
THE AVERAGE OF A SET OF COMPATIBLE CURVES AND SURFACES

A Thesis
Presented to

The Academic Faculty

By

Mukul Sati

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology

August 2019

Copyright c©Mukul Sati 2019

THE AVERAGE OF A SET OF COMPATIBLE CURVES AND SURFACES

Approved by:

Dr. Jarek Rossignac, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Greg Turk
School of Interactive Computing
Georgia Institute of Technology

Dr. Concettina Guerra
School of Interactive Computing
Georgia Institute of Technology

Dr. Thomas Kurfess
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Karen Liu
School of Interactive Computing
Georgia Institute of Technology

Date Approved: April 18, 2019

ACKNOWLEDGEMENTS

Words cannot convey my appreciation for my advisor Dr. Jarek Rossignac, but I will

try. Dr. Rossignac has been a mentor and guide for both research method and research

philosophy. He allowed me the freedom and luxury of working at my pace and owning

my learning. Very importantly, he made me comfortable asking questions. Working with

him exposed me to a variety of research problems and, while I grappled with each of them

to varying levels of success, Dr. Rossignac always motivated me to strive to understand

the essence of the problem. Thank you, dear sir, for making me fall in love (again) with

geometry and math – a fascination that I am sure will last a life-time.

I would like to thank Dr. Thomas Kurfess for introducing me to, and encouraging

me to get practical experience with manufacturing. Thanks also, to Dr. Roby Lynn for

being ever-willing to answer my incessant, basic questions about machining, mechatronics

and control. Also, I would like to thank Dr. Tommy Tucker and Dr. Chris Saldana for

insights and assistance on the CNC control work that funded a significant portion of my

graduate studies. My interactions with people in the M.E. department at Georgia Tech have

significantly influenced my research interests.

I would like to thank my committee members, Dr. Greg Turk, Dr. Concettina Guerra,

and Dr. Karen Liu for their valuable inputs and for their service. Along with my advisor,

Dr. Turk and Dr. Liu were ever present during my doctoral education, were exemplary

teachers, and model researchers. I was continually inspired by both their technical skills,

and their calm and poised demeanor.

Thanks are also due to members of the graphics group at Georgia Tech for stimulating

discussions. I would also like to thank my friends Sandeep and Aishwarya for non-remote

counsel. Finally, I would like to thank all of my family for their blessings, support and

guidance. Especially, Meghna for lovingly putting up with me, my parents for their uncon-

ditional love, and, my brother Saurabh for always being a willing listening ear.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . ix

List of Figures .xviii

Chapter 1: Introduction . 1

1.1 Thesis overview . 1

1.2 Thesis structure . 7

Chapter 2: Background . 10

2.1 A motivating example: The shoe fitting problem 10

2.2 Preliminaries: Averaging numbers and points 11

Chapter 3: Averaging vectors, lines and planes 15

3.1 Averaging a set of unit vectors in 2D . 15

3.2 Averaging a set of unit vectors in 3D . 16

3.3 Averaging a set of lines in 2D . 17

3.3.1 Zero-set average line (zAL) . 18

3.3.2 Valley-set average line (vAL) . 19

3.4 Averaging a set of planes in 3D . 23

iv

3.4.1 Zero-set average plane (zAP) . 23

3.4.2 Valley-set average plane (vAP) . 24

3.5 Averaging a set of lines in 3D . 25

3.6 Weighted average of a set of lines in 2D 29

3.6.1 Weighted zero-set average line (weighted zAL) 29

3.6.2 Weighted valley-set average line (weighted vAL) 29

3.7 Properties of the average line and the average plane 30

3.8 Geometric interpretations . 30

Chapter 4: Prior art . 33

4.1 Averaging . 33

4.2 Averaging shapes . 34

4.2.1 Establishing correspondence . 34

4.2.2 Extracting features from a scalar field 37

4.2.3 Medial axis and ball morph . 41

4.2.4 Staggered, iterative optimization 42

4.2.5 Guaranteed homeomorphic approximations 43

4.3 Relation of our contributions to prior-art 43

Chapter 5: Averaging closed, compatible planar curves 46

5.1 Snapping for curves in the plane . 46

5.2 Projecting onto the average line . 47

5.2.1 Projecting on the zAL . 48

5.2.2 Projecting on the vAL . 48

v

5.3 Tracing: Accelerated Snap . 50

5.4 Experimental results . 52

5.5 Application: Mixing shapes via weighted averaging 53

Chapter 6: Details and discussion of the Snap method 55

6.1 The asymmetry drawback of closest projection correspondences 56

6.2 Ball-map: symmetric center-curve and closest projection correspondences
for 2 curves . 59

6.3 Scalar fields for averaging for n curves . 60

6.3.1 Zero-set of summed signed distance function 60

6.3.2 Valley-set of summed squared distance function 63

6.3.3 General approach to averaging using scalar fields 64

6.4 Snapping using tangent lines . 65

6.4.1 Compatibility conditions for a set of input curves 66

6.4.2 Implicit clipping of the valley-set by Snap 70

6.4.3 Convergence of Snap . 72

6.4.4 Symmetry properties of the average 76

6.4.5 Incremental averaging . 77

6.5 Beyond compatible configurations . 77

6.5.1 Gap relative projection (GRP) . 77

6.5.2 Tracing: implicit GRP . 78

6.5.3 Constructing a set of compatible curves from the input-set 79

6.6 Checking validity of the average . 81

vi

Chapter 7: Averaging a set of compatible surfaces 82

7.1 Snapping for surfaces . 82

7.2 SymmetricSnap: Snapping by moving parallel to the local average normal . 83

7.3 NormalSnap: Snapping by moving along a seed surface’s normal 85

7.4 Implementation details . 86

7.4.1 Tracing for surfaces . 88

7.5 Experimental results . 89

7.5.1 Validity checking . 90

7.5.2 Symmetry: Invariance to seed mesh 92

7.5.3 Convergence properties . 92

Chapter 8: Averaging closed, compatible non-planar curves 93

8.1 Snapping for curves in 3D . 93

8.2 Moving to the local average line . 96

8.3 Implementation details . 98

8.3.1 Computational optimizations: RestrictedSnap 99

8.4 Experimental results . 101

8.5 Applications . 104

Chapter 9: Experiments on averaging curve segments 113

9.1 Background and motivation . 113

9.2 OpenSnap: Snapping for roughly parallel curve-segments 113

9.3 OpenSnap details: Clipped correspondences, geometry and field modifica-
tions . 117

vii

9.3.1 ClippedClosestProjection: Selecting active curves 118

9.3.2 Join curve specification using field and geometry modifications . . . 119

9.4 Average curve for parallel curve-segments using OpenSnap 120

9.5 DirectionalOpenSnap: Average curve-network from non-parallel inputs . . 121

9.6 Conclusion . 122

Chapter 10:Averaging tool-paths for analyzing systemic error and noise in a
CNC machining process . 124

10.1 Background and motivation . 124

10.2 Description of the tool-path data acquisition system 127

10.2.1 PocketNC and MachineKit . 127

10.2.2 SculptPrint . 128

10.2.3 Trajectory generation . 129

10.2.4 Encoder feedback . 130

10.3 Experimental results . 131

10.3.1 Experiment description . 131

10.3.2 Data analysis . 131

References . 140

viii

LIST OF TABLES

6.1 For different configuration of two circles with an annular gap, for a set of
samples {p} on a seed circle, the value max(

∣∣∣ ‖Moven(p), p1‖−‖Moven(p), p2‖
∣∣∣)

– the maximum absolute value of the difference in distances between the
‘moved’ to point Moven−1(p) and its closest points p1 and p2 on the two
circles at the start of the nth Move iteration. 72

6.2 For different configuration of 3 and 4 circles with an annular gap, the max-
imum (over all seed samples being Snapped) of the length of the Move
vector during the nth Move iteration. 74

7.1 The variation, and its rate of change, between evolving surfaces resulting
from applying Snap to different seed meshes in a family. For a set of in-
put triangle mesh families, the second column reports the maximum of the
mean Hausdorff distance (sampled) over all pairs of meshes in each family.
Subsequent columns report the maximum mean Hausdorff distance over
all resulting triangle-meshes for a particular Move iteration, for increasing
Move iteration count, first for SymmetricSnap’s Move iterations, and, then,
for NormalSnaps’ Move iterations. Each Hausdorff distance is normalized
by the diagonal of the bounding box of the pair of meshes under consideration. 89

7.2 The Snap procedure is performed for each vertex of a triangle mesh in the
family, and the average and max distances moved by the image of the vertex
under successive Move iterations is noted. This is done with each triangle
mesh in the family serving as the seed, and, the summary statistics reported
above are the maximum of the average and mean distances moved. The
distances are normalized with the average max mean Hausdorff distance
reported for the family as reported in Table 7.1. 89

8.1 For different sets of 3D curves, the maximum (over all seed samples being
Snapped) of the length of the Move vector during the nth Move iteration. . . 102

ix

LIST OF FIGURES

1.1 What is the average of a set of curves? . 1

1.2 A set of input curves in the plane and the average curve (red). 2

1.3 A set of input surfaces and the average surface (red). To better reveal the
internal structure of the surfaces, we have clipped each surface with a clip-
ping plane. 3

1.4 A set of input curves in 3D and their average curve (red). 3

1.5 For a set of input curves (left), we compute not just the average (right, red),
but, also a variability field over the average. The variability field is visu-
alized here using a translucent, cyan-colored offset tube of variable radius.
The radius of the tube at a particular point on the average is proportional to
the variability value at that point. 4

1.6 Top Left: Two identical input circles and their representative (red, coinci-
dent over the input circles). Top Right, Bottom: Two non-concentric, equal
radius circles (blue, green) embedded at different locations in the plane and
their representative (red). 5

1.7 Aside from computing the average (red), we also compute for each point
on the average, a corresponding point one each input shape (blue, green,
cyan curves). The correspondences are visualized here as green, blue, cyan
arrows that point from a point on the average to its corresponding point on
each input. 5

1.8 We present algorithmic modifications that allow computing representative
curves for some configurations of inputs that contain curves with boundary
(left) and that contain self-intersecting curves (right). 7

x

2.1 Left: Two concentric circles (blue, green) and the set of points where
the summed squared distance attains a minimum value (red). Right: Two
non-concentric circles (blue, green) – the minimum value of the summed
squared distance is attained at points (red dots) where the circles intersect. . 14

3.1 For a set of three unit vectors (black), the normalized linear average (red),
the squared dot average (blue) and the spherical average (cyan) are shown. . 17

3.2 vAL (magenta) and zAL (cyan) for four parallel lines (left) and for non-
parallel lines (right) oriented towards the right. 23

3.3 Planar averages for a set of planes: The left figure shows an input set
of planes to be averaged. For this input set, the vAP and zAP are nearly
identical. So, in the right figure, we display just the vAP (light yellow
colored) overlaid over the inputs. 25

3.4 Left: zAP (pink) and the vAP (yellow) coincide for two planes (a slightly
larger portion of the vAP is shown). Right: Given four input planes, zAP is
more affected by the blue outlier than vAP. 26

3.5 Three input lines (stippled), and their average computed using the proposed
formulation (red). Left: Two input lines (cyan and blue) intersect and, the
yellow line is parallel to their bisector. Their average (red) is parallel to
the yellow line and to the bisector of cyan and blue. It is twice closer to
that bisector than to the yellow line. Right: The average passes through the
common point of intersection of all the input lines. 28

3.6 Top Left: Three parallel input lines. Top Right: The average line (red)
and the summed squared distance field visualized over it. Bottom: The
level sets (black) of the summed squared distance field are lines, and, the
average line (red) is the line on all points of which, the gradient is zero. . . . 31

3.7 Top Left: Three input lines. Top Right: The average line (red) and the
summed squared distance field visualized over it. Bottom: The level sets
(black) of the summed squared distance field are ellipses, and, the average
line (red) is directed along a principal axis. 32

4.1 Left: The average (red) of two curves (blue & green) computed using cor-
responding points when the curves are parameterized by arc-length (the arc
length value of 0 is assigned to the dotted locations and increases along the
directions indicated). Right: The average (red) computed by techniques
presented in this thesis. 35

xi

5.1 A 2D sketch of the initial steps of the Snap procedure. From left to right:
(a) Shows three input curves {Ci} and the initial location of p, which is
initialized to a sample p∗3 on the seed curve C3. Each ‘Move’ iteration of
Snap will update p. (b) and (c) demonstrate the two phases in a single Move
iteration. (b) Shows the closest projections {pi} of p, and the associated
tangents {ti}. The inset shows the direction of the “average” tangent t in
red. (c) Shows how we project p to the average line (gray) by moving
orthogonal to the average line’s direction t, i.e., along the normal to the
average line n. p′ will become the new p for the next iteration. (d) Shows
the projections of the new p onto the input curves and marks the start of the
next Move iteration. 47

5.2 Example of sets of compatible inputs with their vAC (red). 53

5.3 Three input curves (green) and the resulting vAC with inflation (cyan). . . . 53

5.4 Left: Frames (black) of an interpolating morph between two input curves
produced by using a weighted vAC formulation. Right: Frames of an an-
imation defined by three control curves using quadratic Bézier weights of
(1− t)2, 2t(1− t) and t2. As expected, the central curve is not interpolated. 54

6.1 Left: Both images show portions of two curves (magenta, green). A config-
uration where the closest projection maps two red points on the green curve
(red) to blue points that are far from each other along the magenta curve.
Our presented approach identifies such configurations as invalid. Right: A
configuration where the closest projection map is well behaved. 58

6.2 When the average is computed using the correspondences established by
the closest projection from one of the input curves, chosen as the base,
the average and the correspondence map depend on the choice of the base
because the closest projection map is asymmetric (Left). In general, if the
closest projection of a point p1 (red) on one curve (C1, green) onto another
curve (C2, magenta) is p2 (blue), then, the closest projection of p2 onto C1

is not p1. Right: Samples on one average curve obtained by selecting the
cyan input as base are shown as blue dots, along with the cyan edges to
their closest projections. The average curve obtained by selecting the green
input as base is shown in green. 58

6.3 Left: Two concentric circles (blue, green) and the set of points at equal
distance from each (red). Right: Two non-concentric circles (blue, green)
and the set of points equidistant from each (red) 60

6.4 A depiction of the terms mentioned in the textual description: two curve
inputs (blue, green), the interior of the gap (cyan) and their center-curve (red). 61

xii

6.5 Left: For two coincident circles, the set of points that are the zero-set of
the summed signed distance function coincides with the input (red). Right:
For two non-concentric circles (blue, green), the points identified by Z = 0
(red) is a subset of the set of points that are at equal distance from each
circle, and, is identical to the center-line. 62

6.6 Left: Three input curves (blue, green, cyan). Center: The summed, signed-
distance height-field Z. Left: The Z = 0 level set (red) overlaid over the
inputs. 62

6.7 Left: The negative of the summed squared distance field Q for the three
input curves of Fig. 6.6. Right: Contour lines for finer elevation differences
for the top of the height-field −Q are shown. 63

6.8 Incompatible configurations (wart): the closest projection on the green
curve jumps while moving along the gap. 66

6.9 Left: Snapping a grid (cyan) of points over the plane yields samples on
the valley-set (red) of the summed squared distance function to the set of
curves. There are components of the valley that lie outside the gap. Right:
The result (red) of snapping samples generated on an input curve. 70

6.10 Left: The valley-set outside the gap is generated by considering the summed
squared distance function induced by highlighted regions of the inputs.
Note that this valley-set is generated by ‘incorrect’ correspondences on the
green curve. Right: For a point on the highlighted region of the violet
curve, the closest-projection correspondence on the green curve (its inter-
section point with green ball) are correct due to compatibility of the input
curves. That is, the field required to obtain the valley-set outside the gap is
not sampled while snapping from a seed curve. 71

6.11 For multiple configurations of 2 circles, for each configuration, a set of seed
points are snapped. At the snapped location p, the vAL is computed and its
normal n is determined. Across the set of input configurations, For each s
value, the number of times when the absolute value of the valley condition
evaluated at p+sn is the minimum compared to other s values is computed
and displayed using a histogram. 73

6.12 For configurations of 3 and 4 circles, for each configuration, a set of seed
points are snapped. At the snapped location p, the vAL is computed and its
normal n is determined. Across the set of input configurations, for each s
value, the number of times when the absolute value of the valley condition
evaluated at p+sn is the minimum compared to other s values is computed
and displayed using a histogram. 74

xiii

6.13 During a particular Move, the point under snap is ‘moved’ from p to q. It
is known that the closest projection to curve Ci is the point pi. Thus, Ci

does not contain any point in a region of distance rp = ‖p− pi‖ around p.
Additionally, if a new point on Ci has to contribute to the calculation of the
average line at q, it must be at a maximum distance rq = ‖q − pi‖ away.
Thus, the region in which the point must lie in is the crescent region formed
by the intersection of the two balls in this image. 75

6.14 Configuration of four input curves, three of which are similar. Top: the val-
ley of Q contains components inside (pink) and outside (orange) of the gap
and is discontinuous (misses its left-most section) inside the gap. Overlaid
over this is the zero set of D (thick brown) that lies within the gap, but con-
tains an erroneous region (orange), which results from using projections
onto segments of the left-most green input curve that are not visible form
within the gap. Bottom: Correct result (pink vAC over thick, brown zAC)
obtained by using the modified (GRP) definition of pi. 78

6.15 Left: The vAC of two curves (green and blue) has 3 components: one in
the gap (pink) and two outside (orange). Center: Snap select an incorrect
valley in some regions. Right: Trace selects the correct valley. 79

6.16 Self-crossing input set (left) and the vAC representative (right, red). 79

6.17 GRP confusion: Left: A set of inputs for which we can Trace the average
curve correctly. Right: Our particular choice of the seed for computing the
first sample on the average (our implementation of Trace picks the left-most
vertex of the input curves) leads to a wrong gap-relative projection onto the
green curve (right). 80

7.1 The max and mean move displacements for each Move iteration of vAS
SymetricSnap and NormalSnap are plotted for a set of shape families that
each consist of subdivision surfaces. 90

7.2 Top: A cut-section of the vAS SymmetricSnap average (red) of two sur-
faces (green, blue). In regions where the surfaces differ, the average sur-
face is symmetrically located, while in regions that they overlap, the aver-
age surface is coincident, as evidenced by the z-fighting. To prominently
showcase the z-fighting, the inputs surfaces in this example are approxi-
mated by low resolution triangle meshes. Bottom: A graded, section view
of the average (red) for two tori that differ in Hausdorff distance. The tori
are approximated by high resolution triangle meshes. 91

xiv

8.1 Top-left: Two non-planar input curves and their average (red). Top-right:
The correspondences that are established (green arrows). Bottom: Different
zooms (cropped) of the top-right arrangement. 94

8.2 The Snap algorithm for space-curves takes as input a set of curves {Ci}, and
a point p0 on any one input curve, in this caseC1, aliased toC0 (left). Just as
in the case for 2D curves, Snap performs a sequence of Moves. Each Move
updates p to p = p+ v. Computing the new position involves the following
steps (center-left to right): a) compute the closest projections {pi} of p
onto each Ci and also the tangent ti to Ci at each pi. b) compute a ‘move’
plane Pl through p0 that has normal n which is computed as (generally)
the average of {ti}, and, c) compute displacement vector v orthogonal to
n such that the valley condition is satisfied at p + v. Geometrically, v is
computed so that p + v is the intersection of the plane Pl and the average
line l. 94

8.3 Smaller search region for next closest projection. Assume that p′ has closest
projection p′i on Ci and that the previous move (not Snap) step moved to
p = p′ + v. We restrict the search of the closest projections of p onto input
curve Ci to a ball having center p and radius ‖pp′i‖. 100

8.4 Comparison of run times for closest projection queries using a spatial ac-
celeration structure vs localized closest projections described in Restricted-
Snap (Sec. 8.3). 102

8.5 Top: Set of input curves their computed average curve (red) and variance
tubes (cyan). Center, Bottom: Set of input curves, their average (red), vari-
ance tube (cyan) and correspondences established via the average. 103

8.6 Left: A set of 3D curves (one is thickened, while the others are shown with
a thin radii) that are the profiles of a free-form blade. Right: The variability
tube shown here, with the radius linearly magnified, highlights areas of
deviation between the inputs. 104

8.7 Left: Two inputs helixes of varying and radii, and their average (red). Cen-
ter: A dense sampling of the blue curve is registered using ICP to a dense
sampling of the green curve. The registered result is shown in yellow.
Right: The blue curve’s samples are registered to samples on the average,
with the registration result shown in cyan. 105

8.8 Top: Average curve (red) overlayed triangle meshes (yellow) obtained by
connecting corresponding points on the two input curves. Bottom left: A
zoomed in view of top. Bottom right: Ruling created by connecting corre-
sponding points on two input curves. 106

xv

8.9 Left: Three input lines and a resulting stack of triangles interpolating sets
of corresponding samples. Right: The interpolating triangle stack for three
input curves. 107

8.10 Adaptive sampling to ensure that the average summed arc length advanced
along the input curves between snapped locations (left, red balls) of ordered
points of C0 is less than the user specified threshold of 0.15 units. Top Left:
The samples on C0 (cyan) and their snapped locations are shown in balls
of radius that decreases with the level of refinement at which the samples
on C0 are created and snapped. Top Right: The resulting sampling on
the inputs via correspondences established by the snapped result. Bottom:
Graphs showing the average arc lengths for consecutive samples at the end
of each adaptive re-sampling iteration. 110

8.11 Left: A result obtain by snapping a uniform sampling on the cyan input
curve. Right: Result from a fair sampling scheme that inserts samples on
the average so that consecutive points p, q on the average induce correspon-
dences {pi}, {qi} such that the summed arc lengths

∑
i piqi is a constant

value (within numerical tolerance). 111

9.1 Sketch specification by overdrawing: The user draws a crude sketch (green)
and then, overdraws additional strokes to specify the sketch. Top left: the
user draws the blue stroke to specify the red average. Top right: The com-
puted average in the previous interaction is now the specified sketch (ma-
genta) and the user additionally specifies a overdraw (cyan). Bottom left:
Finally, the user augments the current average with the black overdraw.
Bottom right: The initial sketch and the final specified sketch are shown
together. 114

9.2 Top-left: A set of input curves with the user specified sampling curve (ma-
genta) overlaid over the inputs. Top-right: The result of snapping samples
on the sampling curve without clipping. Bottom: The average curve (red)
computed by snapping samples on the sampling curve using OpenSnap. . . 115

9.3 As open curves are incompatible, an unclipped closest projection query at a
query point (red) places distant samples on the inputs (end point of arrows)
in correspondence. 116

9.4 Left: A simple configuration of a line and a half-line, which demonstrates
the need for designing the join curve. Center: Symmetry dictates that the
red average curve should be situated in between the two objects in some
regions, and, should be co-incident with the line in other regions. Right:
Aesthetics considerations warrant a smooth transition between these two
portions of the average. 117

xvi

9.5 The representative curve (red) computed by snapping a set of sample points
(magenta) using OpenSnap for a set of input curves that contain curve-
segments that are not parallel locally. 121

9.6 Sketch specification by overdrawing. Left: An input sketch of a bunny
with one droopy ear that the artist tries to correct by overdrawing. Center:
A guide curve network (dark green) over the inputs. Right: The user’s
specified sketch (red) is computed as the result of snapping the seed curve
network. 122

9.7 Sketch consolidation without using a guide curve by snapping all inputs.
Right: A set of short strokes to be consolidated. Left: Samples (red) ob-
tained by snapping samples on each of the input strokes overlaid over the
inputs. A post processing step for extracting a curve from the samples is
required. 123

10.1 A conceptual depiction of how averaging multiple digital representations of
the artifacts produced by a manufacturing process allows for disentangling
consistent and inconsistent / random errors in the manufacturing process. A
comparison of the manufactured average with the nominal shape highlights
consistent errors. A measure of variability around the average quantifies
the extent of random errors in the manufacturing process. 126

10.2 Left: A time varying position vector curve of the center of a ball-ended
CNC cutting tool for a machining pass (green). Right: The data captured
from the instrumented machine (red) overlaid over the desired path (green). 127

10.3 A block diagram of the developed system: the CAM system (SculptPrint)
allows the user to design the geometric path to be following by the cutting
tool. The designed path is fed to a motion generation algorithm whose out-
put is used to drive the CNC machine using a modified version of the open-
source control software MachineKit. Rotary encoders attached to each axis
of the machine are read at a particular sampling rate to obtain samples on
the realized tool path (image originally appeared in our publication [118]). . 128

10.4 Top: The path used for our experiments (green). Center and Bottom: Ve-
locity and acceleration (bottom) profiles for the translational axis for the
motion generated by the trajectory planner. 132

10.5 The average curve (red) and the nominal curve (green) shown at successive
zoom levels. 133

xvii

10.6 A zoom into the top edge of the filleted square. Here, the input curves
coincide with the average (red) and thus, are not visible. However, the
nominal shape (green) and the average are not coincident. 133

10.7 Top: The variability field visualized as a translucent tube whose radius is 40
times the computed variance, to magnify errors. Bottom: A high-variance
region is shown zoomed-in. 135

10.8 Top: A set of 3 encoder captured circular motions of the tool-path overlaid
on each other. The tool-paths appear to be co-incident. Bottom: The vari-
ability tube scaled by a factor of 100 is visualized and used to reveal and
guide exploration of regions of high variance in the captured paths. 136

xviii

SUMMARY

The proposed thesis focuses on providing definitions, closed-form expressions and algorith-

mic solutions for computing averages of sets of shapes and associated standard deviation

fields. By shapes, we mean lines, planes, curves, and surfaces. Note that these shapes are

embedded in a common ambient space – by which we mean that their scales, orientations,

and positions are fixed and important.

We establish sufficient conditions on sets of shapes for which our proposed solutions

yield topologically valid results, and call such sets compatible. We propose, study and

apply suitable generalizations of the statistical formulations of the average and standard

deviation of sets of numbers to sets of compatible shapes. In particular, the solutions pro-

posed extend naturally the popular concept of the medial axis to two and more curves in

the plane or in three-dimensions and to two or more surfaces.

We demonstrate the usefulness of our developed algorithms for tasks such as: morphing

between shapes, sketch specification by overdrawing, and, analyzing the path of the cutting

tool of a CNC machine.

xix

CHAPTER 1

INTRODUCTION

Figure 1.1: What is the average of a set of curves?

1.1 Thesis overview

What is the average of the set of closed planar curves of Fig. 1.1? The answer to this

question is not obvious.

It is relatively easier to enumerate properties that we would expect the average of a set

of curves to possess. For example, we would expect that the average depends on all the

curves instead of only on a particular subset, and that the average passes through all the

points that all the curves have in common.

But perhaps, it is wisest to first consider the questions: “why do we need the average

of curves?” or, “of what use is the average of a set of curves?”: Techniques for com-

puting an average (or a measure of central tendency) are important because if we wish to

represent a set of data by a single entity, then, the average is the ideal representative. In

1

algorithms that operate on large data, an average typically captures the global properties of

the input elements and can serve as a summary description of the data (for purposes such

as visualization, analysis, design) and also as a proxy for the entire data (for reducing the

computational complexity of subsequent operations).

In this thesis we present algorithms that take as input a set of planar curves and yield a

single representative curve. Our presented algorithms yield a curve that possesses proper-

ties expected of an average (Fig. 1.2), and thus, we call it the “average curve”. We compute

the average curve by snapping any one of the input curves.

Figure 1.2: A set of input curves in the plane and the average curve (red).

Our developed ‘Snap’ algorithm, for a sample point, computes a query point on each

input curve, computes the tangent lines to the curves at the query points, and projects the

sample onto the average of the tangent lines.

We extend this approach to surfaces in 3D. To do so, we describe how to average planes,

and then, use a plane average in a Snap algorithm that computes the average surface for a

set of input surfaces(Fig. 1.3).

2

Figure 1.3: A set of input surfaces and the average surface (red). To better reveal the

internal structure of the surfaces, we have clipped each surface with a clipping plane.

We further extend these two solutions to the problem of averaging curves in 3D. We

describe how to average lines in 3D, and, use this result to compute the average space

curve (curve in 3D) for sets of space curves (Fig. 1.4).

Figure 1.4: A set of input curves in 3D and their average curve (red).

It may be desirable to quantify the variability of the input set about the average. Indeed,

in computationally driven natural science inquiries, efficient algorithms to compute both

an average and a measure of variability about the average, of data collected during an

experiment are key enablers of subsequent inductive reasoning. The algorithms we present

in this thesis for computing the average shape (curve or surface) also compute a scalar field

3

Figure 1.5: For a set of input curves (left), we compute not just the average (right, red),
but, also a variability field over the average. The variability field is visualized here using a
translucent, cyan-colored offset tube of variable radius. The radius of the tube at a particular
point on the average is proportional to the variability value at that point.

that captures the variability of the set of shapes. The variability information is useful for

visualization (Fig. 1.5).

We note here that we use the term ‘shape’ to mean objects (curves, surfaces) that are

situated, or, embedded in the plane or in space. We bring this precision to the readers

attention, because often, when it is noted that two shapes are roughly similar, the writer

implies that ‘intrinsic’ properties of the shapes are similar regardless of their embeddings

in space. A technique to average two circles of the same radii which discards how they

are situated in the plane will yield a circle of the same radius as the result. However, the

solutions we propose consider how these two circles are embedded in the plane to compute

the average. Thus, our computed result is sensitive to changes in the relative positions of

the circles (Fig. 1.6).

Thus, the approaches proposed here allow one to compute the average and variance of

a set of situated curves and surfaces (Fig. 1.5).

Additionally, our algorithms compute, for each point on the average a corresponding

point on each input shape (Fig. 1.7). By considering the set of points (one on each shape)

that correspond to the sample point on the average as being in correspondence with each-

other, we define the n-way correspondences between the input set of shapes. To compute

4

Figure 1.6: Top Left: Two identical input circles and their representative (red, coincident
over the input circles). Top Right, Bottom: Two non-concentric, equal radius circles (blue,
green) embedded at different locations in the plane and their representative (red).

Figure 1.7: Aside from computing the average (red), we also compute for each point on
the average, a corresponding point one each input shape (blue, green, cyan curves). The
correspondences are visualized here as green, blue, cyan arrows that point from a point on
the average to its corresponding point on each input.

5

the set of correspondences for a given point on one of the input shapes, we present a modi-

fication of the Snap algorithm.

This n-way correspondence has several potential applications. As an example, attribute

data (such as texture) specified on one shape S1 can be transferred to another shape S2 by

associating to each point of S2 the attribute value associated with its corresponding point

on S1. Attributes defined on S1 and S2 can also be averaged in a similar manner.

Other applications of the ideas presented in this thesis include morphing and weighted

averaging, sketch consolidation, data aggregation, and geometric modeling.

The theoretical contribution of our thesis is that we mathematically define the set of

points that constitute the average. For example, for the case of input curves in a plane, we

consider a scalar field over the plane and define the average as the points where a particular

expression of the scalar field holds. What is an appropriate scalar field to consider and what

is the expression for point-set containment? For a set of planar curves, these questions are

answered in Chapter 5. Our definitions for the case of surfaces are presented in Chapter 7

and, for the case of space curves are described in Chapter 8.

Given a list of shapes (Si), our definitions yield representatives that are symmetric –

the average does not change if the list is reordered. Thus, our average is defined by the

unordered input set {Si}.

Additionally, our definitions have the property that, for a set of lines (resp. planes) they

yield, as the average, a line (resp. plane). The average line or plane has a several appealing

properties that an average should possess (Section 3.7).

The computational contribution of our thesis is that we present algorithms for comput-

ing approximations to the average that are simple and efficient. These algorithms leverage

our closed form expressions for averaging planes and lines. Additionally, the algorithms

also simultaneously compute correspondences and variability.

The algorithms we present for computing average shapes operate by starting with a

seed shape (generally, but not necessarily, one of the inputs), sampling ‘query’ points on

6

Figure 1.8: We present algorithmic modifications that allow computing representative
curves for some configurations of inputs that contain curves with boundary (left) and that
contain self-intersecting curves (right).

the shape, and, ‘snapping’ each point so that it lies on the average shape. The connectivity

information for the computed samples on the average shape is taken to be the same as that

of the query points on the seed shape.

A limitation of our approach is that it yields results that are useful for roughly parallel

(compatible) sets of shapes. The class of compatible shapes exhibits sufficient variety to

merit study. We also present algorithmic modifications that extend the applicability of our

algorithms to some configurations of incompatible sets of shapes (see for example Fig 1.8).

These include: a) shapes with boundary and b) self-intersecting shapes.

1.2 Thesis structure

The thesis is structured as follows: we envision the modern shoemaker’s shop in Chapter 2

providing a motivating example for our work. We also discuss formulations for the average

of points and scalar measures and highlight the symmetric nature of these formulations.

In Chapter 3, we discuss the simplest shape-averaging problem: averaging lines and

planes. We discuss our formulations of the average of a set of lines (in 2D and 3D) and

planes (in 3D) and show how these formulations yield average lines and planes that are

7

easily computed. We also derive expressions for the weighted average of a set of lines.

Similar to the weighted average concept of a set of scalars, the concept of the weighted

average for a set of lines yields an average that is more sensitive to changes in a line that is

assigned a higher weight. The weighted average concept allows us to develop algorithms

for morphing between shapes. The results presented in this chapter are both of independent

value, and are used in our computational algorithms for averaging shapes.

In Chapter 4, we present a summary of works whose contributions we leverage, and

also discuss prior works on averaging shapes.

The remainder of the thesis discusses our proposed algorithms for computing average

curves and surfaces. In Chapter 5, we describe our approach to computing an average curve

for a set of closed loop planar curves. In Chapter 7, we present our method of computing

an average surface for a set of boundary-less, manifold surfaces.

Subsets of the contents of Chapter 5 and Chapter 7 have been published as the following

joint papers respectively:

• Sati, Mukul, Jarek Rossignac, Raimund Seidel, Brian Wyvill, and Suraj Musuvathy.

“Average curve of n smooth planar curves.” Computer-Aided Design 70 (2016): 46-

55.

• Sati, Mukul, and Jarek Rossignac. “Average and variance of a quasi-parallel family

of surfaces.” Computer-Aided Design 102 (2018): 61-71.

The common computational idea employed in our presented algorithms is that of ‘snap-

ping’ a candidate point onto the average curve (or surface) by iteratively ‘moving’ it to lie

on average lines (or planes) computed using local information. In Chapter 6 we discuss the

performance and accuracy of our proposed ‘snapping’ approach.

In Chapter 8, we present an algorithm for averaging closed loop space curves. Curves

in 2D and surfaces in 3D have a co-dimension of 1. That is, the dimension of the input

shapes (1 for curves, 2 for surfaces) is one less than the dimension of the embedding space

(2 for the Euclidean plane or 3 for Euclidean space). However, curves in 3D have a co-

8

dimension of 2. This difference requires us to modify both our mathematical formulation

and the computational algorithm.

We demonstrate two practical applications of our curve-averaging: sketch specification

by overdrawing and manufacturing process analysis.

To yield useful results for the sketching application, we needed to modify the algorithms

developed for closed curves. We discuss in Chapter 9 these computational modifications

for open curves.

In Chapter 10, we describe a CNC machining system that we have developed. We

use the system to collect manufactured shape data, and, describe novel ways in which

the collected data may be analyzed using techniques presented in our thesis. Specifically,

we demonstrate how knowledge of both the average and the variability field facilitates

assessing the quality of a manufacturing process and for informing its improvement.

An early version of the developed machining system is described in the joint publica-

tion:

• Lynn, Roby and Sati, Mukul and Tucker, Tommy and Rossignac, Jarek and Saldana,

Christopher and Kurfess, Thomas. “Realization of the 5-Axis Machine Tool Digital

Twin Using Direct Servo Control from CAM” National Institute of Standards and

Technology (NIST) Model-Based Enterprise Summit, 2018.

In summary, our thesis focuses on providing definitions, closed-form expressions and

efficient algorithmic solutions for computing representative shapes (or, average shapes) of

compatible configurations of sets of situated shapes. We also compute all-pair correspon-

dences and use them to represent and compute the local variability of the input set of shapes

as a scalar field over the average shape.

9

CHAPTER 2

BACKGROUND

2.1 A motivating example: The shoe fitting problem

To clarify and motivate our goal, we first discuss a simplified version of a practical problem:

How to improve the online search for shoes that fit a particular consumer?

Let us assume that many consumers scan their feet [1] every few years and that 3D

surface models of these anonymized scans are made available online to all shoe manufac-

turers. Let us also assume that custom shoes are too expensive for the mass market and that

a manufacturer decides to mass-produce only m differently shaped shoes for a particular

shoe style. How should we choose/design these m shapes?

For each shoe-size, the Mondopoint Standard [2], which is used for military shoes and

for ski boots, defines the mean-foot length and width for which a shoe is suitable. Instead of

the mean, European standard EN 13402 defines intervals of foot length and width for which

the shoe is suitable. Except for these two measurements (length and width), these standards

do not consider other aspects of the foot shape. Some authors propose to incorporate a

larger number of discrete measurements [3].

To take full advantage of the increasing availability of affordable metrology tools, in-

stead of using discrete measurements to establish shoe sizes, we propose to use geometric

(curve or surface) models of the shape of the foot. These models may be recovered from the

scans. Hence, instead of shoe sizes, we will talk about standard shoe shapes. We assume

that the scanned models are converted, using morphological filters [4], to a smooth outer

envelope.

Consider the input set {Si} of shapes, with each shape Si representing the envelope

surface of a customers foot. We want to divide set {Si} into m clusters of shapes. m may,

10

for example, be dictated by economic constraints on how many different shoe shapes of a

given shoe style the manufacturer is willing to mass-produce. For each cluster, we want to

compute the cluster average shape (CAS) and, for each CAS, Ak, we want to design a shoe

that best fits all customers whose foot is closer to Ak than to any other CAS. We argue that

the optimal solution to this clustering problem selects the m CASes so as to maximize the

expected fit, i.e., to minimize a measure, E, which we define as the average of a chosen

measure of disparity between each Si and its closest Ak.

To properly formulate this optimization task and the measure against which optimiza-

tion algorithms can be validated, we need to have precise mathematical definitions: (1) of

a suitable disparity measure between two shapes and (2) of the shape average of a set of

shapes (i.e., a surface that is the average of a given set of surfaces or a curve that is the

average of a given set of curves).

Thus, the availability of such shape statistics techniques could transform the online shoe

retail industry and shoe design technology and deliver ergonomic benefits to everyone.

Indeed, the theoretical definitions of shape averages and of disparity measures, and the

efficient algorithms that we have developed have broad applicability across a spectrum of

industrial and research practices in other domains, as highlighted in the remainder of this

thesis (see for e.g. Ch. 9 and Ch. 10).

2.2 Preliminaries: Averaging numbers and points

A key concept expounded in this thesis is that of symmetric (i.e., fair) formulations and

constructions for averaging n entities. A property, expression or construction that depends

on a list of inputs but that is independent of the ordering of the elements is called symmetric.

In this section, we discusses symmetry in the context of averaging numbers and points.

11

The average of a set of numbers

We start with what we do know – the average of two real numbers {x1, x2} has a closed

form expression: x = x1+x2

2
. The value of this is not altered under the pair of simultaneous

substitutions x1 → x2, x2 → x1. For n numbers {x1, . . . , xn}, the value of the expression

denoting the average x = x1+...+xn

n
does not change with any permutation of the number

set. We say that the average is invariant under permutations of the ordered list of numbers

(x1, . . . , xn). It is due to this invariance to permutations that we say that the average is a

property of the set of inputs.

The symmetric expression for the average of two numbers can be obtained by at least

the following characterizations, which assume that the number line is equipped with the

standard, oriented coordinate frame to measure (signed) distances. The average is the num-

ber x such that:

(a) Zero set of signed distance: The sum of the signed distances from it to the two

numbers is 0: |x2 − x| − |x1 − x| = 0.

(b) Number at equal distance: It is at equal (unsigned) distance from the two numbers:

|x− x1| = |x− x2|.

(c) Summed squared distance minimizer: The summed square distance from it to the

two numbers is minimized: x = argminx∈R
∑2

i=1(x − xi)2. Note that the variance

is given by a scaling of the summed square distance and thus, is also minimized at x.

We see however that the number at equal distance characterization does not extend to n

real numbers. Consider the case of three distinct numbers. Given a distance d, for a given

x1, the number at distance d is one of x1 + d or x1 − d. If we require that the number x be

at distance d from x1, x2 and x3, with x1 < x2 < x3, then the condition of being at distance

d from x1 and x2 yields x = x1 + d = x2 − d < x3 − d. Thus, x cannot be at distance d

simultaneously from 3 numbers in general. Now, we shall look at the case of the centroid

12

of a set of points in the plane, where, we notice that the zero-set definition does not remain

valid.

The centroid of a set of points

We also do know how to compute the average of two points in the Euclidean plane, and,

this is given by the simple closed form expression corresponding to the centroid. However,

the method (a) that was described above for two numbers cannot be used to arrive at the

expression for the centroid, as, the concept of a “signed distance”, which was well-defined

for numbers on the number line, is not defined anymore. The signed distance concept is

well-defined for shapes that partition the space in which they are embedded into an exterior

and interior. A necessary condition for such a partitioning is the shapes have co-dimension

1. However, points have a co-dimension of 2 with respect to the plane.

Also, the solution set characterized by (b) need not be a point. In the Euclidean plane,

we see that for 2 points we will obtain the line that is the perpendicular bisector of the edge

joining the two points, for 3 points, the solution set is the circumcenter point, and, for 4

points that are not the vertices of a cyclic quadrilateral, the solution set is empty.

Consider now an alternative formulation of the average: the point which minimizes

the summed distances to the input points. For 3 points, the solution is the Fermat point

rather than the centroid. For n points, the solution is termed the geometric median. Unlike

the centroid which is computable using the simple coordinate-wise averaging formula, the

geometric median does not possess a closed form. Rather, computation of an approxima-

tion of the geometric median minimizer generally requires iterative methods such as those

described in [5].

It is only the characterization of the average given by (c) that yields the expression for

the centroid of the set of points.

When we seek to apply the characterization that yields the centroid for n points to the

problem of averaging n curves in the plane: the representative is the set of points where

13

Figure 2.1: Left: Two concentric circles (blue, green) and the set of points where the
summed squared distance attains a minimum value (red). Right: Two non-concentric cir-
cles (blue, green) – the minimum value of the summed squared distance is attained at points
(red dots) where the circles intersect.

the summed squared distances to the input curves is minimized. This characterization does

indeed yield useful results for concentric circles. However, in general, the solution is a (set

of) isolated point(s) (Fig. 2.1).

The above discussions for averaging numbers and points, and the initial failed attempt

to average curves serve to highlight that:

• For an entity to serve as an average of, or as a representative for, a set of entities, it

should be symmetric.

• Determining the characterization that yields a useful representative for a particular

class of input sets is not trivial. In particular, characterizations that yield useful results

for a particular input class (for e.g., a set of numbers) need not be useful for another

input class (for e.g., a set of points on the Euclidean plane).

14

CHAPTER 3

AVERAGING VECTORS, LINES AND PLANES

In this chapter, we present techniques for averaging vectors, lines and planes. First, we

present known approaches to averaging a set of unit vectors in 2D and in 3D. Then, we

present novel formulations for averaging sets of lines (in 2D and 3D) and planes (in 3D).

The results presented in this chapter are useful in and of themselves. Additionally, they

are also used in subsequent chapters which describe our approach to computing average

curves and surfaces.

3.1 Averaging a set of unit vectors in 2D

Given a set of unit vectors {ni}, the following are well known approaches to compute an

average vector n:

Normalized linear average: As a set of vectors in a vector space can be added and scaled,

the algebraic expression for the average of a set of numbers,
∑k

i=1 ni

k
, is well-defined for

a set of vectors as well. However, the expression may not yield a unit vector without

normalization. Explicitly renormalizing, we may compute the average vector as:

n =

∑
i ni

‖∑i ni‖

Squared dot average: Considering the metric structure of the Euclidean plane and Eu-

clidean space, we can compute n as the unit vector that maximizes
∑

i(ni · n)2, where

· denotes the Euclidean dot product. That is, n is the unit vector which maximizes the

summed squared cosine of the angle between it and the inputs. Equivalently, n is the unit

vector which minimizes the summed squared sines of the angles between it and the inputs.

15

In an orthogonal frame in 2D, each ni is represented using its coordinates (xi, yi). Using

coordinates (x, y) for n, we obtain:

n = argmax
(x,y)∈R2

∑
i

(xxi + yyi)
2

= argmax
(x,y)∈R2

∑
i

x2ix
2 + y2i y

2 + 2xiyixy

Assuming n = (cosα, sinα), α can be computed using the condition:

tan(2α) =
2
∑
xiyi∑

x2i − y2i
(3.1)

Spherical average: n is the unit vector that minimizes the summed squared spherical dis-

tances to the input vectors. In 2D, this means that n is the vector that minimizes the summed

squared angles to the vectors.

3.2 Averaging a set of unit vectors in 3D

Normalized linear average: This is the same as the expression for 2D:

n =

∑
i ni

‖∑i ni‖

Squared dot average: Using the matrix notation, we arrive at a unified expression for n as:

n = argmax
x∈R2

xT
(∑

i

[ni ⊗ ni]
)
x

Here ⊗ denotes the outer product. In case
(∑

i[ni ⊗ ni]
)

is non-negative definite with

a unique largest singular value n is then directed along the vector corresponding to the

largest singular value and is such that it has a positive dot product with each input vector.

16

Figure 3.1: For a set of three unit vectors (black), the normalized linear average (red), the
squared dot average (blue) and the spherical average (cyan) are shown.

Spherical average: The definition for n is the same as the case for 2D: n is the unit vector

that minimizes the summed squared spherical distances to the input vectors. We refer the

reader to [6] for an iterative algorithm.

3.3 Averaging a set of lines in 2D

We present two formulations for the average of a set of lines in 2D. These formulations

yield different results. In general configurations, both formulations yield a line. For each

17

formulation of the average, we also provide a property for validating whether the set of

input lines are compatible.

One of our formulations identifies the average as the set of points that are the zero-set

of a scalar field defined over the plane. Thus, we term this average line the zero-set average

line (zAL). The second formulation describes the average as the set of points that are the

valley-set of a scalar field over the plane. Thus, this average is termed the valley-set average

line (vAL).

An oriented line l is represented by a point p on l and a unit direction vector t (the

unit tangent). That is, l = (p, t). Equivalently, in 2D, l = (p, n) where n is a 90 degree

counter-clockwise rotation of t (i.e., n is the unit normal).

For a set of oriented lines to be compatible, we require them to be closest projection

compatible: for every input line li, the closest projection function Πij that maps a point on

li to its closest point on the line lj should be an orientation preserving bijection for every

other input lj . That is, if u and v are ordered (in accordance with the orientation of li)

points on li, then Πij(u) and Πij(v) are ordered in accordance with the orientation of lj .

3.3.1 Zero-set average line (zAL)

For a given set of oriented lines {li} = {(pi, ni)}, the zAL is the zero level-set of the

summed signed distance field Z to {li}. That is, given a point p, the signed distance from

p to each li is computed and summed to obtain the value Z(p). p lies on the average line if

Z(p) = 0.

For the given set of lines,

Z(p) =
∑
i

(pip · ni)

∴ Z(p) = 0⇒
∑
i

(pip · ni) = 0

18

To see that this expression identifies a set of points on a line, note that this is a linear

expression in p. More precisely, replacing pip by op + pio, where o denotes the origin of

the chosen coordinate system, we have:

Z(p) = 0⇒ op · (
∑
i

ni) = −
∑
i

(pio · ni) (3.2)

Thus, for a given set of lines, a point p is on the zero-set average if the dot product of

p’s position vector op with the vector (
∑

i ni) is a constant.

Note that thus, the set of such p’s lie on the line with normal directed along the normal-

ized linear average n =
∑

i ni (Sec. 3.1).

3.3.2 Valley-set average line (vAL)

For a set of oriented lines {li} = {(pi, ni)}, the summed squared distance function is

Q(p) =
∑

i(pip · ni)
2. Using Cartesian coordinates (x, y) for p, (xi, yi) for pi, and (ui, vi)

for ni, and writing Q(x, y) for Q(p), we obtain pip · ni = (x− xi)ui + (y− yi)vi and thus

Q(x, y) =
∑
i

(u2ix
2 + v2i y

2 + 2uivixy − 2ui(uixi + viyi)x−

2vi(uixi + viyi)y + 2uivixiyi + u2ix
2
i + v2i y

2
i)

(3.3)

= c2,0x
2 + c0,2y

2 + c1,1xy + c1,0x+ c0,1y + c0,0 (3.4)

Q is a quadratic polynomial. Hence, we can use the following matrix notation with x

now denoting the vector [x y]T :

Q(x) = xTAx+ bTx+ c where

A =

 c2,0
c1,1
2

c1,1
2

c0,2

 , b =

 c1,0

c0,1

 , c = c0,0.

19

Note that, the coefficients for the second degree terms in x, y only involve the coordi-

nates of the normal vectors {ni} and are independent of position coordinates {pi}. Similar

to the case for squared dot average of vectors, A can be written as A =
∑

i ni ⊗ ni.

In the selected cartesian coordinate system, we have the following expressions for the

gradient∇Q and Hessian H of Q:

∇Q(x, y) =

 2c2,0x+ c1,1y + c1,0

c1,1x+ 2c0,2y + c0,1

H(x, y) =

 2c2,0 c1,1

c1,1 2c0,2

 = 2A

Condition for compatibility: A set of oriented lines in 2D are compatible wrt. the

valley-set average when both eigenvalues of H are non-negative and there exists a unique

largest eigenvalue of H . This condition is in addition to closest-projection map compati-

bility mentioned earlier.

The vAL of a set of lines is a height-valley of their summed squared distance height

field Q. We use the definition of [7] for the valley of a height-field: it is the set of points

where a minima of the height-field is attained along a principal direction of the height-field.

For a set of compatible lines, we seek the height valley defined by∇Q · e2 = 0, where e2 is

the eigenvector of the Hessian H of Q that corresponds to the larger eigenvalue of H . For

compatible lines, the larger eigenvalue is unique, and, thus, the vAL is well-defined.

Because H is a constant over the plane, so are its eigenvectors ei. We have a closed

form expression for the eigenvectors. For deriving it, consider the action of H as a linear

transformation. H maps lines through the origin to lines through the origin, or to the

origin point. An eigenvector ei of H support the lines through the origin that H fixes. The

eigenvector ei itself is just scaled by H and thus, for every such vector ei, ∃λ such that

Hei − λei = 0.

20

Now, consider the linear transformation H − λI where I is the identity matrix. This

transformation acts on the vector ei as Hei−λIei = Hei−λei, which, we know evaluates

to the zero vector. Thus, H−λI maps ei to the zero vector, and, it holds that, either ei = 0,

or, that, the transformation H − λI maps some non-zero vector to 0. Assuming the latter

case, this means thatH−λI ‘compresses space’ by at-least a dimension, mapping the plane

to at-least a line, or, more generally to a set that has zero measure / volume as a subset of

R2. This geometric fact is expressed as the vanishing of the determinant of H − λI .

The condition det(H − λI) = 0 gives a quadratic characteristic equation in λ. The

larger eigenvalue λ2 is given by the larger root.

det(H − λI) = 0

⇒ λ2 − 2(c0,2 + c2,0)λ+ 4c0,2c2,0 − c21,1 = 0

⇒ λ2 = c0,2 + c2,0 +
√

(c0,2 − c2,0)2 + c21,1

Now, e2 is a vector for which it holds that He2 = λ2e2 or (H − λ2I)e2 = 0. The

matrix H−λ2I has zero determinant and thus, is not full-rank. Thus, H−λ2I has linearly

dependent rows, and, can be written as:

H − λ2I =

 v1

βv1

Our requirement that (H − λ2I)e2 = 0 will be true if v1 · e2 = 0. That is, if e2 is a

vector orthogonal to v1. Substituting λ2 back into the equation, and using x, y to denote the

coordinates of e2, the following relation between x and y is required for orthogonality :

y =

(√
(c0,2 − c2,0)2 + c21,1 + c0,2 − c2,0

)
x

c1,1
= m1x

Substituting x = 1 in the above equation, we obtain an eigenvector with eigenvalue λ2.

21

The vAL condition is:

e2 · ∇Q = 0 (3.5)

⇒
[

1 m1

] 2c2,0x+ c1,1y + c1,0

c1,1x+ 2c0,2y + c0,1

 = 0 (3.6)

This expands to:

y = −
c1,1

(
c0,2 + c2,0 +

√
c1,12 +

(
c0,2 − c2,0

)
2

)
x

c1,12 + 2c0,2

(
c0,2 − c2,0 +

√
c1,12 +

(
c0,2 − c2,0

)
2

) − c1,0c1,1 + c0,1

(
c0,2 − c2,0 +

√
c1,12 +

(
c0,2 − c2,0

)
2

)
c1,12 + 2c0,2

(
c0,2 − c2,0 +

√
c1,12 +

(
c0,2 − c2,0

)
2

)
⇒ y = m2x + c

Thus, the vAL is a line. When we compute the product of the slope of this line with
m1, we see that m1m2 = −1:

m1m2 = −

(√
(c0,2 − c2,0)2 + c21,1 + c0,2 − c2,0

)
c1,1

c1,1

(
c0,2 + c2,0 +

√
c1,12 +

(
c0,2 − c2,0

)
2

)
c1,12 + 2c0,2

(
c0,2 − c2,0 +

√
c1,12 +

(
c0,2 − c2,0

)
2

)
= −1

Thus, the vAL is a line l(p, t) that has for tangent a vector t orthogonal to e2. The

line passes through the point p = (−2c0,2c1,0−c0,1c1,1
4c0,2c2,0−c21,1

,− c1,0c1,1−2c0,1c2,0
c21,1−4c0,2c2,0

), which minimizes Q,

Thus, the vAL is a line and its location can be computed in closed form.

Note that the set of such p’s lie on the line with normal directed along the squared dot

average n = argmaxx∈R2 xT
∑

i[ni ⊗ ni].

Thus, for both the vAL and the zAL, the direction of the average line can be computed

with knowledge of just the normals {ni} to the input lines {li}. Fig. 3.2 shows the vAL

and the zAL of a set of four lines in two configurations. Note that the vAL and zAL are

identical when all lines are parallel.

22

Figure 3.2: vAL (magenta) and zAL (cyan) for four parallel lines (left) and for non-parallel
lines (right) oriented towards the right.

3.4 Averaging a set of planes in 3D

An oriented plane P is represented by a point p on P and a unit normal to the plane n.

Similar to the case for lines in 2D, we present two formulations for the average of a set

of planes in 3D. The formulations yield different results for set of input planes in general

configuration. For compatible planes, both formulations yield a plane as the average.

As in the case for lines, for a set of oriented planes {Pi} to be compatible, we require

them to be closest projection compatible: for every input plane Pi, the closest projection

function Πij that maps a point on Pi to its closest point on Pj should be a bijection for every

other input plane Pj .

3.4.1 Zero-set average plane (zAP)

For a set of planes {Pi}, let Si : R3 → R given by Si(p) = (pi − p) · ni denote the signed

distance function to Pi. Consider the summed signed distances scalar field Z defined as

Z(p) =
∑

i Si(p). The zAP is defined as the zero level set of Z.

23

Z(p) =
∑
i

(pip · ni)

∴ Z(p) = 0⇒
∑
i

(pip · ni) = 0

This is a single linear equation in three variables, and, thus is satisfied by points on a plane

– the zero set average plane (zAP). Replacing pip by op + pio, where o denotes the origin

of the chosen coordinate system, we have:

Z(p) = 0⇒ op · (
∑
i

ni) = −
∑
i

(pio · ni)

Thus, the zAP has as normal the vector directed along
∑

i ni.

3.4.2 Valley-set average plane (vAP)

Consider a set of planes, {Pi}. Let S2
i : R3 → R defined as S2

i (p) = ((pi− p) ·ni)
2 denote

the squared distance function to Pi.

Consider the summed squared distances scalar field Q given by Q(p) =
∑

i S
2
i (p).

In vector-matrix notation, Q(p) = opTAop + bTop + c, with op (and opi appearing in

expressions below) denoting the vector from the origin of the selected coordinate system

to the point p (or pi, accordingly), and, where:

A =
∑
i

ni ⊗ ni

b =
∑
i

−2(opi · ni)ni

c =
∑
i

(opi · ni)
2

24

Figure 3.3: Planar averages for a set of planes: The left figure shows an input set of planes
to be averaged. For this input set, the vAP and zAP are nearly identical. So, in the right
figure, we display just the vAP (light yellow colored) overlaid over the inputs.

Condition for compatibility: A set of oriented planes in 3D are compatible wrt. the

valley-set average when all three the eigenvalues of the Hessian H of Q are non-negative

and there exists a unique largest eigenvalue.

The valley-set average of Q is a height valley of Q. A point p is on the valley-set

average of Q if ∇Q(p) · e1 = 0, where e1 is the eigenvector corresponding to the largest

eigenvalue λ1 of the hessian H of Q.

The condition ∇Q · e1 = 0 evaluates to a linear expression, and, thus, the condition is

satisfied by points on a plane – the valley average plane (vAP).

Note that, similar to the case for 2D lines, for both the vAP and the zAP, the normal to

the average plane can be computed with knowledge of just the normals {ni} to the input

planes {pi}. The vAP of a set of planes is shown in Fig. 3.3. The vAP and zAP formulations

both produce a plane as the average. For families of two planes, their results are identical.

For larger families of non-parallel planes, the vAP and zAP may differ (Fig. 3.4). The vAP

is less sensitive to normal perturbations.

3.5 Averaging a set of lines in 3D

Both the zero-set average, and the valley-set average may by defined for lines in 2D and

planes in 3D. The concept of signed-distance exists for these entities, as they are co-

25

Figure 3.4: Left: zAP (pink) and the vAP (yellow) coincide for two planes (a slightly larger
portion of the vAP is shown). Right: Given four input planes, zAP is more affected by the
blue outlier than vAP.

dimension one manifolds that partition their ambient space. However, this is not true for

lines in 3D. Thus, we can not extend the zero-set definition to average a set of lines in 3D.

For the valley-set definition, we consider the valley of the height-field Q that evaluates

to the summed squared distances to the input lines {li} at each point in space. Differently

from the case for lines in 2D, we consider the valley-set determined by the vanishing of

the Q’s gradient in two directions. Thus, as per the terminology of [7], we extract for Q, a

valley-set of type 1 which yields a one dimension solution set. We show that for compatible,

configurations of lines, the valley-set is a line and we declare it to be the average of these

lines.

Below we obtain expressions for the differential quantities of interest in characterizing

the valley-set of Q. The squared distance Qi between a point p, and a line li through point

pi, directed along ti is computable by expressing it as the distance between p and the point

qi on li that is at a minimum distance from p, and then, computing ‖pqi‖22 using Pythagoras

theorem.

qi = p+ ppi − 〈ppi, ti〉ti

Qi(p) = ‖pqi‖22 = ‖ppi‖22 − 〈ppi, ti〉2

26

In any particular coordinate system, where op is represented by its coordinates x and

opi by xi, the squared distance function Qi to line Li, and its gradient∇Qi evaluate to:

Qi(x) = xTx− (xT ti)
2 − 2xTxi + 2(xT ti)(x

T
i ti) + xTi xi − (xTi ti)

2

∇Qi(x) = 2x− 2(xT ti)ti − 2xi + 2(xTi ti)ti

= 2(I − ti ⊗ ti)(x− xi)

= Ai(x− xi), where Ai = 2(I − ti ⊗ ti)

Note that Ai is symmetric, and, as each Qi is a quadratic function in the coordinates, so

is their sum Q =
∑

iQi. The gradient and the Hessian H of Q:

∇Q(x) =
∑
i

Ai(x− xi) =
(∑

i

Ai

)
x−

∑
i

Aixi (3.7)

H(x) =
∑
i

Ai (3.8)

Condition for compatibility: A set of lines {li} in 3D are compatible if the Hessian

H of the summed squared distance function to {li}, has non-negative eigenvalues with a

unique smallest eigenvalue.

For a compatible configuration of lines, the 1-dimensional valley-set ofQ is a line and it

contains point(s) where Q is minimized. Consider the following coordinate frame: denote

by ei the (orthogonal) eigenvectors of H , with corresponding eigenvalues λi ordered such

that i < j ⇒ λi >= λj . Construct an orthonormal frame v1, v2, v3 from the eigenvectors

e1, e2 corresponding to the larger eigenvalues, and expressQ in coordinate functions of this

frame.

Then, for a point to be on the type 1 valley, Q should attain a minimum at that point,

along e1 and e2. In our chosen coordinate frame, the above directional minima condition is

written as, ∂Q
∂x

= 0 and ∂Q
∂y

= 0, with the second derivative requirement for minima along

27

Figure 3.5: Three input lines (stippled), and their average computed using the proposed
formulation (red). Left: Two input lines (cyan and blue) intersect and, the yellow line
is parallel to their bisector. Their average (red) is parallel to the yellow line and to the
bisector of cyan and blue. It is twice closer to that bisector than to the yellow line. Right:
The average passes through the common point of intersection of all the input lines.

these directions: ∂2Q
∂x2 > 0 and ∂2Q

∂y2
> 0. As Q is positively unbounded and quadratic, it can

either attain its minimum at a unique point, or, have a connected set of points as its minima.

First, consider the case that Q attains its minimum at a unique point pmin. Then, the

valley condition is indeed satisfied at pmin (additionally, at such points, ∂Q
∂z

= 0 and ∂2Q
∂z2

>

0). The valley condition then leads to two linear equations in three unknowns, that is

satisfied along a line – the valley average line.

In the case that Q does not attain its minimum at a unique point, then, as λ2 and λ3 are

strictly positive, H is not strictly positive definite and λ1 = 0. Parallel lines belong to this

case. Here,∇Q is 0 along a one dimensional set. As the expression for∇Q is affine in the

coordinates, for the degenerate case, its vanishing is along a line – the valley average line.

In any particular coordinate frame, taking the dot product of the representation of ∇Q

with that of e1, e2, applying the valley condition ∇Q(x) · ei = 0, i ∈ {1, 2} while substi-

tuting terms from Eqs. 3.7, 3.8, we obtain the following expression:

∇Q(x) · ei = 0, i ∈ {1, 2} (3.9)

Hx · ej =
(∑

i

Aixi

)
· ej for j ∈ 1, 2 (3.10)

Some results for the average line computed using this formulation are shown in Fig. 3.5.

28

3.6 Weighted average of a set of lines in 2D

3.6.1 Weighted zero-set average line (weighted zAL)

For a given set of oriented lines {li} = {(pi, ni)}, the weighted zAL is the zero level-set of

the weighted summed signed distance field Z to {li}.

For the given set of lines,

Z(p) =
∑
i

wi(pip · ni)

∴ Z(p) = 0⇒
∑
i

wi(pip · ni) = 0

Replacing pip by op+ pio, where o denotes the origin of the chosen coordinate system, we

have:

Z(p) = 0⇒ op · (
∑
i

wini) = −
∑
i

wi(pio · ni)

p is on the weighted zero-set average if the dot product of p’s position vector op with

the vector (
∑

iwini) is a constant. The set of such p’s lie on the line with normal directed

along n =
∑

iwini.

3.6.2 Weighted valley-set average line (weighted vAL)

For a set of oriented lines {li} = {(pi, ni)}, the summed weighted squared distance func-

tion is Q(p) =
∑

iwi(pip · ni)
2. Q is a quadratic polynomial. Hence, we can use the

following matrix notation:

Q(x) = xTAx+ bTx+ c

29

Here A =
√
wni ⊗

√
wni. The weighted vAL is the valley of Q, and thus, is char-

acterized by ∇Q · e2 = 0, where e2 is an eigenvector of the Hessian H = 2A of Q that

corresponds to the larger eigenvalue of H .

3.7 Properties of the average line and the average plane

For a list of compatible lines (resp. planes), the average line (resp. plane) that is com-

puted using the formulations presented above satisfies the following set of symmetry and

invariance properties:

• Closure: The average is a line (plane).

• Exactness: For a single line (plane), the average is the line (plane) itself.

• Co-incidence: The average of a list of co-incident (incident on a common point p)

lines (planes) is co-incident with them at p. In particular, for a list of identical lines

(planes), the average is exact again.

• Order invariance: The average is a set property invariant under permutations of the

list.

• Similarity invariance: The construction of the average line (plane) commutes with

similarity transformations.

• Parameterization invariance: The average does not depend on the parameterization

of the lines (planes), but depends only on their spatial embedding.

3.8 Geometric interpretations

Interpreting the vAL

The level sets of the summed squared distance function for a set of compatible 2D lines are

either lines, or, ellipses. When the level sets are lines, the height field surface z = Q(x, y)

is a parabolic cylinder, and, the vAL is the line of points (along the axis of the cylinder)

30

Figure 3.6: Top Left: Three parallel input lines. Top Right: The average line (red) and
the summed squared distance field visualized over it. Bottom: The level sets (black) of the
summed squared distance field are lines, and, the average line (red) is the line on all points
of which, the gradient is zero.

where the gradient vanishes. When the level sets are ellipses, the vAL is directed along the

larger principal axis, and, passes through the unique point where Q is minimum.

Fig. 3.6 and Fig. 3.7 visualize the geometric entities important for understanding the

vAL for two configurations of line of interest to us: nearly parallel lines, and parallel lines.

31

Figure 3.7: Top Left: Three input lines. Top Right: The average line (red) and the summed
squared distance field visualized over it. Bottom: The level sets (black) of the summed
squared distance field are ellipses, and, the average line (red) is directed along a principal
axis.

32

CHAPTER 4

PRIOR ART

In this chapter, we first present formulations for averaging sets of certain mathematical

objects. Then, we discuss prior art related to averaging shapes.

4.1 Averaging

Averaging values and points: The average of a set of n numbers is the sum of the numbers

divided by n. In an affine space, fixing a frame of measurement, the coordinates of the cen-

troid of a set of points {pi} is obtained by averaging each coordinate of the point-set. Note

that, the centroid is the unique zero of the vector field V (x) defined as V (x)+x = 1
n
pi. An

extension of this idea [8] is used to define the Riemannian center of mass. Such definitions

of the average require only an affine structure. On the Euclidean line, the additional metric

structure allows for a reinterpretation of the average of a set of numbers as the minimizer

of the variance (see Sec. 2.2). The Fréchet mean extends this concept to metric spaces. If

{pi} belong to a metric space, the Fréchet variance at any point is defined as the sum of

squared distances to {pi}, and, the Fréchet mean is defined as the point which minimizes

the variance.

Averaging functions using point-wise correspondence: Given functions {fi} that map from

a common domain to (subsets of) a space where a notion of averaging exists, an average can

be constructed as the function f(x) = Average(fi(x)). For example, for functions map-

ping to the Euclidean space, one candidate for the Average function is Average(fi(x)) =∑
i
fi(x)
n

.

33

4.2 Averaging shapes

One could envision using an average of functions to compute the average of a set of shapes.

For example, for a set of curves, if all input curves are star-shaped closed-loops, one could

use polar coordinates, ri(θ), of each curve around the centroid Ci of its kernel [9] and

define the average curve using polar coordinate distance m(ri) around the centroid of the

points Ci. A similar approach may be used in 3D [10].

Unfortunately, in many applications, some input shapes may not be star-shaped. Thus,

in a number of prior works, averaging shapes involves two steps:

• Establishing correspondence, which, for curves, amounts to parameterizing each one

as Ci(s), and

• Constructing samples on the average curve that are each defined in terms of corre-

sponding points Ci(s), often (although not always) as their centroid.

Thus, we first review prior art that establishes correspondences between shapes.

4.2.1 Establishing correspondence

Arc-length correspondence: For a set of curves, points that have the same normalized arc

length can be put in correspondence. However, curvature variations in the inputs can lead

to poor results as, in constructing the average sequence of points, the parameterization used

for each curve is arrived at independently (using only the arc-length information of that par-

ticular curve), without consideration of the parameterizations of the other curves (Fig. 4.1).

Landmark correspondence: Sparse correspondences may be specified by the user and used

as constraints for obtaining dense correspondences, or, correspondences can be automat-

ically extracted by detecting salient feature points such as points with high curvature or

points which possess a similar response to a feature detector [11, 12, 13]. When the set of

shapes are known to belong to a particular category, such as human faces, template defor-

34

Figure 4.1: Left: The average (red) of two curves (blue & green) computed using corre-
sponding points when the curves are parameterized by arc-length (the arc length value of 0
is assigned to the dotted locations and increases along the directions indicated). Right: The
average (red) computed by techniques presented in this thesis.

mation techniques may be used [14, 15].

Fast correspondence finding using dynamic programming: A class of correspondence find-

ing approaches consider finding correspondence between sets of discrete samples on the

inputs. The edit-distance [16] quantifies differences between strings of symbols of size m

and n by the optimal number of edit operations (insert, delete, change) that are required to

transform one to the other. A dynamic-programming approach for computing the recursive

edit-distance formulation in time O(mn) is presented in [17].

For a pair of curves, seeking sampled correspondences, and building in assumptions

about the monotonic nature of desired correspondences, we can obtain globally optimal

correspondences using a similar dynamic-programming solution. Given a matching cost

(measure of disparity for a pair of samples, one on each input curve), the dynamic time

warping algorithm [18] can be used for finding correspondences between (or an alignment

of) samples on two curves. For the case of two closed-loop curves, these algorithms require

an initial starting correspondence between a pair of samples. Assuming that each curve is

represented by n samples, an optimal cyclic alignment using edit operations (insert, delete,

35

change) costs O(n3) ([19], Lemma 3.1). The authors of [19] also discuss an algorithm for

reducing this cost to O(n2 log(n)). In [20], the authors present an O(n2 log(n)) algorithm

for computing optimal cyclic-correspondences using dynamic time warping.

Minkowski correspondence: The Minkowski average establishes correspondence between

points with the same normal. Real-time solutions have been proposed for displaying

weighted Minkowski averages of two [21] or more [22] polyhedra. Unfortunately, Minkowski

maps fail to satisfy desirable properties. For example, the Minkowski average of a non-

convex set S with itself is not S.

Tangent based correspondences: In [23], the authors use a dynamic programming approach

to find correspondences between two curves that yields the best possible alignment of tan-

gent vectors at sampled locations.

Normal and radial correspondences: One could use one of the input shapes, say S1, as

base and express each point of the other shapes, Si, as the normal offset [24] of a point p

on S1 along the normal at p, n0(p). Thus, Si(p) = p + ri(p)n0(p). The average shape S

may then be defined as S(p) = p+m({ri(p)})n0(p) using the arithmetic mean m({ri(p)})

of the offset distances. For the correspondences defined in this manner to be unique, it is

required that the shapes be normal compatible [25]. The above idea also works for radial

offsets [24], which places the point p in correspondence with its closest point of Si. In both

cases, the result depends on which input shape is chosen as base.

Correspondences via a common (‘base’) shape: It is possible to find point-wise correspon-

dences between multiple shapes by finding for each point on each shape, a corresponding

point on a common ‘base’ shape. Then, the set of points {pi} (one of each shape) that

correspond to the same base shape point p are in correspondence. In this vein, in [26], Bier

36

and Sloan involve a simple, user-selected, intermediate surface to support a two-step tex-

ture mapping process. In [27], maps for a set of genus-0 meshes are obtained by mapping

each mesh onto a sphere.

The ‘base’ shape that establishes correspondences may also be defined procedurally,

and, in a level of detail hierarchical representation [28], correspondences computed on a

coarse scale can be used to inform correspondences between the finer scale representations.

In [29], maps between triangle meshes are derived from their progressive simplifications

and from establishing correspondence at the crudest versions. In [30], maps between sur-

faces are obtained by decomposing each surface into the same structure of patches.

Correspondences through physically based deformation models: [31] phrases the computa-

tion of correspondences between two polygonal curves as a morphing problem. It models

work done for stretching and bending segments and corners, and then, computes vertex

correspondences that minimize the work that has to be done for deforming one curve to

another using an edit-distance type dynamic-programming formulation.

4.2.2 Extracting features from a scalar field

One way of constructing a representative shape is indeed by first establishing point-wise

correspondences explicitly. However, as described in Sec. 6.3.3, the average can also be

computed by constructing a symmetric scalar field and extracting a set of points using this

field. This section discusses prior-art for approximating distance fields, and for extracting

zero-sets and valley-sets.

Computing distance fields: There are very few shapes for which the distance function has

a closed form expression. Indeed even computing the distance from a particular point to an

ellipse requires the solution of a quartic [32] or a transcendental equation [33], and, is best

done using iterative methods.

37

Rather, one method of computing approximations to the distance function for a shape

is using a spatial grid. A discrete grid representation of an embedded shape is as the set

of grid-cells it stabs. For shapes represented implicitly, for example, such a representation

can be computed by the zero-set extraction methods discussed below. For triangle-meshes,

such a discrete representation can be computed by performing intersection tests for each

triangle of the mesh against a grid-cell. The separating axis theorem for convex shapes (for

two convex shapes, there exists a hyperplane that separates them) can be used to speed up

these computations [34].

One approach to computing approximate distance fields from a discrete representation

is the use of a ‘propagating stencil’ constructed for the grid and repeatedly ‘applied’ to

each grid cell. For a particular grid cell, the application step first centers the stencil over

each grid cell, and computes the element wise products of the centered stencil with the

neighbors of the grid cell (mathematically, if A denotes a table of current distance values

centered around the current grid cell presented in a matrix, and, B denotes the values of the

propagating stencil, then C[i, j] = A[i, j]B[i, j]). The new distance value to the grid cell is

assigned as the minimum of the entries in the resulting table of values mini,j C[i, j]. Note

that, thus, the value at a grid cell is not expressed as the linear combination of its neighbors

as is the case during the application of a linear filter. Sequential and parallel approaches

to computing the ‘distance transform’ have been proposed [35, 36]. Different stencils are

proposed, and their approximation accuracy studied, in [37].

Fast marching methods [38] compute approximations to the distance field for a dis-

crete shape representation by intelligently propagating distance information away from the

shape. These methods use an idea similar to the Dijkstra’s algorithm and, make a pass over

the set of grid-cell, ordered by distances that are updated online as the pass progresses.

Zero-set extraction: Given a grid on the vertices of which a function f has been evaluated,

the marching cubes [39, 40] and dual-contouring [41] algorithms allow the extraction of

38

zero-crossing contours by constructing, for each grid-cell, local geometry in accordance

with the evaluated f values.

Valley-set extraction: There are different characterizations of the valley-set of a 2D height-

field. Arthur Cayley [42] and J.C. Maxwell [43] give an integral formulation of the valley-

set (called lines of watercourse in [43]) as the slope line (solution curves under gradient

flow) emanating at a point an infinitesimal distance away from a saddle point in a direction

of decreasing gradient and approaching a minima of the height-field. To obtain a closed

slope line (i.e., containing all it’s limit points), both the saddle point and the minima point,

which are fixed points of the gradient flow are included. Similarly, the ridge-set (called lines

of watershed in [43]) is the closure of the slope line emanating from near a saddle point

and terminating near a maxima of the height-field. Note that a valley-line on a height-field

is a ridge line on the negative height-field.

These descriptions are very instructive, and are a precursor to modern Morse theory [44]

– the study of topological properties of a manifold through the use of functions over the

manifold.

The watershed transformation [45, 46] used in image segmentation, given a set of seed

points at low heights (for an image, the height at a pixel is the intensity of the pixel), sim-

ulates the ‘flooding’ of a 2D height-field and computes the watershed lines as the set of

points where the flooding would cause a water body that contains one seed to become con-

nected with a water body containing another seed. The watershed lines are the boundaries

of different objects in the image.

In [47], the above formulation is used for extracting ridges from 2D height-fields repre-

sented by their samples on a grid (gridded digital terrain models). [47] finds saddle points

with sub-pixel precision on a filtered digital terrain model, and, computes the integral

curve of the gradient vector field by an adaptive step size Runge-Kutta method [48] (Ch.

39

17) which requires at each ‘time-step’, computing approximations of the derivative of the

height-field.

In [7], the valley of a height-field is defined as the set of points where a minima of the

height-field is attained in a particular principal direction of the height-field. This charac-

terization, along with local bi-cubic fits to a scalar field represented using a grid is used

in [49] to compute grid cells that intersect with a ridge or a valley.

Given two vector-fields represented by samples on a grid, [50] presents a ‘parallel-

vectors’ operator for finding grid-cells where the two vector-fields are parallel. The pair

of vector-fields are interpolated to the interior of the cells. Depending on the interpolation

function used, either analytic solutions, or, Newton-Rhapson iterations are used for finding

if a point inside the grid-cell satisfies the valley as characterized by [7].

The authors of [51] define the ridge and valley-set as the locus of points with maximal

curvature on each contour line.

The different characterizations are critiqued in [52], which notes the merits of the defi-

nitions of [42]. For compatible configurations of lines, the various definitions of the valley

agree on the solution set – the vAL as discussed in Ch. 3.

As opposed to computing valleys of a scalar field, works such as [53, 54] seek to trace

ridge and valley curves on meshes and surfaces. Valleys on surfaces are defined using

frames local to the surface, as opposed to that on height-fields where, there exists, a partic-

ular distinguished ‘up’ direction.

Field evolution and stationary field zero-set extraction: The works presented above com-

pute a representation of, or extract features from, a static scalar field. Active-contour mod-

els [55] use level-set [56] methods for evolving surfaces and curves. Starting with an initial

shape representation and a cost functional, one computes: (a) an approximation to the

signed distance field to the initial shape Q, and, (b) equations for iteratively updating Q so

as to reduce the evaluation of the cost functional for the shape corresponding to Q = 0. Q

40

is evolved as per the update equations, and (typically the) zero set for the steady state of

the evolved field is extracted as the evolved shape.

Particularly relevant amongst such approaches is an approach for elastic shape aver-

aging. Given two input shapes, a deformation measure quantifies the energy expended in

deforming one to the other. In [57], the authors define a deformation measure between

two shapes and compute as the average, the shape that minimizes the summed deformation

to the inputs. The authors use a staggered optimization process that alternatively updates

an estimate of the average shape and the deformation measure from it to each input shape

using grid based discrete representations.

4.2.3 Medial axis and ball morph

The medial axis [58, 59] of a shape is the set of points with multiple closest projections to

its boundary. The medial axis has numerous applications [60], and, is a very well-studied

object in computational geometry [61, 62, 63].

While the medial axis is unstable – minor alterations to a shape can alter its medial

axis significantly – filtering approaches such as [64, 65] provide a practical method for

capturing the medial symmetry set of a shape.

The use of the medial axis concept for symmetric correspondence establishment be-

tween two ball-compatible shapes is described in the ‘ball-map’ [66]. The correspondences

established by the ball-map have been used to develop morphs between compatible pairs

of shapes [67]. We present the essential ideas of this work in Sec. 6.2.

The medial axis of the symmetric difference of two ‘compatible’ 2D curves corresponds

to the average curve defined in this thesis. Hence, our definition of the average generalizes

this use of the average to more than two curves. Our algorithm for computing a representa-

tive generalizes (to more than two shapes) previously proposed sampling approaches [68,

69] of the medial axis.

41

4.2.4 Staggered, iterative optimization

Algorithms of the k-means clustering family [70] seek to compute an unknown object that

is determined by local spatial information by a fixed point iteration. The expectation max-

imization algorithm [71] also solves for both an unknown set of optimal parameter values,

and, a set of latent variables when the conditions on both the sets of unknowns are too hard

to be solved for simultaneously. The algorithm assigns a guess value to the latent variables,

and solves for the optimal parameter values for the current guess. The latent variables are

then re-estimated using the parameter values just computed.

The moving least squares [72, 73] method for scattered data interpolation, given a set

of data-points and associated scalar values, solves, for any query point, the weighted least

squares problem for the data-points to obtain coefficients for a polynomial. The polyno-

mial’s evaluation at the query point furnishes the interpolated scalar value.

A principal curve [74] is a curve defined by sample point data through a similar stag-

gered iterative process of approximating the curve locally by deciding contributing points

for a local region, and, using the approximated curve for redistributing contributions from

points.

In registration using iterative closest projections (ICP) [75], given a nominal surface

and a cloud of points, a rigid transformation that ‘best’ aligns the point cloud to the surface

is computed by iterating the staggered process of a) computing correspondences and b)

computing and applying best aligning transformation. Various errors can be minimized

when seeking the ‘best’ aligning transformation. Particularly relevant to this thesis is the

minimization of the summed squared distances from each point of the point-cloud to the

tangent plane at the point of closest projection on the nominal surface [76]. Important

observations about the geometry of the squared distance function to surfaces are presented

in [77] which further motivates the use of the squared distance to tangent planes for ICP.

42

4.2.5 Guaranteed homeomorphic approximations

Two shapes are homeomorphic if there exists a homeomorphism between them. While this

definition is existential, given a procedure for mapping between two shapes, one can study

conditions on the shapes for which the mapping establishes a homeomorphism between the

two shapes. In this manner, conditions for the closest projection map between two shapes

to be a homeomorphism between them are presented in [25].

[78, 79] reconstruct curves and surfaces from a set of point-clouds by providing con-

structions based on the Voronoi diagram [80] of the point-set. Assuming that the point-

clouds are obtained by sampling an input (a smooth curve or surface), they provide condi-

tions on how densely the point-clouds should sample the input such that their reconstruction

is homeomorphic to the input.

Given a surface and a set of points, [81] discusses conditions for the surface to be

homeomorphic to the restriction of the Voronoi cells of the Voronoi diagram of the set of

points to the surface.

4.3 Relation of our contributions to prior-art

The approaches proposed in this thesis characterize the representative shape as zero-sets

and valley-sets of appropriate height fields. Thus, these sets could be extracted using the

ideas from Sec. 4.2.2. However, we use the derived expressions for the zero-set and valley-

set of a set of lines and planes to suggest a grid-free, iterative approach.

In our thesis, a novel theoretical contribution is proposing a definition of the average

shape for a set of compatible shapes as the height valley of the summed squared distance

functions to the shapes. Armed with this definition, we investigate lines and planes, arriving

at compatibility conditions which will ensure that the computed average is unique.

43

We note in Sec. 4.2.2 that techniques to compute distance fields typically grid the em-

bedding space, and, techniques to compute the zero-set or the valley-set of a scalar field

assume a dense-grid representation for their operation.

In our thesis, we consider the case where the scalar field is a function of the distance

fields induced by a set of input geometric objects. For this case, we propose an alternate

computational scheme. We do not compute a dense approximation of the distance fields

for each shape. Rather, we construct local approximations to the distance fields during the

Snap operation. Given a sampling location, the distance field to each shape is approximated

as the distance to the tangent plane on the input shapes that corresponds to the sampling

location.

Thus, the computational ideas of our work are similar to works on dynamic, iterative

algorithms presented in Sec. 4.2.4. Our algorithm staggers correspondence finding and

projection onto a local average approximation.

Some key differences from prior art are that: a) we enforce symmetry (wrt. permuta-

tions of the inputs) in selecting the data we use for computing our local field, b) create a

directional field by using the summed squared distance to lines and planes rather than to

points, c) we use the field to compute a local implicit surface to project onto, which is not

necessarily given by the zero-crossing of the field (e.g., the valley formulation) and, d) we

use local geometric information about the input to decide the direction of projection, while

still being able to argue for the symmetry of our construction.

The closest projection queries can be made computationally efficient by using connec-

tivity information of the input shapes. As the correspondence finding step is separated from

the local approximation step, this approach has the following benefits:

• We can separately consider questions about the topological validity of the set of

correspondences yielded by the correspondence finder. Using the results of prior

art [25], we have (admittedly strong) a-priori conditions on the inputs for ensuring

that the closest projection correspondence finder yields homeomorphic correspon-

44

dences. Aside from the a-priori compatibility conditions, we can also propose post

computation checks that decide the usefulness of the computed result – we propose

that the result be considered useful if it establishes homeomorphic closest projec-

tion maps, or, for polygonal inputs, when the result is a curve or surface that well

approximates each of the inputs.

• The correspondence step may be altered to not necessarily yield closest projection

correspondences (see Sec. 6.5), but yield correspondences that also consider the con-

nectivity of the input shapes.

• We can alter the field whose zero-set or valley-set we seek, while using the unaltered

correspondences. This idea is similar to weighted moving least squares, but, rather

than weighting based on spatial proximity of the query point, we weigh each field

induced from a shape either globally to effect morphing (see Sec. 5.5), or locally to

effect smooth joins between curves (see Sec. 9.3.2).

45

CHAPTER 5

AVERAGING CLOSED, COMPATIBLE PLANAR CURVES

Our algorithms for computing average shapes start with a seed shape. This is, generally,

one shape in the input set. Also note that the result is independent of which shape is chosen

as seed. First, we sample ‘query’ points on the seed shape. Each of these query points is

mapped to a point on the average. We assume that these ‘snapped’ points on the average

have the same connectivity as that of the query points on the seed shape. Thus, for each

type of shape (curve, surface), we need to develop ‘Snap’ methods that snap query points

onto the average.

In this chapter, we first describe the approach for snapping query points onto an average

curve for a set of compatible, closed-loop, planar curves. Then, we describe a modification

‘Trace’ that replaces the global closest projection computation step of Snap with a local

query for better computational complexity.

5.1 Snapping for curves in the plane

The Snap method uses the fact that the average for a set of compatible lines is a line

(Sec. 3.3). The Snap algorithm is presented in Alg. 1. At each ‘Move’ iteration (Fig. 5.1),

we:

• For each curve Ci, compute the closest point pi on it from the current p. pi is said

to be in closest projection correspondence with p as it is the image of p under the

closest projection map (the map that associates p with its closest projection on Ci)

• Compute the average line by averaging tangent lines to the input curves at the points

of correspondences {pi}.

• Update p by projecting it onto the average line.

46

C1

C2

C3

p3*p =

= Project(p)

Average Line

p1

p2

p3

p = p'

Figure 5.1: A 2D sketch of the initial steps of the Snap procedure. From left to right: (a)
Shows three input curves {Ci} and the initial location of p, which is initialized to a sample
p∗3 on the seed curve C3. Each ‘Move’ iteration of Snap will update p. (b) and (c) demon-
strate the two phases in a single Move iteration. (b) Shows the closest projections {pi} of
p, and the associated tangents {ti}. The inset shows the direction of the “average” tangent
t in red. (c) Shows how we project p to the average line (gray) by moving orthogonal to the
average line’s direction t, i.e., along the normal to the average line n. p′ will become the
new p for the next iteration. (d) Shows the projections of the new p onto the input curves
and marks the start of the next Move iteration.

Algorithm 1 Snap method for closed planar curves

1: procedure SNAP(p0, C = {Ci})
2: p = p0
3: repeat . Sequence of Moves
4: for i ∈ {1, . . . |C|} do
5: pi ← ClosestProjection(p, Ci)
6: li ← (pi, ti) . Line tangent to Ci at pi
7: p← Project(p, AverageLine({li})) . Project p on average line to {li}
8: until Converged(p, {Ci})
9: return p

The key sub-routine invoked by Snap is Project, which projects onto the average line.

Depending on whether we use the zAL or vAL formulation to compute the average line,

we call the resulting curve computed the zero-set average curve (zAC) or the valley-set

average curve (vAC). In the next section, we describe the details of Project.

5.2 Projecting onto the average line

Given a set of lines {li}, the average line can be computed using either the zAL or vAL

formulation of Sec. 3.3. Subsequently, a point p can be projected onto the computed line.

47

However, as we know of a condition (for example, for the vAL, the summed signed distance

should evaluate to zero) that must hold for a point to be contained on the average line, we

can Project onto the average line without computing its explicit representation.

Avoiding computing the average explicitly also aids numerical stability. For the vAL,

explicitly computing the average line l(p, t), requires computing a point on it, and its direc-

tion. As the vAL passes through the point where the summed square distance to the set of

lines {li} is minimized, this minima point can be used as p.

However, this method fails when the lines li are (nearly) parallel, because the minimizer

may be (nearly) at infinity, which leads to numeric instability. Rather, note that the direction

of the average tangent t, and thus, the average normal n can be computed robustly using

only information about {ti}. Additionally, we also have implicit conditions for a point to

lie on the average line (the point should be on the zero-set of the signed distance function

(Eq. 3.2), or the valley of the squared distance function (Eq. 3.5)). Thus, our projection

approach directly formulates projecting p onto the average line as finding the vector v = sn

such that the required conditions are satisfied at p+v (this implies that p+v is on the average

line).

Our project algorithms for both the zAL and the vAL compute the desired v and are

presented below.

5.2.1 Projecting on the zAL

The details of Project for projecting onto the zAL of lines is shown in Algorithm 2. Note

that we do not require normalization of the computed n.

5.2.2 Projecting on the vAL

The details of Project for projecting onto the vAL of lines is shown in Algorithm 3. The

process computes the average normal n (using the formulation of Sec. 3.1) and the displace-

ment along it to lie on the valley-set average line. In our notation, vector ni = (ni.x, ni.y).

48

Algorithm 2 Project on the zAL
1: procedure PROJECT(p, {li} = {(pi, ni)})
2: n = (0, 0)
3: for each line li do
4: n+= ni

5: for each line li do
6: num+= (ppi · ni)

7: den = n · n
8: p = p+ num

den
n

Algorithm 3 Project on the vAL
1: procedure PROJECT(p0, {li} = {(pi, ni)})
2: a = 0; b = 0; c = 0; n = 0; d = 0
3: for each line li do
4: a+= ni.x

2

5: b+= ni.y
2

6: c+= ni.x ni.y

7: α = atan2(2c, a− b)/2
8: n = (cos α, sin α)
9: for each line li do

10: num+= (p0pi · ni)(n · ni)
11: den+= (n · ni)

2

12: p = p0 + num
den

n

49

5.3 Tracing: Accelerated Snap

Snap (Alg. 1) calls the ClosestProjection algorithm. The algorithm computes, for a given

query point p and an input curve Ci a point pi that is on Ci and is closest to p. We say that

pi is the point on Ci that corresponds to p.

A ClosestProjection algorithm would, for a piecewise approximation to a curve, need

to query each piece for the closest point, and, take the minimum over these. Thus, for

example, for a piecewise linear closed-curve approximation, the complexity of the Closes-

tProjection algorithm is linear in the number of vertices in the approximation.

Our Trace algorithm described below (Alg. 5) builds a polygonal approximation of

the average sequentially along the average curve, a vertex at a time. For any input curve

Ci, Trace uses the result of the previous correspondence computation step as the starting

point for a local search for the new corresponding point, thereby improving computational

efficiency.

Algorithm 4 Incremental Snap method

1: procedure INCSNAP(p, C = {Ci}, {ui})
2: repeat . Sequence of Moves
3: for i ∈ {1, . . . |C|} do
4: pi ← IncrementalClosestProjection(p, Ci, ui)
5: li ← (pi, ti) . Line tangent to Ci at pi
6: p← Project(p, AverageLine({li})) . Project p on average line to {li}
7: until Converged(p, {Ci})
8: return p, {pi}

We compute the first (seed) vertex for snapping as the left-most point of the input set.

This step requires traversing each curve once, before the tracing starts. Other, more robust,

solutions may be used. For example, one may consider a small set of seed candidates

randomly chosen on the input curves and select the one for which the minimum distances

to the other curves have the smallest sum. The seed vertex is snapped to obtain a sample p

50

Algorithm 5 Trace
1: procedure TRACE({Ci})
2: u← left-most point of {Ci}
3: {ui} ← ClosestProjection(u, {Ci})
4: {li} ← {(ui, ti)} . Line tangent to Ci at ui
5: PAC.AppendVertex(Snap(u))
6: while not Closed do
7: t← TangentToAverageLine({ti})
8: u, {ui} ← IncSnap(u+ εt)
9: PAC.AppendVertex(u)

on the average curve, and, the correspondences {pi} (closest projections to each {Ci}) are

noted.

Then we repeat the following process. We consider the sample u last appended to

the list of samples. We use the corresponding points {ui} to u on each {Ci} and the

tangent lines {li} at {ui} to compute the tangent of the average curve using the vAL or

zAL formulation1. t is the tangent to the average curve at u. We compute a candidate

point p = u+ εt as an extrapolation of u along the tangent to the average curve. Then, we

compute a new sample v by snapping p and append it to the list of samples.

IncrementalClosestProjection: For trace, our IncSnap algorithm has the parameter signa-

ture IncSnap(p, {Ci}, {ui}) and is invoked with p = u+εt. Note that it accepts ‘previous’

correspondences – correspondences {ui} for the point u last appended to the list of samples.

For a curve Ci, the IncrementalClosestProjection step of IncSnap does not perform a

global search over Ci for the closest point pi to p. Instead, we start the search at the corre-

sponding point ui of u (the previous snapped point) and stop the search at the first point pi

along Ci where the distance to p reaches a local minimum.

Trace stops (i.e., Closed becomes True), when the distance from the new vertex v to the

first vertex of the list of samples is less than ε. We test whether v projects onto the edge

created from the first two samples on the average. If so, we do not append it.

1Note that we do not need to recompute ui and t as these are saved as the results of the previous snap.

51

The sampling density and hence the number of samples appended to the PAC are con-

trolled by the step size ε. For example, we set it to 1/300 of the average length of the input

curves if we wish to create an average curve with about 300 vertices. A large step size may

reduce the smoothness of the average. One may of course subdivide the resulting curve for

a smoother result.

5.4 Experimental results

In this section, we first report performance measurements and show a variety of qualitative

results. Then, we discuss an application the approach presented here to morphing.

Convergence of Snap: While Snapping a point, if two successive Move steps yield loca-

tions u, v such that the distance between u and v is less than 10−8bl where bl is the length

of the smaller side of the bounding box of the union of the input curves, we declare con-

vergence. The average number of move iterations that were needed to converge to the vAC

from an arbitrary point p in the plane were 2.03.

Overall performance: We used a machine with 8 GB of RAM and a 2.2 GHz quad-core

processor. Our single threaded implementation performs an average of 15,590 Snap oper-

ation per second on an input set of 768 vertices. Performance drops to 8,104 operations

when we double the vertex count.

Incremental solution: Switching to locally computing the closest projections as described

in Trace, the performance improved by a factor of 7 when the input has 768 vertices, by

a factor of 14 when the vertex count is doubled, and by a factor of 38 when it is quadrupled.

Diversity of compatible input sets handled by Snap: We tested Snap on a large number of

configurations of input curves. A typical set of examples are shown in Fig. 5.2.

52

Figure 5.2: Example of sets of compatible inputs with their vAC (red).

Snap and Trace yield a Jordan curve for a variety of configurations, including configu-

rations where the curves are far from similar (see for example Fig. 5.3).

Figure 5.3: Three input curves (green) and the resulting vAC with inflation (cyan).

5.5 Application: Mixing shapes via weighted averaging

To compute a weighted vAC (resp. zAC) of {Ci} with weights {wi} that sum up to 1, we

modify the Project algorithms to, instead of projecting onto the average line, project onto

the weighted average line (Sec. 3.6).

53

Figure 5.4: Left: Frames (black) of an interpolating morph between two input curves pro-
duced by using a weighted vAC formulation. Right: Frames of an animation defined by
three control curves using quadratic Bézier weights of (1 − t)2, 2t(1 − t) and t2. As ex-
pected, the central curve is not interpolated.

The choice of the weights or their variation with time or some other parameter depends

on the application. On application is the design and animation of the morph between two

curves. Fig. 5.4 shows a superposition of a series of frames of such an interpolation. These

may also be used as a pattern of curves or as a tool to parametrize the gap.

Our solution extends to morphs defined by more than two curves, for example by using

the paradigm proposed in [22] for a Bézier path in the space of polyhedra. But here, instead

of using a weighted Minkowski sum, we use a weighted sum of (signed or squared) distance

fields and trace the corresponding average curve.

As scaling and addition of (squared) distance fields behave as their equivalent oper-

ators on scalars or points, various formulations developed for motions or (parametric or

subdivision) curves defined by control points may be trivially adapted to produce motions

or patterns of curves that are defined by several control curves. For example, we can use

Bézier weights or time parametrized weights derived from the Neville algorithm [82], so

as to ensure that the animation interpolates all control curves with proper timing.

54

CHAPTER 6

DETAILS AND DISCUSSION OF THE SNAP METHOD

The Snap method was shown to yield an average curve for a set of input curves in Ch. 5.

How does Snap work? What are properties of the average shape computed by Snap? This

chapter presents some answers to such questions.

Snap computes an average for a set of nearly-parallel, closed-loop, planar curves. To

be concise, we first establish helpful terminology. A curve without boundary is a closed

curve. A smooth, closed-loop, planar curve may be formally described as the image of the

circle S1 under a smooth function f : S1 → R2. A Jordan curve is a simple, closed loop,

planar curve without self-intersections. Formally, for a curve encoded by f to be Jordan,

we require f to be an embedding, or, equivalently, we require for f(S1) (the image of S1

under f) to be in a continuously invertible correspondence with S1. We say that a Jordan

curve is homeomorphic to S1, and that f is a homeomorphism from S1 to the curve. We

denote the set of input curves as {Ci}, and, a generic input curve of the set as Ci. The face

bounded by a Jordan curve Ci is denoted as Fi. Unless qualified, the term curve in this

chapter refers to a smooth Jordan curve, and, a set of curves refers to a set of compatible,

smooth, Jordan curves.

Snap uses the closest point queries to compute corresponding points on the input curves.

However, it is not the case that if a set of points {pi} on the curves {Ci} are in correspon-

dence established by our scheme, then pi is the closest projection of pj on curve Ci. In this

chapter, we first discuss the nature of ‘closest projection’ correspondences established by

Snap, noting how they are similar to the correspondences established by the medial axis.

The discussion leads us to consider, in Sec. 6.2, how the medial axis of a shape relates to

the average curve for the case of two curves, and to prior art [66] that constructs an aver-

55

age curve for a pair of Jordan curves. Then in Sec. 6.3, we present our formulation of the

average which generalizes the construction of [66] to n smooth Jordan curves.

We then discuss the approximation which Snap uses to compute the average shape

in Sec. 6.4 and discuss properties that average curves (and shapes) computed using Snap

possess. Finally, leveraging the understanding of Snap gained from the discussion, we

present modifications to Snap that improve the configuration of inputs that Snap yields

useful results in Sec. 6.5, and, present a practical check for validity of the computed result

in Sec. 6.6.

6.1 The asymmetry drawback of closest projection correspondences

Upon termination, Snap yields, for each point on the average, a corresponding point on

the input. Snap constructs correspondences between the input curves {Ci} that have the

property: if point pi on curve Ci is in correspondence with point pj of curve Cj , then, there

exists a point p and discs Bi(p, ‖p− pi‖) and Bj(p, ‖p− pj‖) such that Bi ∩ Ci = pi and

Bj ∩ Cj = pj . Snap computes an appropriate p.

Rather than invoking the existential quantifier in the above formulation, one can con-

struct the correspondences first, and then using the correspondences to compute a point on

the average. Here is an approach for ‘directly’ constructing the average curve:

• Correspondence finding: Compute corresponding points on the inputs.

• Point-wise averaging: Compute a point on the average using the corresponding

points.

Finding meaningful correspondences, for some measure of meaningfulness, is a dif-

ficult problem, as evidenced by numerous prior works on the subject [83, 84] (see also

Ch. 4).

Snap seeks to employ a particularly natural correspondence establishment scheme that

uses closest point correspondences (while Snap uses closest projections, it is not the case

56

that if a set of points {pi} on the curves {Ci} are in correspondence then pi is the closest

projection of pj on curve Ci).

Given two curves C and Ci, the closest projection correspondences are established by

associating every point p on C with its point(s) of closest projections on Ci. Formally, the

closest projection map Πi : C → Ci encodes closest projection correspondences estab-

lished between each point of C and the closest point(s) on Ci.

Closest projection correspondences are particularly natural for shapes embedded in an

Euclidean domain, as these correspondences do not consider parameters other than the

Euclidean distance.

In general, Πi may not be a homeomorphism (Fig. 6.1). However, sufficient conditions

for Πi to be a homeomorphism and thus, for C and Ci to be homeomorphic are defined

in [25]. We discuss the condition in Sec. 6.4.1.

Assuming that the closest projection maps from a particular Ci to all other curves {Cj}

are homeomorphic, then, these maps do yield for each point pi of Ci, a useful set of corre-

sponding points {pj} ∪ pi. Why then can we not specify a point on the average directly as

the average of corresponding points {pj} ∪ pi?

We cannot as the closest projection map is asymmetric – let p2 be the closest projection

on shape C2, of a point p1 that lies on shape C1. Then, p2 does not, in general, have p1

as its closest projection on C1. Thus, using the correspondences established by the closest

projection map, the computed average depends on the particular choice of the ‘seed’ input

curve (in the above description, the curve Ci), and is, thus, not a property of the set of

inputs (Fig. 6.2).

Thus, if we wish to use the closest projection map to assist in computing an average

curve that is symmetric, we must use an indirect approach. In the next section, we describe

how prior art [66] constructs a symmetric center-curve and uses it to establish closest pro-

jection correspondences for the case of 2 curves.

57

Figure 6.1: Left: Both images show portions of two curves (magenta, green). A config-
uration where the closest projection maps two red points on the green curve (red) to blue
points that are far from each other along the magenta curve. Our presented approach iden-
tifies such configurations as invalid. Right: A configuration where the closest projection
map is well behaved.

Figure 6.2: When the average is computed using the correspondences established by the
closest projection from one of the input curves, chosen as the base, the average and the
correspondence map depend on the choice of the base because the closest projection map
is asymmetric (Left). In general, if the closest projection of a point p1 (red) on one curve
(C1, green) onto another curve (C2, magenta) is p2 (blue), then, the closest projection of
p2 onto C1 is not p1. Right: Samples on one average curve obtained by selecting the cyan
input as base are shown as blue dots, along with the cyan edges to their closest projections.
The average curve obtained by selecting the green input as base is shown in green.

58

6.2 Ball-map: symmetric center-curve and closest projection correspondences for 2

curves

For two curves, consider the ‘ball-center-curve’, points on which are the center of ‘maximal-

balls’. Maximal balls could be explained as being obtained by, starting with a zero-radius

disc centered at a point p1 on the first curve, and, increasing the radius of the disc while

keeping it in tangential contact with p1 till the disc also makes tangential contact with a

point p2 on the second curve. This construction, the ‘Ball-map’ is described in [66], and,

the center-curve has been used in prior art [67] for correspondence establishment and mor-

phing for a pair of b-compatible input curves.

Given two curves, the ball-center-curve can also be described in terms of the medial

axis [58] of a shape constructed from the two curves using set-theoretic operations. As

the medial axis is a well-studied object in computational geometry [61], this description is

instructive.

Given a Jordan curve Ci, for any point p in the plane, one can compute the closest

projections {pi} of p on Ci. The medial axis of the interior of the face Fi bounded by Ci is

the set of points in Fi which have more than one closest projection on Ci.

Is the ball-center-curve the medial axis of some shape derived from the inputs? For this,

we define the gap of a set of Jordan curves {Ci} as G({Ci}) = (∪Fi)
−\(∩Fi)

◦, where H−

and H◦ denote respectively the topological closure and interior1 of set H and H\h is the

set of elements in H that are not in h sets [85] (Fig. 6.4).

The ball-center-curve of a pair of curves C1, C2 is the union of the medial axis of the

interior of their gap and their common intersection (Fig. 6.4). A morphological formulation

is that the center-curve is the intersection of the medial axis of the ε-thickening of the gap

for all ε > 0.
1The closure and interior operators are necessary to deal with cases where the gap includes lower-

dimensional portions. For example, when all input curves are identical, the gap is one-dimensional and
is identical to these curves.

59

Figure 6.3: Left: Two concentric circles (blue, green) and the set of points at equal distance
from each (red). Right: Two non-concentric circles (blue, green) and the set of points
equidistant from each (red)

For ball-compatible pair of curves, rather than computing ball-maximal-discs by start-

ing from the first curve, computing them by starting from the second curve leads to the

same set of ball-maximal discs. Thus, ball-maximal discs and their centers are symmetric

objects. For 2 curves, we propose to use as the average of 2 curves, their ball-center-curve.

6.3 Scalar fields for averaging for n curves

For more than 2 curves, one can seek to extend the above concepts defined for two curves

by extracting the center-curve of the gap (recall that the for a set of n Jordan curves {Ci},

the gap is defined as G({Ci}) = (∪Fi)
−\(∩Fi)

◦, where H− and H◦ denote respectively

the topological closure and interior). We call this extension the gap-center-curve. However,

the gap-center-curve is not a good candidate for the average as it does not change when a

section of an input curve that is in the interior of the gap is varied while being constrained

to lie in the interior of the gap. Thus, similar to the discussion of Sec. 2.2, we seek a useful

generalization of the concept of the ball-center-curve to n curves.

6.3.1 Zero-set of summed signed distance function

First, we consider an alternate method to describe the ball-center-curve for 2 curves that

is analogous to the number at equal distance. Consider the set of points at equal distance

60

Figure 6.4: A depiction of the terms mentioned in the textual description: two curve inputs
(blue, green), the interior of the gap (cyan) and their center-curve (red).

from two curves. For concentric circles, this set is the ball-center-curve. However, two

co-incident circles, all the points in the plane meet the criteria of being at equal distance to

the inputs, and, for two non-concentric circles, the subset identified is shown in Fig. 6.3.

Despite this, in each case, the ball-center-curve is indeed a subset of the set of points at

equal distance. We refine our formulation to ‘clip away’ the extra points: the ball-center-

curve for 2 curves is the set of points in G(C1, C2)
◦ ∪

(
C1 ∪ C2

)
, that are at an equal

distance from C1 and C2.

Now, we describe how using ‘signed distances’ leads to a simpler formulation. A Jordan

curveCi partitions the plane into an interior (Fi\Ci) and an exterior. Thus, givenCi, we can

assign to any query point p in the plane, a signed distance Si : R2 → R, whose evaluation

Si(p) at p is such that |Si(p)| is equal to the distance between p and Ci, and, sign(Si(p)) is

negative, positive or zero, for points in the interior of Fi, in the complement of Fi, and, on

Ci respectively.

Consider the summed signed-distance function Z =
∑

i Si. For a pair of concentric

circles, the point-set at equal distance is identical to the set of points where Z = 0.

61

Figure 6.5: Left: For two coincident circles, the set of points that are the zero-set of the
summed signed distance function coincides with the input (red). Right: For two non-
concentric circles (blue, green), the points identified by Z = 0 (red) is a subset of the set
of points that are at equal distance from each circle, and, is identical to the center-line.

Figure 6.6: Left: Three input curves (blue, green, cyan). Center: The summed, signed-
distance height-field Z. Left: The Z = 0 level set (red) overlaid over the inputs.

Additionally, for a set of curves, Z is never 0 in the interior of the common bounding

region (∩Fi)
◦ and in the exterior region that is not bounded by any curve (∪Fi)

c. Thus, Z

is not in R2\
(

(∪Fi)
c. But, R2\

(
(∪Fi)

c ∪ (∩Fi)
◦
)

= G({Ci})◦ ∪ (∪Ci). Thus, for two

curves, Z = 0 identifies points in the plane that are at equal distance from each curve, and

that are contained in the set G({Ci})◦ ∪ (∪Ci).

The above is precisely the clipping based characterization of the ball-center-curve and,

hence, the ball-center-curve for two curves is the zero-set of the summed signed distance

function to them (Fig. 6.5).

The zero-set definition extends directly to n curves. Thus, we have the following pos-

sible characterization of the average: the average is the zero-set of the summed signed-

distance field (Z). Fig. 6.6 visualizes the field Z and its zero-set for a set of n curves.

62

Figure 6.7: Left: The negative of the summed squared distance field Q for the three input
curves of Fig. 6.6. Right: Contour lines for finer elevation differences for the top of the
height-field −Q are shown.

6.3.2 Valley-set of summed squared distance function

As we have seen (Sec. 2.2), formulations of the average that are equivalent for the case

of 2 entities can yield different results for n entities. So, we consider the question: are

there other formulations that yield the ball-center-curve? We ask this question particularly

because, the zero-set formulation requires the concept of signed distances and thus, the

zero-set characterization of the average can not be applied to average curves in 3D. We

seek an alternative generalization that allows averaging 3D curves.

As mentioned in Sec. 2.2 (see also Fig. 2.1), considering points where the summed

squared distances to the inputs is minimized yields isolated point-sets. However, we need

a 1D solution set as our average (i.e., we need an average curve).

We have seen in Ch. 3, an approach to averaging compatible lines that extracts a valley-

set of the summed squared distance field Q. Thus, it is reasonable to consider a similar

formulation for curves.

Fig. 6.7 depicts the height-field z = −Q(x, y) that at any point (x, y) in the plane

evaluates to the negative of the summed squared distance to the input curve-set.

63

Points on the valleys of the height-field Q, or equivalently, points on the ridge of −Q

are given as per [7] by the points where minima ofQ (or a maxima of−Q) is attained along

a principal direction (along a direction given by an eigenvector of the Hessian of Q). This

relaxation of seeking a generalized minimum – a minimum along a particular direction

identifies a larger point-set.

6.3.3 General approach to averaging using scalar fields

The two approaches that we discussed are both are instances of a general approach to

computing symmetric, representative point-sets for a set of shapes.

Constructing symmetric point-sets: Given a set of input shapes embedded in a common

ambient space, a process for constructing a point-set that is defined by a set property is to:

1. Construct a ‘symmetric’ scalar field such that its evaluation at every point in the

ambient space does not depend on the ordering of the inputs.

2. Express point-set containment as the satisfaction of a particular property of the scalar

field.

The set of points so identified is a property of the scalar field and thus, independent of

orderings of the input.

Constructing average point-sets: Points on the average are symmetric and, additionally,

they also possess properties that make them a good candidate for representing the inputs,

including a) containing points of coincidence of the inputs, b) being parallel to each input,

and at an average distance from the inputs for parallel inputs and input sets which are offsets

of one another and c) being affected by a variation of each input curve.

The approaches we presented above for computing representative point-sets for a set of

lines or planes use different ‘symmetric’ fields:

• The summed signed-distance field to the inputs: Z(p) =
∑

i S(p, Ci)

64

• The summed squared distance field to the inputs: Q(p) =
∑

i d
2(p, Ci).

The symmetry for each of these fields follows from the commutativity of addition over

R in both cases. The resulting point-set is symmetric. The resulting point-set for either

formulation also possess the above mentioned desirable properties amongst others (for the

case of two curves, each yields the ball-center-curve) and hence, the results are average

point-sets.

6.4 Snapping using tangent lines

To compute points on the zero-set average curve, one could use a spatial grid to approx-

imate the summed signed distance function using techniques such as fast marching and

contour extraction techniques to extract the zero-set. Similarly, to compute points which

satisfy the differential characterization of the valley we can compute the summed squared

distance function using fast marching, and extract the valley-set (see Sec. 4.2.2).

In contrast, the Snap approach of Alg. 1 (Ch. 5) seeks to sample the zero-set of Z or

the valley-set of Q by iterative projections onto the zero-set / valley-set of the scalar field

constructed using tangent lines to the input curves at the points of closest projection. These

local field are denoted in the below discussion by Zl and Ql. In Sec. 3.3, the conditions

for a point to lie on the zero-set of Zl or valley-set of Ql are shown to be satisfied along a

line – the zAL or vAL, and, projections onto them can thus be carried out as presented in

Sec. 5.2.

Thus, Snap does not require a grid. Rather, it relies on the assumption of compatibility

of the input curves to obtain, for a query point p, the set of points {pi} on {Ci} at which

local tangent approximations need to be constructed for computing Ql and Zl and for up-

dating the location of the query point. The updates are performed by a sequence of Move

iterations.

Each move iteration uses information about the last ‘Moved’ location p and the tangent

lines {li} at the points {pi} that are closest to p on {Ci}. Thus, instead of computing

65

approximate scalar fields that are required in computing (approximations to) the zero-set

of Z and the valley-set for Q, the Snap process computes them exactly for a field that

is constructed using local (at a given query point p) affine approximations to the input

geometry.

6.4.1 Compatibility conditions for a set of input curves

When are the approximations made by Snap valid? For a set of input curves, let us first

consider an incompatible configuration. The wart is an example of configurations where,

for two curves, the ball-center-curve would have a bifurcation. Fig 6.8 shows how the

closest projection map may jump (be discontinuous) when moving along the gap in this

case.

Figure 6.8: Incompatible configurations (wart): the closest projection on the green curve
jumps while moving along the gap.

One could construct some form of an “average curve” ignoring such jumps. However,

the variability is defined as the square-root of the average squared distance to the curves.

As such a computed average curve will not establish homeomorphic closest-projection cor-

respondences, the average will use the same point on at-least one curve at-least twice for

66

computing the variability field. Thus, the average will not capture a point-wise variability

field for the input curves. We declare such configurations of inputs as invalid.

A set of input Jordan curves are compatible if their average is a simple curve that is not

contractible in the gap such that the closest projection map from the average curve to every

other is monotonic (i.e., each input curve is homeomorphic to the average curve, and, the

closest projection map is the explicit homeomorphism).

The above condition for compatibility, however, is existential. Can we derive an a-priori

condition that may be evaluated for a particular set of input curves? If we require that, for

a set of compatible input curves, the closest projection map from each curve to every other

be a homeomorphism, then, any point in the gap has a unique closest projection on the seed

curve (for any choice of the seed curve from amongst the input curves).

A sufficient, but, not necessary condition for the closest projection map from curve C1

to curve C2 (and vice-versa) to be a homeomorphism is presented in [86]. The condition is

phrased in terms of two measures:

• The symmetric Hausdorff distance between the two shapes (dH(Si, Sj)).

• The minimum of their respective minimal feature sizes, mlfs(Si, Sj).

The condition is:

dH(Si, Sj) < (2−
√

2) mlfs(Si, Sj) (6.1)

For two compact sets X and Y , the directed Hausdorff distance from X to Y is the

maximum over the distances from each point x ∈ X to Y . The symmetric Hausdorff

distance is the maximum over the directed Hausdorff distances from X to Y , and, the

directed Hausdorff distance from Y to X .

The mlfs [66] of a shape is the infimum of the local feature size (lfs) [87] over every

point of the shape. The local feature size at a point on the shape is the distance between the

point and the medial axis (Sec. 6.2) of the shape.

67

The Hausdorff distance between two convex polygons with n vertices each can be com-

puted trivially in O(n2) and a linear algorithm for computing the symmetric Hausdorff

distance between two convex polygons is presented in [88]. [89] presents an n log(n) so-

lution for computing the Hausdorff distance between two simple polygons. In [90], the

authors propose a randomized O(n3 + ε),∀ε > 0 algorithm for computing the Hausdorff

distance between two triangle meshes with n triangles. A practical implementation of an

O(n4 log n) procedure for computing the Hausdorff distance between two triangle meshes

with n simplices is presented in [91]. For the more general case of free-form shapes, [92]

presents an algorithm for computing the Hausdorff distance between two planar parametric

curves that have a rational parameterization and a sampling approach for computing the

approximate Hausdorff distance between two surfaces is presented in [93].

The mlfs of a shape may be computed by computing its medial axis and finding the

closest point between it and its medial axis. The medial axis may be computed exactly for

certain classes of shapes, including polyhedra [94] and natural quadrics (planes, spheres,

cylinders and cones: shapes that are the natural result of milling and turning) [95]. [96]

presents an algorithm for computing the medial axis of planar free-form shapes. Sampling

based approaches for computing an approximate medial axis often compute ([78, 97, 98])

the voronoi diagram of a set of point-samples on the boundary of the input shape and

leverage the results that in the limit of sampling density: a) in 2D, the voronoi diagram’s

vertices converge to the medial axis of the shape b) in 3D, a subset of voronoi diagram’s

vertices converge to the medial axis [87]. Sampling based approaches typically compute

the delaunay triangulation of the set of point-samples from which the voronoi diagram of

the point-samples (which is the dual of the delaunay triangulation) can be computed in

linear time [99]. This is possible in O(n log n) (2D [100]) or O(n2) (3D) [99].

Thus, both quantities (Hausdorff distance and mlfs) appearing in the condition can be

computed a-priori for all possible pairing of the input curves to have a guarantee that, the

closest projection map between each pair of curves is well behaved.

68

Additionally, when the sufficient condition holds for every pair of input curves, then,

as every point on the average is contained in the gap, the symmetric Hausdorff distance

between the average and a particular curve Si is less than maxj∈{1,...n} dH(Si, Sj). Also,

in light of the properties of the average, we advance the following conjecture: the mlfs

between the average and Si is greater than minj∈{1,...n}mlfs(Si, Sj).

Under the mlfs conjecture, using the fact that the Hausdorff distance and the mlfs be-

tween each input and the average can be bounded by measurements of these quantities for

every pair of inputs, we can obtain an a-priori check for validity of inputs as:

The condition is:

max
(i,j)∈{1,...n}×{1,...n}∧i 6=j

dH(Si, Sj) < min(2−
√

2) mlfs(Si, Sj)

Due to the difficulties in implementing non-approximate methods for computing the

Hausdorff distance and mlfs, and, as the above a-priori condition is sufficient but not neces-

sary, we propose (Sec. 6.6) computing a result using Snap and then checking its usefulness

as the average.

Additionally, in Sec. 7.3, we present NormalSnap, an approach to snapping that, rather

than projecting a candidate point p onto the average line, ‘moves’ it to the average line

along the normal ni to the seed curve Ci at the closest point pi of p (i.e., updates p as

p = p + sni). NormalSnap fixes the closest projection onto the seed curve as long as the

line segment bounded by the points p and p + sni does not intersect the medial axis of

the region bounded by the seed curve. Thus, if we check for projection compatibility [86])

between each input curve and the seed curve, we obtain a guarantee that: (a) the closest

projection map from the resulting average to the seed curve is a homeomorphism and (b)

the average is homeomorphic is each input curve.

Finally, we note that, the conditions expressed in the above discussion are well defined

for surfaces in 3D as well as curves in 3D, and, the above mentioned conditions are the

69

Figure 6.9: Left: Snapping a grid (cyan) of points over the plane yields samples on the
valley-set (red) of the summed squared distance function to the set of curves. There are
components of the valley that lie outside the gap. Right: The result (red) of snapping
samples generated on an input curve.

conditions for a-priori compatibility of curves. Under these conditions on the inputs, the

closest-projection map from one curve to another establishes correct correspondences.

6.4.2 Implicit clipping of the valley-set by Snap

For a set of compatible curves, the summed squared distance field is defined over the entire

plane. Valleys of this field exist outside the gap too, and, thus, the valley condition is

satisfied by points both inside and outside the gap.

Indeed snapping a grid of points scattered over the plane yields points on the valley-set

that are outside the gap too (Fig. 6.9, left). Note that the zero-set of the signed-distance

function for the configuration of Fig. 6.9) is inside the gap in this case (for any point p

outside of the gap that has closest points {pi} and corresponding normals {ni} to {Ci}, the

components pip · ni all have the same sign). Thus, the ensuing discussion is focused on the

valley-set of the summed squared distance function.

70

Figure 6.10: Left: The valley-set outside the gap is generated by considering the summed
squared distance function induced by highlighted regions of the inputs. Note that this
valley-set is generated by ‘incorrect’ correspondences on the green curve. Right: For a
point on the highlighted region of the violet curve, the closest-projection correspondence
on the green curve (its intersection point with green ball) are correct due to compatibility
of the input curves. That is, the field required to obtain the valley-set outside the gap is not
sampled while snapping from a seed curve.

A property of the Snap algorithm is that, for compatible inputs, it returns the sub-set

of the valley-set that is of interest as the representative i.e., it performs implicit clipping.

Fig. 6.9 (right) shows the result of Snapping from grid-samples that lie in the gap.

How come does Snap compute the correct component of the valley set? This is due to

the closest projection step. For a set of compatible curves, the regions of the input curves

that induce the field for generating the valley component outside the gap are highlighted in

Fig. 6.10 (left, thickened curves). However, as the inputs are compatible, closest projection

queries from the input curves, and, from points in the gap do not yield correspondences

between these regions of the curve (Fig. 6.10, right). As snapping from an input seed curve

does not generate correspondences of Fig. 6.10 (left), Snap doesn’t generate the extraneous

valley-set.

71

Table 6.1: For different configuration of two circles with an annular gap, for a set of samples
{p} on a seed circle, the value max(

∣∣∣ ‖Moven(p), p1‖−‖Moven(p), p2‖
∣∣∣) – the maximum

absolute value of the difference in distances between the ‘moved’ to pointMoven−1(p) and
its closest points p1 and p2 on the two circles at the start of the nth Move iteration.

S. No. Move 1 Move 2 Move 3 Move 4 Move 5 Move 6
1 6.518 0.01512 2.834×10−7 9.77×10−15 7.994×10−15 7.252×10−15

2 1.846 0.00007233 2.398×10−13 7.105×10−15 7.105×10−15 7.105×10−15

3 7.117 0.05633 0.00001609 1.414×10−12 7.994×10−15 6.217 ×10−15

4 0.6153 4.866×10−6 9.77×10−15 7.105×10−15 7.105×10−15 7.105×10−15

5 4.981 0.01491 4.844×10−7 5.329×10−15 5.329×10−15 6.217×10−15

6.4.3 Convergence of Snap

For discussing convergence of Snap we note that we have a definition of the global set that

we wish to converge to – the zero-set of the summed signed- distance function Z or the

valley-set of the summed squared distance function Q.

There are three important questions with regards to convergence using Snap iterations:

stability (whether each Move reduces the distance to the average), invariance (whether

Snap does not move points already on the average) and attraction (whether samples on a

particular seed are attracted to the average).

For the case of a family of lines {li}, a single Move places p on the average line l. A

subsequent Move yields the same average line. p is the projection onto it and thus remains

fixed.

Next, we discuss first the case of configurations of circles for which analytic expres-

sions for the distance function exist.

Two circle configurations: For two circles, Snap should yield points that are equidistant

from both. Also, for the case when the two circles do not intersect and the gap is an

annulus, we also know that the medial axis should be an ellipse. We consider a sequence

of configurations of two circles. For each configuration, we generate samples on one circle

and snap them. We report how each Move iteration of Snap makes progress towards the set

of points equidistant from either circle in Table 6.1.

72

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
s

0

200

400

600

800
#

ab
s(

va
lle

y
co

n
d

it
io

n
)

is
m

in
im

u
m

at
p

+
sn

Figure 6.11: For multiple configurations of 2 circles, for each configuration, a set of seed
points are snapped. At the snapped location p, the vAL is computed and its normal n
is determined. Across the set of input configurations, For each s value, the number of
times when the absolute value of the valley condition evaluated at p + sn is the minimum
compared to other s values is computed and displayed using a histogram.

We also study the degree of conformance of the Snapped samples to the valley con-

dition of requiring the vanishing of the gradient along an eigenvector of the Hessian for

configuration of pairs of circles

For a configuration of two circles, we Snap a set of seed points – we simply iterate

Move 3 times. Each snapped point has a valley average line l = (p, n) associated with it.

We evaluate the valley condition at locations p + sn, for s ∈ {−0.6, 0.59, 0.58, . . . , 0.6}.

We evaluate the expressions for the gradient, the Hessian, and a unit larger eigenvector e1

of the function Q at the above locations and compute the scalar ∇Q · e1 (which should be

zero for the valley).

We report the histogram of s values where the absolute value of the evaluation of the

valley-condition is minimum across a number of such circle configurations in Fig. 6.11.

73

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
s

0

200

400

600

800

1000

#
ab

s(
va

lle
y

co
n

d
it

io
n

)
is

m
in

im
u

m
at
p

+
sn

Figure 6.12: For configurations of 3 and 4 circles, for each configuration, a set of seed
points are snapped. At the snapped location p, the vAL is computed and its normal n
is determined. Across the set of input configurations, for each s value, the number of
times when the absolute value of the valley condition evaluated at p + sn is the minimum
compared to other s values is computed and displayed using a histogram.

Table 6.2: For different configuration of 3 and 4 circles with an annular gap, the maximum
(over all seed samples being Snapped) of the length of the Move vector during the nth Move
iteration.

S. No. Move 1 Move 2 Move 3 Move 4 Move 5
1 2.65582 0.00746656 0.0000252748 1.65739×10−7 1.09267×10−9

2 1.786 0.002749 2.185×10−6 3.164×10−9 6.071× 10−12

3 2.706 0.03446 0.0001953 1.271×10−6 8.542×10−9

4 2.842 0.02988 0.00004097 1.624×10−7 6.438×10−10

Many circle configurations: Similar to the case for two circles, we report the conformance

of the Snapped samples to the valley condition for configurations of 3 and 4 circles in

Fig. 6.12.

Also, for the set of samples under Snap, we report how the maximum distance moved

(over the set of samples) changes with successive Move iterations in Table. 6.2.

The case for general curves: For general curves, computing the zero-sets and the valley-

sets accurately is difficult as the distance function to a shape does not have a closed form

expression. However, for a set of compatible input shapes, each ‘Move’ iteration of Snap

places constraints on the regions of each input shape that may contribute to the construction

of the average.

74

Let us restrict attention to one curve Ci. During a Move, assume that the point under

snap is ‘moved’ from p to q (Fig. 6.13, and, that the closest projection from p on Ci is pi.

Then, Ci does not contain any point in the disc B(p, rp) where rp = ‖p, pi‖. If a point on

Ci influences the calculation of the average line at q, as we assume that Ci is compatible,

then, qi must be in the discB(q, rq) where rq = ‖q, pi‖. The region in which the point must

lie in is the crescent region formed by the intersection of the two balls in Fig. 6.13.

Figure 6.13: During a particular Move, the point under snap is ‘moved’ from p to q. It is
known that the closest projection to curve Ci is the point pi. Thus, Ci does not contain any
point in a region of distance rp = ‖p− pi‖ around p. Additionally, if a new point on Ci has
to contribute to the calculation of the average line at q, it must be at a maximum distance
rq = ‖q − pi‖ away. Thus, the region in which the point must lie in is the crescent region
formed by the intersection of the two balls in this image.

Thus, for a set of compatible input curves, if the length of the Move vector v such that

q = p + v is small, then, the crescent region in which regions of the input curve that may

contribute to the computation of the average at pnew lie is small in volume.

As a result, we propose measuring the distance moved at every Move iteration and

using it to decide when to stop iterating Snap. Aside from the results on smooth circles

in Table 6.2, we present experimental results on piecewise linear representations using this

methodology (Table 7.2).

75

6.4.4 Symmetry properties of the average

A different question from convergence is: is the result of snap independent of the selection

of the seed shape? For piecewise linear shape representations, this statement is false –

in fact, these representations are not compatible as they have a local feature size of 0 at

vertices.

Our Snap algorithm does not preclude such an independence as it composes construc-

tions that are symmetric (independent of the order of inputs). For the case of curves, in

each Move step, we project onto a line that is extracted using a ‘symmetric’ scalar field (Z

or Q).

For the case of two curves, Snap yields samples that are almost at equal distance from

either curve (Table 6.1) – i.e., samples that are on their ball-center-curve. A sufficient

condition on the inputs that will ensure that the ball-center-curve is without bifurcations is

presented in [66].

The condition is:

dH(Si, S) < mlfs(Si, S) (6.2)

Thus, Snap yields a symmetric average if the above condition holds on the inputs for

the case of 2 curves.

For the case of n curves, while we do not have a condition on the inputs which, if

satisfied, will yield a result that is symmetric, we have seen some experimental evidence

(Fig. 6.12) that Snap’s result approaches the valley-set of Q which is a ‘symmetric’ scalar

fields and thus whose zero-set and valley-set are independent of the ordering of the inputs.

In a similar vein, in Ch. 7, we present our experiments on a family of triangle meshes

where we find that Snap called on different seed surfaces yields sets that (although clearly

different, since they are produced by snapping triangulations with different sampling and

connectivity) are close in the Hausdorff sense (See Ch. 7, Table 7.1).

76

6.4.5 Incremental averaging

Another question is: can the average be computed incrementally? Given a list of n curves

{Ci}, let C denote their average. Let the average of the first n − 1 curves of the list be

denoted by Cn−1. The incremental averaging question is: can we compute the average

curve C using Cn−1 and Cn.

We do not foresee a relatively simple extension to Snap that enables incremental com-

putation of the average. Indeed, one recipe for computing the average curve incrementally

is: compute as the ‘incremental’ average, the medial axis of the gap for Cn and Cn−1. For

a list of concentric circles of increasing radii r1, r2, r3, this approach will yield a circle

which is concentric with the inputs and has radius
r1+r2

2
+r3

2
. This approach does not yield

a symmetric result as the radius is not a symmetric expression in r1, r2 and r3. Indeed, first

averaging the circles corresponding to r2 and r3 and then incrementally averaging the result

and the circle with radius r1 yields a circle with radius
r2+r3

2
+r1

2
. Thus, this approach and

does not yield C.

It is also possible to compute a weighted average of Cn−1 and Cn (see Sec. 5.5). Such

an approach too may need not necessarily yield C.

6.5 Beyond compatible configurations

In this section, we leverage our understanding of the action of Snap to propose modifica-

tions that increase the set of configurations for which Snap yields a useful result on.

6.5.1 Gap relative projection (GRP)

Defining pi as the closest point on Ci to p is adequate for compatible configurations. How-

ever, Fig. 6.14 shows a configuration where both vAC and zAC yield inadequate results.

To understand why a segment of the left-most portion of the average in the gap is

missing in the vAC and lacking the expected curvature in the zAC, consider a point p on

77

that missing segment. Its closest projection p1 onto the outer-most (green) curve C1 is not

on the left-most part of C1, but on a different portion of C1.

One may wish to use a curve’s orientation for selecting the corresponding point pi on

it. Thus, we may correspond p to the point pi where pip · ti = 0 and pip · ni > 0, selecting

the first point where the normal is facing outwards.

However, in the input configuration of Fig. 6.14 even this check too is not sufficient.

Rather, we define pi as the gap relative projection (GRP) of p.

GRP: The Gap Relative Projection (GRP) defines pi as a point of Ci such that the line

segment (pi, p) lies in the gap and is orthogonal to Ci at pi.

Figure 6.14: Configuration of four input curves, three of which are similar. Top: the valley
of Q contains components inside (pink) and outside (orange) of the gap and is discontin-
uous (misses its left-most section) inside the gap. Overlaid over this is the zero set of D
(thick brown) that lies within the gap, but contains an erroneous region (orange), which
results from using projections onto segments of the left-most green input curve that are not
visible form within the gap. Bottom: Correct result (pink vAC over thick, brown zAC)
obtained by using the modified (GRP) definition of pi.

6.5.2 Tracing: implicit GRP

Trace (Sec. 5.3) uses local connectivity of each input curve, and selects locally closest

projections. Thus, Trace implicitly performs a Gap Relative Projection, given that it has

been initialized with a good starting seed point. Fig. 6.15 shows an example configuration

where Trace correctly selects the relevant correspondences even in cases when Snap fails

78

Figure 6.15: Left: The vAC of two curves (green and blue) has 3 components: one in
the gap (pink) and two outside (orange). Center: Snap select an incorrect valley in some
regions. Right: Trace selects the correct valley.

Figure 6.16: Self-crossing input set (left) and the vAC representative (right, red).

In fact, since Trace performs a local analysis which uses the connectivity and orienta-

tion of the input curves, it also yields a useful average for configurations that are locally

compatible, but where the curves may self-cross once or more (Fig. 6.16).

However, note that Trace is not guaranteed to produce a useful average result for self-

intersecting curves. The GRP confusion (Fig. 6.17) is an example of configurations where

the gap is not an annulus. Because our Trace algorithm works on a local section of the gap

at a time, it may create a valid average curve for some of such configurations, but, may also

fail to start properly or be confused when these overlaps are local.

6.5.3 Constructing a set of compatible curves from the input-set

Gap Relative Projection and Trace increase the set of input configurations for which Snap

yields a valid average by selecting the correct local minimum point of the distance function

for establishing correspondences to a query point under Snap. Given a set of input curves

79

Figure 6.17: GRP confusion: Left: A set of inputs for which we can Trace the average
curve correctly. Right: Our particular choice of the seed for computing the first sample on
the average (our implementation of Trace picks the left-most vertex of the input curves)
leads to a wrong gap-relative projection onto the green curve (right).

{Ci} that are incompatible, another possibility is to: (a) compute a set of compatible curves

{C ′i}, (b) visualize or evaluate a quantitative measure of discrepancy between {Ci} and

{C ′i}, and (c) if the compatible set {C ′i} is deemed a good approximation of the inputs

{C ′i}, compute the average of {C ′i} and an approximation of the average of {Ci}.

In ‘Relative Blending’ [101], the authors propose an approach to smooth the sharp

features of a shape A by specifying the smoothing indirectly through a smooth control

shape B. The smoothened resulting shape RB(A) is obtained by rolling a variable radius

ball on the boundary of B in a manner such that the boundary of RB(A) is almost ball-

compatible [66] with the boundary of B.

Along similar lines, given two curves C1 and C2, we can compute C ′1 = NC2(C1)

such that the closest-projection map from C2 to C1 is almost a homeomorphism (the word

almost is used here in a similar vein as [101] – i.e., C ′1 is a limit curve of a family of curves

for which the closest-projection map from C2 is a homeomorphism). C ′1 is constructed by

growing balls centered at each point ofC2 till they intersectC1. C ′1 is given by the boundary

of the union of these balls.

To obtain a set of compatible curves {C ′i} from {Ci}, we first initialize the set with

{Ci}. Then for each pair of curves C ′j, C
′
k ∈ {C ′i} we repeatedly and simultaneously re-

place C ′j by NC′k
(C ′j) and C ′k by NC′j

(C ′k).

80

6.6 Checking validity of the average

While there are a-priori conditions which, if satisfied, yield a valid average, these conditions

are not necessary conditions. Thus, practically, we propose checking the validity of the

computed average instead of checking the compatibility of the inputs.

We propose here three non-equal criteria that, depending on the application, may be

required of a valid average. In some use-cases, it may be enough to require that the average

establishes pairwise homeomorphisms between the set of inputs. One may, on the other

hand, require the average to be homeomorphic through the closest point correspondences

established from the average to each of the input surfaces. Finally, one may also require

the average to be independent of the choice of the seed shape.

For the purpose of our thesis, we declare that the average is valid if the closest-projection

map from it to each input is a homeomorphism, and, vice-versa.

Thus, the check for curves is: the closest projection map from the computed represen-

tative to each input curve should lead to moving ‘forward’ on Ci. Similarly, the closest

projection map from Ci to the computed curve should result in moving ‘forward’ on the

average. One can sample the inputs densely, and perform these checks on a sampling.

Incremental validity check: The above proposed validity check can be performed incremen-

tally for Trace (Alg. 5). Assume that u is the last sample appended to the list of samples,

and that v is the new vertex produced by Snap. To perform a local compatibility check,

for each curve Ci, we verify that the closest projections from the line segment (u, v) to the

section of Ci between the closest projection ui of u and the closest projection vi of v is a

homeomorphism and vice-versa.

81

CHAPTER 7

AVERAGING A SET OF COMPATIBLE SURFACES

This chapter discusses the use of the Snap algorithm to compute a representative surface for

a set of surfaces. As surfaces in 3D, similar to curves in 2D are manifolds of dimension n−1

embedded in an n dimensional space, two variants of the Snap algorithm are presented. For

a set of compatible input surfaces {Bi}, we snap samples to the average surface using a)

the zero-set formulation or b) the valley-set formulation.

The chapter is organized as follows: first, we present the Snap method for snapping

samples of a seed surface onto the average surface. Subsequently, we present details of the

various sub-methods invoked by Snap. Following this, we propose a version of the Snap

algorithm that directly yields correspondences for the seed surface’s samples in Sec. 7.3.

We conclude by presenting experimental results obtained using Snap.

7.1 Snapping for surfaces

The Snap method, specialized for surfaces, is listed in Alg. 6.

Algorithm 6 Snap method for surfaces
1: procedure SNAP(p∗k, F = {Bi})
2: p← p∗k
3: while not converged do . Move iteration
4: for i ∈ {1, . . . |F|} do
5: pi ← ClosestProjection(p,Bi)
6: ni ← OutwardSurfaceNormal(pi, Bi)

7: n← AverageNormal({ni})
8: v ← DisplacementVector(p, n, {pi}, {ni})
9: p← p+ v . Move

10: return p

Snap is provided with a sample of the seed surface p∗k. p is initialized to p∗k. Then, Snap

iterates the ‘Move’ step. Each Move computes a Move-vector v and moves p by v.

82

For computing v, the normals {ni} to the input surfaces at the closest projections {pi}

of p are computed and, v is computed so that p + v lies on the average plane to the set of

planes Pi = (pi, ni).

Note how, in comparison to Alg. 1 that was presented for curves, the ‘Project’ step that

computes the closest projection onto the average has been replaced by a ‘Move’ step that

computes a projection (not necessarily closest) onto the average tangent plane of {Bi} at

{pi}.

To fully specify Snap, we only need to discuss how to compute v. In the next section,

we discuss the extension of the idea presented for planar curves: at each Move iteration,

compute a v that is directed along the average surface normal n. Subsequently, we present

a version of Snap which makes a different choice of the move vector v and discuss how it

may yield more useful correspondences.

Materials discussed in the following preceding sections are useful for the following

discussion:

• Techniques for computing an average vector for a set of unit vectors (Sec. 3.1).

• The zAP and vAP formulations for computing the average plane (Sec. 3.4).

7.2 SymmetricSnap: Snapping by moving parallel to the local average normal

The first variant of the Snap algorithm for surfaces, makes a symmetric decision in com-

puting the direction of the move vector v. Thus, we term it SymmetricSnap.

Given a point p, SymmetricSnap computes the estimated average plane and projects p

onto it. The average plane is computed in the following manner: ClosestProjection(p,Bi)

computes the closest projection pi of p on Bi. OutwardSurfaceNormal(pi, Bi) computes

the outward facing normal ni of Bi at pi. This gives us a set of planes {Pi} = {(pi, ni)}

for averaging.

For SymmetricSnap, AverageNormal({ni}) computes the unit normal to the average

plane of {Pi}.

83

For zAP, AverageNormal returns

n = Normalize(
∑
i

ni) (7.1)

For vAP, AverageNormal returns

n = e1 (7.2)

where e1 is the unit eigenvector corresponding to the largest eigenvalue of the Hessian of

the summed squared distance to the planes {Pi} = {(pi, ni)} (see Sec 3.4).

Then, SymmetricSnap computes (DisplacementVector) the vector v that will be used to

update p. For SymmetricSnap, v is parallel to n.

Similar to the case for lines, while one could compute a point-plus-normal representa-

tion of the average plane P , this computation becomes numerically unstable when the input

planes become parallel. Hence, we compute instead the distance s along n that brings p to

point p+ sn on P . For both vAP and zAP, we derive an expression for s using a constraint

that all points on P must satisfy and that may be written in terms of the summed squared

distance field Q or the signed distance field Z.

The zAP displacement vector may be computed as:

v = sN with s = (
∑
i

(pi − p) · ni

N ·N) (7.3)

where N =
∑

i ni (note that the computation of the zAP displacement vector does not

require N =
∑

i ni to be normalized).

The above condition is derived from the constraint that Z(p+ sn) = 0, which implies

∑
i

(pi − p− s
∑

i ni

||∑i ni||
) · ni = 0 (7.4)

84

The vAP displacement vector is derived from the constraint ∇Q(p + sn) · n = 0.

Sec. 3.4 lists expressions for Q.

v = sn with s =
−(Ap+ b) · n

(An) · n n (7.5)

Finally, Move updates the current position: p = p+ v.

Theoretically Snap terminates (Boolean converged becomes true) when Snap(p) = p.

In practice, we stop when the distance between Snap(p) and p falls below a threshold. We

discuss the validity of this heuristic in Section 7.5.

When SymmetricSnap terminates, the closest projection pi of point p onto Bi yields the

established correspondences. p corresponds to each pi, and, every pair of points in the set

{pi} are in correspondence with each other. The closest projection correspondence map is

denoted by Πi : B → Bi : Πi(p) = pi.

A valid Snap surface induces homeomorphisms between each ordered pair of input

surfaces, given by Pi→j = Πj ◦ Π−1i (◦ denotes composition). Thus, theoretically, upon

termination of SymmetricSnap, attributes on Bk defined by fk : Bk → Rn can be pulled

back onto any Bj as: fj : Bj → Rn = fk ◦ Pj→k.

7.3 NormalSnap: Snapping by moving along a seed surface’s normal

Aside from the selection of seed surface for initialization, SymmetricSnap’s constructions

are independent of the order of {Bi}. An unfortunate side-effect of this symmetry however,

is that, in general, the closest projection correspondence for the point p = Snap(p∗k), where

point p∗k is a point on the seed surface Bk is not equal to p∗k

Thus, if we desire to find the corresponding points {pi} on {Bi} for a query point pk on

Bk, we need to first find the point p∗k on Bk such that Πk(Snap(p∗k)) = pk. Then pk will be

85

contained in the set of correspondences computed for p = Snap(p∗k). However, computing

p∗k may require several guess-update iterations.

So, we propose a modified version of Snap – ‘NormalSnap’ that enables efficiently

answering queries of the form: what are the corresponding points on {Bi} to a point pk on

the surface Bk. The key idea of NormalSnap is to fix the closest projection of p onto Bk

during Move to the seed sample p∗k. This is ensured by computing the displacement vector

v as being parallel to the normal nk to the seed surface Bk at the point being under Snap

p∗k.

NormalSnap differs from SymmetricSnap only in the computation of DisplacementVec-

tor:

v =
s

n · nk

nk

where s is the value computed during SymmetricSnap (see Equations 7.5 and 7.3).

Let p = Snap(p∗k). The total distance moved during Snap is ‖p∗k − p‖. As the direction

of each move is along nk, upon termination of NormalSnap, we can represent the average

surface B implicitly as a variable distance offset surface of Bk. Given a point p∗k on Bk, we

obtain a point p on B as p = p∗k + ‖p∗k − p‖nk

The idea of constraining the Move direction is equally applicable for snapping to the

average curve.

7.4 Implementation details

Snap can be implemented for surface representations that support closest point and nor-

mal queries. In our implementation and reported results, the input surfaces Bi’s are high

resolution triangle meshes approximating smooth surfaces.

Closest point queries to each Bi are accelerated using an axis aligned bounding box

tree. As a closest point query does not generally yield a unique result for triangle meshes,

we use a random closest point from the set of closest points as the query result. A possible

86

alternative would be to use the centroid of the set of closest points as the result of the closest

projection result, but, we have not experimented with such a choice and rely on the use of

highly refined triangle meshes.

We take as input a seed triangle mesh T ∗k that is either equal to, or, is an acceptable

approximation of Bk. We snap each vertex of T ∗k to obtain the vertex set of the average

mesh T . T has the same connectivity as T ∗k .

An alternative approach to accelerating computation is to use the GPU. One can: a)

accelerate the evaluation of the distance field at sample locations, and, b) accelerate nearest

point on surface queries.

Distance field evaluation: [102] (Ch. 34) presents an approach to sampling the signed

distance field to an input triangle mesh upto a maximum distance d away from the mesh

using the GPU. A uniform grid is constructed with the user desired resolution. For each

triangle of the mesh, an oriented bounding box is constructed and tetrahedralized. For

each z-slice of the uniform grid, the set of constructed tetrahedra are intersected with the

z-slice and the intersection cross section is rendered using a GPU fragment program that

computes the signed distance to the input triangle mesh for pixel in the rasterization of the

intersection cross section (see also [103] for details of the fragment program).

Accelerating closest point queries: [104] presents an approach for approximately com-

puting the closest point to a trimmed NURBS surface. For each patch of the NURBS

surface, a set of axis aligned bounding boxes {bi} are constructed that contain the patch.

For a query point p, the minimum and maximum distances to {bi} are first computed (in

parallel for all the bounding boxes) on the GPU using a fragment program. The bounding

box bk with the smallest minimum distance to p is then computed using a parallel reduc-

tion on the GPU in log n passes where n is the number of bounding boxes. The maximum

distance from p to bk is used to parallely compute the subset B of {bi} that may potentially

contain a region of the NURBS patch that is at a closer distance to p than the patch region

87

that is contained in bk. The search for the closest point is subsequently restricted to the

trimmed set of bounding boxes.

7.4.1 Tracing for surfaces

We now discuss an approach to extend Trace(Sec. 5.3) to surfaces. The Trace process ac-

cepts as input a set of surfaces and produces a set of samples on the average along with a

triangulation of the samples. Trace for surfaces uses some ideas described in SwingWrap-

per [105], which proposes a procedure for re-tiling ([106]) a triangle mesh. Ideas discussed

in SwingWrapper relevant to the Trace approach proposed here are: (a) the process of in-

crementally creating the re-tiling by adding at each step, a single triangle, and, potentially,

a new vertex and (b) constructing a triangle that is incident on an existing border vertex

of the re-tiling constructed thus far if the potential new vertex location is near enough to a

border vertex.

We first sample three points on a seed surface using the approach used for constructing

an initial triangle in SwingWrapper ([105], Fig. 3). The points are snapped to get a triangle

whose vertices lie on the average. Post this initialization process, Trace incrementally

adds a triangle to the average triangulation at each step. For each boundary edge e of the

average triangulation constructed thus far, a new vertex p is predicted using a parallelogram

predictor. A sample on the average is obtained as Snap(p). Similar to SwingWrapper, if the

snapped location is close to a boundary vertex v of the average triangulation, the triangle

incident on v and containing e is added to the triangulation. Else, the average triangulation

is updated by adding to it the triangle incident on Snap(p) and containing e.

While Trace is sequential, post initialization, it generates candidate samples for Snap,

rather than requiring a set of seed samples. This property is useful when the inputs are

surfaces with boundary, such as a collection of registered range scans [107]. For surfaces

with boundary, snapping samples on one particular seed may not suffice to well sample

all regions of space where the average exists. Thus, we anticipate that, with appropriate

88

Table 7.1: The variation, and its rate of change, between evolving surfaces resulting from
applying Snap to different seed meshes in a family. For a set of input triangle mesh fam-
ilies, the second column reports the maximum of the mean Hausdorff distance (sampled)
over all pairs of meshes in each family. Subsequent columns report the maximum mean
Hausdorff distance over all resulting triangle-meshes for a particular Move iteration, for
increasing Move iteration count, first for SymmetricSnap’s Move iterations, and, then, for
NormalSnaps’ Move iterations. Each Hausdorff distance is normalized by the diagonal of
the bounding box of the pair of meshes under consideration.

Averaging
Method

Mesh
Family F

Normalized Max
Mean Hausdorff
(MMH) F

MMH Symmetric Moves MMH Normal Moves

Iter 1 Iter 2 Iter 3 Iter 4 Iter 1 Iter 2 Iter 3 Iter 4

vAS
Implicit 1 0.01397 0.00079 0.00079 0.00079 0.00079 0.00081 0.00078 0.00078 0.00078
Implicit 2 0.02622 0.00043 0.00029 0.00029 0.00029 0.00053 0.00035 0.00035 0.00035

Concentric Spheres 0.86518 0.00059 0.00025 0.00025 0.00025 0.00062 0.00037 0.00037 0.00037

zAS
Implicit 1 0.01397 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078
Implicit2 0.02622 0.00042 0.00029 0.00028 0.00028 0.00042 0.00029 0.00028 0.00028

Concentric Spheres 0.86518 0.00062 0.00024 0.00024 0.00024 0.00062 0.00024 0.00024 0.00024

Table 7.2: The Snap procedure is performed for each vertex of a triangle mesh in the family,
and the average and max distances moved by the image of the vertex under successive
Move iterations is noted. This is done with each triangle mesh in the family serving as the
seed, and, the summary statistics reported above are the maximum of the average and mean
distances moved. The distances are normalized with the average max mean Hausdorff
distance reported for the family as reported in Table 7.1.

Averaging
Method

Mesh
Family F

Symmetric Move distances Normal Move distances
Iter 1 Iter 2 Iter 3 Iter 4 Iter 1 Iter 2 Iter 3 Iter 4

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

vAS
Implicit 1 1.4865 4.6409 0.0004 0.6796 0.0000 0.0272 0.0000 0.0272 1.4868 4.6409 0.0006 0.8325 0.0001 0.0257 0.0000 0.0187
Implicit 2 4.7306 11.2438 0.0637 2.4293 0.0104 1.6599 0.0063 1.7926 4.7749 12.4449 0.0964 18.8834 0.0126 10.5771 0.0086 5.7605

Concentric Spheres 1.7330 1.7343 0.0054 0.0079 0.0001 0.0029 0.0001 0.0022 1.7333 1.7370 0.0055 0.0079 0.0005 0.0029 0.0001 0.0022

zAS
Implicit 1 1.4865 4.6408 0.0003 0.2457 0.0000 0.0272 0.0000 0.0271 1.4865 4.6408 0.0003 0.2457 0.0000 0.0272 0.0000 0.0271
Implicit 2 4.7216 18.7917 0.0596 11.3477 0.0096 5.4460 0.0050 1.3284 4.7216 18.7917 0.0596 11.3477 0.0096 5.4460 0.0050 1.3284

Concentric Spheres 1.7327 1.7337 0.0058 0.0079 0.0001 0.0020 0.0000 0.0008 1.7327 1.7337 0.0058 0.0079 0.0001 0.0020 0.0000 0.0008

modifications, Trace can also be extended to surfaces with borders. Some modifications

required are presented in Ch. 9, where we discuss a variant of Snap for open curves.

7.5 Experimental results

Snap works for a varied set of input configurations, as illustrated in Fig. 7.2. Note that the

Hausdorff distance between the torii is large compared to their overall size, showing that

the key requirement for compatibility is that the surfaces be roughly parallel and not spatial

proximity. Snap also displays good convergence properties (Table 7.2).

The quantitative results presented in the remainder of this section are also described in

our publication [108].

89

1 2 3 4 5 6 7 8

Iteration

0.00

0.01

0.02

0.03

0.04

0.05

D
is

p
la

ce
m

e
n
t Max SymSnap Move

Mean SynSnap Move

Max NormalSnap Move

Mean NormalSnap Move

Figure 7.1: The max and mean move displacements for each Move iteration of vAS Sy-
metricSnap and NormalSnap are plotted for a set of shape families that each consist of
subdivision surfaces.

7.5.1 Validity checking

Similar to the case for checking the validity of the average for curve (Sec. 6.6), rather than

the more difficult task of establishing necessary and sufficient a-priori conditions that will

guarantee that the computed average is useful, we propose a compute and decide paradigm:

computing the snap set – the result of snapping points on a seed, and, then answer questions

about its validity as the average. We propose the following check for usefulness of the

average:

• Approximate Bk by a triangle mesh T ∗k .

• Compute the vertex set {v} = Snap(T ∗k), and the Snap correspondence sets {vk} =

Πk({v}), where Πk returns any closest projection in the case of multiple such pro-

jections.

• Obtain the average triangle mesh T as the triangle mesh that has {v} as its vertex set,

and that has the same connectivity as T ∗k .

• Obtain the corresponding triangle mesh set {Tj}, where Tj has {vj} as its vertex set,

and inherits the connectivity of T .

90

Figure 7.2: Top: A cut-section of the vAS SymmetricSnap average (red) of two surfaces
(green, blue). In regions where the surfaces differ, the average surface is symmetrically lo-
cated, while in regions that they overlap, the average surface is coincident, as evidenced by
the z-fighting. To prominently showcase the z-fighting, the inputs surfaces in this example
are approximated by low resolution triangle meshes. Bottom: A graded, section view of
the average (red) for two tori that differ in Hausdorff distance. The tori are approximated
by high resolution triangle meshes.

• Check T and each Tj for self-intersections. Declare invalid if there are any self-

intersections. For this purpose, we employ the algorithm in CGAL [109], but, also

refer the reader to [110].

• Compute the dot product of the normal of each triangular face of T , and the corre-

sponding face of each Tj . Declare the result invalid if any of the dot products is not

positive.

Additionally, the user may also want to check how well the resulting triangulations Tk

approximate the input surfaces Bk using prior art such as [111, 87, 78].

91

7.5.2 Symmetry: Invariance to seed mesh

To study the variation of the Snap result with the choice of seed mesh, we ran Snap on

a set of families of triangle meshes obtained as zero level-sets of algebraic expressions,

extracted and processed to remove duplicate vertices using Meshlab [112]. For each family,

from each triangle mesh, we compute a sequence of evolving surfaces that are the result of

successive Move iterations of the SymmetricSnap and NormalSnap. Thus, for a particular

Move iteration i, and a particular seed triangle mesh Sj , the intermediate triangle mesh

Si
j is the result of invoking Move i times on the vertices of Sj . In Table 7.1, we report

the maximum over all ordered pairs of intermediate triangle meshes (Si
j, S

i
k) of the mean

directed Hausdorff distance for each Move iteration. The change in these numbers gives

an estimate of the rate of convergence of Snap. The Hausdorff distances are approximated

using the implementation of [93].

7.5.3 Convergence properties

Results on the convergence of Snap from a particular seed surface are reported in Table 7.2.

Here, the Snap procedure is performed with each triangle mesh in the family serving as the

seed (its vertices are snapped). Over this set of Snaps, the maximum and average distance

moved by the points under Snap in a particular Move iteration is reported.

To showcase that Snap is stable, and, that it is thus justified to stop Snap after 3-4 Move

iterations, we plot the magnitude of the Move iteration displacement vectors over a number

of iterations (Fig. 7.1). We see that the bulk of the displacement happens in the first few

iterations, and, that, subsequently, there are no sudden, large Move displacements.

92

CHAPTER 8

AVERAGING CLOSED, COMPATIBLE NON-PLANAR CURVES

Prior chapters demonstrate the applicability of the proposed ideas for averaging curves in

2D and surfaces in 3D. The generalizability of a core theoretical idea – the definition of the

average set as the valley of a symmetric field, and the core algorithmic insights of the Snap

iteration – symmetrized projections onto locally queried valley sets are highlighted in this

chapter where we present an approach to compute an average curve for a set of compatible

3D space-curves.

We present a Snap method for 3D curves that also yields all-pair correspondences. The

correspondences yielded by Snap have the property that each set of corresponding points

{pi} are the closest projections of a Snapped point p on the corresponding curves {Ci}.

Thus, for the case of 2 curves, p plays a similar role to one of a point on, a 3D extension of

the medial axis (Fig. 8.1).

In this chapter, we first present an overview of the Snap method for closed-loop space-

curves. Then, we present a detailed description of the Snap algorithm. Finally, we discuss

a number of potential applications including geometric design and data-assimilation.

8.1 Snapping for curves in 3D

The Snap algorithm for computing an average curve for a set of 3D curves requires mod-

ifications to extract a valley-set of relevant dimension (a 1-dimensional valley-set), and is

outlined in Alg. 7. The steps during a single Move iteration are depicted in Fig. 8.2.

In the discussion in this chapter, we assume that the input curves are the set {Ci}, with

i ∈ {1, 2, . . . , n}. The seed curve is one of the input curves. We alias the seed curve as C0

and, when we wish to refer to a point on the seed curve, we refer to it as p0. This numbering

convention makes references to quantities derived from the seed curve explicit.

93

Figure 8.1: Top-left: Two non-planar input curves and their average (red). Top-right: The
correspondences that are established (green arrows). Bottom: Different zooms (cropped)
of the top-right arrangement.

Figure 8.2: The Snap algorithm for space-curves takes as input a set of curves {Ci}, and
a point p0 on any one input curve, in this case C1, aliased to C0 (left). Just as in the case
for 2D curves, Snap performs a sequence of Moves. Each Move updates p to p = p + v.
Computing the new position involves the following steps (center-left to right): a) compute
the closest projections {pi} of p onto each Ci and also the tangent ti to Ci at each pi. b)
compute a ‘move’ plane Pl through p0 that has normal n which is computed as (generally)
the average of {ti}, and, c) compute displacement vector v orthogonal to n such that the
valley condition is satisfied at p + v. Geometrically, v is computed so that p + v is the
intersection of the plane Pl and the average line l.

94

Algorithm 7 Snap method for curve in 3D

1: procedure SNAP(p0, C = {Ci})
2: p = p0
3: repeat . Sequence of Moves
4: for i ∈ {1, . . . |C|} do
5: pi ← ClosestProjection(p, Ci)
6: li ← (pi, ti) . Line tangent to Ci at pi
7: n←MovePlaneNormal({ti}) . Normal to plane Pl

8: l← AverageLine({li}) . Average line to {li}
9: v ← Displacement(n, l) . Vector parallel to Pl

10: p← p+ v . Move
11: until Converged(p, {Ci})
12: return p

In comparison with the Snap algorithms presented in the earlier chapters, the chief

modification is in the computation of the displacement vector. The displacement vector is

computed so that p + v lies on the average line to {li} (for the average of a set of lines in

3D, see Sec. 3.5). The details of how v is computed are presented in Sec. 8.2.

Snap operates on any representation of the input curve set {Ci} that supports closest

projection from a given spatial location queries and tangent vector at point on curve queries.

Snap initializes the desired point p to p0 (Line 2). Then, it iterates (Line 3) a small number

of times (typically four) a step which we call a ‘Move’. Each Move (Lines 4 through 9)

computes a normal n (Line 7), uses it to compute a Move-vector v (Line 8) in a move-plane

Pl that contains p and is normal to n, and finally moves p by v (Line 9).

To compute the normal vector n, we need (Line 7) the tangents {ti} to the input curves

at the closest projections of p. So, we iterate (Line 4) over all input curves. For each Ci,

we compute the closest projection pi of p onto Ci (Line 5), and, at the same time (Line 6),

the oriented tangent ti to Ci at pi.

The missing ingredients in the above description are: how is the move plane normal n

computed and how is the displacement vector v computed. n is computed as the average

vector for the set {ti} (discussed in Sec. 3.1, but, similar to the case for surfaces, we also

discuss another choice in the following section – moving normal to the seed tangent t0.

95

v is computed so that p + v lies on the average l of {li}. The method for computing

the average line for a set of lines in 3D has been discussed in Sec. 3.5. Recall that the

definition requires us to define the field Ql that at every point in space evaluates to the

summed squared distance to the lines {li} and extract the valley of this field (which we have

shown is a line). Additionally, we restrict v to be parallel to the Pl. Thus, geometrically,

we compute v so that p+ v is the intersection of Pl and l (see Fig. 8.2 (right)).

Now, we discuss the selection of v – the normal to the Move plane Pl.

8.2 Moving to the local average line

The snap algorithm moves onto the currently estimated average line l at each move itera-

tion. While the minima point(s) of the summed squared distance function Ql to the lines

{li} do lie on l, we have discussed the insuitability of computing the minimum point from

a numerical stability viewpoint in Chs. 5 and 7.

Another, perhaps more important reason for not moving to the minima point of Ql in

every Move iteration is due to convergence issues. Consider the dynamic updates to p over

a sequence of moves. At a particular iteration, a Move to the minima ofQmay significantly

alter the points of closest projections on {Ci} computed during the next iteration. Thus, the

average line, and, thus the new p could be significantly different from the previous iteration.

Furthermore, subsequent move iterations could continue to do the same.

We note that, for compatible input curves, given p, a move in a ‘transverse’ direction of

{Ci} reduces the variation of the closest projections. Thus, we wish to move to the average

line by moving in a transverse direction.

Moving to the average line by moving orthogonal to the average tangent direction: A good

transverse direction is one that is orthogonal to the average direction t of {ti}. Thus, we

find v that is parallel to the plane Pl(p, t) and such that p+ v is on l.

96

We use the average line’s valley-set characterization for finding v. Given t, we construct

an orthogonal pair of vectors v1, v2 that are parallel to Pl. Then, any point on Pl is written

as p+αv1 +βv2. We find values of α and β such that the valley condition (Eq. 3.10) holds.

We briefly recall the condition: we require the gradient of Ql to vanish along two

principal directions e1 and e2 of the Hessian of Ql. Thus, we wish that:

∇Ql(p+ αv1 + βv2) · e1 = 0

∇Ql(p+ αv1 + βv2) · e2 = 0

(8.1)

Note that the valley point p ∈ Pl is not given by the vanishing of the gradient at p.

Rather, we require that the gradient at p vanishes in two special directions e1 and e2 that

are derived not from Pl but from the field Ql.

Expressing the points and vectors in any particular frame of reference, the above is a

pair of linear equations in α, β, whose solution yields a point on the intersection of Pl and

l.

Additionally, as we have constructed the normal n to Pl to be along the average t,

and thus orthogonal to the eigenvectors e1 and e2, there is a special case: we can take v1

and v2 to be equal to e1 and e2. Then, the above equations can be solved for α and β

individually. We use the fact that e1 and e2 are orthogonal eigenvectors of H , and that,

thus, 〈Hej, ek〉 = λj〈ej, ek〉 = λjδjk. Substituting the expressions of Eq. 3.10 in the above

equations, we have the following two equations, each with only one variable:

〈Hp+ αHe1 + βHe2, ej〉 = 〈
(∑

i

Aixi

)
, ej〉

⇒ 〈Hp, ej〉+ αλ1δ1j + βλ2δ2j = 〈
(∑

i

Aixi

)
, ej〉

Moving to the average line by moving orthogonal to t0: In the above we espouse the use

of a symmetric normal n for the move plane Pl – the average t of {ti}. In Sec. 7.3, we

discussed a NormalSnap variant of Snap that fixes the direction of move and stated how

97

it is useful as, upon termination of NormalSnap, we obtain more useful correspondence

queries that directly answer the question:‘Given a particular point on the seed shape, what

are the corresponding points on the other input shapes?’

Thus, we also propose using n = t0 (ti of the seed curve Ci). How correct is the choice

of n = t0? As discussed previously, we want to construct Pl so that the intersection of l

with Pl yields a move vector transverse to the average of {ti}. For roughly parallel curves,

even t0 is well aligned with the average direction, and, thus, is a good candidate for n.

However, n is computed only using a particular seed curve. Thus, does it not violate

the symmetry that we desired? Note that the line l determined as the valley-set of the set

of lines {li} is a property of the set of lines. Thus, even if n and its associated Pl are

constructed asymmetrically, as during move, we compute a point on Pl that is also on the

average line l (i.e., geometrically, we compute the intersection of Pl with l), we obtain

results that are independent of the ordering of the input curves. Hence, the only condition

that we require on the choice of n to ensure symmetry is that it yields a plane that intersects

with l.

Note, however, that for any move plane Pl that is not orthogonal to the squared dot av-

erage of the vectors supporting {li}, we must use Eq. 8.1 and cannot simplify to a diagonal

system of equations as e1 and e2 do not span Pl.

8.3 Implementation details

Our implementation uses piecewise-linear representations of the input curves and applies

the Snap method to a set of ordered samples on any one of the inputs. Implementation

details specifying the operations of Alg. 7 for piecewise linear inputs are:

ClosestProjection and ClosestProjectionTangent: We compute the closest projection of p

to each segment of Ci. In case p has multiple closest projections on a particular curve Ci,

we select any one as pi. We compute the line(s) supporting the edge(s) of Ci on which pi

lies, and, return an arbitrary line li from this set, also noting the direction ti of li.

98

MovePlaneNormal: We have two implementations for constructing n for Pl: one that uses

the squared dot average of vectors presented in Sec. 3.1 and another that uses the inherited

normal n = t0. While theoretically, the average point-set doesn’t depend on the precise

choice of n, practically, as we Snap a set of samples lying on C0, the choice of n influences

the sampling of the average point-set we obtain.

AverageLine: As mentioned in Sec. 8.2, we do not explicitly construct the average line. We

do compute the eigen-vectors of the Hessian of Ql for the set of lines {li} for use in the

computation of the displacement v.

Displacement: The displacement vector v is computed so that p+v lies on the average line

l for the set of tangent lines {li} using Eq. 8.1.

8.3.1 Computational optimizations: RestrictedSnap

The above description presents a simple implementation. Now, we discuss computational

optimizations. For piecewise linear representations of the inputs, the most expensive step

during each iteration of Snap is the closest projection computation step. Naı̈vely, given

the current Snap position p, and a curve Ci this step requires the computation of closest

points between p and each segment of Ci. Faster queries can be performed using a space

partitioning data-structure. For example, the 3D Fast Intersection and Distance Computa-

tion package [113] of CGAL [114] constructs a tree of axis-aligned bounding boxes, the

leaves of which contain just one edge-segment, and, uses this data-structure along with an

auxiliary, guessed, non-less than actual estimate of the distance to accelerate closest point

computations. We use CGAL’s AABB for computing initial closest projection correspon-

dences.

Snapping a point p yields a sequence of points {p, p1, p2, . . . , pn} where pi is the result

of the ith Move. Certain computational optimizations become possible if we assume that

the segments (pi, pi+1) do not cross the medial axis surface of each input.

99

Figure 8.3: Smaller search region for next closest projection. Assume that p′ has closest
projection p′i on Ci and that the previous move (not Snap) step moved to p = p′ + v. We
restrict the search of the closest projections of p onto input curve Ci to a ball having center
p and radius ‖pp′i‖.

Under this assumption, we can utilize the knowledge that the closest projection corre-

spondences do not jump to compute the closest projection for pi on curve Cj as being given

a local minimum of the distance function – an observation that is also made for the Trace

algorithm (Alg. 5).

Unlike the Trace algorithm which sequentially traces the average by snapping each seed

point in order, the algorithm proposed here – RestrictedSnap – operates on each point under

Snap independently. For a point p under snap, RestrictedSnap maintains an upper bound r

on the closest distance for each sample being snapped, and only computes closest distances

to the connected subset of Ci clipped by B(p, r) that contains p.

The connectivity aware variant of the Snap algorithm uses, at each iteration post the

initial iteration, both the current and previous move locations p and p′(= p− v), the corre-

spondences established at these locations to each curveCi – pi and p′i – and, the connectivity

of each input curve to restrict closest projection queries to the intersection of Ci and a ball

Bp(‖p− p′i‖) of squared radius ‖p− p′i‖2 centered at p (Fig. 8.3)

For our implementation using polylines, we keep track of the following information:

closest projection of p′ on Ci, p′i, as well as an edge of Ci that is incident on p′i, e(p
′
i). We

initialize an active set of edges as A = {e(p′i)}, the active set boundary as B = {e(p′i)}

100

and, mark the e(p′i) as visited. We initialize also the minimum squared distance d2min as

‖p− p′i‖2, and the edge with closest distance eimin
as e(p′i).

d2min and eimin
are updated as we grow the active-set of edges. At each grow step, we

add an edge that neighbors B and is not in A to the active set, and add the neighbor of the

edge that is not in A to B, until B contains edges that do not intersect Bp‖p− p′i‖, or, until,

all the edges of Ci are in A. d2min and eimin
are updated each time an edge that is added to

A in a particular grow step has a point that has smaller squared distance to p than d2min.

Even the initial closest projection correspondence step can be sped up (at the loss of

parallelism) in the following manner: we randomly compute closest projections for a frac-

tion of seed vertices on the seed curve Ck. We select the point p′ from these samples that

leads to minimum average squared distance to all the curves and note its correspondences

p′i and e(p′i). We select a seed vertex p on Ck that neighbors p′. The connectivity aware

algorithm is used to compute the closest projections of p on each Ci by clipping and local

querying using Bp‖p− p′i‖ and e(p′i). This process is then repeated for the neighbor of p

that is not p′.

8.4 Experimental results

For a sets of 3D curves, the maximum (over all seed samples being Snapped) of the length

of the Move vector during the nth Move iteration are reported in Table 8.1.

Computationally, local closest projection queries are approximately twice as fast as

CGAL’s AABB acceleration closest projection queries (Fig. 8.4).

Some examples of the computed average and visualized variability tubes are shown in

Fig. 8.5.

An example where spatial curve datasets arise naturally is when one wishes to average

curve for distinguished curves on free-form surfaces. For example, for certain manufac-

tured parts such as blades for turbines and propellers, one is interested in analyzing differ-

ences in blade profiles. These are often 3D curves, which can be extracted manually or as

101

0 1000 2000 3000 4000 5000 6000
Number of closest projection queries

0

500

1000

1500

2000

T
im

e
(m

s)
AABB acceleration closest projections

Local closest projections

Figure 8.4: Comparison of run times for closest projection queries using a spatial acceler-
ation structure vs localized closest projections described in RestrictedSnap (Sec. 8.3).

Table 8.1: For different sets of 3D curves, the maximum (over all seed samples being
Snapped) of the length of the Move vector during the nth Move iteration.

S. No. Move 1 Move 2 Move 3 Move 4
1. 0.132 0.00059 2.02×10−05 2.99×10−06

2. 0.0830 7.98×10−06 4.20×10−13 6.76×10−16

3. 0.141 0.002 0.00043 8.31×10−12

4. 0.2003 0.00045 4.79×10−05 4.98×10−13

5. 0.274 0.00087 0.00016 3.66×10−12

6. 0.15 0.00049 1.89×10−11 4.48×10−16

102

Figure 8.5: Top: Set of input curves their computed average curve (red) and variance tubes
(cyan). Center, Bottom: Set of input curves, their average (red), variance tube (cyan) and
correspondences established via the average.

103

Figure 8.6: Left: A set of 3D curves (one is thickened, while the others are shown with a
thin radii) that are the profiles of a free-form blade. Right: The variability tube shown here,
with the radius linearly magnified, highlights areas of deviation between the inputs.

the set of points that meet certain (differential) geometric criteria. In Fig. 8.6, we extract

profile curves from a collection of such a 3D models, and, visualize the average profile

curve and the variability field as a tube around it.

8.5 Applications

Data-assimilation

Given a field Fi (scalar/vector/tensor) defined on each curve, we can construct an assimi-

lated field F = 1
n

∑
i Fi defined over the average.

The above technique also allows us to assimilate fields defined in an ε region around

the input curves, where ε is the minimum of the local feature sizes of the inputs. For each

point p on the average, we construct the local field for a plane orthogonal to the tangent in

the following manner:

• Use the established correspondences {pi} and the tangents at these correspondences

{ti} to construct an affine frame {pi, [ti, Rie1, Rie2]}, where Ri denotes a rotation in

104

Figure 8.7: Left: Two inputs helixes of varying and radii, and their average (red). Center:
A dense sampling of the blue curve is registered using ICP to a dense sampling of the
green curve. The registered result is shown in yellow. Right: The blue curve’s samples are
registered to samples on the average, with the registration result shown in cyan.

a plane through the origin orthogonal to t × ti that maps t to ti, while e1 and e2 are

the two eigenvectors of the hessian H of the summed squared distance function at p.

• Use these set of affine frames to establish correspondences between a point of the

average plane P (p, t) and that of each corresponding planes Pi(pi, ti) – if a point on

P and one on Pi have the same coordinates in their respective affine frames, then

they correspond.

• Average the field contributions at the corresponding points:

F (p+ αe1 + βe2) =
1

n

∑
i

Fi(pi + αRie1 + βRie2)

The described approach can be used to propagate patterns defined on one curve to all

others.

105

Figure 8.8: Top: Average curve (red) overlayed triangle meshes (yellow) obtained by con-
necting corresponding points on the two input curves. Bottom left: A zoomed in view of
top. Bottom right: Ruling created by connecting corresponding points on two input curves.

106

Figure 8.9: Left: Three input lines and a resulting stack of triangles interpolating sets of

corresponding samples. Right: The interpolating triangle stack for three input curves.

Rigid registration and tight tolerancing

The iterative closest point algorithm computes a rigid transformation that aligns a source

point cloud to a target point cloud. Given an input set, none of whose elements is distin-

guished, we propose that our presented algorithm be employed in a two step rigid regis-

tration process using iterative closest point: a) compute the average b) register each input

shape to the average. Fig. 8.7 demonstrates an example result. One way of quantifying

the difference between the two registrations is to compute the summed squared distances

between each point of the point cloud and its correspondence on the other point cloud. As

the average shape’s samples are situated ‘in between’ the input point clouds, the summed

variance reported with the average point cloud post ICP are individually about 0.25 times

that reported post ICP registration of one point cloud with another for the example above.

The use of the average thus, serves as a means to compute tighter tolerance specification

for inputs when none of them is a justifiable reference.

107

Adaptive snapping for collective uniform re-sampling

Thus far, we have described how to snap samples on an arbitrary seed curve to obtain,

samples on the average and sampled correspondences on every other input curve. The

sampled correspondences thus, depend on the seed samples that are snapped.

One option for generating seed samples for snapping is to uniformly sample the seed

input curve. However, this may yield correspondences that are far from uniformly sampled

on the other curves. In this section, we discuss two alternate approaches for generating

samples on the seed curve.

First, we present a parallel sub-division approach that generates a set of seed samples

that result in an average spacing between snapped correspondences that is below a user

specified thresh-hold. That is, if Snap(p) and Snap(q) are consecutive ordered average

samples computed by snapping p and q, then, the average arc-length
1

n

∑
i ArcLen(Snap(p)i, Snap(q)i)

between the set of consecutive ordered correspondences {Snap(p)i} and {Snap(q)i} is be-

low a user specified thresh-hold.

Our proposed algorithm starts with a coarse set of ordered samples on the seed curve,

and then selectively refines this sampling. Let u, v be the result of snapping two consecu-

tively ordered points on the seed curve’s (C0’s) samples. Let the arc length between their

corresponding points ui, vi onCi be sui,vi . The user to specifies a desired arc length swhich

we compare with the average of {sui,vi}. If the average arc length is less than s, we sample

C0 between u and v, generating a new point for snapping.

For the case of polylines, we first obtain an ordered set of sample points on C0, consec-

utive points of which are approximately 3s arc-length distance apart. We snap these points

to get an ordered set P 1, and a set of corresponding points P 1
i on each Ci. We compute the

arc-lengths on Ci between consecutive elements of each P 1
i , and use these values to com-

pute an ordered set s1 of average arc-lengths ‘travelled’ along the input curves between

consecutive samples of P 1.

108

For two consecutive seed curve points u, v ∈ P 1, if the average arc-length between

{(ui, vi)} on the input curves is below s, then, the section of the seed curve C0 bounded by

u and v is removed from further consideration. Else, the point w that is mid-way between

u and v on C0 is constructed as a point to be snapped in the next iteration. For each such

w, we keep track of the fact that the neighbors of w are u and v. We also keep track of the

average arc length suv between u and v, and the correspondences ui of u on the inputs.

During the next iteration, when w is snapped yielding correspondences wi, we compute

the average arc length suw between {(ui, wi)}, and also the average arc length swv = suv−

suw. This information is used to create a maximum of two possible points to be snapped

in the next iteration, along with the creation of relevant book-keeping information for each

created point as described in the paragraph above. This adaptive subdivision algorithm is

run for user specified maximum number of iteration. Fig 8.10 shows a result generated

using this algorithm.

A sequential variant of the above proposal allows us to generate a fair sampling takes

all the curves into account and meet the user constraints on average arc-length advanced

more accurately. The algorithm is as follows: Starting from an initial seed curve sample,

search for the next sample location on the seed curve that will ensure that the total distance

moved along all the curves is a fixed user defined value using binary search. Fig. 8.11

compares the sampling obtained using fair Snap with an approach that snaps uniformly

sampled points on the seed curve.

Geometric modeling

Both the computed average, and the computed correspondences can be used for a number

of geometric modeling tasks. Some representative examples include.

• Ruled surfaces through a pair of input curves: For a pair of input curves, the corre-

spondences established can be used to compute ruled surfaces (in theory – triangle

meshes for piecewise linear applications in practice) (Fig. 8.8).

109

Figure 8.10: Adaptive sampling to ensure that the average summed arc length advanced
along the input curves between snapped locations (left, red balls) of ordered points of C0

is less than the user specified threshold of 0.15 units. Top Left: The samples on C0 (cyan)
and their snapped locations are shown in balls of radius that decreases with the level of
refinement at which the samples on C0 are created and snapped. Top Right: The resulting
sampling on the inputs via correspondences established by the snapped result. Bottom:
Graphs showing the average arc lengths for consecutive samples at the end of each adaptive
re-sampling iteration.

110

Figure 8.11: Left: A result obtain by snapping a uniform sampling on the cyan input
curve. Right: Result from a fair sampling scheme that inserts samples on the average so
that consecutive points p, q on the average induce correspondences {pi}, {qi} such that the
summed arc lengths

∑
i piqi is a constant value (within numerical tolerance).

• Triangular tubes through three input curves: A user can specify a set of three curves

and the computed correspondences can be used to compute, for each sample on the

average a plane from the induced correspondences (Fig. 8.9).

Spatial synchronization of point motions

Given a set of curves in 3D, we can Snap to their average. Doing so establishes correspon-

dences. Here, we discuss an application where, rather than just input curves (paths), we are

given several motions Mi(t) of a point. Then, one way of defining the average motion M

is, M(t) = the average of {Mi(t)}. Suppose however that the input motions Mi(t) are not

synchronized, beyond their simultaneous starting and ending constraints. Can we use an

extension of the proposed averaging to synchronize or re-parametrize them?

To simplify the discussion, assume that all motions start at time t = 0 at point u0 and

end at time t = 1 at point u1. One way to re-parametrize all the motions is to: (a) simply

consider the paths Ci (ignoring the timing of each motion Mi), (b) compute the average

111

curve C in 3D, (c) construct a parameterization of the average curve, and, (d) use the

closest-point projection correspondences between C and {Ci} to synchronize the motions.

The parameterization or timing information for the average C can be, for example,

constructed as the arc-length parameterization or possibly adjusted for ease-in and ease-

out. If one wishes instead to take into account the initial timings of the input motions and

average them at the same time as one is averaging the positions, then, one can: (a) for each

point p on C, compute the corresponding points {pi} on Ci, (b) compute the parameter

values for individual motions M−1
i (pi) and, compute the parametrization of the average

curve by assigning to every point p of the average curve C, the ‘average’ parameter value

given by t(p) = 1
n

∑n
i=1M

−1
i (pi).

Note that one may also take into account the initial timings of the input motions by

averaging a set of input curves in the four-dimensional (4D) space-time. Doing so poses

two challenges:

• Select the relative scale of time versus the spatial dimensions, as this choice will

affect the definition of distance in 4D and hence in the result.

• Provide expressions for snapping in 4D. This includes computing closest-point pro-

jections onto a curve in 4D and defining and computing the average of lines in 4D.

112

CHAPTER 9

EXPERIMENTS ON AVERAGING CURVE SEGMENTS

9.1 Background and motivation

For a set of open curves, in general configuration, there may exist pairs of curves for which,

the closest projection map of one onto the other will not be a homeomorphism. However, an

often seen configuration in 2D is that of disjointed but locally nearly parallel curves, akin to

what a user might draw while sketching (Fig. 9.2, left). This configuration is different topo-

logically from the inputs we have considered thus far, but, locally, geometrically similar to

the configurations of curves Snap has been shown to yield useful results for (Chapter 5).

In this chapter, we propose extensions to the Snap method for computing an average

for a set of open input curves and present our initial experimental results. The chapter is

organized as follows: first, we present an overview of the OpenSnap method – an extension

of the Snap method for configurations of nearly-parallel, open curves. In Sec. 9.3, we

describe the OpenSnap method in detail. In Sec. 9.4, we present how an average curve may

be computed using OpenSnap. In Sec. 9.5, we propose the DirectionalOpenSnap algorithm

which yields a representative (i.e., an average) curve-network for input sets that comprise

non-parallel curve-segments. The ideas presented in this chapter allow a user to specify

a sketch by overdrawing (Fig. 9.1) and to consolidate a drawn sketch by additionally also

providing a (set of) guide curve(s) (Fig. 9.2)).

9.2 OpenSnap: Snapping for roughly parallel curve-segments

First, let us consider why Snap (Alg. 1) does not work for a set of locally nearly parallel

open curves. The red curve in the center-right image of Fig. 9.2, is obtained by snapping

samples on the magenta guide curve. Perceptually, however, the input curves appear to

113

Figure 9.1: Sketch specification by overdrawing: The user draws a crude sketch (green) and
then, overdraws additional strokes to specify the sketch. Top left: the user draws the blue
stroke to specify the red average. Top right: The computed average in the previous inter-
action is now the specified sketch (magenta) and the user additionally specifies a overdraw
(cyan). Bottom left: Finally, the user augments the current average with the black overdraw.
Bottom right: The initial sketch and the final specified sketch are shown together.

114

Figure 9.2: Top-left: A set of input curves with the user specified sampling curve (magenta)
overlaid over the inputs. Top-right: The result of snapping samples on the sampling curve
without clipping. Bottom: The average curve (red) computed by snapping samples on the
sampling curve using OpenSnap.

115

Figure 9.3: As open curves are incompatible, an unclipped closest projection query at a
query point (red) places distant samples on the inputs (end point of arrows) in correspon-
dence.

be clipped portions of hand-drawn circles, and, the red curve of Fig. 9.2 (right) better

represents the input-set. Thus, rather than placing samples on distant curves (Fig. 9.3) in

correspondence, we wish to modify the closest projection computation step of Snap. This

modification is detailed in Sec. 9.3.

A subtler issue is demonstrated in the configuration of Fig. 9.4 (center). Here, Snap

yields a discontinuous result. To obtain a smooth result, we propose algorithmic changes

that effect the designed join curve-segment. Summarily, we modify both the geometry of

each input curve, as well as its contribution to the symmetric scalar field. The result is a

smooth join curve (Fig 9.4 (right)).

The OpenSnap method for nearly-parallel open curve-segments is listed in Alg. 8. As

discussed in the previous paragraphs, essential novel additions to Alg. 1 (Snap for Jordan

curves) are:

• Geometry modification: The input in pre-processed via the ModifyCurves method,

which modifies the boundary geometry of each input curve. In our experiments, the

geometry modification step extends the boundary geometry of each input using a

linear extrapolation.

• Active input-set selection: For each (extended) input curve Ci, the closest projection

point pi for each curve Ci is checked for containment in a clipping shape and is

discarded if it is outside.

116

Figure 9.4: Left: A simple configuration of a line and a half-line, which demonstrates the
need for designing the join curve. Center: Symmetry dictates that the red average curve
should be situated in between the two objects in some regions, and, should be co-incident
with the line in other regions. Right: Aesthetics considerations warrant a smooth transition
between these two portions of the average.

• Field modification: v is computed so that p + v lies on either the weighted valley

average or the weighted zero-set average of the lines {li}. The process of computing

the weights is described in Sec. 9.3.2.

Algorithm 8 Snap method for open curves

1: procedure OPENSNAP(p0, C = {Ci})
2: p = p0
3: repeat . Sequence of Moves
4: r ←MaxClippingBallRadius
5: {Ci} ←ModifyCurves({Ci}, r)
6: for i ∈ {1, . . . |C|} do
7: pi ← ClippedClosestProjection(p, Ci)
8: li ← (pi, ti) . Line tangent to Ci at pi
9: n← AverageOfVectors({ti}) . Normal to move line Ll

10: v ← Displacement(n, {pi}) . Vector parallel to Ll

11: p← p+ v . Move
12: until Converged(p, {Ci})
13: return p

Below, we describe each of these differences in greater detail. Then, in Sec. 9.4, we

describe how we obtain an average curve using OpenSnap.

9.3 OpenSnap details: Clipped correspondences, geometry and field modifications

Snap iterates the following process:

• Compute corresponding points.

• Compute locally valid, symmetric scalar fields from the correspondences.

• Project onto subspaces derived from this scalar field.

117

Another evocative description is that there are scalar fields fi associated with each input

curveCi that depend on both the point pi, and the spatial location p that is querying the field

fi(p, pi). The form of these fields is determined during Snap’s correspondence finding step

when both p and pi are known. When correspondences are determined, we ‘pick up’ fields

associated with the corresponding points and sum them up to compute f(p) =
∑

i fi(p, pi).

OpenSnap modifies both these steps. In fact, we have seen modifications to either effect

already: correspondences are modified in Trace and when using a gap relative projection

(Sec. 6.5). The field ‘picked up’ is modified (for an entire curve) to a weighted squared

distance field when morphing (Sec. 5.5). For OpenSnap, we modify the correspondences by

a clipping step, and, modify the field locally along the curve at its boundary. Additionally,

we also modify the curve’s boundary.

The rationale for each step of OpenSnap is: a) the clipped projection seeks to determine

‘active’ curves and corresponding points on them that locally contribute in the computation

of the average, b) the geometry modification allows the correspondence finding step to

‘pick up’ fields in regions of interest to us and c) the field modification seeks to influence

the shape of the average curve.

9.3.1 ClippedClosestProjection: Selecting active curves

At every iteration of OpenSnap, a clipping ball is instantiated centered at p. The clipping

ball is used to clip away non-intersecting curves. Note (Alg. 8) that we clip the modified

curves against the clipping object to get the active set.

The radius of the clipping ball is a parameter we have control over. In our work, we

only experimented with a constant user-specified radius. At every point being snapped, we

use the fixed radius clipping ball to decide active curves.

118

9.3.2 Join curve specification using field and geometry modifications

Fig. 9.4 highlights the need for algorithmic modifications for obtaining a smooth average.

Snap’s result has discontinuities near the boundary of each input curve. We design the ‘join

curve’ using justifiable but subjective, aesthetic decisions.

We propose the use of geometry and field modifications to control the result of Open-

Snap and realize the designed join curve. Our proposed approach is inspired by the use

of ‘influence’ shapes [115, 21]. We locally modify the geometry of each input curve Ci

and associate a scalar ‘weighing’ field wi to each Ci. wi is 1 in the interior of Ci and

smoothly decays to 0 at the boundary of the modified Ci. For a given query point p, during

Move, we compute clipped closest projections {pi} to the modified geometry and Move

to the valley-set (in our implementation) of the weighted summed squared distance field

Q(p) =
∑

iwi(pi)Qi(pi).

We wish to design our modification objects so that snapping a ‘nicely sampled’ set of

points in the ‘gap’ (this term is used here in a gestalt manner, as the gap is no longer defined

set-theoretically), results in a ‘nicely sampled’ set of points in ‘a nicely shaped’ valley, for

a useful set of input configurations. Fig. 9.4 shows OpenSnap’s result for the line, half-line

configuration obtained from an implementation where we use a simple linear extension as

the geometry modification, and a more involved decay field as the field modification. We

now describe each modification in detail.

Geometry modification

The geometry modification step extends the boundary of eachCi by an arc-length of r using

linear extrapolation. We wish to extend each curve by an amount that is commensurate with

the radius of the clipping ball used for detecting active curves. The geometry modifications

depend on the approach used for selecting the radius of the clipping ball. In our work, we

extend each curve by the clipping ball radius.

119

Field modification

The field modification is performed by associating scalar weighing fields wi to each (mod-

ified) Ci, with each wi decaying to 0 on the boundary of Ci. During Move, for each clipped

closest projection result pi, we also obtain the weight wi(pi) and move to the weighted

average of lines {li} as described in Sec. 3.6 using the weights wi. For Ci, wi is not 1 only

on the modified geometry. Thus, wi is always 1 if Ci does not have a boundary.

For curves with a boundary, we must use different decay strategies based on how the

modified geometry is created, and, hence, based on how the clipping ball radius is com-

puted.

For the case of a constant clipping ball radius, we use a quintic decay function for

the weights. Assuming that Ci is parameterized using arc length, a representation for wi

is as a univariate scalar function from arc length to the weight value. wi : R → R, with,

wi(s) = a0+a1s+a2s
2+a3s

3+a4s
5+a5s

5. For aesthetic join curves, we require: wi(0) =

0, wi(r) = 1, w′i(0) = 0, w′′i (0) = 0, w′i(r) = 0, w′′i (r) = 0 where the derivatives are wrt.

arc-length s. These conditions can be solved for coefficients of the quintic polynomial.

Similar conditions are expressed for the other boundary of each input Ci.

9.4 Average curve for parallel curve-segments using OpenSnap

OpenSnap snaps a candidate point to the average. The next question is: what set of points

to snap to obtain a useful average curve? Note that, for the case of compatible inputs,

samples on any input could be snapped. However, as seen in Fig. 9.4(center), the red curve

obtained by snapping samples on the cyan half-line only is not sufficient. The answer to

the question of the set of points to snap depends on if the user wishes to specify a sketch

by overdrawing, or, perform sketch consolidation.

When the user wishes to specify a sketch by overdrawing, she starts with an initial curve

and sketches regions where the initial shape has been incorrectly specified. This process

120

Figure 9.5: The representative curve (red) computed by snapping a set of sample points
(magenta) using OpenSnap for a set of input curves that contain curve-segments that are
not parallel locally.

can be performed repeatedly (Fig. 9.1). For sketch specification, samples on the initial

shape are snapped.

For a sketch consolidation task, the user wishes to average a given sketch rather than

refine an initially specified stroke. In this mode, we require the user to also specify a ‘sam-

pling’ curve. Samples on the sampling curve are Snapped using OpenSnap. Fig. 9.2 shows

a result obtained by using OpenSnap and snapping samples on a user specified sampling

curve. A set of disconnected average curves (an average-curve network) is obtained if the

user specifies a set of sampling curves.

9.5 DirectionalOpenSnap: Average curve-network from non-parallel inputs

OpenSnap, like Snap, yields useful results when the input consists of curve-segments that

are locally parallel. When this is not true, OpenSnap fails to yield useful results (Fig. 9.5).

To support such configurations, we propose DirectionalOpenSnap that also consider direc-

tional information when deciding active curves for a point under snap.

DirectionalOpenSnap accepts a candidate point and a candidate tangent. It only differs

from OpenSnap in requiring as input the candidate tangent, and, in implementing Clipped-

ClosestProjection differently. The input to DirectionalOpenSnap is a point and a tangent

sampled from a user drawn curve network. Apart from clipping closest projection queries

121

Figure 9.6: Sketch specification by overdrawing. Left: An input sketch of a bunny with one
droopy ear that the artist tries to correct by overdrawing. Center: A guide curve network
(dark green) over the inputs. Right: The user’s specified sketch (red) is computed as the
result of snapping the seed curve network.

using a ball, DirectionalOpenSnap also removes closest projections on active curves where

the tangent is not within 30 degrees of the input.

Fig. 9.6 is a result of using DirectionalOpenSnap to compute representative curve-

networks by Snapping samples (point, tangent at point) from a user-specified sampling

curve-network.

9.6 Conclusion

This chapter presented our modifications to Snap to enable it to operate on parallel, open

curves. We presented initial experimental results and discussed and proposed solutions to

key issues that arise in extending Snap to open curves.

While in this thesis, we have proposed a method to augment a sketch with a guide

curve network that provides seed samples for Snapping, for a overdrawing based sketch-

specification application, it may be desirable to not require the specification of guide curves.

Using the ideas presented in this chapter, given a set of input strokes (open curves), such a

system can work by a) pre-processing the input strokes b) snapping samples {pi} on each

122

Figure 9.7: Sketch consolidation without using a guide curve by snapping all inputs. Right:
A set of short strokes to be consolidated. Left: Samples (red) obtained by snapping samples
on each of the input strokes overlaid over the inputs. A post processing step for extracting
a curve from the samples is required.

input curve Ci to get a snapped point-set ∪Snap({pi}) c) creating topology for the snapped

point-set (determine neighborhood information for each point of the snapped point-set)

using trivial nearest neighbor algorithms to get snapped curve(s) d) re-sampling the snapped

curve(s). As a preliminary result, for a set of short drafting strokes, the resulting point-set

obtained by snapping samples on all inputs is shown in Fig 9.7. Note that despite no

connectivity information, the snapped points are suggestive of a curve, and, for example,

one way creating a curve from these samples is to extract the crust [78].

We hope that our proposed technique will provide for online sketch-consolidation /

sketch-specification through overdrawing by the judicious use of spatial acceleration struc-

tures, point-wise (parallelizable) projection operations, and serve as an alternative to more

elaborate and computationally involved sketch-consolidation systems such as [116]. How-

ever, a number of challenges will need to be addressed for the successful use of the tech-

niques discussed in this chapter in an end to end system for sketch consolidation. One

example of such a challenge is: the ends of strokes are often drawn and captured (by a digi-

tal drawing tablet) with less precision and may also possess abrupt changes in direction. For

the sketch consolidation task, the boundary of each stroke might need to be clipped during

a pre-processing step before OpenSnap, or, a different technique for geometry modification

rather than linear extrapolation may be required.

123

CHAPTER 10

AVERAGING TOOL-PATHS FOR ANALYZING SYSTEMIC ERROR AND

NOISE IN A CNC MACHINING PROCESS

10.1 Background and motivation

In this chapter, we present a use-case of the average curve and of the variability field com-

puted using the Snap algorithm: analysis of a computer aided manufacturing process that

uses CAD software for digitally specifying the shape to be manufactured, and CNC ma-

chining for realizing the designed shape.

In computer aided manufacturing, the “As Designed” shape designed using a CAD sys-

tem (we term this the nominal shape) occupies a central role in informing manufacturing

process decisions. For example, the nominal representation is used to compute and pro-

vide control signals for driving the manufacturing of the physical artifact and to compute

manufacturing tolerances from. The nominal shape can also inform process improvements.

Comparing manufactured artifacts to the nominal shape, an operator can, using her experi-

ence, make an informed decision on if a different cutting tool would yield better results, or,

if the feed-rate needs to be reduced. The usefulness of digital models for aiding decision

making is a key reason for the increasing trend in manufacturing to use an explicit “digital

twin” [117] – a digital representation of the entire manufacturing pipeline rather than just

the nominal shape.

Additionally, in modern day manufacturing, instrumented manufacturing systems which

provide online updates as to their status are increasingly prevalent. These systems lever-

age our improving ability to store and process large datasets and to interconnect complex

systems.

124

In fact, we have demonstrated that using the architecture described in [118], it is con-

ceivable to obtain in near-realtime, samples that estimate the “As-Manufactured” shape.

Given systems capable of high-frequency data feedback (such as [118]), are there new pos-

sibilities in how the acquired data can aid decision making? In this chapter, we present one

such possibility that highlights the role of the average shape.

Consider first the following setup that provides the operator with comparative measure-

ments between the artifact manufactured by a production run and the nominal shape:

• The operator designs a nominal digital D∗ representation using CAD software.

• D∗ is used by a computer aided manufacturing (CAM) software to compute a motion

representation.

• The motion representation is parsed by a machine control software which uses it to

generate control signals for driving the machine tool.

• During a production run, the control signals are applied to the machine tool for real-

izing the designed shape.

• For the ith production run, data read back from instrumenting sensors is used to

construct a digital estimate Di of the manufactured artifact.

• Di is compared with D∗ (Fig. 10.2).

In such a setup, Di differs from D∗ due to errors in the manufacturing and digital

capture processes. Note that a systematic error such as one caused by a wrongly calibrated

machine or a wrongly calibrated sensor would affect each Di. The key observation is

that a setup which furnishes the operator with comparative data referenced off the nominal

shape inherently conflates two types of errors – consistent / systematic errors that affect

each machined artifact similarly, and, random errors that affect each manufactured shape

independent of their affect on any other.

However, if an average D of {Di} is computed, then, a comparison of D and D∗ will

showcase the “systemic” consistent errors (Fig. 10.1). Thus, the average shape informs the

125

Figure 10.1: A conceptual depiction of how averaging multiple digital representations of
the artifacts produced by a manufacturing process allows for disentangling consistent and
inconsistent / random errors in the manufacturing process. A comparison of the manufac-
tured average with the nominal shape highlights consistent errors. A measure of variability
around the average quantifies the extent of random errors in the manufacturing process.

operator of the nature of the errors in the manufacturing process and allows her to separately

consider process improvements for remedying consistent and inconsistent errors.

In the following sections, we demonstrate the usefulness of the average curve and the

variability field for informing the motion of a ball-ended cutting tool for a CNC machine.

We first obtain time-series data for the positions of the center of the ball of the cutting tool

for a set of production runs each of which machines the same geometry (a curve). Then,

we compute the average curve of cutting tool center positions and the local variability field

and visualize these results. The average curve is also compared with the nominal curve.

We demonstrate how to use the computed average and variability information to aid in

re-planning the CNC cutting tool’s motion.

We have developed a subtractive manufacturing system that allows for:

• Controlling the cutting tool motion for a particular CNC machine.

• Designing the geometry of the path to be traversed by the cutting tool.

• Designing and/or specifying the cutting tool’s motion.

• Estimating the realized motion.

We use this system for our demonstration. Thus, first, we describe our developed sys-

tem. Our system employs SculptPrint [119], an existing voxel based CAM system for

designing tool path curves: curves along which a ball-ended cutting tool’s center moves

for realizing the desired shape. We augment SculptPrint with the capability to construct a

time-parameterization of the tool path curves (i.e., to compute a tool path motion) that is

126

Figure 10.2: Left: A time varying position vector curve of the center of a ball-ended CNC
cutting tool for a machining pass (green). Right: The data captured from the instrumented
machine (red) overlaid over the desired path (green).

realizable by a given CNC machine. We use the PocketNC CNC machine for our experi-

ment. PocketNC is a commercially available, desktop-sized CNC machine. The PocketNC

machine is instrumented to sample the realized motion of the CNC machine’s cutting tool

using axis coupled rotatory encoders. We control PocketNC using a modified version of

Machinekit, an open-source CNC machine control software.

10.2 Description of the tool-path data acquisition system

A schematic overview of the system is provided in Fig 10.3. The different components

comprising the system are:

10.2.1 PocketNC and MachineKit

Machinekit [120] is a Linux-based open-source CNC control platform. It is a commu-

nity effort that builds upon the Enhanced Machine Controller project [121] which lead to

the development of a fully-featured software controller capable of controlling multi-axis

machines.

The machine used in our system is the PocketNC, a commercially available, 5-axis

desktop-sized machine. PocketNC is controlled by Machinekit running on a small single

board computer: the Beaglebone Black (BBB). PocketNC’s BBB runs Linux that is patched

with the Xenomai real-time scheduling micro-kernel. Xenomai allows for the creation of

127

Figure 10.3: A block diagram of the developed system: the CAM system (SculptPrint) al-
lows the user to design the geometric path to be following by the cutting tool. The designed
path is fed to a motion generation algorithm whose output is used to drive the CNC machine
using a modified version of the open-source control software MachineKit. Rotary encoders
attached to each axis of the machine are read at a particular sampling rate to obtain samples
on the realized tool path (image originally appeared in our publication [118]).

real-time threads and also allows real-time threads to preempt non real-time threads thus

providing low worst-case scheduling latencies vital for control of the CNC machine.

10.2.2 SculptPrint

Computer-aided manufacturing software generates motion commands for a CNC machine

tool using stock and input part geometry (the nominal shape). The motion commands affect

the motion of the cutting tool along tool-paths curves. The material removed by the cutting

tool as it moves along the tool-path curve transforms the stock shape to the desired nominal

shape.

Both the nominal shape and the tool paths are often designed manually. While the

designed geometry is often described using parametric curves and surfaces, our system uti-

lizes a CAD/CAM software, SculptPrint [119], that represents the geometry using voxels.

A voxel representation of a parametric shape is computed as follows: space is subdivided

128

into a grid of volume elements (voxels). The position of a particular voxel is implicit, and,

a boolean value is stored for each voxel to denote if the voxel intersects with the shape’s

boundary. SculptPrint uses an adaptive, hierarchical, voxel representation, using small vox-

els only near the solid’s boundary. The use of such a representation and the implementation

of efficient algorithms for common solid modeling tasks on such a representation (detailed

in [122]) ensures that high resolution approximations of the tool-path and of quantities

such as the material removed during machining can be computed at quick (though not in-

teractive) rates. The novel representation and efficient, embarrassingly parallel processing

algorithms allow SculptPrint to provide numerous novel design primitives for designing the

geometry of the tool-paths for the cutting tool.

10.2.3 Trajectory generation

Given the above setup for tool-path geometry generation and CNC control, one requires

additionally, a trajectory planning algorithm, which takes as input a high-resolution discrete

approximation to the user designed tool-paths and outputs a cutting tool motion that affects

the path.

Conventionally, motion commands are specified using a human-readable file that con-

tains a sequence of ‘G-Code’ instructions. A G-Code instruction specifies simple geometric

primitives (lines, arcs, and splines) and control information such as feed-rates and spindle

speed. The machine tool software controller parses G-Code and uses information about

the feed-rate, the machine’s capabilities, and the geometric primitive specified to generate

reference motion that is to be tracked by the machine. For a machine that uses stepper mo-

tions (as PocketNC does), the controller also generates a pulse-train to realize the reference

motion.

In contrast, our system allows for free-form machining using a direct control architec-

ture [118]. Rather than specifying a CNC cutting tool’s motion by means of G-code, we

modify Machinekit’s trajectory planner to allow us to directly feed required control data to

129

the CNC machine’s motor controllers at their rate of operation, 1
Tservo

. This modification of

the trajectory planner of Machinekit allows us to directly control the machine’s motion at

the machine’s native temporal and spatial resolution.

Armed with this modification, we directly fit and optimize the parameterization of a

spline that interpolates axis position samples provided by SculptPrint using an approach

similar to [123]. Our developed trajectory planning algorithm involves three steps: a) the

fitting of a curve in 5D CNC controller configuration space to discrete samples obtained

from the CAM system b) the optimization of the time parametrization of the fit curve while

adhering to posed constraints and c) the uniform time sampling of poses from the optimized

parametrization.

The trajectory planning component of our system is flexible enough to allow us to

specify kinematic constraints that are to be enforced at any point on the configuration space

path.

10.2.4 Encoder feedback

While the trajectory planner does generate a cutting tool motion, it is not necessarily the

motion that results when the CNC controller drives the machine’s axis using set-points

computed from the planned motion.

The resulting motion is estimated using samples read from a set of rotatory encoders,

each of which is rigidly coupled to an axis of the CNC machine. This yields configuration

space samples for the machine. Using the machine specific forward kinematic transforma-

tions, we obtain samples on the machined shape.

Due to the physical nature of the data-acquisition system, the sampled encoder data has

noise in both the spatial and temporal domains. Thus, the data we obtain as estimate of the

realized tool-path differs from the nominal tool-path as a result of errors during both the

CNC machining process, and the data-acquisition process.

130

10.3 Experimental results

10.3.1 Experiment description

In our demonstration, we consider two simple 2D nominal tool-path curves: a filleted

square (Fig. 10.4) and a circle. For each curve, applying machine specific inverse kine-

matic transformations, we obtain the configuration space curve along which the machine’s

axis must move. We use manufacturer prescribed kinematic constraints for the PocketNC

to plan a realizable motion using the trajectory planner. The acceleration and velocity pro-

files for the machine axes for the planned motion are depicted in Fig. 10.4 (one machine

axis is stationary).

The motion is sampled at servo rate as per our control strategy and provided to the

controller for driving the axis motors. Note that, we do not cut material, rather, present data

captured when cutting air. Values read from the encoders yield samples of the positions of

the different axes of the CNC machine. Applying the machine specific forward kinematic

transformation, we obtain sample positions on the realized tool path. As expected, the

captured samples closely track the nominal tool-path.

10.3.2 Data analysis

There are two types of analysis enabled by the proposed curve averaging solution. Firstly,

we can compute regions on the input curve where the distance between the average encoder

curve and the nominal curve is higher than a particular threshhold – ‘non-conforming’ re-

gions. We can bring these regions of high deviation to the attention of the CNC operator.

These two use cases are illustrated in the below discussion.

Use of the average: In Fig. 10.5, the average curve constructed from encoder data from

multiple runs and the nominal curve are overlaid. We zoom in on a particular region to

show the difference in the two curves.

131

Figure 10.4: Top: The path used for our experiments (green). Center and Bottom: Velocity
and acceleration (bottom) profiles for the translational axis for the motion generated by the
trajectory planner.

132

Figure 10.5: The average curve (red) and the nominal curve (green) shown at successive
zoom levels.

Figure 10.6: A zoom into the top edge of the filleted square. Here, the input curves coincide
with the average (red) and thus, are not visible. However, the nominal shape (green) and
the average are not coincident.

133

Fig. 10.6 is a zoom in on a region where the nominal shape has no curvature. We

observe that there is a consistent deviation from the nominal shape for each manufacturing

run. This suggests a consistent, systematic error. Two possible causes of this are:

• Incorrect machine calibration: The CNC machine is calibration once manufactured.

The calibration process involves the one-time specification of certain fixed param-

eters for the manufactured machine. Errors in the calibration process can lead to

systematic errors as well. For example, there could be an inaccuracy in the specifi-

cation of the machine’s ‘home’ position and, the spatial location realized when the

machine is homed could, in reality, differ from that determined during calibration.

Then, as the encoders are coupled with the machine’s axis, the encoders will report

measurements that are incorrectly referenced.

• Skipped motor steps: The CNC machine in our experiments uses micro-stepped step-

per motors and, for a translational axes, a single step corresponds to 0.000012”. A

motor may skip a step due to load. This will lead to a difference in the reading

recorded by the encoder coupled with the axis of the motor, and the expected en-

coder reading in the absence of a skip. As the CNC machine in our experiment runs

open loop, an error introduced due to a skipped step will persist.

Incorrect machine model: We note another source of systematic error is that of an incorrect

machine model being used by a CAM system. To enable a CAM system to transform

spatial coordinates to a machine’s joint (or configuration) space, a machine model is used.

The machine model specifies the geometry of the machine and is used to determine the

machine specific inverse kinematic (IK) transformation. An incorrectness in the machine’s

geometry specification will result in a (consistently) incorrect commanded joint position

and thus a difference in the as-designed path and the average followed path. However, such

an error will not be detected by our current system which transforms the encoder positions

with the forward kinematic (FK) transformation obtained from the machine model.

134

In our setup, while both the FK and the IK are incorrect, they are still inverses of each

other and thus, while the machined geometry may be incorrect as a result of an incorrect

machine model, the geometry reconstructed from the encoder samples will not be. Thus,

errors caused due to an incorrect machine model are not detected by our system, but, they

can be detected if the geometry of the as manufactured shape is acquired directly using, for

example, a coordinate measuring machine.

Figure 10.7: Top: The variability field visualized as a translucent tube whose radius is 40

times the computed variance, to magnify errors. Bottom: A high-variance region is shown

zoomed-in.

135

Figure 10.8: Top: A set of 3 encoder captured circular motions of the tool-path overlaid on

each other. The tool-paths appear to be co-incident. Bottom: The variability tube scaled

by a factor of 100 is visualized and used to reveal and guide exploration of regions of high

variance in the captured paths.

We explore the use of the algorithms described in this thesis for computing the average

path of the cutting tool. For the case when the cutting tool follows a path that is described

by a small number of parameters and one desires the average path to belong to the same

parametric family, we propose first computing the average and then computing the param-

136

eter values that yield the parameteric curve that best-fits the average. This approach is in

contrast with two alternatives:

• Averaging parameters: For a set of tool paths, we: a) compute best-fit parameter

values for each tool path, b) compute the average value of each parameter and c)

compute the average tool path as the tool path corresponding to the average parameter

value.

For example, for a circular tool path, for each realization of the tool-path, a center ci

and radius ri are approximated [124, 125], and the average circle is computed as the

circle centered at the centroid of {ci} that has radius equal to the average of {ri}.

However, the drawback of averaging parameters is that the choice of the parameter

space influences the result.

• Direct fitting: Instead of computing the average and then computing best-fit param-

eter values for the average, we directly compute parameter value functions for the

best-fit parametric curve.

Use of the variability tube: We have samples of the variance field, and thus can focus on

regions where there is a high variance. In Fig. 10.7, we display the variability field as a

tube whose radius is 40 times the computed variance value. This highlights regions where

there is a wider variation amongst the manufactured shapes.

In our experimental set-up, the chief reason for the variance of Fig 10.7 is that our

acquisition process has low temporal resolution (we can sample from the encoders at a

slow rate).

To partially remedy this issue, we changed the control algorithm to plan a trajectories

at 20% of the prescribed kinematic limits. Executing a slow motion, we obtain a dense set

of servo samples from our system. Using the lower limits, we plan a motion to move the

cutting tool around the circle of Fig 10.8 and visualize the received encoder data. Fig. 10.8

(top) shows that it is difficult to make an informed guess on which region of the circle to

view closely for viewing differences in the tool-paths. In Fig. 10.8 (bottom), we visualize

137

the variability tube scaled by a factor of 100. This reveals regions where the tool-paths have

slight variations. We note that in the zoomed in region, one tool-path is a small distance

away from the other two.

Both the average and the variability tube thus facilitate analysis of a tool-path. Being

informed by the information represented by the average and variability tube, the CNC oper-

ator can, for example: a) attempt to root-cause consistent error sources b) modify tool-path

geometry for improving conformance or, c) re-plan the motion for improving conformance.

138

CONCLUSION

In our thesis, we have proposed a characterization of the average of a set of shapes. We

have provided the analytic solutions yielded by our characterization for the case of lines

and planes. These solutions have been used in our developed algorithms for computing

averages of a set of compatible, embedded shapes. The algorithms we have proposed are

local and motivated by geometric intuition.

We have proposed an algorithmic approach ‘Snap’ that is grid-free, parallelizable (note

that Trace is not parallelizable), simple and efficient. Snapping a set of seed samples yields

a set of average samples, and, also yields sampled correspondences on each input shape

and thus samples of the variability field.

We have proposed and studied a number of algorithmic modifications to core ‘Snap’

idea that extends its applicability. These modifications either modify the correspondence

computation step of Snap, or the field evaluation step, or, both.

Additionally, we have presented a number of practical applications of our algorithms,

including, sketch specification by overdrawing, manufacturing process analysis, geometric

design, and collective re-sampling.

139

REFERENCES

[1] T. Kolsek, A. Jurca, and T. Vidic, “Recommendation system for sizing of children’s
footwear,” 1st Int. Conf. on 3D Body Scanning Technologies, Proceedings, pp. 126–
131, 2010.

[2] “Shoe sizes - Mondopoint system of sizing and marking,” Tech. Rep. International
Standard ISO 9407, 1991.

[3] D. Omrcen and A. Jurca, “Shoe size recommendation system based on shoe in-
ner dimension measurement,” 2nd International Conference on 3D Body Scanning
Technologies, Lugano, Switzerland, pp. 158–163, 2011.

[4] J. Williams and J. Rossignac, “Tightening: Curvature-limiting morphological sim-
plification,” in Proceedings of the 2005 ACM Symposium on Solid and Physical
Modeling, ser. SPM ’05, Cambridge, Massachusetts, 2005, pp. 107–112, ISBN: 1-
59593-015-9.

[5] M. B. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sidford, “Geometric median
in nearly linear time,” in Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, ACM, 2016, pp. 9–21.

[6] S. R. Buss and J. P. Fillmore, “Spherical averages and applications to spherical
splines and interpolation,” ACM Transactions on Graphics (TOG), vol. 20, no. 2,
pp. 95–126, 2001.

[7] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach, “Ridges for image
analysis,” Journal of Mathematical Imaging and Vision, vol. 4, no. 4, pp. 353–373,
1994.

[8] H. Karcher, “Riemannian center of mass and mollifier smoothing,” Communica-
tions on pure and applied mathematics, vol. 30, no. 5, pp. 509–541, 1977.

[9] C. Icking and R. Klein, “Searching for the kernel of a polygon – a competitive
strategy,” in Proceedings of the eleventh annual symposium on Computational ge-
ometry, ACM, 1995, pp. 258–266.

[10] J. Kent, R. E. Parent, and W. E. Carlson, “Establishing correspondences by topo-
logical merging: A new approach to 3-D shape transformation,” in Proceedings of
Graphics Interface, vol. 91, 1991, pp. 271–278.

140

[11] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using
shape contexts,” California Univ. San Diego, La Jolla, Dept of Computer Science
and Engineering, Tech. Rep., 2002.

[12] C. Xu, J. Liu, and X. Tang, “2D shape matching by contour flexibility,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 31, no. 1, pp. 180–186,
2009.

[13] G. Mori, S. Belongie, and J. Malik, “Efficient shape matching using shape con-
texts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,
no. 11, pp. 1832–1837, 2005.

[14] D. Ghosh, A. Sharf, and N. Amenta, “Feature-driven deformation for dense cor-
respondence,” in Medical Imaging 2009: Visualization, Image-Guided Procedures,
and Modeling, International Society for Optics and Photonics, vol. 7261, 2009,
p. 726 136.

[15] M. O. Irfanoglu, B Gokberk, and L. Akarun, “3D shape-based face recognition
using automatically registered facial surfaces,” in Proceedings of the 17th Inter-
national Conference on Pattern Recognition (ICPR), 2004, IEEE, vol. 4, 2004,
pp. 183–186.

[16] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” in Doklady Akademii Nauk, Russian Academy of Sciences, vol. 163,
1965, pp. 845–848.

[17] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” Journal
of the ACM (JACM), vol. 21, no. 1, pp. 168–173, 1974.

[18] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series.,” in KDD workshop, Seattle, WA, vol. 10, 1994, pp. 359–370.

[19] M. Maes, “On a cyclic string-to-string correction problem,” Information processing
letters, vol. 35, no. 2, pp. 73–78, 1990.

[20] V. Palazón-González and A. Marzal, “On the dynamic time warping of cyclic se-
quences for shape retrieval,” Image and Vision Computing, vol. 30, no. 12, pp. 978–
990, 2012.

[21] A. Kaul and J. Rossignac, “Solid-interpolating deformations: Construction and an-
imation of PIPs.,” Computers & Graphics, pp. 107–115, 1992.

[22] J. Rossignac and A. Kaul, “AGRELs and BIPs: Metamorphosis as a Bézier Curve
in the space of polyhedra,” Computer Graphics Forum, vol. 13, no. 3, pp. 179–184,
1994.

141

[23] S. Cohen, G. Elber, and R. Bar-Yehuda, “Matching of freeform curves,” Computer-
Aided Design, vol. 29, no. 5, pp. 369–378, 1997.

[24] J. Rossignac, “Ball-based shape processing,” in Discrete Geometry for Computer
Imagery, Springer, 2011, pp. 13–34.

[25] F. Chazal, A. Lieutier, and J. R. Rossignac, “Orthomap: Homeomorphism-guaranteeing
normal-projection map between surfaces,” Georgia Institute of Technology, Tech.
Rep., 2004.

[26] E. A. Bier and K. R. Sloan, “Two-part texture mappings,” IEEE Computer Graph-
ics and Applications, vol. 6, no. 9, pp. 40–53, 1986.

[27] A. Asirvatham, E. Praun, and H. Hoppe, “Consistent spherical parameterization,”
in International Conference on Computational Science, Springer, 2005, pp. 265–
272.

[28] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner, Level
of detail for 3D graphics. Morgan Kaufmann, 2003.

[29] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “Inter-surface mapping,” in
ACM Transactions on Graphics (TOG), ACM, vol. 23, 2004, pp. 870–877.

[30] E. Praun, W. Sweldens, and P. Schröder, “Consistent mesh parameterizations,” in
SIGGRAPH ’01 Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, ACM, 2001, pp. 179–184.

[31] T. W. Sederberg and E. Greenwood, “A physically based approach to 2-D shape
blending,” in ACM SIGGRAPH Computer Graphics, ACM, vol. 26, 1992, pp. 25–
34.

[32] David Eberly, Distance from a point to an ellipse, an ellipsoid, or a hyperellipsoid,
Available at https://www.geometrictools.com/Documentation/
DistancePointEllipseEllipsoid.pdf.

[33] R. Nürnberg, Distance from a point to an ellipse, Available at http://wwwf.
imperial.ac.uk/˜rn/distance2ellipse.pdf.

[34] T. Akenine-Möllser, “Fast 3D triangle-box overlap testing,” Journal of graphics
tools, vol. 6, no. 1, pp. 29–33, 2001.

[35] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture processing,”
Journal of the ACM (JACM), vol. 13, no. 4, pp. 471–494, 1966.

142

https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
http://wwwf.imperial.ac.uk/~rn/distance2ellipse.pdf
http://wwwf.imperial.ac.uk/~rn/distance2ellipse.pdf

[36] ——, “Distance functions on digital pictures,” Pattern recognition, vol. 1, no. 1,
pp. 33–61, 1968.

[37] G. Borgefors, “Distance transformations in digital images,” Computer vision, graph-
ics, and image processing, vol. 34, no. 3, pp. 344–371, 1986.

[38] J. A. Sethian, “Fast marching methods,” SIAM review, vol. 41, no. 2, pp. 199–235,
1999.

[39] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface
construction algorithm,” in ACM siggraph computer graphics, ACM, vol. 21, 1987,
pp. 163–169.

[40] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,” Computers
& Graphics, vol. 30, no. 5, pp. 854–879, 2006.

[41] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring of hermite data,” in
ACM transactions on graphics (TOG), ACM, vol. 21, 2002, pp. 339–346.

[42] A. Cayley, “On contour and slope lines,” The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, vol. 18, no. 120, pp. 264–268,
1859.

[43] J. C. Maxwell, “On hills and dales,” The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science, vol. 40, no. 269, pp. 421–427, 1870.

[44] J. W. Milnor, M. Spivak, R. Wells, and R. Wells, Morse theory. Princeton university
press, 1963.

[45] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based
on immersion simulations,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 6, pp. 583–598, 1991.

[46] S Beucher, “The watershed transformation applied to image segmentation,” Scan-
ning Microscopy International, pp. 299–314, 1992.

[47] C. Steger, “Subpixel-precise extraction of watersheds,” in Proceedings of the Sev-
enth IEEE International Conference on Computer Vision, IEEE, vol. 2, 1999, pp. 884–
890.

[48] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
recipes 3rd edition: The art of scientific computing. Cambridge university press,
2007.

143

[49] R. M. Haralick, “Ridges and valleys on digital images,” Computer Vision, Graph-
ics, and Image Processing, vol. 22, no. 1, pp. 28–38, 1983.

[50] R. Peikert and M. Roth, “The “parallel vectors” operator: A vector field visualiza-
tion primitive,” in Proceedings of the conference on Visualization’99: Celebrating
ten years, IEEE Computer Society Press, 1999, pp. 263–270.

[51] C. Werner, “Formal analysis of ridge and channel patterns in maturely eroded ter-
rain,” Annals of the Association of American Geographers, vol. 78, no. 2, pp. 253–
270, 1988.

[52] J. J. Koenderink and A. J. van Doorn, “Local features of smooth shapes: Ridges
and courses,” in Geometric methods in computer vision II, International Society for
Optics and Photonics, vol. 2031, 1993, pp. 2–14.

[53] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella, “Suggestive con-
tours for conveying shape,” ACM Transactions on Graphics (TOG), vol. 22, no. 3,
pp. 848–855, 2003.

[54] S. Musuvathy, E. Cohen, J. Damon, and J.-K. Seong, “Principal curvature ridges
and geometrically salient regions of parametric B-spline surfaces,” Computer-Aided
Design, vol. 43, no. 7, pp. 756–770, 2011.

[55] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Inter-
national journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.

[56] J. A. Sethian, Level set methods and fast marching methods: Evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science.
Cambridge university press, 1999, vol. 3.

[57] M. Rumpf and B. Wirth, “A nonlinear elastic shape averaging approach,” SIAM
Journal on Imaging Sciences, vol. 2, no. 3, pp. 800–833, 2009.

[58] H. Blum, “Biological shape and visual science Part I,” Journal of theoretical Biol-
ogy, vol. 38, no. 2, pp. 205–287, 1973.

[59] K. Siddiqi and S. Pizer, Medial representations: Mathematics, algorithms and ap-
plications. Springer Science & Business Media, 2008, vol. 37.

[60] L. Zhang and D. Manocha, “An efficient retraction-based RRT planner,” in Robotics
and Automation, 2008. ICRA 2008. IEEE International Conference on, IEEE, 2008,
pp. 3743–3750.

[61] D. Attali, J.-D. Boissonnat, and H. Edelsbrunner, “Stability and computation of
medial axes: A state-of-the-art report,” in Mathematical foundations of scientific

144

visualization, computer graphics, and massive data exploration, Springer, 2009,
pp. 109–125.

[62] D.-T. Lee, “Medial axis transformation of a planar shape,” IEEE Transactions on
pattern analysis and machine intelligence, no. 4, pp. 363–369, 1982.

[63] A. Lieutier, “Any open bounded subset of Rn has the same homotopy type as its
medial axis,” Computer-Aided Design, vol. 36, no. 11, pp. 1029–1046, 2004.

[64] F. Chazal and A. Lieutier, “The λ-medial axis,” Graphical Models, vol. 67, no. 4,
pp. 304–331, 2005.

[65] A. Sud, M. Foskey, and D. Manocha, “Homotopy-preserving medial axis simplifi-
cation,” in Proceedings of the 2005 ACM symposium on Solid and physical model-
ing, ACM, 2005, pp. 39–50.

[66] F. Chazal, A. Lieutier, J. R. Rossignac, and B. Whited, “Ball-map: Homeomor-
phism between compatible surfaces,” Georgia Institute of Technology, Tech. Rep.,
2006.

[67] B. Whited and J. Rossignac, “Ball-morph: Definition, implementation, and com-
parative evaluation,” IEEE transactions on visualization and computer graphics,
vol. 17, no. 6, pp. 757–769, 2011.

[68] J.-M. Lien, S. L. Thomas, and N. M. Amato, “A general framework for sampling on
the medial axis of the free space,” in Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, IEEE, vol. 3, 2003, pp. 4439–4444.

[69] J. Ma, S. W. Bae, and S. Choi, “3D medial axis point approximation using nearest
neighbors and the normal field,” The Visual Computer, vol. 28, no. 1, pp. 7–19,
2012.

[70] S. Lloyd, “Least squares quantization in PCM,” IEEE transactions on information
theory, vol. 28, no. 2, pp. 129–137, 1982.

[71] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[72] P. Lancaster and K. Salkauskas, “Surfaces generated by moving least squares meth-
ods,” Mathematics of computation, vol. 37, no. 155, pp. 141–158, 1981.

[73] D. Levin, “The approximation power of moving least-squares,” Mathematics of
Computation of the American Mathematical Society, vol. 67, no. 224, pp. 1517–
1531, 1998.

145

[74] T. Hastie and W. Stuetzle, “Principal curves,” Journal of the American Statistical
Association, vol. 84, no. 406, pp. 502–516, 1989.

[75] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor
Fusion IV: Control Paradigms and Data Structures, International Society for Optics
and Photonics, vol. 1611, 1992, pp. 586–607.

[76] Y. Chen and G. Medioni, “Object modelling by registration of multiple range im-
ages,” Image and vision computing, vol. 10, no. 3, pp. 145–155, 1992.

[77] H. Pottmann and M. Hofer, “Geometry of the squared distance function to curves
and surfaces,” in Visualization and mathematics III, Springer, 2003, pp. 221–242.

[78] N. Amenta, M. Bern, and D. Eppstein, “The crust and the β-skeleton: Combinato-
rial curve reconstruction,” Graphical models and image processing, vol. 60, no. 2,
pp. 125–135, 1998.

[79] N. Amenta, M. Bern, and M. Kamvysselis, “A new voronoi-based surface recon-
struction algorithm,” in Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, ACM, 1998, pp. 415–421.

[80] F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental geometric data
structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3, pp. 345–405, 1991.

[81] H. Edelsbrunner and N. R. Shah, “Triangulating topological spaces,” International
Journal of Computational Geometry & Applications, vol. 7, no. 04, pp. 365–378,
1997.

[82] R. Goldman, Pyramid algorithms: A dynamic programming approach to curves
and surfaces for geometric modeling. Morgan Kaufmann, 2002.

[83] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas, “Functional
maps: A flexible representation of maps between shapes,” ACM Transactions on
Graphics (TOG), vol. 31, no. 4, p. 30, 2012.

[84] M. Rabinovich, R. Poranne, D. Panozzo, and O. Sorkine-Hornung, “Scalable lo-
cally injective mappings,” ACM Transactions on Graphics (TOG), vol. 36, no. 2,
p. 16, 2017.

[85] R. B. Tilove, “Set membership classification: A unified approach to geometric in-
tersection problems,” Computers, IEEE Transactions on, vol. 100, no. 10, pp. 874–
883, 1980.

146

[86] F. Chazal, A. Lieutier, and J. Rossignac, “Projection-homeomorphic surfaces,” in
Proceedings of the 2005 ACM symposium on Solid and Physical Modeling, ACM,
2005, pp. 9–14.

[87] N. Amenta and M. Bern, “Surface reconstruction by voronoi filtering,” Discrete &
Computational Geometry, vol. 22, no. 4, pp. 481–504, 1999.

[88] M. J. Atallah, “A linear time algorithm for the hausdorff distance between convex
polygons,” Information processing letters, vol. 17, no. 4, pp. 207–209, 1983.

[89] H. Alt, B. Behrends, and J. Blömer, “Approximate matching of polygonal shapes,”
Annals of Mathematics and Artificial Intelligence, vol. 13, no. 3-4, pp. 251–265,
1995.

[90] H. Alt, P. Braß, M. Godau, C. Knauer, and C. Wenk, “Computing the hausdorff dis-
tance of geometric patterns and shapes,” in Discrete and computational geometry,
Springer, 2003, pp. 65–76.

[91] M. Bartoň, I. Hanniel, G. Elber, and M.-S. Kim, “Precise hausdorff distance com-
putation between polygonal meshes,” Computer Aided Geometric Design, vol. 27,
no. 8, pp. 580–591, 2010.

[92] L. Scharf, “Computing the hausdorff distance between sets of curves,” Master’s
thesis, Institut für Informatik, Freie Universität Berlin, 2003.

[93] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring error on simpli-
fied surfaces,” in Computer Graphics Forum, Wiley Online Library, vol. 17, 1998,
pp. 167–174.

[94] T. Culver, J. Keyser, and D. Manocha, “Exact computation of the medial axis of a
polyhedron,” Computer Aided Geometric Design, vol. 21, no. 1, pp. 65–98, 2004.

[95] C. M. Hoffmann, “How to construct the skeleton of csg objects,” The Mathematics
of Surfaces. IVA. Bowyer and J. Davenport, Eds., Oxford University Press, 1990.

[96] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, and M. Rabl,
“Medial axis computation for planar free–form shapes,” Computer-Aided Design,
vol. 41, no. 5, pp. 339–349, 2009.

[97] N. Amenta, S. Choi, and R. K. Kolluri, “The power crust, unions of balls, and the
medial axis transform,” Computational Geometry, vol. 19, no. 2-3, pp. 127–153,
2001.

147

[98] T. K. Dey and W. Zhao, “Approximate medial axis as a voronoi subcomplex,” in
Proceedings of the seventh ACM symposium on Solid modeling and applications,
ACM, 2002, pp. 356–366.

[99] S. Fortune, “Voronoi diagrams and delaunay triangulations,” in Computing in Eu-
clidean geometry, World Scientific, 1995, pp. 225–265.

[100] L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions
and the computation of voronoi,” ACM transactions on graphics (TOG), vol. 4, no.
2, pp. 74–123, 1985.

[101] B. Whited and J. Rossignac, “Relative blending,” Computer-Aided Design, vol. 41,
no. 6, pp. 456–462, 2009.

[102] H. Nguyen, GPU Gems 3. Addison-Wesley Professional, 2007.

[103] C. Sigg, R. Peikert, and M. Gross, “Signed distance transform using graphics hard-
ware,” in Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE Com-
puter Society, 2003, p. 12.

[104] A. Krishnamurthy, S. McMains, and K. Haller, “GPU-accelerated minimum dis-
tance and clearance queries,” IEEE transactions on visualization and computer
graphics, vol. 17, no. 6, pp. 729–742, 2011.

[105] M. Attene, B. Falcidieno, M. Spagnuolo, and J. Rossignac, “Swingwrapper: Retil-
ing triangle meshes for better edgebreaker compression,” ACM Transactions on
Graphics (TOG), vol. 22, no. 4, pp. 982–996, 2003.

[106] G. Turk, “Re-tiling polygonal surfaces,” in ACM SIGGRAPH Computer Graphics,
ACM, vol. 26, 1992, pp. 55–64.

[107] G. Turk and M. Levoy, “Zippered polygon meshes from range images,” in Pro-
ceedings of the 21st annual conference on Computer graphics and interactive tech-
niques, ACM, 1994, pp. 311–318.

[108] M. Sati and J. Rossignac, “Average and variance of a quasi-parallel family of sur-
faces,” Computer-Aided Design, vol. 102, pp. 61–71, 2018.

[109] CGAL, Computational Geometry Algorithms Library, http://www.cgal.org.

[110] M. Campen and L. Kobbelt, “Exact and robust (self-) intersections for polygo-
nal meshes,” in Computer Graphics Forum, Wiley Online Library, vol. 29, 2010,
pp. 397–406.

148

[111] H. Edelsbrunner and N. R. Shah, “Triangulating topological spaces,” in Proceed-
ings of the tenth annual symposium on Computational geometry, ACM, 1994, pp. 285–
292.

[112] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia,
“Meshlab: an open-source mesh processing tool,” in Eurographics Italian Chapter
Conference, V. Scarano, R. D. Chiara, and U. Erra, Eds., The Eurographics Asso-
ciation, 2008.

[113] P. Alliez, S. Tayeb, and C. Wormser, “3D fast intersection and distance computation
(AABB Tree),” in CGAL User and Reference Manual, 4.3, CGAL Editorial Board,
2013.

[114] The CGAL Project, CGAL User and Reference Manual, 4.13. CGAL Editorial
Board, 2018.

[115] G. Turk and J. F. O’Brien, “Shape transformation using variational implicit func-
tions,” in SIGGRAPH’ 99 Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, 1999, pp. 335–342.

[116] C. Liu, E. Rosales, and A. Sheffer, “Strokeaggregator: Consolidating raw sketches
into artist-intended curve drawings,” ACM Transactions on Graphics (TOG), vol.
37, no. 4, p. 97, 2018.

[117] R. Lynn, A. Chen, S. Locks, C. Nath, and T. Kurfess, “Intelligent and accessi-
ble data flow architectures for manufacturing system optimization,” in IFIP Inter-
national Conference on Advances in Production Management Systems, Springer,
2015, pp. 27–35.

[118] R. Lynn, M. Sati, T. Tucker, J. Rossignac, C. Saldana, and T. Kurfess, “Realiza-
tion of the 5-axis machine tool digital twin using direct servo control from cam,”
National Institute of Standards and Technology (NIST) Model-Based Enterprise
Summit, 2018.

[119] Tucker Innovations Inc, Sculptprint - The subtractive 3D printing application, Avail-
able at www.sculptprint3d.com.

[120] Machinekit integrator manual.

[121] J. Albus and R. Lumia, “The enhanced machine controller (emc): an open architec-
ture controller for machine tools,” Journal of Manufacturing Review, vol. Vol. 7,
no. No. 3, pp. 278–280, 1994.

149

www.sculptprint3d.com

[122] M. M. Hossain, “Voxel-based offsetting at high resolution with tunable speed and
precision using hybrid dynamic trees,” PhD thesis, Georgia Institute of Technology,
2016.

[123] H. Pham and Q.-C. Pham, “A new approach to time-optimal path parameterization
based on reachability analysis,” IEEE Transactions on Robotics, 2018.

[124] D. Umbach and K. N. Jones, “A few methods for fitting circles to data,” IEEE
Transactions on instrumentation and measurement, vol. 52, no. 6, pp. 1881–1885,
2003.

[125] H. Ma, “Geometric fitting of quadratic curves and surfaces,” PhD thesis, The Uni-
versity of Alabama at Birmingham, 2012.

150

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis overview
	Thesis structure

	Background
	A motivating example: The shoe fitting problem
	Preliminaries: Averaging numbers and points

	Averaging vectors, lines and planes
	Averaging a set of unit vectors in 2D
	Averaging a set of unit vectors in 3D
	Averaging a set of lines in 2D
	Zero-set average line (zAL)
	Valley-set average line (vAL)

	Averaging a set of planes in 3D
	Zero-set average plane (zAP)
	Valley-set average plane (vAP)

	Averaging a set of lines in 3D
	Weighted average of a set of lines in 2D
	Weighted zero-set average line (weighted zAL)
	Weighted valley-set average line (weighted vAL)

	Properties of the average line and the average plane
	Geometric interpretations

	Prior art
	Averaging
	Averaging shapes
	Establishing correspondence
	Extracting features from a scalar field
	Medial axis and ball morph
	Staggered, iterative optimization
	Guaranteed homeomorphic approximations

	Relation of our contributions to prior-art

	Averaging closed, compatible planar curves
	Snapping for curves in the plane
	Projecting onto the average line
	Projecting on the zAL
	Projecting on the vAL

	Tracing: Accelerated Snap
	Experimental results
	Application: Mixing shapes via weighted averaging

	Details and discussion of the Snap method
	The asymmetry drawback of closest projection correspondences
	Ball-map: symmetric center-curve and closest projection correspondences for 2 curves
	Scalar fields for averaging for n curves
	Zero-set of summed signed distance function
	Valley-set of summed squared distance function
	General approach to averaging using scalar fields

	Snapping using tangent lines
	Compatibility conditions for a set of input curves
	Implicit clipping of the valley-set by Snap
	Convergence of Snap
	Symmetry properties of the average
	Incremental averaging

	Beyond compatible configurations
	Gap relative projection (GRP)
	Tracing: implicit GRP
	Constructing a set of compatible curves from the input-set

	Checking validity of the average

	Averaging a set of compatible surfaces
	Snapping for surfaces
	SymmetricSnap: Snapping by moving parallel to the local average normal
	NormalSnap: Snapping by moving along a seed surface's normal
	Implementation details
	Tracing for surfaces

	Experimental results
	Validity checking
	Symmetry: Invariance to seed mesh
	Convergence properties

	Averaging closed, compatible non-planar curves
	Snapping for curves in 3D
	Moving to the local average line
	Implementation details
	Computational optimizations: RestrictedSnap

	Experimental results
	Applications

	Experiments on averaging curve segments
	Background and motivation
	OpenSnap: Snapping for roughly parallel curve-segments
	OpenSnap details: Clipped correspondences, geometry and field modifications
	ClippedClosestProjection: Selecting active curves
	Join curve specification using field and geometry modifications

	Average curve for parallel curve-segments using OpenSnap
	DirectionalOpenSnap: Average curve-network from non-parallel inputs
	Conclusion

	Averaging tool-paths for analyzing systemic error and noise in a CNC machining process
	Background and motivation
	Description of the tool-path data acquisition system
	PocketNC and MachineKit
	SculptPrint
	Trajectory generation
	Encoder feedback

	Experimental results
	Experiment description
	Data analysis

	References

