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SUMMARY

Shape memory alloys (SMAs) are widely used in a broad variety of applications in

multiscale devices ranging from nano-actuators used in nano-electrical-mechanical systems

(NEMS) to large energy absorbing elements in civil engineering applications. This re-

search introduces a multiscale analysis for SMAs, particularly Nickel-Titanium alloys (NiTi).

SMAs are studied in a variety of length scales ranging from macroscale to nanoscale. In

macroscale, a phenomenological constitutive framework is adopted and developed by adding

the effect of phase transformation latent heat. Analytical closed-form solutions are ob-

tained for modeling the coupled thermomechanical behavior of various large polycrystalline

SMA devices subjected to different loadings, including uniaxial loads, torsion, and bending.

Thermomechanical responses of several SMA devices are analyzed using the introduced

solutions and the results are validated by performing various experiments on some large

SMA elements. In order to study some important properties of polycrystalline SMAs that

the macroscopic phenomenological frameworks cannot capture, including the texture and

intergranular effects in polycrystalline SMAs, a micromechanical framework with a realistic

modeling of the grains based on Voronoi tessellations is used. The local form of the first law

of thermodynamics is used and the energy balance relations for the polycrystalline SMAs

are obtained. Generalized coupled thermomechanical governing equations considering the

phase transformation latent heat are derived for polycrystalline SMAs. A three-dimensional

finite element framework is used and different polycrystalline samples are modeled. By con-

sidering appropriate distributions of crystallographic orientations in the grains obtained

from experimental texture measurements of NiTi samples the effects of texture and the

tension-compression asymmetry on the thermomechanical response of polycrystalline SMAs

are studied. The interaction between the stress state (tensile or compressive), number of

grains, and the texture on the thermomechanical response of polycrystalline SMAs is also
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studied. For studying some aspects of the thermomechanical properties of SMAs that cannot

be studied neither by the phenomenological constitutive models nor by the micromechanical

models, molecular dynamics simulations are used to explore the martensitic phase trans-

formation in NiTi alloys at the atomistic level. The martensite reorientation, austenite to

martensite phase transformation, and twinning mechanisms in NiTi nanostructures are an-

alyzed and the effect of various parameters including the temperature and size on the phase

transformation at the atomistic level is studied. Results of this research provide insight

into studying pseudoelasticity and shape memory response of NiTi alloys at different length

scales and are useful for better understanding the solid-to-solid phase transformation at the

atomistic level, and the effects of this transformation on the microstructure of polycrystal

SMAs and the macroscopic response of these alloys.
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CHAPTER I

INTRODUCTION

Since the first observation of the shape memory effect (SME) in some alloys [35, 36], studying

shape memory alloys (SMAs) has been an active field of research. The unique ability of

shape memory alloys in recovering large inelastic strains and also generating high stresses

caused a considerable increase in manufacturing devices made of these materials in recent

years. The SMAs are now used in applications in a wide variety of devices ranging from

simple parts like cell phone antennas or eyeglass frames to complicated devices in mechanical

[30, 80, 191], biomechanical [154], aerospace [70], and civil engineering [44].

The unique macroscopic properties of SMAs are based on the solid-solid phase transition

of the underlying lattice between a high symmetry cubic lattice (austenite) and a low sym-

metry lattice (martensite). It is shown that when the SMA atoms are arranged in the cubic

austenite lattice form, the entropy and internal energy are higher compare to the martensite

lattice. The competition between the entropy and internal energy is reflected in the free

energy F = U −TS, where U is the internal energy, S is the entropy and T is temperature.

It is known that at higher temperatures the entropy overcomes the competition and the

austenite phase is preferred while at lower temperatures the internal energy determines the

stability and the martensite phase is preferred [83, 84]. For a comprehensive discussion on

general properties of SMAs and the phase transformation phenomenon, readers are referred

to Müller and Seelecke [133], Müller and Xu [134].

As a result of the solid-solid phase transformation (usually called martensitic phase

transformation), and according to the specific way the transformation occurs, SMAs ex-

hibit two significant macroscopic phenomena: the shape memory effect and pseudoelasticity.

Each of these two macroscopic responses to mechanical and/or thermal loading is the origin

of a vast range of applications for SMAs. In this thesis we mostly focus on the pseudoelas-

ticity of SMAs. This phenomenon occurs when the austenite phase is loaded isothermally to
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full transformation to detwinned martensite and then unloaded to the stress free state. Dur-

ing loading, after an initial elastic response, a large amount of inelastic deformation strain

is produced. By unloading strain is completely recovered during transformation of marten-

site back to the austenite. Note that the load-deflection response during a pseudoelastic

loading-unloading is temperature dependent.

Shape memory alloys have been used in a broad range of applications in multiscale

devices ranging from nano-actuators used in nano-electrical-mechanical systems (NEMS) to

large devices used in civil engineering applications. The objective of this thesis is introducing

a multiscale analysis for SMAs, particularly Nickel-Titanium alloys (NiTi). Appropriate

experiments are also performed for studying the mechanical and thermomechanical response

of NiTi shape memory alloys at different length scales. The research covers three different

scales, and an appropriate strategy is used for studying the thermomechanical response of

the material in each scale.

1.1 Phenomenological macroscale modeling

Considerable increase in the use of active (multifunctional) materials in recent years has led

to an excessive interest in analysis of different types of active materials in various shapes.

Among several types of active materials, SMAs have been extensively studied and have also

been used in a wide variety of applications ranging from biomechanics [154] to aerospace

[70], and civil engineering [44].

While searching for new shape memory alloys for improving their pseudoelastic re-

sponse is still an active field of research [181, 188], a large effort has been made by many

researchers to introduce more precise analytical and numerical methods for analyzing pseu-

doelastic and SME response of SMA structures. The transformation between the two stable

phases, called martensitic phase transformation, results in significant challenges in intro-

ducing realistic constitutive relations for shape memory alloys. The response of an SMA

single crystal is distinctly different from polycrystalline SMAs. There are micromechanical

approaches for developing SMA constitutive relations for modeling the behavior of single
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crystals [60, 64, 68]. Using micromechanics for capturing the polycrystalline SMAs re-

sponse can be seen in Patoor et al. [152] and Lagoudas et al. [95]. A polycrystalline SMA

consists of many grains with different crystallographic orientations. The phase transfor-

mation strongly depends on the crystallographic orientation and modeling the macroscopic

response of SMAs by considering different phase transformation conditions in grains is ex-

tremely difficult. Considering the complexity of microstructure in polycrystalline SMAs

one is forced to use macroscopic phenomenological constitutive equations for modeling the

martensitic transformation in large SMA devices. These models are based on continuum

thermomechanics and construct a macroscopic free energy potential (Helmholtz or Gibbs

free energy) depending on the state and internal variables used to describe the measure

of phase transformation. Consequently, evolution equations are postulated for the internal

variables and the second law of thermodynamics is used in order to find thermodynamic

constraints on the material constitutive equations. In recent years, different constitutive

models have been introduced by different choices of thermodynamic potentials, internal

state variables, and their evolution equations. For a comprehensive list of one-dimensional

and three-dimensional phenomenological SMA constitutive equations with different choices

of thermodynamic potentials and internal state variables the reader is referred to Birman

[23], Lagoudas et al. [95], and Lagoudas [92]. Besides different choices of potential energy

and internal state variables, by considering the experimental results for the response of

SMAs, various choices have been made for the hardening function. Among the most widely

accepted models, we can mention the cosine model [103], the exponential model [180], and

the polynomial model [28]. Lagoudas et al. [96] unified these models using a thermodynamic

framework. In this thesis, we use a phenomenological constitutive equation using the Gibbs

free energy as the thermodynamic potential, the martensitic volume fraction and transfor-

mation strains as the internal state variables, and the hardening function in polynomial

form.

Large polycrystalline SMAs are studied in this thesis using a phenomenological macro-

scopic framework. Micromechanical properties are used for obtaining the macroscopic free

energy potential, and the phenomenological constitutive equations are derived using this
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energy potential. The macroscopic phenomenological constitutive models are usually im-

plemented in a numerical framework, particularly the finite element method, for simulating

the mechanical response of SMA polycrystallines. Along with the recent increase in the

use of SMA devices in a wide variety of applications, various numerical methods have been

developed for analyzing these devices [107, 116, 161]. Due to the complexity of the nonlin-

ear numerical algorithms that are currently used for modeling shape memory alloys, there

are numerous parameters that can affect the accuracy of these methods in analyzing even

a simple SMA structure. Also, numerical simulations have many drawbacks in modeling

SMAs, including the convergence issues and the time consuming iterative simulations. The

necessity of validating the outputs of numerical simulations along with the difficulty of

performing experimental tests on SMAs, is the main motivation for seeking analytical or

semi-analytical solutions for some SMA devices. In this research, closed-form solutions are

presented for studying various SMA devices subjected to different types of loading includ-

ing uniaxial tension-compression, torsion, bending, and also thick walled SMA cylinders

subjected to internal pressure.

1.1.1 Pure torsion of SMA circular bars

Recent studies have shown that SMAs can be efficiently used in improving the response of

structures, e.g. buildings and bridges subjected to earthquake loads [9, 10, 44]. The unique

ability of SMAs in recovering large scale strains (pseudoelasticity) makes them a desirable

option for energy dissipating devices in multiple-frame structures like bridges. Recently,

Speicher et al. [173] introduced a new device with shape memory alloy helical springs that

can be used as bracing elements in buildings. SMA helical springs were subjected to cyclic

loads and it was shown that Nitinol helical springs are efficient devices for recentering and

damping in a vast range of structures besides their ability in minimizing the residual defor-

mations in structures after an earthquake. In addition of being potential energy dissipating

devices, SMA helical springs have a vast range of industrial applications as active actuators

[48, 100].

The simplest method for analyzing helical springs is to assume that each portion of a
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spring acts as a straight bar under torsion. It can be shown that when the spring index (the

ratio of mean coil radius to the cross section radius) is large and the helix angle is small, this

assumption leads to fairly accurate results [190]. In a series of studies Ancker and Goodier

[6–8] investigated the accuracy of this assumption in some detail and modified it to obtain

a more accurate solution for helical springs considering the curvature effects. In one of the

first studies on SMA helical springs, Tobushi and Tanaka [184] considered the pure torsion

assumption for analyzing a helical spring under axial load. They used Tanaka’s constitutive

model [177] but in the stress-strain relation the hardening during phase transformation is

ignored and the material is treated as perfectly plastic. Although this assumption simplifies

the solution remarkably, experimental results show that the hardening response in stress-

strain relations for polycrystalline SMAs can not be ignored. In another effort for analyzing

SMA helical springs, Toi et al. [185] modified the Brinson’s one-dimensional constitutive

model [29] for SMAs and implemented it in an incremental finite element formulation using

Timoshenko beam elements. In their study, helical SMA springs are modeled numerically

and simulation outputs are compared with experimental results.

In the present study, pure torsion of SMA bars with circular cross sections is considered.

This is the first step in analysis of SMA helical springs with large spring index and small helix

angle. We should mention that torsion of SMA bars have been studied by several researchers

in recent years. Lim and McDowell [108] reported the behavior of SMA thin-walled tubes

subjected to axial-torsional proportional and nonproportional loading by conducting several

experiments. Chung et al. [39] presented a numerical simulation for pseudoelastic behavior

of shape memory alloy circular rods under tension/torsion combined loadings. Brinson’s

phase transformation formulation and an analogy with traditional plasticity were used.

Clearly pure torsion is an important benchmark problem that can be used in validating

various numerical simualtions of SMAs. Pure torsion is also important as a first step in anal-

ysis of SMA springs. A general three-dimensional constitutive relation for shape memory

alloys is first reduced to an appropriate one-dimensional form suitable for implementation

in pure torsion. An explicit expression is derived for shear stress as a function of geometric

specifications, material constants and shear strain. Response of circular bars in torsion is
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carefully analyzed by considering different possibilities that may happen for various loading

levels and some case studies are presented for investigating the effect of material properties

and temperature on the behavior of circular bars in loading and unloading conditions.

1.1.2 Helical SMA springs and pure torsion of SMA curved bars

The pseudoelastic response of SMAs is hysteretic. This phenomenon provides ideal energy

dissipating and damping capabilities for SMAs and enables them to be used in passive

control of structures under earthquake loads. DesRoches and Delemont [43] investigated

the effectiveness of shape memory alloy restrainer bars to reduce the seismic vulnerability

of bridges. DesRoches and Smith [44] provided a critical review of the state-of-the-art in

the use of shape memory alloys for applications in seismic resistant design. McCormick

et al. [123] studied seismic vibration control using superelastic shape memory alloys by

considering NiTi wires and bars. Auricchio et al. [15] studied the damping properties of

SMAs numerically and experimentally by considering uniaxial loading of SMA bars and

wires of different size and chemical composition. Recently, Speicher et al. [173] proposed

a new device with an SMA helical spring as a potential bracing element in buildings. It

is shown that this device can be used as an efficient recentering system to improve the

performance of structures during seismic events.

During an earthquake event, the helical spring device will likely see 20-25 cycles into

the transformation stress range, depending on the properties of the structure in which it

is being used, and the magnitude of the ground shaking. It is well known that SMAs

experience changes in behavior (typically referred to as the fatigue effect) with increased

cycling resulting in an accumulation of irreversible strain and a slight decrease in forward

transformation stress. Previous studies by the second author have shown that these changes

have minimal effect on the resulting behavior of the system in which the SMA is used [10].

Moreover, this effect can be minimized by mechanical training of the SMA material prior to

implementation in the device [122]. In this thesis, we will not consider the fatigue effect in

analyzing the SMA springs. The necessity of having an accurate analytical and numerical

modeling of the proposed SMA device besides its vast applications [48, 100, 104] motivated
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the authors to seek analytical and numerical solutions for these springs.

In one of the first studies of SMA helical springs, Tobushi and Tanaka [184] analyzed a

helical spring under axial load assuming that each small segment is in pure torsion. They

used Tanaka’s constitutive model [177] but in the stress-strain relation the hardening during

phase transformation is ignored and the material is treated as perfectly plastic. Although

this assumption simplifies the solution remarkably, experimental results show that the hard-

ening response in stress-strain relations for polycrystalline SMAs can not be ignored. In

another effort Toi et al. [185] modified the Brinson’s one-dimensional constitutive model

[29] and implemented it in an incremental finite element formulation using Timoshenko

beam elements. In their study, SMA helical springs are modeled numerically and simula-

tion outputs are compared with experimental results. Using beam elements for analysis of

helical springs decreases the computational time remarkably but an accurate stress analysis

cannot be done and as we will see in the sequel, the stress and martensitic volume fraction

distributions in the cross section of SMA helical springs cannot be captured using beam

elements.

In this thesis, we propose three different analysis strategies besides the experimental

results for studying SMA helical springs subjected to axial load. The simplest method for

analyzing helical springs is to assume that each portion of the spring acts as a straight bar

under torsion. It can be shown that when the spring index (the ratio of mean coil radius to

the cross section radius) is large and the helix angle is small, this assumption leads to fairly

accurate results [190]. Readers are referred to Ancker and Goodier [6, 7, 8] for a detailed

discussion on the accuracy of this assumption and modifications to obtain a more accurate

solution for elastic helical springs considering the curvature and pitch effects. In the present

study, as the first approximation we introduce an exact solution for analysis of SMA helical

springs by ignoring the curvature and pith effects. Although the analysis of helical springs

based on the straight bar torsion model (SBTM) is of enough accuracy for most practical

helical elastic springs, it will be shown that in the case of an SMA spring, curvature plays

a significant rule and an accurate stress analysis in the cress section cannot be obtained

based on SBTM. On the other hand, nearly all the practical helical springs have small to
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large spring indices but small pitch angles [190]. In order to capture a more accurate stress

analysis and covering a wider range of practical springs, the curvature correction is added

to SBTM and a curved bar torsion model (CBTM) is presented. In addition to these two

analytical models, a three-dimensional finite element simulation method is developed for

analysis of SMA helical springs. Experimental test data on a Nitinol spring subjected to

axial compression are compared with the analytical, and numerical results, the accuracy of

each method in predicting the global force-displacement and stress analysis is investigated.

It is shown that the SBTM calculates the global force-displacement response with good

accuracy but for a precise stress and martensitic volume fraction distribution, the curvature

correction should be used. Both analytical methods are remarkably fast compared to the

finite element simulations and can be used for studying the effect of changing any of the

material or geometrical parameters on the spring response even for an optimization process

that needs a large number of simulations. In the numerical results, in addition to the

comparisons that are presented for studying the accuracy of different proposed methods,

many case studies are presented for studying the effect of changing material parameters

and the ambient temperature on the spring hysteretic response. Some recommendations

are also made for improving SMA springs as dampers and energy absorbing devices.

1.1.3 SMA thick-walled cylinders subjected to internal pressure

Highly non-linear coupled material response of SMAs – a consequence of the solid-to-solid

phase transformation – restricts the applicability of the available solution methods for anal-

ysis of many SMA structures among which finite element method is the most common.

There are rare attempts for analyzing even simple SMA structures using analytical or semi-

analytical methods. The availability of closed-form solutions for SMA structures is primarily

affected by the constitutive relations in use. In addition to the constitutive relations, the

complexity of the structure can play a key role in finding closed-form solutions. Lagoudas

et al. [94] presented a one-dimensional reduction of the unified SMA constitutive relations of

Lagoudas et al. [96] and using this model proposed closed form expressions for the marten-

sitic volume fraction and transformation strains in uniaxial loading of an SMA prismatic
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bar. However, an explicit constitutive relation for the axial stress component as a function

of axial displacement was not introduced; a numerical method was necessary for solving the

loading/unloading response of bars (see Lagoudas [92]). They used this solution technique

in conjunction with finite element method for dynamic analysis of polycrystalline SMA

rods. Feng and Sun [51] presented an algorithm for analyzing shakedown of SMA struc-

tures subjected to cyclic or varying loads. They used a plasticity framework and calculated

a lower bound of loads for transformational shakedown of SMAs without the necessity of a

step-by-step analysis along the loading history.

In another attempt for finding semi closed-form solutions for two-dimensional SMA

structures, Birman [24] considered an infinite shape memory alloy plate with a circular

hole subjected to biaxial tensile stresses applied at infinity. The solution was obtained by

the plane stress assumption based on the two-dimensional form of Tanaka’s constitutive

relations [178]. He presented two different solutions for stress analysis that are called by

him “closed-form-solution” and “exact solution”. In the latter, it is assumed that for the

SMA with phase transformation, the ratio of the radial to circumferential stress is identical

to that in the elastic case. As it will be shown in this thesis, this assumption cannot be

justified. In the “closed-form” solution, there are some unrealistic simplifying assumptions;

the elastic stress distribution in the region in which phase transformation has started is

considered for calculating the inner boundary of pure austenite region. As we will show

shortly, this assumption can be used only for some specific loading conditions and by spread

of the transformed region, this assumption becomes less and less accurate. Additionally, in

Birman’s closed-form solution, for obtaining the stress-strain relations, the transformation

strains are related to the martensitic volume fraction by constant multipliers. Although

this assumption remarkably simplifies the solution, it can be replaced by a more realistic

formulation that will be presented in this thesis. One of the main challenges in obtaining

closed-form solutions for structures made of phase transforming materials is introducing an

accurate solution for the regions that are completely transformed to martensite. Although

the response of the structure is elastic for the fully martensite regions, it is necessary to

consider the history of loading and the final values of transformation strain components to
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obtain the solution in these regions. In the present semi-analytic analysis we will explain

how to obtain the solution for these regions.

In a recent attempt, Mirzaeifar et al. [127] developed an exact solution for pure torsion

of shape memory alloy circular bars. A general three-dimensional constitutive relation for

shape memory alloys was first reduced to an appropriate one-dimensional form suitable for

pure torsion. An explicit expression was derived for shear stress as a function of geometric

specifications, material constants, and shear strain that enabled the solution to be obtained

analytically. Response of circular bars in torsion was then analyzed by considering different

possibilities that may happen in various loading levels.

Among various shapes in which SMAs are used, cylindrical shells are of particular in-

terest in applications including spinal vertebrae spacers [115], special cardiovascular stents

[91], and active catheters [98], which are in the form of thin shells. Li and Sun [102] studied

the superelastic response of nano-grained SMA micro tubes under uniaxial tension. Their

experimental results show that the nucleated macroscopic martensite band in a micro tube

under uniaxial loading takes the shape of a spiral that surrounds the tube axis for several

circles. Feng and Sun [52] studied the response of SMA micro tubes subjected to a com-

bined tensile and torsional loading experimentally. He and Sun [72] studied the effect of

tube geometry on the helix-shaped deformation domains that are observed in SMA tubes

during the stress-induced martensitic phase transformation of the material under uniaxial

stretching.

In this thesis, SMA thick-walled cylinders are considered. Two extreme cases of long

and short cylinders can be reduced to plane strain and plane stress, respectively. SMA

short cylinders or rings have many engineering applications, e.g. the SMA pipe couplings

[30, 80], tube wall joints [191], and active stiffener strips [86]. Shape memory alloys have

suitable mechanical characteristics that make them desirable in pressure vessels and pipes

as active layers, which are in the form of long thick cylinders [143, 144].

In the present study, SMA short and long thick-walled cylinders are considered. For

short cylinders in the form of a ring or stiffener strip, in the absence of axial forces,

plane stress condition is a good approximation. Long cylinders can be reduced to a plane
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strain problem. Using these assumptions the three-dimensional problem is reduced to a

two-dimensional one. Constitutive equations are reduced to appropriate two-dimensional

relations and an explicit expression is obtained for the martensitic volume fraction and

transformation strains in both cases. The cylinder is partitioned into a finite number of

annular regions and simplifying assumptions are made in each annular region in order to

obtain an explicit expression for the stress components as functions of displacements. These

stress-displacement expressions are then used to write the equilibrium equations in terms

of radial displacements in each annular region. The global solution for the cylinder is fi-

nally obtained by putting the solutions of annular regions together and by enforcing the

continuity conditions at the interfaces and at the inner and outer boundary regions. Our

semi-analytic approach can be used to validate numerical methods like the finite element

method.

1.1.4 superelastic bending of shape memory alloy beams

In many SMA devices, the SMA instrument is subjected to local or global bending. This

is the main motivation for several reported works on bending analysis of SMAs in the

literature. The bending of beams made of single crystal SMAs and the propagation of phase

boundaries was studied by Purohit and Bhattacharya [160]. They used additional kinetic

relations in conjunction with the constitutive assumptions and balance laws to determine

the propagation of phase boundaries. The solutions for single crystalline beams consider

a jump in the material properties before and after the phase transformation, and there is

no intermediate condition between these two cases. In polycrystalline materials, which are

used in the majority of SMA engineering applications, the phase transformation does not

occur simultaneously in all the grains. This causes a considerable difference between the

material properties in single crystals and polycrystalline samples. While the material in a

beam made of a single crystal SMA is austenite or martensite with some phase boundaries,

the continuous change of material properties in polycrystalline SMAs makes modeling the

bending of beams made of these materials a challenging problem (see [5, 182, 183] for

studying polycrystalline SMAs using a constitutive model based on the response of single

11



crystal SMAs).

Among the solutions presented for modeling bending in polycrystallline SMAs a large

number are purely numerical [13, 118]. In an early work, Atanackovic and Achenbach [12]

used a simplified multi-linear constitutive equation for obtaining the moment-curvature

relation of a pseudoelastic beam. Plietsch et al. [157] presented a closed-form solution

for bending of SMA beams by considering a multi-linear stress-strain response. Auricchio

and Sacco [18] studied the SMA wires subjected to cyclic stretching-bending loads using a

one-dimensional constitutive model. In their work the thermomechanical coupling was also

considered and the finite element method was used for solving the governing equations. Au-

ricchio et al. [19] implemented one-dimensional constitutive equations into a finite element

model for studying the shape memory effect for SMA beams in bending. The material re-

sponse in tension and compression was assumed asymmetric and the numerical results were

compared with experiments. Recently, Flor et al. [54] presented some numerical simulation

and experimental analysis of SMA wires in bending. They considered tension-compression

asymmetry in their model and a numerical scheme was used for calculating the bending

response. Their model is developed only for the loading phase; unloading was not studied

in either their experiments or numerical simulations.

The existing numerical methods of modeling SMAs suffer from the high computational

cost, and convergence difficulties particularly for modeling the unloading process or con-

sidering the geometric nonlinearities. The results obtained by these numerical methods are

highly sensitive to a large number of secondary parameters, e.g. the mesh size, tolerance

criteria, number of loading steps. The numerical simulations may give erroneous results due

to an improper choice for any of these parameters. On the other hand, the semi-analytic

solutions in the literature are based on oversimplified constitutive relations or use unrealistic

simplifying assumptions. In this thesis, we introduce a closed-form solution for analyzing

the superelastic bending of shape memory alloys. A three-dimensional constitutive model is

reduced to an appropriate one-dimensional constitutive equation. Closed-form expressions

are obtained for the martensitic volume fraction and stress distributions in the cross section
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of SMA beams in bending. The EulerBernoulli beam theory (assuming the plane cross sec-

tions remain plane and perpendicular to the centerline after deformation) is used and the

the bending moment-curvature relation is obtained analytically. A method is presented for

solving the bending of superelastic SMAs analytically. In addition to the J2-based model

that predicts a symmetric response in tension and compression, a more accurate solution

based on J2 − I1 transformation function is also presented and the effect of considering the

tension-compression asymmetry (which is a well-known response for most SMAs [5, 59]) in

the bending response is studied.

It is worth noting that for modeling the tension-compression asymmetry, the J2 − J3

model gives more accurate results because of its capability in modeling the negative volume

change during martensitic transformation [162]. However, The J2 − J3-based model cannot

be used for developing a closed-form solution in this thesis. Experiments have shown that

the J2−I1-based model can predict the superelastic response of SMAs with a good accuracy

for all the parameters except the volumetric transformation strain (see Section 4 in Qidwai

and Lagoudas [162]). Also, the material parameters in the J2 − I1-based model can be

calibrated for modeling a realistic volumetric transformation strain, but in this case the

tension-compression asymmetry is not modeled correctly, and we will not use this calibration

method in our solution.

An important capability of our model is its applicability in extracting the tensile prop-

erties of materials when the compression and bending test results are available but the

tension properties are practically difficult to be measured experimentally, e.g. in the micro

scale applications of SMAs.

SMAs have recently attracted considerable interest for applications as actuators in

micro-electro-mechanical systems (MEMS) [22, 82, 168] due to their relatively high work

output per unit volume [90]. One of the traditional methods for studying the mechanical

properties of a material in the micro and nano scales is testing pillars. These pillars are

produced by focused ion beam (FIB) micromachining [189]. Recently, the pseudoelasticity,

crystal orientation effect, and size dependency have been extensively studied experimentally
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for nickel-titanium and Cu-Al-Ni micropillars [40, 57, 81, 117, 165]. In order to have a pre-

cise description of the micropillars response in MEMS applications, it is ideal to extract the

material response in tension, compression, and bending experimentally. However, among

the reported works on studying the shape memory micropillars response the majority of

experiments are performed for compressive loading [57, 81, 117, 165], and there are a few

experimental works on bending [40]. While performing bending tests on micropillars one

faces some technical difficulties [40]. Tensile tests in nano and micro scales are consider-

ably more difficult because a special geometric shape should be created at the pillar head

for attaching the tensile tool to the pillar [87, 88]. As we explain in §4.6, our analytical

solution for bending can be used for extracting the tensile properties when the bending and

compressive responses are known.

The material properties in compression are calibrated from the available experimental

data. The material-independent properties in tension are assumed, and bending is simu-

lated using these properties in tension and compression. The predicted bending response is

compared with the experimental data, and a trial and error approach is used for improving

the assumed tensile material properties for finding the best match between the experimen-

tal and analytical results in bending. It is worth noting that the iterations for improving

the initial guess are performed without a considerable computational cost; the closed-form

solutions are obtained in a few seconds. Such a method is extremely time consuming if the

available numerical solutions are used for modeling the bending response. We will imple-

ment this method for analyzing bending of a nickel-titanium micropillar using the available

experimental data.

1.2 Analysis of the coupled thermomechanical response of SMAs

In the next step, the effect of phase transformation induced latent heat is added to the

solutions obtained based on the phenomenological constitutive framework and the coupled

thermomechanical response of SMAs is also studied.

The martensitic phase transformation in SMAs is associated with generation or absorp-

tion of latent heat in forward (austenite to martensite) and reverse (martensite to austenite)
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transformations. This has been shown in many experiments and the heat of transformation

and the associate temperatures for the start and end of forward/reverse martensitic trans-

formation can be determined by differential scanning calorimeter or DSC [3, 71, 112]. In the

majority of the previous works in which loading is assumed quasi-static, it is assumed that

material is exchanging the phase transformation-induced latent heat with the ambient such

that the SMA device is always isothermal and in a temperature identical with the ambient

during loading and unloading. We will show in this thesis that the definition of quasi-static

loading that guarantees an isothermal process is not absolute; it is affected by a number

of parameters, e.g. the ambient condition and size of the structure. In other words, it will

be shown that a very slow loading rate that can be considered a quasi-static loading for

an SMA wire with a small diameter may be far from being quasi-static and isothermal for

a bar with larger diameters. This size effect phenomenon has been reported previously in

some experiments [44, 124], but we are not aware of any analytical or numerical analysis of

this phenomenon in the literature. In some of the previously reported works in the litera-

ture, the effect of this latent heat and its coupling with mechanical response of SMAs was

considered along with some simplifying assumptions.

In the literature, two extreme cases of isothermal and adiabatic processes are considered

for quasi-static and dynamic loading conditions, respectively. Chen and Lagoudas [38] con-

sidered impact-induced phase transformation and assumed adiabatic conditions for solving

the problem of SMA rods subjected to an impact load. Lagoudas et al. [94] considered the

dynamic loading of polycrystalline shape memory alloy rods. They compared the effect of

considering adiabatic and isothermal assumptions on the response of SMA bars subjected

to axial loading. In some other works, more realistic heat transfer boundary conditions

capable of modeling a heat exchange greater than zero (corresponding to the adiabatic pro-

cess) and less than the maximum possible value (corresponding to an isothermal process)

are considered. In these works, to simplify the coupled thermomechanical relations, it is as-

sumed that the nonuniformity of temperature distribution is negligible. Auricchio et al. [16]

studied the rate-dependent response of SMA rods by taking the latent heat effect and the

heat exchange with ambient into consideration. The authors used the fact that for a wire
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with a small diameter temperature in the cross section is distributed uniformly during load-

ing and unloading. A simplified one-dimensional constitutive relation and an approximate

heat convection coefficient were considered for obtaining the thermomechanical governing

equations. In a similar work, Vitiello et al. [187] used the one-dimensional Tanaka’s model

[177, 179] in conjunction with the energy balance equation to take into account the latent

heat effect. The solution was restricted to very slender cylinders with small Biot num-

bers. In this special case, temperature nonuniformity in the cross section is neglected and

the governing equations are simplified by assuming a uniform temperature distribution at

each time increment. Messner and Werner [125] studied the local increase of temperature

near a moving phase transformation front due to the latent heat of phase transformation in

one-dimensional SMAs subjected to tensile loading. They modeled the effect of phase trans-

formation latent heat by a moving heat source. A constant value is considered for the latent

heat generated by phase transformation. This assumption is unrealistic for polycrystalline

SMAs because the amount of generated heat is specified by a set of coupled equations and

depends on many variables, e.g. stress and martensitic volume fraction. Iadicola and Shaw

[77] used a special plasticity-based constitutive model with an up-down-up flow rule within

a finite element framework and investigated the trends of localized nucleation and propa-

gation phenomena for a wide range of loading rates and ambient thermal conditions. The

local self-heating due to latent heat of phase transformation and its effect on the number

of nucleations and the number of transformation fronts were studied. The effect of ambient

condition was also considered by assuming various convection coefficients.

Bernardini and Vestroni [20] studied the non-linear dynamic response of a pseudoelastic

oscillator embedded in a convective environment. In this work, a simplified one-dimensional

equation is considered by assuming the whole pseudoelastic device in a uniform temperature

at each time step and the dynamic response of pseudoelastic oscillator is studied. Chang

et al. [34] presented a thermomechanical model for a shape memory alloy (SMA) wire under

uniaxial loading implemented in a finite element framework. They assumed the tempera-

ture distribution in the cross section of wire to be uniform but a nonuniform distribution

is assumed along the SMA wire. It is assumed that the phase transformation initiates in
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a favorable point of the wire (this point is defined by a geometric imperfection or stress

concentration). The phase transformation front moves along the wire with a specific finite

velocity. They studied the movement of phase transformation front and the temperature

change along the wire analytically and experimentally. In this thesis, we will consider a

three-dimensional phenomenological macroscopic constitutive relation in conjunction with

the energy balance equation for deriving the coupled thermomechanical equations govern-

ing the SMAs considering the effect of latent heat and the heat flux in the material due

to temperature nonuniformity caused by the generated heat during forward phase transfor-

mation and the absorbed heat during the reverse phase transformation. The constitutive

relations can be used for calculating the continuum tangent moduli tensors for developing

numerical formulations [126, 161], but coupling these equations with the energy relation

in the rate form is extremely difficult in numerical methods. An alternative method for

analysis of SMAs is using analytic and semi-analytic solutions with an explicit form of the

constitutive relations for a specific geometry and loading [127, 129, 131]. In this thesis,

for the special one-dimensional cases of pure torsion and uniaxial tension-compression, an

explicit expression is given for the stress-strain relation and the coupled energy equation is

given in a rate form. For deriving the one-dimensional governing equations, a nonuniform

distribution is considered in the cross section for all the variables including the stress, tem-

perature, transformation strain and martensitic volume fraction. In the uniaxial loading

case it is assumed that the material does not contain a favorable point for the initiation

of phase transformation along the length (all the parameters are independent of axial loca-

tion). These equations are discretized for wires and bars with circular cross sections using

an explicit finite difference method. The discretized form of convection boundary conditions

is also derived. For modeling SMA wires and bars operating in still air and exposed to air

or fluid flow with a known speed, free and forced convection coefficients are calculated for

slender wires and thick cylindrical bars in air and fluid using the experimental and analytical

formulas in the literature. The results of the present formulation are compared with some

experiments to verify the capability of our approach in modeling the rate dependency and

calculating accurate temperature changes during loading-unloading. Several case studies
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are presented for studying the loading rate and ambient effects on the coupled thermome-

chanical response of SMA wires and bars in uniaxial loading and also SMA bars subjected

to pure torsion.

The thermomechanical response is studied experimentally as well. An infrared camera

is used in the experiments to measure the temperature changes due to the phase transfor-

mation latent heat at the surface of SMA specimens subjected to various loadings. The

theoretical coupled thermomechanical models can be calibrated using the experimentally

measured temperatures at the surface. The calibrated model is then used for calculating

the temperature distribution inside the device (which is practically difficult to be measured

in tests). The obtained full temperature distribution is the basis for studying the complex

effects of size, loading rate, and ambient condition on the response of SMA devices.

1.3 Micromechanical modeling

Shape memory alloys, particularly the near-equiatomic TiNi alloys, are currently used in

applications in a wide variety of devices. SMA materials used in most applications are

polycrystalline in nature. The cast SMA materials contain a random distribution of crystal

orientations in the grains. However, in most applications, SMAs are processed by casting,

followed by hot-working (i.e. drawing or rolling) and suitable heat treatments [182]. It is

known that the deformation processing has a significant effect on the response of polycrys-

talline SMAs. For example, while the material response for a cast NiTi sample is almost

symmetric in tension and compression, a cast, hot rolled, then cold drawn material exhibits

a very large asymmetry in tension-compression response [56]. In some special samples, the

maximum transformation strain in tension is reported more than two times the maximum

transformation strain in compression for the hot rolled, then cold drawn material with a

significant difference between the stress levels in the stress-strain plateau [56]. This signif-

icant tension-compression stress-strain asymmetry in processed SMAs is due to the strong

crystallographic texture. Gall and Sehitoglu [59] studied the role of texture on tension-

compression asymmetry in polycrystalline NiTi. The crystallographic texture of some NiTi

samples was determined by X-ray diffraction. The samples they studied were cold drawn,
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annealed, straightened, centerless ground, aged 0.25 h at 550◦C, and machined into dog-

bone specimens with the loading axis parallel to the drawing direction. It was shown that

for these samples the majority of the grains are oriented along the [111] crystallographic

direction, which is soft under tensile loading and hard under compression. As a result of

this textured orientation, a significant tension-compression asymmetry is observed in the

stress-strain response of NiTi samples.

Macroscopic phenomenological constitutive frameworks are efficient tools for modeling

the mechanical or thermomechanical response of polycrystalline SMAs in engineering appli-

cations [99, 129, 146, 162, 180]. However, these models are not appropriate for modeling the

response of SMAs at the microscale, and consequently are not able to model some important

aspects of the response of SMAs such as the phase transformation initiation and propaga-

tion among the grains. As mentioned earlier, the crystallographic texture is a key property

in studying polycrystalline SMAs. A simplified method for studying the role of texture

on the mechanical response of polycrystalline SMAs is using phenomenological constitutive

equations and selecting appropriate transformation functions for modeling the asymmetry

in SMAs [14, 162]. However, a more precise analysis of the crystallographic texture and

its effects on the thermomechanical response can only be achieved by using constitutive

models based on the micro-mechanics of single crystals for studying polycrystal structures

[62, 183]. In these models, a polycrystalline material can be modeled by assigning a separate

crystal orientation to each grain. Using this method, a preferred orientation of the crystal-

lographic texture can be modeled, which leads to the actual thermomechanical response of

polycrystalline SMAs without using an approximate phenomenological framework.

In the micromechanical models, the overall transformation strain is related to the stress-

free transformation strains of all the correspondence martensite variant pairs (CVPs) ob-

tained from the crystallographic data by using a volume fraction coefficient for each variant.

Some studies based on these micromechanical models ignore the microstructure of grains and

the intergranular interactions by using different averaging schemes [49, 59, 114, 151, 175].

Although these models are appropriate for studying the global response of the material, and
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are capable of analyzing important properties such as the role of texture on the tension-

compression asymmetry [59], the grain boundary interactions, and the intergranular effects

are not considered in these models. To further understand the behavior of polycrystalline

shape memory alloys, it is necessary to use the micromechanical constitutive frameworks

in conjunction with an accurate model of microstructure by simulating the polycrystal as a

cluster of grains. The finite element method is an efficient tool for studying polycrystalline

SMAs using the micromechanical framework. Gall et al. [62] and Lim and McDowell [110]

employed a three-dimensional finite element modeling to examine the thermomechanical

behavior of a polycrystalline NiTi shape memory alloy in the pseudoelastic regime. In

these works, a simplified geometric model was used in which all the grains are assumed as

identical hexagonal prisms. Thamburaja and Anand [182] used a crystal-mechanics-based

constitutive framework and the finite element modeling for studying the effect of crystallo-

graphic texture on the response of polycrystalline SMAs. They modeled the microstructure

in the polycrystal by assuming all the grains as cubes stacked adjacent to each other form-

ing a larger cube representing the polycrystal structure. A similar microstructure was used

for studying the superelastic behavior of textured NiTi polycrystalline materials in tension-

torsion [183] and the thermal effects in the superelasticity of crystalline SMAs [5]. To further

understand the intergranular interactions in polycrystalline SMAs, we use a more realistic

polycrystal structure by implementing Voronoi tessellations to generate the polycrystalline

grain structure of micro-scaled NiTi shape memory alloys.

Another significant contribution of the present work is in presenting an accurate ther-

momechanical framework for studying the effect of phase transformation latent heat in

polycrystalline SMAs. There are several attempts in the literature for coupling the latent

heat effect to the mechanical response of polycrystalline SMAs. A group of these works

use the averaging schemes in studying the polycrystal, and because the physical shape of

grains is not modeled, the temperature should also be studied as an averaged parameter

in the whole material [49]. In another attempt to better understand the thermomechanical

response of polycrystalline SMAs, Anand and Gurtin [5] coupled the energy balance equa-

tion with the mechanical constitutive relations for the simplified microstructure model with
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cubic grains. In this work the strain rate effect on the response of NiTi shape memory alloys

was studied. Lim and McDowell [110] introduced a simplified expression for the volumetric

heat generation due to phase transformation and studied the coupled thermomechanical

response of textured polycrystal samples in which the microstructure was constructed by

identical grains as hexagonal prisms. In this work, it was assumed that the volumetric heat

generation is proportional to the rate of change of overall martensitic volume fraction by

using a constant relating the heat generation to the sum of the rate of martensitic volume

fraction changes in all the active variants. In this thesis, we use a comprehensive descrip-

tion of the energy balance equation in SMAs for calculating the latent heat during phase

transformation. It will be shown that the volumetric heat generation/absorption is related

to the rate of change of martensitic volume fractions and stress. Derivatives of the latent

heat with respect to temperature and strain are also calculated for implementation in an

incremental finite element framework.

Several case studies are considered in this thesis for further understanding some im-

portant phenomena in the thermomechanical response of polycrystalline SMAs. The role

of texture on tension-compression asymmetry is studied and it is shown that adding more

grains with a favorable crystal orientation changes the semi-symmetric response of an un-

textured sample toward an asymmetric response observed in single crystals. The effect of

crystallographic texture on the phase transformation initiation and propagation is studied

and it is shown that while the phase transformation propagates almost equally in tension

and compression for an untextured material, the spatial distribution of the martensite phase

is remarkably more rapid in compression when the grains have a favorable [111] crystallo-

graphic orientation.1 The effects of size and the number of grains on the mechanical response

of polycrystalline SMAs subjected to both tensile and compressive loads are studied and it

is shown that the number of grains has a strong effect on the initiation of phase transforma-

tion at the grain boundaries and the propagation of martensite region inside the polycrystal.

Some case studies are presented for micro-scaled polycrystalline beams subjected to bending

1It is worth noting that the spatial spread of phase transformation initiation is more rapid in tension as
reported by Gall et al. [62]. However, we study the propagation of martensitic volume fraction as a function
of average strain as discussed in §4.5.2.
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and it is shown how the stress and martensitic volume fraction distributions are affected by

the texture in the beam. The load-deflection response of textured and untextured beams

in bending are also compared. The thermomechanical response of polycrystalline SMAs

is studied by implementing the coupled energy balance and constitutive equations. It is

shown that the latent heat is the origin of rate dependency in the response of SMAs at the

microscale. Also it is shown that the effect of loading rate on changing the slope of stress-

strain plateau and changing the hysteresis area is consistent with the results previously

observed at the macroscale. The effect of latent heat on the propagation of phase trans-

formation between the grains is also studied and it is shown that the phase transformation

is slightly suppressed in fast loadings due to the temperature changes. The temperature

changes at the microscale are compared with those obtained previously at the macroscale

based on experimental observations and phenomenological modelings. It is shown that the

temperature changes at different scales have similarities.

1.4 Nanoscale study

The shape memory effect (SME) and the pseudoelastic (PE) response of SMAs are both

due to the ability of changing the crystallographic structure by a displacive phase transfor-

mation between the cubic austenite parent phase (the high symmetry B2 phase preferred

at high temperatures) and the low symmetry martensite phase (monoclinic B19’ crystal

structure preferred at low temperatures) in response to mechanical and/or thermal load-

ings. There are two major motivations for studying the microscopic behavior of SMAs:

better understanding of the macroscopic behavior of SMAs, and analyzing the nanoscale

actuators made of these materials. SMAs have recently attracted considerable interest for

applications as actuators in micro-electro-mechanical systems (MEMS) [22, 82, 168] due to

their relatively high work output per unit volume [90].

In recent years, several works have been reported on studying PE and SME in various

metals and alloys. Sato et al. [166] used the embedded atom method (EAM) in molecular

dynamics (MD) simulation to study the microscopic mechanism for phase transformation

of NiTi alloy. Stress-induced martensitic transformation was studied for tensile simulation
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using four different strain rates and it was shown that the relationship between stress and

martensite ratio does not depend on the strain rate. The phase transformation between

the B2 and B19’ structures was studied in Ni-Ti and it was shown that there are multi-

ple pathways between the parent phase and the martensite phase regardless of the strain

rate. In this work a simulation box with free surfaces was considered and the initial tem-

perature was kept constant at 0K by thermal control using the velocity scaling method

for structural relaxation from the initial state. Park [149] studied the martensitic phase

transformation in Ni-Al nanowires. In this work, atomistic simulation was used to demon-

strate the stress-induced martensitic phase transformation in intermetallic nickel aluminum

(NiAl) nanowires. It was shown that the martensitic phase transformation occurs by the

propagation and annihilation of {101} twinning planes and transforms the initially B2 NiAl

nanowires to a body-centered tetragonal (BCT) phase. PE was studied for these nanowires

and it was shown that the instability of the resulting BCT phase allows pseudoelastic re-

covery of inelastic strains on the order of 40% at all deformation temperatures. The MD

simulations in this work were performed using the the Sandia developed code, Warp [158].

The thermomechanical behavor of NiAl nanowires was studied by Sutrakar and Mahapatra

[176]. In this work, The asymmetric stress-strain behavior under tension/compression in an

initial < 100 > B2-NiAl nanowire was investigated considering two different surface config-

urations. It wa shown that under tensile loading, the nanowire undergoes a stress-induced

martensitic phase transformation from an initial B2 phase to body centered tetragonal

(BCT) phase via twinning along {110} plane with failure strain of ∼0.30. On the other

hand, a compressive loading causes failure of these nanowires via brittle fracture after com-

pressive yielding, with a maximum failure strain of ∼-0.12. It was observed that the brittle

fracture in compression occurs via slip along {110} plane without any phase transforma-

tions. In addition to the alloys, similar PE and SME responses are discovered recently in

single crystalline Cu [106], Ni [105], Au [46], and some other fcc metallic nanowires [150]

through atomistic simulations.

In this work, we focus on the MD simulation of NiTi alloys. Zhong et al. [195] studied

the structure and geometrical limit of nanoscale twins in NiTi shape memory alloys using
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atomistic simulations. In this work, the crystallographic theory of twinned martensite was

combined with atomistic simulations, and the nanoscale twins and martensitic phase trans-

formations in NiTi with the multilattice structure was studied. Molecular dynamics simula-

tions was used to predict the phase transformation temperatures, which obtained consistent

with experimental measurements. The shape memory behavior of a NiTi nanoparticle was

analyzed using molecular dynamics simulations by Mutter and Nielaba [136]. By consid-

ering a nano particle with different Ni contents, it was shown that heating the particle

leads to a shape memory effect without a phase transition to the austenite, but by variant

reorientation and twin boundary formation at a certain temperature. Recently [196] per-

formed MD simulations to study the atomistic mechanisms governing the pseudoelasticity

and shape memory in NiTi nanostructures. For a < 110 > oriented nanopillar subjected

to compressive loadingunloading, they observed either a pseudoelastic or shape memory

response, depending on the applied strain and temperature that control the reversibility of

phase transformation and deformation twinning.

In this thesis, we study the stress induced phase transformation in NiTi alloys with

a focus on tensile loading-unloading. In addition to the temperature and stress induced

austenite to martensite phase transformation, the reorientation in martensite at lower tem-

peratures is also studied. The alloyed NiTi system is created by generating atomic positions

as in the bulk corresponding to the B2 crystal structure which is equivalent to a body cen-

tered cubic (BCC) lattice with the Ni atoms at the corners of the unit cell and a single

Ti atom at the body center. Different crystal orientations are considered and the effect

of orientation on the stress-strain response and hysteretic behavior is studied. Also, by

considering different simulation boxes and various temperatures, the size and temperature

effects on the pseudoelastic response of NiTi alloys are studied. Several new aspects of

the austenite-martensite phase transformation and reorientation of martensite variants are

introduced in Chapter 5.

In summary, this thesis has the following major objectives:

• Introducing fast and accurate analyzing strategies for large SMA tools with engi-

neering applications by developing analytical solutions for modeling various shapes of
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SMA devices subjected to different loading conditions.

• Studying the thermomechanical coupling in SMAs by adding the phase transformation

latent heat to the closed-form solutions and making these models more accurate in

studying various SMA devices

• Better understanding the phase transformation and thermomechanical coupling in

SMAs by studying the microstructure and analyzing size, texture and loading rate

effects at microscale

• Fundamental study of martensitic phase transformation in NiTi at the atomistic

level by analyzing temperature driven phase transformation, martensite reorientation,

stress induced phase transformation and twinning in NiTi systems at nanoscale.

This thesis is organized as follows. The macroscopic phenomenological models, develop-

ing closed-form solutions based on these models, the thermomechanical theoretical studies

in macroscale, and the experiments for studying the thermomechanical response of large

polycrystalline SMAs are given in Chapter 2. The thermomechanical coupling in SMAs

due to the phase transformation latent heat is studied in Chapter 3. The micromechanical

model is explained in Chapter 4. Chapter 5 contains various studies on NiTi shape memory

alloys at nanoscale.
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CHAPTER II

PHENOMENOLOGICAL MACROSCALE MODELING

2.1 Introduction

In this chapter various large polycrystalline SMA devices are studied using a phenomeno-

logical macroscopic framework. The macroscopic phenomenological constitutive models for

studying the martensitic phase transformation are derived based on continuum thermo-

mechanics framework in which a macroscopic free energy potential (Helmholtz or Gibbs

free energy) is postulated depending on the state and internal variables used to describe

the measure of phase transformation. Evolution equations are constructed for calculating

the change of internal variables and the second law of thermodynamics is used in order to

find thermodynamic constraints on the material constitutive equations. In recent years,

different constitutive models have been introduced by different choices of thermodynamic

potentials, internal state variables, and their evolution equations (a brief review of these

models is presented in Chapter 1). In this chapter, we develop a phenomenological constitu-

tive framework using the Gibbs free energy as the thermodynamic potential, the martensitic

volume fraction and transformation strains as the internal state variables, and the harden-

ing function in polynomial form. Two different transformation functions are considered: a

J2-based model with symmetric tension-compression response, and a J2−I1-based model for

considering the tension-compression asymmetry that is observed in experiments. Closed-

form solutions are presented for studying various SMA devices subjected to different types

of loading including uniaxial tension-compression, torsion, bending, and also thick walled

SMA cylinders subjected to internal pressure. In each case, the constitutive equations are

reduced to an appropriate one or two dimensional form for studying the pseudoelastic re-

sponse of SMAs. Closed-form expressions are given for the stress and martensitic volume

fraction distributions and the governing equations are obtained analytically.
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2.2 Pure Torsion of SMA Circular Bars

In this section, an analytical solution is presented for the pure torsion of SMA bars with

circular cross sections. We reduced a general phenomenological macroscopic constitutive

model for polycrystalline SMAs and obtained an explicit expression for the shear stress in

circular SMAs bars in pure torsion. It is shown that in the most general case, the cross

section in loading and unloading may be divided into three regions with different responses.

The stress-strain relation in these regions is derived and the shear stress distribution is

calculated for different twist angles both in loading and unloading. Several case studies

are presented for analyzing the response of SMA bars with different material properties at

various temperatures. The twist angle is obtained as a function of the applied torque in

loading-unloading cycles. The presented solution can be used as a benchmark problem for

validating numerical simulations of SMAs. This method will also be exploited to analyze

SMA helical springs in the next section.

2.2.1 General constitutive model

In the present study, we consider the transformation strain εt and the martensitic volume

fraction ξ as the internal state variables.1 The Gibbs free energy G for polycrystalline SMAs

is given by [28, 162]:

G(σ, T, εt, ξ) = − 1

2ρ
σ : � : σ − 1

ρ
σ :

[
α (T − T0) + εt

]
+

c

[
(T − T0)− T ln

(
T

T0

) ]
− s0T + u0 +

1

ρ
f(ξ), (2.1)

where, �,α, c, ρ, s0 and u0 are the effective compliance tensor, effective thermal expansion

coefficient tensor, effective specific heat, mass density, effective specific entropy, and effective

specific internal energy at the reference state, respectively. The symbols σ, T, T0, εt and

ξ represent the Cauchy stress tensor, temperature, reference temperature, transformation

strain and martensitic volume fraction, respectively. All the effective material properties

1The portion of strain that is recovered due to reverse phase transformation from detwinned martensite
to austenite is considered as the transformation strain. See Patoor et al. [152] for a detailed description of
the transformation strain and martensitic volume fraction.
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are assumed to vary with the martensitic volume fraction (ξ) as follows

� = �A + ξΔ�,α = αA + ξΔα, c = cA + ξΔc, s0 = sA0 + ξΔs, u0 = uA0 + ξΔu0, (2.2)

where the superscripts A and M represent the austenite and martensite phases, respec-

tively. The symbol Δ(.) denotes the difference of a quality (.) between the martensitic

and austenitic phases, i.e. Δ(.) = (.)M − (.)A. In (2.1), f(ξ) is a hardening function that

models the transformation strain hardening in the SMA material. In the Boyd-Lagoudas’

polynomial hardening model, this function is given by

f (ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2ρb

Mξ2 + (μ1 + μ2) ξ, ξ̇ > 0,

1
2ρb

Aξ2 + (μ1 − μ2) ξ, ξ̇ < 0,

(2.3)

where, ρbA, ρbM , μ1 and μ2 are material constants for transformation strain hardening.

The first condition in (2.3) represents the forward phase transformation (A→M) and the

second condition represents the reverse phase transformation (M → A). The constitutive

relation of a shape memory material can be obtained by using the total Gibbs free energy

as

ε = −ρ∂G
∂σ

= � : σ +α (T − T0) + εt. (2.4)

Considering the fact that any change in the state of the system is only possible by a change

in the internal state variable ξ [25], the evolution of the transformation strain tensor is

related to the evolution of the martensitic volume fraction as

ε̇t = Γξ̇, (2.5)

where Γ represents a transformation tensor related to the deviatoric stress tensor and de-

termines the flow direction as

Γ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3
2
H
σ σ

′, ξ̇ > 0,

H
εtr

εtr, ξ̇ < 0.

(2.6)

In (2.6), H is the maximum uniaxial transformation strain and εtr represents the trans-

formation strain at the reverse phase transformation. The terms σ′, σ and εtr are the
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deviatoric stress tensor, the second deviatoric stress invariant and the second deviatoric

transformation strain invariant, respectively, and are expressed as

σ′ = σ − 1

3
(trσ)I, σ =

√
3

2
σ′ : σ′, εtr =

√
3

2
εtr : εtr, (2.7)

where, I is the identity tensor.

An additional constraint on the material behavior is obtained by using the Second Law

of Thermodynamics in the form of positivity of the rate of entropy production density [162]:

σ : ε̇t − ρ
∂G

∂ξ
ξ̇ = πξ̇ ≥ 0, (2.8)

where, π is a thermodynamic force and can be obtained by substituting (2.1) and (2.5) into

(2.8) as

π = σ : Γ+
1

2
σ : Δ� : σ +Δα : σ (T − T0 )

+ρΔc

[
(T − T0)− T ln

(
T

T0

) ]
+ ρΔs0T − ∂f

∂ξ
− ρΔu0. (2.9)

Now, the transformation function that controls the onset of direct and reverse phase trans-

formation is defined as

Φ =

⎧⎪⎨
⎪⎩

π − Y, ξ̇ > 0,

−π − Y, ξ̇ < 0,
(2.10)

where, Y is a measure of internal dissipation due to microstructural changes during phase

transformation. The transformation function represents the elastic domain in the stress-

temperature state. In other words, when Φ < 0 the material response is elastic and the

martensitic volume fraction does not change (ξ̇ = 0). During the forward phase transfor-

mation from austenite to martensite (ξ̇ > 0) and the reverse phase transformation from

martensite to austenite (ξ̇ < 0), the state of stress, temperature and martensitic volume

fraction should remain on the transformation surface, which is characterized by Φ = 0. It

can be seen that transformation surface in the stress-temperature space is represented by

two separate faces that are defined by ξ = 0 and ξ = 1. Any state of stress-temperature

inside the inner surface (ξ = 0) represents the austenite state with an elastic response.

Outside the surface ξ = 1, the material is fully martensite and behaves elastically. For any
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state of stress-temperature on or in between these two surfaces the material behavior is

inelastic and a forward transformation occurs. A similar transformation surface exists for

the reverse phase transformation.

2.2.2 Reduction of the constitutive equations for pure torsion

Analysis of solid members with a uniform cross section of general shape in torsion is a

classical problem in elasticity and is commonly referred to as the Saint-Venant’s problem

after the French mathematician Barré de Saint-Venant. In 1784, Coulomb [41] presented

a solution for prismatic bars with circular cross sections in torsion. For many years, this

formulation was used for torsional analysis of bars with arbitrary cross sections. Later it

was shown that the Coulomb’s formulation, which ignores the cross section warpage2 is

not valid, in general. There were many unsuccessful attempts for formulating the torsion

of a bar with a general cross section consistent with elasticity equations (for a historical

review see [73]). Finally, In 1874, Saint-Venant published the correct formulation of torsion

problem in a series of three papers [73]. Based on the general solution of Saint-Venant, it

can be shown that the no warpage assumption is valid for bars with circular cross section

[172] and some other special cross sections [37]. According to Saint-Venant’s solution the

state of stress and strain is one dimensional and shear strain varies linearly from the central

axis toward the outer radius.3

In the case of circular bars, the general three-dimensional constitutive relations intro-

duced in the previous section can be reduced to a one-dimensional constitutive equation.

The stress, strain, and transformation strain tensors have the following forms:

σ =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 τθz

0 τθz 0

⎤
⎥⎥⎥⎥⎦ , ε =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 εθz

0 εθz 0

⎤
⎥⎥⎥⎥⎦ , εt =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 εtθz

0 εtθz 0

⎤
⎥⎥⎥⎥⎦ , (2.11)

2In a cross section with warpage, the planar cross sections perpendicular to the axis of the bar before
deformation will not remain planar after deformation.

3Considering a cross section in the xy plane (z is along the bar axis), the state of shear strain at a point

in the cross section is, γzx = 2εzx = θ
(
∂ψ
∂x

− y
)
and γzy = 2εzy = θ

(
∂ψ
∂y

+ x
)
, where θ is the twist angle per

unit length and ψ represents the warping function that represents the cross section deformation along the
z axis. Clearly, zero warpage is identical with the linear distribution of shear strains through the thickness
[172].
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where τθz, εθz and εtθz are the shear stress, shear strain and transformation shear strains,

respectively. Using trσ = 0 in (2.7) the deviatoric stress tensor will be the same as the

stress tensor, σ
′
= σ. The second deviatoric stress and transformation strain invariants are

reduced to read:

σ =
√
3|τθz|, εtr =

2√
3
|εtrθz|. (2.12)

The transformation tensor for the pure torsion is expressed as:

Γ+ =

√
3

2
H sgn(τθz)

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 1

0 1 0

⎤
⎥⎥⎥⎥⎦ , Γ− =

√
3

2
H sgn(εtrθz)

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 1

0 1 0

⎤
⎥⎥⎥⎥⎦ , (2.13)

where sgn(.) is the sign function and the superscripts + and - for Γ represent the forward

and inverse phase transformations, respectively. Substituting (2.13) into (2.9) and (2.10)

and using the following relation between the constitutive model parameters:

ρΔu0 + μ1 =
1

2
ρΔs0(Ms +Af ), ρb

A = −ρΔs0(Af −As),

ρbM = −ρΔs0(Ms −Mf ), Y = −1

2
ρΔs0(Af −Ms)− μ2, (2.14)

μ2 =
1

4
(ρbA − ρbM ),

explicit expressions for the martensitic volume fraction in direct and inverse phase trans-

formation are obtained as

ξ+ =
1

ρbM

{√
3H|τθz|+ 2τ2θzΔS44 + f+(T )

}
, (2.15)

ξ− =
1

ρbA

{√
3Hτθz sgn(ε

tr
θz) + 2τ2θzΔS44 + f−(T )

}
, (2.16)

where

f+(T ) = ρΔc

[
(T − T0)− T ln

(
T

T0

) ]
+ ρΔs0(T −Ms), (2.17)

f−(T ) = ρΔc

[
(T − T0)− T ln

(
T

T0

) ]
+ ρΔs0(T −Af ). (2.18)

The parameters Ms and Af are the martensitic start and austenite finish temperatures,

respectively. By substituting the explicit expression of the martensitic volume fraction in

31



(2.5) and after integrating from zero to an arbitrary time, the transformation shear strain

can be calculated. The constitutive relation (2.4) is now reduced to read:

εθz =
1 + ν

EA + ξ± (EM − EA)
τθz

+
1

ρb±

{
3

2
H2τθz +

√
3Hτ2θz ℵ± ΔS44 +

√
3

2
H ℵ± f±(T )

}
, (2.19)

where ν is Poisson’s ratio that is assumed to be the same for both phases. The + and -

symbols are used for the direct and reverse phase transformations, respectively, and the

other parameters are: ℵ+ = sgn(τθz), ℵ− = sgn(εtrθz), ρb
+ = ρbM and ρb− = ρbA. For a bar

with a circular cross section, the shear strain in (2.19) can be related to twist angle per unit

length as εθz = 1
2rθ, where r is the distance from the axis of the bar. Substituting (2.15)

into (2.19) and considering the special case in which both the shear stress and the shear

transformation strains are positive, (2.19) can be rewritten as:

τ4θz + F1τ
3
θz + (F2 + F ∗

2 rθ)τ
2
θz + (F3 + F ∗

3 rθ)τθz + (F4 + F ∗
4 rθ) = 0, (2.20)

where,

F1 = −
√
3H

ΔS44
,

F2 =
1

4

3ΔEH2 + 4ΔEΔS44f
±(T ) + 2 ρ b±EAΔS44

ΔEΔS44
2 ,

F3 =

√
3

12

6ΔEH2f±(T ) + 3 ρ b±EAH2 + 2(1 + ν) (ρ b±)2

HΔEΔS44
2 ,

F4 =
1

4

f±(T ) (ΔE f±(T ) + ρ b±EA)
ΔEΔS2

44

,

F ∗
2 = −1

6

ρ b±
√
3

ΔS44H
,

F ∗
3 = −1

4

ρ b±

ΔS2
44

,

F ∗
4 = −

√
3

12

ρ b± (ΔE f±(T ) + ρ b±EA)
HΔEΔS2

44

, (2.21)

in which ΔE = (EM − EA). The relation (2.20) is a quartic equation that can be solved

analytically using Ferrari’s method4 for finding the shear stress τθz as a function of twist

4In 1540, Lodovico Ferrari found the solution of quartic equation by reducing it to a cubic equation.
However, because the solution for cubic equations was not available at the time, his solution was not
published. Four years later Ferrari’s teacher, Gerolamo Cardano, published the solution of both quartic and
cubic equations in his book Ars Magna [32].
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angle in an arbitrary radius as:

τθz = ℘±(r, θ). (2.22)

The explicit expression for the shear stress (2.22) is given by using the constants in

(2.21) and introducing the following parameters:

G1 = −3

8
(F1)

2 + F2, G
∗
1 = F ∗

2 , G2 =
1

8
(F1)

3 − 1

2
F1F2 + F3, G

∗
2 = −1

2
F1F

∗
2 + F ∗

3 ,

G3 = − 3

256
(F1)

4 +
1

16
(F1)

2F2 − 1

4
F1F3 + F4, G

1
3 =

1

16
(F1)

2F ∗
2 − 1

4
F1F

∗
3 + F ∗

4 ,

K1 = − 1

12
(G1)

2 −G3, K
∗
1 = −1

6
G1G

∗
1 −G1

3, K
�
1 = − 1

12
(G∗

1)
2,

K2 = − 1

108
(G1)

3 +
1

3
G1G3 − 1

8
(G2)

2, K∗
2 = − 1

36
(G1)

2G∗
1 +

1

3
G1G

∗
3 +

1

3
G3G

∗
1 −

1

4
G2G

∗
2,

K�
2 = − 1

36
G1G

∗
1 +

1
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The quartic equation (2.20) has four roots. Among these, only one satisfies the continuity

condition for the shear stress distribution at r1 (see (2.26)). This admissible solution is

expressed as:

τθz = ℘±(r, θ) = −1

4
F1 +

1

2
W − 1

2

√
−3α− 2Y − 2

β

W , (2.25)

where ℘+ and ℘− are solutions for loading and unloading, respectively. In loading, ℘+(r, θ)

is calculated by considering the parameters with (+) sign in (2.21) and in unloading ℘−(r, θ)

is calculated by considering the parameters with (-) sign in (2.21).
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Table 2.1: SMA material parameters
Material constants A generic SMA (Mate-

rial I) [161]
Ni50.8Ti49.2 (Material
II) [173]

Material III [185]

EA 70.0 × 109Pa 48.5 × 109Pa 34× 109Pa
EM 30.0 × 109Pa 38.2 × 109Pa 28.5 × 109Pa
νA = νM 0.3 0.42 0.33
αA 22.0 × 10−6/K - -
αM 10.0 × 10−6/K - -
ρΔc = cM − cA 0.0 J/(m3K) 0.0 J/(m3K) 0.0 J/(m3K)
H 0.05 0.047 0.047
dσ
dT 7.0 × 106Pa/K 6.0× 106Pa/K 9.8× 106Pa/K
Af 315.0 K 288.15 K 292.6 K
As 295.0 K 258.15 K 273.7 K
Ms 291.0 K 258.15 K 252.9 K
Mf 271.0 K 218.15 K 220.8 K

2.2.3 Torsion of a SMA bar with circular cross section

In this section several case studies are presented for torsion of circular SMA bars. In these

numerical examples, two different sets of material parameters are used as shown in Table

2.1. The first set of properties are some generic values given in [161] and later used by many

researchers in reporting numerical simulations of SMAs. The second set of parameters are

based on an experimental work by Jacobus et al. [79] on Ni50Ti50 alloy. The required

material constants for the reduced constitutive model are extracted from the experimental

data by Qidwai and Lagoudas [162].

2.2.4 Thin-walled SMA tube

As the first case study, a thin-walled SMA tube with radius R = 3mm and length L = 4cm

is considered. The tube is fixed at one end and the other end is twisted. The material

properties (Material I) in Table 2.1 are used. The temperature is assumed to be T = 315K.

We compare the results of the present analytic solution with a finite element simulation.

The details of implementing the reduced constitutive equation in a displacement based fi-

nite element formulation is given in [126]. The three-dimensional constitutive relations of

§2.5.1 are used and an appropriate user subroutine (UMAT) is written by FORTRAN in the

commercially available finite element program ABAQUS that enables this code to model

SMA structures using solid elements and some two-dimensional elements. The developed
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Figure 2.1: Torsion of a SMA thin walled tube in loading.

finite element code was validated by previously reported works for SMA structures using

some case studies like uniaxial tension, bending of beams and deflection analysis of cylin-

drical panels [126]. In modeling torsion problems, quadratic axisymmetric elements with

additional twist degree of freedom are used.5

As the thickness of the tube is very small6 the radial change of martensitic volume frac-

tion and stress is negligible. As a result, only one element is used in the radial direction.

Although the stress distribution is constant along the axial direction, for avoiding high as-

pect ratio in the elements, 40 elements are used in the axial direction. The torsional loading

is divided into 200 steps and the tolerance of 1× 10−6 is considered for the convergence of

transformation function (see Qidwai and Lagoudas [161]).

Figure 2.30 compares the results of the present formulation with those of the finite

element simulations. Note that in the finite element results, the average stress value in

the middle of thickness is shown. As it is seen, the numerical simulation predicts the

completion of phase transformation in a larger twist angle compared to the exact solution.

This difference can be reduced by increasing the number of finite elements, load steps

5Element CGAX8 in ABAQUS.
6In the finite element model, a tube with inner and outer radii, ri = 2.9mm and ro = 3.1mm is modeled.
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and iterations for achieving the equilibrium in the finite element simulation. It is worth

mentioning that the results of the present closed-form solution are obtained without a

massive computation in contrast with the finite element (or other numerical simulations)

that require a massive iterative computational process. In the present case study, due

to the small thickness of the tube, only one element through the thickness and a small

number of elements (even one element) along the length is adequate. However, in more

complicated problems such as solid bars, with the increase of the element numbers in the

model, the problem becomes challenging from the computational point of view and the

present analytical solution would be much more efficient.

2.2.5 SMA solid bars

In this section the loading and unloading of SMA solid prismatic bars with circular cross

sections is considered. All the cases are presented for a bar with radius R = 25mm with

different material properties and different temperatures. In the first case we consider the

loading of a bar, which is in the fully austenite phase at rest. In torsion of such a bar, in

general, a cross section may be divided into three regions as shown in Figure 2.2. In the

inner region (Region I), the material is in the austenite phase and the relation τθz = GArθ

with GA = EA
2(1+ν) is valid. In Region II, the phase transformation has started (0 < ξ < 1)

and the relation τθz = ℘+(r, θ) expressed in (2.22) is valid. In the outer region (Region III)

the phase transformation is completed and the material is in the martensite phase. In this

region stress is calculated as τθz = τ fθz +GMr(θ− θf ), where τ fθz and θ
f are the shear stress

and the twist angle at which the phase transformation is completed (ξ = 1). For a bar in

the austenite phase with θ = 0, increasing the twist angle the phase transformation starts

from the outer radius and spreads toward the center. With more increase of the twist angle,

the third region with fully transformed martensite spreads from the outer radius toward the

center. For any value of the twist angle, as the material response in the austenite core is

elastic, r1 can be calculated by setting ξ = 0 in (2.15)1 and replacing τθz with GArθ. The

radius of the inner elastic region r is calculated as:

r1 = −1

4

√
3H −√

3H2 − 8ΔS44f+(T )

ΔS44GAθ
. (2.26)
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This equation can also be used for calculating the value of twist angle required for the start

of phase transformation, which will obviously happen in the outermost layer r = R.

I
II

III

r

σΖθ

R

r1

r2

Figure 2.2: Schematic of stress distribution in a circular bar. Regions I, II, and III are the
austenite core, transition region, and the martensite outer layer, respectively.

Consider an SMA solid bar with radius R = 25mm and the material properties (Material

I) in Table 2.1. All the results are presented for different twist angles per unit length.

Temperature is assumed to be T = 315K. The shear stress distribution for various twist

angels is shown in Figure 2.3. Distribution of the martensitic volume fraction for these twist

angles is depicted in Figure 2.4. As it is shown in Figures 2.3 and 2.4 for the twist angle

θ = 4rad/m, the cross section is divided into three regions. For the inner region with 0 <

r < 0.84mm, the material is in the austenite phase. The annulus 0.84mm < r < 23.7mm is

the phase transformation region and for r > 23.7mm the phase transformation is completed

and the material is in the martensite phase.

In the unloading of the SMA bar, all the points inside the elastic region will unload

elastically in the stress-strain space with the rate of GA (Δτθz = GArΔθ). For any point

outside the elastic core with a martensitic volume fraction of 0 < ξ∗ ≤ 1 an elastic unloading

with the rate of Geff = GA+ ξ(GM −GA) occurs until the stress level at the point reaches
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Figure 2.3: Shear stress for various twist angels in loading.
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Figure 2.4: Martensitic volume fraction for various twist angels in loading.
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the value of 7:

τθz = −1

4

√
3H −

√
3H2 − 8 ΔS44f−(T ) + 8ΔS44ξ∗ ρbA

ΔS44
. (2.27)

After reaching this stress, the stress-strain relation τθz = ℘−(r, θ) for unloading expressed in

(2.22) will determine the shear stress for any twist angle. The cross section will be divided

into three regions in unloading: the austenite core with elastic unloading, the transition

region with 0 < ξ ≤ 1, which has inelastic loading but elastic loading, and the outer

region with inelastic loading and unloading. It is clear that in some special unloaded twist

angles the third region does not exist. As another case study, the bar of the previous

example loaded to θ = 4rad/m is unloaded to different twist angles. The stress distribution

for the unloading is shown in Figure 2.5. The martensitic volume fraction distribution

corresponding to these twist angles are shown in Figure 2.6.

As it is shown in Figures 2.5 and 2.6, in the unloading up to θ = 3.8rad/m all the points

in the cross section have an elastic unloading and phase transformation does not start during

unloading (the martensitic volume fraction does not change). However, for larger values of

unloading twist, all the three regions can be distinguished. It is obvious that stress and

martensitic volume fraction distributions in this case are history dependent and are not

identical in loading and unloading for the same values of twist angle (compare Figures 2.5

and 2.6 with Figures 2.3 and 2.4). Note that, at the present temperature (T = Af = 315K)

all the loading induced stresses recover during a complete unloading.

In the next case study, the effect of temperature on the response of the bar is studied.

Shear stress distribution for the twist angle of θ = 3.8rad/m is depicted in Figure 2.7 for

three different temperatures. It is seen that increasing temperature, the stress corresponding

to the onset of phase transformation increases and consequently the radius of the elastic

core increases as well. Also, for lower temperatures Region III starts to spread toward the

center for lower values of twist angle per unit length.

Next we study the effect of material properties on the response of circular bars in torsion.

Two identical bars with material constants I and II are considered. Both bars are initially

7This stress level is calculated by replacing ξ− with ξ∗ in (2.15)2 and solving for τθz.
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Figure 2.5: Shear stress for various twist angels in unloading.
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Figure 2.7: Shear stress distribution for three different temperatures.

in the austenite finish temperature (T = 315K for Material I and T = 281.6K for Material

II). As it is shown in Figure 2.8, in loading for Material II the phase transformation starts

at a higher stress level and the radius of the elastic core is larger. In unloading, the bar

made of Material II has a lower stress level in the region with reverse phase transformation.

As it will be shown shortly, the difference between shear stress distribution for these two

materials will significantly affect the torque applied to the bar in loading and unloading. It

is worth noting that, as the elastic properties of these two materials are almost the same,

the difference in material response is mainly caused by the difference in the parameters

f±(T ).

All the previous case studies were presented for different twist angles. In some cases,

it is necessary to calculate the response of the bar with respect to the applied torque. For

this purpose the present formulation can be used for calculating the necessary torque for

producing a specific twist angle as:

�
+ = 2π

∫ r1

0
GAθr

3dr + 2π

∫ r2

r1

℘+(r, θ)r2dr + 2π

∫ R

r2

(
τ fθz +GMr(θ − θf )

)
r2dr, (2.28)

�
− = 2π

∫ r∗1

0
GAθr

3dr + 2π

∫ r∗2

r∗1

(
τ �θz −GeffrΔθ

)
r2dr + 2π

∫ R

r∗2
℘−(r, θ)r2dr, (2.29)
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Figure 2.8: Shear stress for two different material properties in loading and unloading.

where r1 and r2 are the inner and outer radii of Regions II as shown in Figure 2.2 in

loading. The parameters r∗1 and r∗2 are the inner and outer radii of Region II with phase

transformation during the loading phase but in an elastic unloading. The parameter τ �θz

represents the value of shear stress for any point at the end of the loading phase and Δθ is

the amount of reverse twist angle during unloading. The loading-unloading cycle for a bar

with the same geometry as those of the previous examples is depicted in Figure 2.9 for three

different temperatures. Material I is used for this case study. As it is shown in this figure,

the twist angle is fully recovered during unloading for temperatures above the austente

finish temperature and after removing the applied torque no residual twist is remained in

the bar. For T = 305K, which is below the austenite finish temperature, when the applied

torque is removed, a residual twist is observed. In all the three temperatures, the area of

the hysteresis loop remains constant; the loops are rigidly translated in the torque-twist

plane.

As shown in Figure 2.9, for temperatures below the austenite finish temperature a

residual twist angle and consequently a residual stress distribution exists after removing

the applied torque. As another case study, a bar at T = 305K is loaded to different
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Figure 2.9: Torque versus twist angle in a loading-unloading cycle for Material I at different
temperatures.

maximum twist angles and the applied torque is removed to study the residual twist and

stress distributions. Figure 2.10 shows the applied torque versus twist angle for this bar.

As it is shown, for a bar loaded to θ = 4 and 6 rad/m after removing the torque, the bar

has a residual twist angle of θ = 2.31rad/m. In the case of loading the bar to θ = 2rad/m,

after removing the external torque, the residual twist angle is θ = 1.78rad/m. Distribution

of residual shear stress for these bars is shown in Figure 2.11. As it is shown, removing the

external torque the bar is in a state of self-equilibrated residual stress distribution.

The loading-unloading hysteresis loop in torsion for different material properties is stud-

ied in the next case study. Figure 2.12 shows the applied torque versus the twist angle for

a bar of the previous examples made of Materials I and II (both bars are in the austenite

finish temperature). As it is shown in this figure, the hysteresis loop area is larger for

Material I. This can be explained by looking at the stress distribution shown in Figure 2.8.

For Material II, the phase transformation starts at a higher stress level in loading and the

reverse phase transformation occurs at lower stress levels in unloading.
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Figure 2.10: Torque versus twist angle for T=305K at different maximum loading twist
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2.3 Shape Memory Alloy Helical Springs

In this section, the pseudoelastic response of shape memory alloy helical springs under

axial force is studied both analytically and numerically. In the analytical solution two

different approximations are considered. In the first approximation, both the curvature

and pitch effects are assumed to be negligible. This is the case for helical springs with

large ratios of mean coil radius to the cross sectional radius (spring index) and small pitch

angles. Using this assumption, analysis of the helical spring is reduced to that of the pure

torsion of a straight bar with circular cross section. A three-dimensional phenomenological

macroscopic constitutive model for polycrystalline SMAs is reduced to the one-dimensional

pure shear case and a closed-form solution for torsional response of SMA bars in loading

and unloading is obtained. In the next step, the curvature effect is included and the SMA

helical spring is analyzed using the exact solution presented for torsion of curved SMA

bars. In this refined solution, the effect of the direct shear force is also considered. In

the numerical analyzes, the three-dimensional constitutive equations are implemented in a

finite element method and using solid elements the loading-unloading of an SMA helical
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spring is simulated. Analytical and numerical results are compared and it is shown that

the solution based on the SMA curved bar torsion gives an accurate stress analysis in the

cross section of the helical SMA spring in addition to the global load-deflection response.

All the results are compared with experimental data for a Nitinol helical spring. Several

case studies are presented using the proposed analytical and numerical solutions and the

effect of changing different parameters such as the material properties and temperature on

the loading-unloading hysteretic response of SMA helical springs is studied. Finally, some

practical recommendations are given for improving the performance of SMA helical springs

used as energy dissipating devices, for example for seismic applications.

In this section, we present two different analytical methods for calculating the loading-

unloading response of SMA helical springs under axial loads. For helical springs with a

large spring index (defined as m = Rm/R, where Rm is the mean coil radius and R is the

cross section radius) and a small helix angle, both the curvature and pitch effects can be

ignored without losing much accuracy8. In this special case, the pure torsion analysis of a

straight bar can be used for analyzing the helical springs. For most practical springs, the

pitch angle is smaller than 15◦, but the spring index varies in a wide range. The curvature

correction is added to the theory used for studying the pure torsion of a straight bar and

a more precise solution is introduced for analyzing SMA helical springs with smaller spring

indices.

2.3.1 Analysis based on exact solution for pure torsion of SMA bars

We presented an exact solution for pure torsion of SMA straight bars with circular cross

section in section 2.2. This solution is used here for analyzing the SMA helical springs

and it is denoted by SBTM (straight bar torsion model) throughout the text. Considering

a straight bar with a general cross section in the xy plane (z is along the bar axis), the

state of shear strain at a point in the cross section is, γzx = 2εzx = θ
(
∂ψ
∂x − y

)
and

γzy = 2εzy = θ
(
∂ψ
∂y + x

)
, where θ is the twist angle per unit length and ψ represents the

8It is known that for helical springs with m > 4 and a pitch angle smaller than 15◦, the error of using
SBTM for analyzing helical spring leads to less than 2% error with common engineering materials used in
practical springs (see Ancker and Goodier [6] and Wahl [190] for more details).
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warping function representing the cross sectional deformation along the z axis. For circular

[172] and some other special cross sections [37], the warpage is zero and the shear strains

distribute linearly through the thickness. For a bar with a circular cross section, the shear

strain in (2.19) can be related to twist angle per unit length as εθz = 1
2rθ, where r is the

distance from the axis of the bar. The shear stress τθz as a function of twist angle in an

arbitrary radius is given explicitly in (2.22). For an SMA bar under torsion (with the axis of

bar along z direction), in the most general case the cross section may be divided into three

regions (see Section 2.2 and Mirzaeifar et al. [127] for more details). In the inner region,

the material is in the austenite phase and the relation τθz = GArθ with GA = EA
2(1+ν) holds.

In the middle region, the phase transformation has started (0 < ξ < 1) and the relation

τθz = ℘+(r, θ) expressed in (2.22) is valid. In the outer region the phase transformation is

completed and the material is in the martensite phase. In this region stress is calculated as

τθz = τ fθz+GMr(θ− θf), where τ fθz and θf are the shear stress and the twist angle at which

the phase transformation has been completed (ξ = 1) everywhere. For a bar in the austenite

phase with θ = 0, by increasing the twist angle, the phase transformation starts from the

outer radius and spreads toward the center. With more increase of the twist angle, the third

region with fully transformed martensite spreads from the outer radius toward the center.

The outer radius of the inner and middle regions are denoted by r1 and r2 in the sequel.

During the loading phase, in any cross section the resultant torque is given by (2.28). In

unloading, the cross section is divided into three sections as well. The material in the inner

region is in the austenite phase and has experienced both elastic loading and unloading (the

outer radius of this region is denoted by r∗1). In the middle region the bar has experienced

phase transformation during loading but the unloading was elastic (the outer radius of this

region is denoted by r∗2). The martensitic volume fraction for any material point in this

region is unchanged during unloading. The outer region of the cross section of a bar during

unloading in torsion contains the material that has experienced phase transformation during

both loading and unloading phases. During unloading, the torque in the cross section is

given by (2.29), where the parameter τ �θz represents the value of shear stress for any point at

the end of the loading phase and Δθ is the amount of reverse twist angle during unloading.
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Since in this assumption the spring is considered as a straight bar of length l = 2πNRm,

where N is the number of active coils, the total angular deflection of one end of the bar

with respect to the other end is given by Θ = 2πNRmθ. Because the effective moment arm

of the axial load F is equal to Rm, the deflection of the spring at the end point is given by

δ = ΘRm = 2πNR2
mθ. (2.30)

For any deflection of the spring ends (2.30) is used for finding the twist angle per unit

length θ. Substituting this value in (2.22), the shear stress distribution in the cross section

is calculated. Having the shear stress distribution, the resultant torque in the cross section

is obtained by (2.28) or (2.29) and the axial force corresponding to the assumed end dis-

placement is calculated by dividing the torque by the coil mean radius: F = �
±/Rm. In

this approximation, the effect of direct shear force on the cross section is ignored along with

the curvature and pitch effects. In the following section, a curvature correction is added to

the analysis and in each cross section both the torque and direct shear forces are taken into

consideration.

2.3.2 Curvature correction

Although the analysis of helical springs based on SBTM is of enough accuracy for most

practical helical springs, there have been many efforts in the literature for improving this

theory [6–8, 190]. It is known that due to the curvature effect, the shear stress distribution in

the cross section is not axisymmetric. In this section, a curvature correction is implemented

in the solution presented in the previous section. The solution of this section is applicable

for SMA helical springs with large spring indices but small pitch angles. This includes

nearly all the practical helical springs [190]. This solution method is denoted by CBTM

(curved bar torsion model) throughout the text.

First, we consider the pure torsion of an SMA curved bar. A slice of such a bar is shown in

Figure 2.13. Applying a torque the two faces of this cross section will rotate with respect to

each other by an angle dβ. Since the initial length of the filament passing through the points

a and b are not the same, the strain distribution in the cross section is not axisymmetric.

This will result in a non axisymmetric stress distribution with a larger value for the material
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Figure 2.13: Torsion of a curved bar.

points near the axis AB. The non axisymmetric shear stress distribution in the cross section

can be decomposed into an axial component τa and a transverse component τt as shown in

Figure 2.13. If we assume that the cross section is rotating about an axis passing through

the center o (at the center of rotation, the shear stress is zero), and considering the fact

that the shear stress at b is larger than the stress at a, such a distribution cannot be in

equilibrium; there will be a torque in the cross section [190]. So, it can be concluded that

for a curved bar under torsion, the zero shear stress point or the center of rotation does not

coincide with the cross section center. Considering the symmetry conditions in the cross

section, the forces caused by the transverse shear stress component τt are in equilibrium

when the rotation center is anywhere on the axis ab. The rotation center o′ is shown in

Figure 2.13. The distance e for finding the location of the rotation center is found by the

method presented in the sequel.

In the coordinate system xy with the origin o′, when the slice sides rotate by the amount

dβ with respect to each other the relative movement of the ends of any filament correspond-

ing to dA in Figure 2.13 is
√
x2 + y2 dβ. Considering the fact that the length of this filament

in the undeformed configuration is (Rm − e− x)dα, the shear strain corresponding to this

point in the cross section is

γ =

√
x2 + y2

Rm − e− x

dβ

dα
, (2.31)
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where the shear strain γ is along the direction of τ in Figure 2.13. The geometrical param-

eters in (2.31) are shown in Figure 2.13. Now, the expression given for the shear strain in

(2.31) should be replaced with the expression rθ (that is the strain in the straight bar case)

in (2.20) and all the coefficients in Appendix A. The new quartic equation obtained by this

substitution is solved to find the explicit expression for the shear stress in the regions with

phase transformation. We denote the shear stress in this case by τ = ℘̂±(x, y, e, dβ/dα),

where the explicit expression for shear stress is similar to that given in Appendix A by

replacing the parameter rθ with the shear strain of a curved bar in (2.31). For a curved

bar under pure torsion, the resultant force in the cross section should be zero. Due to

symmetry of the transverse shear stress about the axis ab, the forces caused by this stress

component are in static equilibrium. The static equilibrium for the forces caused by the

axial component of the shear stress is expressed by

∫
A
τadA =

∫
A1

GAx

Rm − e− x

dβ

dα
dA1 +

∫
A2

℘̂±(x, y, e, dβ/dα)
x√

x2 + y2
dA2

+

∫
A3

(
τ fa +

GMx

Rm − e− x

dβ − dβf

dα

)
dA3 = 0, (2.32)

where A1 is that portion of the section that has not experienced the phase transformation.

The portion of the cross section with phase transformation is denoted by A2 and the parts

in which the phase transformation has been completed by A3. For each material point with

completed phase transformation (ξ = 1), the parameter τ fa is the the axial component of

shear stress corresponding to dβf that is the twist angle of phase transformation completion

for that material point. Now, the only unknown parameter in (2.32) is the position of the

rotation center e. In contrast with the elastic torsion of a bar, in the case of an SMA

curved bar the second and third integrals in (2.32) cannot be calculated analytically. We

use trapezoidal numerical integration method. In our numerical examples, we well compare

the results of the present model with those of a three-dimensional finite element simulation.

For analyzing SMA helical springs based on the pure torsion of an SMA curved bar, a

minor correction is needed to take into account the direct shear force in the cross section.

In an SMA helical spring a direct shear force F and a torque RmF are acting in each cross
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section. The equilibrium equations in the cross section in this case read

∫
A
τadA = F, and

∫
A
τaxdA+

∫
A
τtydA = RmF, (2.33)

where in the most general case, the cross section is divided into three regions similar the

previous cases. For analyzing the SMA spring using the curved bar theory, a predefined

displacement is considered for the spring ends. The total rotation of the spring ends with

respect to each other is calculated by Θ̂ = δ/Rm. The twist angle per curvature angle is

given by

dβ

dα
=

δ

2πRmN
. (2.34)

The expression in Appendix A (by replacing rθ with the shear strain of a curved bar

in (2.31)) is used to calculate the shear stress. Since the axial force F is unknown, in

contrast with the pure torsion case the parameter e cannot be obtained directly by solving

(2.33). Hence, first an initial value9 is considered for e. Using this value the axial force F

is calculated using both expressions in (2.33). A trial and error method is then used to find

the value of e for which the difference of the axial forces calculated from the two conditions

in (2.33) is smaller than a tolerance (1N in the numerical examples of this paper).

2.3.3 Helical SMA spring test

An SMA helical spring shown in Figure 2.14 is used for obtaining the experimental results.

The spring has a mean coil radius of Rm = 2.1cm, an initial length of 12.98cm and the

cross section radius of 6.25mm [173]. The helical spring is placed in a cylindrical shape

tension/compression device and a 250kN MTS Universal Testing Machine is used for com-

pressing the spring. The tension/compression device is a cylindrical-shaped damper that

provides the ability to test a variety of SMA elements [173]. The body and the shaft of the

device are made out of standard 304 stainless steel cylinders. The nitinol helical spring is

loaded on the the center shaft using a nut. the outer cylinder covers both the spring and

9The loading/unloading response of the SMA spring is analyzed by applying the total axial deflection
incrementally. In the first few increments the entire cross section is in the austenite phase and hence the
location of the rotation center is calculated easily as the shear stress expression in (2.33) is integrable. For
the subsequent load increments, the initial guess for the parameter e for each increment is the value obtained
in the previous increment.
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center shaft. the spring ends are free to rotate during loading and unloading (see [173] for

pictures of the test devise). The quasi-static loading rate is set to 0.127cm/s. Using this

loading rate, the temperature change due to the latent heat is negligible and the test can

be considered isothermal. Compression tests are done in the ambient temperature of 27◦C.

The experimental setup and the test procedure are explained in detail in Speicher et al.

[173]. This reference contains a comprehensive study of three different SMA devices for

applications as bracing elements in buildings.

Figure 2.14: The SMA helical spring used in the experimental study.

The spring is made from Nitinol Alloy 508 (50.8% at.% Nickel). A simple tension test

is carried out on a bar of the same alloy and a stabilized loading-unloading cycle for this

specimen is shown in Figure 2.15(a). Due to the thermal and mechanical treatments done

on the initial SMA stock for producing a helical spring, the material properties for the

spring may have a slight difference with the properties of SMA stock. The properties of

Material II given in Table 2.1 are calibrated by comparing the results of analytical and

numerical analyses with the experimental results of Speicher et al. [173] done on the SMA

helical spring and the simple tension test in Figure 2.15(a). The response of material

with calibrated properties in simple tension is compared against the experimental results in

Figure 2.15(a). In order to take the uncertainty effect in calculating the material properties

into consideration, we will present a discussion on the effect of changing material properties

on the spring response in the sequel.

52



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50
100
150
200
250
300
350
400
450
500

ε

σ 
(M

Pa
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.080

100

200

300

400

500

600

700

800
900

ε

σ 
(M

Pa
)

 

 
Experimental
Presented Constitutive Model

Experimental
Presented Constitutive Model

                 (a)                                                                                             (b)

Figure 2.15: The calibrated material properties versus experiments in simple tension test
for the material used in (a) Speicher et al. [173] and (b) Toi et al. [185] tests on SMA helical
springs.

2.3.4 Finite element simulation of SMA helical springs

For analyzing SMA helical springs using the finite element method, the three-dimensional

constitutive relations of §2.5.1 are used and an appropriate user subroutine (UMAT) is

written by FORTRAN in the commercially available finite element program ABAQUS that

enables this code to model SMA structures using solid elements and some two-dimensional

elements. The details of implementing the constitutive equation in a displacement based

finite element formulation is given in Qidwai and Lagoudas [161] and many case studies for

validating the model are presented in [126, 127, 131]. In the present study, for comparison

purposes the spring is modeled three dimensionally (in contrast with some finite element

models in the literature that use beam elements for modeling the SMA helical springs [185]).

Three dimensional quadratic brick elements with reduced integration (element C3D20R in

ABAQUS) are used in the finite element model of the helical spring. A convergence analysis

is performed for choosing the appropriate number of elements by considering the shear stress

distribution in the cross section and the load-displacement response as the convergence

criteria. The stress distribution is considered to be converged when the maximum difference

is smaller than 0.1MPa and the convergence criterion of the maximum difference for the
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load-displacement response is 10N. We observe that the convergence is achieved by using

7500 elements. All the finite element simulations are done using this mesh. A schematic of

the finite element mesh is shown in Figure 2.16.

Figure 2.16: Finite element model of the SMA spring in the initial (left) and compressed
(right) configurations

.

For simulating the spring in compression, two rigid surfaces in contact with the spring

ends are considered (see Figure 2.16). The lower rigid surface is constrained in all direc-

tions and a time varying boundary condition is defined for the upper surface for modeling

compression. A node to surface contact with a friction coefficient of 0.1 is defined between

the solid elements in the end rings and the shell elements in the upper and lower rigid sur-

faces. The supporting shaft in the experiments is modeled with a cylindrical rigid surface

inside the helical spring with a diameter slightly (0.2mm) smaller than the inner radius of

the coil (this shaft is shown in Figure 2.16 (left) but not in Figure 2.16 (right) to show

the spring more clearly). For avoiding high local stresses and the convergence problems in

the finite element solution, the contact between the solid elements of the spring and the

rigid cylindrical surface is considered frictionless. Both spring ends are free to rotate in

the numerical simulation. The automatic time increment option in ABAQUS is used with

an initial guess of dividing the loading and unloading steps into 100 increments and the
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non-linear geometry option is activated. The geometry of the spring modeled in the finite

element simulation is exactly the same as the helical spring in the experimental tests (see

§2.3.3).

2.3.5 Numerical results for studying SMA helical springs

In this section, several case studies are presented for demonstrating the efficiency of the pro-

posed analytical solution for analyzing SMA helical springs. The accuracy of the proposed

exact solution for pure torsion of SMA bars with circular cross section was studied Section

2.2. As mentioned in §2.3.4, the developed finite element code for analyzing SMA structures

was verified in several case studies in the previous works of the authors [126, 127, 129]. In

the sequel, the accuracy of the proposed model for analyzing SMA carved bars is studied

by comparing the results of this model with those of finite element simulations. Then, an

SMA helical spring is considered and the results obtained based on the straight bar torsion,

curved bar torsion and finite element simulations are compared. A case study is presented

for comparing the analytical and numerical results against the experimental results as well.

The effect of changing material properties and temperature on the response of SMA helical

spring subjected to axial loading-unloading cycle is studied and some practical recommen-

dations are given for improving the behavior of SMA helical springs used for damping and

dissipating energy in recentering devices in buildings subjected to external loads especially

during seismic events.

2.3.5.1 Verification of the curved SMA bar torsion

In order to verify the proposed solution for the SMA curved bar torsion problem, a case study

is considered and the analytical results are compared with the finite element simulation

outputs. Consider an SMA curved bar with Rm = 2cm, the cross section radius R = 6mm,

and angle α = 20◦ (see Figure 2.13). For verification purposes, the material properties of

a generic SMA as reported previously in the literature [161] are used. These properties are

given in Table 2.1 as Material I. The left end of the bar is constrained and a twist angle

of 0.04rad is applied to the right end. The bar is considered to be in the austenite finish

temperature, T = 315K.
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The finite element model of the SMA curved bar is shown in Figure 2.17(a). The details

of modeling this bar in the finite element code ABAQUS are explained in §2.3.4. The

martensitic volume fraction distribution in the cross section of this bar is shown in Figure

2.17(b). It is seen that in contrast with the straight bar torsion [127], in the case of a

curved bar, the martensitic volume fraction distribution is not axisymmetric as the zero

stress point o′ is not in the cross section center.

ξ

  0
+3.498e−02
+7.349e−02
+1.120e−01
+1.505e−01
+1.890e−01
+2.275e−01
+2.660e−01
+3.045e−01
+3.430e−01
+3.815e−01
+4.200e−01
+4.585e−01

          (a)       (b)

Figure 2.17: (a) Finite element model for simulating torsion of an SMA curved bar, and
(b) the non-axisymmetric distribution of martensitic volume fraction for the torsion of a
curved bar.

Distribution of the axial component of shear stress τa along the diameter ab (see Figure

2.13) calculated by our method and the finite element simulation is shown in Figure 2.18.

The shear stress is plotted along this diameter in the coordinate system XY with the origin

at o (see Figure 2.13). The zero shear stress occurs at a point with a distance e = 0.1mm

from the center of the cross section. Although e is very small, it has a significant effect

on the stress and martensitic volume fraction distributions in the cross section. The non

symmetry of the shear stress distribution is clearly seen in Figurer 2.18 (τa = 120.1 MPa

at point a and τa = 104.3 MPa at point b).

The martensitic volume fraction distribution along the diameter ab is shown in Figure

2.19. The curvature clearly affects the phase transformation and as it is shown the material

points closer to the axis have higher volume fractions compared to the outer points. This

non symmetry is seen in the finite element results as well (see Figure 2.17(b)). As it is

shown in Figures 2.18 and 2.19, there is good agreement between the results of our method
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Figure 2.18: Distribution of τa in an SMA curved bar subjected to torsion along diameter
ab in Figure 2.13 (X̃ = X/R and τy = 88.1MPa is the shear stress at the start of phase
transformation obtained by solving (2.15) for ξ+ = 0).

and the finite element simulation results.
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Figure 2.19: Distribution of the martensitic volume fraction in an SMA curved bar sub-
jected to torsion along diameter ab in Figure 2.13 (X̃ = X/R).
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2.3.5.2 Analytical and numerical results for SMA helical springs

In this section, by considering a practical case study we will compare the results of our

analytical formulation with the results of a finite element simulation. We consider an SMA

helical spring with dimensions given in §2.3.3. Details of the finite element modeling are

given in the previous section. The Nitinol Alloy 508 (50.8% at.% Nickel) material properties

are considered for all the case studies. As expressed in §4, these properties are calibrated

from a simple tensiom test and the experimental tests on the SMA helical spring and

are given in Table 2.1 as Material II. A loading-unloading cycle with maximum stroke of

δ = 2.75cm is considered. The spring is at the ambient temperature T = 27◦C. A schematic

of the undeformed spring in the finite element model is shown in Figure 2.16(left). The

finite element mesh at the end of loading cycle is shown in Figure 2.16(right).

The load deflection plots in the loading-unloading cycle obtained based on SBTM,

CBTM, and the finite element simulation are compared in Figure 2.20. As it is shown

in this figure, adding the curvature correction to the straight bar theory increases the

agreement between the analytical and numerical results. The difference between the results

of the curved bar theory and the numerical simulations perhaps is caused by ignoring bend-

ing due to the pitch effect in the analytical solution. However, considering the remarkable

computational time reduction in using the analytical results reveals the value of analyzing

the SMA helical springs using our proposed analytic solution. The finite element simulation

takes almost two hours on a 2GHz CPU with 2GB RAM while the analytic solution results

based on the curved bar torsion are obtained in less than 2 minutes and the solution based

on the straight bar torsion is obtained in a few seconds on the same system (the solution

based on CBTM takes more time because the parameter e should be obtained iteratively

as was explained in §2.3.2). The decrease in the computational time will be even more

significant when repetitive simulations are needed, e.g. in most optimization procedures

[67, 147].

The axial component of shear stress τa in the cross section on a horizontal diameter
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Figure 2.20: Axial force versus axial displacement for an SMA helical spring calculated
by the analytic solutions (CBTM: curved bar torsion model, STBM: straight bar torsion
model) and the finite element simulation.

(like the diameter ab in Figure 2.13) is calculated using SBTM, CBTM and finite ele-

ment simulations10 and the results are compared in Figure 2.21. The martensitic volume

fraction distributions obtained by these solution methods are depicted in Figure 2.22. As

it is shown in Figures 2.21 and 2.22, unlike the load-displacement response, the stress and

martensitic volume fraction distributions are highly affected by adding the curvature correc-

tion to SBTM. It is evident that CBTM predicts the stress and martensitic volume fraction

distributions with a good agreement with the three-dimensional finite element simulations.

As it is shown in Figure 2.21, in contrast with the pure torsion of a curved bar, the zero

shear stress point (the rotation center o′) located at a point toward the outer surface of the

curved bar (compare the zero stress points in Figures 2.18 and 2.21 and see the diameter

ab in Figure 2.13). This phenomenon is due to direct shear force in the cross section in

formulating the SMA helical spring. Also, it is worth noting that, unlike the elastic curved

10In practice, when a helical spring is loaded between two planar plates (like the experimental test and
the finite element simulation in the present paper), the applied end loads are eccentric with respect to the
spring axis and hence the spring is subjected to a global bending . This global bending causes a lateral
deflection with respect to the spring axis that is maximum at the middle of the spring. To avoid this global
bending effect, the finite element results are reported for a cross section in the first upper ring of the spring
[190].
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bar torsion, in the SMA helical spring the zero shear stress point is not fixed in the cross

section; it moves during loading and unloading. Figure 2.23 shows the movement of the

rotation center in the SMA helical spring cross section. It is seen that when the cross

section is in the austenite phase and the spring response is elastic, the rotation center is

fixed. When phase transformation occurs during loading and unloading, the zero shear

stress point moves toward the outer surface of the curved bar and comes back to the elastic

position.
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Figure 2.21: Distribution of τa in the cross section of an SMA spring subjected to axial
compression (along a diameter like ab in Figure 2.13). CBTM: curved bar torsion model,
STBM: straight bar torsion model, X̃ = X/R and τy = 138.2MPa is the shear stress at the
start of phase transformation obtained by solving (2.15) for ξ+ = 0.

2.3.5.3 Experimental results

In this section, we use the experimental data of an SMA helical spring from a previous

work of the second author [173] for studying the accuracy of our analytical and numerical

models. In performing the experiments, a setup as explained in §2.3.3 is used. The SMA

helical spring is placed in a tension/compression cylindrical device. In order to increase the

initial stiffness of the device (that is preferred when the spring is used for energy dissipation

in seismic events), a precompression of 1.15cm is given to the spring by tightening a nut on
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Figure 2.22: Distribution of martensitic volume fraction in the cross section of an SMA
spring subjected to axial compression (along a diameter like ab in Figure 2.13). CBTM:
curved bar torsion model, STBM: straight bar torsion model, X̃ = X/R.
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Figure 2.23: The location of torsion centroid (o′) in the cross section of the SMA helical
spring during loading and unloading phases.
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the shaft that carries the spring (see Speicher et al. [173] for more details on the experimental

setup). The spring is studied under various loading-unloading cycles. We will compare our

analytical and numerical simulation results with those of an experiment in which the spring

is compressed to δpc = 1.6cm and then unloaded (δpc is the displacement of the ends of a

precompressed spring). The results of loading-unloading cycle for this spring obtained by

SBTM, CBTM, finite element simulation, and experimental results are compared in Figure

2.24.
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Figure 2.24: Axial force versus axial displacement (considering the pre-compression) for an
SMA helical spring calculated by the analytic solutions (CBTM: curved bar torsion model,
STBM: straight bar torsion model), finite element simulations, and experimental tests.

As it is shown in Figure 2.24, due to the precompression effect the spring does not

respond to the axial forces smaller than the precompression force. The presented analytical

and numerical analysis predict the precompression force with less than 10% error compared

to the experimental results. A good agreement is seen between the analytical, numerical and

experimental results during the loading-unloading phase. At the end of loading, a sudden

jump occurs in the experimental load-deflection curve. This jump may be caused by a

contact between the spring rings11. The contact at the end of the loading phase causes severe

11As shown in Figure 2.14 due to manufacturing difficulties, the helical spring does not have a perfectly
uniform shape and the first and last rings have smaller pitch angles compare to the other rings. An initial
contact occurs in these rings at the end of the loading phase.

62



local stress concentration and local phase transformation at the contact points. The locally

contact induced phase transformation may be an explanation for a slight disagreement that

is seen between the analytical and experimental results at the beginning of the unloading

phase12. However, all the results are in good agreement for the rest of the unloading phase.

Two other case studies are considered for validating the presented analytical formulation

with the experimental results. Toi et al. [185] presented experimental results for SMA

helical springs in tension and compared them with their finite element simulation results.

In the numerical simulations presented by Toi et al. [185], an incremental finite element

using linear Timoshenko beam elements is formulated using a total Lagrangian approach

for the superelastic, large deformation analysis of SMA helical springs. A simple tension

test is carried out on the material of springs as shown in Figure 2.15(b). The presented

constitutive model is calibrated using these results and the calibrated properties for this

material are given in Table 2.1 as Material III. Figure 2.15(b) compares the simulated

response of material using the presented constitutive model with the experimental results

for simple tension. Two different springs are considered in experiments. Both springs have a

mean coil radius of Rm=3.65mm, and the cross section radius of 0.5mm. One of the springs

has a total length of 5mm and 5 turns and the other one has a total length of 10mm with

10 turns. Both springs are subjected to tension and tests are carried out at T = 305K. The

analytical results obtained by the present CBTM are compared with the experimental and

numerical results of Toi et al. [185] in Figure 2.25. A good agreement is seen between the

CBTM and the finite element simulation results using Timoshenko beam elements. Both

the numerical and analytical results have a slight difference with the experiments. This

difference is most likely caused by the non-linearity effects due to the extreme amount of

elongation in the experiments.

12It is worth noting that in modeling the loading-unloading phase even in a simple uniaxial case, the
constitutive equation used in this chapter (the Boyd-Lagoudas’ polynomial hardening model) shows a slight
difference at the beginning of the unloading phase. Some improvements are provided for the hardening
function to reduce this difference (see Chapter 3 in Lagoudas [92]). As we are seeking closed-form solutions
in this chapter, the the polynomial hardening function is preferred.
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Figure 2.25: Axial force versus axial displacement.

2.3.5.4 Uncertainty in material properties

As mentioned earlier, making an SMA helical spring from a straight bar is done by per-

forming a set of thermal and mechanical treatments on the initial SMA stock. Due to this

complicated thermomechanical treatment, the material properties are not the same as the

initial stock and in practice if a number of helical springs are made from an SMA stock,

a slight difference may be seen in the material properties of these springs. DesRoches [42]

presented a detailed study of the effect of a change in the material properties of SMAs in uni-

axial tension on the hysteretic response and energy dissipation capability of these materials.

The properties given in Table 2.1 for Material II are calibrated by comparing the results of

analytical and numerical analyses with the experimental results done on the present SMA

helical spring. However, in order to take the uncertainty of the material properties into

consideration, we present a discussion on the effect of changing material properties on the

spring response in this section. The numerical results presented in this section can also be

used in designing SMA helical springs for various applications. All the numerical results in

this section are presented based on CBTM and the spring is considered to be at T = 27◦C.

Two of the material properties that have a significant influence on the SMA helical

spring response in loading-unloading are the austenite and martensite elastic moduli. In
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practice, the elastic modulus of different SMAs covers a wide range (see Toi et al. [185]

for an SMA with EA = 34GPA, EM = 28.5GPA and Jacobus et al. [79] for an SMA with

EA = 72GPA, EM = 30GPA). The effect of a decrease and increase in the elastic moduli

of a material with properties given in Table 2.1 is shown in Figure 2.26. As it is shown

in this figure, increasing EA and EM causes a remarkable increase in the hysteresis area

that is strongly preferred for springs as energy absorbing devices. Note that this area is

proportional to the amount of absorbed energy in an loading-unloading cycle.
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Figure 2.26: The effect of change of austenite and martensite elastic moduli on the loading-
unloading response of a shape memory alloy helical spring.

The effects of an increase or decrease in the parameter dσ/dT by the amounts of 15%

and 30% are shown in Figure 2.27. The parameter dσ/dT is the transformation curve

slope in stress-temperature space and as expressed in (??), it is related to the specific

entropy difference ρΔs0 (see Qidwai and Lagoudas [162] for more details on the physics

of the material properties and for a detailed experimental technique for measuring these

properties). As it is shown in Figure 2.27, an increase in the parameter dσ/dT decreases

the hysteresis area but remarkably increases the spring stiffness. This figure leads to an

important conclusion for designing SMA helical springs as energy absorbing devices. It

shows that in the cases that a stiffer spring is needed, SMA materials with larger dσ/dT are

preferred while the springs made of SMA materials with lower dσ/dT have lower stiffness
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and larger hysteresis area.
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Figure 2.27: The effect of change of the parameter dσ/dT on the loading-unloading response
of a shape memory alloy helical spring.

2.3.5.5 The effect of ambient temperature on the SMA spring response

As mentioned in §2.3.3, a slow loading rate is considered in the experimental and analytical

analyses of the SMA helical spring in this chapter. In slow loadings, the isothermal as-

sumption is valid and the spring can be considered to be in the same temperature with the

ambient environment during loading and unloading. Since one of the applications of SMA

helical springs is seismic retrofit of buildings [173], the spring may be used in various areas

or at different times of a year. Therefore, it is important to study the effect of ambient

temperature on the spring response. Three common temperatures are considered in Figure

2.28 and the spring loading-unloading response in these temperatures is calculated (the re-

sults are obtained using CBTM). As it is shown in this figure, the ambient temperature has

a considerable effect on the SMA helical spring response and at higher temperatures the

hysteresis area decreases remarkably while the stiffness is increased. The spring loading-

unloading cycle has a larger hysteresis area at lower temperatures but the stiffness is lower

compare to higher temperatures.
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Figure 2.28: The effect of temperature change on the loading-unloading response of shape
memory alloy helical spring.

2.3.5.6 CBTM and STBM for analyzing different spring geometries

As mentioned in the previous sections, introducing the curvature effect in the solution based

on the torsion of straight bars for analyzing helical SMA springs (SBTM), a more accurate

method (CBTM) is obtained for SMA springs with smaller indices. Because the CBTM

needs an iterative procedure for finding the location of torsion centroid, it is remarkably

more time consuming compared to the STBM. From a design point of view it would be

interesting to find the range of spring indices for which the STBM gives acceptable accuracy

and a criterion for the necessity of using CBTM. In this section an SMA helical spring

with properties given in Table 2.1 as Material II is considered. The mean coil radius is

Rm =2cm and the total length of the spring is 11cm. The spring has 5 turns and it is

subjected to tension causing a maximum elongation of 6cm. The cross section radius is

considered variable for obtaining different helix indices. Temperature is assumed to be

T = 300K. Figure 2.29(a) shows the maximum shear stress in the cross section and Figure

2.29(b) shows the maximum volume fraction in the cross section for different helix indices

obtained by SBTM and SBTN. As it is shown in these figures decreasing the spring index,

the difference between CBTM and SBTM increases. The results calculated by SBTM for
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both the maximum shear stress and the martensitic volume fraction deviate more than

5% from the CBTM results for the helix indices smaller than 5. This difference increases

considerably for the calculated maximum shear stress for spring indices smaller than 2.12

for which CBTM predicts completion of phase transformation and a sharp increase in the

shear maximum stress in the cross section.

The analysis of maximum shear stress as a function of geometric properties, e.g. the

spring index for different spring geometries can also be used in a design procedure for

calculating the critical geometries for which the maximum shear stress reaches a critical

value. This critical value can be considered as the stress corresponding to the end of

reversible stress-strain response for the SMA material. As an example, if the maximum

stress in the pseudoelastic stress-strain response is τmax = 300MPa, for spring indices

smaller than 2.11, the maximum shear stress is more than the critical value and elongating

the spring more than the considered value (6cm) will cause a nonrecoverable overstretching

of the spring (see Figure 2.29(a)). Similar design graphs can be obtained by the present

formulation for different geometric properties, material properties, and loading conditions.
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Figure 2.29: Comparison between the STBM and CBTM results for various helix indices
for (a) .
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2.4 Shape Memory Alloy Thick-Walled Cylinders Subjected to Internal
Pressure

In this section, a semi-analytic solution is presented for the analysis of shape memory

alloy thick-walled cylinders subjected to internal pressure in both plane stress and plane

strain conditions. First, a two-dimensional reduction of Boyd-Lagoudas’s polynomial SMA

constitutive model is obtained for both plane stress and plane strain. Then, the thick-

walled cylinder is divided into a finite number of narrow annular regions and the loading is

partitioned into a finite number of increments. Appropriate assumptions are made in each

region in order to find a closed-form solution for the equilibrium equations in terms of radial

displacements within the regions in which the phase transformation has started but has not

completed. Considering the history of loading and the final values of transformation strain

components, another solution is given for those regions and load increments for which the

material is completely transformed to martensite. By satisfying the continuity condition

at the interfaces between the annular regions and the boundary conditions at the inner

and outer radii, a semi-analytic solution is obtained for any value of internal pressure.

Several numerical examples are presented for different loading phases and the results of the

proposed solution are compared with those of three-dimensional finite element simulations

in both plane stress and plane strain cases. In contrast with finite element simulations,

the results of the present semi-analytic solution are not severely affected by the number

of load steps, and they are independent of the criteria for satisfaction of the constitutive

relation convergence, and the number of iterations for convergence in considering geometric

nonlinearities. Considering the numerical stability of the present semi-analytic method,

we believe that it can be used in validating the results of common numerical methods in

analyzing shape memory alloy structures.

2.4.1 Martensitic volume fraction for plane strain and plane stress conditions

A thick-walled SMA cylinder subjected to uniform internal pressure p is considered (see

Figure 2.30). For a relatively short cylinder with open ends and in the absence of axial

loads, plane stress is a good approximation. For long cylinders, cross sections far from
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the ends are in a plane strain condition. In both cases, the three-dimensional constitutive

relations presented in the previous section can be reduced to two-dimensional constitutive

equations.

x

r

a
bp

y

θ

Figure 2.30: Cross section of a thick-walled SMA cylinder subjected to uniform internal
pressure.

The only nonzero stress components for the axisymmetric plane stress case are σr and

σθ. In this case the trace of stress tensor is trσ = σr+σθ. In the plane strain case, the stress

component along the axis of the cylinder is denoted by σz, and trace of the stress tensor

is trσ = σr + σθ + σz. It is worth mentioning that in contrast with the classical elasticity

problems, the out of plane component of stress cannot be expressed by σz = ν(σr+σθ) due

to the transformation strain terms. However, for any value of σr and σθ, by enforcing the

plane strain condition εz = 0, σz can be calculated. We will present a brief discussion on

calculating σz for SMAs in plane strain in the sequel. In these special cases (plane stress

and plane strain), the deviatoric stress tensor in (2.7)1 can be rewritten as

eσ
′
=

1

3

⎡
⎢⎢⎢⎢⎣

2σr − σθ − σz 0 0

0 2σθ − σr − σz 0

0 0 2σz − σr − σθ

⎤
⎥⎥⎥⎥⎦ ,

sσ
′
=

1

3

⎡
⎢⎢⎢⎢⎣

2σr − σθ 0 0

0 2σθ − σr 0

0 0 −σr − σθ

⎤
⎥⎥⎥⎥⎦ , (2.35)
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where the left superscripts e(.) and s(.) represent a parameter in plane strain and plane

stress, respectively. This notation will be used throughout the paper. Substituting (2.35)

into (2.6)1, the transformation tensor for the forward phase transformation can be obtained.

By substituting the transformation tensor into (2.9) the thermodynamic forces for the plane

strain and plane stress conditions are obtained as follows:

eπ = H eσeff +
1

2
ΔS11

eσ∗eff + ℵ and sπ = H sσeff +
1

2
ΔS11

sσ∗eff + ℵ, (2.36)

where

eσeff = (σ2r + σ2θ + σ2z − σrσθ − σrσz − σθσz)
1/2,

sσeff = (σ2r + σ2θ − σrσθ)
1/2,

eσ∗eff =
[
σ2r + σ2θ + σ2z − 2ν(σrσθ + σrσz + σθσz)

]
,

sσ∗eff = (σ2r + σ2θ − 2νσrσθ),

ℵ = (Δα11σr +Δα22σθ)(T − T0)− ρΔc [(T − T0)− T ln (T/T0)]

+ ρΔs0T − ρbMξ − (μ1 + μ2)− ρΔu0,

ΔS11 =
1

EM
− 1

EA
. (2.37)

The parameters EM and EA represent the elastic moduli for the martensite and austenite

phases, respectively, and ν is the Poisson’s ratio, which is assumed to be the same for

both phases. Now, (2.10) and (2.36) are used in obtaining an explicit expression for the

martensitic volume fraction ξ. During the forward phase transformation from austenite to

martensite (ξ̇ > 0), the state of stress, temperature and martensitic volume fraction should

remain on the transformation surface characterized by Φ = π − Y = 0. By substituting

(2.36) into this condition and using the relations between the constitutive model parameters

(2.14) an explicit expression is obtained for the martensitic volume fraction in plane strain

and plain stress states as:

eξ =
1

ρbM

[
H eσeff +

1

2
ΔS11

eσ∗eff + f(T )+
	
T

]
, (2.38)

sξ =
1

ρbM

[
H sσeff +

1

2
ΔS11

sσ∗eff + f(T )+
	
T

]
, (2.39)

71



where

f(T ) = (Δα11σr +Δα22σθ)(T − T0)− ρΔc [(T − T0)− T ln (T/T0)] , (2.40)

	
T= ρΔs0(T −Ms). (2.41)

Transformation surface in the stress-temperature space is represented by two separate

faces related to ξ = 0 and ξ = 1. To obtain the transformation surface in the plane strain

case, for each value of the radial and circumferential stresses the plane strain condition

in the reference temperature T = T0 is given by the following algebraic equation (see the

constitutive relation in (2.4))

εz = Deq(σr − νσθ − νσz) +
1

2

H
eσeff

(2σz − σr − σθ)
eξ = 0, (2.42)

where, (H/2eσeff)(2σz −σr−σθ)
eξ is the out of plane transformation strain εtz (calculating

the transformation strain components will be expressed in more detail in §4). The marten-

sitic volume fraction is expressed in (2.38) and the effective compliance component Deq

is

Deq =
1

EA + eξ(EM − EA)
. (2.43)

In the plane strain case, for any known (σr, σθ) stress state, (2.42) is an algebraic

equation with σz as the only unknown. For finding the transformation function, for each

value of the circumferential and radial stresses, (2.42) is solved numerically [55] and σz

is calculated. Having the stress components, (2.38) and (2.39) are used to obtain the

transformation functions in both plane stress and plane strain cases. At a given temperature,

the transformation functions ξ = 0 and ξ = 1 are represented by curves in (σr, σθ) stress

space. Figure 2.31 shows the transformation function in the start and finish of phase

transformation for both the plane stress and plane strain conditions (material properties of

Table ?? are used in plotting these curves). For any state of stress inside the ξ = 0 region,

the material is in the fully austenine phase. The stress points outside ξ = 1 represent a

fully martensite case, and any stress state between these two surfaces represents the material

with phase transformation 0 < ξ < 1.

As it is shown in Figure 2.31, in the plane strain case the ξ = 1 curve is stretched

along the σr = σθ line. For studying this phenomenon, the out of plane stress obtained
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Figure 2.31: Transformation function in σr − σθ space at T = 315K for both plane stress
and plane strain cases.

from solving the plane strain condition in (2.42) for any (σr, σθ) stress sate is plotted in

Figure 2.32. As it is shown in this figure, for any (σr, σθ) stress state inside the ξ = 0

curve (see Figure 2.31) the value of σz is identical with the elastic case (σz = ν(σr − σθ)).

Between the ξ = 0 and ξ = 1 curves, σz varies nonlinearly and is obtained from solving

(2.42) and for any state of stress outside the ξ = 1 curve, the value of σz is not unique and

depends on the loading path13. By increase of stresses on the σr = σθ path, the solution of

(2.42) approaches σz = σr = σθ, i.e. the hydrostatic stress state. Note that the presented

constitutive relations are based on J2 plasticity and the transformation function is an open

surface along the hydrostatic pressure in this case (see Qidwai and Lagoudas [162]). See

the open curve in Figure 2.31 for the plane strain case.

The elastic radial and hoop stress distribution for a thick-walled cylinder in plane stress

or plane strain (see Figure 2.30) can be expressed as [27]:

σr =
pa2(r2 − b2)

r2(b2 − a2)
and σθ =

pa2(r2 + b2)

r2(b2 − a2)
. (2.44)

13For calculating σz outside the ξ = 1 curve, the plane strain condition εz = 1
EM

(σr − νσθ− νσz)+ ε̃tz = 0

is solved in which ε̃tz is the final value of axial transformation strain during loading at the point that phase
transformation has been completed. We will discuss this case in more detail in §6.
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Figure 2.32: σz in plane strain as a function of σr and σθ.

The axial stress component in plane strain for an elastic cylinder is expressed as σz =

ν(σr − σθ). Considering (2.38), (2.39), (2.44), and using the dimensionless quantities R =

r/a and β = b/a, the following expressions are obtained for the martensitic volume fraction

in plane strain and plane stress as functions of internal pressure (using Δc = Δα11 =

Δα22 = 0):

eξ =
H

ρbM
p

R2(β2 − 1)

√
4 ν2R4 − 4 ν R4 + 3β4 +R4

+
ΔS11
ρbM

p2

R4(1− β2)2
(β4 +R4 − 2 ν2R4 + νβ4 − νR4) +

	
T

ρbM
, (2.45)

sξ =
H

ρbM
p

R2(β2 − 1)

√
3β4 +R4

+
ΔS11
ρbM

p2

R4(1− β2)2
(β4 +R4 + νβ4 − νR4) +

	
T

ρbM
. (2.46)

In deriving (2.45) and (2.46), the elastic stress distribution is considered for the cylinder,

so this relation represents an exact expression only for the phase transformation innermost

radius

at the initiation of phase transformation, which is characterized by ξ = 0. Solving (2.45)
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and (2.46) for the parameter p by setting ξ = 0 gives:

ep =
R2
0(β

2 − 1)

2ΔS11(β4 +R4
0 − 2 ν2R4

0 + νβ4 − νR4
0)

(
−H

√
4 ν2R4

0 − 4 ν R4
0 + 3β4 +R4

0

+
[
H2(4 ν2R4

0 − 4 ν R4
0 + 3β4 +R4

0)− 4
�
T ΔS11(β

4 +R4
0 − 2 ν2R4

0 + νβ4 − νR4
0)
] 1

2

)
, (2.47)

sp =
R2
0(β

2 − 1)

2ΔS11(β4 +R4
0 + νβ4 − νR4

0)

(
−H

√
3β4 +R4

0

+

√
3H2β4 +H2R4

0 − 4
�
T ΔS11(β4 +R4

0 + νβ4 − νR4
0)

)
. (2.48)

Since (2.45) and (2.46) are solved for (ξ = 0), we denote the parameter R in this special

case by R0 where R0 = r0/a and r0 is the inner radius of the region in which the phase

transformation has not started (ξ = 0). Equations (2.47) and (2.48) can be used for exact

prediction of phase transformation initiation that starts from the inner radius (R0 = 1).

Note that in the phase transformation initiation the whole cylinder is in the austenite phase

and the elastic stress distribution in (2.44) is valid, so (2.47) and (2.48) present the exact

solution in this case. Figure 2.33 shows this pressure for different values of β and for three

different temperatures in both plane stress and plane strain.
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Figure 2.33: Exact value for the minimum pressure required for phase transformation
initiation in SMA thick-walled cylinders in both plane stress (PS) and plane strain (PE).

As the elastic stress distribution is assumed in deriving (2.45)-(2.48), by spread of the
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regions with phase transformation toward the outer radius, the precision of these relations

is reduced as stress distribution in areas with phase transformation is different from the

elastic stress distribution. Using (2.45) and (2.46), Figure 2.34 shows an approximate

solution for the spread of phase transformation boundary (R0) as the pressure increases for

three different values of temperature. These results are obtained for a thick-walled cylinder

with β = 3 in both plane stress and plane strain. The results of Figure 2.34 are exact for

R0 = 1 since the phase transformation boundary is at the inner radius in this case and

the whole cylinder is in the fully austenite phase with elastic stress distribution. However,

when the phase transformation boundary is spread through the outer radius (R0 > 1) the

elastic stress distribution is not valid in a portion of the thickness and the results of Figure

2.34 are approximate. The exact value for R0 for different internal pressures will be given

in the sequel.
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Figure 2.34: An approximate value for the spread of phase transformation boundary in
SMA thick-walled cylinders in both plane stress (PS) and plane strain (PE).
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2.4.2 Transformation strains and their derivatives with respect to stress com-
ponents

In this section, the two-dimensional form of the constitutive relations are expressed for

material points with 0 < ξ < 1. Substituting the transformation tensor into (2.5) and after

integration, the following expressions are obtained for the transformation strain components

in plane stress and plane strain:

eεtr =
1

2

H
eσeff

(2σr − σθ − σz) ξ,
eεtθ =

1

2

H
eσeff

(2σθ − σr − σz) ξ,

eεtz =
1

2

H
eσeff

(2σz − σr − σθ) ξ, (2.49)

sεtr =
1

2

H
sσeff

(2σr − σθ)ξ,
sεtθ =

1

2

H
sσeff

(2σθ − σr)ξ, (2.50)

with the effective stresses expressed in (2.37). Using Δc = Δα11 = Δα22 = 0, substituting

(2.38) into (2.49) leads to the following expression for the transformation strain components

for the plane stress case:

sεtr =
sF (2σr − σθ),

sεtθ =
sF (2σθ − σr), (2.51)

and the transformation strain components in the plane strain case are obtained by substi-

tuting (2.39) into (2.50) as:

eεtr =
eF (2σr − σθ − σz),

eεtθ =
eF (2σθ − σr − σz),

eεtz =
eF (2σz − σr − σθ),(2.52)

where

sF =

(
H2

2ρbM
+
HΔS11
4ρbM

sσ∗eff
sσeff

+
H

	
T

2ρbM
1

sσeff

)
, (2.53)

eF =

(
H2

2ρbM
+
HΔS11
4ρbM

eσ∗eff
eσeff

+
H

	
T

2ρbM
1

eσeff

)
. (2.54)
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Differentials of transformation strains in (2.51) and (2.52), after some lengthy algebraic

manipulations, can be written as

d(eεtr) =
1

2ρbM

{[
2H2 +H eG + 2

H
	
T

eσeff
+

(
1

2
H eA− H

	
T eM

(eσeff)2

)
(2σr − σθ − σz)

]
dσr

+

[
−H2 − 1

2
H eG − H

	
T

eσeff
+

(
1

2
H eB − H

	
T eN

(eσeff)2

)
(2σr − σθ − σz)

]
dσθ

+

[
−H2 − 1

2
H eG − H

	
T

eσeff
+

(
1

2
H eC − H

	
T eO

(eσeff)2

)
(2σr − σθ − σz)

]
dσz

}
,

(2.55)

d(eεtθ) =
1

2ρbM

{[
−H2 − 1

2
H eG − H

	
T

eσeff
+

(
1

2
H eA− H

	
T eM

(eσeff)2

)
(2σθ − σr − σz)

]
dσr

+

[
2H2 +H eG + 2

H
	
T

eσeff
+

(
1

2
H eB − H

	
T eN

(eσeff)2

)
(2σθ − σr − σz)

]
dσθ

+

[
−H2 − 1

2
H eG − H

	
T

eσeff
+

(
1

2
H eC − H

	
T eO

(eσeff)2

)
(2σθ − σr − σz)

]
dσz

}
,

(2.56)

d(eεtz) =
1

2ρbM

{[
−H2 − 1

2
H eG − H

	
T

eσeff
+

(
1

2
H eA− H

	
T eM

(eσeff)2

)
(2σz − σr − σθ)

]
dσr

+

[
−H2 − 1

2
H eG − H

	
T

eσeff
+

(
1

2
H eB − H

	
T eN

(eσeff)2

)
(2σz − σr − σθ)

]
dσθ

+

[
2H2 +H eG + 2

H
	
T

eσeff
+

(
1

2
H eC − H

	
T eO

(eσeff)2

)
(2σz − σr − σθ)

]
dσz

}
,

(2.57)

for plane strain and

d(sεtr) =
1

2ρbM

{[
2H2 +H sG + 2

H
	
T

sσeff
+

(
1

2
H sA− H

	
T sM

(sσeff)2

)
(2σr − σθ)

]
dσr

+

[
−H2 − 1

2
H sG − H

	
T

sσeff
+

(
1

2
H sB − H

	
T sN

(sσeff)2

)
(2σr − σθ)

]
dσθ

}
,

(2.58)

d(sεtθ) =
1

2ρbM

{[
−H2 − 1

2
H sG − H

	
T

sσeff
+

(
1

2
H sA− H

	
T sM

(sσeff)2

)
(2σθ − σr)

]
dσr

+

[
2H2 +H sG + 2

H
	
T

sσeff
+

(
1

2
H sB − H

	
T sN

(sσeff)2

)
(2σθ − σr)

]
dσθ

}
, (2.59)
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for plane stress, where

eM =
2σr − σθ − σz

2 eσeff
, eN =

2σθ − σr − σz
2 eσeff

, eO =
2σz − σr − σθ

2 eσeff
,

eA =
ΔS11
(eσeff)2

[eσeff (2σr − 2νσθ − 2νσz)−eM eσ∗eff] ,

eB =
ΔS11
(eσeff)2

[eσeff (2σθ − 2νσr − 2νσz)−eN eσ∗eff] ,

eC =
ΔS11
(eσeff)2

[eσeff (2σz − 2νσr − 2νσθ)−eO eσ∗eff] ,

sM =
2σr − σθ
2 sσeff

, sN =
2σθ − σr
2 sσeff

,

sA =
ΔS11
(sσeff)2

[sσeff (2σr − 2νσθ)−sM sσ∗eff] ,
sB =

ΔS11
(sσeff)2

[sσeff (2σθ − 2νσr)−sN sσ∗eff] ,

eG = ΔS11
eσ∗eff
eσeff

, sG = ΔS11
sσ∗eff
sσeff

. (2.60)

On the other hand by considering the fact that the transformation strains (in both plane

stress and plane strain) are functions of material constants and the stress components, their

differentials can be expressed as

d(eεtr) =
∂(eεtr)

∂σr
dσr +

∂(eεtr)

∂σθ
dσθ +

∂(eεtr)

∂σz
dσz,

d(eεtθ) =
∂(eεtθ)

∂σr
dσr +

∂(eεtθ)

∂σθ
dσθ +

∂(eεtθ)

∂σz
dσz,

d(eεtz) =
∂(eεtz)

∂σr
dσr +

∂(eεtz)

∂σθ
dσθ +

∂(eεtz)

∂σz
dσz, (2.61)

and

d(sεtr) =
∂(sεtr)

∂σr
dσr +

∂(sεtr)

∂σθ
dσθ, d(sεtθ) =

∂(sεtθ)

∂σr
dσr +

∂(sεtθ)

∂σθ
dσθ. (2.62)

Now, comparing (2.55)-(2.57) with (2.61) and (2.58)-(2.59) with (2.62) term by term, the

derivatives of transformation strain components with respect to stress components can be

obtained. Note that the expressions in (2.51) and (2.52) are valid only in regions that con-

tain both austenite and martensite (0 < ξ < 1). In the following sections, the constitutive

equations are linearized using the calculated derivatives of transformation strain compo-

nents. The closed-form solutions are considered for two different cases. We will present

the linearized constitutive equations for the the regions with partial phase transformation

(0 < ξ < 1) in §2.4.3. the constitutive equation of §5 is applicable for the whole cylinder
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when the material in the inner radius is not completely transformed to martensite. The

linearized constitutive relations for regions fully transformed to martensite (ξ = 1) is given

in §2.4.4. When the martensitic volume fraction reaches the value ξ = 1 at the inner radius,

increase of pressure will cause the extension of martensite region toward the outer radius

and the constitutive relations of §2.4.4 should be considered in analyzing regions that are

fully transferred to martensite.

2.4.3 Semi-analytic solutions when the inner radius is not completely trans-
formed to martensite

As was shown in Section 2.4.1, for a thick-walled cylinder subjected to internal pressure, the

phase transformation initiates from the inner radius and spreads toward the outer radius

for both plane stress and plane strain. So, it can be concluded that when the inner radius

is not completely converted to martensite, throughout the thickness, the transformation

strains can be expressed by (2.51) and (2.52) for the regions in which 0 < ξ < 1 and they

would be zero in the regions in which phase transformation has not started yet.

The solution in this case is obtained by splitting the applied pressure into a finite

number of increments. By assuming that the solution is known in the nth increment14,

and by considering the derivatives of the transformation strain with respect to the stress

components, a linearized constitutive relations is used for finding the solution in the (n+1 )th

increment. The transformation strains in the ith annular region for the (n+1 )th increment

14Zero internal pressure can be considered for the first increment. However, it is more efficient to consider
a pressure for which the whole cylinder is in the austenite phase as the first increment. The value of the
pressure that causes phase transformation to start was calculated in (2.47) and (2.48).
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of loading can be expressed as:

n+1(eεtr)
i =

n(
∂ eεtr
∂σr

)i (
n+1σir − nσir

)
+
n(
∂ eεtr
∂σθ

)i (
n+1σiθ − nσiθ

)

+
n(
∂ eεtr
∂σz

)i (
n+1σiz − nσiz

)
+n(eεtr)

i, (2.63)

n+1(eεtθ)
i =

n(
∂ eεtθ
∂σr

)i (
n+1σir − nσir

)
+
n(
∂ eεtθ
∂σθ

)i (
n+1σiθ − nσiθ

)

+
n(
∂ eεtθ
∂σz

)i (
n+1σiz − nσiz

)
+n(eεtθ)

i, (2.64)

n+1(eεtz)
i =

n(
∂ eεtz
∂σr

)i (
n+1σir − nσir

)
+
n(
∂ eεtz
∂σθ

)i (
n+1σiθ − nσiθ

)

+
n(
∂ eεtz
∂σz

)i (
n+1σiz − nσiz

)
+n(eεtz)

i, (2.65)

for plane strain and

n+1(sεtr)
i =

n(
∂ sεtr
∂σr

)i (
n+1σir − nσir

)
+
n(
∂ sεtr
∂σθ

)i (
n+1σiθ − nσiθ

)
+n(sεtr)

i, (2.66)

n+1(sεtθ)
i =

n(
∂ sεtθ
∂σr

)i (
n+1σir − nσir

)
+
n(
∂ sεtθ
∂σθ

)i (
n+1σiθ − nσiθ

)
+n(sεtθ)

i, (2.67)

for plane stress. In deriving (2.63)-(2.67), continuous functions of transformation strain

derivatives are replaced by piece-wise constant functions. The cylinder is divided into a

finite number of narrow annular regions as shown in Figure 2.35. The transformation strain

derivatives are assumed constant in each region. Increasing the number of annular regions,

the accuracy of this method increases.

ith annular region 

ri

Figure 2.35: Partitioning the cylinder’s cross section into a finite number of narrow annular
regions.
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By applying the load incrementally, the stress components, transformation strain com-

ponents, and the transformation strain derivatives are known in the nth increment. We

start from a load value for which the whole cylinder is in the austenite phase. In this case,

the stress components for the first increment are calculated from the elastic solution. In-

creasing the internal pressure incrementally, the start of phase transformation is checked in

each annular region by calculating the martensitic volume fraction using (2.38) and (2.39).

For each annular region, the phase transformation starts at a specific load increment. For

this special increment, equations (2.63)-(2.67) should be considered with a minor modifica-

tion. Figure 2.36 shows the circumferential transformation strain surface in the stress space

for plane stress. At the start of phase transformation in an annular region, the (n+1 )th

stress state corresponds to a generic point B that lies between ξ = 0 and ξ = 1 curves (see

Figure 2.31 and note that a part of these curves is shown in Figure 2.36) while the stress

state in the nth increment lies inside the ξ = 0 curve (point A in Figure 2.36). For this

increment, neither the elastic solution nor the solution presented in (2.66) and (2.67) can

be used as in deriving these equations it is assumed that the stress state in the nth incre-

ment corresponds to a point on the transformation strain surface located between ξ = 0

and ξ = 1 curves. However, these relations can be used for this special increment with

the following minor modification. The loading path between the stress states A and B is

assumed linear as shown in Figure 2.36. The intersection of this line with ξ = 0 curve is

found numerically (point k in Figure 2.36) and the stress components corresponding to this

point are used instead of nσir and
nσiθ in (2.66) and (2.67). It is obvious that the parameters

n(sεtr)
i and n(sεtθ)

i are zero for this increment since ξ = 0 at k (see (2.49) and (2.50)). In

the plane strain case, the same procedure is used for finding the circumferential and radial

stress components at the onset of phase transformation in each region. The axial stress

component is calculated by nσiz = ν(nσir+
nσiθ) (see the plane strain condition in (2.42) with

eξ = 0).

The total strain components for the ith annular region at the (n+1 )th load increment
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Figure 2.36: Method of calculating the circumferential transformation strain for the special
increments in which phase transformation starts and completes in the plane stress case.

can be expressed as:

n+1(eεr)
i =nSi11

n+1σir +
nSi12

n+1σiθ +
nSi13

n+1σiz +
ndi1,

n+1(eεθ)
i =nSi21

n+1σir +
nSi22

n+1σiθ +
nSi23

n+1σiz +
ndi2, (2.68)

0 =nSi31
n+1σir +

nSi32
n+1σiθ +

nSi33
n+1σiz +

ndi3,

in plane strain and

n+1(sεr)
i =nSi11

n+1σir+
nSi12

n+1σiθ+
ndi1,

n+1(sεθ)
i =nSi21

n+1σir+
nSi22

n+1σiθ+
ndi2, (2.69)
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in plane stress. The parameters S and d in (2.68) for the plane strain are expressed as

nSi11 =
nDi

eq +
n(
∂ eεtr
∂σr

)i
, nSi12 = −ν nDi

eq +
n(
∂ eεtr
∂σθ

)i
, nSi13 = −ν nDi

eq +
n(
∂ eεtr
∂σz

)i
,

nSi21 = −ν nDi
eq +

n(
∂ eεtθ
∂σr

)i
, nSi22 =

nDi
eq +

n(
∂ eεtθ
∂σθ

)i
, nSi23 = −ν nDi

eq +
n(
∂ eεtθ
∂σz

)i
,

nSi31 = −ν nDi
eq +

n(
∂ eεtz
∂σr

)i
, nSi32 = −ν nDi

eq +
n(
∂ eεtz
∂σθ

)i
, nSi33 =

nDi
eq +

n(
∂ eεtz
∂σz

)i
,

ndi1 = −
n(
∂ eεtr
∂σr

)i
nσir −

n(
∂ eεtr
∂σθ

)i
nσiθ −

n(
∂ eεtr
∂σz

)i
nσiz +

n(eεtr)
i,

ndi2 = −
n(
∂ eεtθ
∂σr

)i
nσir −

n(
∂ eεtθ
∂σθ

)i
nσiθ −

n(
∂ eεtθ
∂σz

)i
nσiz +

n(eεtθ)
i,

ndi3 = −
n(
∂ eεtz
∂σr

)i
nσir −

n(
∂ eεtz
∂σθ

)i
nσiθ −

n(
∂ eεtz
∂σz

)i
nσiz +

n(eεtz)
i,

nDi
eq =

1

EA + nξi(EM − EA)
. (2.70)

For the plane stress case in (2.69), these parameters should be replaced by

nSi11 =
nDi

eq +
n(
∂ sεtr
∂σr

)i
, nSi12 = −ν nDi

eq +
n(
∂ sεtr
∂σθ

)i
,

nSi21 = −ν nDi
eq +

n(
∂ sεtθ
∂σr

)i
, nSi22 =

nDi
eq +

n(
∂ sεtθ
∂σθ

)i
, (2.71)

ndi1 = −
n(
∂ sεtr
∂σr

)i
nσir −

n(
∂ sεtr
∂σθ

)i
nσiθ +

n(sεtr)
i,

ndi2 = −
n(
∂ sεtθ
∂σr

)i
nσir −

n(
∂ sεtθ
∂σθ

)i
nσiθ +

n(sεtθ)
i.

All the coefficients in (2.70) and (2.71) are assumed to be known in the nth loading in-

crement. Also, all the coefficients are considered constant within each narrow region. By

inverting (2.68) and (2.69), the stress-strain relations are obtained for the ith region at the

(n+1 )th load increment as follows

n+1σir =
nCi11

n+1(εr)
i+nCi12

n+1(εθ)
i+nei1 and n+1σiθ =

nCi21
n+1(εr)

i+nCi22
n+1(εθ)

i+nei2.

(2.72)

Equation (2.72) is applicable in both plane strain and plane stress cases. For plane strain,

the parameters εr and εθ are replaced by eεr and
eεθ and the coefficients Cmn, m, n = 1, 2, 3

are the components of the inverse of matrix S, a 3 × 3 matrix with components given in
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(2.70). The parameters em, m = 1, 2 in the plane strain case are expressed by

nei1 = −nCi11
ndi1 −nCi12

ndi2 −n Ci13
ndi3,

nei2 = −nCi21
ndi1 −nCi22

ndi2 −n Ci23
ndi3, (2.73)

with the parameters dm, m = 1, 2, 3 given in (2.70). For plane stress, the parameters εr

and εθ in (2.72) are replaced by sεr and
sεθ, respectively. The coefficients Cmn, m, n = 1, 2

are the components of the inverse of matrix S, a 2× 2 matrix with components introduced

in (2.71). The parameters em, m = 1, 2 in plane stress are given by

nei1 = −nCi11
ndi1 −nCi12

ndi2 and nei2 = −nCi21
ndi1 −nCi22

ndi2, (2.74)

where dm, m = 1, 2 are given in (2.71).

In the absence of body forces, the equations of equilibrium for an axisymmetric problem

in cylindrical coordinates are reduced to:

dσr
dr

+
σr − σθ

r
= 0. (2.75)

Note that εr = ∂u
∂r and εθ = u

r , where u represents the radial displacement. Substituting

(2.72) into (2.75) and considering the strain-displacement relations, the equilibrium equation

in terms of radial displacement is obtained as:

d2(n+1ui)

dr2
+

1

r

d(n+1ui)

dr
− nf i

n+1ui

r2
+ ngi

1

r
= 0, (2.76)

where n+1ui is the radial displacement in the (n+1 )th loading increment in the ith annular

region and

nf i =
nCi22
nCi11

, ngi =
nei1 − nei2

nCi11
. (2.77)

Considering constant values for the above parameters in each annular region, a closed-form

solution can be obtained for (2.76) as:

n+1ui(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n+1Ai
1r
√

nfi
+ n+1Ai

2r
−
√

nfi
+

ngi

nfi−1r
nf i > 0,

n+1Ai
1 sin

(√
− nf i ln r

)
+ n+1Ai

2 cos
(√

− nf i ln r
)
+

ngi

nfi−1r
nf i < 0,

(2.78)
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where n+1Ai1 and n+1Ai2 are integration constants that should be found in the (n+1 )th

increment of loading. Substituting (2.78) into the strain-displacement relations and consid-

ering (2.72), the stress components within the ith region are obtained. For (2.78)1 these

components are expressed as

n+1σr =
n+1Ai1

[
r
√

nf i−1
(
nCi11

√
nf i +nCi12

)]
+ n+1Ai2

[
r−

√
nf i−1

(
nCi12 −nCi11

√
nf i

)]
+
(
nCi11 +

nCi12
) ngi

nf i − 1
+ nei1, (2.79)

n+1σθ =
n+1Ai1

[
r
√

nf i−1
(
nCi21

√
nf i +nCi22

)]
+ n+1Ai2

[
r−

√
nf i−1

(
nCi22 −nCi21

√
nf i

)]
+
(
nCi21 +

nCi22
) ngi

nf i − 1
+ nei2. (2.80)

For (2.78)2 the same procedure is followed. The solutions expressed in (2.78)-(2.80) are used

for the regions in which the martensitic volume fraction is 0 < ξ < 1. For those regions in

which phase transformation has not started and the material is purely austenite, the above

solution should be converted to the elastic solution by eliminating the last term in (2.78)

and the last two terms in (2.79) and (2.80).

2.4.4 Closed-form solutions when the inner radius is completely transformed
to martensite

For a special value of internal pressure, the inner radius completely transforms to marten-

site15. For pressures lower than this value, the solution proposed in §2.4.3 would be appli-

cable. By increasing the pressure, the fully martensite region will spread toward the outer

radius and the previous solution is not valid in this region. For the ith narrow annular

region in which the material is fully transformed to martensite in the (n+1 )th increment,

the strain components can be expressed as

n+1(eεr)
i = SM11

n+1σir + SM12
n+1σiθ + SM13

n+1σiz + (eε̃tr)
i,

n+1(eεθ)
i = SM21

n+1σir + SM22
n+1σiθ + SM23

n+1σiz + (eε̃tθ)
i, (2.81)

0 = SM31
n+1σir + SM32

n+1σiθ + SM33
n+1σiz + (eε̃tz)

i,

15An explicit expression can not be obtained for this pressure. In each load increment, the martensitic
volume fraction in all the annular regions is monitored to find the pressure that causes full transformation
to martensite in different regions.
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for plane strain and

n+1(sεr)
i = SM11

n+1σir+S
M
12

n+1σiθ+(sε̃tr)
i and n+1(sεθ)

i = SM21
n+1σir+S

M
22

n+1σiθ+(sε̃tθ)
i,

(2.82)

for plane stress, where

SMmn =

⎧⎪⎪⎨
⎪⎪⎩

1
EM

for m = n,

− νM

EM
for m 
= n.

(2.83)

In (2.83), m,n = 1, 2, 3 for plane strain and m,n = 1, 2 for plane stress. The terms (eε̃tr)
i,

(eε̃tθ)
i, and (eε̃tz)

i in (2.81) and (sε̃tr)
i and (sε̃tθ)

i in (2.82) represent the final transformation

strain components in the ith region for the plane stress and plane strain cases, respectively.

For calculating these terms, the martensitic volume fraction in each annular region is mon-

itored in all the increments and the first loading increment in which the ith region is fully

transformed to martensite is recorded. In this special increment, the stress state for the nth

loading increment corresponds to a point located between ξ = 0 and ξ = 1 curves (see Figure

2.31). Point C in Figure 2.36 shows the stress state of such a point (the material properties

of Table ?? and the plane stress condition are used for depicting the circumferential strain

surface). The stress state of this annular region in the (n+1 )th increment corresponds to

a point outside the ξ = 1 closed curve (point D in Figure 2.36). Approximating the load

path between these two points by a line, the stress state corresponding to the intersection

of line C -D and ξ = 1 curve (point k∗ in Figure 2.36) is calculated numerically. For the

plane strain case, the stress component σz at the corresponding point k∗ is calculated by

enforcing the plane strain condition as expressed in (2.42). The final transformation strain

components are calculated by substituting the stress sate of this point in (2.49) and (2.50)

for the plane strain and plane stress cases, respectively (the circumferential transformation

strain component corresponding to k∗ in the plane stress is shown in Figure 2.36). The ac-

curacy of the final transformation strains calculated by this method increases by increasing

the number of load increments. We will compare the final transformation strains calculated

by our method with those of a finite element simulation in a few numerical examples.
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Using the inverses of (2.81) and (2.82), the stress-strain relations are expressed as:

n+1σr = CM11
n+1(εr)

i+CM12
n+1(εθ)

i+ ẽi1 and n+1σθ = CM12
n+1(εr)

i+CM22
n+1(εθ)

i+ ẽi2,

(2.84)

where this relation is applicable for both plane stress and plane strain. For considering the

relation in plane strain, εr and εθ are replaced by eεr and
eεθ, respectively. The coefficients

CMmn, m, n = 1, 2, 3 are the components of the inverse of matrix SM , a 3 × 3 matrix with

components given in (2.83). The parameters ẽm, m = 1, 2 in the plane strain case are

ẽi1 = −CM11 (eε̃tr)i −CM12 (
eε̃tθ)

i−CM13 (
eε̃tz)

i and ẽi2 = −CM21 (eε̃tr)i −CM22 (
eε̃tθ)

i −CM23 (
eε̃tz)

i.

(2.85)

For the plane stress case, εr and εθ in (2.84) are replaced by sεr and sεθ, respectively. The

coefficients CMmn, m, n = 1, 2 are the components of the inverse of matrix SM , a 2 × 2

matrix with components introduced in (2.83). The parameters ẽm, m = 1, 2 in this case

are expressed by

ẽi1 = −CM11 (sε̃tr)i − CM12 (
sε̃tθ)

i and ẽi2 = −CM21 (sε̃tr)i − CM22 (
sε̃tθ)

i. (2.86)

Substituting (2.84) into (2.75) and considering the strain-displacement relations, the equi-

librium equation in terms of radial displacement in the ith region is obtained. Using as-

sumptions similar to those in the previous section, the radial displacement for the ith region

in the (n+1 )th loading increment n+1ui, which is fully transformed to martensite can be

expressed as:

n+1ui = n+1Ai1r +
n+1Ai2
r

− 1

2
g̃ir ln r +

1

4
g̃ir, (2.87)

where

g̃i =
ẽi1 − ẽi2
CM11

. (2.88)

Substitution of (2.87) into (2.84) and using the strain-displacement relations gives the stress

88



components in the ith fully martensite region as:

n+1σr =
n+1Ai1

(
CM11 + CM12

)
+

n+1Ai2
r2

(
CM12 − CM11

)
+ CM11 (−

1

2
g̃i ln r − 1

4
g̃i)

+ CM12 (−
1

2
g̃i ln r +

1

4
g̃i) + ẽi1, (2.89)

n+1σθ =
n+1Ai1

(
CM12 +CM22

)
+

n+1Ai2
r2

(
CM22 − CM12

)
+CM12 (−

1

2
g̃i ln r − 1

4
g̃i)

+ CM22 (−
1

2
g̃i ln r +

1

4
g̃i) + ẽi2. (2.90)

The solution expressed in (2.89) and (2.90) is valid from the inner radius up to the annular

region in which the martensitic volume fraction is ξ < 1. For the other regions through the

outer radius the solution expressed in §2.4.3 should be used.

2.4.5 Solution procedure

Using Equations (2.47) and (2.48) or Figure 2.33, the pressure for initiation of phase trans-

formation in the cylinder is calculated. For any applied pressure below this minimum, the

elastic solution is valid and for pressures above this minimum the subsequent procedure

should be followed.

The cylinder is divided into N1 narrow annular regions with the ith region ri < r <

ri+1 (see Figure 2.35). The loading is divided into N2 increments. The first increment

corresponds to zero internal pressure or any internal pressure for which the whole cylinder

is in the austenite phase (see Figure 2.33). Assuming that for the nth loading increment

the solution is known, in the (n+1 )th increment the following procedure is considered. The

radial stress component in the innermost radius is assumed to be n+1σ1r = − n+1p that is

the internal pressure corresponding to the (n+1 )th load increment. As the circumferential

stress component is unknown, a typical value n+1σ1θ = σ̂ is assumed for initiating the

solution procedure (e.g. σ̂ = nσ1θ). In the plane strain case, the axial stress component

σz in the inner radius is calculated by enforcing the plane strain condition given in (2.42).

Equations (2.38) and (2.39) are used for calculating the martensitic fraction ξ at r = a.

Depending on the calculated martensitic fraction in the inner radius, two cases are possible:

Case I: 0 < ξ1 < 1. Equations (2.73), (2.74), and (2.77) are used for calculating the

previously introduced constants in the first annular region. By substituting these
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coefficients into (2.79) and (2.80), the unknown constants n+1A1
1 and

n+1A1
2 are calcu-

lated. Now, the stress components can be calculated in r2 by means of (2.79), (2.80),

and by assuming the other parameters to be constants in the first annular region. The

calculated stress components for the outer radius of the first region are considered as

the stresses in the inner radius of the second region and the calculations are repeated.

In the plane strain case, the axial stress component in the inner radius of each region

is calculated by enforcing the condition (2.42). These calculations are continued up

to the last region. Now, the calculated radial stress for the external radius r = b

should satisfy the boundary condition σr = 0. If this condition is not satisfied, the

assumed circumferential stress in the innermost region (σ̂) is corrected (e.g. by a

fraction of residual radial stress at the external boundary16 ) and the procedure is

repeated until satisfaction of the stress boundary condition at r = b. As it will be

shown in the numerical results, the number of iterations for achieving the consistent

stress distribution is small. Note that if in any region in a < r < b the martensitic

fraction becomes zero, the solution procedure should be switched to an elastic solution

by eliminating the last term in (2.78) and the last two terms in (2.79) and (2.80).

Case II: ξ1 = 1. As was explained in §6, to obtain the solution in this case, for each

annular region, the special step in which that region is fully converted to martensite

should be obtained (using (2.38) and (2.39)). In this special load increment the

method of §6 and Figure 2.36 is used for calculating the parameters (ε̃tr)
i and (ε̃tθ)

i.

For any annular region in which the material is fully transformed to martensite, the

previous procedure of Case I should be used by replacing (2.73), (2.74), (2.77), (2.79),

and (2.80) by (2.85), (2.86), (2.88), (2.89), and (2.90), respectively. Note that, at

the inner radius of each narrow annular region, the martensitic volume fraction is

calculated and when it becomes less than 1 the solution is switched to that of Case I.

16For the numerical results presented in this section, in the kth iteration kσ̂ = k−1σ̂ − 0.1(k−1σr)r=b,
where the left subscripts are used for indicating the iteration number. Using this method and by considering
a tolerance of 0.1MPa for the residual radial stress at the outer radius, the boundary condition in the outer
radius is satisfied for all the case studies in less than 10 iterations
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2.4.6 Numerical results

In this section, the SMA thick-walled cylinder shown in Figure 1 is considered with a=0.1m,

b=0.3m and T=315K. The outer radius is chosen three times the inner radius for satisfying

the thick-walled condition for the cylinder. The cylinder is subjected to different internal

pressures and the stress distribution is calculated using the proposed semi-analytic method

in both plane stress and plane strain conditions.

First, a sensitivity analysis is performed for calculating the appropriate number of annu-

lar regions N1 and load increments N2 (see Appendix A). Based on the sensitivity analysis

results, the thickness is divided into N1 = 100 annular regions (see Figure 2.35) and the

load is applied in N2 = 20 increments. All the material properties used in the following

numerical examples are presented in Table 2.1 (Material I), which are taken from Qidwai

and Lagoudas [161].

For validation purposes, the three dimensional constitutive relations are used and an

appropriate user subroutine (UMAT) has been written by FORTRAN in the commercially

available finite element program ABAQUS that enables this code to model SMA structures

using solid elements. For modeling SMA thick-walled cylinders by 3D solid elements, a 15◦

sector of a short thick-walled cylinder is considered. The axisymmetric boundary conditions

are imposed by constraining the boundary nodes from moving along the circumferential

direction. For modeling the plane stress condition, both ends of the cylinder are free in

moving along the axial direction and the plane strain condition is imposed by constraining

both ends in the axial direction. The developed finite element code is validated by comparing

with the previously reported works for SMA structures, e.g. uniaxial tension, bending

of beams, and deflection analysis of cylindrical panels [126]. Quadratic (20 node cubic)

elements are used. One element is considered along the circumferential and axial directions

and the thickness is divided into 30 elements. The pressure loading is divided into 100 steps

and the tolerance of 1 × 10−6 is considered for the convergence of transformation function

(see Mirzaeifar et al. [126]).

A sensitivity analysis is performed for choosing the appropriate number of annular re-

gions N1 and load increments N2 in the semi-analytic solution, and the number of elements
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and load increments in the finite element simulations. The stress components are considered

to be converged when the maximum difference is smaller than 0.1MPa and the marten-

sitic volume fraction convergence is achieved when the maximum difference is smaller than

0.001. Figure 2.37(a) shows the effect of increasing the number of annular regions on the

martensitic volume fraction distribution in the plane strain case for p = 200MPa and with

considering 20 load increments. The convergence is achieved with 100 annular regions for

the martensitic volume fraction. The convergence of the circumferential stress in this case

for 100 annular regions is shown in Figure 2.37(b). The convergence for radial stress distri-

bution is achieved with 50 annular regions. Our numerical tests show that N1 = 100 is the

optimum value.
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Figure 2.37: The effect of the number of annular regions in the semi-analytic solution
on (a) martensitic volume fraction, and (b) circumferential stress in the plane strain case
(p = 200MPa and 20 load increments).

Figure 2.38(a) shows the effect of increasing the number of loading increments on the

martensitic volume fraction distribution in the plane strain case for p = 200MPa when the

number of annular regions is N1 = 100. Convergence is achieved with 10 load increments

for the martensitic volume fraction. Convergence of the circumferential stress in this case is

achieved with 20 load increments as shown in Figure 2.38(b). Convergence for radial stress

distribution is achieved with 10 annular regions. It is seen that N2 = 20 is the optimum

value. The convergence study for the plane stress case leads to the same optimum number
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of annular regions and load increments.
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Figure 2.38: The effect of the number of load increments in the semi-analytic solution
on (a) martensitic volume fraction, and (b) circumferential stress in the plane strain case
(p = 200MPa and 100 annular regions).

Figure 2.39 shows the effect of the number of finite elements on the finite element

simulation results for the martensitic volume fraction and circumferential stress component

in the plane stress case. As it is shown, results are not sensitive to the number of elements.

The same analysis is performed for all the parameters and Mesh 2 (see the caption of Figure

2.39 for mesh definitions) with 30× 1× 1 elements in r, θ and z directions is considered for

all the studies presented in this paper (20 node cubic elements are used in all cases).

In order to find the appropriate number of load increments in the finite element sim-

ulations, a sensitivity analysis for the number of load increments is performed for all the

parameters. Figure 2.40 shows the effect of load increment numbers on the volume fraction

and circumferential stress component in the plane stress case. As it is seen, the finite el-

ement simulation results are not sensitive to the number of load increments as well. It is

worth mentioning that the history of these parameters as a function of internal pressure is

highly affected by the load increment numbers. For all the case studies presented in this

paper 100 load increments are considered. The same sensitivity analysis for the plane strain

case and for the other parameters is performed and the results are very similar to those of

plane stress.
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Figure 2.39: The effect of the number of elements in the finite element simulation on (a)
martensitic volume fraction, and (b) circumferential stress in the plane stress case for Mesh
1: 10× 1× 1 elements (in r, θ and z directions), Mesh 2: 30× 1× 1 elements, and Mesh 3:
60× 2× 1 elements (p = 200MPa and 100 load increments).
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Figure 2.40: The effect of the number of the load increments in the finite element sim-
ulations on (a) martensitic volume fraction, and (b) circumferential stress in plane stress
(p = 200MPa and 30× 1× 1 elements in r, θ and z directions).
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Three different values of internal pressure are considered for the first case in §2.4.5.
Figure 2.41(a) shows the radial stress distribution for the internal pressures p = 120, 160

and 200MPa in plane strain. In all the cases, the stress boundary condition in the external

radius is satisfied with a tolerance of 0.1MPa in less than ten iterations (see §2.4.5 for

the solution procedure). This figure also shows the results obtained by the finite element

method for each pressure. The circumferential stress distribution for these values of inter-

nal pressure is depicted in Figure 2.41(b) in plane strain. As it is shown in this figure,

circumferential stress has an ascending distribution in the region in which material trans-

formation has taken place and consequently follows a descending distribution in the fully

austenite region. However, as it will be shown in the following case studies, the circumfer-

ential stress distribution does not follow this pattern for all the values of internal pressure.

The axial stress component in plane strain condition obtained by the semi-analytic solution

is compared with the finite element results in Figure 2.41(c). Martensitic volume fraction

distribution, calculated by the present method is shown and compared with the finite ele-

ment results in Figure 2.41(d). By comparing the results presented in Figure 2.41(d) with

the approximate results of Figure 2.34, it is seen that the error of Figure 2.34 in predicting

the boundary of phase transformation for internal pressures p=120, 160 and 200MPa is

0.8, 11.4 and 27.1 percent, respectively. As expected, the error of calculating the material

transformation boundary by considering elastic stress distribution in regions with phase

transformation (like that presented in Figure 2.34) increases by increase of the radius at

which material transformation has occurred.

The radial stress distribution, circumferential stress distribution, and martensitic vol-

ume fraction in plane stress are shown in Figure 2.42. Comparing these distributions in

plane stress and plane strain reveals a minor differences in the radial and circumferential

stress distributions. It is worth mentioning that for elastic cylinders the radial and cir-

cumferential stress distributions are identical in plane stress and plane strain. However,

in the present case of an SMA thick-walled cylinder, the phase transformation depends on

the three-dimensional state of stress and is affected by the axial stress that exists only in

the plane strain case. Therefore, the phase transformation distributions in plane stress and

95



0.1 0.15 0.2 0.25 0.3
-200

-150

-100

-50

0

r (m)

σ r (M
Pa

)

Finite element
Semi-analytic solution

=120 MPap

=160 MPap

=200 MPap

0.1 0.15 0.2 0.25 0.3
0

50

100

150

r (m)

σ θ (M
Pa

)

Finite element
Semi-analytic solution

=120 MPap

=160 MPap

=200 MPap

0.1 0.15 0.2 0.25 0.3
-100

-80

-60

-40

-20

0

20

40

r (m)

σ z (M
Pa

)

Finite element
Semi-analytic solution

=120 MPap

=160 MPap =200 MPap

0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

r (m)

ξ

0.3

=120 MPap

=160 MPap

=200 MPap

Finite element
Semi-analytic solution

                                  (a)                                                                                                              (b)

                                  (c)                                                                                                            (d)

Figure 2.41: Distribution of (a) radial stress, (b) circumferential stress, (c) axial stress, and
(d) martensitic volume fraction for a SMA thick-walled cylinder under internal pressure in
plane strain with 0 < ξ < 1 at the inner radius.

plane strain are not the same. This difference is calculated in (2.38)-(2.39) and can clearly

be seen by comparing the results in Figures 2.41(d) and 2.42(c). The difference in the

phase transformation distribution and the boundary of the region with phase transforma-

tion causes a minor difference in the radial and circumferential stress distributions for plane

stress and plane strain.

To obtain the internal pressure at which the martensitic volume fraction in the innermost

radius reaches ξ = 1, a trial and error method is used and the value of this pressure for

the present case study is calculated to be p = 238MPa in plane stress and p = 260MPa in

plane strain. Distribution of stress components and martensitic volume fraction for these
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Figure 2.42: Distribution of (a) radial stress, (b) circumferential stress, and (c) martensitic
volume fraction for an SMA thick-walled cylinder subjected to internal pressure in plane
stress with 0 < ξ < 1 at the inner radius.

pressures are calculated by the method of §2.4.3 and are depicted in Figures 2.43 and 2.44

for plane strain and plane stress, respectively. For any internal pressure larger than these

values, the fully martensite region spreads towards the outer radius and the method of

§2.4.4 should be used in any fully transformed annular region. The method of §2.4.4 is used

and distribution of stress components is calculated for p = 300Mpa in both plane stress

and plane strain cases (see §2.4.5 for the solution procedure in this case).

For the internal pressure p = 300MPa, a portion of the cylinder is fully transformed

to martensite in both plane stress and plane strain conditions. Figure 2.43 compares the

radial, circumferential, and axial stress distributions, and the martensitic volume fraction
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Figure 2.43: Distribution of (a) radial stress, (b) circumferential stress, (c) axial stress, and
(d) martensitic volume fraction for an SMA thick-walled cylinder under internal pressure
in plane strain with ξ = 1 at the inner radius.

calculated by the present semi-analytic method and the three-dimensional finite element

simulations in the plane strain case. The radial stress, circumferential stress, and marten-

sitic volume fraction distributions for plane stress are shown and compared with the finite

element results in Figure 2.44.

As it is shown in Figures 2.43(b) and 2.44(b), by spread of the fully martensite region,

the circumferential stress distribution in the fully transformed region increases considerably.

This phenomenon should be considered in the design of SMA thick-walled pipe joints or

pressure vessels. A designer should consider that any internal pressure that causes a por-

tion of the cylinder to be fully transformed to martensite will produce an extremely large
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Figure 2.44: Distribution of (a) radial stress, (b) circumferential stress, (c) martensitic
volume fraction, and (d) transformation strain components for an SMA thick-walled cylinder
under internal pressure in plane stress with ξ = 1 at the inner radius.

circumferential stress in the inner radius that should preferably be avoided. Figure 2.43(c)

shows the axial stress distribution in the plane strain case. As it is shown the present

method of enforcing the plane strain condition for calculating the axial stress component

leads to a good agreement between the semi-analytic and numerical simulation results. Dis-

tribution of martensitic volume fraction is shown in Figures 2.43(d) and 2.44(c) for plane

strain and plane stress, respectively. As it is shown in these figures, for p = 300MPa an

annular region attached to the inner radius is completely converted to martensite (ξ = 1).

As explained in §6 and depicted in Figure 2.36, in the present semi-analytic solution an

approximation is used for finding the values of transformation strains in the region that is
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completely converted to martensite. In order to study the accuracy of this approximation,

the values of transformation strain components in plane stress are calculated for internal

pressure p = 300MPa. These values are compared with the results of finite element simula-

tions in Figure 2.44(d). As it is seen, the present method predicts the transformation strains

in a good agreement with the finite element results. So it can be concluded that choosing

appropriate number of load steps in the semi-analytic solution, the proposed approximation

will not affect the results. Looking at Figures 2.41 to 2.44 reveals the acceptable agreement

between the numerical simulation results and the present semi-analytic solution. It is worth

mentioning that the results of the present method are obtained without a massive compu-

tation in contrast with the finite element (or other numerical simulations) that require a

massive iterative computational process. Since the semi-analytic solution is not affected

by those parameters that may make a numerical simulation ill-conditioned (e.g. the num-

ber of loading steps and the number of convergence iterations in satisfying the constitutive

equation (see Qidwai and Lagoudas [161]) or the number of equilibrium iterations in the

nonlinear finite element simulation17), we believe that our method can be used for validating

the accuracy of numerical methods like finite element method in modeling shape memory

alloy structures.

2.5 Superelastic Bending of Shape Memory Alloy Beams

In this section a closed-form solution is given for bending analysis of superelastic shape

memory alloy beams. Some three-dimensional constitutive relations are reduced to an ap-

propriate one-dimensional form required for formulating the bending problem and explicit

expressions are given for the stress and martensitic volume fraction distributions in the

beam cross section. These explicit expressions are used for obtaining closed-form relations

between bending moment and curvature in pure bending. In addition to the J2 model based

on symmetric tension-compression response, another J2 − I1-based model is presented that

17In the present case studies, the finite element simulation in each load increment (loading was divided
into 100 increments) needs up to 20 iterations for satisfying the constitutive equations convergence criteria
with a tolerance of 1× 10−6 for the convergence of transformation function (see Qidwai and Lagoudas [161]
and Mirzaeifar et al. [126]). Since the geometry and loading are axisymmetric, the elements in the finite
element model are not distorted significantly and less than five iterations were performed for the equilibrium
satisfaction due to the nonlinear geometry in the finite element model.
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is capable of studying bending in materials that have asymmetric response in tension and

compression. Several case studies are presented for studying the accuracy of our method

by comparing the results with those of three-dimensional finite element simulations. The

effect of taking into account the tension-compression asymmetry in the bending response

of shape memory alloys is also studied. In order to study the applicability of the present

formulation in the micro scale, some experimental data on the bending of a [111] oriented

NiTi micropillar are used. It is shown that the present formulation can be used for calculat-

ing the global force-deflection response with a good accuracy compared to the experimental

results. Our model is shown to be very useful in finding the stress distributions, which

are practically difficult to be measured in experiments. It is also shown that the present

formulation can be used to find the tensile response of micropillars (which is very difficult

to be measured experimentally) by using the responses in compression and bending. The

predicted tensile response is compared with those obtained from analyzing [111] oriented

NiTi single crystals, and a good agreement is observed.

2.5.1 Three-dimensional constitutive equations and one-dimensional reduction
for bending

In this section we use the three-dimensional phenomenological macroscopic constitutive

model for polycrystalline SMAs as explained in Section 2.2. However, in addition to the

J2-based model that is used in the previous sections, we also develop a solution based on

the J2 − I1 transformation functions that is capable of studying bending in materials that

have asymmetric response in tension and compression. Assuming the existence of a thermo-

elastic region (transformation surface) bounded by a smooth hypersurface, which can be

described by a transformation function Φ as Φ(σ, π) = 0, we choose the following general

form for the transformation function [162]

Φ(σ, π) =
[
Φ̃(σ) + π

]2 − Y 2 =
[
Φ̃(σ) + π + Y

] [
Φ̃(σ) + π − Y

]
, (2.91)

where Φ̃(σ) is the stress related transformation function that will be defined in the following

sections and Y is a measure of internal dissipation due to microstructural changes during
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phase transformation. The transformation surface that controls the onset of direct (austen-

ite to martensite) and reverse (martensite to austenite) phase transformation is defined

as

Φ̃(σ) + π =

⎧⎪⎨
⎪⎩

Y, ξ̇ > 0,

−Y, ξ̇ < 0.
(2.92)

Considering the fact that any change in the state of the system is only possible by a change in

the internal state variable ξ [25], the evolution of the transformation strain tensor is related

to the evolution of the martensitic volume fraction as ε̇t = (∂Φ̃(σ)/∂σ)ξ̇ = Γξ̇, where Γ

represents a transformation tensor associated with the chosen transformation function.

By ignoring the shear force in the cross section of an SMA beam subjected to bending,

the state of stress and strain is one dimensional. Considering the cross section in the

yz-plane and the beam axis along the x-axis, the only non-zero stress component is σx.

However, the strain and transformation strain tensors have other non-zero components as

will be shown in the following two sections where the transformation tensor is obtained.

2.5.1.1 Transformation function based on J2 with symmetric tension-compression re-
sponse

By appropriate selection of the function Φ̃(σ), different material responses observed in

experiments can be modeled by this constitutive framework. There are numerous selections

for the transformation function of SMAs in the literature based on J2 [161], J2 − J3 [66],

J2 − I1 [14], and J2 − J3 − I1 [162]. The models with a transformation function based on

a J2 invariant are the simplest and the best choice for our purposes of seeking a closed-

form solution. However, by developing the constitutive equations based on J2 invariant,

although the majority of the SMA experimentally-observed responses are modeled with good

accuracy, the tension-compression asymmetry (that plays an important rule in bending as it

will be shown in the numerical results section) cannot be modeled. We will use a J2-based

model and also modify it by using a J2 − I1 model for taking into account the tension-

compression asymmetry. The function Φ̃(σ) for a J2-invariant based model is given by

Φ̃(σ) = ℵ
√
3J2 = ℵ

√
3

2
σ′ : σ′, (2.93)
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where ℵ is a material constant corresponding to the maximum transformation strain during

forward phase transformation in tension or compression. In (2.93) the deviatoric stress is

σ′ = σ − 1
3 (trσ)I, where I is the identity matrix. The transformation tensor associated

with this function is obtained as Γ = 3ℵ
2

σ′√
3J2

[128]. The evolution equation in this case

reads ε̇t = Γξ̇.

For studying pure bending in SMAs using the fact that the only non-zero stress com-

ponent is σx, the second deviatoric stress invariant is simplified and
√
3J2 = |σx|, where |.|

is the absolute value. The transformation tensor for pure bending in the case of J2-based

model is reduced to read

Γ = ℵ sgn(σx)

⎡
⎢⎢⎢⎢⎣

1 0 0

0 −0.5 0

0 0 −0.5

⎤
⎥⎥⎥⎥⎦ , (2.94)

where sgn(.) is the sign function. Substituting (2.94) into the evolution equation, if we

denote the transformation strain along the beam axis by εtx, the transformation strain com-

ponents in the cross section are εty = εtz = −0.5εtx and the other components are zero during

loading. This is equivalent to assuming that phase transformation is an isochoric (vol-

ume preserving) process, which is a consequent of considering the transformation function

based only on the J2-invariant. It is worth noting that in developing the three-dimensional

constitutive relations a more precise model is obtained by assuming a different transforma-

tion tensor related to the second deviatoric transformation strain invariant during reverse

phase transformation [127, 128], but in the present case of pure bending in which the normal

stress is the only non-zero stress component, the transformation tensors are identical during

forward and reverse phase transformations.

2.5.1.2 Modeling tension-compression asymmetry using a J2−I1-based transformation
function

It is experimentally well known that single crystal and polycrystalline shape memory alloys

have a non-symmetric tension-compression response [60, 63, 113, 182]. There have been

numerous efforts in the literature for better understanding the origins of this secondary

effect in SMAs and introducing appropriate constitutive relations capable of modeling this
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effect [17, 145, 153]. Most of the the existing constitutive relations for modeling the tension-

compression asymmetry are appropriate only for numerical simulations and not for closed-

form solutions because of their complexity. We use the J2−I1-based transformation function

that enables the constitutive relations to model the tension-compression asymmetry besides

relative simplicity compared to the other models [14, 162]. The function Φ̃(σ) for this model

is given by

Φ̃(σ) = η
√

3J2 + ω I1 = η

√
3

2
σ′ : σ′ + ω tr(σ), (2.95)

where η and ω are material constants related to the maximum transformation strains dur-

ing forward phase transformation in tension and compression. The transformation tensor

associated with the chosen function is given by Γ = 3η
2

σ′√
3J2

+ ωI [14]. The evolution func-

tion in this case is similar to the J2 model by replacing the transformation tensor with the

previously derived tensor. It is worth noting that by setting ω = 0 in the J2− I1 model, the

J2 model is not obtained because the material constants are calibrated separately for these

two models. The material constants in (2.95) can be calibrated for modeling the volumetric

strain or the tension-compression asymmetry. We will use the later method because we

are studying the effect of asymmetry of tension-compression response on the bending of

SMAs. However, it is shown that by calibrating the material constants in this manner, the

model will predict a positive volumetric transformation strain, which is unrealistic18 [162].

However, we are interested in the bending problem by considering the axial components

of stress and strain. The volumetric transformation strain has no effect on our solution.

In the special case that the only non-zero stress component is the normal stress σx, the

transformation tensor is given by

Γ = η sgn(σx)

⎡
⎢⎢⎢⎢⎣

1 0 0

0 −0.5 0

0 0 −0.5

⎤
⎥⎥⎥⎥⎦+ ω

⎡
⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ . (2.96)

18Experiments on polycrystalline NiTi show a negative change of volume during phase transformation.
J2 models predict a zero transformation volumetric strain and the J2 − I1 model leads to a positive value.
J2 − J3 − I1 models are able to account for a negative transformation strain.
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2.5.2 Stress-strain relationship for SMAs in pure bending

In the one-dimensional case corresponding to pure bending, substituting the transforma-

tions functions (2.93) and (2.95) into the expression of thermodynamic force (??) and the

transformation criteria (2.92) enable us to find an explicit expression for the martensitic

volume fraction. Using the relations between the constitutive model parameters (2.14) the

explicit expressions for the martensitic volume fraction in direct and inverse phase transfor-

mation for J2 and J2 − I1 models in pure bending after some mathematical manipulation

are simplified to read

ξ± =
1

ρb±

{
ℵ|σx|+ 1

2
σ2xΔS11 + ρΔs0(T − T±)

}
, (2.97)

for the J2-based model and

ξ± =
1

ρb±

{
η|σx|+ ωσx +

1

2
σ2xΔS11 + ρΔs0(T − T±)

}
, (2.98)

for the J2 − I1-based model, where the + and - symbols are used for indicating the loading

and unloading, respectively, and T+ = Ms, T
− = Af , ρb

+ = ρbM , and ρb− = ρbA.

Throughout this paper we use the superscripts + and - for any variable for indicating the

forward and reverse phase transformations, respectively.

Substituting the transformation tensors (2.94) and (2.96) into the evolution equation,

the explicit expressions εtx = ℵ sgn(σx)ξ and εtx = [η sgn(σx) + ω]ξ are obtained for the

J2 and J2 − I1 models, respectively. Considering an SMA beam subjected to bending both

the axial stress and transformation strain components are positive in the region that is

in tension and negative in the region that is subjected to compression. For the sake of

simplicity, we write the transformation strain based on J2 and J2 − I1 models with the

same equation εtx = (�cη̂ + ω̂)ξ, where the loading coefficient �c is +1 in tension and −1

in compression, and the parameters (η̂, ω̂) are replaced with (η, ω) for the J2 − I1 model

and replaced with (ℵ, 0) for the J2 based model. Substituting the resulting transformation

strain into (2.4) gives the following one-dimensional constitutive equation

εx = (SA11 + ξΔS11)σx + αA (T − T0) + (�cη̂ + ω̂)ξ, (2.99)
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where SA11 = 1/EA, ΔS11 = 1/EM − 1/EA (EA and EM are the elastic muduli of austenite

and martensite, respectively). Substituting the martensitic volume fractions (2.97), (2.98),

and using the Euler beam theory for the strain-curvature relation εx = −κy, where κ is

the axis curvature and y is the distance from the neutral axis into (2.99), the stress-strain

relation can be written as the following cubic equation

σ3x + a σ2x + b σx + c̃+ κ̃y = 0, (2.100)

where a, b, c̃, and κ̃ are constants given by

a =
3(�cη̂ + ω̂)

ΔS11
, b =

2ρΔs0(T − T±)
ΔS11

+
2(�cη̂ + ω̂)2 + 2ρb± SA11

ΔS2
11

,

c̃ =
2(�cη̂ + ω̂)ρΔs0(T − T±) + 2ρb±αA(T − T0)

ΔS2
11

, κ̃ =
2κρb±

ΔS2
11

. (2.101)

The cubic equation (2.100) is solved for σx as a function of temperature and strain. The

acceptable roots19 for the SMA material in tension and compression are

σt =
1

6
(A− 108κ̃y + P)

1/3 − 2b− 2a2/3

(A− 108κ̃y + P)
1/3

− a

3
, (2.102)

σc =
−1

12
(A− 108κ̃y + P)

1/3
+

b− a2/3

(A− 108κ̃y + P)
1/3

− a

3

−
√
3

2
i

[
1

6
(A− 108κ̃y + P)1/3 +

2b− 2a2/3

(A− 108κ̃y + P)
1/3

]
, (2.103)

where A = 36ab−108c̃−8a3, B = 162c̃−54ab+12a3, C = 12b3−3a2b2−54abc̃+12a3c̃+81c̃2,

and P = 12
√

81κ̃2y2 +Bκ̃y + C. It is worth noting that the expressions for stress in

tension and compression are real when the SMA material properties are substituted into

the coefficients (2.101). In order to simplify the expressions for stress, we also use the

trigonometric form of the roots of the cubic equation (2.100) as [2]

σt = cos

(
1

3
tan−1 θ

)
G − a/3, (2.104)

σc =
1

2
cos

(
1

3
tan−1 θ − 2π

3

)
G +

√
3

2
sin

(
1

3
tan−1 θ − 2π

3

)
G − a/3, (2.105)

where θ = 12
√

−81κ̃2y2 −Bκ̃y − C/(A− 108 κ̃y), and G = 1
3 (A

2 − 144C)1/6. The explicit

expressions in (2.104) give the exact value of stress. However, we need a simplified expression

19We choose the real positive root for tension, and the real negative root for compression. If there are
more than one positive or negative roots, the acceptable root is distinguished by considering the phase
transformation start and finish stresses (2.115).
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to calculate an explicit expression for bending moment later. As it will be shown in §2.5.4,
the typical values of material properties for SMAs lead to a large value for θ in (2.104). Using

the trigonometric identity tan−1 θ = π/2 − tan−1(1/θ), the argument of tangent inverse is

small and can be approximated as tan−1 θ � π/2− 1/θ. Substituting this approximation in

(2.104) and using the fact that the parameter β = 1/(3θ) is also small, and considering the

approximations cos β � 1 − β2/2, and sin β � β, the stresses in tension and compression

are given by

σt =

[(
1− 1

2
β2
)
cosϕ+ β sinϕ

]
G − a

3
, (2.106)

σc =

[(
1− 1

2
β2
)
cosϕ+ β sinϕ

]
G +

√
3

2

[
β cosϕ−

(
1− 1

2
β2
)
sinϕ

]
G − a

3
, (2.107)

where ϕ = π/6. After some algebraic simplifications, the stress-strain relationship in tension

and compression can be unified using the load condition coefficient �c as

σ =

[
�c

(
1− 1

2
β2
)
cosϕ+ β sinϕ

]
G − a

3
. (2.108)

We will present a detailed numerical study of the accuracy of the above approximation

for obtaining (2.106) from the exact expressions in (2.104) for different curvature values in

§2.5.4. It will be shown that these approximate formulas give accurate results even for large

curvatures.

2.5.3 Bending moment-curvature relationship for SMAs in bending

In this section we present a closed-form relationship between the bending moment and

curvature in SMAs subjected to bending using the explicit stress-strain relations obtained

in the previous section. We will introduce the formulas with some different simplifying

assumptions. The accuracy of each approximation is numerically studied in §2.5.4 versus

the exact solution that is obtained by using the exact stress-strain relationships (2.104)

or (2.102) and using numerical integration in the cross section for obtaining the bending

moment-curvature response.

The bending moment-curvature relationship for an SMA beam with an arbitrary cross

section is given by M =
∫
Ω yσ(y)dA, where M is the bending moment, y is the distance
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from the neutral axis, and Ω represents the cross section. In the most general case, the

cross section is divided into three regions: an elastic core in which the phase transformation

has not started, a middle part with phase transformation, and the outer part in which

the material is fully transformed to martensite. In order to calculate the total bending

moment, the bending moment in each part should be found and summed in the whole

cross section. The most complicated section to be solved is the middle part with active

phase transformation. However, the bending moment in this section can be calculated

explicitly by using the stress distributions given in (2.108). In addition to the bending

moment that is obtained using the complete stress expression (2.108), we present two more

explicit expressions for the bending moment obtained by imposing simplifications on the

stress distribution. We will numerically study the accuracy of these simplifying assumptions

in §??. The simplified relations can be later used for developing closed-form solutions in

more complicated cases, e.g. for studying the large deflection of SMA cantilevers. We start

with the complete stress distribution in (2.108). For calculating the bending moment, the

stress distribution (2.108) should be used only in the portion of the cross section with phase

transformation. We present a method for finding the boundaries of this section in the sequel

(see (2.117)). For a rectangular cross section, we can write

I 1 =

∫
yσ(y)wdy =

−1

2916

wG
√
R(−54κ̃y + A+B) sinϕ

κ̃2
− 1

2916

wcG y(3A+ 2B) cosϕ

κ̃

+
19

36
wy2cG cosϕ− 1

6
wy2a− 1

23 38
wG tan−1 (S) (B2 − 108C + A B) sinϕ

κ̃2

+
1

26 310
wcG ln (−R) (−1296C + 9A2 + 24AB + 16B2) cosϕ

κ̃2

+
1

25 310
wcG tanh−1 (Q) [−3888C(A+B) + 9A2B + 24AB2 + 16B3] cosϕ

κ̃
√
B2κ̃2 − 324 κ̃2C

+ C1, (2.109)

where w is the cross section width, C1 is the constant of integration, and

R = −81 k̃2y2 −Bky − C, Q =
162 k̃2y +Bk̃√
B2k̃2 − 324 k̃2C

, S =
9 k̃√
R

(
y +

1

162

B

k̃

)
. (2.110)

The other parameters in (2.109) are all defined in the previous sections. We use this expres-

sion for calculating the total bending moment in the cross section later on. Before doing

that, we first present two more expressions for this integral using the following simplifica-

tions. Considering the typical material properties for polycrystalline SMAs, it can be shown
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that in the term θ = 12
√

−81κ̃2y2 −Bκ̃y − C/(A−108 κ̃y), |−C| � |−Bκ̃y| > |−81κ̃2y2|.
We consider two simplifying approximations in calculating the bending moment by ignoring

the first term and the first two terms in the nominator of the expression for θ. The accuracy

of these approximations will be numerically studied in §2.5.4.1. By ignoring the first term

(−81κ̃2y2), the integral required for calculating the bending moment for a rectangular cross

section is given by

I 2 =

∫
yσ(y)wdy =

6

5

wG (−Bκ̃y − C)5/2 sinϕ

B3κ̃2
+ 4

wGC (−Bκ̃y − C)3/2 sinϕ

B3κ̃2

+
1

54

wGA (−Bκ̃y − C)3/2 sinϕ

B2κ̃2
+

1

18

wGCA
√−Bκ̃y − C sinϕ

B2κ̃2

+ 6
wGC2√−Bκ̃y − C sinϕ

B3κ̃2
+

3

2

wcG κ̃y
3 cosϕ

B
+

1

2
wy2cG cosϕ

− 1

24

wy2cGA cosϕ

B
− 1

6
wy2a− 9

4

wy2cGC cosϕ

B2
+

1

2592

wcG yA
2 cosϕ

Bκ̃

+
1

12

wcG yCA cosϕ

B2κ̃
+

9

2

wcG yC
2 cosϕ

B3κ̃
− 1

2592

wcGCA
2 ln (Bκ̃y + C) cosϕ

B2κ̃2

− 1

12

wcGC
2A ln (Bκ̃y + C) cosϕ

B3κ̃2
− 9

2

wcGC
3 ln (Bκ̃y +C) cosϕ

B4κ̃2
+ C2, (2.111)

where C2 is the constant of integration. By ignoring the first two terms, this integral is

simplified to read

I 3 =

∫
yσ(y)wdy =

9

8

w�cG k̃2y4 cosϕ

C
+

1

3

(
−1

12

w�cAk̃ cosϕ

C
− 3

wk̃ sinϕ√−C

)
G y3

+
w

2

{[
�c cosϕ

(
1 +

1

2592

A2

C

)
+

1

36

A sinϕ√−C

]
G − 1

3
a

}
y2 + C3, (2.112)

where C3 is the constant of integration. The integrals (2.109)-(2.112) are calculated for

a rectangular cross section. We study the circular cross section later in this section. For

obtaining a complete description of the moment-curvature relation, it is necessary to find

the boundaries of the region in which the phase transformation occurs. We obtain these

boundaries for the loading phase first. Later we show that a different approach should be

used for unloading. In the most general case in loading, the cross section is divided into

three sections. A schematic of the cross section for a rectangular superelastic beam is shown

in Figure 2.45. The fist region includes the neutral axis and the phase transformation has

not started in this region (ξ = 0). In the second region (region II) the phase transformation

has started but has not been completed (0 < ξ < 1). The third region (region III) contains

the material with completed phase transformation from austenite to martensite (ξ = 1).
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Figure 2.45: A schematic of the rectangular cross section.

When using the J2-based model, the neutral axis is located at the centroid of the beam

(YNA = 0 in Figure 2.45) and the three regions are symmetric with respect to the center

line. However, for the J2 − I1-based model, the neutral axis is not located on the center

line. To find the neutral axis location in this case, the force equilibrium in each cross section

along the beam axis (
∑
F = 0) should be enforced, which reads

1

2
EAκy21t +

(
Ĩ
∣∣∣
y=y1t

− Ĩ
∣∣∣
y=y2t

)
+ EM

[
1

2
κ(y22t −

h2t
4
)−Ht(y2t +

ht
2
)

]

−1

2
EAκy21c +

(
Ĩ
∣∣∣
y=y2c

− Ĩ
∣∣∣
y=y1c

)
+EM

[
1

2
κ(
h2c
4

− y22c)−Hc(
hc
2

− y2c)

]
= 0, (2.113)

where Ht and Hc are the maximum transformation strain in tension and compression,

respectively. The parameters ht and hc are the maximum distance from the neutral axis in

the tension and compression regions, respectively (see Figure 2.45). The first three terms

in (2.113) correspond to the force in sections below the neutral axis subjected to tension,

and the next terms represent the force above the neutral axis in compression (a positive

curvature is assumed). The terms containing Ĩ represent the force corresponding to region
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II with 0 < ξ < 1 given by

Ĩ =

∫
σ(y)dy = �cG y cosϕ− 1

12

�cG y
(
−27Bk̃y +BA+ 54C

)
cosϕ

B2

+
1

2592

�cG ln
(
Bk̃y + C

) (
A2B2 + 216CAB + 11664C2

)
cosϕ

B3k̃

− 2
G
(
−Bk̃y − C

)3/2

sinϕ

B2k̃
− 1

18

G
√
−Bk̃y − C (BA+ 108C) sinϕ

B2k̃
− 1

3
ay + C4,(2.114)

whereC4 is the constant of integration. In (2.113) we need to calculate the values y1t, y2t, y1c,

and y2c to obtain the neutral axis position. The stress values corresponding to the start and

finish of phase transformation during loading phase can be calculated by replacing ξ+ = 0

and ξ+ = 1 into (2.98) and solving for stress. These are given by

σs =
−(�cη̂ + ω̂) +

√
(�cη̂ + ω̂)2 − 2ΔS11ρΔs0(T −Ms)

ΔS11
, (2.115)

σf =
−(�cη̂ + ω̂) +

√
(�cη̂ + ω̂)2 − 2ΔS11 (ρΔs0(T −Ms)− ρbM )

ΔS11
, (2.116)

where the loading factor �c is equal to +1 in tension and −1 in compression. Using these

stress values the boundaries of various regions in the cross section are given by

y1t =
σs|�c=1

κ EA
, y2t =

(η̂ + ω̂) EM + σf |�c=1

κ EM
, y1c =

σs|�c=−1

κ EA
, y2c =

(−η̂ + ω̂) EM + σf |�c=−1

κ EM
.

(2.117)

Substituting (2.114)-(2.117) into (2.113) and considering the fact that hc = h − ht, where

h is the cross section height, this equation can be solved for ht. This gives the neutral axis

position corresponding to κ. It is worth noting that this formulation corresponds to the

most general case in which the cross section is divided into three regions. It is obvious that

if |y2t| > ht or y2c > hc, region III is not formed in the tension or compression part of the

cross section and the above equations can be modified by eliminating the terms associated

with this region.

Bending moment at each cross section along the length of the superelastic beam is

related to the curvature by

M = −1

3
EAκw(y31c − y31t) +

(
I i

∣∣∣
y=y2c

− I i
∣∣∣
y=y1c

)
+ EMw

[
1

3
κ(
h3c
8

− y32c)−Hc(
h2c
4

− y22c)

]

+

(
I i

∣∣∣
y=y1t

− I i
∣∣∣
y=y2t

)
+ EMw

[
1

3
κ(y32t −

h3t
8
)−Hc(y22t −

h2t
4
)

]
, (2.118)
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where the superscript i is replaced by 1, 2, or 3 for different approximations given in (2.109)-

(2.112). It is worth noting that when the terms I are evaluated in tension regions, the

loading coefficient �c = 1 and in the compression regions �c = −1. The solution procedure

for the loading phase is as follows. Bending moment along the beam axis is calculated by

considering the external force and the boundary conditions. At each cross section bending

moment is known and the curvature should be found by solving the nonlinear algebraic

equation (2.118). In the case of the J2-based model, this equation can be solved indepen-

dently because the neutral axis location is known due to symmetry, i.e. hc = ht = h/2.

However, in the case of using the J2− I1-based model, the neutral axis position is unknown

and should be obtained by solving (2.113) in which the curvature is assumed known. For

solving these equations simultaneously, a numerical scheme is used [55]. In this numeri-

cal method, in each iteration, curvature κ in (2.118) is given an initial value. This initial

value is substituted into (2.113) and the neutral axis position is obtained. The calculated

neutral axis position is returned to evaluate the right-hand side of (2.118). Comparing the

calculated bending moment at that cross section with the bending moment obtained from

the external force, curvature is modified [55]. The iterations are stopped when a tolerance

is achieved between the applied bending moment at each cross section and the right-hand

side of (2.118). When the curvature value is found the lateral deflection is calculated using

κ = d2v
dx2

, where v is the lateral deflection and x is measured along the beam axis. The

integration constants in curvature-lateral deflection relationship are found by imposing the

appropriate boundary conditions.

In the unloading phase, in the most general case the cross section may be divided into

three regions. The material in the inner region with elastic response in loading (y1t < y <

y1c) experiences elastic unloading. The outer regions with phase transformation in loading

are divided into two regions during unloading; one with elastic unloading and the other one

with reverse phase transformation in unloading. To obtain the boundaries of these regions

consider a generic point in the cross section. If we denote the martensitic volume fraction

at the end of loading for this point by ξ∗, the critical stress for the start of reverse phase

transformation in unloading is given by replacing ξ− in (2.97) or (2.98) by ξ∗ and solving
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the resulting equation for stress. Using the properties defined for the evolution equation

(see below (2.98) for definitions), this critical stress is given by

σc =
−(�cη̂ + ω̂) + �c

√
(�cη̂ + ω̂)2 − 2ΔS11ρΔs0(T −Af )− ρbAξ∗

ΔS11
. (2.119)

During unloading, the elastic change of stress at a generic location is calculated by Δσ =

−(EA + ξ∗ΔE)(−κ∗y + κuy), where y is the distance of the point from the neutral axis.

The parameters κ∗ and κu are the curvature of the corresponding cross section at the end

of the loading phase and the curvature in unloading, respectively. Now we can evaluate

the start of reverse phase transformation by comparing the stress σe = σ∗ −Δσ (σ∗ is the

stress value at the end of loading phase) with σc. For |σe| > |σc|, the phase transformation

in unloading has not started. In this case stress is equal to σe and ξ = ξ∗. If |σe| ≤ |σc|,
the reverse phase transformation has started. The stress and martensitic volume fraction

are obtained from (2.97), (2.98), and (2.108) by considering the superscript “-” and the

appropriate loading condition parameter �c = ±1. For sake of brevity, the details of the

bending moment-curvature relations and the process of finding the neutral axis position in

unloading are not presented here. However, this procedure is very similar to the loading

case.

For analyzing beams with circular cross sections a similar method is used where Ω is

the area enclosed by the horizontal chords at y1t and y2t, and also the area between y1c and

y2c in the cross section. In this case, we use a trapezoidal numerical integration method to

obtain the bending moment-curvature relationship.

2.5.4 Numerical results

In this section, several case studies are presented for superelastic beams with circular and

rectangular cross sections subjected to loading-unloading cycles. The results of both J2 and

J2 − I1 models are presented. The J2-based solution is compared with a three-dimensional

finite element model and the J2 − I1 results are presented to show the effect of taking into

account the tension-compression asymmetry on the bending response of superelastic beams.

Some experimental data for bending of a nickel-titanium micropillar are used to verify the

applicability of the present method for modeling bending in the micro scale. The available
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material response in compression and bending are used for extracting the material response

in tension, which is very difficult to measure in experiments. The resulting tensile and

compressive properties are compared with the nickel-titanium constitutive relations and it

is shown that the predicted response in tension is in good agreement with the single-crystal

theoretical response (see the end of §2.5.4.6).

2.5.4.1 The accuracy of the proposed approximations

In §2.5.2 we presented the exact stress distribution (2.104). Using this stress distribu-

tion needs a numerical integration for obtaining the bending moment-curvature relation.

Using some assumptions an approximate stress distribution is given in (2.108), which

can be used for calculating explicit expressions for the the bending moment-curvature

relation. We used three different simplifying assumptions for calculating the bending

moment as a function of curvature (see I i, i = 1, 2, 3 in (2.109)-(2.112)). In this

section we compare the bending moment-curvature relationship obtained by the exact

stress distribution and numerical trapezoidal integration with the results of the three ap-

proximations. A rectangular cross section with h = 1 cm and width w = 1.5 mm is

considered. The J2-based model is used for this comparison. The material properties

for Ni50Ti50 [79] are used for obtaining the necessary constants in the constitutive re-

lations (see Qidwai and Lagoudas [162] for details of extracting constitutive model con-

stants from experimental data): EA = 72MPa, EM = 30MPa, νA = νM = 0.42,

ρcA = ρcM = 2.6× 106 J/(m3K), Ht = 0.05, Hc = −0.035, (dσ/dT )At = 8.4× 106 J/(m3K),

ρΔs0 = −Ht(dσ/dT )At = −0.42×106 J/(m3K), Af = 281.6K, As = 272.7K, Mf = 238.8K,

Ms = 254.9K. For implementing the J2-based model, the constants in the transformation

function are set to η̂ = ℵ = Ht, and ω̂ = 0. The temperature is T = T0 = 300 K and an

isothermal loading-unloading process is assumed (see [128] for a detailed study of isothermal

process and thermomechanical coupling in the response of SMAs). The bending moment-

curvature relation is depicted in Figure 2.46. As it is seen, all the approximations are in

good agreement with the solution obtained form the exact stress distribution even for large
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curvature values. We use the approximation II (given in (2.111)) throughout the numer-

ical results of this paper. We use the third approximation in a future communication for

considering the large deflection effects.

0 2 4 6 8 10
0

50

100

150

200

250

300

κ (m−1)

M
 (N

m
)

 

 
Approximate I
Approximate II
Approximate III
Exact

 

 

Figure 2.46: The bending moment-curvature relationship calculated by the exact stress
distribution with trapezoidal integration, and three different approximate explicit integrals
(2.109), (2.111), and (2.112) of §2.5.3.

2.5.4.2 J2-based model

In this section the results of the J2-based model are presented. We compare the analyti-

cal results obtained from the present formulation with those of a three-dimensional finite

element simulation. The three-dimensional constitutive relations of §2.5.1 are used and an

appropriate user subroutine (UMAT) is written by FORTRAN in the commercially avail-

able finite element program ABAQUS that enables this code to model SMA structures using

solid elements and some two-dimensional elements. The details of implementing the consti-

tutive equations in a displacement-based finite element formulation are given in [126]. The

finite element framework is validated by comparing its results with many experimental tests

and analytical solutions in [127, 129, 131]. An SMA cantilever with length L = 10 cm is

considered in this section. The rectangular cross section has a height of h = 1 cm and width
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w = 1.5 mm. Three-dimensional quadratic brick elements with reduced integration (ele-

ment C3D20R in ABAQUS) are used in the finite element method. A convergence analysis

is performed for choosing the appropriate number of elements by considering the normal

stress distribution in the cross section and the load-displacement response as the conver-

gence criteria. The stress distribution is considered to be converged when the maximum

difference is smaller than 0.1MPa and the convergence criterion of the maximum difference

for the load-displacement response is 10N. A total of 6000 elements are used for modeling

the cantilever beam (100× 20× 3 elements in length, width, and thickness directions). All

the finite element simulations are done using this mesh. The material properties are the

same as the case study in §2.5.4.1. The temperature is T = T0 = 300 K and the isothermal

loading-unloading process is assumed. The superelastic cantilever is subjected to a trans-

verse tip load. The load-tip deflection is calculated by the present analytical method and

the results are compared with the numerical simulation results in Figure 2.47.
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Figure 2.47: Force versus tip deflection for an SMA beam with rectangular cross section
(b=1.5 mm, h=1 cm, and L=10 cm).

As it is shown, even for this relatively large deflection (the tip deflection is four times

the height of the beam), the results are in good agreement (with a maximum 14% error).
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The finite element results show stiffening at the end of loading phase as the slope of force-

deflection increases while the analytical solution predicts an almost constant gradient. This

difference is mainly caused by the nonlinear geometric effects that are ignored in the present

solution and included in the numerical simulations. It is worth noting that the finite element

simulation is completed in about two hours on a 2 GHz CPU with 2 GB RAM while the

analytic solutions are obtained in a few seconds on the same system. Also as it is seen

in Figure 2.47, the numerical simulation in unloading is not completed. This happens

due to some convergence issues in most numerical simulations during unloading, especially

in the case of large deflections or complicated geometries. While achieving convergence

in the finite element simulation requires an excessive effort by refining the mesh size and

modifying the numerical algorithms, the present analytic solution is a reliable method. The

present method can also be used as a benchmark for validating the numerical simulations.

In order to study the capability of the present formulation in calculating the stress and

martensitic volume fraction distributions, the cross section of the superelastic cantilever at

the clamped edge is considered. The stress distribution at the end of the loading phase is

shown in Figure 2.48(a) and the martensitic volume fraction is shown in Figure 2.48(b).

As it is shown the closed-form solution calculates both the stress and martensitic volume

fractions accurately. It is worth noting that in the finite element simulation the outputs

are averaged between integration points and this makes the results smooth compared to the

analytical solution. As it is seen in these figures, the core remains austenite without phase

transformation. By considering pure bending, the stress around the neutral axis is zero and

there is always an austenite core without phase transformation even for large deflections.

By considering the shear effect in bending, the stress at the core is nonzero which may cause

phase transformation at the core as well. However, except for very thick beams the pure

bending theory gives accurate results and this is reflected in comparison of the results with

the finite element solution that considers the shear effect.

The contour plots of the stress and martensitic volume fraction distributions at the

end of the loading phase obtained from the present closed-form solution are depicted in

Figure 2.49 and compared with the finite element results. As it is shown, the deformed
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Figure 2.48: Comparison of the finite element and analytical results for (a) normal stress
and (b) martensitic volume fraction distribution at the clamped edge of an SMA beam with
rectangular cross section subjected to bending. The results correspond to the end of the
loading phase (see Figure 2.47).

shape obtained by the present method is slightly different from the numerical simulation

prediction. Also, the analytic solution (in this section we are using the J2-based model) is

predicting symmetric stress and martensitic volume fraction distributions, while the finite

element results show a slight asymmetry along the beam axis. Note that in our solution the

nonlinear geometry effects and the displacement along the beam axis direction are ignored

while the numerical simulations show a minor deflection along the axis due to geometric

nonlinearities. As shown in Figures 2.47-2.49, the present method gives accurate results

even for the large deflection chosen in these case studies. It is worth nothing that the

accuracy of the results based on small deflection assumption is geometry dependent. The

geometry in the above case studies is chosen such that phase transformation starts in the

cross section even for moderate tip deflections (in the order of thickness). If other geometries

are chosen (e.g. the same beam in another direction with height h = 1.5 mm and width

w = 1 cm), very large deflections are required for the phase transformation to start, and

using the solutions based on the small deflection assumption leads to large errors in those

cases. However, there are numerous applications for which the approach of this paper gives

accurate results (e.g. the micropillar studied at the end of this section).

As another case study, consider a superelastic cantilever with circular cross section. The
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Figure 2.49: Contour plots of the normal stress (a and c) and the martensitic volume
fraction distributions (b and d) obtained by the analytical solution (a and b), and the finite
element solution (c and d) for a beam with rectangular cross section subjected to bending.
The results correspond to the end of loading phase (see Figure 2.47).

material properties are the same as those of the previous case study and the dimensions

are R = 5 mm and L = 10 cm, where R is the cross section radius. A total of 9600

three-dimensional quadratic brick elements with reduced integration (element C3D20R in

ABAQUS) are used in the finite element model (a cross section of the mesh is shown in

Figure 2.52). The cantilever is clamped at one end and a transverse load is applied at the

other end as shown in Figure 2.50. The applied force versus the tip deflection obtained

by the present analytical method is shown in Figure 2.50 and compared with the finite

element results. As it is seen, the finite element results again suffer from convergence issues

during the unloading phase and this causes the solution to terminate before completion.

The results are in a good agreement (with a maximum 11% error) even for the relatively
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large deflection (four times the bar diameter). The results for the calculated stress and
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Figure 2.50: Force versus tip deflection for an SMA beam with circular cross section (R=5
mm, and L=10 cm).

martensitic volume fraction corresponding to the end of the loading phase at the clamped

edge are compared in Figure 2.51. The results are depicted along a vertical path passing

through the center of the cross section at the clamped edge.
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Figure 2.51: Comparison of the finite element and analytical results for (a) normal stress
and (b) martensitic volume fraction distribution at the clamped edge of an SMA beam with
circular cross section subjected to bending. The results correspond to the end of loading
phase (see Figure 2.50).

The contour plots of the stress and martensitic volume fraction distributions are shown
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in Figure 2.52. These contours are plotted for a vertical section passing through the axis of

the bar (see Figure 2.50 for the geometry). As mentioned earlier, a slight difference in the

deformed shape and the asymmetry of distributions observed in the finite element outputs

both result from ignoring the geometric nonlinearities in the present formulation. In the
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Figure 2.52: Contour plots of the normal stress (a and c) and the martensitic volume
fraction distributions (b and d) obtained by the analytical solution (a and b), and the finite
element solution (c and d) for a beam with circular cross section subjected to bending. The
results correspond to the end of loading phase (see Figure 2.50).

results presented in this section, both the numerical simulations and the analytic solutions

are based on the J2 model. The effect of taking into account the tension-compression

asymmetry on the response of SMAs is considered by using the J2 − I1-based model and

the results are presented in the next section.
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2.5.4.3 Effect of tension-compression asymmetry on the bending response of SMAs

Most shape memory alloys including NiTi exhibit significant different responses in tension

and compression when subjected to uniaxial loading. Bending is readily affected by this

phenomenon because the material is subjected to both tension and compression in bending.

We presented a J2−I1-based model capable of modeling the tension-compression asymmetry

in §2 and 3. The constitutive model parameters should be calibrated using the experimental

data. Denoting the maximum transformation strain in tension and compression by Ht and

Hc, respectively, the J2 − I1 model parameters are given by η̂ = η = 1
2 (H

t + |Hc|), and
ω̂ = ω = 1

2(H
t − |Hc|). We consider the material properties used in the previous section

and modify the constitutive relations parameters by implementing the above modifications.

The response of a NiTi alloy with these properties in uniaxial compression is calculated

using both the J2 and J2 − I1 models as shown in Figure 2.53. It is worth noting that the

material response in tension is identical for both models and equivalent to the results of

the J2-based model in Figure 2.53 with positive stress and strain values. As it is shown

in Figure 2.53, the J2 − I1-based model predicts the start of the phase transformation at

larger absolute values of stress, and also predicts a lower compressive strain for completion

of phase transformation compared to the J2-based model. This phenomenon is in agreement

with experimental data [59, 60]. The experimental data of Jacobus et al. [79] were used

in [162] and the accuracy of the presented J2 − I1-based model was studied for modeling

uniaxial loading. We are using the same constitutive model and material properties for

studying bending of SMA beams.

Consider a cantilever superelastic beam with rectangular cross section with the same

dimensions, temperature, and boundary conditions as those of the case study of §2.5.4.2.
For comparison purposes we study the results of J2 and J2−I1-based models to analyze the

effect of taking into account the tension-compression asymmetry on the bending response

of superelastic beams. The tip deflection versus applied force is depicted in Figure 2.54.

Two different case studies are solved with the J2 model. In one case the beam is subjected

to the same force as in the J2− I1-based case study, and in the other one the tip deflections

of both beams are equal. As it is shown, the tension-compression asymmetry significantly
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Figure 2.53: Axial stress versus axial strain for J2 and J2 − I1 transformation functions
under uniaxial compression loading-unloading.

affects the bending response. In the same deflection case, a maximum of 16% difference is

seen in the applied force and in the same force case, the tip deflection differs by a maximum

value of 41% at the end of the loading phase. The stress and martensitic volume fraction

distributions at the clamped edge are shown in Figure 2.55 for this case study at the end

of the loading phase. As it is seen in Figure 2.55(a), the J2 − I1 model predicts the zero

stress above the cross section center (y=0). The non-symmetric martensitic volume fraction

distribution is shown in Figure 2.55(b). It is worth noting that the minor symmetry observed

in the FE results is caused by the effect of large deflections, mainly because the load at

the tip is considered always vertical in the FE analysis (the load is not rotating as the tip

rotates).

The zero stress point defines the neutral axis position that is found by solving (2.113)

as explained in §2.5.3. As expected (see Figure 2.53), the absolute value of stress predicted

by the J2 − I1-based model is larger compared to the predicted values by the J2-based

model. This phenomenon causes a larger force at the compression portion of the cross

section, and the neutral axis is shifted up toward the compression part in order to satisfy
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Figure 2.54: Comparison of the force-tip deflection response for an SMA beam calculated
by the J2 and J2 − I1 based models. Two different cases of equal tip deflection and equal
applied force are presented (the cross section is rectangular with b=1.5 mm, h=1 cm, and
L=10 cm).
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Figure 2.55: Comparison of the J2 and J2 − I1-based model results for (a) normal stress
and (b) martensitic volume fraction distribution at the clamped edge of an SMA beam with
rectangular cross section subjected to bending. Two different cases of equal tip deflection
and equal applied force are presented. The results correspond to the end of loading phase
(see Figure 2.54).
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equilibrium. It is worth noting that the height of the phase transformation area is smaller

in the compression part due to smaller maximum compressive transformation strain (see

Figure 2.53) and this causes a slight downward movement of the neutral axis towards the

centerline as the phase transformation area (section II in Figure 2.45) is formed in the cross

section. For having a detailed view of the neutral axis position with respect to the applied

bending moment, this position is plotted along the axis of the beam (in which the bending

moment is varying linearly) in Figure 2.56. As it is shown, in the regions far from the

clamped edge in which the material responds elastically due to small bending moments, the

neutral axis coincides with the centerline. Increasing the bending moment (decreasing x on

the horizontal axis), the neutral axis distance from the centroid increases up to a specific

bending moment value (M = 17.5 Nm at x = 1.75 cm in the present case study). By

increasing the bending moment above this critical value, the neutral axis distance from the

centroid decreases slightly due to spread of the fully transformed area.
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Figure 2.56: The location of neutral axis with respect to the cross section centroid along
the length of an SMA beam subjected to bending.

The contour plots of martensitic volume fraction at the end of the loading phase near

the clamped edge are shown in Figure 2.57 and the results are compared for the J2 and

J2 − I1 models (for case study with identical tip deflections). An asymmetric distribution
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is clearly seen in Figure 2.57(a) and the neutral axis position is shown. As it is seen, the

neutral axis coincides with the centerline in the regions far from the clamped edge where

the phase transformation has not started. Figure 2.54 shows the significant effect of this

asymmetry on the force-deflection response of the superelastic cantilever.
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Figure 2.57: Contour plots of the martensitic volume fraction distribution near the clamped
edge obtained by (a) J2 − I1 and (b) J2 models for a beam with rectangular cross section
subjected to bending. The results are for the equal tip deflection at the end of loading
phase (see Figure 2.54).

2.5.4.4 Materials with large tension-compression asymmetries

It is shown in experiments that the material properties in shape memory alloys, particularly

NiTi, are strongly affected by the deformation processing. Frick et al. [56] studied the

properties of cast and deformation processed polycrystalline NiTi (Ti-50.9 at. pct Ni) bars.

They have shown that while the material response for the cast NiTi samples is almost

symmetric in tension and compression, a cast, hot rolled, then cold drawn material exhibits

a very large asymmetry in tension-compression response. The maximum transformation

strain in tension is reported more than two times the maximum transformation strain in

compression for the hot rolled, then cold drawn material with a significant difference in

the stress levels in the stress-strain plateau (see Figure 2.58). Such a large asymmetry in

tension-compression response causes numerical instabilities in the finite element simulations.

However, our closed-form solution does not suffer from such instabilities. In order to study
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the applicability of our analytic solution for modeling bending of SMA beams with very

large tension-compression asymmetry, a superelastic beam with rectangular cross section

is considered. The geometry and boundary conditions are the same as those of the case

studies in §2.5.4.2. The experimental results for the stress-strain response of the material

is shown in Figure 2.58. The material properties in the constitutive model are calibrated

as follows: EA = 63MPa, EM = 35MPa, νA = νM = 0.3, Ht = 0.047, Hc = −0.02,

(dσ/dT )At = 6.4 × 106 J/(m3K), ρΔs0 = −Ht(dσ/dT )At = −0.3008 × 106 J/(m3K), Af =

300K, As = 273K, Mf = 218K, Ms = 254K. We use the J2−I1-based model for analyzing

this problem by setting η̂ = η = 1
2(H

t + |Hc|) and ω̂ = ω = 1
2(H

t − |Hc|). The ambient

temperature is T = T0 = 27◦C. The model prediction for the stress-strain response in

uniaxial loading is compared with the experimental data in Figure 2.58. It is worth noting

that the experimentally observed difference in the Young modulus in tension and cmpression

is ignored in our solution. The difference of elastic modulus in tension and compression

has been reported in Plietsch and Ehrlich [156] without explaining its origin. Frick et al.

[56] used various experimental results and asserted that the asymmetry of the tensile and

compressive response of the elastic modulus is caused by strain contributions related to the

transformation, such as martensite interface motion, or pre-martensitic deformation modes

such as the R-phase. These strain contributions are strongly affected by the texture of a

polycrystalline SMA and a micromechanical model can be used to capture such effects, while

phenomenological models ignore this asymmetry. Also, the smooth hardening observed at

the end of stress-strain plateau can be simulated in phenomenological models by using

higher degree polynomials or trigonometric hardening functions [92]. We have chosen the

quadratic function (2.3), which ignores this effect, for obtaining a closed-form solution. A

transverse load F = 210 N is applied to the superelastic cantilever (see Figure 2.47 for the

geometry and loading). The martensitic volume fraction distribution in the cross section

near the clamped edge is shown in Figure 2.59(a). Comparing this distribution with the

results in the previous case study given in Figure 2.57(a), it is seen that for the material

with the larger asymmetry, the neutral axis position moves further into the compression

region, and the martensitic volume fraction distribution is considerably asymmetric with
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Figure 2.58: The stress-strain response in uniaxial loading for a cast, hot rolled, then cold
drawn polycrystalline NiTi with a large tension-compression asymmetry [56].

respect to the centerline. The stress distribution in the cross section near the clamped edge

of a beam made of this material with large tension-compression asymmetry is shown in

Figure 2.59(b). As it is seen, the compression part is considerably smaller than the tension

region. This is expected from the stress-strain response shown in Figure 2.58. The large

asymmetry in the stress and martensitic volume fraction distributions clearly shows that

using a symmetric constitutive model for this case leads to erroneous results. Our model

is stable in modeling the bending of superelastic SMA beams made of materials with large

asymmetries in tensile and compressive responses.

2.5.4.5 Three-point bending test of a NiTi beam

A NiTi shape memory alloy beam is used to compare the experimental and the correspond-

ing theoretical results. A schematic of the setup for performing the three-point bending

test is shown in Figure 2.60. The length of the SMA beam is L = 170 mm and the cross

section is rectangular with w =7.5 mm and h =3 mm. The SMA beam is made of nearly

equiatomic NiTi alloy and the material properties of Ni50Ti50 [79] as mentioned in §2.5.4.1
are used for developing the analytic solution. It is worth noting that thermal treatments

and deformation processing may change the material properties slightly. However, in this

128



0 0.1 0.2 0.3 0.4 0.5-0.5

0

0.5

1

1.5

0.2
0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

x/L

y/
h

0 0.1 0.2 0.3 0.4 0.5-0.5

0

0.5

1

1.5

x/L

y/
h

−-895
−-723

−550 −378 −206

633457

370
282

194

106
19

Center Line
Neutral Axis

Center Line
Neutral Axis

                                      (a)                                                                                              (b)

Figure 2.59: Contour plots of (a) the martensitic volume fraction distribution, and (b)
the stress distribution near the clamped edge for a material with large tension compression
asymmetry (see Figure 2.58).

case by performing a simple tension test on the sample, it was observed that using the

same material properties predicts the response in tension with an acceptable accuracy (see

Mirzaeifar et al. [129] for some examples of comparing the response of SMA samples in

uniaxial tests with the results predicted by the present constitutive equations). A 250 kN

MTS Universal Testing Machine is used for performing the three-point bending test with

the setup shown in Figure 2.60. The maximum deflection of the center is set to δ =20

mm and the loading-unloading is performed slowly to ensure the isothermal condition. The

Figure 2.60: The experimental setup for the three-point bending test of an SMA beam.
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non-dimensional load-deflection response of the beam obtained from the experiment is com-

pared with the theoretical results in Figure 2.61. As it is shown in this figure, the loading

response is accurately predicted by the J2 − I1-based model. However, the results in the

unloading phase show a larger difference. This is because the constitutive equations used

in this work (with the choice of polynomial hardening function) cannot predict the smooth

stress-strain plateau in unloading and this difference is more when unloading starts before

the material is fully transformed to martensite (ξ < 1). In the presented test, the thickness

of the SMA beam is small and the phase transformation is not completed in most parts of

the cross section (see the previous sections for some examples of SMA beams with larger

thicknesses). By increasing the thickness, the error in the unloading phase is decreased

remarkably. It is worth noting that by modifying the hardening function (2.3) the consti-

tutive equation results improve in the unloading phase [92]. However, more complicated

hardening functions are not suitable for developing closed-form solutions.
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Figure 2.61: Comparison of the non-dimensional load-deflection response obtained from
three-point bending test and theoretical solutions.
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2.5.4.6 Bending of micropillars

As was mentioned earlier, one application of the presented analytic solution is the assess-

ment of material properties in tension (compression) when the bending and compressive

(tensile) responses are known but performing tension (compression) tests is practically dif-

ficult. The presented solution is developed based on the constitutive equations suitable

for polycrystalline SMAs, and an example of such application for polycrystalline SMAs is

to obtain the compressive response of tiny wires using the known bending and tensile test

results. However, we will consider a different example in this section. Although the con-

stitutive equations of this paper are developed for modeling polycrystalline SMAs, we will

show that the analytical solution of this paper can also be used as an approximation for

studying the single crystal NiTi micropillars with specific orientations with a significant

hardening in the stress-strain response.

In this section we study the superelastic response of NiTi microscale pillars. Nickel-

titanium nano to micro scale pillars have been extensively studied experimentally in recent

years. In experiments on compressive loading of micropillars, it is observed that the [111]

NiTi samples exhibit a significant hardening during phase transformation compared to [100]

oriented samples (compare the stress-strain curves for [100] oriented crystals in [81, 165] with

the response of [111] crystals in [57, 117]). This phenomenon is expected from the theory

as well because the NiTi crystals of [111] orientation are hard under compression [59]. The

hardening during phase transformation in the compressive response of [111] NiTi micropil-

lars motivated us to implement the present formulation, which is capable of considering the

stress hardening with arbitrary slope in the phase transformation plateau20 (see Figure 2.53)

for studying bending of micropillars. We show in this section that the material properties

predicted by this method are in good agreement with the expected properties for NiTi single

crystals as well. The experimental results on the bending of a micropillar reported by Clark

et al. [40] are used in this section. They tested a [111] oriented NiTi pillar with a diameter

20The slope of stress-strain plateau for single crystal SMAs in some specific orientations, and also poly-
crystalline SMAs with particular heat treatments may be near zero. The material properties of the presented
model cannot be calibrated for modeling a zero slope during the transformation. However, these properties
can be calibrated for modeling a very small slope in the stress-strain plateau if needed.
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of Dt = 1.2μm at the top of pillar and length of L = 3.8μm. The undeformed micropillar

and the deformed shape of the micropillar subjected to bending are shown in Figure 2.62.

As mentioned in the pillar specifications, all the samples had an estimated taper angle of

≈ 3◦−5◦. We consider a 3◦ angle, which leads to a diameter ofDt = 1.6μm at the pillar base.

Among the material properties required for our constitutive model, the austenite finish tem-

Figure 2.62: SEM images showing (a) the initial configuration and the inclined flat-tip
punch, and (b) in situ bending of the pillar. Copyright (2010) Wiley. Used with publisher
permission from (Clark et. al., 2010. Size Independent Shape Memory Behavior of NiTi,
Adv. Engng. Mat. 12: 808-815. Wiley).

peratures is reported as Af = 33◦C. The other properties in compression can be calibrated

by using a cyclic compressive test on the micropillar reported in [40]. These properties

are obtained as follows (some of the properties are considered identical with the NiTi bulk

material as given in the previous sections): EA = 55MPa, EM = 50MPa, νA = νM = 0.3,

ρcA = ρcM = 2.6× 106 J/(m3K), Ht = 0.05, Hc = −0.03, (dσ/dT )At = 11.4× 106 J/(m3K),

ρΔs0 = −Ht(dσ/dT )At = −0.57 × 106 J/(m3K), Af = 306K, As = 288K, Mf = 242K,

Ms = 274K. We use the J2 − I1-based model for analyzing this case study by setting

η̂ = η = 1
2(H

t + |Hc|), and ω̂ = ω = 1
2(H

t − |Hc|). It is worth noting that for calibrating

these properties, Ht, and (dσ/dT )At cannot be obtained only from the compression test;

we have used an error and trial method for finding these properties for the best match in

the theoretical and experimental results in bending as it will be discussed in the following.

The material response in compression obtained from the experiments [40] and the present
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model are compared in Figure 2.63 for two loading-unloading cycles with 3% and 5% axial

strains21. The pillar is subjected to bending using an inclined indenter with the angle of
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Figure 2.63: The compressive stress-strain response of [111] NiTi micro pillars obtained
from experiments [40], and the compressive and tensile response obtained from the present
model.

≈ 60◦ (see Figure 2.62). As mentioned in [40], the pillar slips on the indenter during loading

and this releases the axial compressive load. It can be assumed that the pillar is subjected

to a pure bending with the projection of force in the transverse direction22. The transverse

force versus tip deflection obtained from the present formulation with the J2 − I1-based

model is compared with the experimental results in Figure 2.64. As it is shown, the present

model predicts the force-deflection in bending of the micropillar with a good accuracy. It

is worth noting that the experiment contains loading further up to a tip deflection of near

1500 nm. However, as it is shown in Figure 2.64 for tip deflections larger than δ ≈ 790nm

the force-deflection slope suddenly decreases (see Figure 2(e) in [40]). This is due to the

21In the compression response reported in [40], the initiation of loading was associated with a stress-strain
plateau with a very small slope. It was assumed that the small Young modulus at the start of loading is
due to the imperfect contact. We calibrated the austenite elastic modulus by ignoring the initial low elastic
modulus in the response. This region is not shown in Figure 2.63 for the sake of clarity.

22The transverse force is F = Fa cos(60
◦) = 0.5Fa, where Fa is the actuation force reported in [40], and

60◦ represents the indenter angle (see Figure 1(b) in [40]).
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start of plastic deformation of martensite that happens by further loading the material far

beyond the completion of phase transformation. We are not considering the martensite

plastic response in our model and restrict our comparison to the start of the plastic defor-

mation. The dashed line in Figure 2.64 shows the model prediction for the unloading phase

if the pillar was unloaded after the maximum tip deflection of δ ≈ 790nm. As it is shown,

even by ignoring the plastic nonrecoverable response a residual deflection is observed in the

model. This is due to the ambient temperature T = 300 K, which is slightly bellow Af

temperature. The present method can be used to calculate the stress distribution and the
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Figure 2.64: Comparison of the force-deflection response for micropillars obtained from
experiments [40] and the present formulation.

intensity of phase transformation inside and at the surface of the micropillar (which are

both extremely difficult to be measured experimentally). The martensitic volume fraction

distribution, as a measure of the phase transformation intensity, is shown in Figure 2.65(a),

and the stress distribution at the surface at the end of the loading phase is shown in Figure

2.65(b). As it is shown in Figure 2.65(b), the maximum stress at the surface is ≈ 2500

MPa. This is in agreement with our previous prediction of martensite plastic deformation

start at this tip deflection. The reason is that the compression tests show the same stress

for the start of martensite plastic deformation (see Figure 4 in [40]). Considering the fact
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that the present model with the calibrated material properties is predicting the material

response in both compression and bending with good accuracy, it can be concluded that the

material properties in tension are also assumed accurately (these properties are guessed by

considering the bending results for finding the best possible match). The predicted material

response in tension for two loading-unloading cycles with 3% and 5% tensile strains is also

shown in Figure 2.63. The predicted response in tension for this special geometry is valuable

because it is practically very difficult to test a micropillar in tension. It is worth noting

that there are several uncertainties in the experiment used in this section, including the

non-uniform cross section of the pillar, the inclined indentor for bending, and the imperfect

contact at the start of compressive loading that cause the observed error in the results. In

order to obtain more accurate results, a specific experiment on a micropillar with uniform

cross section subjected to bending with a sharp perpendicular indentor is required. Also,

various length to thickness rations should be considered for studying the effect of shear

deformation on the bending response of NiTi micropillars. However, as it will be shown in

the following, the results of this section are in agreement with the theoretical expectations

for single crystal NiTi shape memory alloys.

The predicted maximum transformation strains in tension and compression are in agree-

ment with the response of [111] oriented NiTi single crystals. Considering the crystallo-

graphic data for 24 martensite correspondence variant pairs (CVPs) in NiTi (see Table 1

in [59]), and using the method described in detail by Gall and Sehitoglu [59], it can be

shown that for a [111] oriented NiTi single crystal, CVP#2 with habit plane normal n =

(−0.4044,−0.8889,−0.2152) and transformation direction m = (−0.4981, 0.4114,−0.7633)

is the first CVP to satisfy the transformation criteria in tension, and the CVP#1 with

habit plane normal n = (−0.8889,−0.4044, 0.2152) and transformation direction m =

(0.4114,−0.4981, 0.7633) is the first CVP to satisfy the transformation criteria in com-

pression. Using these directions and the magnitude of transformation g = 0.13078, the

transformation strain for the kth variant is given by εkij = g
2 (m

k
i n

k
j + mk

jn
k
i ) [59]. Cal-

culating the transformation strain tensors for tension and compression with the given di-

rections, the normal transformation strains in [111] direction are obtained as εtt = 5.59%
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and εtc = 3.18% in tension and compression, respectively. These transformation strains are

in good agreement with the values obtained for Ht = 5% and Hc = 3% that represent

the maximum transformation strains in our model. Using the transformation criteria for

NiTi single crystals given in [59], the ratio of phase transformation start stresses in ten-

sion and compression is given by |σ̂c|/σ̂t = α̂t/|α̂c|, where σ̂ is the critical stress at which

phase transformation starts and α̂ is the normal component of the tensor α on (111) plane

with αij =
1
2 (m

k
i n

k
j +mk

jn
k
i ). This ratio is obtained as |σ̂c|/σ̂t = 1.7578 using the m and

n directions given above, which is in agreement with the value predicted by our model

|σ̂c|/σ̂t = 477/275 = 1.7345 (see Figure 2.63).
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Figure 2.65: Distributions of (a) phase transformation intensity, and (b) stress at the
surface of a micropillar subjected to bending obtained from the present closed-form solution.
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CHAPTER III

THERMOMECHANICAL COUPLING IN THE RESPONSE OF SMAS

3.1 Introduction

In this chapter, a coupled thermomechanical framework considering the effect of generated

(absorbed) latent heat during forward (reverse) phase transformation is presented for shape

memory alloys. The governing equations are discretized for SMA bars and wires with cir-

cular cross sections by considering the non-uniform temperature distribution in the cross

section. Appropriate convective boundary conditions are used for still and flowing air and

also flowing water on slender and thick cylinders. The present formulation is capable of

simulating the uniaxial thermomechanical response of SMA bars and wires by taking into ac-

count the effect of phase transformation-induced latent heat in various ambient conditions.

In addition to the uniaxial case, the thermomechanical response of SMA bars subjected to

pure torsion is also studied. The results of some experiments are used for evaluating the ac-

curacy of the present formulation in modeling the rate dependency and temperature changes

in uniaxial loading of SMA wires and bars. Several numerical examples are presented for

studying the interaction between thermomechanical coupling, loading rate, ambient condi-

tions, and size of the specimen in both uniaxial loading and pure torsion. It is shown that a

loading being quasi static strongly depends on external conditions, e.g. the size and ambient

conditions. Temperature distribution in the cross section is also studied for both loading

cases and it is shown that the loading rate, ambient conditions, and size of the specimen

affect the temperature distribution. The method of this section can be used for an accurate

simulation of the material response of SMA devices in the presence of rate-dependency, size,

and ambient condition effects. The present method can be exploited to analyze SMA bars

with various cross sections. Our three-dimensional coupled-thermomechanical formulation

can be used for studying other loadings, e.g. bending, and combined loadings.
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3.2 The Rate-Dependent Coupled Thermomechanical Response of SMA
Bars and Wires in Tension

In this section, the coupled thermomechanical response of shape memory alloy bars and

wires in tension is studied. By using the Gibbs free energy as the thermodynamic potential

and choosing appropriate internal state variables, a three-dimensional phenomenological

macroscopic constitutive model for polycrystalline SMAs is derived. Taking into account

the effect of generated (absorbed) latent heat during the forward (inverse) martensitic phase

transformation, the local form of the first law of thermodynamics is used to obtain the

energy balance relation. The three-dimensional coupled relations for the energy balance

in the presence of the internal heat flux and the constitutive equations are reduced to

a one-dimensional problem. An explicit finite difference scheme is used to discretize the

governing initial-boundary-value problem of bars and wires with circular cross sections in

tension. Considering several case studies for SMA wires and bars with different diameters,

the effect of loading-unloading rate and different boundary conditions imposed by free and

forced convections at the surface are studied. It is shown that the accuracy of assuming

adiabatic or isothermal conditions in the tensile response of SMA bars strongly depends

on the size and the ambient condition in addition to the rate-dependency that has been

known in the literature. The data of some experimental tests are used for validating the

numerical results of the present formulation in predicting the stress-strain and temperature

distribution for SMA bars and wires subjected to axial loading-unloading.

3.2.1 Coupled thermomechanical governing equations for SMAs

For deriving the coupled thermomechanical governing equations for SMAs we start from

the first law of thermodynamics in local form

ρu̇ = σ : ε̇− div q + ρĝ, (3.1)

where ρ is mass density, u is the internal energy per unit mass, σ and ε are the stress and

strain tensors, respectively. The parameters q and ĝ are the heat flux and internal heat

generation. The dot symbol on a quantity ( ˙ ) represents time derivative of the quantity.
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The dissipation inequality reads

ρṡ+
1

T
div q − ρĝ

T
≥ 0, (3.2)

where s is the entropy per unit mass. Substituting the Gibbs free energy

G = u− 1

ρ
σ : ε− sT, (3.3)

into the dissipation inequality, another form of the second law of thermodynamics is obtained

as

−ρĠ− σ̇ : ε− ρsṪ ≥ 0. (3.4)

Note that

Ġ =
∂G

∂σ
: σ̇ +

∂G

∂T
Ṫ +

∂G

∂χ
: χ̇, (3.5)

where χ is the set of internal state variables. Substituting (3.5) into (3.4) gives

−
(
ρ
∂G

∂σ
+ ε

)
: σ̇ − ρ

(
∂G

∂T
+ s

)
Ṫ − ρ

∂G

∂χ
: χ̇ ≥ 0. (3.6)

Assuming the existence of a thermodynamic process in which χ̇ = 0 and noting that (3.6)

is valid for all σ̇ and Ṫ [162], the following constitutive equations are obtained

−ρ∂G
∂σ

= ε, −∂G
∂T

= s. (3.7)

The constitutive relations (3.7) are valid everywhere at the boundary of the thermodynamic

region as well [163]. Substituting (3.7) into (3.6), the dissipation inequality is expressed in

a reduced form as

−ρ∂G
∂χ

: χ̇ ≥ 0. (3.8)

In the present study, we consider the transformation strain εt and the martensitic volume

fraction ξ as the internal state variables1. The Gibbs free energy G for polycrystalline

SMAs is given in (2.1). Another form of the first law of thermodynamics is obtained by

1The portion of strain that is recovered due to reverse phase transformation from detwinned martensite
to austenite is considered as the transformation strain. See Patoor et al. [152] for a detailed description of
the transformation strain and martensitic volume fraction.
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substituting (3.7) and (3.5) into (3.1) and considering the set of internal state variables as

χ = {εt, ξ}. This form is given by

ρT ṡ = ρ
∂G

∂εt
: ε̇t + ρ

∂G

∂ξ
ξ̇ − divq + ρĝ. (3.9)

The constitutive relation (3.7)2 is used for calculating the time derivative of the specific

entropy as

ṡ = −∂Ġ
∂T

= − ∂2G

∂σ∂T
: σ̇ − ∂2G

∂T 2
Ṫ − ∂2G

∂εt∂T
: ε̇t − ∂2G

∂ξ∂T
ξ̇. (3.10)

Substituting (2.1) into (3.10), the third term on the right hand side of (3.10) is zero and

the rate of change of specific entropy is given by

ṡ =
1

ρ
α : σ̇ +

c

T
Ṫ +

[
1

ρ
Δα : σ −Δc ln

(
T

T0

)
+Δs0

]
ξ̇. (3.11)

Before substituting (3.11) into (3.9) for obtaining the final form of the first law, it is neces-

sary to introduce a relation between the evolution of the selected internal state variables.

By ignoring the martensitic variant reorientation effect, it can be assumed that any change

in the state of the system is only possible by a change in the internal state variable ξ. The

time derivative of the transformation strain tensor is related to the time derivative of the

martensitic volume fraction as the flow rule ε̇t = Γξ̇. Substituting this flow rule into the

first term in the right hand side of (3.9) and considering the Gibbs free energy in (2.1), the

thermodynamic force conjugated to the martenstic volume fraction is calculated as

ρ
∂G

∂εt
: ε̇t + ρ

∂G

∂ξ
ξ̇ =

(
−σ : Γ+ ρ

∂G

∂ξ

)
ξ̇ = −πξ̇, (3.12)

where π is given in (2.9). Introducing this new term (π) will remarkably simplify writing

the constitutive and thermomechanical relations. Also, the second law of thermodynamics

(3.8) can be written as πξ̇ ≥ 0. Substituting (3.12) and (3.11) into (3.9), the final form of

the first law is obtained as

Tα : σ̇ + ρcṪ +

[
−π + TΔα : σ − ρΔc T ln

(
T

T0

)
+ ρΔs0T

]
ξ̇ = −divq + ρĝ. (3.13)

Let us now introduce the conditions that control the onset of forward and reverse phase

transformations. Considering the dissipation inequality (3.8) as πξ̇ ≥ 0, a transformation

function is obtained as expressed in (2.10).
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The consistency during phase transformation guaranteeing the stress and temperature

states to remain on the transformation surface is given by [162, 169]

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂T
Ṫ +

∂Φ

∂ξ
: ξ̇ = 0. (3.14)

Substituting (2.9) and (2.10) into (3.14) and rearranging gives the following expression for

the martensitic volume fraction rate

ξ̇ = −(Γ+Δ� : σ) : σ̇ + ρΔs0Ṫ

D± , (3.15)

where D+ = ρΔs0(Ms − Mf ) for the forward phase transformation (ξ̇ > 0) and D− =

ρΔs0(As − Af ) for reverse phase transformation (ξ̇ < 0). The parameters As, Af ,Ms,Mf

represent the austenite and martensite start and finish temperatures, respectively. Substi-

tuting (3.15) into (3.13) and assuming Δα = Δc = 0 – valid for almost all practical SMA

alloys – the following expression is obtained

[Tα− F1(σ, T )] : σ̇ + [ρc− F2(T )] Ṫ = −divq + ρĝ, (3.16)

where

F1(σ, T ) =
1

D± (Γ+Δ� : σ)(∓Y + ρΔs0T ), F2(T ) =
ρΔs0
D± (∓Y + ρΔs0T ). (3.17)

In (3.17) (+) is used for forward phase transformation and (-) is used for the reverse trans-

formation. Equation (3.16) is one of the two coupled relations for describing the thermo-

mechanical response of SMAs. The second relation is the constitutive equation obtained by

substituting (2.1) into (3.7)1 as (2.4)

3.2.2 Coupled thermomechanical relations in uniaxial tension

In this section we consider the uniaxial loading of a bar with circular cross section. Consid-

ering the cross section in the (r, θ)-plane and the bar axis along the z-axis, the only nonzero

stress component is σz. Using (2.6)1, the transformation tensor during loading (forward

phase transformation) is written as

Γ+ = H sgn(σz)

⎡
⎢⎢⎢⎢⎣

−0.5 0 0

0 −0.5 0

0 0 1

⎤
⎥⎥⎥⎥⎦ , (3.18)
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where sgn(.) is the sign function. Substituting (3.18) into (2.5) it is seen that if we denote

the transformation strain along the bar axis by εtz, the transformation strain components

in the cross section are εtr = εtθ = −0.5εtz and the other components are zero during loading.

This is equivalent to assuming that the phase transformation is an isochoric (constant-

volume) process. Considering the same assumption (isochoric deformation due to phase

transformation), the transformation tensor during reverse phase transformation is obtained

as

Γ− = H sgn(εtrz )

⎡
⎢⎢⎢⎢⎣

−0.5 0 0

0 −0.5 0

0 0 1

⎤
⎥⎥⎥⎥⎦ . (3.19)

Substituting (3.19) into (2.9) and (2.10) and using given relations between the constitutive

model parameters in (2.14) the following explicit expressions for the martensitic volume

fractions in direct and inverse phase transformation in the case of uniaxial loading are

obtained:

ξ+ =
1

ρbM

{
H|σz|+ 1

2
σ2zΔS33 + ρΔs0(T −Ms)

}
, (3.20)

ξ− =
1

ρbA

{
Hσz sgn(ε

tr
z ) +

1

2
σ2zΔS33 + ρΔs0(T −Af )

}
. (3.21)

As the first step, we consider loading of a bar in tension (σz ≥ 0). In this special case,

substituting (3.18) into (2.5) and integrating the flow rule gives an explicit expression for

transformation strain as εtz = Hξ, which after substitution into (2.4) gives the following

one-dimensional constitutive equation

εz = (SA33 + ξΔS33)σz + αA (T − T0) +Hξ, (3.22)

where SA33 = 1/EA, ΔS33 = 1/EM − 1/EA (EA and EM are the elastic muduli of austenite

and martensite, respectively). Substituting the martensitic volume fraction (3.20) into

(3.22), the stress-strain relation can be written as the following cubic equation

σ3z + a σ2z + (m T + n)σz + (p T + q) = 0, (3.23)
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where a,m, n, p, and q are constants given by

a =
3H

ΔS33
, m =

2ρΔs0
ΔS33

, n = −2ρΔs0Ms

ΔS33
+

2H2 + 2ρbMSA33
ΔS2

33

,

p =
2HρΔs0 + 2ρbMαA

ΔS2
33

, q =
−2HρΔs0Ms − 2ρbM (αAT0 + εz)

ΔS2
33

. (3.24)

The cubic equation (3.23) is solved for σz as a function of temperature and strain. The

constitutive equation obtained from solving (3.23) is coupled with (3.16). The set of coupled

thermomechanical equations to be solved in the uniaxial loading a bar with circular cross

section is given by (the cross section is considered in the (r, θ)-plane and the internal heat

generation due to any source other than the phase transformation is ignored):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
αA T − F̃1(σz, T )

]
σ̇z +

[
ρc− F̃2(T )

]
Ṫ = k

(
∂2T
∂r2

+ 1
r
∂T
∂r

)
,

σz =
1
6G (T )− 2mT+(2n−2a2/3)

G (T ) − a
3 ,

(3.25)

where

F̃1(σz, T ) =
1

D± (H +ΔS33σz)(∓Y + ρΔs0T ), F̃2(T ) =
ρΔs0
D± (∓Y + ρΔs0T ),

G (T ) =
[
f1T + f0 + 12

√
g3T 3 + g2T 2 + g1T + g0

]1/3
. (3.26)

The coefficients fi and gi are constants given by

f1 = 36ma− 108p, f0 = 36na− 108q − 8a3, g3 = 12m3,

g2 = −54amp− 3a2m2 + 36m2n+ 81p2,

g1 = 12a3p− 54amq − 6a2mn+ 36mn2 + 162pq − 54anp,

g0 = 81q2 + 12a3q + 12n3 − 3a2n2 − 54anq. (3.27)

In (3.25)1, k is the thermal conductivity and Fourier’s law of thermal conduction (q =

−k∇T ) is used for deriving the right hand side.

As it is shown, both temperature and stress fields are functions of time and radius r.

As initial conditions for (3.25) one prescribes stress and temperature distributions at t = 0:

T (r, 0) = T̂ , σz(r, 0) = σ̂z. (3.28)
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As boundary conditions, temperature or heat convection on the outer surface can be given

Convection : k
∂T (r, t)

∂r

∣∣∣
r=R

= h∞[T∞ − T (R, t)] (3.29)

Constant Temperature : T (R, t) = T1, (3.30)

where h∞ is the heat convection coefficient and T∞ is the ambient temperature. R is the

bar radius and T1 is the constant temperature of the free surface. Another condition is

obtained at the center of bar using the axi-symmetry of temperature distribution in the

cross section as

∂T (r, t)

∂r

∣∣∣
r=0

= 0. (3.31)

The coupled differential equations (3.25) with the initial and boundary conditions (3.28),

(3.29), and (3.31) constitute the initial-boundary value problem governing an SMA bar

(wire) in uniaxial tension.

3.2.3 Finite difference discretization of the thermomechanical governing equa-
tions

A finite difference method is used for solving the coupled thermomechanical governing equa-

tions (3.25) with boundary conditions given in (3.29) and (3.31), and the initial conditions

(3.28). For discretizing (3.25) we use an explicit finite difference method because we are

dealing with two coupled highly nonlinear equations; solving such equations is computa-

tionally very expensive using implicit schemes. The radius of the bar is divided into M − 1

equal segments of size Δr as shown in Figure 3.1.

The derivatives on the right hand side of (3.25)1 are discretized using a central difference

scheme as

∂2T

∂r2
+

1

r

∂T

∂r
=

1

r

∂

∂r

(
r
∂T

∂r

)

=
1

ri

(r∂T∂r)ni+1/2 − (r∂T∂r)ni−1/2

Δr

=

(
ri +

Δr

2

)
T ni+1 − T ni
ri(Δr)2

−
(
ri − Δr

2

)
T ni − T ni−1

ri(Δr)2
, (3.32)

where the subscript i denotes the node number (see Figure 3.1) and the superscript n

refers to the nth time increment. In explicit schemes, the first-order forward difference
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Figure 3.1: Internal and boundary nodes in the cross section for the finite difference dis-
cretization. The dashed lines are the boundaries of the control volumes attached to the
central and boundary nodes used for deriving the finite difference form of the boundary
conditions.

is used for approximating the time derivatives. The finite difference form of the coupled

thermomechanical equations (3.25) using the explicit method is given by

[
αA T ni − 1

D± (H +ΔS33σ
n
z,i)(∓Y + ρΔs0T

n
i )

]
σn+1
z,i − σnz,i

Δt

+

[
ρc− ρΔs0

D± (∓Y + ρΔs0T
n
i )

]
T n+1
i − T ni

Δt

=

(
ri +

Δr

2

)
T ni+1 − T ni
ri(Δr)2

−
(
ri − Δr

2

)
T ni − T ni−1

ri(Δr)2
, (3.33)

σn+1
z,i =

1

6
G (T n+1

i )− 2mT n+1
i + (2n− 2a2/3)

G (T n+1
i )

− a

3
, (3.34)

where σnz,i is the axial stress in the ith node at the nth time increment. For calculating the

finite difference approximation of the boundary conditions for our problem that includes

internal heat generation, energy balance for a control volume2 should be considered. For

the central node i = 1, consider a control volume with radius Δr/2 as shown in Figure 3.1.

The finite difference approximation of the boundary condition in the central node is given

by [141]

k
T n2 − T n1

2
+

1

8
(Δr)2 �n1 =

1

8
(Δr)2ρc

T n+1
1 − T n1

Δt
, (3.35)

2To obtain the governing equations for the central and boundary nodes, a volume attached to these nodes
(e.g. a region with width Δr/2 as shown in Figure 1) is considered and the energy balance is written for
this control volume.
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and for the outer node with the convection boundary condition, considering a control volume

attached to the outer radius like that shown in Figure 3.1 with the dashed line, the energy

balance gives

Rh∞(T∞−T n
M )+k

(
R − Δr

2

)
T n
M−1 − T n

M

Δr
+

[
RΔr

2
− (Δr)2

4

]
�n

M =

[
RΔr

2
− (Δr)2

4

]
ρc
T n+1
M − T n

M

Δt
,

(3.36)

where the parameters �n1 and �nM are the equivalent internal heat generation due to phase

transformation calculated at the central (i = 1) and outer (i = M) nodes. For calculat-

ing the equivalent internal heat generation, consider the diffusion equation in cylindrical

coordinates for a transient problem with internal heat generation ĝ as [11]

k

(
∂2T

∂r2
+

1

r

∂T

∂r

)
+ ĝ = ρc

∂T

∂t
. (3.37)

Comparing (3.25)1 with (3.37), we define an equivalent internal heat generation correspond-

ing to the ith node as

�ni =

[
αA T ni − 1

D± (H +ΔS33σ
n
z,i)(∓Y + ρΔs0T

n
i )

]
σn+1
z,i − σnz,i

Δt

+

[
−ρΔs0

D± (∓Y + ρΔs0T
n
i )

]
T n+1
i − T ni

Δt
, (3.38)

where σn+1
z,i is given in (3.34).

Considering the fact that at the nth loading increment stress and temperatures are

known (these parameters are known from the initial condition (3.28) in the first time in-

crement), for any of the nodes except the central and outer nodes, substituting (3.34) into

(3.33) in the nth increment a nonlinear algebraic equation is obtained with only one un-

known T n+1
i , i = 2...M − 1. This equation is solved numerically [55] and the temperature

at the (n+1)th time increment is calculated. Substituting the calculated temperature into

(3.34) gives the stress for (n+1)th increment. For the central and outer nodes, a similar

procedure is used considering (3.34), (3.35), (3.36), and (3.38).

3.2.4 Convection boundary conditions

In most practical applications, SMA devices are surrounded by air during loading-unloading.

In cases in which the device is working in conditions with negligible air flow, a free convection
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occurs around the device due to temperature changes caused by phase transformation. For

all the outdoor structural applications of SMAs, the device is exposed to airflow and a forced

convection boundary condition should be considered. For studying the effect of ambient

on the thermomechanical response of SMAs, both free and forced convection boundary

conditions are considered in this chapter and the convection coefficient is calculated by

considering a vertical3 SMA bar or wire in still or flowing air with different velocities.

3.2.4.1 Free convection for SMA Bars in still air

When airflow speed is negligible, a free convection boundary condition should be considered

around the SMA device. Considering an SMA vertical cylinder in still air, it is shown by

Cebeci [33] that the cylinder is thick enough to be considered a flat plate in calculating the

convection coefficient with less than 5.5% error if Gr0.25L D/L ≥ 35, where Grx = gβ(Tw −
T∞)x3/υ2 is the Grashof number, D = 2R is the cylinder diameter, g is the gravitational

acceleration, β is the volume coefficient of expansion, i.e. β = 1/T for ideal gasses, Tw is

the wall temperature, T∞ is the ambient temperature, υ is the kinematic viscosity of air,

and x is a characteristic dimension, e.g. height or diameter of the cylinder. The Nusselt

number for a flat plate with height L is given by [75, 159]

NuFP = 0.68 +
0.67 Ra0.25L

[1 + (0.49 Pr)0.56]0.44
, (3.39)

where RaL = GrLPr is the Rayleigh number and Pr is the Prandtl number for air in the

ambient temperature. Having the Nusselt number, the free convection coefficient for the

cylinder is calculated by Nu = h∞x/k, where x is the characteristic length (the height of

cylinder in this case) and k is the air thermal conductivity at the ambient temperature.

For studying slender cylinders with Gr0.25L D/L ≤ 35 or for avoiding the error in the case of

considering thick cylinders, the following correction can be used [159]

Nuc
NuFP

= 1 + 0.30

[√
32 Gr−0.25

L

(
L

D

)]0.91
. (3.40)

The free convection coefficient around the cylinder is calculated by substituting (3.39) into

(3.40) and using Nuc = h∞L/k.

3In forced convection, a vertical bar is perpendicular to the air flow. In free convection, the gravitational
acceleration is parallel to the axis of a vertical bar.
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3.2.4.2 Forced convection for SMAs in air and fluid flow

For calculating the average convection heat transfer coefficients for the flowing air across a

cylinder, the experimental results presented by Hilpert [74] are used. The Nusselt number

in this case can be calculated by [75]

Nu = C Ren Pr0.33, (3.41)

where Re = u∞D/υ is Reynolds number and u∞ is the airflow speed. The parameters C and

n are tabulated in heat transfer books for different Reynolds numbers (e.g. see Chapter

6, Holman [75]). Note that the characteristic length in Nusselt number for this case is

the cylinder diameter and forced convection coefficient is calculated using Nu = h∞D/k.

Experimental results presented by Knudsen and Katz [89] shows that (3.41) can be used

for cylinders in fluids too. However, Fand [50] has shown that for fluid flow on cylinders,

when 10−1 < Re < 105, the following relation gives a more accurate Nusselt number

Nu = (0.35 + 0.56 Re0.52)Pr0.3. (3.42)

3.2.5 Verification using experimental results

In order to verify our formulation for simulating the rate-dependent response of SMA bars

and wires in simple tension, the experimental data previously reported by the second author

[16] is used. The experiments were carried out using a commercial NiTi wire with circular

cross section of radius R = 0.5mm. Since the alloy composition was unknown, simple

tension tests were performed [16] and some basic material properties including the elastic

moduli of austenite and martensite, the maximum transformation strain and the stress levels

at the start and end of phase transformation process during loading and unloading were

reported. These reported properties and the experimental results are used for calibrating

the constants needed in the present constitutive equations. The material properties suitable

for the constitutive relations of the present study are given in Table 3.1 as Material I.

In the experiments two different loading-unloading rates were considered. In the quasi-

static test the total loading-unloading time is set to τ = 1000 sec and the dynamic test was

performed in τ = 1 sec. Both tests were performed in the ambient temperature T∞ = 293K.
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Table 3.1: SMA material parameters for studying thermomechanical coupling
Material
con-
stants

Material I, [16] Material II, [124] Material III, [44] A generic SMA
(Material IV), [92]

EA 31.0 × 109Pa 34.0 × 109Pa 34.0 × 109Pa 55.0 × 109Pa
EM 24.6 × 109Pa 31.0 × 109Pa 31.0 × 109Pa 46.0 × 109Pa
νA = νM 0.3 0.33 0.33 0.33
αA 22.0 × 10−6/K 22.0 × 10−6/K 22.0 × 10−6/K 22.0 × 10−6/K
αM 22.0 × 10−6/K 22.0 × 10−6/K 22.0 × 10−6/K 22.0 × 10−6/K
ρcA 3.9×106 J/(m3K) 5.8×106 J/(m3K) 5.8×106 J/(m3K) 2.6×106 J/(m3K)
ρcM 3.9×106 J/(m3K) 5.8×106 J/(m3K) 5.8×106 J/(m3K) 2.6×106 J/(m3K)
k 18W/(mK) 18W/(mK) 18W/(mK) 18W/(mK)
H 0.041 0.036 0.038 0.056
ρΔs0 −0.52 ×

106J/(m3K)
−0.16 ×
106J/(m3K)

−0.29 ×
106J/(m3K)

−0.41 ×
106J/(m3K)

Af 291.0 K 257.8 K 270.0 K 280.0 K
As 276.0 K 239.1 K 263.0 K 270.0 K
Ms 265.0 K 233.1 K 253.1 K 245.0 K
Mf 250.0 K 216.1 K 245.1 K 230.0 K

The experimental results for these two tests are depicted in Figure 3.3. In order to calculate

the free convection coefficient, the method of the previous section for slender cylinders is

used. The length of the wire is L = 20cm and the properties of air at T = 293K are

extracted from standard tables [75]. The free convection coefficient is a function of the

temperature difference between the wire and ambient Tw − T∞. Since Tw is unknown, it

is difficult to satisfy the exact free convection boundary condition. But as it is depicted

in Figure 3.2 (Case I), the free convection coefficient is almost constant for the range of

temperature difference 0 < Tw−T∞ < 40. We will show in the sequel that this temperature

difference range matches the maximum temperature difference that is observed in an adi-

abatic loading-unloading for a vast range of SMA bar geometries, material properties, and

ambient conditions. Therefore, an average value of h∞ = 21 W/m2K is considered during

the loading-unloading process in this case. In the following case studies a similar analysis

will be carried out for finding an average free convection coefficient.

The stress-strain response for quasi static and dynamic loading-unloading obtained by

the present coupled thermomechanical formulation is compared with the experimental re-

sults in Figure 3.3. As it is seen, the analytical formulation predicts both the change of

149



0 5 10 15 20 25 30 35 40
2
4

6

8

10

12

14

16

18

20
22

Tw-T 8

h

 

 

Case I
Case II
Case III

8(W
/m

  K
)

2

Figure 3.2: The free convection coefficient as a function of temperature difference calculated
for a vertical SMA cylinder with (Case I): d = 1mm, L = 20cm in still air with T = 293K,
(Case II): d = 2mm, L = 10cm in still air with T = 328K, and (Case III): d = 5cm, L =
10cm in still air with T = 328K.

slope and change of hysteretic area in different loading-unloading rates. It is worth noting

that the experimental loading-unloading curves in Figure 3.3 are stabilized cycles after a

few initial cycles and a minor accumulated strain is observed at the beginning of loading

that is ignored in the analytic results. In these experiments, the SMA temperature was not

monitored. We will present a detailed study of the effect of ambient conditions and SMA

bar geometry on the thermomechanical response of SMA bars with circular cross sections

in uniaxial loading in the sequel. However, in order to validate the present formulation for

simulating the thermomechanical response of SMAs, another experimental test is considered

in this section.

The next experiment was performed by the second author on an SMA bar and the stress-

strain response is reported in McCormick et al. [124]. In addition to the mechanical response,

a pyrometer was used for monitoring the surface temperature of the SMA bar during loading-

unloading. The specimen is made from a solid stock with a 12.7mm diameter. The specimen

is subjected to a loading protocol with 20 cycles to 6% strain using a 250 kN hydraulic
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Figure 3.3: Comparison of the experimental and analytical results for the stress-strain
response of an SMA wire (Material I) with d = 1mm in quasi-static and dynamic loadings
(τ is the total loading-unloading time).

uniaxial testing apparatus. During the initial loading-unloading cycles accumulated strain

is observed but for the last five cycles the material stress-strain response is stabilized. Here

we consider the 20th stabilized loading-unloading cycle by setting the strain at the beginning

of this cycle to zero (an accumulated strain of ε = 0.0057 is observed at the beginning of

the last cycle). Some of the material properties of the NiTi alloy for this bar are presented

in [186] and the remaining parameters are calibrated using the stress and strain values

corresponding to start and completion of phase transformation in the stress-strain response

of the bar in uniaxial loading-unloading.

These material properties are given in Table 3.1 as Material II. The initial temperature

of the bar at the beginning of the last cycle is T̂ = 304.6K and the ambient temperature

is T∞ = 301K. The average free convection coefficient for the bar in this test is obtained

using the method of the previous example and it is calculated as h∞ = 7.5 W/m2K. The

total loading-unloading time is τ = 114 sec. The calculated temperature at the surface of

the bar using the present formulation is compared with the experimental results in Figure
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3.4(a). The experimental stress-strain response for the stabilized cycle is compared with

the analytical results in 3.4(b). It is worth noting that the monitored temperature in

the experimental data fluctuates and the smooth function in Matlab that uses a moving

average filter is used to smoothen the data. As it is seen, the present formulation predicts

the thermomechanical response of the bar with an acceptable accuracy.
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Figure 3.4: Comparison of the experimental and analytical results for (a) stress-
temperature at the surface, and (b) the stress-strain response of an SMA bar (Material
II) with d = 12.7mm in quasi-static loading-unloading (τ = 114 sec).

As another case study, the experimental results of the cyclic loading of an SMA bar with

7.1mm diameter is considered. The experiment was performed by the second author and

the stress-strain response of the bar in this test is reported in DesRoches and Smith [44]. In

this section we are considering the monitored surface temperature of the bar in addition to

the stress-strain response. This bar is made of NiTi alloy with the material properties given

in Table ?? as Material III (some of these properties are given by the material provider

and the others are calibrated using the uniaxial test results). The initial temperature of

the bar and the ambient temperature are T̂ = T∞ = 298K. The average free convection

coefficient for the bar in this test is obtained using the method of the previous example and

it is calculated as h∞ = 8 W/m2K. The SMA bar is subjected to a dynamic cyclic loading

consisting of 0.50%, 1.0-5% by increments of 1%, followed by four cycles at 6%. Frequency
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of the applied cyclic loading is 0.5Hz (2sec for each loading-unloading cycle). The stress-

strain response of the bar obtained by the present coupled thermomechanical formulation

is compared with the experimental results in Figure 3.5(a). It is seen that the analytical

formulation predicts a slight upward movement of the hysteresis loop in the stress-strain

response in each cycle. This phenomenon is also seen in the experimental results and is

caused by the temperature increase during the fast loading-unloading cycles.
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Figure 3.5: Comparison of the experimental and analytical results for (a) the stress-strain
response, and (b) temperature-time at the surface of an SMA bar (Material III) with d =
7.1mm in dynamic cyclic loading.

The experimentally monitored temperature at the surface of bar is shown in Figure

3.5(b) and compared with the analytical results. It is seen that the analytical results are

following the cyclic temperature change of the material with an acceptable accuracy (the

maximum error in the analytical results is 1.15%). Both the experimental and analyti-

cal results show an increase of temperature at the start of each loading-unloading cycle

with respect to its previous cycle. This temperature increase is the reason for the upward

movement of the stress-strain hysteresis loops in Figure 3.5(a). It is worth noting that

the experimental results show an accumulation in the strain for cyclic loading, typically

referred to as the fatigue effect. Developing constitutive relations capable of modeling this

accumulated cyclic strain accurately is an active field of research [148, 164]. The present

formulation is ignoring this effect. However, it is known that the constitutive equations
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used in this chapter can be modified for accurate modeling of SMAs in cyclic loadings [93].

Modifying the present coupled thermomechanical formulation for taking into account the

effect of accumulated strains in cyclic loading will be the subject of a future communication.

3.2.6 SMA wires with convection boundary condition

In this section we consider some numerical examples for studying the effect of the loading-

unloading rate and ambient conditions on the response of SMA wires in uniaxial tension

based on our coupled thermomechanical formulation. An SMA wire with circular cross sec-

tion of radius R = 1mm and length L = 10cm is considered. A generic SMA material with

properties given in Table 3.1 as Material IV is considered [92]. These material properties

have been used in many numerical simulations of SMAs. An approximate solution for the

adiabatic and isothermal response of an SMA wire with these properties by ignoring the

nonuniformity of temperature distribution in the cross section and ambient conditions is

presented in [92]. For comparison purposes, the initial temperature of the wire is considered

equal to the value in Lagoudas [92], i.e. T̂ = 328K. The ambient temperature is assumed

to be T∞ = 328K. The method of §5.1 is used for calculating the free convection coeffi-

cient as a function of temperature difference in the range 0 < Tw − T∞ < 40. The change

of free convection coefficient versus the temperature change is plotted in Figure 3.2 (Case

II). As it is seen, the convection coefficient does not change much with the temperature

difference; assuming a constant value h∞ = 14.04 W/m2K is a good approximation. The

response of this SMA wire subjected to free convection in three different loading rates is

modeled based on the present coupled thermomechanical formulation. Figure 3.6(a) shows

the temperature changes during loading-unloading for three different rates in free convec-

tion. The stress-strain response in this case is shown in Figure 3.6(b). As the cross section

diameter is small compared to its length, a uniform temperature distribution is observed

in the cross section. Comparing these with those of the adiabatic solution by ignoring the

ambient condition in Lagoudas [92], it is seen that the response of the SMA wire in total

loading-unloading time of τ = 10sec and exposed to a free convection boundary condition

is identical with the adiabatic case. This is expected as the convection coefficient is low
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and loading is applied fast and hence the material cannot exchange heat with the ambient.

For the loading-unloading times of τ = 120 and 900sec, as it is shown in Figure 3.6(a),

although the temperature changes are less than that of τ = 10sec, they cannot be ignored,

i.e. assuming an isothermal process is not justified. As it is seen, for slow loading-unloading

(τ = 120 and 900sec), the temperature increase during the forward phase transformation

is suppressed. After phase transformation completion, and also during the initial elastic

unloading regime, when there is no phase transformation heat generation or absorption, the

air cooling effect causes a decrease in temperature. This temperature decrease when ac-

companied by heat absorption during the reverse phase transformation, causes the material

to be colder than the initial and ambient temperatures at the end of the unloading phase.
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Figure 3.6: The effect of total loading-unloading time τ on (a) stress-temperature, and
(b) stress-strain response of an SMA wire with d = 2mm in free convection (still air with
h∞ = 14.04W/m2K).

The effect of ambient boundary condition on the response of SMA wires is studied in

Figure 3.7. For this purpose a constant loading-unloading time of τ = 60sec and different air

flow speeds are considered. The method of §5.2 is used for calculating the forced convection

coefficients for U∞ = 15 and 50m/s and these values are obtained as h∞ = 269.05 and

493.20W/m2K, respectively. The free convection coefficient is the same as that of the

previous example. Figure 3.7(a) shows the change of temperature versus stress for various

155



310 320 330 340 350 360 370
T (K)

 

 

380 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

200

400

600

800

1000

1200

1400

ε

σ 
(M

Pa
)

Still air
U =15m/s
U =50m/s

8
8

        (a)                                                                                                (b)

0

200

400

600

800

1000

1200

1400
σ 

(M
Pa

)

Still air
U =15m/s
U =50m/s

8
8

Figure 3.7: The effect of airflow speed U∞ on (a) stress-temperature, and (b) stress-strain
response of an SMA wire with d = 2mm in free and forced convection (the total loading-
unloading time is τ = 60sec).

air flow speeds and the stress-strain response of SMA wires is shown in Figure 3.7(b). As

it is seen, temperature is strongly affected by the ambient condition. The temperature at

the end of unloading phase is lower than the ambient and initial temperatures. During

loading, after the phase transformation completion, and also at the beginning of unloading,

before the start of reverse phase transformation, the material is fully martensite and phase

transformation does not occur. During these steps, the transformation heat is not generating

and the material is cooling due to the high rate of heat exchange with the ambient. This

temperature loss is followed by heat absorption during reverse phase transformation and

causes the material to be colder than the initial and ambient temperatures at the end of

unloading phase. As shown in Figure 3.7(b), temperature change affects the stress-strain

response as well. By increasing the air flow speed, when the material response changes

from adiabatic to isothermal, the slope of stress-strain curve decreases and the hysteresis

area increases. As mentioned earlier, this change in the hysteresis area, caused by a change

in temperature during loading-unloading has been observed in experiments (see §6.1, [124]
and Auricchio et al. [16]).
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3.2.7 SMA bars with convection boundary condition

In the previous section the response of SMA wires with small cross section diameters was

studied. In this section SMA bars will be considered. In bars, in contrast with wires,

the temperature distribution in the cross section is not uniform. It will be shown that for

having a precise description of an SMA bar response in loading-unloading it is necessary

to consider the coupled thermomechanical equations and the ambient conditions; assuming

an isothermal response may cause considerable errors. An SMA bar with the material

properties identical with those in the previous section is considered. The bar has a diameter

of d = 5cm and length of L = 20cm. Using the method of §5.1, the free convection coefficient

as a function of the temperature difference is calculated and plotted in Figure 3.2 as Case

III. Similar to previous examples, it is seen that the free convection coefficient is almost

constant and assuming an average value of h∞ = 5.86W/m2K is reasonable. The effect of

the loading-unloading rate on the response of SMA bars is shown in Figure 3.8.
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Figure 3.8: The effect of total loading-unloading time τ on (a) stress-temperature, and (b)
stress-strain response at the center of an SMA bar with d = 5cm in free convection (still
air with h∞ = 5.86W/m2K).

As it will be shown in the sequel, temperature has a nonuniform distribution in the

cross section. Temperature at the center of the bar is plotted versus stress for various
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total loading-unloading times in Figure 3.8(a). It is seen that the results for τ = 10sec are

similar to those presented by Lagoudas [92] which are obtained assuming adiabatic loading-

unloading and ignoring the ambient condition and non-uniform temperature distribution in

the cross section. It can be concluded that the response of the material is almost adiabatic

for this fast loading rate. However, as it is seen in Figure 3.8(a), even for the total loading-

unloading time of τ = 7200sec, which is considered a quasi-static loading with isothermal

response in the majority of the previously reported works, the temperature in the SMA

bar of this example is far from that in either an isothermal or an adiabatic process. Also

the final cooling as explained in the case of SMA wires is seen in slow loading-unloading

rates. This example reveals the necessity of using a coupled thermomechanical formulation,

especially for SMA bars with large diameters.

The stress-strain response at the center of the bar is shown in Figure 3.8(b). As it is seen

in this figure, increasing the loading-unloading time decreases the stress-strain curve slope

during the transformation and increases the hysteresis area. Comparing Figures 3.8 and

3.6 shows that increase of loading-unloading time affects the response of SMA wires more

noticeably. This is expected because a wire has more potential for exchanging heat with the

ambient air compared to a bar. The effect of air flow speed on the response of SMA bars in a

constant loading-unloading time of τ = 300sec is shown in Figure 3.9. The forced convection

coefficients are calculated using the method of §5.2 as h∞ = 134.37 and 234.79W/m2K for

U∞ = 50 and 100m/s, respectively. Temperature at the center of the bar versus stress is

shown in Figure 3.9(a). As it is seen, even for the high air flow speed of U∞ = 100m/s, the

response of the SMA bar is not isothermal. Similar to SMA wires, cooling of material after

completion of phase transformation and at the beginning of unloading causes the material

to be in a lower temperature at the end of unloading compared to the initial temperature.

The stress-strain response at the center of the bar for various air flow speeds is shown in

Figure 3.9(b).

As mentioned earlier, for bars with large diameters, the temperature distribution in the

cross section is not uniform because the heat transfer in regions near the surface differs from

that in the central part. This non-uniformity in temperature distribution can be ignored
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Figure 3.9: The effect of airflow speed U∞ on (a) stress-temperature, and (b) stress-strain
response in the center of an SMA bar with d = 5cm in free and forced convection (the total
loading-unloading time is τ = 300sec).

for wires with small diameters but it is of more importance in bars with large diameters.

Temperature distribution for the bar with d = 5cm diameter subjected to free and forced

convection at the end of loading phase is shown in Figure 3.10. As it is seen, for the total

loading-unloading time of τ = 300sec, the temperature distribution is almost uniform for the

free convection case and becomes non-uniform when the bar is subjected to air flow. In all

the cases, temperature at the center of the bar is maximum. Increasing the air flow speed

decreases temperature at every point of the cross section. Temperature non-uniformity

increases for higher airflow speeds. It is worth emphasizing that in the free convection case

and for very slow loading-unloading rates a non-uniform temperature distribution is seen

for SMA bars with large diameters.

3.2.8 Non-uniform stress distribution in uniaxial tension of an SMA bar

As mentioned earlier, the generation (absorption) of latent heat during forward (reverse)

phase transformation and the heat exchange with the ambient at the surface of bars causes

a nonuniform temperature distribution in the cross section. The non-uniformity of temper-

ature increases for larger diameters, slower loading-unloading rates, and larger convection
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Figure 3.10: The effect of airflow speed U∞ on the temperature distribution in the cross
section of an SMA bar with d = 5cm in forced convection. The total loading-unloading
time is τ = 300sec and the distribution is shown at the end of loading phase.

coefficients. Non-uniformity of temperature distribution is determined by the interaction

of size, loading rate, and ambient conditions. Because of the strong coupling between the

thermal and mechanical fields in SMAs temperature difference in the cross section causes

a non-uniform stress distribution in the cross section. In other words, for uniaxial loading

of an SMA bar, while the material in the cross section has a uniform strain distribution4,

stress distribution may be non-uniform. We will show that stress has a nonuniform dis-

tribution during the phase transformation and has different shapes for different loads. As

an example, consider an SMA bar with diameter d = 5cm subjected to loading-unloading

at total time of τ = 300sec. The initial and ambient temperatures are T̂ = T∞ = 328K

and air is flowing on the specimen with speed of U∞ = 100 m/s that results in a forced

convection coefficient of h∞ = 234.79W/m2K . Material properties are given as Material

IV in Table 3.1. Stress distributions corresponding to different uniform strains during the

loading phase is shown in Figure 3.11.

4The uniform strain distribution is a boundary condition considered in this special case study. The
formulation of this paper is general and can be used for modeling a bar with and arbitrary strain distribution
in the cross section.
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Figure 3.11: Non-uniform stress distribution in the cross section of an SMA bar subjected to
uniform tensile strain at (a) ε = 0.0680, σc = 959.0MPa, (b) ε = 0.0768, σc = 994.5MPa,
(c) ε = 0.0770, σc = 995.6MPa, (d) ε = 0.0773, σc = 996.6MPa, (e) ε = 0.0775, σc =
997.5MPa, and (f) ε = 0.085, σc = 1296.0MPa.

Before the phase transformation starts, no latent heat is generated; the whole cross sec-

tion has uniform stress and temperature distributions. By the start of phase transformation

from austenite to martensite, latent heat is generated inside the bar. The convective heat

transfer at the surface results in lower temperatures for points closer to the surface com-

pared to the center of the bar (see Figure 3.10). The non-uniform temperature distribution

in the cross section results in the stress distribution shown in Figure 3.11(a). In each of the

plots in Figure 3.11, the stress distribution is normalized with respect to stress at the center

of the bar (σc) for a better visualization. Stress at the center of the bar corresponding to

each strain is given in Figure 3.11. Stress distribution in the cross section remains “convex”

until the start of phase transformation completion. The phase transformation completion

starts from the surface of the bar due to the lower temperature at the surface as decreas-

ing temperature remarkably decreases the threshold of phase transformation completion in
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SMAs. Formation of martensite at the surface results in a decrease in stress with a sharper

slope compared to the material at the inner region. The “convex” stress surface starts to

invert from the outer radius as shown in Figure 3.11(b). By increase of load, the “convex”

stress surface is inverted to a “concave” surface as shown in Figures 3.11(b) to 3.11(f).

When the whole cross section is fully transformed to martensite stress distribution has the

“concave” shape shown in Figure 3.11(f). As it is seen in Figures 3.11(a) to 3.11(f), the

stress distribution nonuniformity (deviation of the normalized stress distribution surface

from unity) decreases with the increase of strain and completion of phase transformation.

It is worth mentioning that the strain corresponding to each stress distribution in Figure

3.11 is uniform.

3.2.9 SMA bars operating in water

The wide variety of applications of SMAs in recent years necessitates the analysis of SMA

devices operating in various environments. It is now known that large scaled SMA bars

and wires can be used as efficient elements for improving the seismic performance of bridges

[43, 45, 142]. The SMA tendons in bridges may operate in water and hence it is necessary

to have a precise analysis of the response of these wires and bars subjected to water flow.

As a case study, an SMA bar with geometric and material properties given in §3.2.7 is

considered. It is assumed that the SMA bar is operating as a tendon in a bridge in the

water flow. The average water velocity in rivers varies from 0.1m/s to 3m/s. Considering

the flow velocity of 0.5m/s and the temperature of T = 27◦ for the water, the forced

convection coefficient is calculated using (3.42) and is h∞ = 2529.3W/m2K. A loading-

unloading cycle in τ = 10sec is considered. The temperature distribution in the cross

section at the end of loading and unloading phases is shown in Figure 3.12(a). As it is seen,

the excessive cooling of water at the surface causes a remarkable temperature gradient in

the cross section at the end of loading phase. It is obvious that ignoring this temperature

distribution in the cross section is not justified in the present case study. As it is shown

in this figure at the end of unloading phase the outer parts of the cross section are in a

temperature below the initial temperature while the inner core has a temperature slightly
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above the initial temperature. This phenomenon was previously explained in Figures 3.6-

3.9. The normalized stress distribution for various strain values during the loading phase are

shown in Figure 3.12(b). As it is shown in this figure, the convex to concave transformation

of the stress distribution shape is seen in this case study as well (this phenomenon was

explained in detail in §3.2.8). Comparing the results of Figures 3.12(b) and 3.11 reveals

that while the stress difference in the cross section of a bar cooling in flowing air is 4%, it

increases to 14% in the present case study (SMA bar operating in water).
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Figure 3.12: (a) Temperature distribution in the cross section, and (b) stress distribution
in the loading phase for an SMA bar with d = 5cm operating in water. The stress at
the center point for strain values ε = 0.04, 0.05, 0.06, 0.07, 0.075, and 0.078 are σc =
582.2, 631.6, 676.2, 722.5, 864.1, and 958.2MPa, respectively.

3.2.10 Size, boundary condition, and loading rate effects on the temperature
and stress gradients

As it was shown in the previous sections, the gradients of temperature and stress in the cross

section are strongly affected by the ambient condition, diameter of the bar, and the loading-

unloading rate. In this section we study the effect of these parameters on the maximum

temperature and stress gradients in the cross section of SMA bars and wires subjected

to uniaxial loading. For sake of brevity, we consider only the loading phase. The initial

and ambient temperatures are assumed to be T0 = T∞ = 300K for all the case studies
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in this section. In each case, for studying the non-uniformity in stress and temperature

distributions in the cross section, the difference between the value of these parameters at

the center and surface of the bar is nondimensionalized by dividing by the value of the

corresponding parameter at the surface. The maximum temperature and stress gradients

versus the convection coefficient for four various loading rates are shown in Figure 3.13. A

bar with d = 5cm and material properties similar to the previous case study is considered

and the range of convection coefficient is chosen to cover the free and forced convection

of air, and water flow on the bar (see the case studies in §6.3 and 6.5). As it is shown in

this figure for all the loading rates both the temperature and stress gradients increase for

larger convection coefficients. However, for the slow loading rate τ = 300sec, the increase of

gradient is suppressed for convection coefficients larger than h∞ � 1000W/m2K, since the

material has enough time to exchange heat with the ambient. It is worth noting that for

the slow loading rate τ =300 sec the trend of the gradient change is different from the other

(fast) loading rates. We will study the effect of changing the loading rate on the gradients

in the following case study and will find the critical time corresponding to this change of

trend for some sample ambient conditions. It is shown in Figure 3.13 that the temperature

and stress gradients in the cross section are more excessive for larger convection coefficients

for all the loading rates.

The effect of changing the loading rate on the maximum temperature and stress nonuni-

formity in the cross section for three different convection coefficients is shown in Figure 3.14.

The results are presented for the total loading-unloading times 1 ≤ τ ≤ 3600sec. As it is

shown, larger convection coefficients lead to more nonuniformity for both the stress and

temperature distributions. Also, it is shown that for all the convection coefficients the

temperature and stress gradients are negligible for very fast and very slow loading rates,

and peaks at an intermediate loading rate (τ = 140sec for h∞ = 134W/m2K, τ = 100sec

for h∞ = 234W/m2K, and τ = 30sec for h∞ = 2529W/m2K). This is expected because

for very fast loadings the material at the surface does not have enough time to exchange

the latent heat with the ambient and the temperature and stress distributions are almost

uniform. For very slow loadings, the latent heat in the whole cross section has enough
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Figure 3.13: (a) The maximum temperature gradient, and (b) the maximum stress gradient
versus the convection coefficient for four different loading rates. The subscripts s and c
denote the value measured at the surface and center of the bar, respectively. The diameter
of the bar is d = 5cm.

time to be exchanged with the ambient and the temperature and stress distributions are

almost uniform in the cross section. For an intermediate loading rate the temperature and

stress distribution nonuniformity is maximum. Also it is worth mentioning that the loading

rate corresponding to the maximum nonuniformity decreases by increasing the convection

coefficient.

The size effect on the temperature and stress nonuniformity is studied for three different

ambient conditions in Figure 3.15 (the total loading-unloading time is τ = 10sec). As

explained in §5, the convection coefficient depends on the bar diameter and for obtaining the

results presented in Figure 3.15 the appropriate convection coefficient for each diameter and

ambient condition is calculated using the formulation of §5. As it is shown in Figure 3.15,

in the case of water flow the temperature and stress nonuniformities are more pronounced

compared to those of the air flow ambient condition. For the forced convection by air the

temperature and stress gradients increase for larger diameters. However, in the case of

water flow, the gradients have a peak at d � 25mm.

The results presented in Figures 3.13-3.15 clearly describe the complicated effect of size,

ambient condition, and loading rate on the coupled thermomechanical response of SMA
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Figure 3.14: (a) The maximum temperature gradient and (b) the maximum stress gradient
versus the loading rate for three various convection coefficients. The subscripts s and c
represent the value measured at the surface and center of bar respectively. The diameter of
bar is d=5cm.
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Figure 3.15: (a) The maximum temperature gradient and (b) the maximum stress gradient
versus the bar diameter for three various ambient conditions. The subscripts s and c
represent the value measured at the surface and center of bar, respectively. The total
loadig-unloading time is τ =10 sec.
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bars. These figures can be used by a designer to decide whether a coupled thermomechanical

formulation with considering the heat flux in the cross section is necessary or using simpler

lumped models is enough. It is worth mentioning that although for the uniaxial loading of

bars and wires the simpler models assuming lumped temperature in the cross section can

be used with an error, there are numerous cases for which the present formulation is the

only analysis option. An example is torsion of circular SMA bars for which shear stress has

a complicated nonuniform distribution in the cross section [127]. It would be incorrect to

consider a lumped temperature in the cross section for torsion problems. Considering the

effect of phase transformation latent heat in torsion of SMA bars is the subject of a future

communication. We have been able to show that ignoring the heat flux and the temperature

nonuniformity in the cross section of SMA bars subjected to torsion leads to inaccurate

results. It is also worth nothing that all the numerical simulations presented in this section

are performed on a 2 GHz CPU with 2 GB RAM. Since the presented explicit finite difference

formulation needs a variable minimum time increment for guarantying numerical stability

for various dimensions and material properties [141], the computational time varies for

different case studies. However, by considering an average of 30 nodes (for smaller diameters

fewer nodes are used) in the cross section and using the material properties in Table 3.1,

the most time consuming case studies (examples with large number of nodes in the cross

section and large loading-unloading times) are all completed in less than 20 minutes.

3.3 Coupled Thermomechanical Analysis of SMA Circular Bars in Pure
Torsion

Shape memory alloys (SMAs) in recent applications are usually subjected to combined

loadings in contrast with the early devices that were mostly designed based on using the

uniaxial deformation of SMA wires operating as tendons. The recent interest in using

sophisticated SMA devices reveals the necessity of analyzing these materials subjected to

complicated loadings. To our best knowledge, there is no reported work in the literature on

studying the coupled thermomechanical response of SMA bars in torsion. In this section, we

present the heat balance equation by considering the phase transformation latent heat and

the heat flux effects for bars in pure torsion. This relation is coupled with the exact solution
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for pure torsion of SMA bars that we presented previously assuming that the SMA bar is

under torsion in a constant temperature. The generation and absorption of latent heat due

to phase transformation and its flux toward the other parts of the cross section in which the

material is responding elastically is taken into consideration. Boundary conditions at the

outer surface of the bar caused by free or forced convection of air or fluid flow are carefully

enforced. For verification purposes the results of the present coupled thermomechanical

formulation are compared with the experimental data for a thin-walled NiTi tube subjected

to pure torsion.

Since the heat conduction inside the SMA bar and the convection with the ambient

both are strongly affected by the loading rate, it is shown that the response of SMA bars in

torsion is rate dependent. Several case studies are considered and the effect of loading rate

and ambient conditions on the torsional response of SMA bars is studied in detail. In each

case, the results are compared with the solution obtained by ignoring the thermomechanical

coupling and it is shown that the special characteristics of torsion in SMA bars leads to a

significant difference between the isothermal and coupled thermomechanical results. It is

worth noting that although some simplified lumped temperature methods can be used for

studying the coupled thermomechanical response of SMA bars subjected to uniaxial loading

in particular conditions (when there are no propagating transformation fronts along the

length, the Biot number is sufficiently small, and thermal boundary conditions at the ends

are insulated), due the nonuniform distribution of shear stress in the cross section of SMA

bars subjected to torsion, the effect of temperature nonuniformity and the flux of latent

heat is more evident compared to the simple tension without propagating phase fronts.

3.3.1 Coupled thermomechanical governing equations for SMAs in pure tor-
sion

Deriving the three-dimensional coupled thermomechanical governing equations for SMAs is

explained in details in the previous section. Starting from the first law of thermodynamics in

local form and using the second law of thermodynamics, the coupled energy balance equation

is obtained as expressed in (3.13). It is worth noting that, although the constitutive relations

are capable of modeling finite strains [162], we consider the small strains assumption and
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the formulation is not affected by the stress measure in use.

The exact solution for pure torsion of shape memory alloy circular bars ignoring the

effect of phase transformation latent heat, and assuming the isothermal condition was given

in Section 2.2. In this section we modify the solution for the pure torsion of circular bars

considering the coupled thermomechanical governing equations for SMAs as presented in the

previous section. In the new formulation, we study the coupled thermomechanical torsion

problem in the presence of the phase transformation induced heat generation/absorption

and the heat flux effect in the cross section. A finite difference formulation is used to solve

the governing coupled thermomechanical equations.

The closed form solution of pure torsion was given as a function of the radius, twist

angle and temperature, τθz = ℘±(r, θ, T ) in Section 2.2. This equation will replace the

constitutive equation in the set of coupled equations. The reduction of the other equation

(3.16) for pure torsion is obtained by substituting (2.11) and (2.13) into (3.16). The set of

coupled thermomechanical governing equations read⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−F̃1(τθz, T ) ˙τθz +
[
ρc− F̃2(T )

]
Ṫ = k

(
∂2T
∂r2

+ 1
r
∂T
∂r

)
,

τθz = ℘±(r, θ, T ),

(3.43)

where

F̃1(τθz, T ) =
1

D± (
√
3H + 4ΔS44 τθz)(∓Y + ρΔs0T ), F̃2(T ) =

ρΔs0
D± (∓Y + ρΔs0T ).

(3.44)

In (3.43)1, k is the thermal conductivity and Fourier’s law of thermal conduction (q =

−k∇T ) is used for deriving the right-hand side. The explicit expression for (3.43)2 can be

found in Mirzaeifar et al. [127]. Temperature and stress distributions at t = 0 are given as

the initial conditions, T (r, 0) = T̂ , τθz(r, 0) = τ̂θz. The following boundary conditions are

given at the outer surface and the center of the circular bar

k
∂T (r, t)

∂r

∣∣∣
r=R

= h∞[T∞ − T (R, t)],
∂T (r, t)

∂r

∣∣∣
r=0

= 0, (3.45)

where h∞ is the heat convection coefficient, T∞ is the ambient temperature, and R is the

bar outer radius.

169



3.3.2 Finite difference discretization of the governing equations

Considering axisymmetric stress and temperature distributions in the circular bar, the set

of coupled thermomechanical equations (3.43) and the boundary conditions (3.45) are dis-

cretized by dividing the bar into Nr annuli of equal size Δr and using an explicit finite

difference method. The finite difference form of the coupled thermomechanical equations

(3.43) for pure torsion is given by (see Section 3.2 for details of deriving similar relations in

the uniaxial case)[
− 1

D± (
√
3 H + 4ΔS44τ

n
θz,i)(∓Y + ρΔs0T

n
i )

]
τn+1
θz,i − τnθz,i

Δt

+

[
ρc− ρΔs0

D± (∓Y + ρΔs0T
n
i )

]
T n+1
i − T ni

Δt

=

(
ri +

Δr

2

)
T ni+1 − T ni
ri(Δr)2

−
(
ri − Δr

2

)
T ni − T ni−1

ri(Δr)2
, (3.46)

τn+1
θz,i = ℘±(r, θn+1, T n+1), (3.47)

where the subscript i denotes the ith node in the cross section and the superscript n refers to

the nth time increment. For calculating the finite difference approximation of the boundary

conditions that include internal heat generation, energy balance for a volume attached to

boundary nodes should be considered. For the central node i = 1, consider a cylindrical

volume with radius Δr/2. The axis of this volume coincides with the bar axis. The finite

difference approximation of the boundary condition in the central node is given by (3.35) and

for the outer node with the convection boundary condition, considering a cylindrical volume

attached to the outer node (M th node) with inner radius R−Δr/2 and outer radius R, the

energy balance gives the boundary condition as expressed in (3.36), where the parameters �n1
and �nM are the equivalent internal heat generation due to phase transformation calculated

at the central (i = 1) and outer (i =M) nodes of a bar subjected to torsion as

�ni =

[
− 1

D± (
√
3H + 4ΔS44τ

n
θz,i)(∓Y + ρΔs0T

n
i )

]
τn+1
θz,i − τnθz,i

Δt

+

[
−ρΔs0

D± (∓Y + ρΔs0T
n
i )

]
T n+1
i − T ni

Δt
. (3.48)

The solution procedure is as following: the stress and temperature in all nodes are known
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at the nth loading increment (from the initial conditions if n=0, and from the completed

solution in the previous increment if n 
=0). For any of the nodes except the central and

outer nodes, substituting (3.47) into (3.46) a nonlinear algebraic equation is obtained with

only one unknown: T n+1
i , i = 2...M − 1. This equation is solved numerically [55] and

the temperature at the (n+1)th time increment is calculated. Substituting the calculated

temperature into (3.47) gives the stress for the (n+1)th increment. For the central and

outer nodes, a similar procedure is used considering (3.47), (3.35), (3.36), and (3.48).

We previously reported the exact solution for SMA straight bars with circular cross

sections in torsion and SMA helical springs by using the torsion of straight and curved

SMA bars. In the previous section we showed that considering an isothermal process in

uniaxial loading-unloading of SMA bars and wires gives accurate results only for wires with

small diameters subjected to loadings applied with a very slow rate. To consider the effect

of ambient condition, loading rate, and size accurately, it is necessary to solve the coupled

thermomechanical equations. In this section we study the pure torsion of SMA circular bars

using the coupled thermomechanical equations. The present formulation has the capability

of considering an accurate convection boundary condition on the bar surface. The details of

calculating the convection coefficient on the surface of a cylindrical bar in free air, flowing

air, and fluid flow is presented in Section 3.2.

3.3.3 Verification using experimental results

There are some reported experiments in the literature for the torsion of prismatic solid

SMA bars [47]. However, although these works report the results of torsion tests, the

material properties needed in our constitutive model are not presented. Also, the tem-

perature is not measured in these tests. In order to verify our coupled thermomechanical

formulation the experimental data reported by Lim and McDowell [108] is used. Lim and

McDowell [108] performed experiments on thin-wall tubes of pseudoelastic NiTi subjected

to pure torsion. During loading-unloading the change of temperature due to latent heat

generation/absorption during phase transformation was measured using four thermocouples

attached to the specimen and temperature versus shear strain was reported. The specimen
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was made of a NiTi alloy with the near equiatomic composition and was subjected to a heat

treatment after machining from bar stock. In [108] only the austenite finish temperature

is reported and the other material properties are not measured. However, the results of

several uniaxial loading tests are reported that can be used for calibrating the required

material constants in the the constitutive relation that we are using in this section. The

experimental date in [108, 109] are used for obtaining the following properties (see [162] for

details of calibrating the model using experimental data): EA = 72 GPa, EM = 30 GPa,

νA = νM = 0.42, H = 0.05, ρΔs0 = −0.57 × 106 J/(m3K), Af = 273.1 K, As = 265.7

K, Mf = 231.8 K, Ms = 247.9 K. Since the thermal conductivity and the specific heat are

not reported for this material, we use the previously reported values in the literature for

Ni50Ti50 [92]: k = 18 W/(mK), ρcA = ρcM = 3.9× 106 J/(m3K). Both the inner and outer

surfaces of the tube are subjected to free convection by air. In the numerical simulations,

both the inner and outer nodes are considered as the boundary nodes and the boundary

condition (3.36) is imposed for both these nodes. The thickness is divided into 20 sections.

The free convection coefficient for both surfaces is h∞ = 5.2W/m2K (see §5 in [128] for cal-

culation details). The initial and ambient temperatures are T̂ = T∞ = 287 K. The loading

rate is ε̇eq = 5× 10−4s−1, where εeq = γ/
√
3 = 2εθz/

√
3 is the Mises equivalent strain. The

specimen was subjected to five loading cycles with the equivalent strains between ±3%.

We use the results of the second loading-unloading cycle, in which the material response

is stabilized, for verification purposes (due to the unknown thermal condition between the

specimen and the grips, the simulation results may be inaccurate for the final cycles and the

second cycle is chosen because the material response is stabilized while the effect of head

exchange between the grips and the specimen is minimum). The equivalent shear stress ver-

sus the equivalent shear strain at the outer surface obtained from the present formulation

is compared with the experimental results in Figure 3.16(a). The temperature versus the

equivalent shear strain is calculated using the method of this paper and compared with the

experimental results in Figure 3.16(b). It is worth noting that due to the small thickness

(t=1.95 mm), the temperature gradient in the cross section is negligible. We present a de-

tailed study of the effect of size on the temperature gradient in the sequel. As it is shown,
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the results are in an acceptable agreement. The differences in the strain-stress response

is due to the formation of R-phase in phase transformation that is not considered in our

formulation. The differences in temperature distribution originated from the difference in

the stress distribution, and also by considering the special specimen shape. The specimen

has two thick bars attached to the ends for being mounted into the grips, and the heat

transfer between the tube gage section and the attached parts to the tube at the ends is

ignored in our theoretical modeling (see Figure 1 in [108] for details of the specimen shape).

As it is seen in Figure 3.16(b), the specimen temperature immediately reaches the ambient

temperature at the start of unloading, while this is not seen in the numerical simulations.

This phenomenon may be caused by the high heat exchange between the specimen and the

grips (that are in the same temperature with the ambient) that is ignored in the theoretical

modeling.
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Figure 3.16: Comparison of the experimental and analytical results for (a) equivalent shear
stress versus equivalent shear strain, and (b) temperature versus equivalent shear strain at
the outer surface of a thin-walled SMA tube subjected to pure torsion.

3.3.4 Thermomechanical analysis of solid SMA bars subjected to pure torsion

As the first case study for analyzing the coupled thermomechanical response of solid SMA

bars under torsion, consider an SMA bar with circular cross section of radius R = 2.5 cm and

length L = 20 cm. The bar is made of a NiTi alloy with the following material properties:
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EA = 72 GPa, EM = 30 GPa, νA = νM = 0.42, ρcA = ρcM = 2.6 × 105 J/(m3K),

H = 0.05, ρΔs0 = −0.42 × 106 J/(m3K), Af = 281.6 K, As = 272.7 K, Mf = 238.8

K, Ms = 254.9 K. These properties are extracted for the phenomenological constitutive

equations by Qidwai and Lagoudas [162] using the experimental date reported by Jacobus

et al. [79] for a Ni50Ti50 alloy. The thermal conductivity is not reported for this material

and we use k = 18 W/(mK), which is reported in the literature for Ni50Ti50 [92]. The SMA

bar is fixed at one end and the other end is twisted to the maximum twist angle per unit

length of θ = 5 rad/m and then unloaded to the initial configuration at rest. The total

loading-unloading time is assumed to be τ̃ = 10 sec. It is assumed that the whole bar is

initially at the temperature T̂ = 300 K and it is surrounded by still air with temperature

T∞ = 300 K. The SMA specimen is vertical and surrounded by air with negligible flow

speed. For calculating the free convection coefficient of a vertical cylinder, the empirical

and numerical relations for the Nusselt number are used (See section §5.1, and Figure 2,

Case III in [128], and also [75, 159] for more details). By considering an average temperature

difference of 15 K between the bar surface and the surrounding air, free convection coefficient

for this case study is h∞ = 4.5W/m2K (see Figure 2, Case III in [128]). The number of

grid points is M =50. The minimum time increment for having a stable solution in the

explicit formulation is a function of the radius in each case study [141]. It is observed that in

practice a convergence study is not required because the stable solution (with appropriate

choice of time increment) always converges to the same stress and temperatures at the

selected points and the only criterion is obtaining a smooth distribution that is acceptable

by choosing 50 grid points. The results of this case study are depicted in Figure 3.17. The

shear stress distribution in the cross section of the bar in loading is shown in Figure 3.17(a)

for various twist angles.

Figure 3.17(b) shows the shear stress distribution in the cross section for various twist

angles in unloading. The observed spark in the shear stress distribution for θ = 4 rad/m is

caused by the arrangement of different regions that experience phase transformation dur-

ing loading and unloading. A detailed study of this phenomenon, along with some graphs

showing the martensitic volume fraction distribution in the cross section are presented in
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Figure 3.17: Distributions of (a) shear stress during loading, (b) shear stress during un-
loading, (c) temperature during loading, and (d) temperature during unloading in the cross
section of an SMA bar in free convection. The total loading-unloading time is τ̃ = 10 sec.

[127]. Since the temperature of the bar in the parts that experience phase transformation

is above the austenite finish temperature during loading-unloading, there is no residual

stress in the cross section at the end of unloading. It is worth noting that, temperature

distribution in the cross section is affected by a set of parameters, e.g. the loading rate,

size of the bar, and the ambient condition. Temperature may be lower than the initial

temperature in some cases (see Mirzaeifar et al. [128] and the following case studies in this

section). For having zero residual stress at the end of unloading, T̂ > Af is not an adequate

condition and the complete history of temperature distribution in the cross section during

loading-unloading should be considered. Figure 3.17(c) shows the temperature distribution

in the cross section of the bar during loading for various twist angles per unit length. There
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are some important observations regarding the temperature distribution worth explaining.

As it is shown in Figure 3.17(a), during loading for each twist angle the SMA bar has an

austenite core surrounding the bar axis (characterized by a linear shear stress distribution in

the cross section). Since there is no phase transformation inside this core, consequently no

heat is generated in this region while the temperature of the material outside this austenite

core is increasing due to forward phase transformation. During loading, the temperature

inside the austenite core is increasing by the hot material in the outer region due to thermal

conduction. Because the temperature change inside this austenite core during loading and

unloading is solely caused by the heat exchange with the outer material, as it will be shown

in the sequel, temperature is strongly affected by the rate of loading and a complicated in-

teraction between the loading rate and the core temperature is observed. This phenomenon

will be studied in detail in the following case studies. The temperature distribution in the

region attached to the outer radius at the end of loading phase (θ = 5 rad/m) in Figure

3.17(c) shows that the slope of temperature distribution changes at a specific point and

temperature starts to decrease slightly in an annular ring attached to the outer surface. By

looking at Figure 3.17(a), it is seen that the material in this region is fully transformed to

martensite (the linear part of shear stress distribution for the regions near r/R = 1). Since

after completion of phase transformation there is no heat generation, the material in this

region loses temperature due to heat exchange with the colder ambient at the surface. This

negative slope in temperature distribution for the outer region is seen with more intensity

for slower loading rates and higher convection coefficients as we will show in the following

case studies. The temperature distribution during unloading in the cross section is depicted

in Figure 3.17(d) for various twist angles. As it is expected, the heat absorption during

reverse phase transformation from martensite to austenite causes a temperature decrease

in the cross section during unloading. The significance of the results in this figure is in

predicting the temperature distribution in some regions at the end of unloading to be lower

than the initial and ambient temperatures. This phenomenon is also observed in the uni-

axial loading-unloading of SMA bars and a detailed study of this phenomenon in tension

is presented in [128]. As it will be shown in the following case studies, temperature in the
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whole cross section may drop below the initial temperature for very slow loadings and high

convection coefficients. This phenomenon will be further discussed in the sequel. It is worth

noting that the thermomechanical coupled response is strongly affected by the strain his-

tory. The results presented in this section correspond a monotonic increase and decrease of

twist angle. Any other loading or unloading history, e.g. a sinusoidal or impulsive loading,

should be studied separately.

Another case study is considered in order to demonstrate the effect of loading rate on

the response of SMA bars. The geometry, material properties, the initial condition, and the

boundary conditions are the same as those of the previous example. The response of the bar

is studied for four different loading rates τ̃ =1, 10, 60, and 600 sec (τ̃ is the total loading-

unloading time). For comparison purposes, the results of the exact solution of SMA bars

assuming the whole material at a constant initial temperature during loading-unloading are

also presented in this section. The shear stress distribution at the end of loading phase

(SMA bar is twisted to θ = 5 rad/m and then unloaded) in the cross section of the bar is

shown in Figure 3.18(a). As it is seen, the stress distribution is strongly affected by the

loading rate. The slope of stress distribution in the region with 0 < ξ < 1 is increased by

increasing the loading rate.

The applied torque versus the twist angle for different loading rates is shown in Figure

3.18(b). The loading rate does not have a significant influence on the applied torque for

different loading rates for the present case in which the bar is subjected to free convection

by air. We will show in the following examples that the effect of loading rate on the

applied torque depends also on the boundary conditions and different results are observed

for higher convection coefficients. Figures 3.18(a) and (b) reveal a remarkable difference

between both the stress distribution and applied torque of the present analysis and those

obtained by considering the isothermal loading-unloading assumption. It is shown in these

figures that considering the bar in the constant initial temperature during loading-unloading

is unrealistic even for the slow loading cycle with τ̃=600 sec. We will show in the next

example that slow loading rate is not an adequate measure of the isothermal response of

SMA bars in torsion; the ambient condition should be considered as well to justify the
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Figure 3.18: The effect of loading rate on (a) shear stress distribution at the end of loading,
(b) applied torque versus twist angle, (c) temperature distribution at the end of loading,
and (d) temperature distribution at the end of unloading in the cross section of an SMA
bar in free convection (h∞ = 4.5 W/m2K).

accuracy of assuming a constant temperature during loading-unloading. The temperature

distribution in the cross section at the end of the loading phase is depicted in Figure 3.18(c).

As it is shown, the slope of temperature distribution decreases for slower loading rates. This

is expected because as explained earlier the temperature in the central austenite core, with

no phase transformation heat generation, increases by the heat flux conducted from the

outer region. For very fast loading (e.g. see τ̃=1 sec in Figure 3.18(c)), the generated

heat in the outer regions does not have enough time to warm the central austenite core

and hence the temperature at the center remains close to the initial temperature. For the

slow loading τ̃=600 sec, the temperature distribution is almost uniform. However, it is
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worth mentioning that this uniform temperature is not the same as that of an isothermal

loading process (compare the temperature by assuming an isothermal loading with the slow

loading in Figures 3.18(c)). Temperature distribution in the cross section at the end of

unloading phase is shown in Figures 3.18(d). It is seen that the effect of loading rate on the

temperature at the end of unloading is more complicated compared to the previous cases.

Temperature distributions for τ̃=1 and 600 sec are similar. This seems surprising at first.

This figure clearly shows the complexity of the coupling between various parameters, e.g.

loading rate and boundary conditions on the response of bars in torsion. For having a more

precise understanding of the temperature changes during a loading-unloading cycle, and

explaining the non-trivial results shown in Figures 3.18(d), the history of temperature at

the center of the bar is shown in Figure 3.19.
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Figure 3.19: The history of temperature at the center of an SMA bar subjected to pure
torsion with free convection boundary condition for different loading rates.

Looking at Figure 3.19 and also Figures 3.18(c) and (d) leads to some important conclu-

sions. As it is seen in Figure 3.19, and as explained earlier, during fast loading the material

at the center is not warmed by the outer material, and at the end of loading temperature

at the center is remarkably lower than those of the outer parts (see Figures 3.18(c)). The

heat flux from the outer material toward the center in this case, causes a slight temperature

increase at the center during unloading as it is shown in Figure 3.19. The whole process
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leads to a temperature slightly above the initial temperature at the end of unloading in fast

loading. However, as shown in Figure 3.19, for the slow loading rate of τ̃ = 600 sec, there is

enough time for the heat flux to warm the internal austenite core of the bar and the temper-

ature at the center increases significantly during loading. At the end of loading the whole

cross section is in an almost uniform high temperature (see Figures 3.18(c)). During slow

unloading, temperature of the material in the outer parts decreases due to reverse phase

transformation heat absorption and because unloading is slow there is enough time for the

heat flux to cool down the material in the central parts of the cross section. As shown in

Figure 3.19 temperature at the end of unloading is slightly above the initial temperature

and close to the final temperature in fast loading. Considering the four graphs presented

in Figure 3.19, it is seen that decreasing the loading rate from τ̃ = 1 sec to τ̃ = 600 sec, the

slope of temperature changes during loading and unloading increases. Also it is seen that

the area of the hysteretic temperature history increases from τ̃ =1 sec to τ̃ = 60 sec and

then decreases from τ̃ = 60 sec to τ̃ = 600 sec. For extremely fast and slow loadings, the

hysteresis areas will be zero (based on the above-mentioned explanation for relatively fast

and slow loadings τ̃ = 1 and 60 sec).

In order to study the effect of various ambient conditions on the coupled thermome-

chanical response of SMA bars subjected to pure torsion, consider an SMA bar with the

same initial conditions, material properties, and geometry as the previous case studies. The

total loading-unloading time is τ̃ = 600 sec and various ambient conditions are considered.

For comparison purposes, the results of the exact solution assuming isothermal loading-

unloading are also presented here. In recent years SMA devices have been used in various

structures ranging from buildings and bridges to aerospace structures [43, 45, 70]. The

SMA devices in these structural applications are exposed to various ambient conditions,

e.g. the slow air flow in buildings, fast air flow in aerospace structures, and water flow in

bridges. In this case study we consider the free convection by air, forced convection by

air flow with speed of U∞ = 20 m/s, and water flow with the speed of U∞ = 0.5 m/s,

which is a common value for the speed of water in rivers (the average water velocity in

rivers varies from 0.1m/s to 3m/s). Temperature of both air and water flows are assumed

180



0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

r/R

τ 
(M

Pa
)

 

 

0 1 2 3 4 5
0

2

4

6

8

10

12

θ (rad/m )

To
rq

ue
 (K

N
.m

)

0 0.2 0.4 0.6 0.8 1
300

310

320

330

340

r/R

T 
(K

)

(a)                                                                                                     (b)

(c)                                                                                                     (d)

0 0.2 0.4 0.6 0.8 1
288

290

292

294

296

298

300

302

304

r/R

T 
(K

)

Air, Free Convection
Isothermal

Air, U8 =20 m/s
Water, U =0.5 m/s8

Air, Free Convection
Isothermal

Air, U8 =20 m/s
Water, U =0.5 m/s8

Air, Free Convection
Isothermal

Air, U8 =20 m/s
Water, U =0.5 m/s8

Air, Free Convection
Isothermal

Air, U8 =20 m/s
Water, U =0.5 m/s8

Figure 3.20: The effect of ambient condition on (a) shear stress distribution at the end of
loading, (b) applied torque versus twist angle, (c) temperature distribution at the end of
loading, and (d) temperature distribution at the end of loading in the cross section of an
SMA bar. The total loading-unloading time is τ̃ =600 sec.

to be T∞ = 300 K. Using the empirical relations for the forced convection (see Mirzaeifar

et al. [128] for details), the convection coefficients are obtained as h∞ = 91.71W/m2K for

air flow and h∞ = 2529.3W/m2K for water flow. The convection coefficient for free air is

h∞ = 4.5W/m2K as explained in the previous case studies. The SMA bar is twisted from

rest (fully austenite material) to θ = 5 rad/m and unloaded. The shear stress distribution

in the cross section of the bar for different ambient conditions is shown in Figure 3.20(a).

It is seen that changing the boundary conditions causes moving of the shear stress plateau

without a significant change in the slope (the slope of shear stress distribution varies by

changing the loading rate as shown in Figure 3.18(a)).
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The applied torque versus the twist angle of the SMA bar is shown in Figure 3.20(b).

The most important observation in these figures is the deviation of the results corresponding

to each ambient condition from the isothermal results. It is seen that although the loading-

unloading is applied in 10 min, only the water flow ambient with a very large convection

coefficient is giving similar results to those obtained by assuming a constant temperature

during loading-unloading. We will study the effect of various parameters on the validity

of isothermal assumption in §5. Temperature distribution at the end of loading is shown

in Figure 3.20(c). It is clearly seen that only for the SMA bar operating in water flow

the temperature distribution remains constant and close to the initial temperature. For

the other cases, although the temperature distribution is almost constant, it is remarkably

higher than the initial temperature in the whole cross section. Both the temperature uni-

formity and temperature change with respect to the initial conditions are studied in §5 for

various size, loading rate, and ambient conditions. The temperature distribution at the end

of the unloading phase is depicted in Figure 3.20(d). Two important observations are made:

temperature in the whole cross section is lower than the initial and ambient temperatures

for both the air and water flows, and temperature of the SMA bar exposed to air flow is

lower than that of the bar exposed to water flow. These observations can be explained by

studying the history of temperature during loading-unloading. The history of temperature

at the outer surface of the bar is shown in Figure 3.21. Temperature versus shear stress is

shown in this figure to specify the different parts of loading-unloading phases before, during,

and after phase transformation. In Figure 3.21, the end of forward phase transformation is

denoted by A and the start of reverse phase transformation is marked by the symbol B in

all the graphs. We will use these special points in the sequel to explain more details of the

material response during loading and unloading.

Starting from T = T̂ = 300 K the vertical part with no temperature change corresponds

to the response of material at the surface before the start of forward phase transforma-

tion. This vertical plateau is proceeded by a temperature increase during forward phase

transformation. The forward phase transformation continues up to the point A on all the
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Figure 3.21: Temperature versus shear stress at the surface of an SMA bar subjected to
pure torsion for different ambient conditions. The total loading-unloading time is τ̃ =600
sec.

graphs. As it is seen, with free convection boundary condition, temperature increases re-

markably during phase transformation, while with the water flow boundary condition it

remains almost constant during this phase. The amount of temperature increase during

phase transformation at the surface of the SMA bar in air flow is between the other two

boundary conditions. After point A, the phase transformation at the surface is completed

and the material is fully transformed to martensite. With further loading, there is no phase

transformation heat generation at the surface. At this stage of loading (from the end of

phase transformation at A to the end of loading), the material at the surface loses temper-

ature due to cooling by the ambient, and gaining heat by conduction from the inner parts

that are experiencing forward phase transformation. For the free and forced convection

of air, the conduction from inner parts is dominant and the temperature at the surface

increases, while for the water flow, cooling by the ambient is dominant and temperature at

the surface decreases slightly. The unloading phase starts with an elastic stage up to point

B. In this stage, the reverse phase transformation does not occur. On the other hand, the

material is exposed to an ambient that is cooling the bar. In all the cases, temperature

decreases at the surface during this stage of unloading. For the free convection boundary
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condition, temperature deceases slightly while temperature at the surface of the bar ex-

posed to force convection by air decreases much more. Temperature of bars exposed to

water flow does not change much during this stage because the material is not heated too

much during loading and the temperature is almost equal to the ambient temperature. This

elastic unloading stage is proceeded by the reverse phase transformation from martensite

to austenite at the surface and is accompanied by heat absorption. For the free convection

case for which the temperature drop during the elastic unloading phase was negligible, the

heat absorption during reverse phase transformation returns the temperature near the ini-

tial temperature at the end of unloading. However, for the forced air convection for which

temperature dropped remarkably, the reverse phase transformation heat absorption causes

the material to be at a lower temperature compared to the initial and ambient tempera-

tures at the end of unloading. For the water flow, the high convection coefficient keeps the

material temperature close to the ambient temperature during the whole unloading phase

(heat flux is from the ambient to the material for overcoming the heat absorption dur-

ing the reverse phase transformation). Temperature distributions at the end of unloading

depicted in Figure 3.20(d) are now clearly understood and temperature history shown in

Figure 3.21 explains the reason for observing the lowest temperature for the forced air flow

convection. A detailed study of the effect of ambient condition on the temperature history

during loading-unloading and a precise study of the conditions required for observing a

temperature distribution below the initial temperature is presented by the authors for SMA

bars and wires subjected to uniaxial tension in [128].

The presented results clearly show the necessity of using a coupled thermomechanical

forrmulation for analyzing torsion of SMA bars. Even for relatively slow loadings, consider-

ing the whole material in a constant temperature is not a realistic assumption (see Figures

3.18(a) and (b), and also §5 for a detailed study of the effect of various parameters on the

maximum temperature gradient). As it is shown in [127, 129], in general, the cross section

of a bar in pure torsion is divided into three regions during both loading and unloading.

During loading, the inner region is fully austenite, the outer region is fully transformed into

martensite, and the phase transformation is happening in the intermediate region. During
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unloading, the inner austenite region unloads elastically and the rest of cross section is

divided into two regions. In one of these two regions, the material has been partially trans-

formed to martensite during loading but the reverse phase transformation has not started

yet and in the other region the material has experienced both forward and reverse phase

transformations [127]. Note that phase transformation occurs in only one of these three

regions. Consequently, heat is generated or absorbed in only one region. As a result, a

complicated thermomechanical problem should be solved considering the heat flux between

these three regions and also the ambient condition. Existence and interaction of these three

regions in the cross section causes a more complex temperature distribution in the cross

section compared to that of the uniaxial case. This nonuniform temperature distribution is

the origin of the significant differences in the stress distributions that are observed between

the coupled thermomechanical and isothermal torsion solutions.

3.3.5 Effect of Size, boundary conditions, and loading rate on the temperature
distributions in the cross section

The main effect of thermomechanical coupling is reflected in the temperature changes,

although this temperature change affects the other parameters including the stress and

martensitic volume fraction as well. In order to study the thermomechanical coupling effects,

two different parameters are considered in this section: the maximum temperature difference

between the surface and center in the cross section, and the maximum temperature change

with respect to the initial temperature. We will consider only the loading phase in this

section, and the maximum is calculated by comparing all the increments during loading.

In some cases the temperature distribution is excessively nonuniform as seen in Figures

3.17 and 3.18. In some other cases, the temperature distribution in the cross section may

be approximately uniform, while the temperature in the hole cross section is remarkably

different from the initial temperature (e.g. the case shown in Figure (3.20). As shown in the

previous sections, the accuracy of assuming an isothermal loading-unloading for SMA bars

subjected to torsion strongly depends on the ambient conditions, size, and loading rate.

In this section we consider the maximum temperature difference between the surface and

center in the cross section, and the maximum temperature change with respect to the the
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initial temperature as a measure of the thermomechanical coupling effect on the response

of the bar. In other words, when both these parameters are small, the bar subjected to

torsion can be assumed isothermal during loading-unloading with an acceptable accuracy.

As the first case study in this section, the effect of convection coefficient and diameter on

the temperatures is studied in Figure 3.22. In this case study, the total loading-unloading

time is τ=10 sec. Both the considered parameters increase with a steep slope by increasing

the diameter. Figure 3.22(a) shows that for large diameters, increasing the convection

coefficient decreases the temperature gradient between the surface and center. However,

as shown in 3.22(b), the temperature is much higher than the initial temperature even for

large convection coefficients for large diameters. It can be concluded that for this loading

rate, the isothermal assumption is valid only for small diameters, i.e. SMA wires.

    (a)                                                                                         (b)

Figure 3.22: The normalized maximum temperature difference between the surface and
center (a), and the normalized maximum temperature increase with respect to the initial
temperature (b) versus the convection coefficient and diameter (T0=27◦C). The subscripts
s and c represent the values measured at the surface and center of the bar, respectively.

The effect of loading rate and diameter on the temperature distribution in loading

phase is studied in Figure 3.23 for a bar subjected to free convection of air. The maximum

temperature difference between the surface and center during loading is small for slow

loading rates even for large bars (Figure 3.23(a)). However, as shown in Figure 3.23(b), the

maximum temperature increase with respect to the initial temperature is negligible only for

small diameters.
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    (a)                                                                                         (b)

Figure 3.23: The normalized maximum temperature difference between the surface and
center (a), and the normalized maximum temperature increase with respect to the initial
temperature (b) versus the loading rate and diameter (T0=27◦C). The subscripts s and c
represent the values measured at the surface and center of the bar, respectively.

    (a)                                                                                         (b)

Figure 3.24: The normalized maximum temperature difference between the surface and
center (a), and the normalized maximum temperature increase with respect to the ini-
tial temperature (b) versus the loading rate and convection coefficient (T0=27◦C). The
subscripts s and c represent the values measured at the surface and center of the bar,
respectively.

The effect of loading rate and convection coefficient on the temperature distributions is

studied in Figure 3.24 for a thick bar (d=5 cm). As shown in Figure 3.24(a), the maximum

temperature difference between the surface and center during the loading phase uniformly

decreases by decreasing the loading rate for all the convection coefficients. Figure 3.24(b)

shows that the maximum temperature difference with respect to the initial temperature is

negligible only when both loading time and convection coefficient are large enough.
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CHAPTER IV

MICROMECHANICAL ANALYSIS OF TEXTURED AND

UNTEXTURED POLYCRYSTALLINE NITI SHAPE MEMORY

ALLOYS

4.1 Introduction

In this chapter a micromechanical model that incorporates single crystal constitutive rela-

tionships is used for studying the pseudoelastic response of polycrystalline shape memory

alloys (SMAs). In the micromechanical framework, the stress-free transformation strains of

the possible martensite twinned structures, correspondence variant pairs (CVPs), obtained

from the crystallographic data of NiTi are used, and the overall transformation strain is

obtained by defining a set of martensitic volume fractions corresponding to active CVPs

during phase transformation. The local form of the first law of thermodynamics is used and

the energy balance relation for the polycrystalline SMAs is obtained. Generalized coupled

thermomechanical governing equations considering the phase transformation latent heat are

derived for polycrystalline SMAs. A three-dimensional finite element framework is used and

different polycrystalline samples are modeled based on Voronoi tessellations. By consider-

ing appropriate distributions of crystallographic orientations in the grains obtained from

experimental texture measurements of NiTi samples, the effects of texture, and the tension-

compression asymmetry in polycrystalline SMAs are studied. The interaction between the

stress state (tensile or compressive), number of grains, and the texture on the mechanical

response of polycrystalline SMAs is studied. It is found that the number of grains (or size)

affects both the stress-strain response and the phase transformation propagation in the

material. In addition to tensile and compressive loadings, textured and untextured NiTi

micropillars with different sizes are also studied in bending. The coupled thermomechanical

framework is used for analyzing the effect of loading rate and the phase transformation

latent heat on the response of both textured and untextured samples. It is shown that the
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temperature changes due to the heat generation during phase transformation can affect the

propagation of martensite in samples subjected to high strain rates.

4.2 Micromechanical-Based Constitutive Modeling

In recent years, several different classes of constitutive models have been introduced for

studying SMAs. Some of these models are developed for studying the macroscopic behavior

of polycrystalline SMAs. Phenomenological macroscopic constitutive models are derived by

using the Gibbs free energy as the thermodynamic potential and choosing an appropriate

set of internal state variables to describe a measure of phase transformation. In these

models evolution equations are postulated for the internal variables (i.e. the martensitic

volume fraction and the transformation strain) and the second law of thermodynamics is

used in order to find thermodynamic constraints on the material constitutive equations [103,

162, 180]. In this work, we consider a micromechanical model in which the transformation

strain is related to the crystallographic data. Experimental and theoretical data are used

to find the stress free transformation strain of martensite variants exactly [31, 121]. The

macroscopic transformation strain is considered as a sum of different active transforming

martensite variants and the contribution of each variant is related to the total strain by the

volume fraction of that specific variant [59, 110, 119, 120]. The general micromechanical

framework is briefly discussed next. It is worth noting that the austenite to martensitic

phase transformation in the constitutive framework of this paper is rate-independent in

nature and possible effects of strain rate on the transformation are ignored. However, the

thermomechanical coupling and the effect of phase transformation latent heat causes the

material response to be rate dependent which is not directly caused by the rate dependency

of the martensitic transformation.

4.2.1 The Micromechanical Framework

We use the micromechanical framework of Patoor et al. [153]. This model was used by

Gall and Sehitoglu [59] to study the the role of texture in tension-compression asymmetry
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in polycrystalline NiTi using an averaging scheme. It was also implemented in a three-

dimensional finite element formulation for studying the the cyclic thermomechanical behav-

ior of polycrystalline pseudoelastic shape memory alloys [110] based on a simplified model

of the grains in the microstructure. The stress-free transformation strain corresponding to

the nth martensite variant is given by

ε̂nij =
1

2
g(lni d

n
j + dni l

n
j ), (4.1)

where d is the transformation direction, l is the habit plane normal, and g is the trans-

formation magnitude. We consider the B2 → B19′ martensitic transformation for NiTi.

Theoretically, there are 192 possible variants in NiTi by considering type I and type II

twins [110] and this number is even larger when considering the compound twinning in

NiTi [69, 193]. However, it has been observed that type II-1 is by far the most prominent

twinning mode in NiTi [137] and calculating the transformation strain by considering the

active CVPs of this type results in a very good agreement between experimental observa-

tions and theoretical predictions [49, 59, 110, 167]. In this case, the number of martensite

variants for transformation is 1 ≤ n ≤ 24 and the habit plane and transformation direction

components are obtained from the crystallographic data (i.e. see Table 1 in [59]). The

transformation magnitude for this case is g = 0.1308. The total transformation strain in a

single grain is the sum of transformation strains from all martensite variants. By defining

a martensitic volume fraction corresponding to each variant, the volume averaged transfor-

mation strain is given by1

εtij =

24∑
n=1

ε̂nijξ
n, (4.2)

where ξn is the volume fraction of the nth martensite variant. The total martensitic vol-

ume fraction is ξ =
∑24

n=1 ξ
n. The total volume fraction and the volume fraction of each

variant are always between 0 and 1. For a single crystal, several free energy functions have

1Although the phase transformation induced deformation is inhomogeneous at the microscale, it can be
assumed that the deformation is averaged over a sufficiently large element that guaranties a smooth response
during phase transformation [182].
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been reported in the literature [5, 49, 59, 151]. In this section, we use the Gibbs free en-

ergy G for developing the coupled thermomechanical constitutive framework for studying

polycrystalline SMAs. For obtaining this function, we use the appropriate terms from the

complementary free energy Ψ (Ψ = −G) introduced by Patoor et al. [151], and the appro-

priate terms for the thermal free energy given by Anand and Gurtin [5] in the Helmholtz

free energy ψ̂ for polycrystalline SMAs. The Gibbs free energy is given by:

G(σ, T, ξn) = −1

2
σ : � : σ − σ :

24∑
n=1

ε̂nξn + β(T − T0)

24∑
n=1

ξn − σ : α(T − T0)

+ ρc

[
(T − T0)− T ln

(
T

T0

) ]
+

24∑
m,n=1

Hnmξ
nξm, (4.3)

where, �, σ, T, T0, ε̂
n and ξn are the compliance tensor, local stress tensor, temperature,

reference temperature, transformation strain and martensitic volume fraction on the nth

variant, respectively. The parameter β is a material constant, α is the thermal expansion

coefficient tensor, and c is the specific heat.2 The last term in (4.3) is an approximation

that accounts for martensite variant interactions by introducing an interaction matrix H

[151, 153]. The terms in this matrix represent the interaction energy due to the formation of

multiple interacting martensite CVPs. The incompatible CVPs are mutually transformed

with a higher interaction energy compared to the compatible CVPs. Compatible CVPs have

a smaller net intrinsic shear strain compared to incompatible CVPs and the crystallographic

data can be used for finding the compatible and incompatible pairs. However, we use

a simplified method based on the strain compatibility equation as expressed in detail by

Gall and Sehitoglu [59]. Also, the interaction energies for the compatible and incompatible

CVPs are assumed constant and temperature independent (Gall and Sehitoglu [59], Table

2) which is shown to give accurate results compared to the experimental measurements

[49, 59, 110, 151]. The interface energies are ignored in this model. This is justifiable

as the interface energies between the twin-related variants can be ignored because of the

2The parameters α and c may be considered as functions of the martensitic volume fraction. However,
for the SMAs used in practical applications these parameters are independent of the volume fraction and we
have considered them constant throughout this paper, e.g. α = αA = αM [128, 162].
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compatibility at the interface. The austenite-martensite interface energy is remarkably small

compared to the other terms in the energy and can be ignored [78, 111, 155]. However, it

should be noted that although these energies can be ignored at the microscale, they play

an important role at the nanoscale [85, 101].

By defining a deriving force fn for each variant as

fn = − ∂G

∂ξn
= σ : ε̂n −

24∑
m=1

Hnmξ
m − β(T − T0), (4.4)

the criteria for forward transformation of austenite to the nth martensite variant is given

by fn = fam, and the condition for reverse transformation of the nth martensite variant

to austenite is expressed as fn = fma, where fam and fma are critical energies for A

to M and M to A transformations, respectively. During the forward and reverse phase

transformations, the consistency condition ḟn = 0 is written as

∂fn
∂σ

: σ̇ +
∂fn
∂T

: Ṫ +

24∑
m=1

∂fn
∂ξm

˙ξm = 0. (4.5)

By substituting (4.4) into (4.5), the consistency condition can be rewritten as

σ̇ : ε̂n −
24∑
m=1

Hnmξ̇
m − βṪ = 0. (4.6)

The condition (4.6) will be used in the next section for finding the incremental change

of volume fraction of all the active variants during the phase transformation. It is worth

noting that ξ̇ is nonzero only for the active variants that satisfy the forward or reverse

transformation conditions for the deriving force (4.4) and it is computationally more efficient

to write the summations only on the active variants in developing the numerical algorithm.

4.2.2 The Mechanical and Thermal Jacobians

We use a finite element framework for modeling polycrystalline SMAs. For developing an

incremental displacement based finite element, in addition to the constitutive relations given

in the previous section, the tangent stiffness (mechanical Jacobian) and thermal moduli

tensors are also needed. In order to obtain these tensors, the constitutive model of the

SMA material should be linearized and represented as an incremental form. Deriving the
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mechanical Jacobian is given briefly in the sequel. More details of deriving the Jacobians

are given in [110].

For an infinitesimal time increment, Δt, the time rate of each parameter P can be

approximated by Ṗ = ΔP/Δt. Using this approximation, (4.6) can be written as a

set of q simultaneous equations (1 ≤ q ≤ 24 is the number of variants that satisfy the

transformation conditions (4.4))

Δσ : ε̂n =
24∑
m=1

HnmΔξ
m + βΔT. (4.7)

Using this approximation, the stress increment is related linearly to the increment of

temperature and the martensitic volume fraction of active variants. It can be shown that

the martensitic volume fraction increment is also related to the strain increment linearly

[110]. The stress increment can be approximated by

Δσ =
∂Δσ

∂Δε
: Δε+

∂Δσ

∂ΔT
ΔT, (4.8)

where ∂Δσ/∂Δε is the mechanical Jacobian. The stress increment can be written as

Δσ = �−1 :

(
Δε−

24∑
m=1

Δεm

)
, (4.9)

where εi is the contribution of transformation strain from the ith martensite variant that

is related to the stress free transformation strain of the corresponding variant through the

volume fraction as εi = ε̂iξi. Substituting (4.9) into (4.7) one obtains

�
−1 :

(
Δε−

24∑
m=1

ε̂mΔξm

)
: ε̂n =

24∑
m=1

HnmΔξ
m + βΔT. (4.10)

By defining a transformation matrix Γ and a driving force vector F as

Γmn = ε̂m : �−1 : ε̂n +Hmn, Fm = ε̂m : �−1 : Δε− βΔT, (4.11)

the set of q simultaneous equations (4.10) can be rewritten in the matrix form as

[Γ]{Δξ} = {F}, (4.12)
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where the size of vectors and the transformation matrix depends on the number of active

variants (q) and {Δξ} is a vector containing the incremental change of volume fraction of

all the active variants. This set of equations will be used for calculating the incremental

change of volume fractions.

For deriving the mechanical Jacobian, the incremental stress-strain relation (4.9) is

differentiated with respect to the strain increment as

∂Δσ

∂Δε
= �−1 :

(
�−

24∑
m=1

∂Δεm

∂Δε

)
, (4.13)

where � is the identity tensor. The derivative of the transformation strain with respect to

the total strain can be written as

∂Δεm

∂Δε
=
∂Δεm

∂Δξm
⊗ ∂Δξm

∂Δε
= εm ⊗ Γ−1

mn

∂Fn

∂Δε
, (4.14)

where ⊗ denotes the tensor product, and the last term is derived using the inverse of (4.12).

Substituting (4.14) into (4.13) gives the mechanical Jacobian to be implemented in the finite

element formulation. The thermal Jacobian is obtained by differentiating (4.9) with respect

to the temperature increment as

∂Δσ

∂ΔT
= �−1 :

(
−

24∑
m=1

∂Δεm

∂ΔT

)
, (4.15)

where the derivative of the transformation strain with respect to temperature is calculated

using the chain rule as

∂Δεm

∂ΔT
=
∂Δεm

∂Δξm
∂Δξm

∂ΔT
= ε̂mΓ−1

mn

∂Fn

∂ΔT
. (4.16)

Substituting (4.16) into (4.15) gives the thermal Jacobian. Details of implementing the

calculated Jacobians and the constitutive equations into the user subroutine (UMAT) in the

finite element program is given in Lim and McDowell [110] as a computational step-by-step

algorithm. For algorithmic details of the time integration procedure for a rate-independent

single-crystal constitutive model for SMAs the readers are referred to [182], which is based

on the algorithm developed by Anand and Kothari [4] for rate-independent crystal plasticity.
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4.3 Thermomechanical Coupling

We generalize the thermomechanical framework presented by Lim and McDowell [110] in

this section by considering a comprehensive description of the energy balance equation for

obtaining the thermal coupled equations. It will be shown that the method of relating the

latent heat linearly to the rate of change of martensitic volume fraction is a simplification of

this general model by ignoring some terms in the energy balance equation. We use a similar

method as used previously by the authors for obtaining the governing thermomechanical

equations based on phenomenological constitutive models for SMAs [128, 130].

The coupled thermomechanical governing equations for SMAs are derived by considering

the first law of thermodynamics in local form (3.1). Using the definition of the Gibbs free

energy for a polycrystal (4.3), the time derivative of G is given by

Ġ =
∂G

∂σ
: σ̇ +

∂G

∂T
Ṫ +

24∑
n=1

∂G

∂ξn
: ξ̇n. (4.17)

Substituting (4.17) into (3.4) gives

−
(
∂G

∂σ
+ ε

)
: σ̇ −

(
∂G

∂T
+ ρs

)
Ṫ −

24∑
n=1

∂G

∂ξn
: ξ̇n ≥ 0. (4.18)

The energy balance equation is obtained by substituting (3.7) and (4.17) into (3.1) as

ρT ṡ = −
24∑
n=1

∂G

∂ξn
ξ̇n − divq + ρĝ. (4.19)

The constitutive relation (3.7)2 is used for calculating the time derivative of the specific

entropy as

ρṡ = −∂Ġ
∂T

= − ∂2G

∂σ∂T
: σ̇ − ∂2G

∂T 2
Ṫ −

24∑
n=1

∂2G

∂ξn∂T
ξ̇n, (4.20)

which after substituting (4.3) into (4.20) gives the rate of change of specific entropy as

ρṡ = α : σ̇ +
ρc

T
Ṫ − β

24∑
n=1

ξ̇n. (4.21)

Substituting (4.21) into (4.19), the final form of the first law is obtained as

ρcṪ =

24∑
n=1

(
− ∂G

∂ξn
+ βT

)
ξ̇n − Tα : σ̇ − divq + ρĝ. (4.22)
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The energy balance (3.13) is used for finding the volumetric heat generation in SMAs as

R =
24∑
n=1

(
− ∂G

∂ξn
+ βT

)
ξ̇n − Tα : σ̇ =

24∑
n=1

(fn + βT ) ξ̇n − Tα : σ̇, (4.23)

where the term fn is defined in (4.4). It is worth noting that during the phase transformation

the consistency condition implies that fn = f±, where f+ = fam for the forward phase

transformation and f− = fma for the reverse transformation. Comparing (4.23) with

the expression assumed by Lim and McDowell [110], it is observed that (4.23) can be

simplified to the volumetric heat generation obtained in Lim and McDowell [110] by ignoring

the second term that corresponds to the heat generation related to the rate of change of

stress and also ignoring the temperature dependency of the coefficient that relates the heat

generation to the rate of change of martensitic volume fraction.

The volumetric heat generation R is given to the finite element model in a user subrou-

tine (UMAT). The numerical solution needs the derivatives of the volumetric heat generation

with respect to the temperature and strain. For calculating the derivative of R, we use the

variation of the volumetric heat generation, which after some manipulations is expressed as

δR =
1

Δt

[
β

24∑
n=1

ξn −α : Δσ −α :
∂Δσ

∂ΔT
T + (f± + βT )

24∑
n=1

∂Δξn

∂ΔT

]
δT

+
1

Δt

[
(f± + βT )

24∑
n=1

∂Δξn

∂ε
−α :

∂Δσ

∂Δε
T

]
δε, (4.24)

where ∂Δσ/∂ΔT and ∂Δσ/∂Δε are the thermal and mechanical Jacobians given in (4.15)

and (4.13), respectively. The terms ∂Δξn/∂ΔT and ∂Δξn/∂Δε are given in (4.16)2 and

(4.14)2, respectively. Substituting these parameters into (4.24) gives the derivatives of the

volumetric heat generation with respect to temperature and strain as

∂ΔR/∂ΔT = β

24∑
n=1

ξn −α : Δσ −α : �−1 :

(
−

24∑
m=1

∂Δεm

∂ΔT

)
T

+ (f± + βT )

24∑
m,n=1

Γ−1
nm

∂Fm

∂ΔT
, (4.25)

∂ΔR/∂Δε = (f± + βT )

24∑
m,n=1

Γ−1
nm

∂Fm

∂Δε
−α : �−1 :

(
�−

24∑
m=1

∂Δεm

∂Δε

)
T. (4.26)

It is worth noting that in the numerical algorithm the summations with the volume fraction
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increment in (4.23), (4.25), and (4.26) are only written on the q active variants for which

the volume fraction is changing during the current increment.

4.4 Finite Element Modeling

The constitutive equations, the mechanical and thermal Jacobians, the volumetric heat

generation, and the derivatives of volumetric heat generation with respect to temperature

and strain are implemented in an appropriate user subroutine (UMAT) in the finite element

program ABAQUS. The subroutine is written in a local coordinate system. In the finite

element model, a separate local orientation is assigned to the elements in each grain. Details

of assigning the crystal orientations for textured and untextured samples are given in §4.4.2.
All the orientation-dependent parameters are transformed to the local coordinate before

passing them into the subroutine, and transformed back to the global coordinate when the

subroutine results are given to the finite element code. We use the material properties

given by Lim and McDowell [110]. These properties are obtained from DSC tests and

manufacturer data for a commercial SMA used in the experiments by Lim [109]. The

elastic constants (Lamé parameters) are λ = 69.2 GPa, and μ = 46.2 GPa. The critical

transformation energies are fam = 17×106Jm−3 and fma = 7×106Jm−3. The mass density

is ρ = 6500Kgm−3 and the chemical energy coefficient is β = 0.6 × 106Jm−3 ◦C−1. The

thermal expansion coefficient is αij = αδij , α = 22× 10−6/K [92].3

4.4.1 Grain-Scale Modeling Based on Voronoi Tessellations

In the previously reported works in the literature that study polycrystalline SMAs using

micromechanical based models, the polycrystal structure was designed for resembling the

microstructure as closely as possible to the actual structure (see Figure 2 in [110] and

Figure 5 in [182]). In these works hexagonal prisms and cubes are used for modeling the

geometry of each grain which is far from the actual grains shape. We use a more realistic

microstructure in the finite element model for simulating polycrystal SMAs.

3The compliance and thermal expansion tensors are anisotropic for single crystal monoclinic martensite
NiTi. However, experimentally measured values for the anisotropic material properties of NiTi are not
available and these properties can be assumed isotropic with an acceptable accuracy, particularly when the
inelastic response is studied [182].
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Voronoi tessellations are widely accepted to model polycrystalline aggregates as they

provide a realistic approximation of the actual microstructure of non-uniform grain shapes

[26, 58, 171, 192]. Voronoi cells are constructed from a set of randomly positioned points

(called the generators or Poisson points) in the given domain. Each Voronoi cell is the set

of all points in the given set whose distance to the corresponding generator is not greater

than their distance to the other generators. Recently, novel frameworks have been intro-

duced for developing FE models based on Voronoi tessellations to generate polycrystalline

grain structures for micromechanics simulations [170, 171]. We use four different Voronoi

tessellations for modeling polycrystalline samples subjected to uniaxial loading and bending

in this section. The microstructure and finite element meshes of these models are shown in

Figure 4.1.

The cubic model shown in Figure 4.1(a) consists 100 grains. Each side of this cube

is a = 250 μm which after considering the number of grains along each side results in

a mean grain size of 50 μm that is consistent with the optical micrographs of NiTi [62].

We use two models with different number of grains as shown in Figures 4.1(b) and (c) for

studying the uniaxial tension and also bending. The polycrystal structure in Figure 4.1(b)

is 38× 75× 250 μm and contains a total of 26 grains. The polycrystalline sample in Figure

4.1(c) is 150× 300× 1000 μm and constructed by 357 grains. Another sample with circular

cross section is also used for studying the uniaxial tension as shown in Figure 4.1(d). This

model is constructed by 172 grains with a length and radius of L = 1000 and r = 70 μm.

The selected dimensions in all these models result in a mean grain size of 50 μm. Linear

solid tetrahedral elements are used for constructing the FE model (C3D4 and C3D4T). The

finite element meshes of the beams are shown in Figure 4.1. Periodic boundary conditions

are not used in this section. For nodes lying on the back face perpendicular to the loading

direction (z = 0) the axial component of displacement is constrained and one node at the

corner is fixed in all directions for preventing the rigid body motion. For the bending

studies, the nodes in the clamped surface are constrained in all directions.
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  (a)                                    (b)                                             (c)                                 (d)                     

Figure 4.1: The finite element mesh of polycrystalline SMAs with (a) 100 grains, (b) 26
grains, (c) 357 grains, and (d) 172 grains.

4.4.2 FE Modeling of Textured and Untextured Samples

In order to study the effect of texture on the bending response of NiTi, we consider two

different distributions of crystal orientations in the grains. For modeling the untextured

material, a random orientation is assigned to each grain. For modeling the textured material,

the results of texture analysis on a drawn bar using an X-ray diffraction are used [59,

62]. The experimental pole figures resulting from the X-ray analysis show that the [111]

directions of the crystal lattice among all the grains are dominantly parallel to the axial

direction (z direction in Figure 4.1), while the [001] directions of the crystal lattice are

randomly distributed [59, 110]. In the finite element model, for modeling the textured

material, all the elements in each grain are assigned an orientation such that the [111]

direction of all the orientations is scattered along the axis based on a Gaussian distribution

with standard deviation of 10◦, while the [001] directions are randomly distributed. In

order to verify the distribution of crystal orientations in the microstructure, we used the

orientations in all the grains and calculated the orientation distribution functions (ODFs)

for plotting the pole figures corresponding to each sample. These pole figures are compared

with the experimental data to make sure that the modeled texture is in agreement with the

measured data. As an example, the pole figures obtained from the crystal orientations in all

the grains for the sample with 357 grains (Figure 4.1(c)) is shown in Figure 4.2. Comparing

these figures with the experimental data presented in Gall and Sehitoglu [59] shows that

the texture in the material is modeled accurately in the microstructure.
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Figure 4.2: The {111}, {110}, and {100} pole figures obtained from the crystal orientations
in the grains of the sample shown in Figure 4.1(c).

4.5 Numerical Results

Several different case studies are presented in this section for analyzing various aspects of the

mechanical and thermomechanical response of polycrystalline NiTi shape memory alloys. In

sections 4.5.1 through 4.5.3 we ignore the thermomechanical coupling by neglecting the effect

of phase transformation latent heat. In these sections the loading and unloading processes

are assumed isothermal. It is shown that neglecting the latent heat and assuming an

isothermal process is valid when the material has enough time for exchanging the generated

or absorbed heat with the ambient. This is the case for slow loadings or ambient conditions

with high convection coefficients at the surfaces [128]. The thermomechanocal coupling is

studied in §4.5.4. It will be shown that the latent heat generated by the phase transformation

causes a rate dependency in the response of polycrystalline SMAs. It is also shown that the

latent heat affects the martensite propagation between the grains of a polycrystalline NiTi

shape memory alloy.

4.5.1 The Role of Texture

In this section the role of texture on the mechanical response of polycrystalline SMAs is

studied. As mentioned earlier, the role of texture on tension-compression asymmetry has

been studied extensively in the literature. The uncoupled constitutive model of this paper

was used by Gall and Sehitoglu [59] for studying the stress-strain behavior of textured and

untextured polycrystalline NiTi subjected to tension versus compression. Microstructure of
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the polycrystal is not modeled in this work and the constitutive equations are solved for a

cluster of 2000 grains with different crystallographic orientations by calculating the trans-

formation strain corresponding to each orientation and summing the transformation strains

for all the relevant orientations. With this method, only the global stress-strain response

is modeled, and the distribution of solution parameters in a polycrystal cannot be studied.

However, by using several experiments Gall and Sehitoglu [59] showed the capability and

accuracy of this micromechanical model for studying the role of texture on the tension-

compression asymmetry of polycrystalline SMAs. Gall et al. [62] and Lim and McDowell

[110] used finite element modeling for studying textured polycrystalline NiTi shape memory

alloys. In these works, a simplified geometry was chosen for modeling the microstructure

by assuming identical hexagonal prisms as grains in the polycrystal. The role of texture,

and also the rate dependency based on a simplified thermomechanical coupled model were

studied. Thamburaja and Anand [182] studied the effect of crystallographic texture on the

response of polycrystalline SMAs using a crystal-mechanics-based constitutive model and

the finite element simulation. The microstructure in the polycrystal is modeled by assum-

ing all the grains as cubes. In this section we use the polycrystalline models based on the

Voronoi tessellations for studying the rule of texture on the mechanical response of NiTi

shape memory alloys. As the first step the effect of texture on the tension-compression

asymmetry is studied by considering a polycrystalline sample shown in Figure 4.1(a). De-

tails of the finite element simulation and modeling the crystal orientations for textured and

untextured samples are given in §4.4. The stress-strain responses for textured and untex-

tured NiTi in tension and compression are given in Figure 4.3. The stress-strain response

for a single grain (modeled using one cubic element with periodic boundary conditions)

with the [111] crystal orientation along the loading direction is also shown in Figure 4.3(b)

for comparison purposes.

As shown in Figure 4.3, while the tension-compression response is almost symmetric

for the polycrystalline NiTi with random distribution of grain orientations, the response is

significantly asymmetric for the textured polycrystal. It is observed that the phase trans-

formation is slightly more favorable in compression compared to tension for the untextured
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Figure 4.3: Comparison of the stress-strain response in tension and compression for (a)
untextured and (b) textured NiTi polycrystal model with 100 grains as shown in Figure
4.1(a).

material as shown in Figure 4.3(a). This result is in agreement with the previously reported

studies of polycrystalline SMAs based on Taylor models [138], self-consistent models [59],

and micromechanical models in conjunction with simplified finite element simulations [62].

The stress-strain curves for a textured polycrystal and a [111] oriented single crystal are

shown in Figure 4.3(b). As observed earlier, the crystallographic texture is the origin of

tension-compression asymmetry in polycrystalline SMAs and this phenomenon is reflected

in the similarity between the single crystal and textured polycrystalline responses [63] as

shown in Figure 4.3(b). The tension-compression asymmetry for the [111] oriented single

crystal can be explained theoretically by considering the Schmid factors of the most fa-

vorably oriented martensite variant for uniaxial compression and tension directions, which

are 0.27 and 0.39, respectively [60, 153]. It is worth noting that in modeling the textured

polycrystalline SMAs in Gall et al. [62], the [111] crystallographic direction of the grains

are randomly wobbled around the loading direction within tolerances of 0-5 degrees or 0-10

degrees. However, as explained in §4.4.2, in the present work we use a Gaussian distribu-

tion for modeling the textured polycrystal. This is more realistic and has the capability

of modeling different textures more accurately by changing the standard deviation in the

distribution. By using a Gaussian distribution with a relatively small standard deviation
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(10◦ in the present work) for the crystallographic directions, the stress-strain curves of the

polycrystal are more similar to the response of a single [111] oriented crystal compared to

a random distribution between 0 and 10 degrees. This happens because in the Gaussian

distribution with small standard deviations most of the orientations are aligned near the

[111] direction while for a random distribution they are freely distributed between 0 and 10

degrees. Comparing the results of the present work with those of Gall et al. [62] we observe

that the difference between the response of a single crystal and a polycrystal is more signif-

icant in Gall et al. [62]. However, the present model is capable of modeling various textures

accurately by choosing appropriate standard deviations in the Gaussian distribution.

Comparing the simulation results in Figure 4.3(b) with the experimentally measured

stress-strain curves for polycrystal and single crystal NiTi reported by Gall et al. [63] it

is clear that the present model is predicting the key features of the response accurately.

Consistent with the experiments, the model predicts a slight decrease in the critical trans-

formation stress for the polycrystal compared to the single crystal. Decreasing the stress

levels for a polycrystal is more prominent in compression, which is consistent with the ex-

perimental observations. This can also be explained based on transformation Schmid factor

arguments [62, 153]. It is worth noting that a similar study was presented by Gall et al.

[62] and the stress-strain curves for a single crystal and a polycrystal were compared. As

mentioned earlier, the structure of grains in the polycrystal is modeled assuming a uniform

shape for all the grains. The simulation results in Gall et al. [62] show that the stress-

strain curves are not sensitive to the number of grains and the results are not affected by

increasing the number of grains. This finding was also used by Lim and McDowell [110]

for concluding that a single mesh and microstructure is adequate for studying the general

response of polycrystalline SMAs. However, we will show in the present work that the rapid

convergence of results by increasing the number of grains in the previous works is due to

the assumption of uniformity of the grains shapes. We will show in the next section that

for the accurate microstructure representation used in this section, the material response is

highly affected by the number of grains, which can be understood as a size effect.
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4.5.2 The Size Effect

In this section, the effect of size (or the number of grains) on the response of textured and

untextured polycrystalline SMAs is studied. The stress-strain curves for a cubic polycrystal

shown in Figure 4.1(a) are presented in §4.5.1. In this section we study the uniaxial tension

and compression for the polycrystal models shown in Figures 4.1(b) and (c). As mentioned

in §4.4.1 the model of Figure 4.1(b) contains a total of 26 grains and by considering a

mean grain size of 50 μm the size of this model is 38 × 75 × 250 μm. The polycrystal

model in Figure 4.1(c) is 150× 300× 1000 μm and contains 357 grains. The results in this

section can also be compared with the curves in the previous section for a cubic model with

100 grains. However, one should notice that the number of grains along the loading axis

and in the cross section for the models of this section are different from the cubic model

in the previous section and the results cannot be compared directly. We will also study

the response of a single crystal with [111] direction along the loading axis for comparison

purposes.

The stress-strain curves for the uniaxial loading of polycrystalline SMAs in tension

and compression are shown in Figure 4.4. The uniaxial stress-strain curves for untextured

models are shown in Figure 4.4(a). It is observed that the difference between tensile and

compressive responses is more prominent for the larger model with 357 grains. Comparing

the results in this figure with those of Figure 4.3(a) shows that the difference between tensile

and compressive responses is remarkably larger for the rectangular cuboid models of Figures

4.1(b) and (c) compared to the cubic model of Figure 4.1(a). This shows that not only the

number of grains in the micromechanical model but also the shape of the sample can affect

the mechanical response of polycrystalline SMAs.

The stress-strain curves for the textured polycrystalline samples are shown in Figure

4.4(b). Similar to the cubic model with 100 grains, for both sizes considered in this section

the difference between the tensile and compressive responses is remarkably larger for NiTi

polycrystal with a dominant < 111 > fiber texture compared to the polycrystal with a

random distribution of orientations. Figure 4.4(b) for textured polycrystal NiTi shows that
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Figure 4.4: The effect of size on the stress-strain response in tension and compression for
(a) untextured and (b) textured NiTi polycrystal models with 26 and 357 grains as shown
in Figures 4.1(c) and (d).

while the tensile response is not highly affected by the size, the compressive response is re-

markably different for the small and large textured polycrystal samples. This phenomenon

can be explained by considering the stress-strain curves for a single [111] oriented crystal

(shown with thin lines in the figure). As discussed in the previous section, the Schmid

factor arguments explain the effect of adding more grains with [111] orientations around

the loading direction on increasing the difference in tensile and compressive responses. As

seen in Figures 4.4(a) and (b), in the model with 26 grains, the textured polycrystal con-

tains a small number of grains with [111] orientation and the response is slightly moved

from an untextured sample toward the single [111] oriented crystal. However, adding a

large number of grains with [111] orientation along the loading axis in the model with 357

grains leads to a stress-strain curve similar to that of the single crystal. The important

observation is that the compressive response is more sensitive to the size (or the number

of grains) compared to the tensile response. It is worth noting that we are not considering

the thermomechanical coupling in this section and the size effect studied here is not orig-

inated from the size dependence of exchanging the latent heat with the ambient that was

previously studied at the macrosclae [128]. Also, it should be noted that periodic boundary

conditions are not imposed and our simulations correspond to the mechanical response of

205



NiTi micropillars with free surfaces. Conducting experiments on some NiTi micropillars for

studying the size effect and validating the theoretical observations will be the subject of a

future communication.

To further understand the effect of size and texture on the response of polycrystalline

SMAs, the distribution of martensitic volume fraction is also studied. The initiation and

propagation of martensite during forward phase transformation (austenite to martensite)

is studied for small and large models with 26 and 357 grains in tension and compression.

In each case, both random and textured distributions of crystallographic orientations are

studied. In order to label the contour plots in this section we use a three-letter code in which

the first letter stands for texture (U for untextured and T for textured crystallographic

orientations), the second letter defines the size (L for the larger model with 357 grains and

S for smaller model with 26 grains), and the third letter represents the loading (T for tension

and C for compression). For comparison purposes, a uniform color coding is selected in all

the contour plots in Figures 4.5 and 4.6 in which red represents martensite and blue shows

austenite. The propagation of martensitic volume fractions in large polycrystalline NiTi

samples for strains between 3 and 5% are shown in Figure 4.5. The same results for the

smaller model with 26 grains are shown in Figure 4.6.

Comparing the contour plots in Figures 4.5 and 4.6 shows that the martensitic volume

fraction is strongly affected by the texture, the number of grains and the stress state. Com-

paring the first two rows in Figure 4.5 shows that while the phase transformation initiates

from a large number of grains distributed in the sample for the large polycrystal subjected

to tension with random orientation of grains (ULT), in the large textured sample subjected

to tension (TLT) the phase transformation initiates in a limited number of grains with

more favorable crystallographic directions for phase transformation in tension. Compar-

ing tensile and compressive responses of these models in Figure 4.5 reveals an important

effect of texture on the martensite propagation in polycrystalline SMAs. Comparing the

tensile and compressive responses for the untextured large samples (ULT and ULC) shows

that the phase transformation propagates similarly for both stress states. However, the

same comparison for the textured samples (TLT and TLC) shows that the spatial spread
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Figure 4.5: The initiation and propagation of martensite in textured and untextured NiTi
polycrystalline model with 357 grains subjected to 5% tensile and compressive strain. The
three-letter labels stand for texture (U for untextured and T for textured), size (L for large
and S for small model), and loading (T for tension and C for compression), respectively.

of phase transformation is remarkably more rapid under compression. It is worth noting

that the spatial spread of phase transformation initiation in textured polycrystal samples is

more rapid in tension compared to compression as shown by Gall et al. [62]. They studied

the phase transformation initiation (at least 0.05% martensite was assumed as the initia-

tion of phase transformation) and it was observed that the number of grains in which the

phase transformation has been started is larger in tension compared to compression at equal

strains. This is consistent with the stress-strain response shown in Figure 4.4 because the

phase transformation initiation occurs at lower strain values for tensile loading. However,

we are studying the contour plots of the martensitic volume fraction and as shown in this

section, the spatial spread of grains with a full transformation from austenite to martensite

(shown with red in the contour plots) is more rapid in compression. This result is also
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consistent with the stress-strain curves shown in Figure 4.4 where the phase transformation

is completed for smaller strains in compression compared to tension. As shown in Figure

4.4(a), the compressive and tensile responses for the untextured material are similar. This

is the reason for observing a similar propagation of martensitic volume fractions in ULT

and ULC models (Figure 4.5). The martensitic volume fraction distributions for smaller

samples (with 26 grains) are shown in Figure 4.6. The grain boundaries are distinguished

more clearly in this figure (see Figure 4.1(b) for a better view of the grain boundaries).
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Figure 4.6: The initiation and propagation of martensite in textured and untextured NiTi
polycrystalline model with 26 grains subjected to 5% tensile and compressive strain. The
three-letter labels stand for texture (U for untextured and T for textured), size (L for large
and S for small model), and loading (T for tension and C for compression), respectively..

Comparing the untextured and textured small samples in tension (UST and TST in

Figure 4.6) shows that the phase transformation initiates from more grains in the untextured

material. Also, it is observed that in the untextured samples (both UST and USC in
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Figure 4.6) the phase transformation initiation from the grain boundaries is more prominent

compared to the textured polycrystal samples. This happens because in the untextured

samples there are several boundaries between grains with a large mismatch between the

crystallographic orientations, while in the textured samples the orientations in adjacent

grains are more likely similar. It can be concluded that the initiation of phase transformation

from the grain boundaries plays a more important rule in the untextured material compared

to the textured case. Comparing the tensile and compressive responses for the textured and

untextured samples shows that the spatial distributions of phase transformation are similar

for the large and small samples.

Comparing the results in Figures 4.5 and 4.6 shows that the number of grains (or size)

has a strong effect on the phase transformation propagation in polycrystalline SMAs. As

shown in these figures, the role of phase transformation initiation at the grain boundaries

is more prominent in the small samples and the spread of the fully transformed regions is

affected by the number of grains. This difference in the phase transformation propagation

is related to the size effect observed in the stress-strain responses (Figure 4.4).

4.5.3 Bending Analysis of Microscaled Beams

In this section the numerical results for bending analysis of textured and untextured poly-

crystalline SMA beams are presented. The FE models are shown in Figures 4.1(b) and

(c). All the nodes in one end are constrained in all directions and a transverse displace-

ment is applied to the nodes in the other end. The final transverse deflection δ is set such

that δ/h=2 for both beams, where h is the thickness. The loading phase is then followed

by an unloading phase that is modeled by setting the deflection to zero. The geometrical

nonlinearity is considered in the FE solution for studying both the transverse and in-plane

deflections. The reaction forces at the clamped nodes are computed and summed for ob-

taining the total reaction force during loading-unloading. The force-deflection response of

the beams with 26 and 357 grains are shown in Figures 4.7(a) and (b), respectively. In both

cases of coarse and fine grains, the texture effect is studied by comparing the response of a

beam with texture versus an untextured beam with random crystal orientations.
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Figure 4.7: In-plane and transverse tip deflection for a polycrystal beam subjected to
bending. The response of textured and untextured beams are compared for polycrystal
structures with (a) 26 grains, and (b) 357 grains.

Comparing Figures 4.7(a) and (b) shows that the effect of texture on the force-deflection

response is more significant in the polycrystalline beam with large number of grains. The

force-deflection response for the smaller beam with 26 grains is almost identical for the

textured and untextured crystal orientations. We consider the polycrystal structure with

357 grains for studying the stress and martensitic volume fraction distribution in the beams

subjected to bending in the following. All the distributions correspond to the loading phase

with δ/h=1.5. The martensitic volume fraction (summation of volume fraction of all active

martensite variants) is shown in Figure 4.8. The volume fraction distributions in textured

and untextured beams are shown in Figures 4.8(a) and (b), respectively. Comparing the

volume fraction distribution near the clamped edge in these figures shows the asymmet-

ric distribution of matrensite volume fraction in the textured beam. It was previously

shown that while an untextured NiTi polycrystalline response is smei-symmetric in tension-

compression, the tensile and compressive responses are remarkably different in a textured

polycrystal [59]. As mentioned in §4.5.1, this happens because in the textured material,

the majority of grains are oriented along the [111] crystallographic direction, which is soft

under tensile loading and hard under compression. In the untextured samples the crystallo-

graphic directions are randomly distributed and that leads to an almost symmetric response
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in tension-compression. As shown in Figure 4.8(a), the neutral axis position (marked with

a red arrow on the figure) is shifted towards the compressive part of the cross section for the

textured beam, while it is near the center line for the untextured beam due to the symmetry

in tension-compression response. The response of macro SMA beams subjected to bending

was studied previously by the authors based on phenomenological constitutive frameworks

[? ]. Comparing the results of this section with those presented in ? ] shows that the

J2-based phenomenological models are suitable for modeling the response of untextured

polycrystalline materials and J2 − I1-based models can be used for studying the textured

polycrystal SMAs in bending with an acceptable accuracy.
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Figure 4.8: Martensitic volume fraction distribution in a polycrystal beam with 357 grains
subjected to bending with (a) textured and (b) untextured crystal orientations.

The normal stress distribution is compared for the textured and untextured beams in

Figures 4.9(a) and (b). An asymmetry in the stress distribution for the textured material is

observed. Also it is observed that the maximum compressive stress is remarkably larger than

the maximum tensile stress in the textured beam, which is consistent with the stress-strain

curves obtained in §4.5.1.

4.5.4 Thermomechanical Coupling in Polycrystalline SMAs

In this section the effect of phase transformation latent heat is considered and the ther-

momechanical response of textured and untextured polycrystalline SMAs is studied. In

the previous numerical case studies, an isothermal loading-unloading process was assumed,
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Figure 4.9: Normal stress distribution in a polycrystal beam with 357 grains subjected to
bending with (a) textured and (b) untextured crystal orientations.

which is valid when the phase transformation latent heat can be exchanged with the am-

bient and the material temperature is constant during the whole process. In this section

we consider the latent heat effect and also the temperature changes due to generation or

absorption of latent heat in forward or reverse phase transformation as explained in §4.3.
As mentioned earlier, our model considers a more accurate description for the rate of latent

heat generation and its derivatives with respect to strain and temperature compared to

the simplified works previously reported in the literature [49, 110]. Also, the more accurate

micromechanical model based on Voronoi tessellations sheds some light on the effect of ther-

momechanical coupling on the the propagation of phase transformation in polycrystalline

NiTi.

In this section, a polycrystalline model with circular cross section is used. This model

with 172 grains is shown in Figure 4.1(d). The details of the finite element model and

mechanical boundary conditions are similar to the previous case studies in §4.4. Continuous
solid tetrahedral elements with added temperature degrees of freedom (C3D4T) are used.

The initial temperature is T0 = 293K and the material is austenite initially. Free convection

with heat transfer coefficient h∞ = 10 W/m2K is considered at the sides of the sample.

Two different loading rates of ε̇ = 10−4 and 10−1 s−1 are studied for simulating the near

isothermal and near adiabatic cases, respectively. The polycrystal average stress-strain
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curves for these two loading rates are shown in Figure 4.10 for untextured and textured

samples.
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Figure 4.10: The effect of loading rate by considering the thermomechanical coupling on
the stress-strain response of (a) untextured and (b) textured polycrystalline NiTi samples
(the micromechanical model is shown in Figure 4.1(d)).

As shown in Figure 4.10, in the vicinity of thermomechanical coupling, the loading

rate has a significant effect on the mechanical response of both samples with textured and

random distributions of crystal orientations. Comparing the stress-strain curves for slow

and fast loadings in each case shows that the maximum stresses at the end of the load-

ing phase are increased by 29.8% and 37.8% in fast loading for untextured and textured

samples, respectively. For the fast loading, ε̇ = 10−1 s−1, the slope of stress-strain curve

is increased and the hysteresis area is slightly decreased for both untextured and textured

samples. These observations are both consistent with similar responses at the macroscale

NiTi samples studied by a phenomenological constitutive framework by ignoring the mi-

cromechanical structure [128], and also experimental results for large polycrystalline SMA

samples [16]. The average temperature of the polycrystal during loading-unloading is stud-

ied in Figure 4.11. The temperature at all the integration points is averaged for calculating

the parameter T in this figure.

As it is expected, the temperature change in slow loading is negligible while a significant

temperature change is observed in fast loading ε̇ = 10−1 s−1. Figure 4.11 shows that during
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Figure 4.11: Average temperature of untextured and textured polycrystalline NiTi samples
subjected to slow and fast loadings.

loading for the strain rate ε̇ = 10−1 s−1, the temperature increase in the textured material

is larger at a specific stress (the temperature increases form 297 to 309K at σ = 800MPa in

the untextured sample while the temperature increases to 316K at the same stress level in

the textured sample). However, the temperature change in the untextured sample is larger

at the same strain compared to the textured material (at the end of loading with ε = 0.05

the temperature is increased to 318K in the textured material, while the temperature in

the untextured sample is 320K). The temperature changes are consistent with the results

obtained from phenomenological constitutive equations for polycrystalline SMAs at large

scales [128]. As shown in Figure 4.11, the average temperature of the sample is lower than

the initial temperature at the end of loading for the slow loading rate. This phenomenon

is also observed in the calculations based on the phenomenological constitutive equations.

This effect can be explained as follows [128]. As shown in Figure 4.10, at the beginning of

unloading, before the start of reverse phase transformation, phase transformation does not

occur. During this step, the phase transformation heat is not generated and the material is

cooling due to convective heat exchange with the ambient. This temperature loss is followed

by heat absorption during reverse phase transformation and causes the material to be colder

than the initial and ambient temperatures at the end of the unloading phase.
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The effect of thermomechanical coupling and the latent heat on the propagation of phase

transformation in the polycrystalline material is studied next. We consider the textured

sample subjected to slow and fast loadings. The stress-strain curves for this sample are

shown in Figure 4.10(b). The martensitic volume fraction distributions at the end of the

loading phase in the textured polycrystalline SMA samples are shown in Figure 4.12.

(a) (b)

Figure 4.12: The martensitic volume fraction distributions at the end of the loading phase
in the textured polycrystalline SMA samples subjected to (a) fast and (b) slow loadings
(the stress-strain curves are shown in Figure 4.10(b)).

Distribution of the martensitic volume fraction in the sample subjected to fast loading

is shown in Figure 4.12(a). Two cuts along the length of the sample are used to show

the distribution inside the sample (the micromechanical model is shown in Figure 4.1(d)).

Figure 4.12(b) shows the same results for the slow loading rate. Two sample regions with

the highest martensitic volume fraction values are marked by dashed white lines in both

figures. For comparison purposes, a larger view of one of these regions is also shown for

both fast and slow loading rates. It is clear that the loading rate affects the distribution

of phase transformation. In both marked regions in the figure, the phase transformation is

distributed in a larger area in the sample subjected to slow loading.
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4.5.5 Texture Development in Polycrystalline NiTi

The mutivariant micromechanical framework of this chapter can also be used for study-

ing the texture development during the martensitic phase transformation in polycrystalline

NiTi alloys. The drastic orientation dependency in the response of single crystal NiTi re-

veals the importance of texture on the thermomechanical behavior of available commercial

polycrystalline Nitinol specimens. Texture evolution during martensitic phase transforma-

tion plays an important role on the macroscopic mechanical response. Studying texture

development by the theoretical frameworks and comparing the obtained predictions against

the experimental data can also be considered as a powerful method for validating the mul-

tivariant micromechanical models, which is obviously more reliable compared to the usual

method of exclusively comparing the macroscopic predictions.

Measuring the texture evolution during the phase transformation in NiTi faces numer-

ous challenges in practice due to complicated phase transformation from a cubic phase to a

combination of various variants of a monoclinic phase. A more practical study can be done

on martensite reorientation in NiTi samples bellow Mf temperature that a reorientation

between martensite variants happens instead of an austenite to martensite phase trans-

formation. Stebner et al. [174] reported the experimental data for texture developments

during martensite reorientation in polycrystalline NiTi parallelepiped specimens subjected

to multiaxial stress states. Ex situ neutron diffraction measurements at critical points of

the loading sequences have been used for studying the texture evolution in this work. The

obtained experimental results have been compared against the theoretical predictions of

a simplified multivariant solution in Gao et al. [65]. In modeling the polycrystal, the mi-

crostructure of grains was not constructed and an averaging scheme was used in this work. It

was shown that the theoretical multivariant model predicts the texture developments during

reorientation with a good accuracy. In this section we use the presented micromechanical

framework and the accurate polycrystal structure for studying the texture development

during the austenite to martensite phase transformation in NiTi alloys. The methodology

of measuring the texture evolution is similar to what used in [65] for analyzing the reorien-

tation. However, since we are studying the phase transformation, appropriate modifications
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are implemented on the method for tracking the evolution of texture corresponding to the

austenite and martensite phases in the material during the transformation. In this method

the volume fraction of all active martensite pairs is calculated in all the elements at each

stress state. The volume fraction of active pair i is composed of two variants that form the

twin in that pair. The crystallographic data for these pairs, the two composing variants in

each pair and also the fraction of each variant (one of the variants is the major with a larger

volume fraction compared to the minor variant) are given in Buchheit and Wert [31] and

Miyazaki et al. [132]. This experimental crystallographic data contains the rotation matri-

ces to transform a vector inside each martensite variant to the relative vector in the parent

austenite lattice coordinates. Also, the initial texture data is used for rotating this vector to

the global coordinate system by considering the orientation assigned to the elements in each

grain as explained in Section 4.4.2. For calculating a specific pole, the corresponding vector

is weighted according to the the volume fraction of martensite pairs. Each weighted vector

is transformed to the austenite lattice coordinates, and then to the global coordinates. The

contribution of each variant to the texture is measured by placing this transformed value

in a standard pole figure grid. Clearly, the contribution of the vector related to the portion

of the material that is in austenite phase is only transformed from the austenite lattice to

the global coordinated through the orientation obtained from the texture. By this method,

at each state two different textures are calculated; one related to the martensite phase and

another one corresponding to the parent austenite phase. It is obvious that at the start of

phase transformation when the material is pure austenite, the texture only corresponds to

the parent phase. However, by starting the phase transformation the martensite texture

starts evolving while the austenite texture resolves until the whole material is transformed

to martensite.

In order to study the texture evolution during phase transformation a cubic polycrys-

talline specimen as shown in Figure 4.1(a) is considered. The initial texture is identical with

the case explained in Section 4.4.2. The specimen is loaded in both tension and compression

to ε = ±0.035 (see Figure 4.3). Evolution of the texture for the austenite and martensite

phase in tensile loading is shown in Figure 4.13.
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Austenite                                          Martensite

Loading

Figure 4.13: Evolution of the texture for the austenite (left column) and martensite (right
column) phases during tensile loading of a polycrystalline NiTi sample.

The left column in Figure 4.13 corresponds the austenite phase while the right column

shows the evolution of martensite phase texture during loading. It is observed that the

austenite phase texture is almost kept constant during loading with a high [111] texture

along the loading axis consistent with the initial texture. This phenomenon is expected

since the applied strain is not adequate for transformation the majority of the material to

martensite. Loading the material to higher strain levels faces computational difficulties in

the model due to very high stresses in the grain boundaries and regions with a concentrated

phase transformation. The texture of martensite in the right column shows the formation

and evolution of the new phase during the loading. Interestingly the transformed martensite

shows a [111] texture along the loading axis in tensile loading. The texture evolution in
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Austenite                                          Martensite

Loading

Figure 4.14: Evolution of the texture for the austenite (left column) and martensite (right
column) phases during compressive loading of a polycrystalline NiTi sample.

compression is also shown in Figure 4.14. Similar to the tension case, it is observed that the

austenite texture is not strongly affected by the phase transformation. The texture evolution

corresponding to the transformed martensite in compressive loading is shown in the right

column in Figure 4.14. It is observed that in compression, the formed martensite has a [100]

texture along the loading axis. Performing experimental measurements of texture evolution

during phase transformation and comparing the observations with the presented results

can shed light upon some details of the twinning mechanisms in polycrystal NiTi and can

be used for remarkably improving the multivariant models by appropriately modifying the

considered possible twining systems in developing these models. This research is suggested

as a possible future extension of this work in Chapter 6.
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CHAPTER V

NANOSCALE STUDY OF NITI SHAPE MEMORY ALLOYS

5.1 Introduction

Several aspects of the SMAs thermomechanical properties cannot be studied neither by the

phenomenological constitutive models nor by the micromechanical models. Both the men-

tioned models rely on the properties of the SMAs at the atomistic scale, and studying the

martensitic phase transformation in nanoscale can shed light upon many unknown proper-

ties of these materials in the macroscopic level. In this chapter, molecular dynamics (MD)

simulations are used for studying the thermomechanical response of NiTi shape memory

alloys in various cases.

The thermomechanical loading of NiTi alloys causes a complicated set of transformations

between various phases including B2, B19, B19’, R and BCO [76, 139]. Also several type-

I, type-II and compound twinning modes have been observed in NiTi systems [137, 139].

Zhong et al. [196] performed atomistic simulations to study the structure and geometrical

limit of nanoscale twins in NiTi shape memory alloys. In this work the atomic-level details

of nanotwinned structures is studied by combining the crystallographic theory and atomistic

simulations. Recently, Zhong et al. [196] used molecular dynamics simulations to study the

atomistic mechanisms governing the pseudoelasticity and shape memory in NiTi nanostruc-

tures. In this work a [110] oriented nanopillar subjected to compressive loading-unloading

is studied. It is observed that either a pseudoelastic or shape memory response happens

during compressive loading, depending on the applied strain and temperature that control

the reversibility of phase transformation and deformation twinning. It is shown that in

nanopillars subjected to compressive loading, irreversible twinning arises owing to the dis-

location pinning of twin boundaries, while hierarchically twinned microstructures facilitate

the reversible twinning. To our best knowledge, a comprehensive study of the pseudoelas-

ticity and shape memory in NiTi nanostructures under tensile loading is not reported in
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the literature. In most of the reported works on this topic, an unrealistic temperature of

0 K is considered and molecular statics simulations are used for studying the phase trans-

formation at this temperature [166]. Although this assumption remarkably simplifies the

simulation, it will strongly affect the obtained results since the B2 phase is only stable at

high temperatures. Mutter and Nielaba [135] studied the temperature-driven diffusionless

structural phase transitions in equiatomic and nearly equiatomic ordered NiTi alloys. In

this paper a new stable phase is observed at low temperatures (called B19′ in the paper)

and it is shown that by heating an initial B19’ system to a high temperature, a B19’→
B2 transformation occurs but upon cooling the obtained B2 structure to low temperatures,

instead of transforming back to B19’ crystal structure, the system transforms to a slightly

different phase, denoted by B19′, which is not observed to exist experimentally. Mutter

and Nielaba [136] considered this new stable state and studied the mechanical response of

NiTi nanoparticles subjected to axial tensile loading in a multi variant martensitic ground

state. In this chapter we study the temperature induced phase transformation and also the

stress induced transformation in various NiTi systems at different temperatures. It is ob-

served that besides the B2↔B19’ transformation that occurs in large systems representing

the bulk material (simulated as supercells with periodic boundary conditions), a B2↔B19

transformation also may happen in some special cases, particularly in NiTi nanowires that

the surface-to-volume ratio is extremely high. A similar phenomenon is recently reported

by Zhong and Zhu [194] for NiTi thin films. They performed Monte Carlo simulations and

it was shown that a B2 initial structure at high temperatures transforms to B19 phase upon

cooling and martensitic nanotwins are formed during this transformation. We observed a

similar patterning of martensitic nanotwins in NiTi nanowires using MD simulations as

explained in the following sections.

5.2 Methods

5.2.1 EAM Potential

In this study, for the atomic interaction, a many-body interatomic potential for the NiTi

binary system is used. The embedded atom potential (EAM), was originally developed by
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Lai and Liu [97]. It is confirmed that this EAM has structural stability and lower potential

energy for both parent and martensite phases. This potential was later improved by Zhong

et al. [195] with a smooth cutoff behavior to avoid the diverging forces in simulations

involving large atomic displacements. This Finnis-Sinclair potential [53] computes pairwise

interactions for the alloy using a generalized form of EAM potentials. The total energy of

the system is expressed as [195]:

E =
∑
i

⎧⎨
⎩
∑
j �=i

Aαβ exp

[
−pαβ

(
rij
dαβ

− 1

)]
−
√∑

j �=i
F (rij)

⎫⎬
⎭ , (5.1)

where

F (rij) = ξ2αβ exp

[
2qαβ

(
rij
dαβ

− 1

)]
. (5.2)

The parameters α and β represent the element types (here Ni and Ti) of atoms i and j.

The distance between atoms i and j is denoted by rij. The parameters in this potential for

describing a NiTi alloy (i.e. values for Ni-Ni, Ti-Ti, and Ni-Ti interaction) have been fitted

to the properties of a cubic NiTi system at 0k by Lai and Liu [97]. Since the function F (rij)

and its derivative about rij are nonzero at the cutoff radius rc = 4.2Å, we use a modified

form of this function proposed by [195] which is more suitable for an MD simulation as:

F (rij) =

⎧⎪⎨
⎪⎩

ξ2αβ exp
[
2qαβ

(
rij
dαβ

− 1
)]
, rij ≤ r1,

c3,αβ(rij − r1)
3 + c2,αβ(rij − r1)

2 + c1,αβ(rij − r1) + c0,αβ . r1 < rij ≤ rc,
(5.3)

Four coefficients ci,αβ, i = 1, 2, 3, 4 in (5.3) are determined by imposing the continuity

conditions on F (rij) and its first derivative at r1 and rc. The potential parameters are given

in Table I in [195] with r1 = 4.0Å and rc = 4.2Å. As it is shown in Table II in [195], the

modified potential removes the discontinuities at rc, and also improves the predicted lattice

constant and various phases energies of NiTi compared to the ab initio calculations.

5.2.2 Analysis Framework

The MD simulation package LAMMPS is used in this work [158]. Different starting struc-

tures are considered; cubic B2 for modeling the austenite system and monoclinic B19 and
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B19’ structures for modeling the martensite phase (see Figure 5.1 for a schematic of different

phases and the martensitic PT in NiTi alloys).

Figure 5.1: Martensitic phase transformation in NiTi (blue atoms are Ti). (a) the austenite
phase with B2 cubic structure (shaded box) and the undistorted tetragonal B19 cell. (b)
The orthorhombic B19 structure. (c) The distortion to the stress-stabilized monoclinic B19’
structure. (d) The Base-centered orthorhombic (BCO) structure shown as the shaded box
[76].

Different crystal orientations are also considered in the following case studies by aligning

the x direction along various crystallographic directions of the B2 lattice. The input scripts

for all the following case studies are run using the Jan 2012 version of LAMMPS [1]. For the

case of considering austenite B2 phase as the starting structure, different simulation cells are

generated for modeling NiTi nanowires and supercells with periodic boundary conditions.

Some sample models with B2 phase as the starting structure are shown in Figure 5.2.

The “orient” option is used to align the loading direction along various crystallographic

directions of the cubic B2 structure. In the case of considering the martensite (B19 or

B19’) as the starting structure, we use the crystallographic theory of phase transformation

to construct the structure by calculating the position of the atoms [21].

For studying nanowires, periodic boundary conditions are applied in the axial direction

and the sidewalls are free surfaces with zero traction. In studying periodic supercells the
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Figure 5.2: Some of the initial configurations in the ordered B2 phase considered in this
paper: (a) 8.5nm × 8.5nm × 9nm periodic supercell, (b) 12.8nm × 12.8nm × 13.5nm peri-
odic supercell, and (c) 34nm× 12.8nm× 13.5nm nanowire (the dimensions correspond the
unrelaxed structure).

system is subjected to periodic boundary condition in all directions. In cases that the initial

structure is the ordered B2 phase, the temperature is set to 500 K by thermal equilibration

and system is relaxed to zero stresses for 50ps through 100,000 MD time steps (the time

step is set to 0.5 fs for all the following cases studies). The temperature is kept constant

at 500 K during the relaxation. This stage is performed by time integration on Nose-

Hoover style non-Hamiltonian equations of motion which are designed to generate positions

and velocities sampled from the isothermal-isobaric ensembles. This is achieved by adding

some dynamic variables which are coupled to the particle velocities (thermostatting) and

simulation domain dimensions (barostatting). The equilibration stage allows the lattice to

expand or contract to an initial temperature with a pressure of 0 bar at each simulation cell

face. For modeling the uniaxial tension-compression at lower temperatures (250 K to 300

K) the system is then cooled to the specified temperature with a rate of 2K per picosecond

(i.e. through 200,000 MD steps of 0.5 fs each for cooling from 500 K to 300 K). After cooling

the system is equilibrated for another 50 ps.

After the equilibration stage, the simulation cell is loaded by applying a strain controlled

deformation in the x-direction (see Figure 5.2). Different strain ranges are considered for

various case studies. In all the simulations a constant loading or unloading rate of 1×109 s−1

is considered (i.e. a 10% strain is applied through 200,000 MD steps of 0.5 fs each). In
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cases studies with unloading phase, at the end of loading phase the NiTi system is relaxed

at a constant temperature for 20 ps and the supercell is unloaded to the initial length at

the same loading rate after this equilibration. This relaxation process results in obtaining

a macroscopic equilibrium configuration at the prescribed strain and allows the structural

changes to occur [106]. Several MD simulations have been performed with different initial

distributions of randomly assigned atomic velocities for each case study to explore the

possibly different phase transformation mechanisms. Except some of the very small systems,

all the case studies are performed parallel on 8 CPUs. The major results and discussions on

the reorientation of martensite variants and austenite to martensite phase transformation

observed in NiTi systems are given in the following sections.

5.3 B2↔B19 Phase Transformation

As mentioned in Section 5.1, in addition to the B2↔B19’ transformation which is mostly

associated with twinning in large MD systems representing the bulk material (simulated

as supercells with periodic boundary conditions), a B2↔B19 transformation is observed in

some cases, particularly in NiTi nanowires that the surface-to-volume ratio is extremely

high, and also in periodic supercells with special boundary conditions. The B2↔B19 trans-

formation and also the reorientation between two different B19 variants will be studied in

the following sections. However, in order to better understand this phase transformation,

we study the temperature-driven B2↔B19 transformation in this section to analyze the

transformation temperatures. The effect of free surfaces and size on this transformation is

also studied in the sequel.

A schematic of the B2, B19, B19’ and BCO phases in NiTi is shown in Figure 5.1.

Readers are referred to [139] for a detailed review of various phases and the transformation

mechanisms in NiTi systems. For a detailed study of using MD simulations for studying the

B2, B19’ and BCO phases in NiTi and calculation of relaxed lattice constants and energies

per atom corresponding to these three phases see the work by Zhong et al. [195]. We will

focus on studying the B19 phase in this section.

Huang et al. [76] used first-principles calculations based on density functional theory
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(DFT) and showed that the energy of B19 phase is lower than B2 and the R phase. However,

since the B19 phase in NiTi is not observed in experiments, they have proposed that B19 is

mechanically unstable against a monoclinic distortion to the B19’ structure (or BCO which

is shown also to be stable in their work) due to a negative elastic modulus. However, we will

show in the sequel that in some cases in vicinity of the surface anergies and also in presence

of constrains due to high stresses (i.e. in a nanowire) the B19 phase may also be stable. A

similar phenomenon is recently reported by Zhong and Zhu [194] for NiTi thin films based

on Monte Carlo simulations. Figure 5.3 shows a schematic of a B2 unit cell (left) and two

possible B19 equivalent variants (right).
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Figure 5.3: Schematic of the parent B2 (left), and two variants of B19 unit cells (right)
viewed form [001] direction (The unit cell deformation is exaggerated for increasing the
geometric contrast between the two B19 variants).

A comprehensive study of lattice parameters and the energy per atom for the B2 and

B19 cells is given in Table 1 in Huang et al. [76]. The lattice constant of the B2 phase is

a0 � 3.008Å (as obtained form ab initio calculations and also predicted by the FS-potential

used in this work). In the selected coordinates shown in Figure 5.3 the parent B2 phase

has equal cell edges of length
√
2a0 in both [110]B2 and [110]B2 directions. In order to find

the lattice parameters of the B19 phase, several periodic simulation boxes are relaxed by

the stress-controlled conjugate gradient energy minimization. The average parameters for

this phase are obtained as: Energy per atom=-5.0428 eV, a=3.107Å, b=4.017 Å, c=4.38Å.

It is observed that the results are in agreement with the ab initio calculations and the
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experimental data [76].

In the next step, temperature-driven B2↔B19 phase transformation at zero stress is

studied (see Zhong et al. [195] for a similar study on the B2↔B19’ Transformation). In

order to simulate the properties of bulk NiTi, we start by studying periodic supercells by

considering two different simulation boxes. The small periodic supercell contains 1152 atoms

(2.4nm× 2.4nm× 2.6nm) and the large call contains 9216 atoms (4.8nm× 4.8nm× 5.2nm).

The initial system is B19 phase equilibrated at 100 K. The system is then heated to 450

K and then cooled back to 100 K with the simulation details explained in Section 5.2.

It is observed that during the heating the B19→B2 is phase transformation mechanism.

However, during the cooling a B2↔B19’ transformation is dominant in the periodic system.

Since we are interested in modeling the B2↔B19 transformation in this example, a special

boundary condition is imposed on the system in which only the normal components of stress

are relaxed. By this method the forward and reverse B2 to B19 phase transforation in the

system with periodic boundary conditions is guaranteed.

The temperature-driven B2↔B19 phase transformation in bulk NiTi is shown in Figure

5.4(a). In order to distinguish the B2 and B19 phases, the changes in the dimensions of

the unit cell can be studied in this simple case study. However, in order to study the phase

transformation in more complicated cases in the sequel and particularly for studying the

patterning of martensite variants in the sequel, an order parameter is defined based on

lattice constants in the MD system.

The detecting method used in this work is similar to that used by Sato et al. [166] with

some improvements. In our method for each atom the nearest neighbors that form a unit

cell are found in the system (the cell is constructed by eight atoms of the same type as

shown in Figure 5.3). The lattice constants a, b, and c are calculated by considering 12

edges in the cell. Each lattice constant is obtained by averaging the four values obtained

form this calculation. For studying the B19 phase, the angels in the cell are not used.

However, the criteria is also capable of calculating the unit cell angels for detecting B19’

and BCO phases. A more simple criteria can also be developed by considering only three

neighbors around each atom which also reduces the computational time remarkably (as
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Figure 5.4: MD simulation of temperature induced B2↔B19 phase transformation for (a)
periodic supercells and (b) nanowires with different sizes. The order parameter ξ changes
between 1 for B19 structure and 0 for B2 structure.

used in Sato et al. [166]). We have studied both the methods and although the results

were similar it was observed that the averaging improved the accuracy of the detecting

scheme. After calculating the lattice constants with the method explained above, two

different B19 variants are detected if the following conditions are satisfied for an atom:

b < 4.02Å, c > 4.35Å, c/a > 1.4. As another choice, the parameters a, b, and c can also

be monitored and used in the detection criterion. It is observed that the results are very

similar by using these three parameters instead of a, b, and c. The defined order parameter

ξ is set to zero for the B2 phase and the two different B19 variants are denoted by ξ = +1

and -1 for the variants shown with blue and red colors in Figure 5.3, respectively. This color

coding will be used in the following sections for detecting the reorientation in multivariant

martensite systems.

The change of order parameter ξ for two different simulation boxes with periodic bound-

ary conditions is shown in Figure 5.4. This Figure is used for calculating the transformation

temperatures in bulk NiTi for the B2↔B19 phase transformation. It is observed that the

size effect is negligible on the transformation temperatures. However, while the small super-

cell is fully recovered to B19 phase during cooling, the larger cell is partially recovered. This

is consistent with the case of B2↔B19’ transformation and can be explained by considering

the geometrical constraints as studied in detail by Zhong et al. [195].
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In the next step, the B2↔B19 phase transformation is studied in NiTi nanowires with

free surfaces. Four different sizes of nanowires are considered (the largest wire contains

∼600,0000 atoms). The same procedure is used for studying the temperature-driven phase

transformation. However, it is observed that despite the supercell with periodic boundary

conditions, the B2→B19 transformation is always dominant in the cooling phase instead

of a B2→B19’ transformation. A similar simulation is also perfomed on all the nanowires

by considering a wire in B2 phase at 450 K as the starting structure, cooling this system

to 100 K and then heating back the wire to 450 K. It was observed that upon cooling

and heating a B2→B19→B2 transformation happens in all the nanowires with the same

transformation temperature obtained from the simulations with B19 phase as the starting

structure. The order parameter ξ during the heating-cooling cycle for the NiTi nanowires

is shown in Figure 5.4(b). It is obvious that the transformation temperatures are strongly

affected by the geometry due to the presence of surface energies in nanowires.

5.4 Martensite Reorientation and Austenite to Martensite Phase Trans-
formation

5.4.1 NiTi Nanowires

In this section NiTi nanowires subjected to axial loading are studied. It will be shown

that at temperatures below Mf a martensite reorientation is the dominant transformation

mode for NiTi nanowires. Several case studies are presented for analyzing the mechanism

of this martensite reorientation at different conditions. The simulation method is explained

in detail in Section 5.2. As the first case study consider a NiTi nanowire with dimensions

34 nm × 12.8 nm × 13.5 nm in x,y, and z directions (Figure 5.2(c)) subjected to an axial

load at 275 K. The system contains ∼500,0000 atoms and the initial structure is ordered

B2 at high temperature (500 K). The axial direction of nanowire is aligned with the [110]B2

and periodic boundary conditions are imposed only in the axial direction. At the start

of simulation, the temperature is set to 500 K by thermal equilibration and the system

is relaxed to zero stresses for 50ps through 100,000 MD time steps of 0.5 fs each. The

temperature is kept constant at 500 K during the relaxation. The system is then cooled to

275 K through 225,000 MD steps of 0.5 fs each (2 K per picosecond). As previously shown
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in Figure 5.4(b), B2 phase transforms to B19 during this cooling since 275 K is bellow the

Mf � 320K for this wire. After cooling the system is equilibrated for another 50 ps at

constant temperature T=275 K. The equilibrated structure at 275 K is considered as the

initial state for applying the mechanical loading (ε = 0). Using the martensite detecting

method expressed in the previous section, it is observed that during the cooling from 500 K

to 275 K, the nanowire is transformed to the B19 variant with the smaller lattice constant

b along the axis of wire (variant 2 in Figure 5.3). This initial state is shown in Figure 5.5

at ε = 0. The atoms with a variant 2 of B19 phase are shown with red color in this figure.

The equilibrated wire is subjected to a 10% axial strain through 200,000 MD steps of 0.5

fs each by applying a strain controlled deformation in the x-direction (see Figure 5.2). It is

observed that a reorientation from variant 2 to variant 1 happens during the axial loading

of the wire with a pattern shown in Figure 5.5 for some strain intervals.

As shown in this figure, the reorientation initiates in the from of a narrow nanotwin

oriented ∼ 45◦ with respect to the loading direction. This phenomenon is shown with

ε = 0.015 in Figure 5.5 (variants 1 and 2 are shown with blue and red, respectively). The

formation of this narrow multivariant nanotwin is associated with an abrupt change in the

slope of stress-strain curves of the wire as will be studied in the following section. The

reorientation process continues during the axial loading by propagation of variant 1 inside

variant 2 and the initial narrow region of variant 1 broadens to cover the whole nanowire at

ε = 0.1 as shown in Figure 5.5. A similar study on the same wire at a higher temperature

(300 K) is performed and the initiation and propagation of martensite variants at this

temperature are shown in Figure 5.6.

It is observed that at this temperature the wire is transformed to variant 2 at the end of

cooling step of loading ε = 0 similar to the wire at 275 K. Then the reorientation initiates

at two equivalent directions as shown in Figure 5.6 (ε = 0.02). By applying the axial strain

one of these two directions become dominant and variant 1 propagates through the wire

until the reorientation from variant 2 to variant 1 is completed at ε = 0.1. The effect of

temperature on the stress-strain response of the wire during the martensite reorientation

will be studied in the next section. The reorientation of a smaller wire is studied as the
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Figure 5.5: Martensite reorientation in a 34nm × 12.8nm × 13.5nm nanowire subjected to
axial tensile load at T=275K. Blue and red represent two different martensite variants as
shown in Figure 5.3.

next case study. In this example a 34 nm × 8.5 nm × 9 nm NiTi nanowire is studied at

275 K. Similar to the previous two case studies the wire with initial B2 structure at high

temperature is cooled to 275 K. The martensite variant 2 is formed during this cooling as

shown in Figure 5.7(ε = 0). An interesting initiation and propagation of reorientation is

observed in this wire. As shown in (ε = 0.02), variant 1 forms as three nanotwins in three

regions aligned in the equivalent ∼ ±45◦ directions with respect to the loading direction.

Applying axial strain causes all the three nanotwins broadening, although the propagation

of reorientation in one of the regions is prominent. As observed in Figure 5.7(ε = 0.07),

branching happens inside the twins and a new twin in formed inside the existing twins.

The reorientation continues until the whole wire is transformed to variant 1 at the end of

loading (ε = 0.1).
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Figure 5.6: Martensite reorientation in a 34nm × 12.8nm × 13.5nm nanowire subjected to
axial tensile load at T=300K. Blue and red represent two different martensite variants as
shown in Figure 5.3.

5.4.2 Temperature Effect on the Reorientation Stress-Strain Curves of NiTi
Nanowires

The effect of temperature on the reorientation stress-strain response of a 34 nm×12.8 nm×
13.5 nm nanowire is studied in this section. The wire is studied in a loading-unloading

cycle. Figure 5.8 shows the stress-strain response for this wire subjected to a 10% axial

strain and then unloaded to the initial length. The response is studied at three different

temperatures 250, 275, and 300 K.

It is worth noting that all the curves correspond to the loading-unloading of wires

that are initially cooled from an equilibrated B2 structure to lower temperatures and the

B2↔B19 transformation was observed at all the temperatures as explained in the previous

sections (see Figure 5.9 for the change of order parameter during cooling from 500 to 300,
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Figure 5.7: Martensite reorientation in a 34nm× 8.5nm× 9nm nanowire subjected to axial
tensile load at T=300K. Blue and red represent two different martensite variants as shown
in Figure 5.3.
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Figure 5.8: The stress-strain curves corresponding to martensitic reorientation at three
different temperatures for a 34nm × 12.8nm × 13.5nm nanowire subjected to axial tensile
loading-unloading.
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275, and 259 K in this wire).
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Figure 5.9: Change of the order parameter ξ during the initial cooling of nanowires. The
stress-strain response of the wires subjected to axial loading after the initial cooling is shown
in Figure 5.8.

Studying Figure 5.8 shows that the temperature has a significant effect on the mechanical

response and reveals many important properties of temperature effect on the response of

NiTi nanowires bellow Mf . Some of the major findings are summarized in the following:

1. The slope of the initial elastic response of the nanowire is affected by the change of tem-

perature. The initial linear response at the beginning of loading at all temperatures

corresponds to the elastic deformation of variant 2 before starting the reorientation.

Interestingly, it is observed that this elastic response is affected by the temperature

and the slope of stress-strain curved decreases by increasing the temperature.

2. The temperature affects the initial stress overshoot at the start of reorientation. As it

is shown in Figure 5.8, the start of reorientation is associated with a stress overshoot

at T=250 K while the stress-strain response is smooth at the initiation of reorientation

at higher temperature T=300 K.

3. The martensite reorientation completes at lower strains by increasing the temperature.

The completion of reorientation is identified by an abrupt change in the slope of stress-

strain curves during loading.
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4. The hysteresis area is decreased by increasing the temperature.

5. The stress value during reorientation is decreased by increasing the temperature. It

is worth noting that the phase transformation critical stress increases by increasing

the temperature at high temperatures above Af . However, our results in Figure

5.8 show that bellow Mf the reorientation critical stress decreases by increasing the

temperature in NiTi nanowires. This phenomenon is consistent with the bulk NiTi as

reported experimentally [61, 140].

5.4.3 Bulk NiTi

In this section the stress-induced phase transformation is studied for bulk NiTi by simulating

MD supercells with periodic boundary conditions. The simulation method is explained in

detail in Section 5.2. As the first case study consider a NiTi periodic box with dimensions

12.8 nm× 12.8 nm× 13.5 nm in x,y, and z directions (Figure 5.2(b)) subjected to a tensile

load in x direction at 300 K. The initial structure is B2 at high temperature T=500 K.

The loading direction is aligned with the [110]B2 and periodic boundary conditions are

imposed in all directions. At the start of simulation, the temperature is set to 500 K by

thermal equilibration and the system is relaxed to zero stresses for 50ps through 100,000

MD time steps of 0.5 fs each. The temperature is kept constant at 500 K during the

relaxation. The system is then cooled to T=300 K through 200,000 MD steps of 0.5 fs each

(2 K per picosecond). As previously shown in Zhong et al. [195] B2 phase transforms to

B19’ during this cooling. However since 300 K is very close to the Mf for bulk NiTi (Mf

is reported � 300K in [195]), an equilibration stage in necessary after the completion of

cooling to stabilize the obtained structure. The system is equilibrated for 50 ps at constant

temperature T=300 K. The equilibrated structure at 300 K is considered as the initial state

for applying the mechanical loading (ε = 0).

As shown in Figure 5.10 during the equilibration stage the B2→B19’ transformation ini-

tiates in the structure. It is observed that the martensite variants tend to self-accommodate

their shear deformation by forming nanotwins. Applying axial strain to this system magni-

fies the B19’ martensite twinning in the system with a lattice angle γ � 98◦ (see ε = 0.05 in
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Figure 5.10: [110] view of a 12.8nm × 12.8nm × 13.5nm supercell with periodic boundary
conditions subjected to tensile loading at 300K. The supercell is cooled from initial B2
structure at 500K to 300K, equilibrated at 300K (first row), and then loaded in [110] direc-
tion (second row). All the pressure components are relaxed during cooling and equilibration
stages.

Figure 5.10). Further increasing the axial strain causes formation of BCO nanotwins with

a lattice angle γ � 108◦ (see ε = 0.1 in Figure 5.10).

As another example, we studied the same supercell with periodic boundary conditions

but this time only the normal strass components are relaxed during the cooling and equi-

librating stages in order to stimulate the B2→B19 transformation in bulk material. Using

the martensite detecting method expressed in the previous section the B19 variants are

studied in the system. The results of this case study are shown in Figure 5.11.

Since the temperature T=300 K is very close to the Mf , the phase transformation

during cooling is completed at the equilibration stage after the cooling. The top row in

Figure 5.11 shows that the B19 variants are formed as patterned nanotwins in order to

self-accommodate the transformation strains in x and y directions.
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Figure 5.11: [001] view of a 12.8nm × 12.8nm × 13.5nm supercell with periodic boundary
conditions subjected to tensile loading at 300K. The supercell is cooled from initial B2
structure at 500K to 300K, equilibrated at 300K (first row), and then loaded in [110]
direction (second and third rows). Only the normal pressure components are relaxed during
cooling and equilibration stages.
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Comparing this results with those obtained from analyzing NiTi nanowires (i.e. see

Figure 5.6) reveals that the surface energies and the free boundaries at the sidewalls causes

the formation of a single variant B19 system in the wire, while a self-accommodated pattern

is formed in a system with geometrical constraints uses in this section. The initial state after

cooling and equilibrating the system is shown in Figure 5.11(ε = 0). The equilibrated system

is then subjected to a 10% axial strain through 200,000 MD steps of 0.5 fs each by applying

a strain controlled deformation in the x-direction (see Figure 5.2). It is observed that in the

multivariant pattern at the start of loading, the regions of variant 1 start propagating while

variant 2 is resolved by increasing the axial strain. This phenomenon is expected because

variant 1 is more favorable in the strained material since the larger lattice constant in this

variant is aligned with the loading direction. Figure 5.11(ε = 0.1) shows that the whole

system is transformed to variant 1 at the end of loading phase.

The same simulation is also performed to study the thermomechanical response of bulk

NiTi at a lower temperature T=250 K. The results for the supercell with relaxing all the

stress components are shown in Figure 5.12. It is observed that the results are similar to the

case of T=300 K, except for the cooling stage. While the transformation is not completed

during cooling at T=300 K, the top row in Figure 5.13 shows that the phase transformation

completes during cooling to T=250 K since this temperature is remarkably bellow the Mf .

The simulation at 250 K is also repeated by only relaxing the normal stress components

in the periodic supercell. The results of this simulation are shown in Figure 5.13. A self-

accommodated B19 multivariant pattern is formed during the cooling stage in this example

as shown in the first row in Figure 5.13. Comparing the results obtained for 300 K in

Figure 5.11 with those obtained for 250 K in Figure 5.13 shows a refinement in martensite

nanotwins at lower temperatures. This observation is in agreement with the Monte Carlo

simulations by Zhong and Zhu [194].

In order to study the effect of size on the martensite patterns during B2→B19 transfor-

mation, two sizes of supercells with periodic boundary conditions are analyzed in the next

case study. The normal pressure components are relaxed during the cooling and relaxation

stages to stimulate the B2→B19 transformation and the initial B2 systems are cooled to 275
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Figure 5.12: [110] view of a 12.8nm × 12.8nm × 13.5nm supercell with periodic boundary
conditions subjected to tensile loading at 250K. The supercell is cooled from initial B2
structure at 500K to 250K (first row), equilibrated at 250K, and then loaded in [110] direc-
tion (second row). All the pressure components are relaxed during cooling and equilibration
stages.

K before applying the uniaxial strain. The larger simulation box is 17nm × 17nm × 18nm

and the smaller one has the dimensions 12.8nm×12.8nm×13.5nm in x, y, and z directions.

The mutivariant pattern of nanotwins are shown in Figures 5.14 and 5.15 for these case

studies.

It is observed that the formation and propagation of mutivariant martensite nanotwins

is very similar in both cases which shows that the size effect is negligible in this study and

the results are representing a bulk material with an acceptable accuracy.

The stress strain response of bulk NiTi at during martensite reorientation and phase

transformation is studied in Figure 5.16 for different temperatures. The stress-strain curves

shown in Figure 5.16(a) correspond the supercells with periodic boundary conditions in

all directions in which the all the pressure components are relaxed during cooling and

equilibration. The stress-strain curve starts with a smooth change of slope during loading
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Figure 5.13: [001] view of a 12.8nm × 12.8nm × 13.5nm supercell with periodic boundary
conditions subjected to tensile loading at 250K. The supercell is cooled from initial B2
structure at 500K to 250K (first row), equilibrated at 250K, and then loaded in [110]
direction (second and third rows). Only the normal pressure components are relaxed during
cooling and equilibration stages.
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Figure 5.14: [001] view of a 17nm× 17nm× 18nm supercell with periodic boundary condi-
tions subjected to tensile loading at 275K. The supercell is cooled from initial B2 structure
at 500K to 275K (first row), equilibrated at 300K, and then loaded in [110] direction (sec-
ond and third rows). “Only the normal pressure components are relaxed during cooling and
equilibration stages”.

during the propagation of B19’ nanotwins in the system. The curve is followed by an abrupt

change in the slope by the formation of BCO nanotwins in the material. Figure 5.16(b)

shows the stress-strain curves for the systems in which only the normal pressure components

were relaxed and the B2→B19 transformation was stimulated. It is observed that the curves

contain several parts with a negative slope during loading. This local peaks in the curves

correspond to the propagation of martensite variants which is associated with resolving the

other variant in the system.
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Figure 5.15: [001] view of a 12.8nm × 12.8nm × 13.5nm supercell with periodic boundary
conditions subjected to tensile loading at 275K. The supercell is cooled from initial B2
structure at 500K to 275K (first row), equilibrated at 300K, and then loaded in [110]
direction (second and third rows). “Only the normal pressure components are relaxed
during cooling and equilibration stages”.

5.5 Twinning in NiTi nanowires Subjected to High Tensile Strains

In Section 5.4 we studied the response of NiTi nanowires at temperatures bellow Mf sub-

jected to a 10% strain in the axial direction. In this section we study the response NiTi

nanowires when subjected to high axial strains. The method is similar to that used in

Section 5.4. Different sizes of nanowires are studied at various temperatures. The initial

structure for all the cases in B2 at high temperature T=500 K and the system is cooled to

lower temperatures 250, 275, and 300 K before applying the mechanical loading. An axial

strain of 20% is applied after equilibrating the cooled wire. It was shown in Section 5.4

that the single variant 2 formed at temperatures bellow Mf is reoriented by propagation of

variant 1 in the form of multivariant nanotwins with a ∼ 45◦ orientation. Further loading
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Figure 5.16: The stress-strain curves for a 12.8nm×12.8nm×13.5nm supercell with periodic
boundary conditions subjected to axial tensile loading-unloading when (a) all the pressure
components are relaxed during cooling and equilibration stages, and (b) only the normal
pressure components are relaxed during cooling and equilibration stages.

this single variant of B19 phase is associated with an elastic response of this phase (the

stress-strain curves are studied in detail in the next section). However at a specific strain,

an abrupt change in the crystal structure is observed and several self-accommodated nan-

otwins are formed. Figure 5.17 shows the [110] view of a 34nm×12.8nm×13.5nm nanowire

subjected to 20% axial strain at 300K. It is observed that up to a strain level of ε � 0.14

the crustal structure is variant 1 of B19 phase. However, by further loading this nanowire,

as shown for the strain values 0.18 and 0.2, several nanotwins are formes in the system.

The BCO crystal structure is most prominent in these nanotwins.

Formation of these [110] nanotwins can be explained by considering the Poisson effect.

As the axial strain increases, the Poisson effect causes an increase in the lateral compression

in the wire. At a critical lateral compression, the large compressive strain promotes strain

accommodation by formation of multiple twinning. The twinning was previously reported

for nanopillars subjected to an axial compression by Zhong et al. [196]. In the nanopillars

subjected to axial compression, the twinning was observed at lower strain levels ∼ 5% which

is consistent with our results since the compressive lateral strain in tension is roughly one

third the axial strain.

As another example consider a 34 nm× 8.5 nm× 9 nm nanowire subjected to 20% axial

243



Figure 5.17: Formation of nanotwins in a 34nm× 12.8nm× 13.5nm nanowire subjected to
20% axial strain at 300K. The nanowire is viewed from [110] direction.

strain at 275K. The response of this wire at 10% strain is studied in Section 5.4. Figure

5.18 shows the [110] view of this wire when subjected to high axial strains.

It is observed that the self-accommodating nanotwins are formed at the high strain levels

and comparing different strain values in Figure 5.18 reveals the initiation and propagation

of these twins that initiates from the wire end and propagated toward the middle regions.

Comparing the results given for small and large wires at different temperatures in Figures

5.17 and 5.18 shows that both the temperature and size affect the response of nanowires.

Both these effects are more studied in the following section.

The [001] view of this wire is also shown in Figure 5.19. At ε = 0.05 the wire is deformed

due to the formation of several B19 multivariant nanotwins (see Figure 5.7). The whole

wire is transformed to variant 1 which is more favorable by increasing the strain to 0.1.

By increasing the strain, compressive strains promote formation of lateral nanotwins in the
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Figure 5.18: Formation of nanotwins in a 34nm× 8.5nm× 9nm nanowire subjected to 20%
axial strain at 275K. The nanowire is viewed from [110] direction.

wire. The size and temperature effects are more studied in the next section.

5.6 Size and Temperature Effects on the Response at High Strains

In this section the effect of size and temperature on the stress-strain response of NiTi

nanowires subjected to high strains is studied. The simulation details are given in Section

5.5. As the first case study a NiTi nanowire with dimensions 34nm × 12.8nm × 13.5nm in

x, y, and z directions is considered (See Figure 5.2(c)). The initial structure is B2 at high

temperature T=500 K and the wire is cooled to three different temperatures T=300, 275,

and 250 K. The wires are then loaded to a 20% axial strain in axial direction as expressed in

Section 5.5. Figure 5.20(a) shows the stress-strain response of these nanowires at different

temperatures (see Section 5.4.2 for a study on the effect of temperature on the stress-strain

response corresponding the reorientation for strains bellow 10%).

Studying the stress-strain responses in Figure 5.20(a) shows that the formation of

martensite lateral nanotwins in the wire is associated with an abrupt drop in the stress

value which is consistent with the observed response in nanopillars subjected to an axial

compression [196]. Also it is observed that the temperature slightly changes the critical
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Figure 5.19: [001] view of 34nm × 8.5nm × 9nm nanowire subjected to 20% axial strain
at 275K. Figures 5.7 and 5.18 show the reorientation of martensite at 10% strain and the
formation of nanotwins at 20% strain for this wire, respectively. Blue and red atoms are Ni
and Ti, respectively
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Figure 5.20: The effect of (a) temperature and (b) size on the stress-strain response of
NiTi nanowires subjected to 20% axial strain
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stress corresponding the start of twinning. Figure 5.20(b) shows the effect of size on the

stress-strain response of wires. Four different cross section sizes are selected while the axial

length of the wire is kept constant. All the wires are studied at T=275 K. It is observed

that the mechanical response is very similar for three sizes while the response of the smallest

wire with a 3nm× 3.1nm cross section is different. This phenomenon is due to the different

transformation mechanism in the small wire as studied in Figure 5.21.

Figure 5.21: Phase transformation mechanism in a 34nm×3nm×3.1nm nanowire subjected
to 18% axial strain at 275K. The nanowire is viewed from [110] direction.

The initial configuration after cooling from a high temperature to T=275 K is shown

in Figure 5.21(ε = 0). In contrast with the larger wires (i.e. Figure 5.5) the B2→B19

transformation happens in the whole wire almost simultaneously in this thin wire instead

of a nanotwin propagation that was observed in larger wires. This transformation is com-

pleted at lower strain levels (ε � 0.05). Further loading the wire in axial direction stimu-

lates a B2→B19’ transformation in the whole wire (see ε = 0.05 and 0.15 in Figure 5.5).

The transformation mechanism in this stage is different from the larger wires in which

self-accommodated nanotwins were formed in lateral direction (i.e. Figure 5.17). Plastic
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deformation is observed at higher strain levels ε � 0.16 and the wire starts necking after

this strain level as shown in Figure 5.21.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDED FUTURE RESEARCH

6.1 Summary and Conclusions

This research program introduces a multiscale analysis for SMAs, particularly Nickel-

Titanium alloys (NiTi). SMAs are studied in a variety of length scales ranging from

macroscale to nanoscale. Appropriate experiments are also performed for studying the

mechanical and thermomechanical response of NiTi shape memory alloys at large scales.

The research covers the following four major topics at different scales:

Phenomenological macroscale modeling: Large polycrystalline SMAs are studied in

this work using a phenomenological macroscopic framework. Micromechanical proper-

ties are used for obtaining the macroscopic free energy potential, and the phenomeno-

logical constitutive equations are derived using this energy potential. The macroscopic

phenomenological constitutive models are usually implemented in a numerical frame-

work, particularly the finite element method, for simulating the mechanical response

of SMA polycrystallines. However, numerical simulations have many drawbacks in

modeling SMAs, including the convergence issues and the time consuming iterative

simulations. In this research, closed-form solutions are presented for studying var-

ious SMA devices subjected to different types of loading, including uniaxial loads,

torsion, bending, and also thick-walled SMA cylinders subjected to internal pressure.

The results of introduced closed-form solutions are validated by performing various

experiments on some large SMA elements.

Thermomechanical coupling in SMAs: The martensitic phase transformation in SMAs

is associated with generation or absorption of latent heat in forward (austenite to

martensite) and reverse (martensite to austenite) transformations. the effect of phase

transformation induced latent heat is added to the solutions obtained based on the

phenomenological constitutive framework and the coupled thermomechanical response
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of SMAs is also studied. It is shown that the thermomechanics can be considered as

the origin of rate and size dependency in SMAs. The thermomechanical response

is studied experimentally as well by measureing the temperature changes due to the

phase transformation latent heat at the surface of SMA specimens subjected to various

loadings. The theoretical coupled thermomechanical models is calibrated using the

experimentally measured temperatures at the surface. The calibrated model is then

used for calculating the temperature distribution inside the device (which is practi-

cally difficult to be measured in tests). The obtained full temperature distribution is

the basis for studying the complex effects of size, loading rate, and ambient condition

on the response of SMA devices.

Micromechanical modeling: The phenomenological macroscopic frameworks are not ca-

pable of studying many important phenomena related to thermomechanical response

of SMAs, including the texture effect and the intergranular effects in polycrystalline

SMAs. In order to overcome these shortages, a micromechanical framework with a

realistic modeling of the grains in a polycrystal SMA is used. A constitutive model

based on the micromechanics of single crystals of SMAs is used for studying the pseu-

doelastic response of polycrystalline SMAs subjected to uniaxial and bending loads.

By introducing a set of martensitic volume fractions corresponding to each active

variant, the total transformation strain is obtained as a function of stress-free trans-

formation strains of 24 correspondence variant pairs (CVPs) obtained from the crys-

tallographic data for NiTi. Compared to the available micromechanical-based models

in the literature, an improved coupled thermomechanical framework is introduced for

polycrystalline SMAs by coupling the energy balance equation obtained from the first

law of thermodynamics to the mechanical constitutive equations. The microstructure

of polycrystalline SMAs is simulated accurately by using Voronoi tessellations in a

three-dimensional finite element model and various samples with different number of

grains and shapes are modeled for studying various aspects of the thermomechanical

response of polycrystalline NiTi shape memory alloys. The effect of crystallographic

texture on the thermomechanical response of NiTi is studied by assigning appropriate
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crystallographic orientations in the grains. The interaction between the stress state

(tensile or compressive), size (modeled by considering samples with different number of

grains), and the crystallographic texture on the mechanical response and phase trans-

formation propagation in polycrystalline SMAs is analyzed. The bending response of

polycrystalline micropillars is also studied and the effect of size and crystallographic

texture on the bending response is analyzed. Using the coupled thermomechanical

framework for polycrystalline SMAs, the effect of loading rate and the phase trans-

formation latent heat on the response of textured and untextured NiTi samples is

studied. It is shown that the temperature changes due to the heat generation during

phase transformation can affect the propagation of martensite in samples subjected

to high strain rates.

Nanoscale study: Several aspects of the thermomechanical properties of SMAs cannot

be studied neither by the phenomenological constitutive models nor by the microme-

chanical models. Both the mentioned models rely on the properties of the SMAs in

atomistic scale, and studying the the martensitic phase transformation in nanoscale

can shed light upon many unknown properties of these materials in the macroscopic

level. In this research the temperature induced phase transformation and also the

stress induced transformation in various NiTi systems at different temperatures is

studied. The reorientation in martensite at lower temperatures is also studied. It

is observed that besides the B2↔B19’ transformation that occurs in large systems

representing the bulk material (simulated as supercells with periodic boundary condi-

tions), a B2↔B19 transformation also may happen in some special cases, particularly

in NiTi nanowires that the surface-to-volume ratio is extremely high similar to the

phenomenon which is recently reported by Zhong and Zhu [194] for NiTi thin films

based on performing Monte Carlo simulations. By considering different simulation

boxes and various temperatures, the size and temperature effects on the pseudoelastic

response of NiTi alloys are studied. Several new aspects of the austenite-martensite

phase transformation and reorientation of martensite variants are introduced in Chap-

ter 5.
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6.2 Recommended Future Research

Some areas of potential future work are as follows:

• Studying the large strain effects in bending analysis of SMA superelastic beams is

an important extension of the work presented in Section 2.5, which can be obtained

using the approximation III in this section. This approximation can also be used for

developing a closed-form solution based on higher-order beam theories.

• Adding the thermomechanical coupling effect to the present solution for studying

bending enables it to consider the phase transformation latent heat effect on the

superelastic bending of SMA beams. This improvement leads to a comprehensive

solution capable of modeling the rate dependency, ambient condition effects, and size

effect in the response of superelastic SMA beams in bending.

• Performing in-situ texture measurements on NiTi samples during phase transforma-

tion and comparing the obtained results with the theoretical solutions calculated by

the micromechanical framework of Chapter 4.

• Using efficient computational tools for modeling larger polycrystalline samples with

larger number of grains in order to study the behavior of bulk material. Imposing

periodic boundary conditions, which is challenging in models based on Voronoi tes-

sellations can also improve the numerical results of the micromechanical model.

• The micromechanical model can be improved by considering a more comprehensive

combination of twinning systems in NiTi based on experimental data.

• The nanoscale study can be improved by performing a detailed analyze on the struc-

tures with various crystal orientations. Many aspects of martensitic phase transforma-

tion can be studied by scrutinizing the thermomechanical response of NiTi nanowires

and periodic supercells at different orientations.

• The stress induced martensitic phase transformation at high temperatures can be

added to the nanoscale study of this research.
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• This research can be used for designing experimental tests on NiTi naowires. The

results can shed light to expectations from such a test because all the analyzes of

this research are on NiTi at near room temperatures that would be the environment

temperature if an in-situ test is designed for NiTi nanowires.
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[141] Özişik, M. N. Finite difference methods in heat transfer. CRC-Press: Boca Raton,

Florida, 1994.

268



[142] Padgett, J. E., DesRoches, R., and Ehlinger, R. Experimental response mod-

ification of a four-span bridge retrofit with shape memory alloys. Structural Control

and Health Monitoring, 17(6):694–708, 2010.

[143] Paine, J. S. N. and Rogers, C. A. Using the adaptive SMA composite cylinder

concept to reduce radial dilation in composite pressure vessels. In Proc. SPIE Vol.

2443. Smart Structures and Materials Smart Structures and Integrated Systems, pages

195–205, 1995.

[144] Paine, J. S. N., Rogers, C. A., and Smith, R. A. Adaptive composite-materials

with shape-memory alloy actuators for cylinders and pressure-vessels. Journal of

Intelligent Material Systems and Structures, 6(2):210–219, 1995.

[145] Paiva, A., Savi, M. A., Braga, A. M. B., and Pacheco, P. M. C. L. A con-

stitutive model for shape memory alloys considering tensile-compressive asymmetry

and plasticity. International Journal of Solids and Structures, 42(11-12):3439 – 3457,

2005.

[146] Panico, M. and Brinson, L. A three-dimensional phenomenological model for

martensite reorientation in shape memory alloys. Journal of the Mechanics and

Physics of Solids, 55(11):2491 – 2511, 2007.

[147] Papadimitriou, C. H. and Steiglitz, K. Combinatorial Optimization: Algorithms

and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[148] Paradis, A., Terriault, P., and Brailovski, V. Modeling of residual strain accu-

mulation of NiTi shape memory alloys under uniaxial cyclic loading. Computational

Materials Science, 47:373–383, 2009.

[149] Park, H. S. Stress-induced martensitic phase transformation in intermetallic nickel

aluminum nanowires. Nano Letters, 6(5):958 – 962, 2006.

[150] Park, H. S., Gall, K., and Zimmerman, J. A. Shape memory and pseudoelasticity

in metal nanowires. Physical Review Letters, 95:255504, 2005.

269



[151] Patoor, E., Eberhardt, A., and Berveiller, M. Micromechanical modelling

of superelasticity in shape memory alloys. Journal De Physique IV, 6(1):C1–277 –

C1–292, 1996.

[152] Patoor, E., Lagoudas, D. C., Entchev, P. B., Brinson, L. C., and Gao,

X. Shape memory alloys, part i: General properties and modeling of single crystals.

Mechanics of Materials, 38(5-6):391 – 429, 2006.

[153] Patoor, E., Elamrani, M., Eberhardt, A., and Berveiller, M. Determination

of the origin for the dissymmetry observed between tensile and compression tests on

shape-memory alloys. Journal De Physique IV, 5(C2):495–500, 1995.

[154] Petrini, L., Migliavacca, F., Massarotti, P., Schievano, S., Dubini, G., and

Auricchio, F. Computational studies of shape memory alloy behavior in biomedical

applications. Journal of Biomechanical Engineering, 127:716–725, 2005.

[155] Peultier, B., Zineb, T. B., and Patoor, E. Macroscopic constitutive law for

SMA: Application to structure analysis by FEM. Materials Science and Engineering:

A, 438-440:454 – 458, 2006.

[156] Plietsch, R. and Ehrlich, K. Strength differential effect in pseudoelastic NiTi

shape memory alloys. Acta Materialia, 45(6):2417 – 2424, 1997.

[157] Plietsch, R., Bourauel, C., Drescher, D., and Nellen, B. Analytical de-

scription of the bending behaviour of niti shape-memory alloys. Journal of Materials

Science, 29(22):5892 – 5902, 1994.

[158] Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. Journal

of Computational Physics, 117(1):1 – 19, 1995.

[159] Popiel, C. O. Free convection heat transfer from vertical slender cylinders: a review.

Heat Transfer Engineering, 29(6):521 – 536, 2008.

[160] Purohit, P. K. and Bhattacharya, K. On beams made of a phase-transforming

material. International Journal of Solids and Structures, 39(13-14):3907 – 3929, 2002.

270



[161] Qidwai, M. A. and Lagoudas, D. C. Numerical implementation of a shape memory

alloy thermomechanical constitutive model using return mapping algorithms. Inter-

national Journal for Numerical Methods in Engineering, 47(6):1123 – 1168, 2000.

[162] Qidwai, M. A. and Lagoudas, D. C. On thermomechanics and transformation

surfaces of polycrystalline NiTi shape memory alloy material. International journal

of plasticity, 16(10):1309 – 1343, 2000.

[163] Rajagopal, K. and Srinivasa, A. Mechanics of the inelastic behavior of materials.

part I: Theoretical underpinnings. International Journal of Plasticity, 14(10-11):945–

967, 1998.

[164] Saint-Sulpice, L., Chirani, S. A., and Calloch, S. A 3D super-elastic model

for shape memory alloys taking into account progressive strain under cyclic loadings.

Mechanics of Materials, 41:12–26, 2009.

[165] San Juan, J. M., No, M. L., and Schuh, C. A. Superelasticity and shape memory

in micro- and nanometer-scale pillars. Advanced Materials, 20(2):272 – 278, 2008.

[166] Sato, T., Saitoh, K.-I., and Shinke, N. Molecular dynamics study on microscopic

mechanism for phase transformation of Ni-Ti alloy. Modelling and Simulation in

Materials Science and Engineering, 14(5):S39 – S46, 2006.

[167] Sehitoglu, H., Karaman, I., Anderson, R., Zhang, X., Gall, K., Maier, H.,

and Chumlyakov, Y. Compressive response of niti single crystals. Acta Materialia,

48(13):3311 – 3326, 2000.

[168] Shin, D. D., Mohanchandra, K. P., and Carman, G. P. Development of hy-

draulic linear actuator using thin film sma. Sensors and Actuators, A: Physical, 119

(1):151 – 156, 2005.

[169] Simo, J. C. and Hughes, T. J. R. Computational inelasticity, Vol. 7 of interdisci-

plinary applied mathematics. Springer–Verlag, New York, 1998.

271



[170] Simonovski, I. and Cizelj, L. The influence of grains crystallographic orientations

on advancing short crack. International Journal of Fatigue, 29(9 - 11):2005 – 2014,

2007.

[171] Simonovski, I. and Cizelj, L. Automatic parallel generation of finite element

meshes for complex spatial structures. Computational Materials Science, 50(5):1606

– 1618, 2011.

[172] Sokolnikoff, I. S. Mathematical theory of elasticity. McGraw-Hill. New York, 1956.

[173] Speicher, M., Hodgson, D. E., DesRoches, R., and Leon, R. T. Shape memory

alloy tension/compression device for seismic retrofit of buildings. Journal of Materials

Engineering and Performance, (18):746 – 753, 2009.

[174] Stebner, A., Gao, X., Brown, D. W., and Brinson, L. C. Neutron diffraction

studies and multivariant simulations of shape memory alloys: Empirical texture devel-

opmentmechanical response relations of martensitic nickeltitanium. Acta Materialia,

59(7):2841 – 2849, 2011.

[175] Sun, Q. P. and Hwang, K. C. Micromechanics modelling for the constitutive

behavior of polycrystalline shape memory alloysII. study of the individual phenomena.

Journal of the Mechanics and Physics of Solids, 41(1):19 – 33, 1993.

[176] Sutrakar, V. K. and Mahapatra, D. R. Asymmetry in structural and thermo-

mechanical behavior of intermetallic NiAl nanowire under tensile/compressive loading:

A molecular dynamics study. Intermetallics, 18(8):1565 – 1571, 2010.

[177] Tanaka, K. A thermomechanical sketch of shape memory effect: One-dimensional

tensile behavior. Res mechanica, 18(3):251–263, 1986.

[178] Tanaka, K. A phenomenological description on thermomechanical behavior of shape

memory alloys. ASME Journal of Pressure Vessel Technology, 112:158–163, 1990.

272



[179] Tanaka, K., Kobayashi, S., and Sato, Y. Thermomechanics of transformation

pseudoelasticity and shape memory effect in alloys. International Journal of Plasticity,

2:59–72, 1986.

[180] Tanaka, K., Nishimura, F., Hayashi, T., Tobushi, H., and Lexcellent, C.

Phenomenological analysis on subloops and cyclic behavior in shape memory alloys

under mechanical and/or thermal loads. Mechanics of Materials, 19:281 – 292, 1995.

[181] Tanaka, Y., Himuro, Y., Kainuma, R., Sutou, Y., Omori, T., and Ishida,

K. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science,

327:1488–1490, 2010.

[182] Thamburaja, P. and Anand, L. Polycrystalline shape-memory materials: effect of

crystallographic texture. Journal of the Mechanics and Physics of Solids, 49(4):709 –

737, 2001.

[183] Thamburaja, P. and Anand, L. Superelastic behavior in tensiontorsion of an

initially-textured Ti - Ni shape-memory alloy. International Journal of Plasticity, 18

(11):1607 – 1617, 2002.

[184] Tobushi, H. and Tanaka, K. Deformation of a shape memory alloy helical spring:

Analysis based on stress-strain-temperature relation. JSME International Journal,

Series I, 34:83–89, 1991.

[185] Toi, Y., Lee, J. B., and Taya, M. Finite element analysis of superelastic, large de-

formation behavior of shape memory alloy helical springs. Computers and Structures,

82:1685–1693, 2004.

[186] Tyber, J., McCormick, J., Gall, K., DesRoches, R., Maier, H., and Mak-

soud, A. E. A. Structural engineering with NiTi-I: Basic materials characterization.

Journal of Engineering Mechanics, 133(9):1009–1018, 2007.

273



[187] Vitiello, A., Giorleo, G., and Morace, R. E. Analysis of thermomechanical

behaviour of nitinol wires with high strain rates. Smart Materials and Structures, 14:

215–221, 2005.

[188] Voit, W., Ware, T., Dasari, R. R., Smith, P., Danz, L., Simon, D., Barlow,

S., Marder, S. R., and Gall, K. High-strain shape-memory polymers. Advanced

Functional Materials, 20:162–171, 2010.

[189] Volkert, C. A. and Minor, A. M. Focused ion beam microscopy and microma-

chining. MRS Bulletin, 32(5):389–395, 2007.

[190] Wahl, A. M. Mechanical springs. Penton publishing company. Cleveland. USA,

1944.

[191] Xua, M. B. and Song, G. Adaptive control of vibration wave propagation in cylin-

drical shells using SMA wall joint. Journal of Sound and Vibration, 278:307–326,

2004.

[192] Zhang, P., Balint, D., and Lin, J. An integrated scheme for crystal plasticity

analysis: Virtual grain structure generation. Computational Materials Science, 50

(10):2854 – 2864, 2011.

[193] Zhang, X. and Sehitoglu, H. Crystallography of the B2 → R → B19’ phase

transformations in NiTi. Materials Science and Engineering: A, 374(1-2):292 – 302,

2004.

[194] Zhong, Y. and Zhu, T. Patterning of martensitic nanotwins. Scripta Materialia,

67:883–886, 2012.

[195] Zhong, Y., Gall, K., and Zhu, T. Atomistic study of nanotwins in niti shape

memory alloys. Journal of Applied Physics, 110(3):6301–6311, 2011.

[196] Zhong, Y., Gall, K., and Zhu, T. Atomistic characterization of pseudoelasticity

and shape memory in niti nanopillars. Acta Materialia, 60:6301–6311, 2013.

274


