sin ( cot - 
a l 	a2 2 	) cos (

a l 	a2 
2 	) 	(37) 

The same analysis is now applied to Eq. (32). Series expansion in powers of 

k x/k yields 



p 

p C 
0 0 
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- P 	2 	e T Esin(wt - a 1 ) + sin(wt - a 2 )] 

P O L O 

I 2 	k
2 

-7k 	
2){2 COS(a l  - a2 ) - COSPa l 	a2 ) 

x 
2 k 

2 

2k 	

x , 
2
(a

l  + a2 )] - cos 	- a2 ) 
2k

2 ‘ a l 	2 )31  

e Sin (wt 	
1 

2  2 ) cos( 	2 	) 
a + a 	

a l 	a2 
	

(38) 

The next step is to substitute the first of Eqs. (37) into the foregoing, 

and to use the resulting expression for p to eliminate al  + a 2  between the 

second of Eqs. (37) and Eq. (38). The pressure expression that is derived in 

this manner is 

2 	e 
sin (wt - k

z
z +

o
kzp) cos (k

x
x) 
	

(39) 

If k
x 

E 0, 	this expression reduces to the well known solution for a 

planar finite amplitude wave at moderate amplitudes [18]. 	For very 

small k
x
/k, 	the signal described by equation (39) is a quasi-planar wave. 

The distortion is measured by the value of o okzp, the change in the axial 

phase variable from its value wt - k
z
z in linear theory. 	The wave is not 

truly 	planar because the amplitude varies with transverse position 

as cos(k
x
x). 	Comparable phenomena are encountered in the far field of 

cylindrical and spherical waves whose amplitude is not uniform in the 

transverse direction [11,19]. 

Suppose that the limits of Eqs. (32) and (33) for small k x/k had been 

derived without considering the interaction terms (those containing 

both a
1 

and a
2

). The result would have been the same, except that a o in such 

an expression would have been replaced by 
1
- 

o
. In other words, half the 

2  
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nonlinear effect when k
x 

« k is due to interaction between the oblique waves. 

The situation for comparatively low frequencies (exceeding cutoff) can 

also 	be 	examined 	asymptotically. 	Suppose 	that kx /k = 0(1) (recall 

that k
x 
< k for propagating modes). In that case the interactive terms in 

Eqs. (32) and (33) are not associated with beating interactions, so they 

remain 0(E 2 ) at all locations. Such effects may be ignored. The remaining 

terms may be written as 

pi 
1) =1)1+1)2, --''7=1Esill(Lot - cc.); j = 1,2 

p C 
0 0 

where 

11)=
2 

z p• j 	j 	o k
z 	

j 

(40a) 

(40b) 

The coordinate straining for each wave p j  is reminiscent of that for a 

planar wave, with an important exception. The nonlinear effect is measured by 

the difference between the nonlinear and linear spatial phases, a. - . In 

an isolated planar wave, this difference is proportional to the propagation 

distance, which would be (k 
z 
 z + k 

x
x)/k for waves propagating in the direction 

 

of either oblique wave. Instead, the distance parameter for each wave in Eq. 

(40b) is z k/kz• It follows that although Eqs. (39) specify a superposition 

of the oblique waves, the presence of one affects the other by altering the 

spatial dependence for the distortion phenomena. 

Another viewpoint for the low frequency (long axial wavelength) case may 

be 	obtained 	from 	a 	different 	resolution. 	Define 	new 	strained 

coordinates n, 	such that 

a l  = 
	

a2 = 
	

(41) 
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Return now to Eqs. (32) and delete the second 0(E) term in each, because those 

terms are not growth effects when k x/k = 0(1). The variables al  and a 2  are 

removed from the functional dependence by forming the sum and difference of 

those equations after substitution of Eqs. (41). This yields 

2 
1 

k
z
z = E +— 

2 
Ea

k 
o k 	

z sin(wt - E) cos (n) 
z 

kx x = 	-
1 
 Ea o  7— z cos (wt - E) sin (n) 

The corresponding expression for pressure obtained from Eq. (32) is 

p 
2  = E sin(wt - E) cos(n) + 0(6

2
) 

The significance of this representation of the signal becomes apparent 

when the particle velocity is evaluated. For this, the oblique planar wave 

decomposition is useful. The approximation v = p/pc o  is applicable to weakly 

nonlinear, as well as linear, planar waves. The propagation 

directions el  and -J
'2 

in Figure 1 may be used in conjunction with Eqs. (32) 

and (41) to represent the individual contributions. Thus 

v = 
1

co E 	el  sin(wt - 	- n) + e2  sin(wt - E + n)] + 0(6
2

) 	(44a) 

The components of particle velocity are therefore 

k 

v
z 
 =v.ez 
	o k

z 
sin(wt - E)cos(n) 

k 
v
x 
 = v • e x  = -cE 0 k

— cos(wt - E) sin (n) 
—  

(44b) 

2 

z 
(42)  

(43)  
p c 
0 0 
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These expressions may be substituted into Eqs. (41), with the result that the 

new strained coordinates are found to be governed by 

3 	v 
kz z = 	

k 
k2 

z 
C 
z

o
o 

z 

' 
v
x 1 

k x = 	7 
x z ok
k
k z c 

(45) 

This form was derived in the earlier analysis that assumed noninteracting 

modes [10]. Constant values of E and n are wavefronts and rays, respectively, 

for the phase of the wave in Eq. (43). The velocity components transverse to 

these lines are v z and vx' 
respectively. Hence, the dependence of the 

wavefronts on vz , and of the rays on vx , was ascribed to self-refraction in 

the earlier work. 

6. EXAMPLE 

The trends identified in the previous section indicate that at low 

frequencies (k x = 0(k)) the distortion process involves only the harmonics of 

the fundamental mode for the waveguide. In contrast, at high 

frequencies (k x  << k) 	the tendency is to form a quasiplanar wave that 

propagates like the true planar mode. 	Identification of these trends leaves 

the questions of when the transitions to each situation occur, and what 

happens in the intermediate regime? 

These matters may be addressed by numerical examples. 	Quantitative 

results in general are obtained by solving the coupled transcendental Eqs. 

(33) for the strained coordinates a
1 

and a
2 

corresponding to specified values 

of x, z, and t. These values then yield the pressure according to Eq. (32). 

If desired, a waveform may be generated by incrementing wt 	through an 

interval 2 	, and that result may be Fourier analyzed to determine the 
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frequency response. 	One simplification in performing a numerical evaluation 

is that, for specified properties of the fluid, the value of p/p 
o  c o

2 
 obtained 

from Eqs. (32) and (33) depends only on the independent variables kx, kz, 

and wt and on the value of kL, (because k x /k E 2n/kL) . For the discussion 

that follows, the fluid is air (p
o 

= 1.2 kg/m
3
, c

o 
= 343 m/s, (3

o 
= 1.2) 

and w = 10 kHz. 

A case of comparatively low frequency is illustrated in Figure 2, for 

which L = 0.20 meter and e = 0.0014166 corresponding to an excitation of 140 

dB re 20 1./Pa at the origin. For comparison, the noninteractive theory, Eqs. 

(40), and the quasi-planar limit, Eq. (39) are also shown in the figure. The 

unimportance of the mixing between the oblique waves is apparent, as is the 

fact that the distortion associated with the planar theory is stronger. 

Altering the frequency for the next example would change the overall 

. degree of nonlinearity. For example, the distance for shock formation in the 

planar wave is 

a = 1/(a 0 k) 	 (46) 

Since the degree to which wave interaction is significant depends 

(nondimensionally) only on the value of kL, the various phenomena shall be 

explored by changing L. Thus, the next case, illustrated in Figure 3, is for 

L = 2 meters, with the other parameters unchanged. The quasi-planar 

approximation is now very close to the new theory. 

The situation for a transitional case is shown in Figure 4, which 

corresponds to L = 0.5 meter. Neither approximation is accurate here. The 

difference between the axial phase speeds of the planar harmonic created by 

nonlinearity and the true planar mode is relatively small. This leads to 

frequency dispersion in combination with the usual amplitude dispersion that 

is associated with a sawtooth waveform. 	The effect is asymmetrical between 
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compression and rarefaction; it is remarkably similar to the near field 

distortion observed for baffled transducers [16]. 

The relatively drastic transition from one approximate theory to another 

resulting from increasing kL by a factor of 10 has a direct explanation. The 

frequency dispersion phenomenon is attributable to spatial beating described 

by the last terms in the coordinate transformations, Eqs. (33). The 

trigonometric identity for the difference of cosines applied to these terms 

shows that 

cos(wt 	a.) - cos [cot - a i - (k 
k 

 - 1) (a i  + aj )] z 

= -2 sin [(a. + a.) (
—k 

- 1)] sin Lot 

	

j 	k
z 

1 	 1 
+ — a . - 	 - 2 ( j 	ai ) 	(mi + ai ) 7]; i,j = 1,2, i*j 	(47) 

The first sinusoidal factor is independent of time; it governs the 

wavelength of the beats. When the argument of that sine term is very small 

compared to 7, the factor is well approximately by (a. + a.)(k/k
z 

- 1). 

Since a l  and a2  may be approximated by kz z, small values of the aforementioned 

argument correspond to cumulative growth of the frequency dispersion effect. 

It follows that the prominance of frequency dispersion is indicated 

by 7/[2k zz(k/k z  - 1)]. In contrast, the significance of the sawtooth 

distortion effect is measured by the ratio of the axial distance z to the 

planar shock distance a. A comparison of the two nondimensional factors 

indicates whether frequency dispersion will be noticeable in the presence of 

sawtooth distortion. Thus, define a beating parameter B according to 
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n/[2kz(k/k z  - 1)] 

1 - (1 - kx 
2 
 /k

2 
)
1/2 

c  (kz) 
	

[  	 (48) 
n 	o 	

(1 - k
x
2
/k

2
)
1/2 

This parameter is 5.08, 0.05, and 0.798 for Figures 2-4, respectively. Cases 

where B is substantially greater than unity can be anticipated to be well 

described by the earlier noninteractive theory for duct modes, whereas values 

that are much less than unity will closely fit the planar wave approximation. 

Another aspect of the distortion process is displayed in Figures 5 and 6, 

which are waveforms at off-axis locations. 	The line x/L = 1/4 is a node 

according to linear theory, as well 	as the quasi-planar nonlinear 

approximation. However, Figure 5, which corresponds to such a location, shows 

that only the odd harmonics are nulled in the oblique wave theories. Hence 

the fundamental frequency of the signal at the "nodes" is twice the excitation 

frequency. Note that both oblique wave theories indicate that the tendency to 

form a sawtooth profile is still present. 

The nulling of the odd harmonics was explained in the earlier analysis of 

the plate problem as being a result of self-refraction [4,6]. The rays in the 

non-interactive theory were shown to be distorted in the direction of the 

transverse velocity component. This caused the nodal ray to cross the axial 

line of zero linearlized pressure twice per axial wavelength, thereby setting 

up the second harmonic signal. It is apparent from Figure 5 that this effect 

also occurs in the presence of frequency dispersion resulting from interaction 

of the oblique waves. 

A waveform for a general location appears in Figure 6. 	The even 

harmonics are more prominent than they were in Figure 4 because the odd 

harmonics are lessened by the proximity to the nodal line. 	This effect is 

accompanied by amplitude dispersion, as evidenced by the tendency to a 

B 
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sawtooth profile, and by frequency dispersion, as indicated by the asymmetry 

between compression and rarefaction. 

A different perspective is offered by the amplitude and phase 

distribution curves in Figures 7-9. These curves were obtained by Fourier 

series decomposition of the computer waveforms into 

2 = 
	Pn  sin[n w(t - to ) - x n ]; x l  = 0  

p C 
o o 

where to is the arrival time of the fundamental in the interacting oblique 

wave theory. The amplitudes p n  are displayed for the three nonlinear 

theories. However the phase lags x n  are displayed only for the latest theory 

-- they vanish in the other descriptions in which the waveform distorts 

symmetrically. 

Although only three harmonics are displayed in Figures 7-9, their trends 

are also indicative of higher harmonics. The earlier observation of the 

increased relative contribution of the even harmonics in the vicinity of the 

"nodal" line x = L/4 is evident in Figures 8 and 9. In addtion, Figure 7 

shows that the phase of each harmonic tends to lag behind that of its 

predecessor by a uniform amount that increases as the signal propagates. This 

effect was also predicted for sound beams [20], whose waveform in the near 

field is much like Figure 4. 

7. CONCLUSION 

The excitation of the true planar mode, which provides a mechanism for 

the interaction of the oblique waves forming the fundamental symmetric mode, 

has been shown to be significant for large values of kL. 	In the limit, 

multidimensionality is only manifested as sinusoidal 	variation in the 

transverse direction, much like the directivity factor for nonuniform 

p (49) 
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spherical waves in the far field [19]. 

In the earlier (small kL) theory the modes are formed from obliquely 

propagating waves whose interaction is only manifested by a change in the 

distance parameter governing the distortion. If each wave were truly 

independent, that parameter would have been the distance over which the wave 

had propagated. 	Instead the distortion of the oblique waves depends on the 

axial distance. 	That theory has been shown here to be valid when the 

underlying assumption of distinct phase speeds is valid. 	In that case, kL is 

moderately larger than 2n , so that the scales with which the signal varies in 

the transverse and axial directions are comparable. The transition from small 

to large kL is predicted by the present theory to exhibit frequency dispersion 

that is responsible for distortion of the waveform that is not symmetrical 

between compression and rarefaction. 

The same mechanism can be expected to enter into other situations in a 

waveguide. For example, suppose two modes are excited. If they have 

different phase speeds, they superpose according to the noninteractive theory, 

[10]. If the two modes have identical phase speeds, the modes combine to form 

a nondispersive group, for which the earlier theory is also valid. In the 

transitional situation, the two modes have phase speeds that are nearly 

identical. The interaction of such modes may be anticipated to lead to 

frequency dispersion phenomena of the type identified here. 
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List of Captions 

FIG. 1 	Geometry of the oblique waves. 

FIG. 2 	Waveform on-axis at z = 3.05 m for 140 dB at the origin, L = 0.2 

m, 	w = 10 kHz. 	: Interacting waves;-- 	Noninteractive 
theory; — — 	Quasi-planar wave. 

FIG. 3 	Waveform on-axis at z = 3.05 m for 140 dB at the origin, L = 2.0 
m, 	w = 10 kHz. 	: Interacting waves; — 	Noninteractive 
theory; — — 	Quasi-planar wave. 

FIG. 4 Waveform on-axis at z = 3.05 m for 140 dB at the origin, L = 0.5 
m, 	w = 10 kHz. ------ : Interacting waves;— — 	Noninteractive 
theory; 	— 	Quasi-planar wave. 

FIG. 5 	Waveform at x = 0.125 m, z = 3.05 m for 140 dB at the origin, L = 0.5 
m, 	w = 10 kHz. 	 : Interacting waves;-- 	Noninteractive 
theory; — — 	Quasi-planar wave. 

FIG. 6 	Waveform at x = 0.1 m, z = 3.05 m for 140 dB at the origin, L = 0.5 
m, 	w = 10 kHz. 	 : Interacting waves;-- 	Noninteractive 
theory;-- 	—: Quasi-planar wave. 

FIG. 7 	Axial dependence of frequency response along x = 0 for 140 dB at the 
origin, L = 0.5 m, w = 10 kHz. 	 : Interacting waves;-- 
Noninteractive theory; 	: Quasi-planar wave. 

FIG. 8 	Axial dependence of frequency response along x = 0.1 m for 140 dB at 
the origin, L = 0.5 m, 	w 	= 10 kHz. 	  : Interacting 
waves;-- 	Noninteractive theory; — — 	Quasi-planar wave. 

FIG. 9 	Transverse dependence of frequency response along z = 3.05 m for 140 
dB at the origin, L = 0.5 m, 	w  = 10 kHz. 	 : Interacting 
waves; — 	Noninteractive theory; — — 	Quasi-planar wave. 
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FINITE AMPLITUDE SOUND BEAMS RESULTING FROM NONLINEAR VIBRATION OF 
A CIRCULAR MEMBRANE UNDERGOING AXISYMMETRIC RESONANT EXCITATION 

J. H. GINSBERG 

School of Mechanical Engineering 
Georgia Institute of Technology 
Atlanta, Georgia 

Summary 

This paper analyses the interaction between a vibrating circular membrane 
contained in an infinite baffle and the resulting sound field radiated 
into a fluid medium contained in the half-space above the membrane. The 
case of resonant excitation of the membrane leads to nonlinear coupling 
between transverse and in-plane displacement. Nonlinearity within the 
fluid medium is described by a recent general treatment of finite 
amplitude sound beams resulting from boundary motion. The vibratory 
response of the membrane is evaluated in a perturbation technique based on 
the modes of free vibration. The results give amplitude-frequency rela-
tions for the plate that account for the inertial and damping impedances 
of the fluid, as well as expressions that may be solved for the pressure 
signal in the fluid. 

Finite Amplitude Effects in Acoustic Radiation  

Consider a circular membrane of radius a that is fixed at its edges 

to an infinite baffle. An excitation at frequency w close to a natural 

frequency is applied on one side, and a fluid medium occupies the half-

space on the other side. The speed of sound and density of the fluid at 

ambient conditions are c, and p 0 , respectively. Dimensional cylindrical 

coordinates are R/k and z/k within the fluid 4thich occupies z > 0, and 

dimensional time is t/w, where k = w/o,. A recent study described the 

effects of material and convective nonlinearity on the acoustic radiation 

resulting from an arbitrary motion on the boundary [1]. Suppose that the 

normal velocity on the boundary is 

1 
i vz1 	= 2 c c o f(R) exp(it) 	c.c. 

z=0 
(1) 

where c << 1 is the acoustic Mach number and f(R)/R 1/2 
is bounded for 

large R. Then the pressure at any (R, z), omitting a mean value correc-

tion term, was found to be described by 



1 	2 I mV 
p 	a cp o c o 	exp(it - pC) J o (ma) dm + c.c. 

0 
(2) 

In general, c.c. shall denote the complex conjugate of all preceding 

terms. The parameters m and p are transverse and axial wavenumbers, 

respectively, .1 0 ( ) denotes the Bessel function of zero order, and V is 

the Hankel transform of the spatial pattern f(R). 

p = i(1 - m
2 ) 1/2 if m < 1 & 

, 
= tm

2 
 - 1)

1/2 if m > 1 

V = f R f(R) J o (mR) dR 	 (3) 
0 

The parameters (a, 0 are strained coordinates defined in implicit form by 

1 j + c.c} J o (na) z = C - 	1(mV/p) exp(it) erfc[(14)
1/2 

 

R = a + IrEa o 	1(mV/p) exp(it) erfc[(pC)1/2] + c.c} J 1 (na) 
	

(4) 

The evaluation of the response of the fluid -membrane system requires that 

eqs. (3) and (4) be interfaced with the equations governing the membrane. 

Equations of Motion for the Membrane  

An elastic membrane undergoing finite deformation due to a resonant 

excitation was studied by Chobotov and Binder [2]. Several shortcomings 

of the earlier work shall be corrected here. Small errors associated with 

using an assumed mode function shall be addressed by employing the exact 

Bessel function mode. Furthermore, the study here shall describe the 
6 

situation for resonance of any mode, rather that only the fundamental. 

The last matter is that the resistive and reactive portions of the fluid 

impedance will be derived analytically. In Ref. [2] the acoustic im-

pedance was based on a low frequency approximation that did not account 

for diffraction. 

Chobotov and Binder began with a derivation of displacment equations 

of motion that accounted for in-plane deformation and geometrical 

nonlinearity. Examination of these equations reveals that the membrane 

displacements are scaled such that 

2 u transverse displacement = e 	; in-plane displacement = e 	(5) 



Based on these definitions and the fact that the acoustic Mach number c in 

eq. (1) is very small, the equation for in-plane motion may be rewritten 

from its original form in [2] as 

22 
r1 	 1 a raw)

2 	(1 - v)  Ow) 2 
 = 
	a u 

L— 	(Ru)j + — 	L) + 
DR 	3R 	2 3R 3R 	2R 	31:1 J 	2 	2 c 	at 

The corresponding equation for transverse motion is 

1 a I R  3w 	c2 rR  3u 3w 	v u  3w I.  1 R  Ow) 3 11 
3R L  3R 	e L  3R 3R 	3R 	2 	LaRJ 

Plz=0 	
2 2

a w r  [Q(R) cos(t) — 	2 	= c 	
2 

cka 	 p o c o 	cw
2 

at 
 

In the foregoing r = p o c o
2a/a o h (h is the thickness of the membrane), Q(R) 

is the radial profile of the excitation applied to the membrane, and 

c 
= 

[E/p(1 
u 	 w 

 - v2111/2 ; c 	(00/0 1/2 
' 	 e 0  = (c /c )

2 
W 
	 (8) 

Note for later use that c w 
<< c

u
. In addition, the magnitude of Q is 

required to be sufficiently small to induce a transverse displacement 

whose peak velocity actually is a small fraction of c o . 

Vibratory Response  

The eigenfunctions for a membrane whose edges are fixed are 

(1) = J o (n) where n = a R/ka and J o (A.) = 0 
j 

A 

(6) 

(7) 

(9) 

Some approximate values are A l  = 2.405, A 2  = 5.520, A 3  = 8.654. Proximity 

to resonance is specified by w = A.° 
w
/a. 

 
In general, the transverse displacement may be expanded in a series 

of modes. When the excitation is close to one of the natural frequencies, 

the corresponding mode may be expected to dominate the response. Since 

the nonlinear terms in eq. (7) are 0(e 2 ), the transverse motion in this 

case should satisfy 

wJ J 
 w.(t) + e w(R, t) 
	

(10) 

Where w(R,t) is Orthogonal to 	over the interval 0 5 R 5 ka. 



Substitution of eq. (10) into eqs. (6) and (7) shows that all deriva-

tives have comparable magnitudes. The largeness of c u  relative to c w , in 

combination with the resonance of w, makes it permissible to neglect the 

inertia of in - plane motion. An expression for u may then be found 

analytically. Toward this end the 0(1) term for w in eq. (10) is sub-

stituted into eq. (6). Using the chain rule to replace R by n results in 

an inhomogeneous ordinary differential equation for u. 

a  ri 2—(7 

 

A. 
	0 r 	( ) 

3n'n an "-
01 _ — 

2 a wj2 L an  L 101 2 	 v
/ ] + 
	v )  [J1(n)2]} 

This equation may be integrated twice, after which the constants of in-

tegration are selected so as to satisfy the condition that u = 0 at R = 0 

and R = ka. Repeated application of the recursion relations for Bessel 

functions yields the following expression. 

A. 
u= -1  w U ka 

j 2 
 

1 
U =—.(11-v)Jo(n)J1(01-27vn[J,(A.)2 	J o (n)

2 
— J1(n) 2 ] 	(12) 

Amplitude-Frequency Relations  

Theequationforw.(t) is obtained by substituting eqs. (10) and (12) 

into eq. (7), then applying orthogonality of w with respect to 4- The 

result is 

	

2 	 2 
1 	(

A
j 

	

--Ti-<( --a- ) 	[A. j1(a - )]

2 

 [(
(1.)
- )

2 3 w

j  A j cw 	at
2  

2 A 4 
( 1) 6, w. 3 

c o  ka 	j j 

r 	P l  J z=0 
 J(n) dn 
2  J o (n) 	 (n) 	(13) 

A. 

	

cos(t)=I 	n Q J Eka 	 Eka 
0 	p oc o 	 0 

where 6. is a coefficient of•nonlinear elasticity that is found to be 

A, 
6 	J {U [(1 	v) J 1 (n) 2  — 2v J o (n) J i (n)] 	ln J 1 (n) 4 1 dn 	(14) 

111 0  2 

values of this parameter for the first three resonances when v = 0.29 are 

6 1 = 0.08206, 6 2 = 0.11996, 6 3 
= 0.14069. Chobotov and Binder used the 

approximate fundamental mode 4)
1 = 1 - (R/ka) 2 to obtain 6

1 
 = 0.08424. 

Because of the smallness of the nonlinear term in eq. (13), w j  will 



be harmonic in the first order approximation. Let A be the complex 

amplitude, and let w denote the dimensional transverse displacement found 

from eq. (5). 

 
w 	

EA 
exp(it) + c.c. + 0(c 2 ) (15)  j = 2 exp(it) + c.c. ; w = 2k j°(1)  

The Henkel transform V of the normal velocity at the membrane may be 

evaluated by comparing the (dimensional) time derivative of w to eq. (1). 

This defines the shape factor f(R) for R < ka. For R > ka, f(R) = 0 

because the baffle is stationary. The transform is found in this manner 

to be 

ka 
1/..--AG;G= .1RJ o (A.R/ka) J o (mR) dm 

The The coefficient G, which may be evaluated in closed form, leads to an 

expression for p according to eq. (3). The acoustic loading applied to 

the membrane is readily found from that expression, because = 0 and a = 

R at z = 0, see eqs. (4). 

	

1 	 nG 
pl 	

° 
 p c°2 	f EA 	-- exp(it - pz) J o (mR) dm + c.c. 	(17) z=0 	2 	o 

The final step leading to the amplitude -frequency relations is to use 

the method of harmonic balance to equate all terms in the equation of 

motion that are proportional to exp(it). (This procedure is equivalent to 

removing secular terms in singular perturbation schemes.) The equation 

obtained in this manner relates the amplitude EA to the frequency w and 

the generalized modal amplitude CL for the excitition. 

2 	 36E
3
A
2A

* 

	

1 + r (yd 	
wa 	

+ i - im ) - q-jcw ) J EA   - r 7 ka Q 

2e o [kaJ I (A.,)]
2 

j 	
j 

where EA denotes the complex conjugate. The coefficients Y rn  and i d  are 

reactance (added mass) and resistance (damping) impedance coefficients, 

respectively, resulting from the acoustic radiation. 

d 	'ka A. 2
JI 	0 

(A ) 2 	(1 - m 2 ) 1/2 
dm 

j   

(16)  

(18) 

2 
1 2 

m G 
 



lw  

	

2 	m G
2 

Ym dm 

	

2 	 2 	1/2 
ka A 	J,(A.)

2 (m - 1) 
.) 	1 

(1 9 ) 

Equivalent expressions were derived by Bouwkamp [3] by using a scattering 

integral. 

The real and imaginary parts of eq. (18) may be solved for the mag-

nitude and phase of EA; the latter represents the phase lag of the 

response relative to the excitation. Then the acoustic signal may be 

evaluated by substituting the value of EA into eqs. (16) to form the 

Hankel transform V. 

Results  

Figures 1 and 2 depict the resistance and reactance coefficients as a 

function of ka. The peaks in Y m are centered around ka = A. for the 

respective resonances, whereas Y d  rises almost linearly beyond those 

locations. Suppose that the fluid is water, in which case c w/c o  << 1 (a, 

<< G o o 0 2 
because G, cannot exceed the yield stress). Furthermore, note 

thatka=Ac
w
/c o whencd=u1.,and that ka >> 27 for closely confined 

sound beams. It follows that resonant excitations at high ka values for 

beam forming only arise for very high order modes. 

0.0 
	

10.0 
	

20.0 
	

0.0 
	

10.0 
	

20.0 

ka 
	

ka 

Fig. 1. Resistance Y d  for 	 Fig. 2. Reactance Y for 
the three lowest modes. 	 the three lowest modes. 

The dependence of the harmonic amplitudes forming the pressure 

waveform along the axis of a sound beam is depicted in Figure 3. Only the 

fundamental frequency, marked #1, is treated by a linearized analysis. 
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The corresponding result for a piston (uniform velocity) is shown in 

Figure 4. In both cases 

sound pressure level in 

tions in the piston case 

ka = 40 and c = 0.00102, which produces a maximum 

the piston case of 250 dB re 1 pPa. The fluctua- 

are due to diffraction effects that alternately 

reinforce and cancel the fundamental frequency in the near field, z < 

(ka) 2/2-m. Diffraction effects are much less significant for the membrane 

because the particle velocity is continuous across the edge, so the 

propagation curves are smoother, and the peak values are lessened. 

Fig. 3. Range dependence of 
the amplitude of the three 
lowest harmonics in a sound 
beam generated by a membrane, 
as a fraction of p o c 0 2 . 

Fig. 4. Range dependence of 
the amplitude of the three 
lowest harmonics in a sound 
beam generated by a piston, 
as a fraction of p o c 0 2 . 
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OVERVIEW 

Membrane 
E, 27 :Elasticity 
cro  : Initial stress 
h :Thickness 

Resonant Excitation 
(-40 :Frequency 

Acoustic fluid 
./›. :Ambient density 
c.:Ambient speed 

of sound 

k w/co : axial 
wave number 



PROBLEM STATEMENT 

a) Excitation drives membrane 

b) Resonance 4. finite displacement effects 

c) Compatibility between velocity of 

membrane and fluid 

d) High acoustic intensity .imaterial and 

spatial nonlinearity 

e) Fluid impedance on membrane 

What is the membrane recponce? 

What are the effectc oF finite 

amplitudeo on the acouctic raditicn7 



NONLINEAR SOUND BEAMS 
J. H r G 	r - 	. A . 

•■„I 

Governing Equations 

13 -4 co  74 

T 	ata 	
(.0-1)(;7) 

ex pti,t)+c.c, EC f(R) 
2 	° 

E = acoustic Mach number << 1 

Perturbation solution: 	 I 4  2 2  

a#S1 
az 1 1 . 0  

First order - Hankel transform 
spectrum of transverse wave numbers 

Second order - quadratic nonlinearity 
dual spectrum 

Asymptotic integration - growth effects 
reduction to a single spectrum 



Uniform Validity 

Require P2  /P, bounded for all z 
Distort space-time grid for each transverse n 

WI 

 

ex (if .44 	Jo  rn 	 C C 

2 
p = 	A, co  f 

0 

where 
112 

A.4 	 - 	2) 1/ 1 f nit < I 	= vn 2 -1 ) 

V= l R f(R) 1/47; ( R 

COor-ohmai e 	.5  .f rct ivi  

7 — 	- Tr E /81, 	2117  „p(it) erfc [(Tr t)e/2 ] C.c.1 So (vvcK) 

410 

	

R = 1"( -1r-  Tr E/go 	tri e.sp(i+) 
	

) 112 ] + C.C.} II  (frYIK) 



GENERAL APPROACH 

Vicinity of the membrane 
z and 	R when z= 0 (1) - small 

nonlinear effect near the source 4 use 
linear fluid-structure interaction model 

Determination of membrane response 

If resonance is sharp (high 0), then fluid 
impedance is light - use linear acoustics 
and nonlinear structural theory 

If acoustic impedance is heavy - use linear 
acoustic and structural theories 

Assume high C case 

Evaluate nonlinear acouctic radiation after 
vibration propertieo ore known 



MEMBRANE EQUATIONS OF MOTION 

Chobotcv and Rinder, J.A._ 

Equilibrium of an sectorial segment 

a) Finite strain and rotation 
b) Force balance in transverse and 

radial directions in deformed 
state 

c) Membrane pre-stress 
d) Linear stress-strain 

Scaling - transverse velocity << c o 
 Transverse displacement: EANII-c 

Resonant excitation of membrane 

Pex 	" co 	(R ) cos (i) 

Resonance -4P in-plane < transverse 
thus 	in - plane displacement: Ou/k 



Transverse motion 

R  
R aR t 	?1,1 

E 2 rn 7(.4  zw 
e o 	aR 3R 

+
O 

+ 	
;W 

R( —  ) a 	 3/ rk 	2 	aR 

1 	 [ 4; _.+ 	 Pex P L .. ] = 
c, 432 	2 1 V 

Ct41, 2 	)( 2  

In-plane motion 

aw  1 	I 	‘4  (R i4 d -1-  2 ; Ik %.aR 

C 2 	a 2 rd  

C  Z 7 ta 

where 
[  1

/2 
u 	

E 	.1 
:-- t ( i _ v 2) C uv  e a  

Cw t 

CL41 



VIBRATORY RESPONSE 

Linear analysis 
Eigenfunctions 	= Jo  (aiR/ka); J o (AJ) = 0 
Natural frecluencies 	w- = 	Cw  /a 

Chobotov and B i nder uod4--( ( e/k 2 a2)  

a) Descriptive of fundamental mode only 
b) Not exact free vibration properties - does 

this affect higher order corrections? 



FINITE AMPLITUDE EFFECT 

Nonljneor-ity jc u 

Resonance 	w = w1  Ct) cpi (R) + 0(0) 

Substitute into equation for u 
a) Neglect in-plane inertia because (.41<< 

natural frequency for radial displacement 
b) Employ many identities for derivatives 

and integrals of products of Bessel 
functions 

Integrate o. d. e. for u directly - 

satisfy u= 0 at R= 0 and R= ka 

Ai 	r T;  

	

U = 	vv, 

where ).1 = Ai R/ka, 

	

= 	( 1 + 	j0 (1) 	+ p(,J-,(2i ) 2  - 
Jo  ( . )2 ty1 (1)21 



COMPLEX AMPLITUDE - FREQUENCY RELATION 

Harmonic excitation =0 w. =-21 A exp (it) + C c. 

Compatibility 
2 i i  E C o  A Jo 01) ex p(a) c.c. 	R< ka 

 a .0 	0; R > 	
r ick 

thus V = - A G; G =j R Jo  (R. R/ka) Jo  (mR) dm 

Substitute pl 
	

w, and u into d. e. for w 

moo Co Z  

kh 

2 
E 

I co a \ 1 
IC" ) 	C w  I 

.3 
S 	  e 3 A 2 i0 

2 eo[ka J.; 0).1 2- 
eoebiplex 
co_1d up ctte 

ka z  

j° 2  '11 

gaelice( .traiiScor") 

of 0(R) 



COEFFICIENTS 

Nonlinear elasticity: S 

Fundamental recolioncq:: 	= 
Chobotov and Binder s= 0. 0 84-2.4. 
Present analysis 	= 0.0 8Z Ok• 

Acoustic impedances: 

RPtci ctance: Y64 

Reactrliice •••• 
4.1M 

2  

Ai4J( ')2 

2 

1 TriTi 

 

  

Same impedances previously obtained by 
. 	:3. A. !°:. A. 
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E < < 

OBSERVATION 

Resonance 4.(A,  = 	cw/a 
but cw<< c o  because To < yield stress 

Thus ka =Aj  c w/ c0  at resonance 

NONLINEAR DISPLACEMENT EFFECTS ARE NOT IMPORTANT 
FOR MEMBRANES IN WATER EXCEPT FOR VERY HIGH ORDER 
RESONANCES 
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S3. Fourier series representation of finite amplitude sound beams. Hsu-
Chiang Miao and Jerry H. Ginsberg (School of Mechanical Engineering, 
Georgia Institute of Technology, Atlanta, GA 30332) 

An earlier analysis of finite amplitude sound beams derived general 
expressions from the behavior in the off-axis region [J. H. Ginsberg, J. 
Acoust. Soc. Am. 76, 1201-1214 (1984)]. An asymptotic analysis of the 
region very close to the beam axis confirms the earlier result for the veloc-
ity potential. The signal is rewritten in a form that makes the contribution 
of each wavenumber in a continuous spectrum appear to be the sum of two 
waves traveling transversely, as well as axially. The coordinate transfor-
mations required to renonnalize this form lead to a temporal Fourier 
series that is reminiscent of the Fubini solution for finite amplitude planar 
waves. The complex amplitude of each harmonic is obtained from an 
integration over the transverse wavenumber. The computational effi-
ciency of this representation permits extensive evaluation of propagation 
properties. An example compares the signal derived from a piston to that 
obtained from the one-dimensional assumption that p = pal, on the 
boundary, which has been employed in prior investigations using approxi-
mate parabolic equations. [Work supported by ONR, Code 425-UA.] 
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transducer. Mosaad A. Foda and Jerry I-I. Ginsberg (School of 

Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 
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In a previous presentation [J. Acoust. Soc. Am. Suppl. 1 75, S92 

(1984)], a nonuniformly accurate expression for the velocity potential was 

derived using a singular perturbation procedure. The linearized signal 

Was represented by a dual King integral, and the cumulative growth was 

evaluated asymptotically. In this paper, the renormalization version of 

the method of strained coordinates is employed to annihilate the secular 

terms. The result is a uniformly valid expression for the acoustic pressure 

at all locations preceding the formation of a shock. Additional discussion 

is devoted to a simpler model that interfaces the dual frequency King 

integral in the nearfield with nonlinear spherical distortion in the farfield. 

The results obtained from both descriptions in the case of a parametric 

array (proximate primary frequencies) agree better than earlier theories 

with previous measurements performed for a wide range of parameters. 

[Work supported by ONR, Code 425-UA.] 

Hyatt Regency Hotel 
Nashville, Tennessee 
4-8 November 1985 



FINITE AMPLITUDE ACOUSTIC WAVES GENERATED 

BY A BAFFLED DUAL FREQUENCY TRANSDUCER 

M. A. FORA 

J. H. GINSBERG 

SCHOOL OF MECHANICAL ENGINEERING 
GEORGIA INSTITUTE OF TECHNOLOGY 

Work E;upportod by ONR Code 425  -UA 



ARBITRARY EXCITATION OF TWO PRIMARIES 

Cylindrical Coordinate 
(R, z) 

BOUNDARY CONDITION : 

 

vz  = 	leif,(R) exp“ight)-f. E2fz(R)eXp(64 12t)j-i- C.C. 
2f 

denotes Comp lex Cortplatt 

where 

=J frecluency component Mach number 
E = source Mach number 

R f(R) lc ricw c continuouc ;74 n d 
y  

-mmmmw 



FIRST ORDER SOLUTION FOR THE VELOCITY POTENTIAL 
DUAL FREQUENCY KING INTEGRAL 

00 

it 
nVi eXPLINI(i . t-./tint)]L (u  " R)  

0 	
An 

rA/2 e xp w2((t- 	10( 2r? R) ,Icin 

C • C. 

(a) Hankel transforms of the transducer 
vibration are V, and V2  

(b) Transverse wave number is n. 
(c) Axial wave number is 

i(1 -n 2 )\/2 ; U 	n` 1 (propogotin_ 

(cvonescent) 

itAn 



appears on& if 

(`4
1)11-4) 

SECOND ORDER POTENTIAL 

Signal at the sum of any two frequencies: 

2 W 1 	-&2442 	(41,46412, 	Wa —u.12  

95  2 = Ck2 	99a 4 CP2 	-1° 02 

0. 

2itvi iii ( 	 1,403 2 n 2  V( (FA z) 2  
TA/Tt  

eXp [( 1)).-t 44)(it-AAnZA { ( 454R) J;)(141i ng)_/,(kyR) ✓,64)(4/0] cin 

C C. 	Subdo,ir a 	ierer).5 

X 

Similor form for difference frequency 

The expression for the acoustic pressure is 
not uniformly accurate 

€ 2 02  
dt 	TF )  



SECOND ORDER SOURCE TERMS 

EQUATION GOVERNING THE SECOND ORDER POTENTIAL 

C7 
2 	

- 	,,,Z11/7-71-1 
f Jp(winR) Jp(wem 

wink) Ja  (weoli) 

exp 	WI ♦ w 	— t45',(An  4 wt  pm  )2 ) cjr1 dm 

Particular.  .solutions ==> Consist of: 
second harmonics, sum and difference frequencies 

(1) Form suggested by method of variations of 
parameters 

(2) Secularity as 
(3) General solution when min must match 

particular solution when m=n 
( 4 ) Asymptotic integration by Lopicce's method 
(5) Prot dure as by Gin&,berg NASA (19C4) 
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5e/ f.. ac/ion 

Sum Fi-epency 

F—  

1 	5e ff- 	ticrri 
[)r .fcerence Fre9 . 

L. 

RENORMALIZATION OF THE SIGNAL 

Study behavior off-axis. then match back to R<<1 
Signal off-axis ==> pairs of interacting 

cylindrical waves: inward and outward: 140)4-R 
Each propagates in postive axial direction. 
Renormalize each cylindrical wave independently. 
Split up cylindrical 

Four coordinate transformations. 
Match back to Forms that are valid for all R. 



QUANTITATIVE EVALUATION 

(1) Discretize transverse wave number spectrum. 
(2) Evaluate coordinate transformations. 

Numerical computotion is very intrlive tpccuse: 
(a) Resolution in wave number 
(b) Coordinate transformations 
(c) Resolution in time domain 

ALTERNATIVE ALGORITHMS 

Furfied of pictn trunsducer: Lockwood (197D ARL 
Axisymmetric spherical coordinates Cr.()) 
Given : P(re; .G.t) =E..Fc(19,Wit) 

then P(r,G.t) =E-44FEepwi(t - c'< -0J 
where : r=0(4-40<1 n(oei%)P 

Solve a single transcendental equation 



METHOD I - NONUNIFORM SPHERICAL PROPAGATION (NSP) 
Field po , r)"-  ,,,„„knear 	 

Spher ca.I pro paj  

Non lArit'forrn 

pt.( Si 	f row, 

(per -ituvbetlia,i series 

Interface with spherical model using 
P(q.e,t)=Ez (A,7,00  sin[ (nw,t+mit) 

n,/7, 	) ) 1, 2.  

(1) Select spherical boundary r. 
(2) Evaluate signal at the transition distance , 

from the nonuniform pressure expression. 
(3) Excitation ==> amplitudes and phases: 

primaries. 2 nd harmonics. 
sum and differncc frequencies. 

(a) No coordinate straining required. 
(b) Input frequency response given directly. 
(c) Not a thorough description of 

distortion in the nQorfield. 

TranSiii 	C 151-CIPI tt 



METHOD II - UNIFORM SPHERICAL PROGAGATION (USP) 

Trctr1S1 74101-1 c 11571-Ance 

Interface with spherical model using 
P(1,7,e,t)=272: (A,0 sinC 

m 	0, I , Z 	• - 

(1) Employ nonlinear King integral to 
signal at the transition distance 

A e r1,21 )0 J 

find the 

0 
(2) Two dimensional Fourier series yields 

frequency response at transition to forfield. 
(3) Use this si9nal to generate 

nonlinear spherical wave at n > r . 

(a) Efficient al9orithim. 

(b) USP model results are very close to the 
Ki ng integral . R 	leny 7`A i 	2 ko az- 



Behneti and E3Iackstoci-c JA5A (1975) 

ci. 

0 

70 • • 	Experimental Data 

Predicted Results 

0.1 60 

0 

a. 
e (/) 

50 6 .  
4  

40 

30 o f I Ili, ( 	 I 

0.1 	0.2 	0.4 
	

0.6 0.8 1.0 
	

2.0 	4.0 	6.0 6-0 10.0 

RANGE (ft) 
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Waveoern For Bennett and Blacksiock Dada of z=18,7; 

and Prim ary Frequencies of 25 1-0-4z and 20 KHz 

Nonlinear Signal 

Linear Signal 
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CONCLUSIONS 

(1) General King integral is valid for 
arbitrary frequencies. 

(2) Improved agreement in parametric array 
configuration between the prediction from 
the present model and experiments ==> 
interactions in the Fresnel zone ore important. 

(3) Computional time for the King integral 
increases as the propagation distance 
increases. 

(4) Switching from nonlinear King integral to 
nonlinear spherical wave results in 
an efficient model. 

(5) Experimental work is needed to obtain 
propagation characteristics. waveforms, 
and phase measurments for 
arbitrary Frequency combinations. 
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