A STATE MACHINE ARCHITECTURE FOR AEROSPACE
VEHICLE FAULT PROTECTION

A Dissertation
Presented to
The Academic Faculty

by

Peter Zane Schulte

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
Daniel Guggenheim School of Aerospace Engineering

Georgia Institute of Technology
August 2018

COPYRIGHT © 2018 BY PETER ZANE SCHULTE

A STATE MACHINE ARCHITECTURE FOR AEROSPACE
VEHICLE FAULT PROTECTION

Approved by:

Dr. David A. Spencer, Advisor
Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Dr. E. Glenn Lightsey

Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Dr. Mark Costello

Daniel Guggenheim School of
Aerospace Engineering
Georgia Institute of Technology

Dr. Neil Smith

Visual Computing Center

King Abdullah University of Science
and Technology

Mr. Paul Rosendall

Embedded Applications Group

Space Department

Johns Hopkins University Applied
Physics Laboratory

Date Approved: June 5, 2018

Soli Deo gloria

ACKNOWLEDGEMENTS
First and foremost, thanks to my wife Anita. | love you with all my heart, and | am
beyond excited to walk beside you till our days are done. Personal thanks are due to many

friends, family, and colleagues (too numerous to list here) who have supported me.

Thanks to my advisor Dr. David A. Spencer. He has been a wonderful mentor since
recruiting me to Georgia Tech as a Master’s student to work on the Prox-1 student satellite
project. His experience, insight, and advice have guided every step of this study, and he
has frequently gone out of his way to ensure that my academic work, research, and career

are successful and impactful.

Thanks also to Dr. Glenn Lightsey for his mentorship at The University of Texas
at Austin and for continuing to support and encourage me after both of us moved to Georgia
Tech. He has also provided a significant amount of administrative support to make my

academic experience at Georgia Tech and this research study smooth and successful.

Paul Rosendall at the Johns Hopkins University Applied Physics Lab (APL)
provided very helpful insights on the practical challenges and current state-of-the-art of
fault protection. He was especially helpful in introducing me to the trade study APL

performed to directly compare the rule-based and model-based fault protection paradigms.

FalconViz and the King Abdullah University of Science and Technology (KAUST)
in Thuwal, Saudi Arabia provided funding support and technical guidance for development
of the UAV Nervous System. Dr. Neil Smith provided ideas, mentorship, personal support,

and technical guidance that were invaluable to me and to this study.

The Mars Sample Return fault protection work was completed under contract with
the NASA Jet Propulsion Laboratory (JPL) at the California Institute of Technology.
McClain Goggin at Purdue University completed most of the trajectory design work,
developed much of the code for relative trajectory control and mode management, and
originally wrote most of the descriptions of relative orbit elements and terminal rendezvous
maneuvers that are included in this dissertation. Special thanks to Rob Lock (Mars Program
Office) and Peter Meakin (Fault Protection and Autonomy group supervisor) at JPL for
their mentorship and assistance. Also, the JPL Mars Sample Return study team provided
many inputs by participating in breakout discussions:

Rendezvous team: Austin Nicholas, Alan Didion

* Navigation: Ed Riedel, Rob Haw, Eric Gustafson, Drew Vaughan, Dylan Boone
» Guidance/Control: George Chen, Jack Aldrich
» Sequencing: Chris Grasso, PJ Guske

Capture system team: Joe Parrish, Paulo Younse, Marco Dolci
Orbiter Flight System team: Kristina Larson, Ny Sou Okon, Travis Imken

Many engineers around JPL were consulted to solicit ideas for fault protection
research, and their insights have been valuable: Lorraine Fesq, Kevin Barltrop, Jeff
Levison, John Day, Bob Rasmussen, Mike Sievers, Magdy Bareh, Gene Lee, Garth
Watney, Len Reder, Rob Bocchino, Tracy Neilson, Rajeev Joshi, Jean-Francois Castet,

Ken Starr, Lermont Khachikyan, Bobak Ferdowsi, and John West.

This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-1148903. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the

author and do not necessarily reflect the views of the National Science Foundation.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS AND ABBREVIATIONS
SUMMARY

CHAPTER 1. Introduction: Fault Protection State-of-the-Art
11 Motivation
1.2 Background
1.2.1 Key Definitions
1.2.2 Rule-Based Fault Protection Paradigm
1.2.3 Model-Based Fault Protection Paradigm
1.2.4 State Machine Logic and Applications
1.2.,5 Goal-Based Autonomy Paradigm
1.2.6 On-Board Model-Based Fault Diagnosis
1.3 Contributions of This Investigation
1.3.1 Generic Fault Protection Architecture
1.3.2 On-Board Model-Based Diagnosis
1.3.3 UAV and Space-Based ProxOps Applications

CHAPTER 2. Theory: Generic Fault Protection Architecture
2.1 FDIR Architecture Concept Overview
2.1.1 FDIR Architecture Requirements
2.1.2 Development Environment in MATLAB/Simulink
2.1.3 Enabling Advances in FDIR
2.2 FDIR Architecture Characteristics
2.2.1 Generic
2.2.2 Modular
2.2.3 Portable
2.3 Generic Architecture Diagrams
2.3.1 Generic GN&C Subsystem Taxonomy
2.3.2 Generic Fault Tree Analysis
2.3.3 Generic Functional State Machine
2.3.4 Generic Diagnostic State Machine
2.3.5 Generic Architecture Block Diagram
2.4 Mapping the Generic Architecture to a Particular Application

CHAPTER 3. Terrestrial Application: FalconViz UAV Nervous System
3.1 Overview of FalconViz UAV Hardware and Typical Missions
3.2 UAV Nervous System Requirements

Vi

3.3 FalconViz UAV Subsystem Taxonomy and Fault Tree 52

3.4 Fault Detection and Recovery Strategy 56
3.5 Flight Test Results 63
3.6 UAYV Nervous System Upgrades 65
3.7 Adaptation of Generic FDIR Architecture to UAV Nervous System 70
CHAPTER 4. Space Application: Mars Sample Return Rendezvous and Orbiting
Sample Capture 78
4.1 Overview of Relative Proximity Operations 78
4.2 Overview of Mars Sample Return Mission Concept 79
4.3 Reference Frame and Relative Orbital Element Definitions 80
4.4 Rendezvous & Capture Concept of Operations 85
4.4.1 Initial Rendezvous Process 86
4.4.2 Autonomous Terminal Rendezvous & Capture Process 87
4.4.3 Description of Terminal Rendezvous Maneuvers 95
4.4.4 Example Mission Scenarios 96
45 MSR Fault Protection Requirements Development 111
45.1 MSR GN&C Subsystem Taxonomy and Fault Trees 112
45.2 MSR Rendezvous & Capture Requirements 117
4.6 Fault Detection, Diagnosis, and Recovery Strategy 118
4.7 Evaluation in Simulation 121
4.7.1 Simulation Description 122
4.7.2 Simulation Results 127
4.8 Conclusion 138
CHAPTER 5. Conclusions and Future Work 140
5.1 Conclusions 140
5.2 Publications 144
5.3 Suggestions for Future Work 145
5.3.1 Generic Fault Protection Architecture 145
5.3.2 UAV Nervous System 146
5.3.3 Mars Sample Return Rendezvous & Capture 148
Appendix A: Autocoding Technical Memos 150
Appendix B: UAV Nervous System Connection Diagram 184
Appendix C: Mars Sample Return Subsystem Taxonomy 187

Appendix D: Full Fault Tree for Mars Sample Return Terminal Rendezvous and
Capture Phase 191

Appendix E: Preliminary MSR Fault Protection Strategies and Requirements 196

REFERENCES 205

vii

LIST OF TABLES

Table 1 - Terminology of true and false positive & negative fault detection [3]
Table 2 - Traditional FDIR Response Structure, adapted from [9]

Table 3 - Input parameters for UAV Nervous System

Table 4 - Simulation test case summary

Table 5 - Task summary for this investigation

viii

69
136
143

LIST OF FIGURES

Figure1 — DART and MUBLCOMM performing ProxOps in space [1]
Figure 2 — Example of the rule-based fault protection paradigm

Figure 3 — Typical changes to spacecraft functionality during Safe Mode
Figure 4 — Typical Fault Protection response sequence

Figure 5 — Example model-based fault protection architecture [11]
Figure 6 — Example usage of state machines for fault protection [13]
Figure 7 — Sample Stateflow chart representing a thruster controller [15]
Figure 8 — Example of Stateflow block integration in Simulink [15]

Figure9 - Rule-Based Fault Management of STEREO Radio Frequency
Amplifier [6]

Figure 10 - State-Based Fault Management of STEREO Radio Frequency
Amplifier [6]

Figure 11 - Generic sensor suite (before reconfiguration)

Figure 12 - Generic sensor suite (after reconfiguration) with ImageGen Sensor
Model added

Figure 13 - Generic aerospace vehicle GN&C subsystem taxonomy
Figure 14 — Generic fault tree analysis

Figure 15 - Generic functional state machine

Figure 16 — Generic diagnostic state machine

Figure 17 — Generic architecture block diagram

Figure 18 - Simulink diagram for generic fault protection architecture
Figure 19 - FalconViz hexacopter in flight [41]

Figure 20 - Subsystem Taxonomy for UAV Nervous System

Figure 21 - Fault Tree for FalconViz UAVs

12
14
16
16
19

20

30

31

34
38
39
42
44
46
51
53

55

Figure 22

Figure 23

Figure 24

Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Figure 37
Figure 38
Figure 39

Figure 40

Figure 41

— (a) SparkFun Triple Axis Accelerometer & Gyro Breakout — MPU-
6050 [43]; (b) Teensy 3.2 [44]; (c) MeegoPad compute stick [45]

— Shrink-wrapped accelerometer installed on hexacopter arm

— Teensy installed on Arduino Shield Adapter [46]

with USB and jumper cable connections [41]

— Hexacopter propeller unbalanced by adding electrical tape [41]
— Training data for KNN classification model [41]

— Detected activity levels from KNN model validation data [41]
— Simulink diagram for UAV nervous system [41]

— Stateflow diagram for vibration fault detection [41]

— a.) FrSky X8R telemetry receiver [48] installed on the hexacopter;
b.) Taranis X9D Plus radio [49]

— Flight test data demonstrating successful vibration detection [41]

— a) One Wire Digital Temperature Sensor DS18B20 [50]
b.) Temperature sensor installed on UAV motor with thermal epoxy

— Example plot of DS18B20 temperature data [41]

— a.) Electronic Speed Control (ESC) [41] b.) 90 A AttoPilot Voltage
and Current Sense Breakout Board [51], c.) lithium polymer battery
[52]

— Duplicate sensor suites installed on two adjacent UAV arms

— Simulink model for UAV Nervous System on two arms with four
sensor readings each

— Rebalancing UAYV propellers using an iPhone accelerometer
— Functional state machine for FalconViz UAV test flight
— Diagnostic state machine for UAV Nervous System

— Simulink diagram for modified UAV Nervous System FDIR
Architecture

— Flow chart for UAV Nervous System FDIR Architecture

56

S7

57

58
59
60
60
61

62

64

65

66
66

67
68

70
71
72

74

74

Figure 42

Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64

Figure 65

— Results of test flight replay with UAV Nervous System FDIR
Architecture

— Mars Sample Return rendezvous concept [53]

— Visual representation of the LVLH frame [15]

— Prox-1 Body-Fixed Frame orientation [15]

— Relative orbit geometry

— Overall rendezvous and capture process

— lllustration of passively safe standby trajectory (not to scale)

— State machine for rendezvous and capture process

— Closed-Loop Approach Sequence

— Notional “zones of criticality”

— OS Capture Process

— Relative orbit xy-projection (LVLH) for nominal trajectory

— Relative orbit three dimensional view (LVVLH) for nominal trajectory
— Relative position time history (LVLH) for nominal trajectory
— Relative velocity time history (LVLH) for nominal trajectory
— Relative orbit xy-projection (LVLH) for passive abort

— Relative orbit three dimensional view (LVLH) for passive abort
— Relative position time history (LVLH) for passive abort

— Relative velocity time history (LVLH) for passive abort

— Relative orbit xy-projection (LVLH) for active abort

— Relative orbit three dimensional view (LVLH) for active abort
— Relative orbit three dimensional view (LVLH) for active abort
— Relative position time history (LVLH) for active abort

— Relative velocity time history (LVVLH) for active abort

Xi

76

80
82
83
85
86
87
88
91
92
94
98
99
100
101
102
103
104
105
106
107
108
109

110

Figure 66 — Subsystem taxonomy, with an example expanded [53]

Figure 67 — High-level fault tree for autonomous rendezvous & capture [53]

Figure 68 — Result of a fault tree brainstorming session
for relative orbit determination [53]

Figure 69 — General spacecraft subsystem fault tree [53]

Figure 70 — Example fault protection strategy [53]

Figure 71 - Example of possible fault protection requirements [53]

Figure 72 — Diagnostic state machine for MSR Simulation

Figure 73 - Overview of MSR Simulation

Figure 74 — MSR Simulation Block Diagram

Figure 75 - Screenshot of rendezvous sensor model & simulated OS image
Figure 76 — Simulation Results for Case 1: Nominal Approach

Figure 77 - Simulation Results for Case 2: Angular Rate Fault

Figure 78 — Simulation Results for Case 3: OS Enters Eclipse

Figure 79 - Simulation Results for Case 4. Unconverged Relative Orbit Filter
Figure 80 - Simulation Results for Case 5: Unconverged Relative Orbit Filter

Figure 81 - Simulation Results for Case 6: Camera Power Fault

xii

113

114
115

116
118
118
120
122
123
125
128
130
132
133
135
137

LIST OF SYMBOLS AND ABBREVIATIONS

0

3D
6DOF
APL

app

DART

EPS

ESC
FCR
FDIR
FMECA
FOV
FP
FSW
FTA
GN&C
GPS
HALO

initial reference time (subscript)
Three-dimensional

Six Degree-of-Freedom

Johns Hopkins Applied Physics Lab

approach (subscript for v-bar hops)

relative semi-major axis (m)

American Standard Code for Information Interchange
cross-track amplitude (m)

Body-Fixed Frame (subscript)

Demonstration of Autonomous Rendezvous Technology
Electrical Power Subsystem

relative eccentric anomaly (rad)

Electronic Speed Control

Fault Containment Region

Fault Detection, Isolation, and Recovery
Failure Modes, Effects, and Criticality Analysis
Field-of-view

Fault Protection

Flight Software

Fault Tree Analysis

Guidance, Navigation, and Control

Global Positioning System

Hydrology and Land Observation

Xiil

12C

IAU

IR

JPL
KAUST
KNN
LIDAR
LVLH
MATLAB
MAV
MSR
MUBLCOM
n

NASA

0S

PITL
ProxOps

r

—

R
r-bar

Tsro

ROCS

S&MS
SITL

Inter-Integrated Circuit

International Astronomical Union

Infrared

Jet Propulsion Laboratory

King Abdullah University of Science and Technology
K-nearest neighbors

Light Detection And Ranging

Local Vertical Local Horizontal

Matrix Laboratory

Mars Ascent Vehicle

Mars Sample Return

Multiple Paths, Beyond-Line-of-Sight Communications satellite
mean motion of the target spacecraft (rad/s)

National Aeronautics and Space Administration
Orbiting Sample canister

Processor-in-the-Loop

Proximity Operations

relative (subscript for relative orbit elements)

Radial LVLH basis vector (x-axis)

Forced motion approach to target via radial direction
Position vector of the SRO in the Mars IAU frame
Rendezvous Orbiting Sample Capture System
Along-track LVLH basis vector (y-axis)

Structures and Mechanical Systems

Software-in-the-Loop

Xiv

SPICE Spacecraft, Planet, Instrument, Orientation, & Events ephemeris toolkit
SRO Sample Return Orbiter
STEREO Solar TErrestrial RElations Observatory
t time (sec)
TBR To Be Resolved
TT&C Telemetry, Tracking, and Control
UAV Unmanned Aerial Vehicle
UML Unified Modeling Language
v-bar Forced motion approach to target via along-track direction
vsro Velocity vector of the SRO in the Mars IAU frame
V&V Verification and Validation
W Cross-track LVLH basis vector (z-axis)
¥ Skew function (superscript)
x Cartesian radial relative position (m)
x, radial position of instantaneous center of motion (m)
x Cartesian radial relative velocity (m/s)
y Cartesian along-track relative position (m)
y, along-track position of instantaneous center of motion (m)
y Cartesian along-track relative velocity (m/s)
z Cartesian cross-track relative position (m)
z Cartesian cross-track relative velocity (m/s)
At change in time (t — t,) (sec)
AV change in velocity (delta-V)

Y cross-track phase angle (rad)

XV

SUMMARY

Because of their complexity and the unforgiving environment in which they operate,
aerospace vehicles are vulnerable to mission-critical failures. In order to prevent these
failures, aerospace vehicles often employ Fault Detection, Isolation, and Recovery (FDIR)
systems to sense, identify the source of, and recover from faults. Typically, aerospace
systems use a rule-based paradigm for FDIR where telemetry values are monitored against
specific logical statements such as static upper and lower limits. The model-based
paradigm allows more complex decision logic to be used for FDIR. State machines are a
particular tool for model-based FDIR that have been explored by industry but not yet
widely adopted. This study develops a generic and modular state machine FDIR
architecture that is portable to flight software. The study will focus on FDIR for the
Guidance, Navigation, & Control subsystem, but it will be presented in a manner that is
applicable to all vehicle subsystems. The state machine formulation is applied for on-board
model-based fault diagnosis. Two specific case studies are employed to demonstrate the
architecture. The first is a terrestrial application of unmanned aerial vehicles for 3D
scanning and mapping, which is validated through flight testing. The second is a space-
based application of automated close approach and capture for a Mars sample return
mission, which is validated through software-in-the-loop testing with flight-like software

components.

XVi

CHAPTER 1. INTRODUCTION:
FAULT PROTECTION STATE-OF-THE-ART

1.1 Motivation

The capability to recover gracefully from hardware or software faults is critical for
many aerospace applications. This is particularly true for autonomous missions involving
proximity operations (ProxOps), where multiple vehicles are operating at close range.
Previous ProxOps missions have experienced faults that resulted in a failure to meet
mission objectives. For example, NASA’s Demonstration of Autonomous Rendezvous
Technology (DART) spacecraft was designed to rendezvous with the Multiple Paths,
Beyond-Line-of-Sight Communications (MUBLCOM) satellite in space and perform
ProxOps maneuvers, as shown in Figure 1. DART experienced a mission failure when it
collided with MUBLCOM during automated operations due to software errors that led to
inaccurate range estimation. In a failure investigation report for DART, NASA
recommended that “designers for such spacecraft should develop and adhere to a robust,
detailed set of requirements for fault detection, isolation, and recovery in order to prevent

a mishap” [1].

Figure 1 - DART and MUBLCOMM performing ProxOps in space [1]

In the development of aerospace systems, verification and validation (V&V) are
often focused on demonstrating that software algorithms and systems will work under
nominal conditions. The robustness of the system to off-nominal scenarios is often not
tested. Even when system robustness is evaluated, it is difficult to evaluate all possible
failure modes. As more missions undertake autonomous operations, there is an increased
need for real-time prevention of failures through fault protection. These capabilities are
especially necessary for time-critical operations such as rendezvous and ProxOps. Deep
space proximity operations applications require advanced autonomy and fault protection

due to the significant round-trip light time from Earth.

1.2 Background

Some standardized fault protection nomenclature has been established in the
aerospace industry. Also, several key paradigms of fault protection have been developed.

This section provides some insight into trends in fault protection practice.

1.2.1 Key Definitions

The NASA Fault Management Handbook defines a failure as “the unacceptable
performance of an intended function,” while a fault is defined as “a physical or logical
cause, which explains a failure” [2]. This distinction is important because while failures
should be avoided, faults are often unavoidable. For example, system designers may not
be able to prevent a sensor malfunction (a fault), but they can prevent this malfunction from
becoming a catastrophic failure through the use of fault protection (FP). Thus, fault
protection systems aim to perform a three-step process called Fault Detection, Isolation,
and Recovery (FDIR) in order to prevent failures. Fault detection involves determining that
something unexpected has occurred. Fault isolation (also connected to diagnosis)
determines the possible source of a fault. Fault recovery is an action taken to attempt to
retain or regain control of the system state and mitigate the impact of the fault. These
activities often happen simultaneously and can take on various degrees of specificity. FDIR
systems avoid the presence of both false positives (non-faults that trigger the detection
system) and false negatives (faults that go undetected). These FDIR errors are illustrated

in Table 1.

Table 1 — Terminology of true and false positive & negative fault detection [3]

Fault Detection

Positive Negative

Positive | True positive | False negative
Ground truth

Negative | False positive | True negative

1.2.2 Rule-Based Fault Protection Paradigm

Over the past decade, the development of FDIR for space missions has advanced
significantly. A typical aerospace FDIR system is “a smart embedded system that is able
to react to some know[n] events and to select a decision among a predefined set” [4].
Currently, the state-of-the-art in spacecraft FDIR involves using a set of rules that are
checked against telemetry. These telemetry monitors are searching for fault symptoms,
“ranging from explicitly detected constraint violations, to unexpected hardware behavior,
to excessive performance errors, to broken deadlines and more” [5]. Pre-programmed
responses are executed when one of these rules is violated [6,7]. For example, if a
parameter persistently exceeds its expected range an action is taken by the system, such as
transitioning the vehicle into safe mode, stopping all normal mission tasks and turning off

all non-essential hardware until ground operators can resolve the fault.

|98

O No Fault Detected

2.5
g
=
=15
2 Fault Detected
e 1
>~

0.5

0

0 0.5 1 1.5 2 2.5 3

Time (min)
Figure 2 — Example of the rule-based fault protection paradigm
Consider the scenario illustrated in Figure 2, where a sample telemetry dataset
representing the Y position of the vehicle in meters is plotted against time in minutes. The
rule shown in the yellow box indicates that a fault is detected if the value of Y drops below
1 meter or exceeds 2.5 meters for more than 1 min. Around 0.75 min, a single data point
exceeds the limit, however a fault is not detected because the 1 min persistence threshold
is not exceeded. Around 1.75 min, the Y value violates the lower limit consistently and

triggers a fault detection around 2.75 min.

Of course, the case presented here is a simple example. Many combinations of
logical rules are possible, and they are implemented in FDIR systems with increasing
complexity. For example, the Dawn mission to explore the asteroid belt makes use of
Relative Time Sequences (RTS) that are triggered in response to Telemetry Monitors
(TMons) being tripped [8]. Each RTS can then enable, disable, or start other RTS’s and

can enable or disable TMons. Dawn contains over 250 RTS and over 250 TMons, all of

which are documented in an Excel spreadsheet. The system is so complex that a model-
based SPIN model checker was used for V&YV to ensure that it was constructed with logical

soundness [8].

Another key component of the rule-based FP paradigm is the use of “safe mode”.
If something goes wrong that cannot be solved onboard, the spacecraft will autonomously
transition to safe mode. Safe mode involves stopping all normal mission tasks, turning off
all non-essential hardware to conserve power, orienting the spacecraft in a favorable
attitude (for thermal concerns, power generation, and communications), and waiting for
commands from the ground to return the spacecraft to normal operation mode. These

functions are shown in Figure 3.

- X
Safe Mode

A ' y

Figure 3 — Typical changes to spacecraft functionality during Safe Mode

A spacecraft should be able to survive in safe mode, but it will not be able to
continue its mission until the problem is resolved on the ground and normal operations are
restored. In this paradigm, detection of fault symptoms is usually mapped directly to a pre-
determined response sequence. In other words, fault diagnosis is performed by FP

engineers at design time rather than by the system on-board in real-time. A typical sequence

for fault protection response is shown in Figure 4, with an example given for a camera

power fault.

Camera
power
draw too
high

Switch to
redundant
camera

If battery
level is too

to Safe
Mode

Send
camera/
battery
telemetry
to ground
operators

Figure 4 — Typical Fault Protection response sequence

Ground
operators
alter
camera
settings

Traditional Fault Protection proceeds in a hierarchical fashion [9], as shown in

Table 2. First, a fault is detected inside a particular spacecraft hardware or software

component and local corrections are attempted (Level 0). Next, the fault propagates up to

subsystem software (Level 1). If subsystem software cannot resolve the fault, or if several

faults occur simultaneously, then the system will be reconfigured (Level 2), such as

switching to a full suite of redundant hardware. Failure of system control hardware or

software, such as the flight computer that houses fault protection (Level 3) will also result

in system reconfiguration. If multiple Level 2 or 3 failures or any major overall system

failure occurs (Level 4), the spacecraft will transition into safe mode and rely on the ground

team to investigate the fault and provide a resolution.

Table 2 — Traditional FDIR Response Structure, adapted from [9]

Fault Response Description Impact Fault Detection ~ System Recovery
Level Level
Level 0 Unit Internal Failure without ~ No impacton Local in-unit Local in unit
effects on system checks command retry,
performance performance unit reboot
Level 1 Subsystem Unit failure or Degraded In respective Switch to
Software subsystem performance subsystem; redundant unit,
performance of subsystem limit checking of command retry,
degradation unit parameters reboot
Level 2 System Subsystem Performance Several alarms Switch to
Reconfiguration failure not loss of from unit level 0 redundant side,
recovered by subsystem consistency command retry
previous levels checks
Level 3 System Control Failure of Performance Faults on FDIR Switch to
Software equipment loss of units redundant side,
involved in subsystem command retry
FDIR
Level 4 Flight Multiple level System Several alarms Change to
Operations 2/3 failures, performance fromlevel 2 & 3, safe mode, wait
System on major overall loss; mission Hardware alarms for ground to
Ground system failure interruption recover system

In addition, it should be noted that for critical events such as orbit insertion, flybys,
entry, descent, and landing, or rendezvous & ProxOps, safe mode is often “disabled”
because the spacecraft must maintain a “fail-operational” rather than “fail-safe” response
from onboard FDIR systems [2]. The critical event sequences must be completed and
cannot simply be paused if a fault occurs because of the risk of loss of vehicle or mission.
Typically, autonomous FDIR systems will put the vehicle into safe mode when a fault is
detected and await input from ground operators, as occurred with the Japanese Venus
Climate Orbiter Akatsuki during orbit insertion [10]. If the vehicle enters safe mode during
mission-critical times, such as Akatsuki’s orbit insertion, certain objectives may not be met.
In the case of Aktsuki, the spacecraft failed to enter orbit. It is the presence of such critical
events that motivates a need for greater FP autonomy, especially in highly complex

interplanetary missions. The rule-based paradigm often cannot handle critical events in a

fail-operational manner when long signal time delays make ground controllers unable to

respond to faults in a timely manner [9].

The rule-based fault protection paradigm has been used successfully for decades
and is fairly straightforward to understand and test. Rule-based systems can be pre-
programmed without anticipating every possible scenario. The rule-based paradigm is the
current standard for spacecraft fault protection and is used extensively in industry because
of its utility and ease of implementation. However, several problems with this paradigm
have been identified by FDIR practitioners. Adding logical expressiveness to enable more
advanced rules (such as adding different kinds of logical operators or enabling multiple
logical conditions in each rule) adds complexity to the system, reduces ease of
understanding for developers and reviewers, and vastly increases testing time [6,7]. An

example of a complex rule from [6] is shown here:

OBS_NODE != MODE_ASCENT && TWTA VOLT EU > 5.0 && RF_EPC_ST
> Ox4A && RF_TWT_ST > Ox4A && ((BATT_PRES1_EU > 650.0 &&
BATT_PRES1_ST == MUX_AD_OK) || (BATT_PRESS2 EU > 650.0 &&

BATT _PRESS2_ ST == MUX_AD OK))

Also, ad hoc approaches can result in gaps and inefficiencies in overall FDIR design [11].
In real mission scenarios, it can be difficult to determine the meaning or the cause when a
fault detection rule is triggered, and it is not always clear how to respond to rule triggers.

For example, as one FP practitioner has said in [5]:

“Fault management systems generally respond to problematic ““errors”, as

undesirable deviations, but there is little discrimination between deviations from

modeled behavior, deviations from predictions, deviations from objectives, or
deviations from ““nominal® or ““safe”” conditions (neither of which is well defined).
Similarly, it is not clear, when a threshold is tripped, whether this reflects an
assessment of system state (e.g., a device has failed), an objective violation (e.g.,
the device cannot perform some required function), or a control decision (e.g.,
something must be done about the failure). In conventional designs, it could be any

or all of these, conflated and demoted to an inscrutable act of arithmetic.”

Another FP researcher [9] states that:

“Literature reports conventional FDIR methods suffering from significant
shortcomings, like often missing isolation of faults and failures on-board, only
partial observability of the actual system status and no on-board knowledge at all

about the general operational capabilities of the system.”

Finally, although FDIR responsibilities are similar on various missions, the
implementation of FDIR systems (including logical rule statements) often does not carry
over from previous missions [6]. While principles of FDIR design and lessons learned do
sometimes carry over, spacecraft design teams tend to develop custom sets of FDIR rules
and rule-based systems from scratch based upon the specific needs and requirements of

each new mission.

1.2.3 Model-Based Fault Protection Paradigm

The use of a new paradigm called model-based fault protection has been explored

and implemented in some scenarios. This paradigm uses a model of the flight system’s

10

behavior and selects the “state” of the system based on telemetry. Model-based
architectures are necessarily state-based, because all models used for system control must
be state-based [5]. Using behavior models of system state allows more complex and
insightful decisions to be made by the autonomous system about fault determination and

response.

One space systems engineering team at the Jet Propulsion Laboratory (JPL) has
begun to analyze the FDIR problem in depth using model-based systems engineering
approaches [11]. This team has developed an FDIR architecture using the SysML modeling
language. Although this architecture is used for identifying, evaluating, and managing
failure modes during the design and V&YV phases, the implementation of FDIR for flight
software (FSW) does not stem directly from the architecture. The example in Figure 5
shows a model-based architecture of Guidance, Navigation, & Control (GN&C) failure
modes for a generic Earth-orbiting satellite mission. Here GN&C activities (magenta) are
connected to various failure modes (red), which could be related to a number of different
possible causes (blue), and may result in various subsystem effects (yellow) and system-
level effects (orange). More recently, JPL has developed an ontology (formal technical
vocabulary) for this kind of analysis, one important step toward enabling automated
creation of traditional FP analyses such as Failure Modes, Effects, and Criticality Analysis
(FMECA), Fault Tree Analysis (FTA), and Fault Containment Region (FCR) diagrams
[12]. As mentioned in the previous section, the Dawn mission team at JPL also made use
of a model-based logic checker during V&YV of its FP system. A model of system behavior

is required in order to perform checks of logic for consistency against specifications [8].

11

bdd [Package] GNC[[£ GuidanceNavControlFMs1]J

temEffects
alous Attitude
«prm.lcss_f e e e === 7

~ T T oo oD {FM occurs during critical event}
““.,,«pmducssw ‘_-_""‘---..__________‘ temEffects»
T~ LoV
«causedBy» —
~ - _
J b A «SubsystemEffects
3 L Incorrect HW Commands
«Causes Commanding Error
Corrupted Data i
g ==
™ 4 - -
hY / e
~
N / wcausedBys “producesy -
-
-7 «SystemEffects
. Pointing Knowledge
«pmducss:u____...——-—“"'_"

=== «SystemEffects
————————— CPEOOUGES - Pointing Performance
scausedByy . — ""-_.__‘___
‘_-""’ 1_"'-.._1_«pmducss»
«Cause» ~ =~ __ #producess e _
Implementation Logic Error T~ ST
P 9 «causedBys / ~ N =R !EITIE'H"!W.
<SubsystemEffects alous Attitude
Timing Error
«Cause»
Parameter Error «Cause»

Algorithm Error

Figure 5 — Example model-based fault protection architecture [11]

12

1.2.4 State Machine Logic and Applications

The “state” of a system includes any “aspects of the system that we care about for
the purposes of control” [13]. Traditionally, state variables have included continuous
physical parameters such as position, velocity, attitude, temperature, and pressure.
However, state variables can also include discrete quantities such as operating modes and
device health. These discrete states can then be represented as state machines. State
machines, or state charts, are a specific model-based tool used to represent complex logical
relationships. They provide a visual block-diagram development that is fairly
straightforward to understand and can be applied to fault protection [13]. Each block
represents a specific state or sub-state of the system, and arrows between blocks represent
transitions between states. A logical condition is associated with each transition, and if the
condition associated with the transition becomes true, then the active state of the diagram

will move from one state to another.

13

Camera Power Switch Position & Health:

Open & Closed &
Switch Fails Low-probability Swilch Fails
Faied random event Failed
Open Closed

Figure 6 — Example usage of state machines for fault protection [13]

The example state machine in Figure 6 shows the possible states of a camera power
switch. There are two primary states of the switch, “Open” and “Closed”. Transitions
between the states are activated when an “Open-cmd” or “Close-cmd” command is sent to
the camera. Additional states and transitions such as “Tripped Open” (a fault state) and
“Load overcurrent” (a root cause of the fault state) are added to illustrate a known fault
condition of the system. Finally, fault states “Failed Open” and “Failed Closed” are added

into the system, showing how the state machine can be used to implement fault detection.

State machine representations may be significantly simpler than the actual physical
or software processes they represent, which is why they are considered models. However,
a state machine for FDIR purposes can be developed in a way that represents all possible

states relevant to mission success. FP systems expressed in terms of system state will be

14

better able to protect the system in question [5]. Knowledge of the state is not the same as
the state itself, and the status of a state machine representation at any time is only as
accurate as the information that is provided to it. If input data is outdated or incorrect, the
active state chosen by the state machine representation may be outdated or incorrect as

well. Proper state knowledge always includes this resulting uncertainty [5].

Within MATLAB/Simulink, the Stateflow toolbox [14] provides a simple graphical
interface for developing state machines, which can be used to represent the current state of
different vehicle hardware or software components. Stateflow charts can be very simple,
representing only a few possibilities, or they can involve numerous complicated nested sets
of states. Transitions are indicated by blue arrows with Boolean conditions; if a condition
registers as true, the transition will be activated to move from one state (or substate) to
another. “Default” transitions specify the initial conditions of the diagram and are indicated
by an arrow beginning at a dot and ending at the initial state or substate. Stateflow animates
active states and transitions in dark blue during simulation so that the developer can
monitor the simulation as it runs for debugging and confirmation that the chart is properly

constructed.

An example Stateflow chart representing a thruster controller developed for the
Prox-1 small satellite mission [15] is shown in Figure 7. This chart contains three states
(Startup, ThrustOff, ThrustOn), transition conditions between the states, and an embedded
function “fuel_check” written in MATLAB syntax. The chart determines whether the
thruster should be on or off based on whether the controller has received a command to fire
(“ready”), the amount of time commanded (“time”), and whether sufficient fuel is available

(determined by the output “enough_fuel” from the MATLAB function).

15

Startup

entry: done=0;
exit command_On=1;

[ready==0] o

MATLAB Function

margin_matlab)

[enough_fuel matlab,current fuell out]= ...
fuel_check(time_thrust, current_fuel_matlab, .

[ready==1]

ThrustOff

du: [enough_fuel,current_fuel1] =
fuel_check(time, current_fuel, margin);

1

ThrustOn

_ | exit: done=1; command_On=0;

[command_On==1 && ...

enough_fuel==1]

[after(time,sec)]

Figure 7 — Sample Stateflow chart representing a thruster controller [15]

The Stateflow chart is integrated within a Simulink model as a Stateflow block with

inputs and outputs, as shown in Figure 8. Stateflow logic allows complex decisions to be

made in a hierarchical way, where conditions and logical states in individual spacecraft

components, FDIR algorithms, and higher level “master” FSW mode logic all influence

one another.

- g ay ™~ ThrusterState
ready ThrustOn (1)
ThrustOn
time w
() ==
Margin
P current_fuel current_fuel »(3)
v Current Fuel
Thruster Controller (integrated)
Memory

Figure 8 — Example of Stateflow block integration in Simulink [15]

Several space mission teams have made use of the Stateflow toolbox in

MATLAB/Simulink [14] to develop FDIR algorithms as state machines. These algorithms

16

are then converted into C/C++ code using a process called “autocoding.” Missions that
have autocoded FDIR algorithms from MATLAB/Simulink into FSW include Deep Space
1 [16] and Deep Impact [17]. NASA’s Johnson Space Center has used
MATLAB/Simulink, including Stateflow, to develop algorithms for GN&C, which are
later autocoded into FSW [18]. JPL has also developed an open-source Statechart
Autocoder that converts state machines from the Unified Modeling Language (UML)
format to C/C++ [19]. Stateflow has been used to evaluate errors in FDIR algorithms during
spacecraft system V&V [20]. Another FDIR architecture developed with Stateflow uses
model-based design techniques to bring V&V earlier in the design cycle by providing a
link between subsystem design and FDIR design [21]. Finally, JPL has developed an
ontology for enabling formal description and specification of state-based system behavior,

which includes modeling using state machines [22].

State machines offer several advantages over the rule-based FP paradigm. One
significant advantage is the generation of a graphical product that is easier for designers,
peer reviewers, and managers to understand and review. Other advantages include ease of
accounting for subsystem interdependencies and implementing sequences with several
decision points and/or path-dependent responses. The Johns Hopkins Applied Physics Lab
(APL) conducted a formal trade study to determine whether their “ExecSpec” state-based
fault protection system [6,7] or a more traditional rule-based system was more
advantageous using the Solar Probe Plus mission as a case study [23]. They found that both
methods were able to equivalently express all desired fault protection rules but that the
state machine system is favored based on some of the advantages mentioned above.

However, APL ultimately chose to continue using the rule-based system due to its

17

extensive flight heritage. A direct comparison showing the same FP logic implemented in
both a rule-based and a state-based system is shown in Figure 9 and Figure 10, as originally
published by APL [6]. This logic was used to monitor a radio frequency amplifier in the
Solar TErrestrial RElations Observatory (STERO). Note how much more readily the

graphical state machine can be interpreted and checked for accuracy.

18

Rule Mumber 1 (Bule DB # = 003)

Titls aLVE m EA

Tule Premice ODZ MODE == MODE Ed &€ ((MAIN BUS WOLT EU < 27.0 &6 D9 MATHM EUS VOLT ST =-- MUX &0 OF | || (DATT PREZL EU < 600.0
&£& BATT PEES1 2T == NOZ AL OE | || o HATT PEE3Z EU < 600.0 &£& HATT PRESE ST == MIOH al O))

Ful= Humber 3 (Rule DB #=023)

Titl eCLT (Mot EA)

PJJ].CPIC!IL‘i.SC !DBS MODE = HODE EL L& SCLT TIME OUT HRES > 0.0

Fade Humber 23 (Bule DB #=032%

Title Momtor HGA Gunbal Invalid

Bule Premise !DBS MCDE = MODE Ei ££ &° HGAL CHTL ST '= HGL CHNTL DISABLED ££ ST HGL FPNTS AT ELRTH == 0O

Fuile Murnber 28 (Bule DB # = 025)

Tie |P:rsisb:nt ST Faultt m ORS or STRY

RJJIC PIL‘.IEIiSE [DES HODE == MODE STANDEY || QBT MODE == MODE OPERATICHNAL | =& GO STR ENA FOR USE == 1 & GO STR DATR USED == 0O

LL 0 HeL CINIL 5T !'= HC-AL CINTL DISAELELD

Eule Humber 37 (Bale TF #=033)

Title TWTA to Transmut when Battety OF (Tlat Aacent)

Fuile Fremize COES MODE != MODE AZCENT £& TWTL WOLT EU » 5.0 £& RBF EPC BT » Oxdi £ BF TUT 5T » DOx4d ££ | o BATT PREZ1 ET > £50.0 g«
ELATT PEES1 ST == MOX AD OK) || BATT FRESZ EU > 650.0 L& BATT PRESE ST == MUX LD OK]]

Fule Humber 38 (Eule DE#=1

Title TWTA m Idle Mode (frr Lannch + Hat Ascent)

Elorlly Trmmmios !0135 MODE !'= NODE ASCENT &8 TWTA WOLT EU » 5.0 & BY EPC 3T < Oxda

Fale FMumber 39 (Rule DB #=)

Title TWTA in OF Mode (for Launch + ITet Azcent)

Bule Premise OB3 MODE !'= MODE ASCENT && TWTL VOLT EO < 5.0

Fule Humher 47 (Bul= DE # = D40y

Tide |Figh Terep Batt Tischarge (Hot EA)

Tule Bremice JBS MODE = MODE EA £g BATT CURE1 EU < 0.0 &£¢£ HATT CURR1 ST == HUX Al ©F £ (BATT TEMP1 EU = 18.0 ||

ELTT TEMFZ EO = 13,0 || BATT TEMP2Z EU = 18.0)

Fuile Mumber 118 (Bule DE#=201)

Title Mlonitor HGAE A Temperature

Ty Brradiae OBS MoDE '= NCDE EA &4 HGARA TME EU » 55.0 && TRIO B2 ACE ST == O

Figure 9 — Rule-Based Fault Management of STEREO Radio Frequency Amplifier [6]

19

TRUE

TWTA_i_idle

Not R adiating
Batt_is_OK >
sLVS >
Batt_High_Temp_Discharge ?
s
TWTA_Voltage @
TWTA_is_idle
TWTA_is_off
RF_EPC_ST 5
= = E: n/a
o] | ma

™ ~)

B_stan

B
%
g
8

TWTA_p_radiating |

[m
S

TWTA_is_off ‘

v,

RF_TWT_ST

Antenna_is_Achieved

Swapping_Antennas

(TWTA_Voltage) <50 >TI'I'TA_h_n1'r

((RF_EPC_ST) > 0x4A) H-> TWTA_is_standby
(RF_TWT_ST) » Oxda)

((TWTA_Voltage) >5.0) && \ TwTA_is_idle
((RF_EPC_ST) <Ox4a)

((RF_EPC_ST) ’m)u>TwTﬁ_b_rldilﬁn| i i
(RF_TWT_ST) < Ox4a)

s,

Figure 10 — State-Based Fault Management of STEREO Radio Frequency Amplifier [6]

20

TWTA_to_radiating

TWTA_to_Standby

1.2.5 Goal-Based Autonomy Paradigm

Although this dissertation will not utilize it directly, an introduction to goal-based
autonomy is appropriate at this point. FP is actually a subset of system autonomy, and goal-
based methods are an area of current research in spacecraft autonomy. A goal-based
architecture uses objectives to control an autonomous system rather than directly
commanding all actions in sequences of linear commands. An objective “is nothing more
or less than a model of desired changes of state in the system under control” so that “a goal-
based architecture is necessarily state-based as well” [5]. One key goal-based autonomy
platform is Remote Agent [24], which was deployed as a technology demonstration (not as
the primary control software) on the Deep Space 1 mission. Although goal-based
architectures can be used for FDIR, they are inherently full-system autonomy architectures

and are thus out of the scope of this dissertation.

1.2.6 On-Board Model-Based Fault Diagnosis

Fault diagnosis is usually performed by FDIR engineers at design time, and the
detection of a specific symptom is directly mapped to the appropriate response for the pre-
diagnosed fault. Though not typical for space missions, on-board fault diagnosis has been

an area of research since the 1990s. One researcher [5] states that:

“Error monitors in general tend to have...problems when errors are not interpreted
through models or correlated and reconciled with other evidence. When such a
diagnostic layer is absent, and responses are triggered directly by monitor events,
it becomes hard to put one’s finger on what exactly a system believes it is

responding to.”

21

This reflects the ad hoc nature of pre-programmed responses triggered directly by
fault symptom detection. According to one FDIR overview paper, model-based fault
diagnosis is considered a structured and mature field of research and many methods have
been proposed and discussed in the control community [9]. One extensive survey of model-
based fault diagnosis methods discusses various mathematical control/estimation methods
for aeronautical vehicles [25]. Remote Agent featured model-based “mode identification”
and “mode reconfiguration” for fault diagnosis, which identify components whose failures
explain detected anomalies [24]. Cassini’s Attitude Control Fault Protection is one of the
few examples of a system where on-board fault diagnosis was performed in-flight [26,27].
One method for on-board diagnosis that has been used in research studies is called
constraint suspension. It has been used to diagnose which component of a system is faulty

[28,29].

1.3 Contributions of This Investigation

This dissertation analyzes the FDIR problem for aerospace vehicles in the generic
sense, focusing on the GN&C subsystem. The complexity, ubiquity, and autonomous
nature of GN&C makes it a relevant example case for exploring fault protection advances
that apply across all subsystems for many different aerospace applications. This
investigation results in three key contributions that advance the state-of-the art in aerospace

FDIR.

1.3.1 Generic Fault Protection Architecture

Contribution 1: Develop a generic, modular, and portable FDIR architecture that can be

used for the GN&C subsystem on a wide variety of aerospace missions and vehicles.

22

Many missions build custom fault protection systems from the ground up while
adapting principles from previous missions. Also, FDIR is often a specialized task
performed by systems engineers after mission and vehicle design has been completed. This
contribution aims to develop a generic architecture that is applicable to any type of
aerospace vehicle or mission. A modular architecture is built with components that can be
easily added, removed, or rearranged, allowing system design and FDIR design to be
completed in parallel. This moves FDIR development earlier in the flight project lifecycle,
thus allowing FDIR to influence system design and to be validated during system-level
testing. The FDIR architecture is also portable to FSW. In other words, it is straightforward
to convert the design implementation derived from the architecture for a particular mission
to code that is used onboard the vehicle. The scope of the architecture in this study focuses

on GN&C, but it is be presented in a manner that is applicable to all vehicle subsystems.

1.3.2 On-Board Model-Based Diagnosis

Contribution 2: Use a state machine formulation of the generic FDIR architecture to

perform on-board model-based fault diagnosis.

Although the model-based paradigm for fault protection has been explored by
industry, it has not yet been widely adopted. This study focuses on the state machine
approach to model-based FDIR, which has been used in several flight projects and research
studies because it is intuitive, logic-based, and simple to interpret visually. State-of-the-art
fault protection practice involves monitoring telemetry or sensor data of an aerospace
system for symptoms of faults such as upper or lower limit violations. Diagnosis is usually

performed by FDIR engineers at design time, and the detection of a specific symptom is

23

directly mapped to the appropriate response for the pre-diagnosed fault. This study
advances the state-of-the-art in state-based fault protection by developing an on-board
diagnostic system that assesses symptoms, isolates fault sources (while accounting for

uncertainty), and selects corrective actions based on models of system behavior.

1.3.3 UAV and Space-Based ProxOps Applications

Contribution 3: Adapt the state machine FDIR architecture for terrestrial unmanned aerial

vehicle and space-based proximity operations fault protection applications.

To demonstrate the applicability of the state machine FDIR architecture to realistic
scenarios from a wide variety of aerospace vehicles and missions, two applications are
explored in very different domains. Each of these applications makes use of GN&C and
undergoes V&V. The first is a terrestrial application involving the use of multi-rotor
unmanned aerial vehicles (UAVs) for 3D scanning and mapping. This application
undergoes V&V through flight testing. The second application is a space-based scenario
involving automated rendezvous and ProxOps for orbital capture in a Mars Sample Return
mission. This application undergoes V&V through software-in-the-loop (SITL) testing in

a flight-like spacecraft software simulation environment.

24

CHAPTER 2. THEORY:
GENERIC FAULT PROTECTION ARCHITECTURE

The study presented here advances the state-of-the-art in FDIR and builds on
previous work by bringing together capabilities such as model-based design and
autocoding to FSW into a single generic, modular FDIR architecture that is portable to
FSW. This architecture also features model-based on-board fault diagnosis using state
machines. While most previous FDIR implementations have involved large, high-resource
missions with custom-built FDIR, the proposed architecture is designed to be applicable to
a wide variety of platforms and missions. The architecture also allows alternate

configurations that enable testing of various scenarios.

2.1 FDIR Architecture Concept Overview

The FDIR architecture collects data from the vehicle which is used to determine the
likely state of the vehicle. This state can be classified as either “fault” or “no fault” based
on how the decision logic is structured. The architecture isolates faults by performing
diagnosis to determine their precise source and performs preventative actions to recover
from faults before they become mission-critical failures. Outputs from the architecture can
either send commands to the vehicle autonomously or notify ground operators to take

corrective action.

2.1.1 FDIR Architecture Requirements

At the beginning of this study, high-level requirements were identified to guide the
development of this FDIR architecture: it must be generic, modular, and portable to FSW.
A generic architecture is applicable to any type of aerospace vehicle or mission. A modular

architecture allows components to be easily rearranged, added, or removed. A portable

25

architecture means that it is straightforward to convert the design implementation derived

from the architecture for a particular mission to code that is used onboard the vehicle.

In addition to the three primary requirements of generic, modular, and portable,
additional guidelines for the architecture were also established. V&V of the FDIR
architecture should assess its capability to meet the following goals. It should detect and
possibly correct software and hardware faults at multiple levels: component, subsystem,
and system. These faults may include sensor/actuator malfunctions, errors or degradation,
improper controller gain settings, non-convergence of GN&C algorithms, and avionics
software or processor hardware faults. The architecture should detect and avoid mission-
level failure modes, such as vehicle collision or uncontrolled behavior that renders the
mission objectives unattainable. Faults should be detected, diagnosed, and corrected in
real-time onboard as they occur, not in post-processing or by operators examining data on

the ground.

The architecture should utilize model-based decision logic rather than the rule-
based paradigm. Model-based approaches allow the system to select the best course of
action when multiple options exist. Finally, the architecture should demonstrate FP logic
that allows the system to avoid aborts by responding to correctible errors in real-time to
meet mission objectives. Because different missions have different risk classes (A,B,C,D)

[30], the architecture should scale to meet the requirements of the mission.

2.1.2 Development Environment in MATLAB/Simulink

The architecture discussed in this study leverages the development of a Six-Degree-

of-Freedom (6DOF) simulation environment for the Prox-1 small satellite mission and

26

several other projects at Georgia Tech. The simulation environment models in-flight
conditions of actual vehicles and missions and contains environment and hardware models
with configurable settings. The original purpose of this MATLAB/Simulink platform was
for Prox-1 GN&C algorithm integration and testing [15,31] and it has been used for
feasibility studies of constellations of CubeSats at Mars [32] and a Processor-in-the-Loop
testbed for high-fidelity testing of avionics boards for relative proximity operations called
SoftSim6D [33]. Functionality has been added to the simulation environment that can be
applied generally to aerospace mission scenarios to test a variety of FDIR algorithms and

mission architectures.

2.1.3 Enabling Advances in FDIR

The primary area of applicability of this architecture to the NASA Technology Area
Breakdown Structure is element 4.5.1 System Health Management under section 4.5
System Level Autonomy within Technology Area 04: Robotics and Autonomous Systems.
System health management “monitors, predicts, detects, and diagnoses faults and
accommodates or mitigates the effects either on-board or through telemetry processing on
the ground” [34]. The FDIR architecture results in on-board real-time system health
management software and will address many of the desired technical capabilities of
element 4.5.1. For example, complex logic allows the FDIR architecture to include
prognostic and diagnostic components as an integral part of the system. The logic is also
able to take complicated vehicle states into account to avoid false positives when faults are
not present and false negatives when faults are present. It may even be used to anticipate

faults and adapt to new situations that do not have pre-programmed responses. Finally, this

27

study advances paradigm-shifting model-based approaches for FDIR that can be easily

transitioned to FSW and validated using SITL and flight testing for V&V.

2.2 FDIR Architecture Characteristics

This section focuses on explaining how the architecture meets the primary
requirements of generic, modular, and portable. The architecture itself are described in the

following section.

2.2.1 Generic

A generic architecture is applicable to any type of aerospace vehicle or mission. The
FDIR architecture is comprised primarily of five generic diagrams that are described in the
following section. The MATLAB/Simulink simulation environment in which the
architecture is developed allows setting vehicle parameters including physical dimensions
and trajectory. It is applicable to a multitude of possible mission scenarios and permits
alternate configurations, such as individual vehicles or multiple cooperative or non-
cooperative vehicles. The simulation environment also contains generic modules for
commonly used components such as sensors and actuators. The simulation environment
has previously been adapted for use with many scenarios, missions, and vehicles, including
the Prox-1 small satellite mission [15,31], various ProxOps scenarios with hardware such
as a modular attitude determination system CubeSat avionics board [33], and a Mars
communication relay CubeSat constellation [32]. Each of the five diagrams described in
the following section are implemented without focusing on any particular application or
vehicle. Chapters 3 and 4 demonstrate how the architecture can be adapted for two distinct

and very different applications. While the generic architecture presented here is focused

28

particularly on FDIR for faults related to the GN&C subsystem, the same principles and

design can be applied to any other faults and subsystems on an aerospace vehicle.

2.2.2 Modular

A modular architecture allows components to be easily added, removed, or
rearranged. The visual block diagram environment offered by MATLAB/Simulink can be
altered and reconfigured easily and allows for testing of many combinations of software
modules and hardware components. For example, the investigator could replace the
sensor/actuator suite and GN&C software modules. An example of such a reconfiguration
is shown in Figure 11 and Figure 12, where an image generation (ImageGen) block is added
to the generic sensor suite. This block allows generation of simulated images from visual

and infrared sensors used during ProxOps.

Also, various initial conditions, environmental scenarios, and physical vehicle
properties can be easily redefined in a MATLAB initialization script and edited or
rearranged in Simulink. These include spacecraft orbit and attitude dynamics, spacecraft
properties such as mass properties and outer mold line, relative dynamics for multiple
spacecraft, sensor and actuator properties such as field of view and resolution, GN&C
software components, and central body or environment properties. Parameters for FDIR
algorithms can also be adjusted, such as fault injection times, wait times, and trigger
thresholds. The five diagrams described in the following sections can also be easily

adjusted and rearranged to adapt them for various vehicles and missions.

29

Continuous Rate Gyro Model

- o
EMW
w_meas L | w_meas
@ STATE
STATE E‘
Rate Gyro Models
. | a_mess_G
SC_RESPONSE
3 Axis Accelerometer
ENV P b_meas
STATE a_meas_G
p|b_meas_TRUTH
INIT L1
Fram INIT Acceleromater Model
| 55_measVec
3 Axis Magnetometer
ENV
s SEM_DATA
. | POS_meas
b_meas_TRUTH
5C_RESPOMSE
E| | VEL_meas
Magnetometer
Sun Sensor | LAT _meas
ENV
55 _meas\Vac
§| LONG_meas
STATE
Sun Sensor
| ALT_meas

-]

SEM_DATA GoTa

SEM_DATA Bus Creation and Data Logging

Figure 11 — Generic sensor suite (before reconfiguration)

30

(D)

SEM_DATA

REL_STATE

| STATE

REL_STATE

Image {matrix)

ImageGen_Sensoriodel

(5

ENV

STATE

Continuous Rate Gyro Model

ENY

w_meas

STATE

£

3
SC_RESPONSE

INIT

Rate Gyro Models

From IMIT

3 fucls Accelerometer
ENY

STATE a_meas G

IMIT

£

Accelercmeter Model

3 Axis Magretometar
ENV

*

b

STATE

b_meas TRUTH
2C_RESPONSE

i)
Magnetometer
1 Sun Sensor
EMY
S8 _measiec
>
>
STATE
]
Sun Sensor

31

w_meas

a_meas_G

b_mueas

b_meas_TRUTH

S5 _measiis

POS_meas

VEL_maas

LAT meas

LONG_meas

ALT meas

SEMN_DATA

SEM_DATA Bua Creabon and Data Logging

Figure 12 — Generic sensor suite (after reconfiguration) with ImageGen Sensor Model added

*(1)

Image matrix

SEN_DATA GoTo

SEN_DATA

2.2.3 Portable

A portable architecture allows straightforward conversion of its design
implementation for a particular mission to code that is used onboard the vehicle. The FDIR
architecture allows rapid transition from development to flight. The computational
requirements of the FDIR architecture match the capability generally available on flight
processors. The architecture has the ability to make the kinds of complex decisions
normally required for autonomous FSW and is evaluated by testing its response to realistic
conditions rather than “canned” scenarios. It is well integrated with other hardware and
software components, allowing new components to be quickly evaluated. Finally, the
architecture features the capability to easily convert the architecture into FSW code via
autocoding, a process which has been used with the Prox-1 mission as described in [15].
In this process, algorithms developed in MATLAB/Simulink are converted to C code and
integrated with other FSW code in C. Autocode performance is validated via a “day in the
life” test in a testbed using flight hardware. Although the autocoding process is not
demonstrated directly in this study, technical memos written by the Prox-1 team are
included in Appendix A to provide guidance for future researchers or engineers desiring to
reproduce it. Many FDIR algorithms have been developed by other researchers for
hardware and software faults, and the architecture developed in this work enables these
algorithms to be rigorously tested and implemented. This will greatly facilitate the

transition of new FDIR algorithms from concept design to implementation.

32

2.3 Generic Architecture Diagrams

The FDIR architecture presented in this study is made up primarily of five generic
diagrams: a GN&C subsystem taxonomy, fault tree analysis, functional state machine,
diagnostic state machine, and FDIR architecture block diagram. Each of these diagrams is

described in detail in this section.

2.3.1 Generic GN&C Subsystem Taxonomy

To prepare for the development of the FDIR architecture, it is useful to develop a
generic taxonomy of aerospace vehicle subsystems. Subsystems such as telemetry, tracking
& control (TT&C), electrical power subsystem (EPS), structures and mechanical systems
(S&MS), and GN&C each have many hardware and software components that could
manifest faults. Because aerospace vehicle systems are quite complicated, it is useful for
FDIR designers to focus more effort on subsystems that are historically prone to fault by
examining anomaly trends [35]. One study by the Aerospace Corporation found that among
twenty Earth-orbiting vehicles, GN&C accounted for 40% of failures, EPS accounted for
40%, TT&C accounted for 10%, and S&MS accounted for 10% [36]. GN&C is often
highlighted as a failure-prone subsystem and thus provides an appropriate scope of focus
for the FDIR architecture. The generic subsystem taxonomy in Figure 13 shows the various
high-level systems in an aerospace mission, a generic set of vehicle subsystems, and the
typical components of an aerospace vehicle GN&C subsystem. Only the GN&C subsystem
is expanded here because it is the focus of this study. Each of the other subsystem blocks

could be expanded in a similar fashion.

33

Ground . Space-Based
Support gesrltlecr:'?s Support
Systems y Systems

Telemet Guidance,

Trackin rys“ Flight Sofware Command & Navigation, & Propulsion Structures & Electrical Thermal

g 9 Data Handling Control P Mechanisms Power Control
Control
(GN&C)
GN&C GN&C Mode / GN&C
Software Decision Hardware
Components Logic Components
. Translational Attitude Attitude . Translational
Amg‘:ﬁ‘i\fg:ia‘c GN&C Determination Control Tr&,‘sﬁig‘fga' Control
Software Sensors Actuators Actuators
Aftitude Attitude Aftitude Translational Translational Translational
Determination Guidance Control MNavigation Guidance Control
Algorithms Algorithms Algorithms Algorithms Algorithms Algorithms

Figure 13 — Generic aerospace vehicle GN&C subsystem taxonomy

34

Almost all aerospace vehicles are reliant upon ground support systems, which range
from a laptop and antenna for uploading commands to a UAV to communications ground
stations and mission control centers for space missions. Many vehicles (including
terrestrial ones) also depend on space-based assets such as the Global Positioning System

(GPS) satellite constellation, communication relay systems, or weather satellites.

Vehicle systems include hardware and software components that are integrated into
the vehicle. The GN&C subsystem is responsible for both attitude and translational motion
of the vehicle. Guidance algorithms are responsible for planning where the vehicle should
move or rotate. Navigation algorithms use sensors to determine the attitude state (including
angular velocity and acceleration) and translational state (absolute and relative position,
velocity, and acceleration) of the vehicle. Control algorithms use actuators to command the
vehicle to perform both attitude and translational maneuvers. Finally, GN&C mode logic
and decision software is used to manage each of these components based on the current

mission phase, as well as to parse commands from ground operators.

2.3.2 Generic Fault Tree Analysis

One important quality of fault protection systems is that they should be designed in
a way that all reasonably probable fault scenarios are considered and addressed. In addition
to enumerating the various components that make up a system, it is necessary to determine
potential sources of faults that may impact the system. It is important for mission and
vehicle designers to “use historical data to determine what fault types are most likely to be
introduced or ... perform a risk analysis to determine what fault types would be most

devastating if overlooked” [37].

35

One critical tool used to identify potential faults is called fault tree analysis (FTA).
FTA allows system designers to identify key failure points based on the requirements and
specifications of the system. An FTA provides a systematic top-down symbolic approach
to model chains of possible faults for a given system [38]. The fault tree is made up of a
top level event, which is a foreseeable, “undesirable event toward which all fault tree logic
paths flow” [39]. Each key failure event is then traced back using conditional logical
operators (such as AND and OR) to identify all possible basic fault events that could lead
to that top-level failure event. The top event is connected to various intermediate events
that could cause it. In turn, each intermediate event is connected to other intermediate
events that could cause it. The bottom level is comprised of basic events or root cause
events. These are initiating events whose cause is not analyzed further. Events are
connected by AND and OR logic gates. OR implies that each one of the connected
causative events is both necessary and sufficient for the resulting event to occur, even if
none of the other events occur. AND implies that all connected causative events must occur
and together form the necessary and sufficient condition for the resulting event. Although
other logical operators are possible, most fault trees can be constructed with only the AND
and OR symbols [38]. The result is a fault tree that identifies all basic fault events that

should be considered by a fault protection system.

Previous literature has developed a “Fault Tree to State Machine” algorithm to
transform a fault tree into a “fault state machine” that tracks the off-nominal (or “hazard”)
states of a system [40]. This is distinct from a “functional state machine” that tracks all
possible states of a system. The algorithm also has the capability to map states and

transitions of the fault state machine to states and transitions of the functional state

36

machine. If a functional state machine of the system is available, the fault state machine
can be linked to specific system states and transitions, which are based on the hardware
and software status of the system. This is preferable to the traditional rule-based approach
because it allows the design of the fault state machine to be explicitly linked to the fault

tree analysis and ensure that no fault conditions are missed unintentionally.

A generic fault tree analysis is shown in Figure 14. In this analysis, the top level
failure is assumed to occur if any of the 2" level events occur, as indicated by the OR gate.
Each 2" level events is in turn caused by any of the 3™ level basic events below it. For
example, one of the 2" level events, “Environmental Fault” can be caused by either 3"
level basic events or the lone 3" level intermediate event “Physical Environment Fault”,
which in turn is caused by one of the 4™ level basic events such as “Radiation Event” or
“Debris Event”. Each basic event can be mapped to a specific component of the vehicle or

mission and assigned a probability if a quantitative failure analysis is desired.

2.3.3 Generic Functional State Machine

As mentioned in the previous section, a functional state machine is a model that
describes the behavior of a system by tracking the “mode state” of the system [40]. Mode
states are high level descriptions of the overall system behavior and are distinct from
dynamic states (such as position & velocity) or vehicle component states (such as battery
level or processor temperature). Each vehicle and mission will have a distinct state machine
describing how these modes change and the logical conditions to switch between them.
The generic functional state machine shown in Figure 15 provides a template for

constructing this diagram. It features generic modes that may be present in many different

37

Top Level Failure

Symbol Legend
I:l Top Level or
Intermediate Event
Fa
| [~ _h_“'lg "Or" gate
% D% "And" gate
I I T 1 O Basic Event
Design / Environmental
Internal ’ Support
Vehicle Fault mplementation System Fault Fault
1 | |
o o i o
o =] (o] =]
| 1 1
1
. Incorrect / Operation Required Required Collabor-
Software)
H Fl('jghl H;r:s\.i\.'ar:e Incorrect / imple- Improper Qutside Ground Space ative
ardware Fausl;t Improper mentation Command Designed Asset Asset Vehicle
Fault Modeling ot Sent Capability Failure

Failure
Hardware
Work-
manship

Fault

Fault
System /

Mission
Design
Fault

Physical
X Adversary
Environment Attack
Fault
Radiation Debris TE.‘“".T:I Weather
Event Event m Event
Exceeded

OR

Figure 14 — Generic fault tree analysis

38

fCom lexProcess
" [EnterAbortZone==1]

[EnterinteractZone==1]

|

Standoff NominalZone AbortZone
%WaitToProceed _| %Nominal Region %Abort Region
2 3

[ReadyToGo==1 && ...
FaultDetectedMode==0]

[Begininteraction==1]

\

—

InteractZone
%Pre-Interaction Region

[Begininteraction==1]

- ‘ J
y V
[ArriveAtStandoff==1] [Abort==1] Anteract ™
(Abort R %Interact with other vehicle,
TransferToComplexProcess %Stop Complex Process % target abject, or enviornment
%Note this is an optional step
s
[BeginComplexProcess==
&& FaultDetectedMode==0]
[Abort==1]
Standby 2
%Passively Safe
[ArriveAtStandby==1] _ V4

[ArriveAtStandby==1]

Figure 15 — Generic functional state machine

39

contexts. The initial state in the bottom left is “Standby,” which is a passively safe mode
where the vehicle waits for further commands to proceed.

If no faults have been detected (FaultDetectedMode=0) then a command
(BeginComplexProcess=1) allows a “complex process” to begin. Complex processes
could include autonomous or piloted operations. An optional transition phase occurs before
the complex process state begins. The complex process has several sub-states. First is
“Standoff” (ArriveAtStandoff=1), which is a phase where the complex process is
“armed” but not initiated and the vehicle is awaiting permission to proceed. Standoff is
distinct from Standby because the vehicle may not necessarily be in a passively safe
dynamic state. If no faults are detected (Fau l tDetectedMode=0) the complex process
begins when a command is provided (ReadyToGo=1). At this point the NominalZone
state begins. This is a nominal region where faults are acceptable and can generally be
detected and responded to safely while still continuing nominal operations.

At some point, based on the dynamic state of the system, safe operation under fault
conditions may no longer be possible (EnterAbortZone=1). When this occurs, the
AbortZone state begins, and at any time if a fault detection is triggered or a human operator
decides conditions are unsafe, an Abort can be commanded (Abort=1). The abort stops
the complex process and moves the vehicle to a safe dynamic state, eventually returning to
the Standby state (ArriveAtStandby=1). Additionally, an “Interact” state allows the
vehicle to interact with other vehicles, target objects, or the environment. A pre-interaction
region called the InteractZone is entered from the AbortZone when
(EnterlInteractZone=1). The Interact state can be entered from either AbortZone or

InteractZone when a command is received (Beginlnteraction=1). The vehicle

40

cannot enter the Interact state directly from NominalZone because interaction almost
always involves hazardous conditions. If a fault or other hazard occurs during Interact, an
abort can be triggered (Abort=1). If no anomalies occur, the vehicle will return to

passively safe standby after the interaction is complete (ArriveAtStandby=1).

2.3.4 Generic Diagnostic State Machine

To implement on-board model-based fault diagnosis, the generic diagnostic state
machine shown in Figure 16 has been developed. The diagnostic state machine consists of
two primary states: NoFaultDetected and FaultDetected. During all nominal mission
phases, NoFaultDetected is activated, but when a fault detection trigger is observed
(FaultDetected=1), the FaultDetected state will be activated. If the functional state
machine is in any state other than AbortZone, then the diagnostic state machine will enter
“Diagnose” immediately when a fault is detected. If the functional state machine is in the
Abort Region (AbortZone=1) when a fault is detected, the diagnostic state machine does
not attempt to determine which fault has occurred. An abort maneuver is commanded
immediately, returning the vehicle to a passively safe dynamic condition before entering

the Diagnose state.

The Diagnose state consists of sub-states for each possible fault. Each sub-state
begins by running a diagnostic routine to determine if that particular fault has occurred. If
the diagnostic routine returns Faul tConfirmed=1, then the appropriate fault response
routine is called and the diagnostic sub-state for the next fault is activated while the
response runs in the background. If the diagnosis does not result in fault confirmation

within a user-defined wait time, then the active sub-state moves to the next possible fault

41

g
T {FautDesected bt
eniry: Abori=0; |FaultDetected==1] el
Caorrsctrvanctiont=0; Cormctivefction2 ={;
Cormecirrabcliond=0; Cormaclivedchiond={;
Carecivadctioni=0, -
[FouliResalved==1... 1 _
&5 aferRecowerTime. sac) z [AbariZana] [AarivasiEtardby==1]
1)
-"fh.:.grusr:
L5 = Hi
W Faurr ™ Faukl ™)
1]
agnose] -
B i r Diagnozal
(Wit -
gl aftem Wal Time, sec)

en: Diagnasel=1

an: Diagnosa?=1

| [FauhCanfirmed1==1]

J

| [FauliConfirmedZ==1|

* 'S
spondi] | rspond?
en: Corectivesictioni=1; an: Correctivefcion2=1
Diagrasami=0; J Disgnoza2e=d;
5 v
L — e
A A
N)
Y
\ 1
) \
e e
H-""-\.\ g "-\._
e b
e e

42

Figure 16 — Generic diagnostic state machine

and the process repeats. Once all possible faults have been evaluated, the active sub-state

returns to the first fault until the fault has been resolved by one of the corrective actions.

Note that fault diagnostic checks are distinct from fault detection checks. None of
the diagnostic checks are performed unless they are called by the diagnostic state machine,
which is only activated once the fault detection triggers are activated. Thus, a fault will not
be detected if one of the fault diagnosis conditions is met but the fault detection conditions
have not been met. Once a fault has been diagnosed, the diagnostic state machine calls the
appropriate fault response routine. When the fault is resolved and a user-specified recovery

time has passed, the active state returns to the NoFaultDetected state.

2.3.5 Generic Architecture Block Diagram

The functional state machine and diagnostic state machine described in the previous
two sections are designed to work together in the fault protection architecture along with
several additional components in the MATLAB/Simulink environment. An overview
showing the architecture components and their connections is illustrated by the block
diagram in Figure 17. The diagram is divided into the system under control (entity being
controlled) and the control system (entity exercising the control) according to the

terminology defined in [5].

During initial development and testing, the system under control is composed of
simulation models and state variables that track the status of these models. For example,
environment models keep track of time systems, dynamic perturbations on the vehicle, and

ephemerides for the positions of planets, moons, and the Sun. Environment states include

43

System Under Control

Environment Components

Time Systems
Perturbations
Ephimerides

Vehicle EDOF Dynamics

Translational Dynamics
Relative Dynamics
Attitude Dynamics

Enviroment States

Current Time
Atmosphere/Temperature
Eclipse/Occultation Status

S

Vehicle 6DOF Dynamic States

Inertial Position & Velocity
Relative Position & Velocity
Attitude & Angular Velocity

Vehicle Components

Sensors & Instruments
Actuators & Propulsion
Other Vehicle Components

Vehicle Component States

Sensor Outputs
Actuator Inputs
Component Health Status

Sensors/Data

Hardware & Environment

Legend
Systems

Functions of
Control System

Components

GN&C Software
Components

Fault & Mode
Software Components

Control System

State Determination

Navigation Algorithms

Sensor Data Processing
Translational Filters
Attitude Filters

Fault Detection

Fault Detection Checks

Fault Diagnosis

Fault Diagnosis Checks

State Variables

Vehicle State Estimates

Position & Velocity
Attitude & Angular Velocity

Guidance & Control Algorithms

Trajectory Guidance & Control
Attitude Guidance & Control

Fault Protection
State Machine

Fault Detection Status
Fault Diagnosis Status

Functional

State Machine

Vehicle Mode Status
Cooperative Vehicle Status

Fault Response

Component Commands
(For Vehicle Components)

Mode Management

Vehicle Mode Commands
(For Functional State Machine)

Actuators/Commands

Figure 17 — Generic architecture block diagram

44

the current time, atmospheric and temperature conditions, and eclipse/occultation status for
planets and moons. The simulation environment also includes vehicle dynamic models for
inertial and relative translational dynamics (position, velocity, acceleration) and inertial
attitude dynamics, including angular velocity and acceleration. Generic vehicle
sensor/instruments and actuator/propulsion models are also included in simulation to
provide sensor outputs and receive actuator inputs based on the state of the simulation. Other
vehicle components and their health status can also be accounted for. Again, these
simulation models are only a development tool and are not used as part of the on-board

software system for the FDIR architecture when it is deployed on a flight computer.

The “Control System” contains the core of the FDIR architecture as well as vehicle
GN&C algorithms and state estimates. The GN&C algorithms include sensor data
processing and filters for estimating vehicle position, velocity, attitude, and angular velocity
and guidance & control algorithms for both vehicle trajectory and vehicle attitude. The fault
& mode portions of the architecture are the main focus of this study, and these components
are shown in the example Simulink diagram in Figure 18, which illustrates how each of the

components interacts with the others.

The two primary components are the functional state machine and the diagnostic state
machine. These are Stateflow blocks which have been described in the previous two
sections. Most of the inputs to the functional state machine are produced by the generic
mode management block, a MATLAB function which takes in vehicle state information and
ground commands and calculates the logical variables that are evaluated in functional state

machine transitions. One output from the functional state machine to the diagnostic state

45

!

[P
[
N
» FaultDetectedMode
Abort
ReadyToGo » ReadyToGo
BeginComplexProcess » BeginComplexProcesg
ArriveAtStandoff » ArriveAtStandoff AbaortZone
YSensorPowerState < EnterAbortZone EnterAbortZone t
ModeManager
EnterinteractZone » EnterinteractZone
ArriveAtStandby » ArriveAtStandby
Beginlnteraction » BeginInteraction
\\ y AboriZone FaullDelecledMod)

Generic Mode Management

Generic Functional State Machine

ArriveAtStandby Abort
FaultDetected » FaultDetected Diagnose1
ASensorPowerState ‘0 & P
i orrectiveAction
FaulDetection 5 {Resolved » FaultResolved
- - Diagnose2
Generic Fault Detection WailTime g
CorrectiveAction2
RecoverTime
Diagnose3
A SensorPowerState
FaultConfirmed1 » FaultConfirmed1 . .
CdrrectiveAction3

—»|Diagnose1
DiagnoseResolvel Y FaultConfirmed2

CorrectiveActionCmd1 P

Diagnose4

CorrectiveAction1

NAFaultConfirmed3 CorrectiveActiond

Generic DiagnoseResolve1

JFaultConfirmed4 Diagnose5
CorrectiveAction5
»EaultConfirmed5
Generic Diagnostic State Machine
[Tl
2
(e

Figure 18 — Simulink diagram for generic fault protection architecture

46

machine (AbortZone) describes whether the AbortZone state is active. Two inputs

(FaultDetectedMode and Abort) are generated by the diagnostic state machine.

The inputs to the diagnostic state machine come from several sources. One variable
(ArriveAtStandby) is generated by the mode management MATLAB function block.
Another variable (AbortZone) is generated by the functional state machine. Fault
detection checks are performed by a MATLAB function block and result in two variables
(FaultDetected and FaultResolved). Two variables are input as constants
(WaitTime and RecoverTime), and a set of variables indicating fault confirmation
(FaultConfirmedl,2,3, etc.) are input from the fault diagnosis/resolution
MATLAB function block for each fault. Two output commands for each fault
(Diagnosel, 2,3, etc. and CorrectiveActionl,2,3, etc.) are fed into the
respective fault diagnosis/resolution function blocks. Note that only one
diagnosis/resolution function is shown for clarity but most systems will consider more than

one fault and will have a diagnosis/resolution function for each fault.

2.4 Mapping the Generic Architecture to a Particular Application

Each of the generic architecture diagrams described in the preceding section can be
adapted for particular applications. This section presents a general process for mapping
from generic to specific, and the following two chapters provide examples for two very
different applications. It is important to note that the generic diagrams provide more or less
detail than necessary, depending on the application. Detail can be added or removed in

each diagram as needed.

47

The first step in adaptation is to adjust the generic aerospace vehicle subsystem
taxonomy in Figure 13 to the specific vehicle being considered. The goal is not to provide
scrupulous detail of every miniscule component but instead to identify and categorize the
main components that may have an impact on tasks and processes relevant to fault
protection. The engineer must use their judgement to determine the level of granularity
required, but in general a component-level taxonomy should be sufficient. Subsystems and
GN&C components can be added or removed from the generic taxonomy as needed.
Although this diagram is not used directly to generate other aspects of the overall
architecture, it provides an extremely useful reference for standardizing terminology and

vehicle configuration.

The next step involves performing a fault tree analysis for the application. The
template in the generic fault tree in Figure 14 can be used as a guide for this, or the fault
tree structure can be followed without using the same intermediate and root cause events.
Additionally, other industry standard analyses such as the Failure Modes, Effects, and
Criticality Analysis (FMECA) or Fault Containment Regions (FCR) can be developed [12].
An important step in this process is determining which faults are considered credible and
must be addressed by a FP system and which faults can be ignored as accepted risks.

Quantitative risk metrics are useful for this purpose but are beyond the scope of this study.

Next, a functional state machine should be created, using the generic functional state
machine in Figure 15 as a template. This can be done in Stateflow, a state machine toolbox
within MATLAB/Simulink, or in alternate software tool such as UML/MagicDraw. Some
states from the generic diagram such as TransferToComplexProcess, Abort, and Interact

may not be relevant for all applications, and some applications may require that additional

48

states be added. Transition conditions between states can also be modified, added, or
removed as needed. The main purpose of this diagram is for other aspects of the FDIR
architecture such as the diagnostic state machine to reference the mode state of the vehicle.
Additionally, supporting functions such as the mode management MATLAB block should
be written to generate the logical inputs used in transitions between states. Although
alternate representations of mode state (such as simple code functions or Simulink blocks)
can also be used, the state machine paradigm provides a useful graphical tool that should

be relatively straightforward to interpret without intimate knowledge of the system.

A diagnostic state machine should also be developed from the template in Figure 16
using selected faults from the fault tree. The behavior of fault responses during the
AbortZone should be determined, as this is reflected in the diagnostic state machine. Also,
supporting functions for fault detection, diagnosis, and response should be written to
provide inputs to and receive commands from the diagnostic state machine. These
functions can be placed in MATLAB code blocks and connected to the functional and

diagnostic state machines as shown in Figure 18.

Finally, a V&V method such as a numerical simulation, testbed, or flight test should
be should be developed to evaluate the FP architecture using the template shown in the
block diagram in Figure 17. The block diagram should be adapted to the particular
application as a reference for understanding how all components interact. Creating this
diagram also helps the developer to determine if any important components have been left
out. Once the FP architecture has been thoroughly evaluated, it is ready to be deployed.
The following two chapters provide examples of this process for both a terrestrial UAV

application and a space-based automated proximity operations application.

49

CHAPTER 3. TERRESTRIAL APPLICATION:
FALCONVIZ UAV NERVOUS SYSTEM

One application of the state machine FDIR architecture has been developed for a
multirotor UAV system. This has been dubbed the “UAV Nervous System,” and serves as
a proof of concept of the state machine FDIR architecture. Several flight tests
demonstrating successful detection of faults have been completed. The results of one set of
flight tests were published at the 67 International Astronautical Congress in Guadalajara,

Mexico [41].

3.1 Overview of FalconViz UAV Hardware and Typical Missions

FalconViz is a start-up company based out of the King Abdullah University of
Science and Technology (KAUST) in Saudi Arabia. It was founded in 2015 by two
research faculty and a PhD student at KAUST: Dr. Neil Smith, Dr. Mohamad Shalaby, and
Luca Passone. FalconViz designs and flies custom UAVs for a variety of applications such
as aerial surveying & mapping, inspection & monitoring, and surveillance. The company
also collaborates with other research groups at KAUST such as the Hydrology, Agriculture
and Land Observation (HALO) group led by Dr. Matthew McCabe. The HALO group uses
modeling, remote sensing, and in-situ measurements to better understand elements such as
water usage, crop health, and regional climate conditions. One effort of the HALO group
involves the use of UAVs to capture thermal and hyperspectral imagery of desert

agricultural plots.

At KAUST during Summer 2016, a FalconViz hexacopter (six rotors) shown in
Figure 19 was used as a proof-of-concept testbed for the UAV Nervous System. One

specific fault was addressed as a starting point: unbalanced propellers (leading to excess

50

vibration). Detecting this fault provides a more reliable vehicle for performing aerial
surveys and other tasks with FalconViz UAVs. Additional modifications and flight tests
were performed during Summer 2017 to add more vibration sensors and the capability to

detect additional faults using temperature, voltage, and current sensors.

Figure 19 — FalconViz hexacopter in flight [41]

3.2 UAV Nervous System Requirements

Unbalanced propellers in multi-rotor UAVs cause excess vibration and can lead to
screws coming loose and potential crashes. The basic requirement for the first iteration of
the UAV Nervous System is to detect excess vibrations and provide a response action. This
must be accomplished in real-time via onboard measurements only and should utilize the
Stateflow FDIR architecture developed in MATLAB/Simulink. Also, the detection should
not be triggered unless an unbalanced propeller is confirmed. In other words, intermittent
fault triggers are not desired; the fault status should not constantly flip back and forth

between “fault” and “no fault” during flight. In addition, the UAV Nervous System should

51

be a standalone system that has minimal impact on the operation of the UAV. It should not

add excessive mass or power drain to the UAV.

3.3 FalconViz UAV Subsystem Taxonomy and Fault Tree

The generic subsystem taxonomy has been adapted for the FalconViz UAV as shown
in Figure 20. Most FalconViz UAV components are Commercial Off-the-Shelf, while the
structure and overall design of the UAVs are produced in-house. A few of the fault-prone
components are outside of the GN&C subsystem but directly affect it. For example,
batteries and Electronic Speed Controls (ESCs) are components of the EPS that provide
power to GN&C components such as propeller motors. The telemetry receiver, which
connects the UAVs to hand controllers and ground stations, is a key TT&C component.
Key GN&C components include the six motors and propellers, which are the sole attitude
and translational control actuators on the vehicle. Note that the propellers of a multirotor
UAV typically have fixed pitch; they perform both attitude and translational maneuvers by
altering the speed of individual propeller rotations via the ESCs to change the direction of
the resultant lift/thrust vector [42]. Some key translational sensors include a GPS receiver,
a barometer, and accelerometers. Key attitude sensors are a rate gyroscope and a magnetic
compass (magnetometer). Most GN&C software is embedded within the flight controller,
including a set of translational guidance waypoints that can be uploaded by mission
planning software on a ground station laptop. The GPS satellite constellation is also used

by the GPS receiver to calculate the UAV’s position and velocity.

52

Mission Vehicle
Planning Systems GPS Satellites
Laptop y
Guidance, Telemetr
) Flight Navigation, & etry Structures & Electrical
Flight Software Receiver)
Computer Control (TT&C) Mechanisms Power
(GN&C)
Electronic
GN&C Waypoint GN&C Speed Batteries
Sensors Guidance Actuators Controls
(ESCs)
Translational Attitude Propellers Propeller
Sensors Sensors P Motors
h Rate
GPS Receiver Barometer Accelerometer Magnetometer
Gyroscope

Figure 20 — Subsystem Taxonomy for UAV Nervous System

53

A fault tree for the FalconViz UAVs is shown in Figure 21. This is an expansion of
the Internal Vehicle Flight Hardware branch of the generic fault tree from Section 2.3.2
and shows basic event faults identified by the FalconViz engineering team. The top-level
failure for this analysis is “Loss of control” which can be traced back to each the identified
faults. The three most important faults identified were “Motor not spinning,” “Motor or

ESC overheats” and “Excessive vibration.”

54

Symbol Legend
D Top Level or
Intermediate Event
"Or" gate
Qg "And" gate
O Basic Event l |] |

Top-Level Failure
I

OR

Internal Im E;:;?\Te:!ion Support Environmental
Vehicle Fault P Eault System Fault Fault
«
(o]
Flight
Hardware
Fault
o
Q
!
[T 1
Electrical Mechanical Instrument
Fault Fault Fault
| | |
14 o [
(] Q o

5V supply for
flight Mgg&or Motor not Excessive Incorrect L?;_::"::ST t::?:r:ggr Gyro or
controller spinning vibration GPS reading P accel. fails

overheats

reading reading

fails

Figure 21 — Fault Tree for FalconViz UAVs

55

3.4 Fault Detection and Recovery Strategy

Vibration detection is accomplished by evaluating accelerometer data measured from
the arms of the UAV that house the propellers. A machine learning algorithm determines
the health of the system from the data. If the propellers are unbalanced, then there will be
much more vibration in the system. Once it is trained and validated on the ground, the
machine learning model then identifies the health of the system from live data onboard the

UAV. These outputs are sent into the state-based FDIR architecture in Stateflow.

A SparkFun Triple Axis Accelerometer and Gyro Breakout — MPU-6050 [43], shown
in Figure 22a, is installed on one arm of the hexacopter. Data is collected via a
microcontroller programmed with Arduino protocols called the Teensy 3.2 [44], shown in
Figure 22b. The Teensy is then connected to a MeegoPad T02 compute stick [45], shown

in Figure 22c, via USB.

Figure 22 — (a) SparkFun Triple Axis Accelerometer & Gyro Breakout — MPU-6050
[43]; (b) Teensy 3.2 [44]; (c) MeegoPad compute stick [45]

56

Figure 23 — Shrink-wrapped accelerometer installed on hexacopter arm,
with sensor coordinate axes indicated [41]

The shrink-wrapped MPU-6050 breakout board is mounted just below the propeller
motor, as shown in Figure 23. The Teensy is installed on a SparkFun Teensy Arduino
Shield Adapter [46] and connected to the MPU-6050 and other components via jumper

cables and custom harnesses, as shown in Figure 24.

Figure 24 — Teensy installed on Arduino Shield Adapter [46]
with USB and jumper cable connections [41]

If the propellers are unbalanced, there will be much more vibration in the system. A

Simulink model run in Windows on the MeegoPad records data from the accelerometer

57

and feeds it through a supervised machine-learning classification algorithm in MATLAB
called K-nearest neighbors (KNN) [47]. The KNN algorithm determines the health of the
system from the data. Once it is trained and validated on the ground, the KNN model then
identifies the health of the system from live data onboard the UAV. These outputs are sent
into the state-based FDIR architecture in Stateflow. For tests, the propeller is unbalanced

by adding a few pieces of electrical tape on one side, as shown in Figure 25.

Figure 25 — Hexacopter propeller unbalanced by adding electrical tape [41]

Flight test data is captured for both an unbalanced propeller (with tape) and a
balanced propeller (without tape) and is used to train the KNN classification model in
MATLAB on the ground. Training data plotted in Figure 26 shows that the unbalanced
propeller has a higher vibration magnitude in y and z and that the y data shifts into the

negative region. However, this information is not provided to the KNN algorithm.

58

X "Normal" Flight X "Unbalanced" Flight

6000 , , , , 6000
4000 | 4 4000 |
—~ 2000 | —~ 2000 | i
j=2) j=2
E ot E B T e Y L)
@ -2000 @ 2000 | i
Q (8]
& -4000 £ -4000
-6000 -6000
20 25 30 35 20 25 30 35
Simulink Model Time (sec) Simulink Model Time (sec)
Y "Normal" Flight Y "Unbalanced" Flight
6000 , , , , 6000 ,
4000 | 4 4000 |
~ 2000 | ~ 2000 |
jo2 o
£ 0 £ 0
@ -2000 @ -2000
(5] [S]
& 4000 | & -4000
-6000 -6000
20 25 30 35 20 25 30 35
Simulink Model Time (sec) Simulink Model Time (sec)
Z "Normal" Flight Z "Unbalanced" Flight
6000 , , , , 6000
4000 | 4 4000 |
~ 2000 | —~ 2000 |
[=2} [=))
£ 0 f £ 0
@ -2000 @ -2000
Q Q
& -4000 & -4000
-6000 L L L L -6000 L L L L
20 25 30 35 20 25 30 35
Simulink Model Time (sec) Simulink Model Time (sec)

Figure 26 — Training data for KNN classification model [41]

Raw data from the two flights is combined and manually labelled by the user.
Combined raw data for each axis (x,y,z) and assigned labels are fed into the KNN training
algorithm in MATLAB. After training, the static KNN model is stored for use in flight and
is not adapted further. The detection accuracy of the static model is verified with
independent flight test validation data captured in the same way as the training data. The
KNN classification detection algorithm then uses the trained KNN model to select the
labels for each data point. The validation results, shown in Figure 27, exhibit a detection

accuracy of 86.8%.

59

Detected Activity Levels
8000 .

0=0n Ground .
1=Mormal Flight . *u .
2=Unbalanced Flight . . oo o

8000

-
"

4000

2000

-2000

Acceleration {mg)
=

-4000

6000

-8000 :
0 20 40 60 80 100 120

Simulink Model Time (sec)

Figure 27 — Detected activity levels from KNN model validation data [41]

KNN Fault Stateflow Block

;C‘E;A“%’« E| Prediction (see Figure 29)

ASCII_Values Accel(xy.z)

Serial Configuration

Data Output

Acc AccFaultDetected FaultDatacted

FaultStatus

to Teensy
via Serial

COMS e < decodeASCI|_ MPUB0SO temp Tomp FaullDetermination TempFaultDetacted

1I_MPUG0S50 FaultDetermination

Serial Receive 1

Data Type Gonversion
ResolutionPersistence

Data Input T @3 0)
from Teensy RecFoul
via Serial

Data Type Conversion1

=1
Eid

Rale Transition1

Figure 28 — Simulink diagram for UAV nervous system [41]

Once model training and validation is complete, the system is ready for in-flight
detection. Data collected from the accelerometer in real-time is fed into the Simulink model
shown in Figure 28 via a serial connection over USB. The Teensy and serial connections

run at 115,200 baud (bits per second). The data is converted from ASCII characters to

60

numerical values by a custom MATLAB function and is saved to memory. It is then fed
into the MATLAB KNN fault detection algorithm, which uses the trained static model to
determine if the propeller is balanced or not. The detection is run on 100 samples at a time,
and if 50 or more of these samples are classified as “unbalanced” by KNN, then the
vibration FaultDetected flag is set to 1; otherwise the flag is set to 0, indicating the
propeller is “balanced”. This FaultDetected flag is fed into the Stateflow diagram
shown in Figure 29, which conducts state machine fault protection. Note that this diagram
was developed before the generic architecture discussed in the previous chapter. It is

adapted to fit the generic architecture in the Section 3.7.
(Fault \\
Standby

N [FaultDetected==0]

[PotentialRésolution]
T—

[FaultDetected==1]ﬁ

T after(ResolutionPersistence,sec)[FaultDetected==0]

\
AN

/Normal N
Standby

[FaultDetected==0] —*=
after(FaultPersistence,sec)[Fay/tDetected==1]

£

. PotentialFault /
T — [FaultDetected==1]

o 4
Figure 29 — Stateflow diagram for vibration fault detection [41]

The Stateflow diagram begins with an initial state of “Normal” at the bottom right

and an initial substate of “Standby”. If FaultDetected is set to 1, the substate within

61

“Normal” transitions to “PotentialFault.” If the condition “FaultDetected=1" persists
for a length of time specified by Faul tPersistence, then the state transitions from
“Normal” to “Fault”. However, if Faul tDetected does not remain at 1 for long enough,
then the state will remain “Normal” and the substate will return to “Standby”. Very similar
logic applies for transitioning from “Fault” back to “Normal”: the condition
FaultDetected=0 must persist for a length of time specified by
ResolutionPersistence. The FaultStatus flag is the output signal matching
the current state of the Stateflow chart, with O indicating “Normal” and 1 indicating
“Fault”. The fault response involves sending the Faul tStatus signal to the telemetry
receiver. Simulink sends the Fau l tStatus signal back to the Teensy and then on to the
FrSky X8R telemetry receiver [48] shown in Figure 30a. The pilot can view the value of
FaultStatus on their Taranis X9D handheld radio controller [49], shown in Figure 30b,
to indicate whether the propeller is balanced or not (0 or 1). If the variable is set to 1, the
controller is programmed to begin beeping. When the variable is set to 0, the controller

stops beeping.

Figure 30 —a.) FrSky X8R telemetry receiver [48] installed on the hexacopter;
b.) Taranis X9D Plus radio [49]

62

3.5 Flight Test Results

The UAV Nervous System has been flight-tested and successfully indicates the
state of vibrations during flight. Figure 31 shows data recorded during the V&YV test flight.
The top three plots show accelerometer data and the bottom plot shows the Faul tStatus
signal output by the Stateflow diagram. The flight begins with the copter on the ground in
segment A, and tape is placed on the propeller to unbalance it. The copter takes off and
flies with an unbalanced propeller in segment B. The nervous system quickly detects the
imbalance and outputs a FaultStatus of 1 at around 12 sec, shortly after segment B
begins. During segment C, the copter lands, and the tape is removed to restore the propeller
balance. Segment D shows balanced flight, and around 25 sec the nervous system detects
that balance has been restored and sets FaultStatus to 0. The copter lands again in
segment E and tape is added again. During segment E near 35 sec, a FaultStatus of 1
occurs, and since there is no persistent “normal flight” data entering the system,
FaultStatus does not return to 0. Unbalanced flight resumes during segment F, and
FaultStatus remains at 1. The tape is not well adhered to the propeller during this
segment, and it comes loose and flies off at 40 sec. The copter transitions to balanced flight
in segment G, which the nervous system detects around 45 sec, returning Faul tStatus
to 0. The delays in Faul tStatus transitions are expected, as the system is tuned to avoid

constant flipping between 0 and 1.

63

Accel {(mg)

Accel (mg)

1 T T T | W T T T
A B Cc D E F G H
05} 1
0 [[WA | ——— It —|
05T]
-1 1 i 1 Il Il 1 1
10 19 L 25 b0 35 4] 45 50
Simulink ModellTime (sec)
1 Y Acceleration
1 -..10 T T T T T T T
05F
D"—-._ , m_ " —*; S e T T —
05T
_1 i i i | fi i | i
(10 19 I 25 b0 35 40 45 50
Simulink Model[Time (sec)
.10 Z Accelerption
1 T T T T T T
05
0 - I8 +_ - "
05
-1 ! . ¥ 5 : :
10 19 I 25 b0 a5 40 45 50
Simulink ModellTime (sec)
Fault Sgatus (0=Balancpd, 1=Unbalarjced)
(73] 1 I
=
o
n
=
@
LL
D 1 1 1 | 1} 'l 1 1

<104 X Acceleration

10 15 20 25 30 35 40 45 50
Simulink Model Time (sec)

Figure 31 — Flight test data demonstrating successful vibration detection [41]

64

3.6 UAV Nervous System Upgrades

The flight test described above provided a proof-of-concept for the UAV Nervous
System. In addition to the vibration sensor, a One Wire Digital Temperature Sensor
DS18B20 [50] is used to monitor heating of the motors. It is important to detect when
motors overheat because their shutdown and can lead to loss of the vehicle. Figure 32a
shows the DS18B20 sensor and Figure 32b shows it installed on a motor with thermally
conductive epoxy. The temperature reading in deg C is collected by the Teensy then
downlinked to the Taranis radio via the telemetry receiver. This value is displayed on the
radio for the pilot, and the radio is programmed to give a verbal warning (“too high”) when
the temperature exceeds a predetermined threshold. This threshold is set by the pilot on the
radio itself. An example plot of saved temperature values from the DS18B20 is shown in

Figure 33.

Figure 32 —a.) One Wire Digital Temperature Sensor DS18B20 [50]
b.) Temperature sensor installed on UAV motor with thermal epoxy

65

ESC Temperature

28
275 — |_|_|_J_|—|
Q a7y /_k
o
JiF]
=2
: /
S5t t
]
P g
e J
g i I'j‘l
2 2%
255
25 i i i i i i i i i i
1 2 3 4 5 5 7 8 9 10

Simulink Model Time (sec)

Figure 33 — Example plot of DS18B20 temperature data [41]

Next, the 90 A AttoPilot VVoltage and Current Sense Breakout Board [51], shown
in Figure 34b is added by splicing the power wires between the lithium polymer battery
[52], shown in Figure 34c, and the ESC shown in Figure 34a. Telemetry for ESC voltage

and current are fed into the Teensy and routed to Simulink for fault protection.

Figure 34 —a.) Electronic Speed Control (ESC) [41] b.) 90 A AttoPilot Voltage and
Current Sense Breakout Board [51], c.) lithium polymer battery [52]

Once all of these sensors were added successfully, completing the sensor suite for
a single arm of the copter, a second identical sensor suite was also installed on an adjacent

arm of the copter as shown in Figure 35. The Teensy on one arm is designated as a central

66

Teensy and is connected to the Simulink FP system on the Meego. A complete connection
diagram is shown in Appendix B. The Inter-Integrated Circuit (12C) protocol is used for
streaming data from each arm to the central Teensy. Although only two arms are initially
instrumented, the FalconViz team can duplicate the sensor suite for each arm and deploy

the system on their copters for future flights.

Figure 35 — Duplicate sensor suites installed on two adjacent UAV arms

The Simulink model for two arms, shown in Figure 36, is constructed by using a
state machine for each sensor reading on each arm, resulting in a bank of eight state
machines total, two each for acceleration, temperature, current, and voltage. All of these
sensor readings are fed to the central Teensy via 12C and then to the Meego via a USB
Serial connection. Each ASCII value for the sensor readings is decoded into numeric values
in MATLAB. Then, the accelerometer values are fed into the KNN algorithm and the
temperature, current, and voltage values are compared against minimum and maximum

values, based on the limits defined in Table 3.

67

Data Input from
Teensy via Serial

T
115200
B.nana,1

ASCI_Vals

Earlal Corfiguratian

Fault Detection
Function

]

Bank of FP
State Machines

1]

ul

FaulSsatusa,

ek
Caia
T
Stas ik
‘ el
Serial Roceive o

decodet 501 FMPLSECS

Lt

docodedSCI_MPLUSIS0

0i0

“altages (V)

L

CurrentB (A}

I
D ACCERA [4,5T) .
Pk AP » 1
VollFauks
dAocelB (xy.z) ——,
FirchDiidiezbiad
)
Tampd,
-y FasetF it e | . | . 1
L] Currss TarmpaF e Dete bed — !
AccB
Wi lAF arotiDtu wd l » "
TarpB = FasohbosParsislenos
|7 WolE CusdFaiDetased I
[= ‘CurFaults
E DutensThessheid gy iDatorminalion _ <ok o sechd
E_,—h- Taarrg s TarmpBF actDetec ted
I m: Vil BF et b f—— [» |
] Catrlelice CumBF il Ddus bed [——
= —
— Sl iy E'—P Fi S e [
= FaullDatarmination
|} EI—P Rasarh bosParsia ln o
AocFalie
F o Dutnc b
] E'_"“’“%’“‘"
E'—l- P bosPans nee
SR
Tempd {deg C) TempFauks
_—
ol s bl
Logical
El—b F Bty Opaeraior]
Voliages (W) 1)
D B—b i bosParsds en e |-
olFaiE L
Currarth (&) el Dhiias bind

FaulSiaiusg

Logical
Operaiorz

Pulse
Ganarator

Caia Type Comversion

uintg

Raie Trarsiiont

A

Raie Transtion

M

Data Output to
Teensy via Serial

Data Typa Comversian E

Cata COMM

Earlal Sand

1

1]
?

FRabe Transionz Swdich

Display

o s |
]

Figure 36 — Simulink model for UAV Nervous System on two arms with four sensor readings each

68

Table 3 — Input parameters for UAV Nervous System

Sensor Minimum Maximum Time to Time to
Reading Threshold Threshold Detect Resolve
Acceleration n/a n/a 0.025 sec 0.03 sec
(m/s?)

Temperature n/a 60 deg C 1.5sec 1.5sec
(deg C)

Voltage (V) 216V 252V 1.5sec 1.5sec

(6 cell*3.6 V) (6 cell*4.2 V)
Current (A) 1A 25A 2 sec 1.5sec

Although the state machine in Figure 29 is used in the UAV Nervous System, it
should be noted that for temperature, voltage, and current sensing a simple rule-based
paradigm (with persistence) is implemented through state machines for fault detection. The
acceleration detection method is a bit more complex because machine learning is used to
determine if a fault has occurred or not, but ultimately the fault detection threshold is based

on persistence for the outputs of the machine learning algorithm.

A series of additional test flights was completed to ensure that the upgraded UAV
Nervous System was working properly. These test flights were completed with one arm
first and then with both arms. Each of the thresholds for temperature, current, and voltage
were tested by adjusting them slightly above and below the nominal values for each sensor.
The acceleration detection was also tested, repeating the test shown in Figure 31. Because
the helicopter had been in a crash since the previous flight test, it was necessary to

rebalance the propellers as shown in Figure 37.

69

Figure 37 — Rebalancing UAV propellers using an iPhone accelerometer

3.7 Adaptation of Generic FDIR Architecture to UAV Nervous System

After the generic FDIR architecture described in Chapter 2 was created, the UAV
Nervous System case study was revisited and adjusted to match the generic architecture.
First, the generic functional state machine was adapted for the FalconViz UAV test flight,
as shown in Figure 38. Many of the states from the generic diagram were unnecessary
because of the relative simplicity of the UAV test flight. The Standby state in the bottom
left is the starting state and represents the copter sitting stationary on the lab bench at the
beginning of the test flight when the UAV Nervous System is activated and data recording
begins. When the copter is being carried outside (CarryingCopter=1), the Transfer
state begins. The Transfer state ends when the copter is set down on the ground outside
(ArriveAtStandoff=1), which begins the Piloted phase. During Standoff, the first
substate of the Piloted phase, the copter is sitting on the ground, waiting for the pilot’s

command to proceed. When the pilot begins throttling up the motors to launch the copter

70

(Liftoff=1), the NominalZone substate begins, indicating that the copter is flying.
When the copter lands and the motors are powered down (Landed=1), the active state
returns to Standoff. Note that no additional abort states are included in this functional state

machine because the standard abort procedure when a fault is detected is for the pilot to

land the copter.

/Piloted ™\
[Liftoff==1]
Standoff NominalZone
%Sitting on Ground: | %Nominal Region: Flying
%WaitToProceed
[Landed==1]
o v

[ArriveAtStandoff==1]

Transfer
%Carrying Copter by Hand

[CarryingCopter==1]

Standby
%Passively Safe; sitting in lab

Figure 38 — Functional state machine for FalconViz UAV test flight
Next, the generic diagnostic state machine was adapted for the UAV Nervous System
as shown in Figure 39. In this case, the trigger for fault detection (FaultDetected=1)
is set to the output of the machine learning algorithm for vibration detection. This is done
without regard to persistence, so whenever the machine learning algorithm indicates a fault

detection, the FaultDetected state and Diagnose substate become active. Because only one

71

fault could be caused by this particular detection, only one fault diagnosis substate is
present in the diagnostic state machine. The “Propeller Unbalanced” fault is diagnosed if
the fault detection trigger remains active for the “Time To Detect” of 0.025 sec from Table
3, and if the current state of the functional state machine is NominalZone (indicating the
copter is flying). This check is evaluated by the fault diagnosis routine. The routine then
sets the Faul tConfirmed1l variable to 1, causing the diagnostic state machine to enter
the RespondAl substate. The CorrectiveActionl variable is then set to 1, causing a
signal to be sent to the pilot to land the copter as described in previous sections. If the fault
detection is only intermittent, then fault diagnosis will be inconclusive. In either case, when
the fault detection flag from the machine learning algorithm is set to zero for the “Time to
Resolve” length of 0.03 sec the state machine will return its active state to

NoFaultDetected.

NoFaultDetected [FaultDetected==1 (FaultDetected
entry: Abort=0; S s
CorrectiveAction1=0;

[FaultDetec
&& after(R

==0 ...
werTime,sec))

/Diagnose M

W Faun M

Diagnose1

en: Diagnose1=1,

[FaultConfirmed1==1]

RespondA1

en: CorrectiveAction1=1;
Diagnose1=0;

\. J
- /

Figure 39 — Diagnostic state machine for UAV Nervous System

72

To demonstrate the modified FDIR architecture, recorded flight test data was
loaded from a data file and replayed in Simulink using the model shown in Figure 40. The
fault detection algorithm was kept unmodified from Figure 36 for one arm of the copter.
The functional and diagnostic state machines described above were added, and MATLAB
functions were written to calculate mode management inputs to the functional state
machine and fault diagnostic inputs to the diagnostic state machine. The bank of FP state
machines were kept but were used only to compare their output to the output of the new
architecture. An adapted flow chart showing the interactions of the various components of

the FDIR architecture for the UAV Nervous System is shown in Figure 41.

The recorded flight test data and FDIR architecture output are shown in Figure 42.
Note that this flight test data is similar but not exactly the same as the flight test data shown
in Figure 31; the flights were performed on different dates and at different stages of
development of the UAV Nervous System. The top three plots in Figure 41 show
accelerometer data and the bottom plot shows the FaultConfirmed1 signal output by
the diagnostic function in the FDIR Architecture. The data begins with the copter on the
lab bench in segment A and tape is placed on the propeller to unbalance it. The copter is
carried outside from the lab during segment B. The copter takes off and flies with an
unbalanced propeller in segment C. The FDIR architecture quickly detects the imbalance
and outputs a FaultConfirmed status of 1 at around 3 sec, shortly after segment C
begins. At the end of segment C the copter lands, and the FDIR architecture immediately
resets the fault confirmed status to 0. During segment D the copter is on the ground, and
the tape is removed to restore the propeller balance. Segment E shows balanced flight, and

the copter lands again at the end of segment E. During segment F, tape is added again while

73

Input from Recorded

Flight Test Data

Fault Detection

p Arcel Focel

Temp Temp_i

Volt feaddata Wolt_i

Vel Curr Curr i
FeadData

Curr

IEEE

Mode

Management

Function

Cumrhin

Bank of FP
State Machines

¥ FaultDetected

CurrFaultDetect

Function El-»{rauropmprbyss
ResoluticnPersistence
Accel(xy.z) AccFaull
| FaultDetected

Acc
Temp AccFaultDetec FaunPe tStatus
okt

C. . -
Gumr TempFaultDetact: ~ J
AccelDetectThreshaoid TempFault E
Temphlax FaultDetermination
VolthMax oltFaultDetect: FaultDetected FaultStatus
Wilthin
Currhax FaultPel ItStatus —

FaultDetermination

Y

)

Temp (deg C

o]

Waltage (V)

o]

Current (A)

LAy Mode Managamant

Accel Lifenff
CarryingCopter

Temp
‘ ArriveAtStandoff
t e ermuamsmndw

Landed

it

ResolutionPersistence

VoltFault

FaultDetected

Diagnostic
State Machine

-~

Y

e

ResolutionPersistence

=

CurrFault

-

Liftaff

Landed

A

State Machine

CarryingCopter D

ArrivestStandoff

ArriveAtStandby D

Functional

Flying

Fault Diagnosis/
Response
Function

DiagnoseResolve

;

FaultD:

FaultPersistence FaultConfimead1

FaultDetected

RecoverTime

— | FaultConfimmed1

.

N

FaultDetectedMods

()

Diagnosel

O

ComectiveActionl

A

ResolutionTime

J

LAY Functional State Maching

Flying DiagnoseResolve

)

UAY Diagnostic State Machine

FaultConfirmed1

»{Diagnoset C ma

1

Figure 40 — Simulink diagram for modified UAV Nervous System FDIR Architecture

74

Gl G

Legend
[] Systems
- Functions of
Control System

Hardware & Environment
Components

- GN&C Software
Components

- Fault & Mode

Software Components

System Under Control Control System

Vehicle State Estimates Guidance & Control Algorithms

Enviroment States

Environment Components
Mavigation Algorithms

Current Time
Wind/Temperature
/

Time Systems
Perturbations

Sensor Data Processing Position & Velocity Trajectory Guidance & Control

Attitude & Angular Velocity Attitude Guidance & Control

Translational Filters
Attitude Filters

Fault Protection
State Machine

Sensors/Data

UAV 6DOF Dynamics UAV 6DOF Dynamic States

Fault Detection

Fault Response

Send Signal to Pilot

Fault Detection Status
Fault Diagnosis Status

Inertial Position & Velocity
Attitude & Angular Velocity)

Translational Dynamics
Attitude Dynamics

Fault Detection Checks

Functional
State Machine

Vehicle Components Vehicle Component States Fault Diagnosis Mode Management

GN&C Sensors GN&C Sensor Outputs Fault Diagnosis Checks Vehicle Mode Commands
GN&C Actuators GN&C Actuator Inputs Vehicle Mode Status (For Functional State Machine)
Fault Protection Sensors FP Sensor Qutputs
(N J \ VAR |
Actuators/Commands

Figure 41 — Flow chart for UAV Nervous System FDIR Architecture

75

104 X Acceleration A

1 X
T T T T T T
A B C D E F G H
05 | -
)
E o ﬂmww \
-05 | -
-1 | | | | | |
0 2 4 8 10 12 14 »
Sighulink Model Time (sec)
104 Y Acceleration A
1 X
T T T T T T
05 | -
=)
£ O e
8
<
-05 | -
-1 | | | | | |
0 2 4 8 10 12 14 il 3
Sifhulink Model Time (sec)
4 Z Acceleration A
1 ><10
T T T T T T
05 | -
- |
S 0L a =
__/ h‘\——e—— ()
8
< -05 | -
-1 | | | | | |
0 2 4 8 10 12 14 »
Sihulink Model Time (sec)
Fault Confijmed}(0=Balanced, 1=Unbalghced)
N T T T T T T
1]
=
o
(%]
3
IS
i
0
| | | | | |
0 2 4 6 8 10 12 14 16

Simulink Model Time (sec)

Figure 42 — Results of test flight replay with UAV Nervous System FDIR Architecture

76

the copter is on the ground. Unbalanced flight resumes during segment G, and between 11
and 12 sec the FDIR architecture quickly detects the imbalance and outputs a
FaultConfTirmed status of 1. The copter lands at the end of segment G, and the FDIR
architecture immediately resets the Fau I tConfi rmed status to 0. Note that inaccuracies
in the fault status of Figure 42 are much less than in the flight test shown in Figure 31 using
the previous iteration of the UAV Nervous System. Although the new system is operating
on similar flight data to the previous system, the improved performance is attributable to
the addition of a state machine monitoring the state of the UAV. By monitoring the ESC
current, the updated architecture is able to determine whether the UAV is flying or not and
takes this into account when diagnosing whether a fault is present. For example, in segment
D of Figure 31 the previous system took several seconds to correctly report balanced flight,

but segments D and E of Figure 42 do not exhibit the same issue.

The UAV Nervous System FDIR Architecture has been developed and tested for a
terrestrial rotary wing UAV. The Nervous System utilizes a suite of sensors for two arms,
each containing an accelerometer, a temperature sensor, and a voltage/current sensor. The
system proof-of-concept has been shown by V&V through flight testing. The generic FDIR
architecture has been successfully adapted for use with the UAV Nervous System and has
been demonstrated in MATLAB/Simulink using recorded flight test data. Additional

suggestions for future studies are described in Chapter 5.

77

CHAPTER 4. SPACE APPLICATION: MARS SAMPLE RETURN
RENDEZVOUS AND ORBITING SAMPLE CAPTURE

A second use of the state machine FDIR architecture has been developed for an
automated relative ProxOps application. This work supports development of a Mars
Sample Return (MSR) mission. The process for development of requirements of the MSR
fault protection behavior was published at the 68" International Astronautical Congress in

Adelaide, Australia [53] and the Symposium on Space Innovations in Atlanta, GA [54].

4.1 Overview of Relative Proximity Operations

Relative ProxOps have been performed in Earth orbit and cis-lunar space since the
early years of the space age. There is an increased need for autonomous relative ProxOps
in such applications as rendezvous and docking for human space exploration and sample
return missions, satellite servicing and on-orbit inspection, construction, and debris
mitigation. Deep space proximity operations applications require advanced autonomy and
fault protection due to the significant round-trip light time from Earth. Many autonomous
ProxOps systems have been developed and proven in flight for large and complex systems
[55-57] and are increasingly being used with small satellites [58,59], including the Prox-1
mission being developed at Georgia Tech [15,31]. One researcher has conducted a detailed
survey of the history of relative ProxOps and describes many other recent missions [60].
Development of spacecraft GN&C software architectures often involves bringing together
individually developed algorithms and evaluating them using simulation and Software-in-
the-Loop (SITL) or Processor-in-the-Loop (PITL) testing [61]. The process of spacecraft
GN&C algorithm development and integration using model-based design in Simulink and

later autocoding into FSW has been exercised by the Orion spacecraft team at NASA’s

78

Johnson Space Center [18]. Other missions have used selective autocoding of GN&C

algorithms into FSW [62-64].

4.2 Overview of Mars Sample Return Mission Concept

The top priority stated in the current planetary science decadal survey is to perform
a MSR mission [65]. NASA, JPL, and the European Space Agency are in the process of
formulating a series of missions that will culminate in the return of scientifically selected
Mars samples to Earth [66]. In one mission concept, a Mars orbiter would rendezvous with
a sample canister launched from the surface and capture it for return to Earth [67]. The last
stage of this rendezvous operation, including capture, must be autonomous. During this

autonomous phase, fault protection should be used to ensure mission success [68].

In the current MSR mission concept, the Mars 2020 rover will collect soil and rock
samples and cache them on the Martian surface. They will then be collected by a
subsequent “fetch” rover (or other vehicle) and inserted into an Orbiting Sample container
(OS). The OS will be placed on a Mars Ascent Vehicle (MAV) and launched into Mars
orbit, as shown in Figure 43a. Once the MAV reaches orbit, it will release the OS into a
passive near-circular orbit. The Sample Return Orbiter (SRO) will perform ground-in-the-
loop rendezvous with the OS, as shown in Figure 43b, followed by autonomous approach
and capture operations (also known as “terminal rendezvous and capture”) to collect the
0S, as shown in Figure 43c [67]. The final approach will encompass approximately the
last 100 meters of rendezvous and must be autonomous due to communication time delays
for signals to travel over the large distance between Earth and Mars (between 4 and 24

minutes) [69]. Finally, the samples would be returned to Earth or cis-lunar space for

79

recovery and laboratory study. The GN&C process for the terminal rendezvous and capture
phase is complex, with a number of risk areas that could result in failure to capture the OS.
This mission-critical autonomous activity presents the need for a comprehensive FP
approach to ensure that operations proceed under nominal conditions, take action to address

certain fault conditions, or abort the capture phase.

Ground-in-the-Loop
Samples Initial Rendezvous
Launched from
Mars surface

Fully Autonomous
Terminal
Rendezvous &
Capture

Figure 43 — Mars Sample Return rendezvous concept [53]

4.3 Reference Frame and Relative Orbital Element Definitions

This study makes use of several inertial and rotating reference frames, as well as
dynamical parameters called relative orbital elements that are useful for visualizing the
relative orbit geometry. Background information on coordinate systems and relative orbital

elements is presented in this section.

Three primary reference frames are utilized in this chapter for describing orbit and

attitude dynamics. The Mars International Astronomical Union (Mars IAU) reference

80

frame is an inertial frame centered at Mars analogous to the Earth-Centered Inertial
reference frame. This frame is defined by NASA’s Navigation and Ancillary Information
Facility at JPL for the Spacecraft, Planet, Instrument, Orientation, & Events (SPICE)

ephemeris toolkit [70]:

Mars Mean Equator and 1AU vector of J2000. The IAU-vector at Mars is the point
on the mean equator of Mars where the equator ascends through the earth mean

equator. This vector is the cross product of Earth mean north with Mars mean north.

The Local Vertical Local Horizontal (LVVLH) reference frame is used to describe
relative orbit dynamics. The LVLH frame is an orbit-defined frame whose origin typically
lies at the center of mass of the target satellite with the three axes defined by the position
vector (radial), velocity vector (along-track) and their cross product (cross-track). Figure
44 shows an illustration of this coordinate frame. Note that the LVLH frame is constantly

translating and rotating as the OS moves in its orbit about Mars.

For the MSR mission, it is assumed that no a priori knowledge of the OS inertial
position and velocity is known. Thus, the origin of the LVLH frame is located at the OS’s
estimated position relative to the SRO, but the orientation of the LVLH frame is based on
the SRO’s inertial position. As a result, the orientation of the basis vectors {R,S, W} are

defined by Eq. (1), where rs, and vy, are the positon and velocity vectors of the SRO in

the Mars IAU frame and the * superscript represents the skew function. When the skew

81

Figure 44 — Visual representation of the LVLH frame [15]

function is applied to a vector, a skew symmetric matrix is created which, when multiplied
with another vector, produces the same result as a cross product between the two vectors.
The following assumptions are applied in calculation of the LVLH frame unit vectors: the
distance between the SRO and OS is small compared with the OS orbit radius, and the

inertial orbital velocity of the OS is approximately equal to the orbital velocity of the SRO.

D . _Tsro W . _TSroVsro S = W*R (1)

" lIrsroll T [rovseol]

The Body-Fixed Frame is a coordinate frame that is fixed with respect to the SRO.

It is centered at the SRO center of mass with the three basis vectors {z,, ,, 2,} defined such
that 9, is oriented along the imager boresight, 2, is normal to the bottom plate and oriented
away from the body of the satellite, and %, is defined by the right hand rule. The main
purpose of this coordinate frame is to determine the attitude and angular velocity of the
SRO relative to the Mars IAU Frame. Since the SRO does not yet have a defined shape,
Figure 45 shows the orientation of the body-fixed frame with respect to the Prox-1

spacecraft as an example.

82

Figure 45 — Prox-1 Body-Fixed Frame orientation [15]

Relative orbital elements (ROESs) describe the relative motion of one object with
respect to another in orbit, in an analogous way to the conventional orbital elements used
to describe a two-body orbit [60]. ROEs were developed based on the Clohessy-Wiltshire
model and rely on the corresponding assumptions of a circular target spacecraft orbit and
small relative distance to the target. The ROEs described in Cartesian LVLH coordinates,
where the x-axis is represented by R, the y-axis is represented by S, and the z-axis is
represented by W, are derived in detail in [71] and are given by Egs. 2-7, where n is the
mean motion of the target spacecraft, t, is a reference time, t is the evaluation time,
Xo, Yo, Zo are the initial LVLH position states at t,, and x,, ¥,, Z, are the initial velocity

states at ¢,.

2y0
= Ao @
2% ,
Yr=Yo— TO — (6nxq + 370) (t — to) ©)

83

e Jlsor 2y

2x 4y
E, = atan2 (—0, 6x, + ﬂ) +n(t —ty) (5)

n n

. 2

Zg

A= |z2+ (7) (6)
Zy

Y = atan2 <Zo,g) +n(t —ty) (7)

The orbit of the chaser spacecraft about the target is a two-by-one ellipse about the

instantaneous center of motion (x,., y,-) with a semi-major axis of a,., a semi-minor axis of
1
5 r, and a cross-track amplitude of A,. E,. is the relative eccentric anomaly of the ellipse,

and v is the cross-track phase angle. Figure 46 shows this relative orbit geometry, and Egs.

8-13 describe the LVLH Cartesian position and velocity state in terms of ROEs.

X =X, — %ar cos(E,) (8)

y = yr + a,sin(E;) 9)

z = A, sin(y) (10)

X = %ar sin(E,.) (11)

y = —5nx +nay cos(Ey) (12)
z =nd, cos(¥) (13)

84

Ly
%v

a) Relative Geometry: X — y b) Relative Geometry: X — 2

Figure 46 — Relative orbit geometry

4.4 Rendezvous & Capture Concept of Operations

In collaboration with the MSR rendezvous team at JPL, a detailed process has been
defined for the overall MSR rendezvous and capture concept of operations. This section
presents the detailed process, with particular attention to autonomous terminal rendezvous.
A description of rendezvous maneuvers using ROEs and example trajectories are also

presented. An overview of the full process is shown in Figure 47.

85

Overall Rendezvous & Capture Process

Phase 0: MAY Launch & OS Release

Phase 1: Initial Acquisition and Orbit Matching
* Phase 1A: Initial Acquisition
® Phase 1B: Maneuver & Observe

Phase 2: Inspection & Approach

® Phase 2A: Large Hop
* Phase 2B: Smaller Hops
* Phase 2C: Standby

Phase 3: Terminal Rendezvous & Capture (Autonomous)

* Phase 3A: Final Hop
* Phase 3B: Closed-Loop Approach
* Phase 3C: Capture

Figure 47 — Overall rendezvous and capture process

4.4.1 Initial Rendezvous Process

Phase 0 of the rendezvous process involves launching the MAV from the surface
of Mars and releasing the OS into orbit around Mars. Phase 1 is initial acquisition and orbit
matching, in which the SRO first acquires images of the OS from thousands of kilometers
away. Relative orbit determination is performed by engineers on the ground, and once a
reliable relative orbit estimate is obtained maneuvers are performed to begin matching the
SRO orbit to within about 10 km of the OS. During Phase 2, the OS is continually inspected
by the SRO to obtain a refined relative orbit estimate with ground-in-the-loop navigation
solutions. Approach maneuvers or “hops” are also performed during Phase 2 to gradually
move the SRO closer to the OS. This study begins in Phase 2C, after the SRO is placed in
a passively safe “standby” orbit within 100 m of the OS. This orbit is an inclined “safety
ellipse” in either a leading or trailing orbit relative to the OS. As shown in Figure 48, the
relative orbit has an out-of-plane cross-track component. If there is any altitude difference

between the SRO’s relative center of motion and the OS, the relative orbit of the SRO may

86

drift along-track toward or away from the OS. There is no risk of collision if drift occurs

because the SRO’s relative orbit is not in-plane with the OS.

a.) Radial view +Cross-Track

L0S ~
‘Along-Track

SRO Along-track drift e

from altitude error

{Cross-Track

b.) Along-Track view

Figure 48 — Illustration of passively safe standby trajectory (not to scale)
a.) Radial view (looking towards Mars) b.) Along-track view (along OS velocity vector)

4.4.2 Autonomous Terminal Rendezvous & Capture Process

The terminal rendezvous and capture process in Phase 3 was developed into a
functional state machine, shown in Figure 49. This state machine is based on the generic
functional state machine and is used by the fault protection system to determine how to
respond to various faults as they are detected. This section walks through each step of this
process and explains how the state machine operates. Two types of approach strategies are
currently under consideration for the terminal rendezvous phase. The first is a forced
motion approach, which involves approaching the target using autonomous closed-loop

control either via the along-track direction (v-bar) [56], radial direction (r-bar) [55], or

87

Phase3 B_ClosedLoopApproach N\

[EnterZone2==1] [EnterZone3==1]
Phase3B_1_Standoff Phase3B_3_ PassiveZone Phase3B_4_ActiveZone Phase3B_5_InterceptZone
exit: ArmROCS=1; %Zone 1 %Zone 2 %Zone 3
% ~50 m % Passive Miss Region 1————={% Active Abort Region [2 =| %Unavoidable Intercept
7 [Sunlit0S==1 &4 ...
CommPossible==1 && ... 2 3 1 4— ’ 3
OSInView_AllSensors==1 && ... [Abort==1] \ [OSEnterCapturevmmj\
_ FaultDetectedMode==0] | J
[ggi?tteizcu?aﬁtt%rlj\éosli?)?::o -/ TOSEnterCaptureVolume==0 ... [OSEnterCaptureVolume==1]
[ArereAtStandOﬂ::1] [StopManeuverszz’]] i ' '&' && aﬂer(WaltTlme.SEC)] /Phaé.ESC_Capture \
(LocateOS N [
%Do not slew or

ATl PassiveAbort % maneuver until 0S PI'I_a.seSC_Z_OS_Entry

o = - = 11 exit: CloseDoor=1;

%eNote this is an optional step % has been located N]
[OSConfirmed==0 & ...| | %OS Passing Thru
after(WaitTime,sec)] %o Laser Curtain

; 2
[OSConfirmed==1]
[ArriveAtStandby==1]

GroundCommand==1 .. _ _/ [DoorClosed==1 && ... Phase3C_6_0SCaptured

[;

&8& FaultDetectedMode==0] 1 2 OSConfirmed==1] %0S Confirmed Inside

[OS%catedOutside::ﬂ —_— 1
Phase2C_PassiveStandby - \
%Passively Safe ActiveAbort
[ArriveAtStandby==1] L S
L&

Figure 49 — State machine for rendezvous and capture process

88

some hybrid between the two directions. The second strategy is a ballistic approach, which
involves performing a single maneuver to place the spacecraft on a ballistic collision
course. The ballistic approach is computationally simpler but has fewer safety
considerations. This study assumes a forced motion v-bar approach, but differences
between the forced motion and ballistic approach will be mentioned in the description of

the rendezvous process.

Fault responses are calibrated based on the relative risk to the mission in each sub-
phase. The state machine in Figure 49 represents both nominal and off-nominal processes.
The flow of the nominal process begins in the bottom left corner and continues upwards
around the border of the chart to the bottom right. Off-nominal processes are shown in the

middle of the chart.

4.4.2.1 Phase 2C: Passive Standby

The SRO begins in a passively safe standby orbit at the end of the ground-in-the-
loop rendezvous process, as described in Section 4.4.1; this is the state in the bottom left
of Figure 49. The SRO can remain in Phase 2C for an extended period of time if necessary.
A ground command must be provided (GroundCommand=1) to initiate the autonomous
sequence (Phase 3). Even when a ground command is provided, the autonomous sequence

will not initiate if a fault has been detected (Faul tDetectedMode=1).

4.4.2.2 Phase 3A: Final Hop

If a forced motion approach strategy is chosen, the autonomous sequence would

include a Final Planar Hop from the out-of-plane passively safe trajectory to the plane of

89

the terminal approach corridor, removing the cross-track motion provided by the safety
ellipse while also moving closer to the target in the along-track direction. The planar hop
ends when the SRO arrives at a standoff position (ArriveAtStandoff=1) just before
the start of the final approach. Note that the Final Hop phase is not necessary if a ballistic

approach strategy is chosen.

4.4.2.3 Phase 3B-1: Standoff

The closed-loop approach sequence (Phase 3B) is shown in Figure 50. This phase
begins with the SRO holding position in a standoff tens of meters away from the OS on the
along-track axis. When proper lighting (Sunl1t0S=1) and communication conditions
(Earth not occulted by Mars, CommPossible=1) are achieved and the OS has been
acquired by all rendezvous sensors that can see it at that range
(OSInView_AllSensors=1), the Rendezvous OS Capture System (ROCS) capture
mechanism is armed (ArmROCS=1) and the approach begins. Even if all of these
conditions are met, the final approach will not initiate if a fault has been detected
(FaultDetectedMode=1). Although real-time two-way communication is not possible
during autonomous terminal approach and capture (Phase 3) because of communication
time delays, the communication condition is imposed to allow the ground team to monitor

autonomous operations by streaming telemetry and possibly live video to the ground.

90

Phase 3B: Closed-Loop Approach Sequence

Duration: Sunlit portion of an orbit (approx. 1 hr)

Event 3B-1: Hold position for acceptable lighting/comm conditions
Event 3B-2: Confirm OS acquired by all sensors

Event 3B-3: Zone 1 — Passive Miss Region

Event 3B-4: Zone 2 — Active Abort Region

Event 3B-5: Zone 3 — Unavoidable Intercept Region

Event 3B-6: Confirm final capture conditions

Figure 50 — Closed-Loop Approach Sequence

4.4.2.4 Phase 3B-3: Zone 1 — Passive Miss Region

“Zones of Criticality” have been specified for the final approach after leaving the
standoff position. The zones shown in Figure 51 are used to alter fault protection behavior
based on distance to the target and time to intercept. Durations and distances listed are
dependent on the rendezvous approach strategy and specific parameters selected, so the
transition conditions between these zones may vary, but the criticality (and thus impact on
FP behavior) of the zones will endure regardless of the implementation selected. Also note
that Zone 1 (Passive Miss Region) does not exist if a ballistic terminal approach is selected.
The closest approach distance and minimum velocity used to calculate the zone transitions
are computed by propagating the ROEs after each maneuver using Clohessey-Wiltshire

assumptions and then converting to Cartesian coordinates.

91

Zone 2
Active Abort Region

If spacecraft stops
maneuvers, it will intercept
the OS; an abort will avoid
intercept

Closest approach distance
< Capture distance

Figure 51 — Notional “zones of criticality”

Zone 1 is called the “passive miss region”. During this zone the SRO must perform
regular maneuvers to remain on an intercept course with the OS. If the SRO stops

maneuvering (a passive abort), then it will pass by the OS harmlessly.

4.42.5 Passive Abort

If at any point in the Passive Miss Region something goes wrong, the system simply
stops maneuvers (StopManuevers=1) and enters Passive Abort, allowing the SRO to
drift away from the OS. Once the SRO has reached a safe distance from the OS
(ArriveAtStandby=1), it returns to the out-of-plane Passive Standby trajectory and

awaits ground commands before resuming autonomous operations.

4.4.2.6 Phase 3B-4: Zone 2 — Active Abort Region

If no problems occur during the Passive Miss Region, the system will enter the
“Active Abort Region” when the minimum propagated range from the SRO to the OS

becomes less than the defined capture distance from the SRO’s center of mass. During this

92

zone, if the SRO stops maneuvers it will intercept the OS, but if an active abort maneuver

is performed intercept can be avoided.

4.4.2.7 Active Abort

If at any point during the Active Abort Region something goes wrong, an abort can
be commanded (Abort=1) to return to Passive Standby via the Active Abort mode. The
active abort maneuver immediately adds out-of-plane motion and moves away from the
target to avoid an intercept. It then allows the SRO to drift slowly away from OS until it

returns to the out-of-plane Passive Standby trajectory (ArriveAtStandby=1).

4.4.2.8 Phase 3B-5: Zone 3 — Unavoidable Intercept Region

Finally, just before intercept the system enters the third zone, which is called the
“unavoidable intercept region”. The condition to enter Zone 3 is that the abort thrust
required must be higher than the SRO’s propulsion system can generate, in addition to the
minimum propagated range from the SRO to the OS being less than the defined capture
distance from the SRO’s center of mass. During this zone, the SRO can no longer avoid
intercepting the OS even if an abort maneuver is performed. It must either capture the OS,
or it will likely collide. Note that Zone 3 may be very short (on the order of seconds) if the

SRO has a robust thrust capability.

4.4.29 LocateOS

If capture is unsuccessful and the OS does not enter the capture volume
(OSEnterCaptureVolume=1) within the specified WaitTime, the system enters the

“LocateOS” state. It will attempt to determine where the OS s located

93

(OSLocatedOutside=1) before performing any slew or thrust maneuvers. Once the

OS is found (OSConfirmed=1), an abort maneuver is commanded (Abort=1).

4.4.2.10 Phase 3C: Capture

If the OS enters the capture volume successfully, the capture process (Phase 3C)
begins. This process is shown in Figure 52. The OS passes by a sensor such as a laser
curtain, which indicates that it is entering the capture volume. Once the OS has cleared the
laser curtain and is fully inside the capture volume, a command is sent to close to capture
door (CloseDoor=1). A confirmation sensor then verifies that the OS is inside
(OSConfirmed=1). If the OS cannot be confirmed inside the capture volume within the
specified Wai tTime after the door has closed, the system enters the LocateOS state and

commands an abort (Abort=1).

Phase 3C: OS Capture Process

Duration: Approx. 10 sec
Relative motion: <5 cm/s relative velocity, <10 cm lateral offset, <3 RPM

Event 3C-1: OS Begins Entering Capture Volume

Event 3C-2: Initial Laser Curtain Detection

Event 3C-3: OS Fully Inside Capture Volume

Event 3C-4: OS Clears Laser Curtain

Event 3C-5: Close Capture Door

Event 3C-6: Confirm Capture Complete

Figure 52 — OS Capture Process

94

4.4.3 Description of Terminal Rendezvous Maneuvers

While there are many different approach schemes that can be used for terminal
rendezvous, a v-bar approach has been selected to create scenarios to test the FP system.
This approach begins with the SRO ahead of the OS in the same orbit. The semi-major axis
of the SRO’s orbit is then slightly reduced so that the two spacecraft will drift apart further
if a maneuver cannot be performed. Reducing the semi-major axis results in an eccentricity
change, creating the appearance of “hops” in the LVLH plane. The SRO then executes a
maneuver in the radial direction to begin another hop every time it crosses the orbit of the
OS. ROEs are used to visualize and design the approach and to provide an initial estimate

of the velocity change (AV) required for each maneuver.

The AV required to cancel out the cross-track velocity is found with the following
procedure. First, z is set to zero in EqQ. 10, the cross track phase angle ¥ is obtained, and
this value and the current Cartesian LVVLH state are substituted into Eq. 7 to obtain the time
of xy-plane crossing. The AV applied at this time is the negative (-) of Eq. 13. This
maneuver marks the beginning of the Final Hop. At the end of the Final Hop, a “hold
position” maneuver is performed to hold the relative position constant. In this maneuver,
all relative velocity is cancelled out when the chaser crosses the LVLH x-axis. At any time,
the relative drift of the spacecraft in the along-track direction can be stopped by setting x,
to zero (giving both spacecraft the same semi-major axis) and solving Eq. 2 for y,. This is

known as a “freeze drift” maneuver.

When defining the v-bar approach maneuvers, ROEs are helpful in describing the

size of each hop. The ROE approach parameters x, q,,, and a,. 4,,,, completely describe the

95

distance that will be traveled in each hop, the time each hop will take, and the rate at which
the along-track center of motion of the SRO will move away from the OS in the event of a
passive abort. The time required for each hop, At, is given in Eqg. 14. This equation is
obtained by setting Eq. 8 to zero and substituting the chosen values of x;. 4., and a; gpp,.
The along-track distance traveled in each hop, Ay, is given in Eq. 16. This equation is
obtained by substituting Eq. 14 into Eq. 15 then substituting the result into Eq. 9. Eq. 15 is

a redefinition of Eq. 3 in terms of ROESs rather than Cartesian coordinates.

2 2x

At = — <T[— acos <ﬂ>> (14)
n Ar,app

3

Yr =Yrg — Enxr,app (t— tO) (15)

2x 2x
Ay = —3%app (n — acos <ﬂ>> — 2@y gpproach SN (acos <ﬂ>> (16)

ar,app ar,app

4.4.4 Example Mission Scenarios

Plots of example trajectories are shown in this section to illustrate a nominal
terminal rendezvous approach, a passive abort scenario, and an active abort scenario. These
plots have been generated by MATLAB code assuming linear relative dynamics and
impulsive AV maneuvers. For each scenario, an xy-projection of the trajectory, a three-
dimensional (3D) view, and time histories of the relative position and velocity are shown.
Impulsive maneuvers are shown in the xy-projection and the 3D view as red vectors
indicating location, AV direction, and AV magnitude. Note that AV magnitudes are scaled
automatically in each plot by MATLAB'’s quiver3 function for visibility, so they only have
meaning relative to one another in the same plot and their exact magnitudes cannot be read

directly from an individual plot or compared directly with other plots. Red diamonds

96

indicate the location of maneuvers in the time history plots. Impulsive maneuvers are

represented as discontinuities in the velocity time history plot.

The SRO initial orbit conditions for all scenarios are expressed in terms of ROEs.
The conditions are given by setting x,- to 0 m, y,. to 50 m, a,- to 20 m, 4, to 10 m, E, to
zero, and 1 to zero. For the v-bar approach, X, qpproacn 1S S€t 10 -0.5 m and a, gpproach IS
set to 4 m. These parameters result in a At of 4,251 sec (70.85 min) and a Ay of -10.48 m

per hop, with the negative indicating a decreasing y, with each hop.

4.4.4.1 Nominal Approach Trajectory

A nominal approach trajectory is shown in Figures 53-56 and involves the
following phases. First, out-of-plane natural motion occurs in the passively safe standby
trajectory before any control is activated; this is the blue portion of the trajectory in the
plots. Once trajectory control is activated (at the start of the black portion of the trajectory),
the controller allows the SRO to continue in natural motion until the xy-plane is reached.
At this point, a planar hop maneuver is commanded to remove all out-of-plane motion and
the red portion of the trajectory begins. The controller allows the SRO to continue coasting
until the along-track axis is reached. At this point, a hold position maneuver is commanded
to hold the SRO at a fixed relative position. A small maneuver is commanded to begin the
v-bar approach (blue portion of the trajectory), and subsequent hops are performed until
the SRO is near the OS. At this point, the green portion of the trajectory begins and the
controller allows the SRO to coast until it reaches the point of closest approach (the red x)

at a range of 1.08 m, where another hold position maneuver is performed to represent OS

97

x (Radial) [m]

25

20

15

10

-10

-15

-20

-25

capture. This final maneuver is for illustration purposes only and may not be necessary to

capture the OS dynamically. Detailed capture dynamics are not simulated.

Natural Motion (out-of-plane)

Preparation for Planar Hop

Preparation for Hold Position
V-Bar Approach
Preparation for Hold Position

X SRO Initial Position

(@) OS Position
X Closest Approach

— = Delta-V Locations (magnitude & direction)

.

y (Along Track) [m]

10 0

Figure 53 — Relative orbit xy-projection (LVVLH) for nominal trajectory

z (Cross Track) [m]

Natural Motion (out-of-plane)
Preparation for Planar Hop
— Preparation for Hold Position
V-Bar Approach
. Preparation for Hold Position
e SRO Initial Position
O OS Position
X

30 Closest Approach

— = Delta-V Locations (magnitude & direction)

25

20

15

10

-10

-15

-20

10 x (Radial) [m]
y (Along Track) [m] 0

Figure 54 — Relative orbit three dimensional view (LVVLH) for nominal trajectory

99

Relative Position [m]

80

[all colors] x (Radial)
[all colors] y (Along Track)

{1 T e [all colors] z (Cross Track)
""""" [all colors] Range
[all styles] Matural Motion (out-of-plane)
[all styles] Preparation for Planar Hop
60 [all styles] Preparation for Hold Position
[all styles] V-Bar Approach
[all styles] Preparation for Hold Position
50 ¥ SRO Initial Position
\ ¥ Position at Closest Approach
i & Delta-V Locations
1
40 - 'l\
30 \0
&
2001
<
10 ; =, ; 28
kY 4
I iy \ ©
! fo \
o [/ o 0 o o —— %
!
!
i/
p ke I I I I I I |
0 0.5 1 1.5 2 25 3 3.5
Time (sec) x10%

Figure 55 — Relative position time history (LVLH) for nominal trajectory

100

Relative Velocity [m/s]

0.02

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

— — — [all colors] x (Radial)

[all colors] y (Along Track)

————— [all colors] z (Cross Track)

[all styles] Natural Motion (out-of-plane)

[all styles] Preparation for Planar Hop

[all styles] Preparation for Hold Position
[all styles] V-Bar Approach

[all styles] Preparation for Hold Position
X SRO Initial Velocity

X

Velocity at Closest Approach
{> Delta-V Locations

¢ 9 ¢ ¢ % x
% ¢ O ¢ %
| | | | | | |
0.5 1 15 2 2.5 3 35
Time (sec) 10 4

Figure 56 — Relative velocity time history (LVLH) for nominal trajectory

4.4.42 Passive Abort Trajectory

the nominal approach until the passive abort occurs in the green portion of the trajectory.

101

The passive abort trajectory is shown in Figures 57-60. This scenario is identical to

Assuming a fault has been detected, no additional maneuvers are performed, and the SRO
passes through the point of closest approach at 1.15 m and does not perform a hold position
maneuver. It simply continues in natural motion, which causes it to drift back away from

the OS in the negative along-track direction until it reaches the standby distance of 50 m.

At this point, a safety ellipse maneuver is performed (magenta portion of the trajectory) to
inject out-of-plane cross-track motion. Finally, a freeze drift maneuver is performed in the

yellow portion of the trajectory to eliminate along-track drift of the out-of-plane passively

x (Radial) [m]

25

20

15

10

-10

-15

-20

-25

safe standby ellipse.

Natural Motion (out-of-plane)

Preparation for Planar Hop

Preparation for Hold Position

V-Bar Approach
Passive Abort

Safety Ellipse (out-of-plane)

Freeze Drift (out-of-plane)
X SRO Initial Position
O OS Position
X Closest Approach
— = Delta-V Locations (magnitude & direction)

| | | | |

x O

60

50 40 30 20 10

y (Along Track) [m]

Figure 57 — Relative orbit xy-projection (LVLH) for passive abort

102

z (Cross Track) [m]

25

20

15

10

-10

-15

-20

-25

/
30 /
20

10
y (Along Track) [m]

Natural Motion (out-of-plane)

Preparation for Planar Hop

Preparation for Hold Position
V-Bar Approach
Passive Abort

Safety Ellipse (out-of-plane)
Freeze Drift (out-of-plane)
X SRO Initial Position

() OS Position

X Closest Approach

— = Delta-V Locations (magnitude & direction)

20

x (Radial) [m]

Figure 58 — Relative orbit three dimensional view (LVLH) for passive abort

103

BO
— — —|all colors] x (Radial)
[all colors] y (Along Track)
70 _I'(————— |all colors] z (Cross Track)
""""" [all colors] Range
[all styles] Matural Motion {out-of-plane)
[all styles] Preparation for Planar Hop
60 [all styles] Preparation for Hold Pasition
[all styles] V-Bar Approach 4
[all styles] Passive Abort i
[all styles] Safety Ellipse (out-of-plane) f {P Ji ll
50 % [all styles] Freeze Drift i T
] X SRO Initial Position Voo
t ¥ Position at Closest Approach 1 [
l O Delta-V Locations Vo
£ 4 | e
= l S
= | I
i=l |] |
£ \ b
g o & ll j l.
@ b t
= .| I
= b f
: FER
2D B I- II
]
Ly
10 —f\Q &,
; § e v
[Yo e !
1 Y R |
u&ffoeooooﬁ, SRS
. | |
|I I' I_ N ! !,
{ - |
| v o
10 .
20 i i i | i
0 2 4 6 10 12
Time (sec) x10*

104

Figure 59 — Relative position time history (LVLH) for passive abort

Relative Velocity [m/s]

— — —|all colors] x (Radial)
0.02 [all colors] y (Along Track)
————— [all colors] z (Cross Track) .
[all styles] Matural Mation (out-of-plane) il
[all styles] Preparation for Planar Hop | I
0.015 [all styles] Preparation for Hold Pasition i |
[all styles] \-Bar Approach | |
[all styles] Passive Abort |
[all styles] Safety Ellipse (out-of-plane) | |
0.01 [all styles] Freeze Drift {out-of-plane) |
1 * SRO Initial Velocity s |I
i i % Velocity at Closest Approach It |I' i 1 \
1 b ¢ Delta-V Locations !i|= |: i
0.005 [l | el i
J | At l I I
Y g
| |) |
| -'.-q}'hg|1|
i I
0} 49 0 9 0 0'x 38111,
i'.lcom‘;x --;||I'*'
1 &) |
| itl i
-0.005 1l SRR S
b S
i e
0.01F | [| ¢
| |
| I || || |
0.015 - il \ \
&
0.02 | I I I | i
0 2 4 6 8 10 12
Time (sec) «10%

Figure 60 — Relative velocity time history (LVLH) for passive abort

4.4.43 Active Abort Trajectory

The active abort trajectory is shown in Figures 61-65. Figure 63 shows an additional
3D view to more clearly illustrate the active abort. This scenario is identical to the nominal
approach until the active abort occurs in the green portion of the trajectory. Assuming a
fault has been detected, a maneuver is performed to inject out-of-plane cross-track motion.

This location becomes the point of closest approach at a range of 6.92 m. During the

105

x (Radial) [m]

-40 |-

magenta portion of the trajectory, natural motion causes the out-of-plane ellipse to drift
back away from the target in the negative along-track direction until it reaches the standby
distance of 50 m from the OS. Finally, a freeze drift maneuver is performed in the yellow

portion of the trajectory to eliminate along-track drift of the standby ellipse.

40 |-

Natural Motion (out-of-plane)

Preparation for Planar Hop

Preparation for Hold Position

30 | V-Bar Approach
Active Abort (out-of-plane)

Natural Motion (out-of-plane)

Freeze Dirift (out-of-plane)
20 [X SRO Initial Position

(@) OS Position
X

Closest Approach

— = Delta-V Locations (magnitude & direction)

-20 |-

-30 |

| | | | | | | | | |
60 50 40 30 20 10 0 -10 -20 -30

y (Along Track) [m]

Figure 61 — Relative orbit xy-projection (LVLH) for active abort

106

z (Cross Track) [m]

40

30

20

10

-10

-20

-30

-40

Natural Motion (out-of-plane)

Preparation for Planar Hop

Preparation for Hold Position

V-Bar Approach

Active Abort (out-of-plane)
Natural Motion (out-of-plane)
Freeze Drift (out-of-plane)

X SRO Initial Position

(@) OS Position

X Closest Approach

— = Delta-V Locations (magnitude & direction)

y (Along Track) [m] -40

x (Radial) [m]

Figure 62 — Relative orbit three dimensional view (LVLH) for active abort

107

40

30

20

10

-10

z (Cross Track) [m]

-20

-30

-40

y (Along Track) [m]

Natural Motion (out-of-plane)

Preparation for Planar Hop
Preparation for Hold Position
V-Bar Approach

Active Abort (out-of-plane)

Natural Motion (out-of-plane)

Freeze Drift (out-of-plane)
X SRO Initial Position
(@) OS Position
X Closest Approach

— = Delta-V Locations (magnitude & direction)

0 | | |
-40 -30 -20 -10
x (Radial) [m]

10 20 30 40

Figure 63 — Relative orbit three dimensional view (LVLH) for active abort

108

Relative Position [m]

40

=

=20

=40

— — —|all colors] x (Radial)
[all colors] y (Along Track)
————— [all colors) z (Cross Track)

ﬂ """"" [all colors] Range

[all styles] Matural Motion (out-of-plane)
[all styles] Preparation for Planar Hop
[all styles] Preparation for Hold Position
[all styles] V-Bar Approach

[all styles] Active Abart (out-of-plane))]ll\
[all styles] Natural Mation (out-of-plane)}
4 [all styles] Freeze Drift (out-of-plane) =
¥ SROInitial Position
® Position at Closest Approach
< Delta-V Locations p

0 2 4 G 8 10 12

Time (sec)

Figure 64 — Relative position time history (LVVLH) for active abort

109

14
« 104

Relative Velocity [m/s]

— — —|all colors] x (Radial)

[all colors]y (Along Track)
0oz [all colors] z (Cross Track)

[all styles] Natural Motion {out-of-plane)
[all styles] Preparation for Planar Hop
[all styles] Preparation for Hold Paosition
[all styles] V-Bar Approach ¢
[all styles] Active Abart (out-of-plane)
[all styles] Matural Motion (out-of-plane)
[all styles] Freeze Drift

¥ SRO Initial Velocity

¥ Welocity at Closest Approach

& Delta-V Locations

v
—
——
——

0.015

0.0 1

(O T A Lt O A T N =4 A Y A
O O L O O) A

! ll i1 I

e

0.005 fi

=

e
T
e —.

5
B

R B

-0.1

0.015 || || L

0.02 | I I I I I I
0 2 4 g 8 10 12 14

Time (sec) <104
Figure 65 — Relative velocity time history (LVLH) for active abort

110

45 MSR Fault Protection Requirements Development

A desired set of fault protection behaviors is established in this section for the
autonomous rendezvous and capture phase of the SRO mission. A fault tree analysis is
performed to determine which faults should be considered based on input from subject
matter experts. Several major areas are considered, including relative orbit determination,
guidance & control, sequencing, and capture operations. Next, a selected subset of faults
in each of these areas is expanded in detail. Criticality, detection, diagnosis, and response
strategies are examined at various stages of the rendezvous and capture process. These
details are used to define a set of potential fault protection requirements that accounts for
different conditions in different stages of the process. In the following section, a fault
protection architecture is developed that shows how fault protection could be implemented

during this unique and challenging mission phase.

The terminal rendezvous and OS capture scenario provides an excellent case study
for fault protection research. The initial portion of this study develops a desired set of FP
behaviors for autonomous rendezvous and capture of the OS. This has been done in
collaboration with the Mars Sample Return (MSR) mission formulation team at JPL. The
MSR rendezvous working group is made up of members from three disciplines: relative
orbit determination, guidance & control, and sequencing. A separate ROCS team is
developing concepts for the flight hardware subsystem that will perform the capture
operation. Inputs have also been sought from the SRO flight systems working group about

various aspects of spacecraft subsystem concepts.

111

There are three desired outcomes for the MSR team. First, a set of initial FP
requirements should be defined. These requirements may then be used to drive the initial
design of the SRO rendezvous and capture system. Next, the MSR team desires to integrate
fault protection with mission concept development, influencing design decisions during
Pre-Phase A based on FP considerations. Finally, the MSR team desires to apply the FP

process used in this study to other aspects of MSR mission design.

Several key requirements guided this study. First, mission success is vital. Fault
protection should be designed to ensure the SRO mission to capture the OS can be
completed or aborted without ground intervention, even under fault conditions. As stated
earlier, autonomy is a key feature, since terminal rendezvous and capture occur fully
autonomously. Safety is also a key concern, and fault protection should prevent the
spacecraft from colliding with the OS. Finally, time criticality should be taken into account.
For example, a fault response may be quite different at the beginning of the autonomous

rendezvous sequence when the SRO is 100 m from the OS than in the last 5 or 10 meters.

Several different tasks were undertaken in order to define the fault protection behavior
for autonomous rendezvous and capture. Some of these are standard fault protection
practices, and others were customized for this study. All tasks have been completed at the

preliminary level only, since detailed design has not yet begun for this mission concept.

45.1 MSR GN&C Subsystem Taxonomy and Fault Trees

To aid in clarifying terminology, a subsystem taxonomy (or system block diagram),
shown in Figure 66, was constructed based on the generic subsystem taxonomy. This

diagram lists out various elements, subsystems, and components of the system and was

112

also used to help team members understand conceptually what components should be
considered for the fault protection process. An example of terminology clarification is the
naming of various rendezvous cameras, shown in the expansion of Figure 66. Because the
terms “Narrow Angle Camera” and “Wide Angle Camera” have different meanings in
different contexts, the rendezvous team developed animal names for each camera. The
“hawk” is a camera that can see far away, the “dog” is a shorter-range camera with a wider
field of view, and the “fish” is a very wide-angle camera with a short range. A readable

version of the complete Subsystem Taxonomy is shown in Appendix C.

|
Rendezvous
Sensors
Narrow Angle Medium Angle Wide Angle Long-Wave
Camera (NAC) Camera (MAC) Camera Infrared LIDAR
[hawk] [dog] (WAC) [fish] (LWIR)

Figure 66 — Subsystem taxonomy, with an example expanded [53]

An important step in developing fault protection requirements is to perform a fault
tree analysis. Through discussions with subject-matter experts from the MSR rendezvous
working group, a fault tree was defined that captures faults that could result in failure of

the terminal rendezvous phase, as shown in Figure 67.

113

Symbol Legend

] oot Failure to Capture OS

Intermediate Event

e, T

|'_"___ _Jﬁ 'O gate Q
o
8]
=] " "
Qﬁ. And” gate

O Basic Event I I

Fault During Fault During
Approach Capture
T
[
Q °
Relative Orbit Guidance & Sequencing
Determination
i Control Fault Fault

Figure 67 — High-level fault tree for autonomous rendezvous & capture [53]

The first discipline considered is Relative Orbit Determination, which involves
calculating relative position & velocity from rendezvous sensor data. Next is Guidance &
Control, which is responsible for attitude determination/control and trajectory control
during rendezvous. In addition, sequencing uses the Virtual Machine Language (VML) to
direct the autonomous process based on state machines that are developed on the ground
and loaded onboard [72]. Finally, Capture deals with the mechanical and logical

components for capturing the OS.

An initial fault tree was developed prior to consulting the MSR team. However, in
order to capture the inputs from JPL experts representing each discipline, various breakout
meetings were held to revise and expand this initial fault tree. These meetings were
designed to simply brainstorm, add, remove, rearrange, or rename potential faults from the

fault tree. Figure 68 shows one example of the results of these breakout sessions.

114

Figure 68 — Result of a fault tree brainstorming session
for relative orbit determination [53]

Finally, the results of all the breakout discussions were compiled to create
comprehensive fault trees. A complete fault tree including over 50 root cause events
(shown in Appendix D in text form) was constructed to capture all faults specific to

rendezvous and capture. A second fault tree shown in

Figure 69 was used to capture generic spacecraft subsystem (non-GN&C) faults that could

occur during rendezvous and capture.

115

General
Spacecraft
Fault

OR

Command &
Data Handling
Fault

o
o

Telecom Fault

OR

Flight
Data Bus Processor
Fault Fault
«
(=]
1
DataFi?trage Data Storage Memory Processor
Full Corruption Overload

Propulsion /
ADCS Fault

Thermal
Control Fault

Solar Array
Performance
Mot As
Expected

OR

Battery Fault

Thermal

Flight Software Electrical Science
 Sof Power Fault Instrument
Fault
o
[s]
Power
Solﬁf A;ray Distribution
aul Fault
- o
5 (=]

Power

Solar Array Eledtrical Distribution/
Ha Undervolt
rdware JOvervolt Bus
Fault Hardware

Fault

Battery
Performance
Not As
Expected

OR

Figure 69 — General spacecraft subsystem fault tree [53]

116

Depth of

Discharge
Violation

Sensor Fault

Heater

Hardware
Fault

Unexpected
Behavior
From New
Aftitudes

4.5.2 MSR Rendezvous & Capture Requirements

A subset of faults (bolded in the fault tree shown in Appendix D) was selected from
the completed fault tree. Several representative faults were chosen from each discipline
(relative orbit determination, guidance & control, sequencing, and capture). The selected
faults are challenging to detect, diagnose, or respond to in a quick, efficient, and safe way.
These faults were expanded in detail, and time-to-criticality, detection methods, diagnosis
methods, and response strategies are examined at various stages of the rendezvous and
capture process. These details were then used to define a set of potential fault protection
requirements that accounts for different conditions in different stages of the rendezvous
process. One example strategy for a single fault is shown in Figure 70, and the related
possible fault protection requirements are shown in Figure 71. Note that both the time to
criticality and response strategy for this particular fault are too complex to fit into the table
in Figure 70 and are described in depth in the following section. Details of strategies and
requirements for all of the selected faults are provided in Appendix E. After completion of
these requirements, a second round of breakout meetings was held with technical experts

in each area to share the results and seek direction for the next steps.

117

Example: No OS Data From Sensors

Time to Detection |Diagnosis |Response
Criticality

Depends on Time counter Test hypotheses Depends on

range to OS since last for various diagnosed fault
sensor possible faults

measurement

Possible Intermediate Faults:
Sensor Hardware Fault LIDAR/IR Sensor Faults
Sensor Background Noise Orbit Determination
0S Passes Too Quickly Thru FOV Computation Fault
Sensor FOV Impaired Orbit Perturbations Differ

Poor Conditions for OS Tracking from Models

Figure 70 — Example fault protection strategy [53]

Example: No OS Data From Sensors

The flight system shall stop maneuvers if no OS data is received
from the rendezvous sensors during the passive abort region
(Zone 1) of autonomous rendezvous.

The flight system shall abort from autonomous rendezvous if no
OS data is received from the rendezvous sensors during the
active abort region (Zone 2).

The flight system shall restore measurements of OS position
within <30 seconds> (TBR) if no OS data is received from the
rendezvous sensors during the unavoidable intercept region
(Zone 3).

The flight system shall restore measurements of OS position
within <15 minutes> (TBR) if no OS data is received from the
rendezvous sensors during all other subphases.

Figure 71 — Example of possible fault protection requirements [53]

4.6 Fault Detection, Diagnosis, and Recovery Strategy

An example case (“No OS data received from sensors™) was selected to demonstrate
how a spacecraft fault protection system may diagnose faults on-board. The fault protection
architecture utilizes state machines so that fault responses are tied to the state of the system

rather than simply as a reaction to the detection of symptoms.

118

The study focuses on four faults as a proof of concept. Each of these faults has a very
similar symptom used for initial detection, but each fault also has a distinct diagnosis and
response procedure. The four faults are “Sensor Loses Power”, “SRO Angular Rates Too
Great”, “OS in Eclipse” and “Filter Does Not Converge”. Initial fault detection is
performed by examining the result of an image processing algorithm developed for the
Prox-1 small satellite mission [73]. This algorithm receives the simulated sensor image of
the OS as an input and outputs a simple logical variable called InView. This variable is
set to 1 if the OS is visible in the image and to 0 if the OS is not visible. An image timer
tracks the amount of time since the last OS image has been seen, and if this timer surpasses
a user-defined time threshold (and the OS has been seen previously), then a fault detection
is triggered. A fault detection can also be triggered by an input variable indicating relative

orbit filter non-convergence.

Once a fault is detected, the diagnostic state machine shown in Figure 72 is activated.
This state machines operates exactly like the generic diagnostic state machine described in
Section 2.6. The diagnostic state machine consists of two primary states: NoFaultDetected
and FaultDetected. During all nominal mission phases, NoFaultDetected is activated, but
when one of the fault detection triggers described above is observed, FaultDetected will be
activated. If the rendezvous process state machine in Figure 49 has any state active other
than the Passive Miss or Active Abort Regions (Zones 1 and 2), then the diagnostic state
machine enters the “Diagnose” state immediately when a fault is detected. If the
rendezvous process is in the Passive Miss Region (ZonePassive=1) or Active Abort
Region (ZoneActive=1), then the diagnostic state machine does not attempt to

determine which fault has occurred. An active or passive abort maneuver is commanded

119

HoFaukDalected

eriry: Stopaneuvers=i; Abart=0;
CorreclivehctionA_1_1=0; Correcivefctions,
Cnrrul:lwﬂ".l:lruﬂ.ﬂ. 3. 2=l Cm'ru:ll-.'enﬁ.-;."um
Corractivefctions_T=0;

By (FaulDetecled T
ZonePassive .
[FauhDetecled==1] 1 Proe T Abart
3 1=0; ! || Zenehctive] ary; Staphien il
5_3=l; - Abort=1
FaukResolved==1..., ¥ A
A5 aRar|FeooverTimapsac)) I II E:'Elm'?.fl::-' [ArfvmdlSardby==1]
I'Eia.gm:me
A) ™)
B Ay 3
11 8 Sensar Power Faull l SRO Angular Rats Fault —
il
mpnosed 11 agraset_3 1
en: Diagnosad, 1 1=1; afer|\WaliTime sac) en: Diagnoseh 3 1=1; | aftes (it Time, sec|
K) J_
| 1 [FaultConfimmeda,_3 1==1
IFandiCor § == | [Faul T -3
| raBEcaimadl 1 fs=i} | && Correctivedoliont_1_1==0..
i &4 Cormoctivedcliond 5 _Ze=0 ..
ndh_1_1 | &8 Correclivedcliond & 3==0..
B& CorrectivenclionB T==0]
en: Correclivefcliond 1_1=1;
Diagnosad, 1 1=0; J g]
en: Correchivedctiond_3 1=1;
\ A Diagnosed_3 1=0;
X
LT
X K
N
\ \
L5 e
i A
HH‘H e
-._______:‘-\-\.____ z
o ==

Figure 72 — Diagnostic state machine for MSR Simulation

120

immediately, returning the spacecraft to a passively safe standby orbit as described in

Section 4.4.3 before entering the Diagnose state.

The Diagnose state consists of sub-states for each possible fault, which operate as
described in Section 2.6. The “Sensor Loses Power” fault is diagnosed if
SensorPowerState is equal to zero. “SRO Angular Rate Fault” is diagnosed if the
maximum absolute value of any element of the angular velocity vector exceeds the user
defined MaxAl lowableRate. “OS in Eclipse” is diagnosed if OSEcl ipseState is
equal to one. Finally, “Filter Does Not Converge” is diagnosed if

FilterConvergenceStatus is equal to zero.

Once a fault is diagnosed, the diagnostic state machine calls the appropriate fault
response. If “Sensor Loses Power” is diagnosed, the response is to send a command to reset
the sensor power. If “SRO Angular Rates Too Great” is diagnosed, the response is to send
a command to point the rendezvous sensor at the target. If “OS in Eclipse” is diagnosed,
the response is to turn on a flashlight to enable imaging the OS during eclipse. Finally, if

“Filter Does Not Converge” is diagnosed, the response is to reset the navigation filter.

4.7 Evaluation in Simulation

A simulation has been developed for the MSR application in MATLAB/Simulink to
evaluate the generic FDIR architecture described in Chapter 2. This investigation builds on
capabilities developed at Georgia Tech for other projects, including a high-fidelity
ProxOps GN&C simulation for the Prox-1 small satellite mission [15,31], simulation
models for feasibility studies of constellations of CubeSats at Mars [32], and a PITL testbed

for high-fidelity testing of avionics boards for relative ProxOps called SoftSim6D [33].

121

4.7.1 Simulation Description

An overview of the simulation is shown in Figure 73 and the interaction of various
components is illustrated by the architecture block diagram in Figure 74. The diagram is
based on the generic architecture block diagram from Section 2.3.5. It is divided into the
simulation environment representing the system under control (entity being controlled) and

the control system (entity exercising the control) according to terminology defined in [5].

INT GeTo

e

INT GoTol

SC1_STATE Initializaton

_STATE

BC1_ENV

Spacecraft 1

$C2_STATE

_STATE

Relative Motion Calculations

BC2_ENV

Spacecraft 2

Figure 73 — Overview of MSR Simulation

122

Simulation Environment

Space Environment Models

Time Systems
Gravitational Models
Orbit Perturbations
Eclipse Model

Spacecraft 6DOF

Dynamic Models

Orbital Dynamics
Relative Dynamics
Attitude Dynamics

Rendezvous Sensor Models

Visual Image Generation
Sensor Power Model
Flashlight Model

Spacecraft Enviroment States

Spacecraft Eclipse Status
Earth Occultation by Mars

.

Spacecraft 6DOF
Dynamic States

Inertial Position & Velocity
Relative Position & Velocity
Attitude & Angular Velocity

Spacecraft Component States

Filter Convergence Status

Sensor Power Status

Sensors/Data

FDIR State Determination

Image Processing
Algorithms

Target Detection
(From Sensor Images)

Fault Detection

Fault Detection Checks

Fault Diagnosis

Fault Diagnosis Checks

Legend

Control System

Hardware & Environment

GMN&C Software

Software Components

Systems

Functions of

Components

Components

Fault & Mode

State Variables

Fault Protection

State Machine

Fault Detection Status
Fault Diagnosis Status

Rendezvous Process

State Machine

Rendezvous Approach Status
Target Capture Status
Passive fActive Abort Status

Control System

Spacecraft 6DOF

State Control

Relative Trajectory Control
Attitude Target Tracking

Fault Response

Component Commands
[For Spacecraft Components)

Mode Management

Mode Commands
(For Rendezvous Sequence)

Actuators/Commands

Figure 74 — MSR Simulation Block Diagram

123

The simulation environment is composed of foundational SoftSimé6D simulation
components and state variables that track the status of these models. For example, space
environment models include time systems, gravitational forces, and orbit perturbations.
The initial simulation epoch is input as a Gregorian date & time and is then translated into
a Julian Date. Force and moment perturbations are included for the SRO and OS orbits
around Mars for J2 non-spherical gravity, third body effects from Phobos and Deimos,
aerodynamic drag, solar radiation pressure, and gravity gradient. The ephemeris of the Sun
in the Mars 1AU frame is obtained from the JPL SPICE toolKkit in order to determine when
the OS and SRO are in eclipse. The ephemeris of the Earth in the Mars IAU frame is also
obtained to determine when Earth is occulted by Mars and communication of the SRO with

the ground is not possible.

The simulation environment also includes spacecraft dynamic models for inertial
orbital dynamics, relative orbital dynamics, and attitude dynamics. The inertial orbit and
attitude of each spacecraft is computed and numerically integrated separately, and the
relative states are calculated by differencing the inertial states. A detailed model of the
rendezvous visual sensor has also been developed. This model includes an image
generation capability originally developed for Prox-1 [15]. The image generator takes the
relative orbit and attitude of the SRO and OS as inputs to generate a simulated image of
the OS as seen by the camera on the SRO. A screenshot of the Simulink sensor model

(unreadable, but with descriptive labels) and a simulated image are shown in Figure 75.

In order for an image to be generated, the OS must be within the field of view (FOV)
of the sensor, the sensor power must be turned on, and the OS must be in sunlight (not in

eclipse). The sensor power model is a logical variable representing on/off states as 0 or 1.

124

The model features a fault injection capability which causes the sensor to lose power at a
specified input time. Sensor power can be restored by sending a sensor reset command.
There is also a flashlight model, which is a simple on/off state represented by 0 or 1. If the
OS is in eclipse, the flashlight can be activated by a “flashlight on” command to illuminate

it, allowing an image to be generated in the absence of sunlight.

| Figure 1 - 0 PowerFaultinjection
Eile Edit VYiew Inset Tools Desktop Window Help £ Fautinjection —
NEEHS | L |ARRTDEL- Q| DEH| aD }]
'y
M 3_in Model
Simulated OS Image
SensorPowerMadel —‘
Nhe
L))
&
° s Flashlight Model
FlashightonCmd
lpse_STATUS 4 FlasnigniPowerState_out
FlashlightPowerModel
FlashLightModel
SCZ_ENV
| | o
<POS_REL>
REL_STATE I -
o5 Eos P1_inertial 3¢ PowerStale

o= 4 R_RSW2EC _RSW2ECI 4 I
STATE - fen fen
o v_P1_inertial ©_rel_BFF

_rel
R_ECIZBFF

Cootdifiaté Frame LDet?_rmlr_\e '(:)C?\L
Rotations ocation in

—

R_B
DCM

Image Generator

-
——D
Image (matriz)
Init FOIR q_OS o ‘BI—P&LL\H
et oew Init. FDIR IMAGER_RESOLUTION resoiion ok a img_raw
ImageGan

Init. FDIR IMAGER_FOV W

Init FDIR Asphare

Init FDIR Bsphare

Init FDIR. Csphere

ImageGen

Figure 75 — Screenshot of rendezvous sensor model & simulated OS image
It should be noted that additional generic spacecraft sensor and actuator models are
included in the SoftSim6D suite, but for simplicity in this study perfect state knowledge
and control input execution is assumed (including impulsive AV maneuvers) and these

sensor and actuator models are not utilized. Of course relaxing these assumptions would

125

provide a greater degree of realism to the simulation, but for the faults examined in this

study it was not necessary.

The next segment of the block diagram in Figure 74 is the Control System, which is
arranged according to the generic state-based architecture containing components for state
determination (evaluating evidence to determine the current state), state variables
(maintaining state knowledge), and state control (computing control commands) [5]. There
are two types of components in the Control System: GN&C Software Components which
are focused on simulating the spacecraft’s orbit & attitude control subsystem and

Fault/Mode components which are used for FDIR and spacecraft mode management.

First, it should be noted that state determination for spacecraft dynamics and
component states is not simulated explicitly through estimation algorithms. Instead, “truth”
states from the simulation components are fed in directly to the control system as state
variables. Dynamic states treated in this manner include spacecraft inertial and relative
positions and velocities, attitudes and attitude rates, and eclipse/occultation status. This is
in accordance with the assumption of perfect state knowledge mentioned above. Although
navigation filter algorithms are not simulated, a variable representing filter convergence
status is included in the simulation and is used to evaluate how the fault protection system
responds to situations where such algorithms are not converged via user-defined fault
injection. Sensor power status is also fed directly from the rendezvous sensor model into

the Control System.

The spacecraft six-degree-of-freedom (6DOF) control includes two components:

attitude target tracking and relative trajectory control. The attitude target tracking algorithm

126

is identical to the algorithm developed for Prox-1 using a small satellite Control Moment
Gyroscope [15], which points the camera boresight along the negative relative position
vector. Because the simulation assumes perfect relative position and attitude knowledge,
pointing the camera in this direction allows images of the OS to be generated by the
rendezvous sensor model. As mentioned previously, perfect control input execution is
assumed, so the torque commanded by the attitude target tracking algorithm is
instantaneously imparted to the spacecraft attitude dynamics model. ROE-based relative
trajectory control algorithms are also implemented to realize the concept of operations
described in Section 4.4. Maneuvers are calculated dynamically and commanded onboard

the SRO based on the current relative state rather than at preset times.

4.7.2 Simulation Results

A closed-loop V&V test of the FDIR system has been performed using SITL testing
in the MATLAB/Simulink simulation described in the previous section. The initial relative
orbit conditions are the same as those described in Section 4.4.3. The following rendezvous
strategy parameters are also specified for the simulation. The maximum AV of the SRO is
set to 0.25 m/s. This is used to determine when the SRO enters the Unavoidable Intercept
Region. The capture distance is set to 1 m. This is used to determine when capture has
occurred since the simulation does not include rigid body capture dynamics. The minimum
safe distance is set to 10 m. This is used to determine the size of the safety ellipse for aborts.
The standby distance is set to 50 m. This is used to determine when to end an abort; the
SRO performs a maneuver to return to passively safe standby only after it has drifted this

distance away from the OS in the along-track direction.

127

4.7.2.1 Nominal Approach

In Case 1, a nominal approach is performed, as shown in Figure 76. In this scenario,
the SRO proceeds all the way to capture, with no faults injected and no recovery actions
taken. A minimum range of 1 m occurs at 20,534 seconds, and the simulation ends to

Fault Detection Status

0 = No Fault Detected, 1 = Fault Detected
wm 1T T
=
Jas] L -
in 0.8
=
S 06 1
L]
dy
B 04r 1
(]
021 1
m
L
D I I I I I i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s) x 10
Relative Position Time History
~ B0
I e
% 80 F~ N X (Radial)
= N Y (Along-Track)
— 40 ‘\-_ Z (Cross-Track)
= g
o [— — —Range
= 201 T———
T — e
N P e T~
s O -
= "
o201
2
—4'] Il Il Il Il Il 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s) x10%
Relative Velocity Time History
= 0021
—
= \ X (Radial)
@ 001E & ¥ (Along-Track)
E *“‘ N Z (Cross-Track)
£
o 0
2
[5E)
=
_g -0.01
m AN
o
E —DDZ Il Il Il Il Il i i i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s) x10%

Figure 76 — Simulation Results for Case 1: Nominal Approach

128

represent capture. Note that this scenario is identical to the one presented in Section 4.4.4.1,
except that no hold position maneuver is performed at the end of the simulation. However,
unlike the previous scenario, this simulation does not assume linearized dynamics but
propagates the full inertial orbits for both the SRO and the OS non-linearly and includes
orbital perturbations. The simulation also includes a full 6DOF propagation including

attitude dynamics.

4.7.2.2 Faults Prior to VV-Bar Approach

Next, three scenarios are performed where different faults are injected during the
planar hop prior to the start of the v-bar approach. In each of these scenarios the fault
protection system successfully detects, diagnoses and responds to the fault and proceeds to

capture the OS.

In Case 2, an angular rate fault results in the loss of the OS from the imager FOV.
A fault is injected at 1,050 sec during the planar hop by turning off the attitude tracking
controller. The OS slowly drifts out of the imager FOV until it is no longer visible,
triggering a fault detection. The fault protection system then initiates a sky search slew,
which scans the sky and quickly finds and tracks the OS again, as shown in the attitude and
angular velocity plots in Figure 77. Note that only the portion of the simulation near the
fault detection and recovery is shown for clarity. After reacquiring the OS in the imager
FOV, the SRO continues to capture the OS at 20,534 sec and a minimum range of 1 m, as
in Case 1. Note that the slew used for the sky search was designed for a small satellite with
an agile attitude control system. For an actual SRO implementation, the slew rate would

likely be much lower.

129

Fault Detection Status
0= No Fault Detected, 1 = Fault Detected

w 17 1
F=|
s
= 087 ']
o Sky search
2 06T d N
3 | | slew
g 047 | 1
]
=02f | :
m
LL
U
2600 2700 2800 2900 3000 3100 3200
Time (s}
Inertial Attitude Time History
7o
@
! <
—
2
=
g OF
E Vector Component 1
O Vector Component 2 ~—
& 0.5 Vector Component 3
é Scalar Component
E _1 1 i 1 i i i
2600 2700 2800 2900 000 3100 3200
Time (s)
Inertial Angular Velocity Time History
- 'j-.l 4 [
w E X
EY: z
QL
$io
> 3
M
m
_— D _ |
og "
-ﬂ: —
= _4 i i i i i i
2600 2700 2800 2900 3000 3100 3200
Time (s)

Figure 77 — Simulation Results for Case 2: Angular Rate Fault

130

In Case 3, the OS enters eclipse at 5,005 sec during the planar hop. The OS image
is no longer visible in the sensor FOV, triggering a fault detection. Once the planar hop is
complete, the system enters a position hold until eclipse ends before beginning the v-bar
approach at 6,411 sec. This is seen in Figure 78 as a zero relative velocity in all axes and a
constant relative position in all axes. After eclipse ends, the SRO continues to capture the
OS at 22,978 sec and a minimum range of 1.4 m. Note that this scenario indicates that the
SRQO’s autonomous system is “surprised” by the eclipse. Since eclipse is very predictable
based on the Mars IAU ephemerides of the OS and the Sun, the autonomous system and
ground support systems should be designed to anticipate and accommodate eclipse in the

final rendezvous approach strategy.

In Case 4, a fault is injected at 5,400 sec during the planar hop indicating that the
relative orbit determination filter is unconverged. The fault protection system detects this
fault and commands a filter reset, which takes about 100 seconds to confirm. As in Case 3,
the SRO enters a position hold until the fault is resolved before beginning the v-bar
approach, as shown in Figure 79. Note that only the portion of the simulation near the fault
detection and recovery is shown for clarity. The SRO then continues to capture the OS at

20,618 sec and a minimum range of 1 m.

131

Eclipse Status
o o o D
= 3 e o (=2} —

80
60

40

Relative Position (m LVLH)

0.02

0.01

-0.01

Relative Velocity (m/s LVLH)

-0.02

Eclipse Status
0 =05 in Sunlight, 1 =05 in Eclipse

Hold
/| | Position
1] 0.5 1 1.5 2
Time (s) x 10
Relative Position Time History
e . X (Radial)
\ ¥ (Along-Track)
i b £ (Cross-Track)
i —————— — — —Range
f:/h\ﬁ{nh‘“x e
0 0.5 1 1.5 2
Time (s) « 104
Relative Velocity Time History
X (Radial)
- ¥ (Along-Track)
Z (Cross-Track)
™ . B} -
1] 0.5 1 1.5 2
Time (s) x 10

Figure 78 — Simulation Results for Case 3: OS Enters Eclipse

132

Fault Detection Status
0= No Fault Detected, 1 = Fault Detected

.1 L m K -
o
2 0 p Hold
w A | Position
S 06| 1
[
di
o 047 _
(]
S027 i
m
LL
0
4500 5000 8500 6000 6500
Time (s)
Relative Position Time History
= 807 ¥ (Radial)
= &0t ¥ (Along-Tra
E‘ Z (Cross-Tra
= aoe — — —Range
2
= 2071
it ——
P
=
m 20 f
[ak]
I i i i i
=40
4500 5000 5500 6000 6500
Time (s)
Relative Velocity Time History
T 0.02
|
= X (Radial)
m 0017 ¥ (Along-Track)
E Z [Cross-Track)
=
2 0 — =
j= - ——
[uk] o
} _—_——\—_-__i'f.r
¢ 001 _—
k=
Juk}
E —D_Dz i i i i
4500 5000 5500 6000 6500
Time (s)

Figure 79 — Simulation Results for Case 4: Unconverged Relative Orbit Filter

133

4.7.2.3 Faults During VV-Bar Approach

Finally, two scenarios are simulated where different faults are injected during the
v-bar approach. In each of these scenarios, the fault protection system successfully detects
the fault and immediately proceeds to a passive or active abort, bypassing the diagnostic

step. This is the desired behavior specified by the requirements described in Section 4.5.

In Case 5, a fault is injected at 6,000 sec indicating that the relative orbit
determination filter is unconverged, similar to Case 4. Unlike Case 4 however, in this
scenario the planar hop has already been completed and the v-bar approach has begun
before the fault is injected. The fault protection system detects the fault and immediately
commands a passive abort because the SRO is in the Passive Miss Region (Zone 1) of the
v-bar approach. The SRO then stops maneuvers and begins drifting. It passes through a
minimum range of 24.23 m at 8,706 sec (about 30 minutes after the fault time). After this
minimum range, the SRO drifts away from the OS in the negative along-track direction, as
shown in Figure 80. As in the scenario described in Section 4.4.4.2, once the along-track
distance reaches 50 m the SRO injects cross-track motion and returns to a passively safe

out-of-plane standby trajectory.

134

Relative Velocity (m/s LVLH)

0.8

0.6

0.4

0.2

Fault Detection Status

80

60

40

20

Relative Position (m LVLH)

0.02

0.01

-0.01

-0.02

Fault Detection Status
0 = No Fault Detected, 1 = Fault Detected

— — —Range

I T I T T T
— I -
|
— I H -
| Passive
|
- | Abort -
|
- I/ -
|
| | | |
0 0.5 1 1.5 2 25
Ti 4
ime (s) % 10
Relative Position Time History -
_ X (Radial)

Y (Along-Track)
Z (Cross-Track)

Time (s)

Relative Velocity Time History

X (Radial)

Y (Along-Track)
Z (Cross-Track)

Time (s)

Figure 80 — Simulation Results for Case 5: Unconverged Relative Orbit Filter

135

In Case 6, a camera power fault is injected at 19,000 sec during the v-bar approach.
The OS image is no longer visible in the sensor FOV, triggering a fault detection. The fault
protection system detects this fault and immediately commands an active abort because the
SRO is in the Active Abort Region (Zone 2) of the v-bar approach. The SRO then injects
out-of-plane cross-track motion and begins drifting away from the OS in the negative
along-track direction, as shown in Figure 81. This location becomes the point of closest
approach at a range of 4.32 m. As in the scenario described in Section 4.4.4.3, once the
along-track distance reaches 50 m the SRO freezes the along-track drift to return to the
passively safe standby trajectory. A summary of all six simulation test cases is shown in

Table 4.

Table 4 — Simulation test case summary

Case Description Fault Region Response Minimum Time of
P Time Occurred Taken Range Min Range

1 Nominal approach n/a n/a n/a 1m 20,534 sec

2 Angular rate results in 1,050sec Planar Hop Recovery 1m 20,534 sec
loss of OS from FOV

3 OS enters eclipse 5,005sec Planar Hop Recovery 14m 22,978 sec
Unconverged Relative 5,400sec Planar Hop Recovery 1m 20,618 sec
Orbit filter (before v-bar)

5 Unconverged Relative 6,000 sec Passive Miss Passive 24.23 m 8,706 sec
Orbit filter (during v-bar) Region Abort

6 Camera power fault 19,000 sec Active Abort Active 4.32m 19,000 sec
(during v-bar) Region Abort

136

Relative Velocity (m/s LVLH)

1
0.8
%)

2
IS 06
(7]

5
5 0.4
(0]

@

8 02
5
©
w 0

80
60

T 40

S

-

E 20
c

ke

B 0
o

o

S 20

s
()

X .40
0.02
0.01
-0.01
-0.02

Fault Detection Status
0 = No Fault Detected, 1 = Fault Detected

— — —Range 0
1

T T T I
I |
i |
| Active
: Abort
I |
_ I _
|
| _
1 1 | I
0 05 1 15 : 25
Time (s) I % 104
Relative Position Time History :
: il
X (Radial) I
Y (AIong-Track)l
Z (Cross-Track) I
-~

i
L i
i
1 1 1 I]
0 05 1 15 : 25
Time (s) I 10 4
Relative Velocity Time History :
: i
X (Radial) I
| Y (Along-Track) |
Z (Cross-Track)

Time (s)

Figure 81 — Simulation Results for Case 6: Camera Power Fault

137

4.8 Conclusion

Each of the tasks described above has been completed successfully for an initial
treatment of defining fault protection behavior for autonomous rendezvous and capture of
the OS. A detailed fault tree has been defined, along with a detailed rendezvous and capture
process concept of operations and a system block diagram. Initial fault protection strategies
and requirements have been generated for a total of about 20 key faults from the various

discipline areas. The architecture has been tested in simulation for several fault cases.

One goal of introducing fault protection earlier in the design cycle (during Pre-Phase
A mission formulation) has been to help guide mission design considerations. One major
observation is that the process of fault protection has been a forcing function for the MSR
mission formulation team to clarify architecture and concept of operation decisions. In
some cases, mission design and concept of operations assumptions have been documented
for the first time. This has been an unexpected but welcome result, showing the value of
fault protection not just as an add-on to a space mission design but as an essential

component of the system design from the beginning.

Defining terminology clearly is very important. There have been miscommunications
at several meetings because of different understandings for the definitions of certain
terminology. For example, although terms like “guidance, navigation, & control” have
fairly standard definitions, they may have different connotations in different contexts. Even
the term “fault protection” means different things to different people. This challenge has
been addressed by inviting open discussion and feedback in group meetings and by

attempting to clarify any terms that could be confusing or misunderstood when they are

138

presented. When developing tools like a fault tree, it is important to anticipate how terms
will be understood by team members from various disciplines and define any terms that

may be misinterpreted.

Another challenge has been determining what to do next when each step is
completed. Since a new method of fault protection design is being experimented with, there
is not a defined process to follow. A final challenge has been a backlog in the
communication of progress throughout the project. Because of the cadence of meeting
cycles, work was often completed several weeks before it could be communicated to all
relevant stakeholders. These challenges have been addressed by seeking additional
direction and advice of fault protection experts and rendezvous/capture subject matter

experts. Their suggestions helped refine the direction of the study

139

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This study has presented a fault protection architecture for aerospace vehicles that
is generic, modular, and portable to flight software and enables model-based on-board fault
diagnosis using the state machine paradigm. The architecture is generic and can be applied
to any aerospace vehicle or mission. It features a generic simulation capability used for
development, verification, & validation. Multiple applications have been used to
demonstrate the generic utility of the architecture in simulation and flight tests. The
architecture is also modular and contains components that can be added, removed, and
rearranged easily. Environment models, vehicle sensor & actuator models, and dynamics
models can be selected, modified, and rearranged in the simulation block diagram. Initial
conditions, vehicle properties, and environmental scenarios can be easily redefined in an
initialization script. The architecture is portable to flight software and it is straightforward
to convert the initial design into flight software that is flown onboard the vehicle. An

autocoding process has been defined and demonstrated for the Prox-1 small satellite.

The generic architecture is composed of five primary diagrams. A generic
subsystem taxonomy defines the primary subsystems common to most aerospace vehicles
and details common components for the guidance, navigation, & control subsystem. A
generic fault tree analysis defines a process for determining which root cause and
intermediate fault events could lead to an undesirable vehicle or mission failure. A generic
functional state machine provides a model of vehicle mode state behavior by detailing

processes common to many aerospace missions. A generic diagnostic state machine has

140

been developed to enable on-board model-based diagnosis of faults. Lastly, a generic
architecture block diagram illustrates how the fault and mode components work together
with vehicle and environmental components to perform fault protection in simulation and
in flight. A process has been defined for adapting the generic architecture to specific

applications, and two case studies have been demonstrated for very different applications.

The first case study of the fault protection architecture is a terrestrial application
for unmanned aerial vehicles known as the UAV Nervous System. The concept for the
nervous system has been developed in collaboration with a company called FalconViz
based at the King Abdullah University of Science and Technology in Thuwal, Saudi
Arabia. A subsystem taxonomy and fault tree have been constructed and used to design a
system to detect excess propeller vibration using supervised machine learning algorithms
and alert the pilot by playing an audible signal from the radio hand controller. Upgrades
have been added to the system to allow detection of propeller vibration faults, motor
temperature faults, and electrical current/voltage faults on two arms of a six-arm rotary
wing UAV simultaneously. These capabilities have been successfully demonstrated
through flight testing. Finally, functional and diagnostic state machines have been created
for the vibration detection case to develop a full fault protection architecture block diagram.
The full architecture has been demonstrated in simulation using recorded flight test data.
Flight tests and simulation using flight test data have demonstrated desired detection,
diagnosis, and response performance for excess vibration faults and desired detection and

response performance for temperature, current, and voltage faults.

The second case study of the fault protection architecture is a space-based

proximity operations application for autonomous terminal rendezvous and capture of a

141

Mars Sample Return orbiting sample container. The concept and requirements for the fault
protection architecture have been developed in collaboration with the Mars Sample Return
team at the NASA Jet Propulsion Laboratory. A subsystem taxonomy, detailed rendezvous
and capture fault tree, and concept of operations including a functional state machine have
been developed with input from subject-matter experts at JPL. Detailed trajectory design
has been completed for nominal approach, passive abort, and active abort scenarios, and
autonomous trajectory control logic has been developed and demonstrated in simulation.
A diagnostic state machine has been implemented in concert with diagnostic and response
routines to detect and correct four distinct faults in various phases of autonomous approach.
Each of these faults has similar detection criteria but distinct diagnostic and resolution
processes. Abort logic has also been developed and demonstrated when faults occur during
regions that risk the sample return orbiter colliding with the orbiting sample return canister.
All of these components have been combined into an integrated fault protection
architecture and demonstrated in simulation using realistic guidance, simulation, & control
algorithms and components. Six simulation cases have been evaluated, and in each scenario
the behavior of the fault protection architecture is consistent with desired results for fault

detection, diagnosis, and recovery in accordance with the defined requirements.

In summary, a generic, modular, and portable architecture has been developed for
aerospace vehicle fault protection. The architecture has been adapted to two distinct
scenarios and has demonstrated the ability to successfully detect, diagnose, and respond to
a variety of faults in real time using a state-based on-board system. Flight testing and
detailed simulation have been used to thoroughly develop, verify, and validate this

capability. A summary of all tasks for this investigation is shown in Table 5.

142

Table 5 — Task summary for this investigation

Status Task Completion Date
Complete Initial FDIR literature review Oct 2015
Complete Initial FDIR architecture concept development Apr 2016
Complete UAV Nervous System proof-of-concept July 2016
Complete UAV Nervous System initial V&V flight tests July 2016
Complete UAV Nervous System conference paper [41] Oct 2016
Complete Dissertation proposal Jan 2017
Complete UAV Nervous System expansion June 2017
Complete UAV Nervous System final V&YV flight tests June 2017
Complete MSR fault tree and requirements definition July 2017
Complete MSR FDIR conference paper [53] Sept 2017
Complete FDIR literature review revision Dec 2017
Complete MSR FDIR detailed design Jan 2018
Complete MSR FDIR SITL V&V Mar 2018
Complete Submit MSR FDIR peer-reviewed journal article [74] Apr 2018
Complete Generic FDIR architecture detailed design Apr 2018
Complete Dissertation defense June 2018
Complete FDIR architecture peer-reviewed journal article June 2018

143

5.2 Publications

In addition to the dissertation proposal and defense, several relevant publications are

planned or completed. Other publications by the author are also listed.

Peer-Reviewed Journal Articles:

[15] P.Z. Schulte, D.A. Spencer, Development of an Integrated Spacecraft Guidance,
Navigation, & Control Subsystem for Automated Proximity Operations, Acta
Astronautica, 118 (Jan-Feb 2016), 168-186, doi:10.1016/j.actaastro.2015.10.010.

[31] D.A. Spencer, S.B. Chait, P.Z. Schulte, K.J. Okseniuk, M. Veto, Prox-1 University-
Class Mission to Demonstrate Automated Proximity Operations, Journal of
Spacecraft and Rockets, July 2016, doi:10.2514/1.A33526.

[74] P.Z. Schulte, D.A. Spencer, M. Goggin, Mars Sample Return Terminal Rendezvous
Fault Protection, Journal of Spacecraft and Rockets, submitted Apr. 2018.

[75] P.Z. Schulte, D.A. Spencer, Generic State Machine Fault Protection Architecture for

Aerospace Vehicle Guidance, Navigation, & Control, Journal of Aerospace
Information Systems, submitted Jun. 2018.

Conference Papers Relevant to This Work:

[76] P.Z. Schulte, D.A. Spencer, Development of an Integrated Spacecraft Guidance,
Navigation, & Control Subsystem for Automated Proximity Operations, 65th
International Astronautical Congress, Toronto, Canada, Oct. 2014, IAC-14-
C1.6.4x21108.

[77] K.J. Okseniuk, S.B. Chait, P.Z. Schulte, D.A. Spencer, Prox-1: Automated Proximity
Operations on an ESPA Class Platform, 29th AIAA/USU Conference on Small
Satellites, Logan, Utah, Aug. 2015.

[41] P.Z. Schulte, D.A. Spencer, N.G. Smith, M.F. McCabe, Development of a Fault
Protection Architecture Based Upon State Machines, 67th International Astronautical
Congress, Guadalajara, Mexico, Sept. 2016, IAC-16-D1.1P.2x32540.

[53] P.Z. Schulte, D.A. Spencer, State Machine Fault Protection for Automated Proximity

Operations, 68th International Astronautical Congress, Adelaide, Australia, Sept.
2017, IAC-17-C1.5.11x36573.

144

[54] P.Z. Schulte, D.A. Spencer, Fault Protection for Mars Sample Return Autonomous
Rendezvous & Capture, Symposium on Space Innovations, Atlanta, Georgia, Oct.
2017. (poster and presentation only)

[78] P.Z. Schulte, D.A. Spencer, On-Board Model-Based Fault Diagnosis for Autonomous

Proximity Operations, 69th International Astronautical Congress, Bremen, Germany,
Sept. 2018, IAC-18-C1.6x45016. (abstract accepted)

Other Conference Papers:

[79] P.Z. Schulte, J.W. Moore, A.L Morris, Verification and Validation of Requirements
on the CEV Parachute Assembly System Using Design of Experiments, AIAA-2011-
2558, 21st AIAA Aerodynamic Decelerator Systems Conference and Seminar,
Dublin, Ireland, May 2011.

[80] P.Z. Schulte, E.G. Lightsey, K.B. Brumbaugh, R.L Staehle, Utilization of a Solar Sail
to Perform a Lunar CubeSat Science Mission, 2nd Interplanetary CubeSat Workshop,
Ithaca, New York, May 2013. (presentation only; paper withheld by sponsor)

[81] Pellegrino, M., Gibson, A., Mariscal, J.C., Schulte, P., “UNISPACE+50: Shared

Vision, Common Action,” 68th International Astronautical Congress, Adelaide,
Australia, Sept. 2017, IAC-17-E3.1.1x37185.

5.3 Suggestions for Future Work

This section presents possible extensions on this study. The suggestions for future

work are organized based on the chapter divisions of this dissertation.

5.3.1 Generic Fault Protection Architecture

As described in Section 2.3.1, the subsystem taxonomy for the generic fault
protection architecture lists generic subsystems for aerospace vehicles, but it only presents
detailed generic components for the guidance, navigation, & control subsystem. It would
be useful to add detailed components to the taxonomy for all subsystems. It addition, it

would be beneficial to modify the generic subsystem taxonomy, fault tree, and functional

145

state machine to be more object oriented and automated. It would also be helpful to define
more detailed generic classes of faults for the fault tree and diagnostic state machine and
link them to taxonomy and functional state machine. As indicated by Rasmussen, robust
fault protection requires a measure of uncertainty [5], so it is desirable to formally define
such a measure for use in fault diagnosis. Also, future researchers could utilize the generic
fault protection architecture to implement and evaluate more advanced diagnostic
capabilities [25], including constraint suspension [28-29] and other techniques
demonstrated on Deep Space One [24] and Cassini [26,27]. The generic architecture could

facilitate the use of these diagnosis methods for a wide variety of aerospace applications.

One possible method for these extensions would be to use the formal ontologies for
fault protection and behavior modelling defined by JPL using SysML [12,22]. These
formal ontologies might also be useful to define a more automated process to convert the
generic architecture to a particular application and for developing content. For example, a
future study could implement a “fault tree to state machine” algorithm to create the
diagnostic state machine and link it to the functional state machine [40]. Such a process
could also be used to populate each of the diagrams with content that is linked to other
systems engineering processes for projects using formal methods for modelling. Finally, it
would be immensely useful to extend the generic fault protection architecture beyond

aerospace applications for domains such terrestrial robotics and autonomous cars.

5.3.2 UAV Nervous System

A next step to extend the UAV nervous system would be to expand the number of

sensors with a full suite of vibration, temperature, current, and voltage sensors on each arm

146

of the six arm hexacopter. Fault detection can be performed on all arms independently and
simultaneously. Then, if a propeller imbalance or other fault is detected, the nervous system
can indicate which propeller needs to be balanced. Similarly, temperature and
current/voltage sensors can be placed on each motor and ESC and the nervous system can
record all variables as a function of time and indicate to UAV designers and operators

which components tend to overheat or break first.

Further sensors can also be added to expand the set of detectable failures. For
example, many times when there is a problem with a UAV the first indication to the
operators is an unusual sound. Thus, microphones collecting audio data near each propeller
may be able to provide additional warning of faults. Data from microphones could be
processed through a machine learning algorithm similarly to the acceleration data.
Examples of other issues/failures on the UAVs that could be addressed by future work
include monitoring the GPS receiver and magnetic compass (which can malfunction in
flight, leading to the regularly reported problem of “fly-aways”), adding tachometers to
detect changes in blade rotating speed, and ensuring healthy navigation filters (i.e. GPS
position/velocity and attitude determination for roll/pitch/yaw angles and rates).
Monitoring navigation variables would require communication with the flight controller,

but redundant navigation systems could also aid in detecting navigation errors.

Another necessary update to the nervous system is smoothing out the startup
process. Although quite convenient for prototyping and rapid development and testing,
running Simulink in Windows onboard the copter is not a very elegant solution. It requires
manually starting up Windows and initiating the Simulink model on a lab bench while

connected to a monitor, then carrying the copter outside to begin flying. An intermediate

147

step is to set up a high-definition video downlink to interact with Simulink in the field.
Ultimately it would be desirable to remove the Windows/Simulink component from the
system completely and perform all fault detection and data recording directly on the Teensy
with a Secure Digital (SD) card shield attached. The Teensy can be fully customized by
programming in C, and Simulink has the capability to generate C code via autocoding. If a
simple KNN classification detection algorithm is implemented in C (or if an autocodable
MATLAB algorithm is available), it can be integrated with autocode from Simulink and
sensor interface code directly on the Teensy. This would streamline the process for using

the nervous system and make it much easier to seamlessly integrate it with a copter.

5.3.3 Mars Sample Return Rendezvous & Capture

There is potential for some of the Mars Sample Return work to continue at JPL by
adding more detail for the SRO rendezvous and capture FP strategy and by extending these
FP concepts to other aspects of MSR concept development. Some of these methods could
also be fed back into JPL’s general fault protection processes to continue to advance state-
based fault protection (especially diagnosis) for future missions. In retrospect, there are a
few things that could be done differently in the Mars Sample Return study based on lessons
learned. It would make sense to build the fault tree with a more functional structure rather
than one based on rendezvous discipline areas. For example, if the OS is not seen in the
rendezvous sensor’s field of view, there could be an issue with relative orbit determination,
attitude control, or sequencing that could cause this. The current version of the fault tree
places this fault under relative orbit determination and not the other two branches. A more
functional structure was suggested by a JPL fault protection expert, but the work was

already far enough along that it was decided to leave the fault tree in its current format.

148

Additionally, several changes could be made to the simulation to make it more useful
for Mars Sample Return mission designers. Adding maneuver execution error would make
the sim more robust for evaluating additional faults. It would also be useful to include
attitude and relative orbit filters for more realistic evaluation of fault protection
performance with uncertain state information and for evaluating FDIR performance for
filter faults. Collaborator McClain Goggin is developing a tool that allows the user to easily
create and compare rendezvous trajectories and evaluate them based on passive safety and
the probability of collision. In order to accurately evaluate the passive safety, the user will
be able to select from a range of default sensor and filter models (or add their own) so that

the state uncertainty covariance can be accurately determined for each case.

As mentioned in Section 4.7.2, several changes to the detailed implementation of the
MSR fault protection architecture are necessary before a flight implementation is
developed. The sky search slew rate used for reacquiring the OS when it drifts out of the
sensor FOV should be adjusted for a large SRO spacecraft. Also, the autonomous system
and ground support systems should be designed to anticipate and accommodate eclipse in
the rendezvous approach strategy. In addition, detailed capture dynamics should be
modeled and included in the analysis. Care should be taken when defining the transition
between Zone 2 (Active Abort Region) and Zone 3 (Unavoidable Intercept Region) to
ensure that active abort maneuvers have no chance of the SRO impacting the OS if the
aborts are performed at a very close range. This is especially necessary if relative orbit
information is lost during the abort. One way to account for this situation is to add margin
to the capture distance, but regardless the amount of margin added should be determined

by analysis.

149

APPENDIX A: AUTOCODING TECHNICAL MEMOS

This appendix is referenced by Section 2.2.3 and contains two technical memos written at
Georgia Tech by the Prox-1 small satellite Guidance, Navigation, & Control team, of which
the author was the subsystem lead. These memos describe the autocoding process which
was developed for converting the GN&C subsystem code developed in
MATLAB/Simulink to C/C++. Although MATLAB/Simulink has the capability to
generate autocode, some small modifications and configuration setting changes were
required for the process to work properly.

Technical Memorandum Georgia
December 2, 2014 Yech S S D L

TO: Prox-1 Design Team
FROM: Meet Raj Patel & Jacob Sussman
SUBJECT: Autocoding of GN&C MasterSim

REFERENCES:

(1) Fraticelli, J., “Simulink Code Generation: Tutorial for generating C code from
Simulink Models using Simulink Coder,” NASA Marshall Space Flight Center, 2012.

(2) “Call MATLAB Functions,” Simulink Documentation, Mathworks, 2013.
[http://www.mathworks.com/help/simulink/ug/calling-matlab-
functions.html#bqlh2z9-48].

(3) “Simulink Documentation Center,” Mathworks, 2013.
[http://www.mathworks.com/help/simulink/index.html].

Purpose/Summary

This document provides guidelines for generating C code from an individual GN&C
module and the entire developed GN&C Master Simulation of PROX-1. In order to
successfully achieve the code generation process, specific steps have been documented
along with appropriate reasoning. Common errors are also documented in this report. The
report is divided in two main sections:

1. Assembling & Running the simulation
2. Autocoding procedure

» For this report, examples are given specifically using the
“HIL_6DOF_MasterSim3-_APF_NoNav” Simulink model. Autocoding any other
MasterSim should be fairly similar to this report’s design. Considerations for
future MasterSim releases are addressed when appropriate and are preceded with
the same bullet point used for this section.

150

[NOTE: Good ideas that have yet to be implemented or properly looked into will be
encased in square brackets and preceded by “NOTE:” in bold letters. If agreeable to
those in command, they should be implemented in the Spring 2015 semester.]

Assembling & Running the Simulation

Steps:

e Open T-square, and download GNC_Current folder. Make sure to download the
recent working folder of the simulation. After downloading and unzipping the file
check that it has the following subfolders: Control, Documentation, Guidance,
Navigation and SimArchitecture. Re-download if necessary. Open the
“SimArchitecture” folder. The image shown below shows the subfolders.

, Control
Documentation
) Guidance

| Mavigation

e Access “MasterSim_3.0” folder and open “HIL_6DOF_MasterSim3_APF_
NoNav” Simulink model. Multiple graphic windows, Matlab main window and
Simulink main model should be available.

) FirstCut_Mastersim

. GNCComponentModels
. HardwarePlantModels

| imagegen

. MasterSim_Modelntegration

. MasterSim_Meoedelntegration_TA
. TAC Dev

e Inthe “HIL_6DOF_MasterSim3_APF_NoNav” Simulink window there should be
few un-referenced blocks. There modules appear to look red since model-
referencing is required. Right click on those blocks (the one with red dotted blocks),
and select “Block Parameter (model referencing)”. The window may appear as
shown below:

151

-

W Function Block Parameters: Slew_Tracking_Controller

Model Reference

Reference the specified model. If the referenced model requires any
model arguments, enter them as a comma separated list.

If the referenced model has more than one instance simulating in
Normal mode, you might need to turn on Normal Mode Visibility for this
Model block. Normal Mode visibility can be controlled by going to the top
model and editing Normal Mode Visibility.

lr_rel

Parameters
t Commanded
Model name:
|SIew_C0ntr0IIer_M0deI4 Browse... Open Model|
Maodel arguments: Bum Time R
I—b- burn_time_in

| 4,—. done

e eyl
Model argument values (for this instance): e
| — L iR RswzECI
Simulation mode: |Normal d| RE— 7] R_ECIZBFF

«« Fnahla u;:rianh:'|

o oK | Cancel | Help | Apply

Transpose: —™aqCument

| wCument

P wctCument

! T_UT1

ate

= ==

pir_F1_inertial

| Slewln

P TrackOn

ManualControl

Y Thrust Commeiided Controller_Meodel4

Meodel Not Found

Torque

e The preceding image shows the model reference block which includes “Model
name” under “Parameters” window. Click on “Browse” and select the file name
corresponding to the model name. For instance, “Slew_Controller_Model4” file
Simulink model file is selected from the main GNC Control folder. After the file is
selected, a prompt may ask to add the selected model to the current path. Click
“Add path” and continue. The red dotted module will now turn its boundary into a
darker one to signify that the model is found and ready to be used.

Resolve path issue with selected model

Selected model

“WYprizm.haz. gatech.edubjzuzzmandiylabidocuments\GHC_Current_3.6_10-28-14\G
MC_Current_3.6_10-28-14\contral\D etumble\D etumble_Controller_kaodel3.mdl'
does not rezide on the MATLAB path. Referenced model must be on the MATLAB
path. Pleaze make the appropriate choice. Maote that “Add path" adds the

path far the current MATLAB seszion anly.

Add path Do not add path

Cancel

=10 %]

e Follow the similar procedure for rest of the modules with red dotted unreferenced
model. For current Sim model, model referencing should be made for
“Slew&Tracking” model, “Detumble” model and Prox-1 Hardware and spacecraft

152

plant model. In order to reference the Prox-1 Hardware and spacecraft plant model,
click on the model. This will open a sub-model consisting of “Prox-1 Hardware
Models”, “Prox-1 Spacecraft Plant”, “Prox-1 Sensor Suit” and “Power Production
Models”. Select the “Prox-1 Hardware Models”.

Inside this “Prox-1 Hardware Models” there are 4 sub-models.
‘Thurster_SMC’,”TorqueRod_SMC’,’UT_Austin_Thruster” and ‘TorqueRod_
Hardware’. Referencing each model is not required; referencing just one model out
of 4 will suffice. This is because each of these models are in the same folder, so
that when the path to the folder is added for one of the models Simulink
automatically detects the others. The Final Sim is shown below:

Bront Space Envimrment Terget Space Enviment
Target Spacecas Pl

L Jffna commamesd Contmiller_Mogeld

Joum_time_in
e ready_fn_nm |—

u_re!

RRSW2EC

- N | 1
el ! 2 & 7 F——smecmr Tomue Commanded f—
1 n G, s
o TR b calci RSWIEC @ { b Jacumem
T e
|

wCumnt

om_TR_gurstion Judorcumnt

1

_um

Fros-1 Hardwas and SpacecatPar
[P1_nedial

Bum_tme_out |

I Tracson
MamuaiContnl

Vo1

H L o Detumble_Contraller Models
-

s/cang e Slew_statuz|

Rp1_BWECI >—slRo1_EtoEC

—»lcusT
aMsT

malec

Siew_Traoking_ Conroler
jangvermit wag Mament |-

AngvelLimit I—l { atownemmale

Detumbie_Cortroller_bode|

)
el

» Future MasterSim releases will have more externally-referenced sub-
models, but the process for adding them is the same: click the broken
model link, find the model, add the folder path.

Time to initialize the workspace environment. Make sure to run the initialization
file from the current folder in main Matlab window. For this demonstration, open
any of the following matlab.m files located in the same folder as the MasterSim
model: HIL_6DOF_MasterSim3_Init NMC.m, HIL _6DOF_ MasterSim3
RestToRest.m, or HIL_6DOF_MasterSim3_Init_LeadingOrbit.m. Running one of
these files will initialize various model simulation parameters, e.g., the mass of the
spacecraft, the target’s location, or a simulated initial noise matrix.

153

%ﬁcv < S : D L@ @Runﬂediﬂn é

B Sim il GoTo «
e &8 & Ea’l] Breakpoints Run Run and @ Advance Run|
B 2B B L4 Find - - - Advance Tit

EDIT NAVIGATE BREAKFOINTS RUM

¥ GNC_Current_3.6 10-28-14 ¥ simarchitecture » MasterSim_3.0 »

" Editor - \\prism.nas.gatech.eduljsussman3ivlab\documents\GMNC_Current_3.... |
+3 | HIL_ADOF_MasterSim3_Init_RestToRest.m [4+ |

.

(1) This file can be published to a formatted document. For more infermation, see th

1 THIL &DOF Master5im3 Init RestToRest.m

2 %% Master Demo Initialization Seript

3 % Purpose: Initialize all input variables to rul
4 % This initialization is for the master integral
5 % uses initial conditions for rest-to-rest

[

7 % Created: Peter Z Schulte 2/07/2014 (from Z2/4
2 % Modified: Peter Z Schulte 3/04/2014 (created]
9 % Peter Z Schulte 3/10/2014 (added ROI
10 % Peter Z Schulte 3/26/2014 (renamed -
11 % Peter Z Schulte &/26/201 (modified
12 % Peter Z Schulte &/27/14 (pulled unch

» Later MasterSim versions may require more than one initialization file to
run. For example, the current version of MasterSim 4 (as of December
2014) requires an additional “SpacecraftPlant_EnvironmentModel _Init.m”
file to be run pre-simulation in order to function properly. If you are unsure
about how many initialization files are required for the current MasterSim
ask someone in the know. [NOTE: An up-to-date document should be put
in the MasterSim folder detailing the initialization files needed to properly
run the current MasterSim.]

Go back to the main Simulink file and run the simulation. Any errors cause during
the simulation will be related to errors in the .m input file or a built error of
Simulink. Any other source of error in running the simulation should be addressed
and tackled by interpreting the error details provided by Matlab.

If the run is successful then the plots of simulation variables will update with each
time-step. If you can, check that the plots make sense. If you already closed every
plot you can reopen a target plot by double-clicking on the respective scope block,
as shown below:

154

Ro1_BUECI >R 1_BIOEC —_— ‘,,,|[: 7
cmd_TRl ;ngﬂ
B0 aw d SRR v

e Dewmplestate T o S
Lplsicang rae | [_] [- >

DTC Magnetic Moment Output [&m”2)

Autocoding Procedure

Now that the simulation is up and running the autocoding process can begin. The principles
of this process can be distilled into 5 parts:

1.

2.

Documentation: Organizing what you learned from trial and error. Prevents re-
inventing the wheel. See: this report.

Configuration: Certain configuration parameters should be in place for a smooth
autocoding experience. Changing these parameters (especially the hardware
configuration settings) will initially prevent proper simulation of the model.
Simulation: After setting the configuration parameters, the model needs to be set
up again so that it can properly run as before. This time, however, the model can
go through the Code Generation process.

Generation: Code Generation is the cornerstone of autocoding. If the model is set
up right, then the Simulink Coder should be able to convert the simulation into C
code.

Compilation: The final autocoding step consists of compiling the C code to run on
the BeagleBoard and adding possibly preprocessor directives to analyze the C
model in real-time.

Configuration

Steps:

Locate the BlankConfig file. This is a Simulink model that is entirely empty save
for its configuration parameter settings. This BlankConfig file was created in order
to speed up the Configuration part of the Autocoding process. Simply copy the
entire MasterSim and paste it into the BlankConfig file. Close the original model
and save the newly-pasted model as the original MasterSim file (or some closely
named variant thereof).

155

P4 BlankConfig_2014_11 7a - 10| x|
File Edit Wiew Display Diagram Simulation Analysis Code Tools Help
:.I.'
Model Browser = BlankConfig_2014_11_7a
[*&| BlankConfig_2014_11_7a @® | |Pa|BlankConfig_2014_11_7a -
@
2
=
()
«
Ready 100% oded

If this is done correctly and the BlankConfig file has the right settings then
Configuration is done. When dealing with new models, however, the settings may
not be properly set up. What follows is a guide for what configuration settings are
some of the most important.

To access a model’s Configuration Settings first click the *Simulation’ tab and then
click the *Model Configuration Parameters’ button. A GUI should open containing
the configuration settings. With ‘Solver’ selected the source file template is chosen
as ‘ert_code_template.cgt’. ‘.cgt’ stands for Code Generation Template, and ‘ert’
stands for Embedded Real Time. This file contains a template for the Coder to base
its code generation off of. This .cgt file must be selected for other settings to
function (notably the package and zip function which only appears to exist in this
template file). ‘Generate an example main program’ is checked in order to simplify
joining the C files together.

156

& Configuration Parameters: BlankConfig_2014_11_7a/Configuration (Active)

Select:

+

+

+

3

Solver
Data Import/Export
Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Report
Comments
Symbols
Custom Code
Debug
Interface
Verification
Code Style
Templates
Code Flacement
Data Type Replacement
Memory Sections
HDL Code Generation

Code templates

Source file templatezl}er’t_code_temp\ate.cgt I

Header file template: \er’t_code_temp\ate.cgt

Data templates

Source file template: ‘er’t_code_temp\ate.cgt

Header file template: ‘er’t_code_temp\ate.cgt

Custom templates

File customization template: |examp|e_ﬁ|e_prncess.t\c

II7 Generate an example main program l

Target operating system:

Browse... Edit...
Browse... Edit...

Browse... Edit...
Browse... Edit...

Browse... Edit...

|pareBoardexample

oK ‘ Cancel |

&

x|

-

H

Apply ‘

e Inthe ‘Optimization’ selection, and under ‘Accelerating simulations’ the Compiler
optimization level is set for faster runs. This will make the building of the C code
take longer but the resulting code will be more efficient. Taking more time now in
order to save time once the mission is in effect.

& Configuration Parameters: BlankConfig 2014 _11_7a/Configuration (Active)

Select:

& T

IR

5

Solver
Data Import/Export
Optimization
Signals and Parameters
Stateflow
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Report
Comments
Symbols
Custom Code
Debug
Interface
Verification
Code Style
Templates
Code Placement
Data Type Replacement
Memory Sections
HDL Code Generation

Simulation and code generation

¥ Block reduction ¥ Conditional input branch execution

[¥ Implement logic signals as Boolean data (vs. double) Application lifespan (days) |1
™ Use integer division to handle net slopes that are reciprocals of integers

™ Use floating-point multiplication to handle net slope corrections

Default for underspecified data type: |dnuh\e

Code generation

[~ Optimize using the specified minimum and maximum values
Data initialization
™ Remove root level I/O zero initialization ¥ Use memset to initialize floats and doubles to 0.0

I~ Remove internal data zero initialization ¥ Optimize initialization code for model reference

Integer and fixed-point
I~ Remove code from floating-point to integer conversions that wraps out-of-range values
¥ Remaove code from floating-point to integer conversions with saturation that maps Nal to zero

I~ Remove code that protects against division arithmetic exceptions

Accelerating simulations

ICnmpMer optimization level: |Optimizations on (faster runs)

[Verbose accelerator builds

x|

157

e In the ‘Signals and Parameters’ menu, “‘Enable local block outputs’, ‘Reuse local
block outputs’, ‘Eliminate superfluous local variables (expression folding)’, and
‘Reuse global block outputs’ are all checked in order to make the C code more
efficient. [NOTE: Flight Software has expressed an interest in the use of Inline
parameters. Effective use of inline parameters can results in cleaner, faster C code.
Configuring inline parameters should be looked into.]

.2 Configuration Parameters: BlankConfig_2014_11 7a/Configuration (Active)
Select: ‘ Simulation and code generation
Solver — o = - -
Data Import/Export f Inline parameters Configure... I I Signal storage reuse
< Optimization — o o
Signals and Parameters Code generation
Stateflow
+ Diagnostics Iv Enable local block outputs [v Reuse local block outputs
Hardware Implementation . . . -
Model Referencing [v Eliminate superfluous local variables (expression folding) [v Reuse global block outputs
+- Simulation Target — . gy e rp————
S Code Generation Optimize global data access: |None J plify array g
Report ¥ Use memcpy for vector assignment :
Comments Py g Memcpy threshold (bytes): |64
Symbols I~ Pack Boolean data into bitfields
Custom Code
Debug ™ Inline invariant signals
Interface
Verification Loop unrolling threshold: \5 Maximum stack size (bytes): | Inherit from target j
Code Style
Templates Pass reusable subsystem outputs as: |Structure reference j
Code Placement
Data Type Replacement Parameter structure: |Hierar-:hi-:a| J

Memory Sections
+ - HDL Code Generation

A E

e Under ‘Hardware Implementation’ the right production hardware needs to be
selected for the BeagleBoard XM. It has an ARM Cortex processor and each option
for this device has been personally checked with the hardware itself to make sure
they are correct for the BeagleBoard. The byte ordering is Little Endian. The signed
integer division rounds to zero. The signed integer arithmetic shift is a shift right.
And long long is an enabled variable. The test hardware should be set to the
MATLAB Host Computer. The *‘Hardware Implementation” menu is what messes
up the ability for the model to simulate as before. In the simulation section it will
be explained how to overcome this issue.

158

‘% Configuration Parameters: BlankConfig_2014 11 7a/Cenfiguration [Active)

Select: Production hardware
1 |
Sol
D;t\;e;mporUExpor‘t Device vendor: IlARM Compatible LI Device type: I |ARM Cortex -
- Optg?g‘fat‘f';nd Farameters Number of bits Largest atomic size
Stateflow - . = . 3
char: 8 short: 16 int: 2
= Diagnostics | |J integer: |Lcmj| J
Sample Time long: 32 long long: |-54 float: |32
Data Validity floating-point: |Double
Type Conversion double: |64 native: |32 pointer: |32 e | J
Connectivity
Compatibili
Mudepl Refe?;ncmg Byte ordering: |Litt\e Endian j Signed integer division rounds to: |Zero j
Saving o ; -
Stateflow v Shift right on a signed integer as arithmetic shift
Hardware Implementation
Model Referencing < IEnatdelbnolkng
+- Simulation Target
= Code Generation Test hardware
Report
Comments I Test hardware is the same as production hardware
Symbols
Custom Code Device vendor: |Generic j Device type: I|MATLAB Host Computer jl
Debug
Interface Number of bits Largest atomic size
Verification
char: 8 short: 16 int: 32
Code Style |16 E integer: |char |
Eergpl;ltes " long: 32 long long: |64 float: |32
ode Placemen :]
floating-point: |Mone -
Data Type Replacement double: |64 native: |32 pointer: |32 G | J
Memory Sections
+HDL Code Generation
Byte ordering: |Litt\e Endian J Signed integer division rounds to: |Zero j

I Shift right on a signed integer as arithmetic shift

¥ Enable long long

|» X

e Similar to previous options, under ‘Code Generation’ the system target file must be
set to “ert.tlc’ in order for certain settings to be active, ‘Build Configuration’ should
be set to ‘Faster Runs’ to trade off time wasted now versus time wasted later, and
the “Prioritized Objectives’ are set to Execution, RAM and ROM efficiency to
speed up the C code. Also in this menu, the ‘Package code and artifacts’ must be
checked. It forces the Coder to zip up every required file for the C program into one
zip file. If this is not checked then you must individually find certain header files
in your computer’s MATLAB root. This is not an easy task, and it is arduous work.

159

‘& Configuration Parameters: BlankConfig_2014_11_7a/Configuration (Active)

Select:

Target selection

Solver
Data Import/Export
= Optimization
Signals and Parameters
Stateflows
Diagnostics
Sample Time
Data Validity
Type Conversion
Connactivity
Compatibility
Model Referencing
Saving
Stateflow
Hardware Implementation
Model Referencing
= Simulation Target
Symbols
Custom Code
- Code Generation
Report
Comments
Symbols
Custom Code
Debug
Interface
Verification
Code Style
Templates
Code Placement
Data Type Replacement
Memory Sections
+- HDL Code Generation

System target file: Ier‘t.tlc I

Browse...

Language: lc

Description: Embedded Coder

Target hardware: |N0ne

Build process

Toolchain settings

Toolchain:

|Autnmatica|ly locate an installed toolchain

Microsoft Visual C++ 2010 v10.0 | nmake (64-bit Windows)

| validate

Build cnnﬂgurat\nn:I|Faster Runs I

Minimize run time

Data specification averride

[~ Ignore custom storage classes

Code Generation Advisor

[Ignore test point signals

| Prioritized UDJECTIVE_S: Execution ef’ﬁmen% ROM ef’ﬁmen% RAM eﬂ"\cweng,]

Check model before generating code: |On (proceed with warnings)

[~ Generate code only

IP Package code and artifacts I

j Show seftings

Set Objectives... |

j Check Model... |

Build 7=
Zip file name:

e Finally, another very helpful option to check off is ‘Create code generation report’
located under ‘Code Generation’ and ‘Report’. This allows you to see the generated
C code in a user-friendly way once the code is finished building.

4 Configuration Parameters: BlankConfig_2014 11 7a/Configuration (Active)

|II7 Create code generation repor‘tl

Select:
Solver Mavigation
Data Import/Export
=+ Optimization ¥ Code-to-model
Signals and Parameters
Stateflow [~ Model-to-code Configure
I Diagnostics
Sample Time ¥ Generate model Web view
Data Validity
Type Conversion Traceability Report Contents
Connectivity
Compatibility v Eliminated [virtual blocks
Moc!el Referencing Iv Traceable Simulink blocks
Saving
Stateflow I¥ Traceable Stateflow objects

Hardware Implementation
Model Referencing
=+ Simulation Target
Symbols
Custom Code
=+ Code Generation
Report
Comments

Iv Traceable MATLAB functions

Metrics

Iv Static code metrics

[¥ Open report automatically

¥ Summarize which blocks triggered code replacements

» Future versions of MasterSim will likely break with these current settings.

Each new model requires understanding and configuring more new
configuration parameters. This is one of the most tedious parts of the
autocoding process (Aside from waiting for the actual code to generate).

160

Simulation

Steps:

With the new Configuration settings the MasterSim will likely not run. This is
because changing the settings for the MasterSim does not automatically change the
settings in all of the externally-linked submodels. Clashing settings crashes the
simulation. And if you can’t run the simulation then you definitely can’t generate
code from it. To fix this, open up an offending external model, and then copy and
paste it into the MasterSim. Link up the new subsystem just like the old one and
then promptly delete the old link from existence. Congratulations, the new
subsystem is an actual part of the MasterSim now (not just a link) and it has
inherited all of the configuration parameters of the MasterSim. Repeat for every
externally-linked model. [NOTE: This entire process and the whole BlankConfig
trick also might be negated or greatly simplified through the use of Configuration
Reference. Look into for the future.]

Generation

Steps:

Highlight every piece of the MasterSim that will not be autocoded (Environment
need not be included), right click, and select “Create Subsystem From Selection’.
Do the same for what will be autocoded. You should have two main subsystems
now. Right click the subsystem to be autocoded, scroll over ‘C/C++ Code’ and
select “‘Build This Subsystem’. The actual autocoding process should now begin.
Confirm the decision to build the code on any screens that may appear and let the
Coder do its work.

161

Prox-1 Space Environment

Tarmget Space Envionment

Target Spacecra® Plant
E_meas
S_mess [y
L
o fre Y e
ma_raw |
Accel_mess b
SumiTime 1 I—L 23]
u_r=i
21 Lk
2 vt -
w_mess [y
T_gursen T T ey =i
w_asual
Prox-1 Hardwam and Spacecall Plant Ot 5
i b
2

Auocoded Subsystem

> In all MasterSim versions starting at version 4.0 and later, it is easy to tell
which subsystems need to be autocoded and which ones don’t, because the
ones that should not be autocoded are grayed out.

162

=====

ey Dutumble_Costolier_Modul3 Wt o IPAs feranopions

WaF—

&

o If the code successfully builds then congratulations! The hardest part is over and
the Simulink model has been converted to C code. All that remains is to check that
the C code is functional. If it doesn’t then try to comprehend the error that the Coder
is giving you and work out the problem. Make sure that you followed each of the
previous steps.

e A possible error that may occur is that an extrinsic function was used in the
simulation. In brief, an extrinsic function is one that requires MATLAB to run, and
therefore cannot be autocoded. If this occurs, try to find an autocodable equivalent
to the extrinsic function. If not can be found then you must take up the job of coding
the function into C yourself. Import this C function into MATLAB and replace the
old extrinsic function where necessary. Hopefully, this will not happen too often.
(It really takes the *auto’ out of ‘autocoding’ and is a fairly difficult problem to
solve.)

Steps:
e While most of the Compilation step actually falls outside the realm of autocoding,
you can manually put in preprocessor commands into the C code in order to eyeball

and roughly make sure that the outputted values from the C code are reasonably
accurate. Use the preprocessor commands to set up different debugging modes.

163

Each mode will let the program print out the selected variable at each time step.
The value acquired from the program printing can then be compared to the data
created during the Simulation, and if they seem to match then the program is
probably on the right track. This is slightly advanced and requires some basic C
concepts to understand. It also is not a very efficient use of time. As a result, this
method is more or less summarized without graphical representation or in-depth
explanation, which would not add much value for those who understand C and
would most likely confuse those who do not know what is going on. [NOTE: Future
Documentation Guides will go into the Compilation step of Autocoding when it is
more refined. Currently, it is in its infancy. Also, for the future a more statistically
sound way of doing this should be implemented. A C program that automatically
checks C values versus Simulink values would be ideal. Until then, this should
suffice.]

Wl _Ja- i MEMaULR LIV GUVeRLIJE s 240 WU e s IRT T U QUEL & FETT T
fiirf Created: ..\errorQuat.exe

ity Successfully generated all binary outputs,

##8 Successful completion of bulld procedure for model: errorQuat

##8 Creating HTML report file grrorQuat godegen rpt.himl

0 buildinfo.mat

| builtin_typeid_types.h
defines.txt

5] emorQuat.c

] errorfuath

£] errorQuat_data.c

l,!] ercorQuat_private.h

0| emorQuat_types.h

€] ErorQuatemion.c

] ErrarQuaternian.h

] ert_main.c

] multiword_types.h

] t_nenfinite.c

l_lj rt_nenfinite.h

] rtGetinf.c

] rtGetinf.h

E] rtGetMaM.c

i GethaM.h

ﬂ riwtypes.h

(Generated Code
=1 Main fila

el i
- Thir est cain.c averRla vmes prinnSiaflis: - 1=1 padal files
e srzrCuats

arranust.h

164

errarCuat_privateh
errirCiat typesh

-1 Subsystam filas
ErrorGuetemise
ErrorCiuatarninn.h

1-1 Data files
arrpriiye

1] Wility files (3)
1] Other files (1]

Technical Memorandum)
Original: April 8, 2015 Georgia

Updated: March 10, 2017 en SSDL
TO: Air Force Research Lab, University Nanosatellite Program

FROM: Peter Schulte (GN&C Lead), Jacob Sussman (GN&C), Nolan Coulter
(GN&C), Matthew Krumwiede (FSW)

SUBJECT: Prox-1 Autocoding Process, Verification, and Software Integration

The Simulink design of the Guidance, Navigation, and Control (GN&C) algorithms for
Prox-1 is autocoded into C/C++ using Simulink Coder for integration with Flight Software
(FSW). Some modifications are made to ensure the models are codable, such as avoiding
the use of incompatible MATLAB functions. This process of GN&C algorithm
development and integration in Simulink and later autocoding into flight software has been
pioneered by the Orion spacecraft team at NASA’s Johnson Space Center in Houston,
Texas [1].

1. Autocoding Process

The process for autocoding from a Simulink master simulation to C code is described in
this section based on work completed by Prox-1 team members Jacob Sussman and Meet
Patel. This process is illustrated at a high level by the flowchart in Figure 1.

——Documentation! Abstract

Model Configuration High Level

ERROR Model Simulation

AN

Code Generation

7
Code Compilation Low Level

©

Figure 1: Autocoding process flowchart

The first step in this process is documentation, which is critical for capturing detailed
instructions and lessons learned such as best practices and how to deal with common errors.
Next is model configuration, which involves setting a multitude of parameters within the
Simulink model to be autocoded. Proper model configuration allows for smoother model
simulation and code generation. Also, these configuration parameters can optimize the

165

resulting generated code to run on a specific embedded processor. Once the proper
configuration settings are determined, they can be saved as a separate file and maintained
using configuration control. Developers can then apply these standard configuration
settings to any model by importing that file in Simulink.

The next step is model simulation. A Simulink model such as the Prox-1 GN&C master
simulation (MasterSim) shown in Figure 2, cannot be autocoded if it does not run properly
in simulation. In the version of the MasterSim shown above, the Simulink diagram includes
many GN&C components such as the Relative Orbit (RelOD) filter, Artificial Potential
Function (APF) guidance, and torque rod (TR) controller. Gray blocks are only used for
simulation purposes, while white blocks will be autocoded into GN&C flight software
(FSW). For configuration control, most of the GN&C component blocks are integrated into
the master simulation using model reference blocks. These allow each component to be
saved as a separate Simulink file that can be integrated into multiple master simulations.

=1 =
Spacecraft Plant /

7 APF

— Environment Models 1 Gu'g?nce i {
lm‘ "E o .
+ RelOD - B
~ Fllter = 1 ' Slew & |
= \ g — + Tracking
ey Target | ﬁ o 1
] LE ey ey — 4
Detumble — = [Qe
Controller FSW = Mode
= TR Control Emulator qL- Loglc -
= | 13 =
R -

Figure 2: A version of the Prox-1 6DOF “master simulation”

After it is verified that the simulation model can run and provides the desired outputs, any
blocks included from separate files as model references are copied and pasted into a single
Simulink model to simplify the autocoding process. The model is then reconfigured so that

166

all GN&C blocks to be autocoded are combined into a single monolithic GN&C algorithm
block as shown in Figure 3. The spacecraft plant and environment models remain in
separate blocks and will not be autocoded. Before autocoding of the GN&C algorithms
begins, the reconfigured simulation is run again to ensure that no changes in performance
or outputs have been introduced by the reconfiguration process.

Space Environment Models

L y
Prox-1 Space Emvironment Tamet Space Ervronment

Tamet Spacecrat Piant

"TT" Spacecraft
11" Plant Models

H L p{ema_im Vot

]

=
vV

° GN&C ..
. Algorithms =

e TR_surstn = 1

Prox-1 Hardwa e and Spacecat Plat I

v ¥ ¥ Y Y Y Y

Autocoded 5 ueystem

Figure 3: Master sim model prepared for autocoding by creating a single GN&C block

Once all of these changes have been made, the model is ready for code generation. Many
errors can occur during this stage, and each error must be understood and corrected. An
error appendix detailing common errors and how to fix them is located at the end of this
document. After the code is generated, it must be compiled to run on the BeagleBoard XM
flight computer. Finally, the compiled code should be run to verify that the outputs match
those of the Simulink model.

167

2. Autocoding Verification

At the beginning of the Spring 2015 semester, Prox-1 team member Nolan Coulter was
assigned the task to develop a process to verify the outputs created by the autocoded C
version of the GN&C algorithms matched the corresponding outputs given by the Simulink
program in MATLAB. This would allow the team to verify that the autocoded program
(from here on referred to as just autocode) performs properly and there are no errors in the
autocode. Our team used this verification process with several variations of the MasterSim
Simulink program. With this verification process, the team was able to conclude that the
outputs from the autocode matched the outputs produced by the Simulink program within
a very small degree error.

2.1 Verification Process for “MATLAB-logging” Autocode

The process used to conclude that the autocode outputs corresponded with the Simulink
outputs involved a series of steps that took the autocode and compared it to the Simulink
program. When working with the autocode, the first step to be able to compare the data
with the Simulink data is to give the proper commands to the autocode to record and log
the outputs. After being autocoded with default settings, the program performs the basic
calculations required to produce the outputs for each timestep; however, the autocode by
default does not record each timestep. In the autocode, there is an “xxx_step” method that
is used to update the outputs after each timestep. Near the end of this method, it updates
the memory variables needed to perform the next timestep’s calculations. These variables
are needed to verify the outputs. At the end of this method, after the memory updates, the
code shown in Figure 4 was added to record the data after each timestep. This code creates
an output file called “out.csv” in csv format that logs the variables of interest.

FILE *out2;

out? = fopen{"ocut.csvy™, "a%);

fprintf {fout?, "EL\n", rtb Clock,
MasterSubsystem B.Tcmd[0], MasterSubsystem B.Tcmd[1],
MasterSubsystem BE.Tcmd[2], MasterSubsystem E.dt burn,
rth r rel meas FPF[0], rtb r rel meas FPF[1],

MasterSubsystem B.S5lewloVector out[2],
MasterSubsystem B.SlewloVector out[3]):
fclose (out?) ;

rth r rel meas FPF[2], MasterSubsystem B.SlewToVector out[l],

Figure 4: C-code to generate output file

After this output file is created, the file can then be used to graph the variables of interest
over time or be directly uploaded into MATLAB for comparison. Once the required data
is put into this format, the outputs of the autocode can be compared to the outputs from the
Simulink program by going into the individual output arrays in MATLAB which are

168

created after running the Simulink simulation. After running the simulation, the variables
needed for comparing can be found in the MATLAB Workspace. The correct output array
can be determined by noting the name of the output array MATLAB uses to save the values
of the variable to the Workspace. The name is found under the “History” tab in the settings
window of the variable’s corresponding scope in Simulink. Figure 5 depicts the scope of
the BurnTime variable in Simulink, while Figure 6 provides a view of the MATLAB output
arrays and the ThrusterCMD1 array (which contains the value of BurnTime) used to verify
the autocode BurnTime output. The left column of the ThrusterCMD1 array shows the

simulation time in seconds and the right column shows the BurnTime command, also in
seconds.

uEurnTime ;IEIE
50 i HOfB/R Oa

n ‘BurnTime' parameters = ﬂ >

General” HistUWH Style|

Burn Tirme fro

I Limit data points to last: |‘:333

¥ Save data to workspace

Variable name: rl'hthMD‘l

.......... Format: |Array j

oK ‘ Cancel Help | Apply|

1000 1200 1400 1600 1a00 2000

Figure 5: View of Simulink “Scope” for the BurnTime variable

169

Workspace

MName £ Value |Min |Max | ThrustCMD1

|| LﬂI.C\J_I'J. ll’ -\.IJ!.IJ.C"'\.IL.Ir LI L LA FAIOL

- state0_rel [0;-150;0;0,0:0] -150 0 EEl 2000012 double

H state_ROE 1 1 1

HH SUN_FREQ 10 10 10 1 2

% SUN_SIG_S 0.1000 01000 01000 1 El 11.3448
10 0 0 0

[tar_sOrbits2Tar 2 2 2 2 0.0100 11.3348

o tary 50 50 50 3 0.0200 113248

E| TarFACET_mo... I struct 4 0.0300 11.3148

E TargetAcqu!red : 0 2000 5 0.0400 11,3048

E TargetAcquire.. 2000012 double 0 2000

0+ 2000 2000 2000 6 0.0500 11.2948

HH THETASTAR 09348 09848 09848 7 0.0600 11.2848

% tHold 180 180 180 8 0.0700 11.2748
THR_ISP 210 210 210

HH THR_MASS_F... 0.3500 03500 0.3500 9 0.0800 11.2648

- THR_RESPONSE 0.0200 00200 00200 10 0.0900 11.2548

-5 THRESHOLD_.. 2 2 2 1 0.1000 11.2448

- THRESHOLD.... 10 _ 10 10 12 01100 112348

BE‘ ThrustCMD 2000014 double <Too.. =<Too..

] ThrusteMol 200001x2 double 00004 2000 13 0.1200 11.2248

HH ToL [0.0100;1,0000e-03] 1.0000... 0.0100 14 0.1300 11.2148

EE‘ TorqueCmds 200001x4 double <Too.. <Too.. 15 0.1400 11.2048

BE‘ TotalChargeTi... 00001 double 0 2000

T TotalDeltaV ~ 200001:2 doubie 0 2000 16 0.1500 111948

Figure 6: Table of MATLAB Output Arrays (left) and ThrustCMD1 Output Array (right)
If the data in the MATLAB output array is equivalent to the data in the output .csv file

from the autocode, then the autocode performs as expected and contains no errors. This
comparison can be seen in Figure 7.

170

gd Variables - ThrustCMD1
ThrustCWMD1

o 20000122 double

1 2
1118 11.170.. 0174516471943960 11.17 0.1743165
1119 11180.. 0.1648164719430960 11.18 0.1648165
1120 11.190.. 01545816471943960 11.19 0.1543165
1121 11.200.. 0.144816471943960 11.2 0.1448165
1122 11.210.. 0134516471943960 11.21 0.1343165
1123 11.220.. 0.124816471943960 11.22 0.1248165
1124 11.230.. 0114516471943960 11.23 0.1143165
1125 11.240.. 0.104816471943960 11.24 0.1048165
1126 11.250.. 0.0948164719439595 11.25 0.0943165
1127 11.260.. 0.08481647194395085 11.26 0.0848165
1128 11.270.. 0.0748164719439595 11.27 0.0743165
1129 11.280.. 0.0648164719439506 11.28 0.0648165
1130 11.290.. 0.0548164719439596 11.29 0.0543165
1131 11.200.. 0.04481647194395085 11.3 0.0448165
1132 11.210.. 0.0348164719439595 11.31 0.0343165
1133 11.320.. 0.0248164719439505 11.32 0.0248165
1134 11.230.. 0.0148164719439595 11.33 0.0143165
1135 11.340.. 0.00481647194395054 11.34 0.0048165
1136 11.350.. -0.00518352805604045 11.35 -0.0051335
1137 11.360.., 0 11.36 0.0000000
1138 11.370... 0 11.37 0.0000000

Figure 7: Comparison between the BurnTime output as seen in the MATLAB workspace
(left) and the BurnTime output as seen from the autocode .csv output file (right)

2.2 Verification Process for non-“MATLAB-logging” Autocode

The process described in Section 2.1 was developed using autocode, that when being
autocoded, used the option “include MATLAB logging.” This option in the autocoding
process created a library of the variables and their values that the resultant autocode could
access and use to initialize the timestep. This option was not used in more recent versions
of the autocode, which means that additional steps are required to acquire the needed data
from the autocode to compare with Simulink.

In order to initialize the timestep method which then calculates the required data at each
subsequent timestep, the initialization data from MATLAB must first be recorded
manually. This requires observing the Simulink simulation file and the autocode to see
which input variables are necessary to begin the timestep method. After listing the needed
variables, the code found in Figure 8 must be added to the embedded MATLAB code

171

within Simulink corresponding to the generation of that variable. After running the
simulation in Simulink with this added code, the variables will be output as a .csv file by
MATLAB.

BurnTimeFlag = MAX FireTime:

dimwrite("InZ.t=xt', ThrustCHD1l, 'delimiter', " "', '"mewline', 'pc')
% replace InZ.txt with your output file and replace Pl v meas
¥ with the workspace wvariable you want

Figure 8: MATLAB code to record a required variable (in this example BurnTimeFlag)

Once the necessary variables’ data is logged into separate .csv files, changes in the
autocode must be made. Going into the autocode’s header file, the variables previously
logged manually must be defined according the same dimensions found in the MATLAB
output array. This header file initializes and defines the structure of the variables used
throughout the autocoded functions. The code required to define these structures is shown
in Figure 9.

typedef strunct {
real T prev[100000];
real T zbsave [1887];
real T cost[623];
real T RateTransition5[3];
real T RateTransition&[2];
real T RateTransition3[3];
real T wout[3]:
real T waypolint wvec[3];
real T SlewloVector out[3];
real T zb out[3]:
real T wd[3]:
real T wd_dot[3]:
real T burn gueus;
real T STORED Meas[15]:
real T t vec[3]:
real T lhatdot t[3]:
real T lhat tnext[3]:
real T R BFFZRSW[S]:
real T X[6]:
real T P[38]:
real T Temd[3]:
real T dt_burn;

real T cmd MagDipole [3]:

Figure 9: Code to define structure of input variable array in autocoded functions

Once this data is given a defined structure, it can then be assigned to the proper variable
found in the autocode. Figure 10 shows the code required to assign the data to the
corresponding variable in the autocode’s main file. Once the necessary variables are
defined, the autocode functions should run and produce the outputs. These files can then

172

be compared to the MATLAB output arrays in a similar fashion as the “MATLAB-
logging” capable process.

vold rt OneStep(void)
{

memcpy (MasterSubsystemd T.Inl = Inl, sizeof(Inl));:
memcpy (MasterSubsystemd U.In2 = In2, sizeof(Inl));
MasterSubsysteml U.In4 = In%;

memcpy (MasterSubsystemd U.Tns = Ins, sizeof (Ins));
MasterSubsystem) U.Iné = Iné;
MasterSubsystemd T.InT7 = In7;

MasterSubsysteml U.Ing Ing;

MasterSubsystem0 U.In3 InS;

MasterSubsystemd T.Inld = Inld;

MasterSubsysteml T.Inll = Inll;
MasterSubsysteml T.Inl2 = InlZ;
MasterSubsystem) U.Inl3 = Inl3;

Figure 10: Block of code that assigns autocode variables to input data arrays

2.3 Error in Data Comparisons

While comparing the autocode outputs with the Simulink outputs, it is important to note
that the two types of data do not match exactly. This is largely due to rounding errors in
the .csv file. Looking at the .csv file containing the data of the autocode outputs, for certain
variables such as the relative velocity vector, the values appear as -0.00000X while the
corresponding value in the MATLAB output array is has more significant figures and a
more precise value. The .csv file rounds these excessive significant figures. However, these
small rounding errors can be disregarded since the two output files agree to several
significant figures.

2.4 Autocoding Verification Conclusions

The process developed to verify that the autocode outputs were equivalent to the Simulink
and MATLAB outputs was successful. The outputs from the autocode matched the outputs
from Simulink simulation within the aforementioned degree of error. However, it is
important to distinguish that this verification process is an open-loop system and does not
test a closed-loop dynamic model. The inputs fed into the autocode are simply saved values
from the Simulink code. This means that at each timestep, there is an already defined input
used to calculate the corresponding output. The output from the previous timestep is not
fed back into the next timestep through spacecraft plant and dynamics models because
these models are not autocoded. If the output from a previous timestep was then used to
calculate the input for the next, this would be a closed loop system. In the process described
in this section, the inputs are independent of the outputs from the previous timestep. With

173

a closed loop process, the necessary Spacecraft Hardware Plant and Environment Models
would need to be autocoded in addition to the GN&C algorithms. Although a closed-loop
test was not performed, it was verified that the C code provides the same results as the
Simulink models at each individual open-loop timestep.

3. Integration with Flight Software

After the C code has been generated for use on the BeagleBoard, it must be integrated with
FSW. In the current understanding of the Prox-1 GN&C and FSW teams, the GN&C code
will be integrated as a monolithic sub-routine that is called during each timestep. This
process is illustrated in Figure 11, which shows that external variables are collected by
FSW from various sensors (1) and sent into the GN&C code (2), which then operates in
various modes. GN&C returns commands to FSW (3), which then distributes those
commands to actuator hardware such as the Propulsion and Attitude Determination and
Control Subsystem (ADCS) microcontrollers. In (2) and (3) FSW and GN&C will also
exchange mode logic variables, such as a command to enter ProxOpsMode from the ground
or an indication from GN&C that a Guidance command has been successfully executed.

— MV
)
3)

Figure 11: GN&C/FSW interface illustration

4

(Original Spring 2015 text; applicable when Prox-1 was using the Core Flight Executive)

The actual mechanism of integration between GN&C and FSW involves the Core Flight
Executive (CFE), which is code produced by NASA that greatly facilitates in the
production of flight software [2]. Once the C code is generated from Simulink, all files are
transferred to the Prox-1 CFE github repository. Under the apps directory, which is located
in FSW/cFE, a new gnc_app directory is created, and all the auto-coded files are relocated
here. The structure of the gnc_app directory is shown in Figure 12.

174

gnc_app

FSW

for_build mission_inc platform_inc sr

(app-specific (app-specific header (header files shared

makefiles) files) with other apps) (main code)

Figure 12: gnc_app directory structure

Most of the code is transferred to the src directory, while the header files that have
important information for other apps are placed in the platform_inc directory. Once the
files are relocated, a new C file is created, gnc_app.c, along with a header file, gnc_app.h.
The new C file follows CFE protocol for creating an app. The main function of gnc_app.c
listens for messages from other applications (mainly Prox_app, the master application for
Prox-1 FSW). The messages will contain a data type, along with a command ID that tells
GN&C what input the data corresponds to (message ID’s are defined in the platform_inc
subdirectory). The main function also has logic that determines if all thirteen inputs
necessary for GN&C to run have been received. If not, the main function continues on a
loop.

Once all the inputs are received, gnc_app.c calls MasterSubsystem0.c, which is the main
auto-coded C file from Simulink. The Master Subsystem takes the inputs and calculates an
output structure. The output structure is forwarded back to the main application of
gnc_app.c, and then sent via a software bus to other applications.

To determine how to compile the application, MasterSubsystem0.c and its dependencies
were all compiled outside of CFE, independently, alongside a tester file ert_main.c. It was
discovered that the C flag —Im is required for compilation. With this information,
compilation of gnc_app with CFE was very straightforward. The makefile within the
for_build subdirectory was modified to include all the necessary dependencies and the —Im

175

C flag necessary for compilation. Everything else was taken care of by the CFE, so that
when the whole of Flight Software was compiled, gnc_app compiled as well.

Testing of the FSW/GNC integration will be performed through an external daemon server
that poses as a serial device interacting with CFE. Since the flight computer will not receive
actual relevant data from hardware until it is in orbit, the daemon simulator is necessary to
test the performance of GN&C in an open-loop manner. The daemon server will obtain
“fake” input data from text files. The fake inputs are collected from the original Simulink
code, which has a hardware simulation module. These fake inputs are fed through the serial
port one by one, interacting first with the serial app, then going through the main Prox_app,
then finally making their way to gnc_app. The first test will involve making sure that the
autocoded GN&C function does not execute the first iteration until it receives all thirteen
inputs. The next test will involve running GN&C through a certain number of iterations
while comparing the output structures to the outputs in the original Simulink model outputs
using a process similar to the one presented in Section 2.

Finally, a closed-loop test will be performed using hardware-in-the-loop simulation with
the FSW on the BeagleBoard connected to the Spacecraft Plant and Environment models
in Simulink via MATLAB’s XxPC Target toolbox. This test will verify that the completed
gnc_app within the FSW code performs in the same manner as the GN&C algorithms in
Simulink using the same Simulink simulation plant and environment models.

(Updated Spring 2017 text after Prox-1 abandoned cFE in favor of a custom executive)

The algorithms, initially after the autocoding process, are stored in a main C file as
hundreds of individual functions. Within this C file, four main functions (here called step
functions) handle the operation of the algorithms, and thus act as the main functions of the
autocode. For each time step, a step function is called, with the hardware variables (sun
sensor data, accelerometer data, etc.) as inputs. The step function then determines which
algorithms to run, based on the elapsed time of the mission. All four step functions must
work together in unison at any given time step, such that the entire system resembles the
Simulink model as closely as possible.

The goal of the integration process is to retrieve the hardware variables from flight software
and pass them into all four step functions synchronously at each time interval. The outputs
of the model must then be read and sent to the hardware as soon as possible, ideally within
the same time step. To facilitate this integration process, a C file was created in the flight
code directory that was responsible for handling the GN&C step functions. Called gnc.c,
this file first defines all of the flight parameters that are not hard-coded into the model.
This includes variables such as moments of inertia, mass, dimensions. It also includes
variables which are subject to change. The file therefore contains a function, which, if

176

called from the main flight code (due to a ground command), would change the value of
the parameter and update the system. This allows for real-time parameter tuning.

After defining the parameters, the gnc.c file has an initial function which is called by the
main flight code on startup. This function essentially creates the memory blocks which
will store all of GN&C’s data structures, and then populates them with the appropriate
initial values. It also creates mutexes. Mutexes are useful for accessing the same variable
from two different synchronous processes. If one process locks a mutex, it can perform a
line of code that can’t be accessed by another process until the mutex is unlocked. This
avoids the essential problem of different threads trying to read and write to the same
memory block at the same time (which would result in data corruption).

The “main” function of gnc.c is essentially a loop that runs every 0.1 seconds. During each
iteration of the loop, the inputs for GN&C are retrieved. Most inputs are simply pulled
from the flight code, which is already set up to retrieve hardware states via C&DH. Some
inputs, however, are liable to change depending on how much time has passed, or on what
state the satellite is in. For example, during detumble, certain inputs to GN&C must be
manually set off (more information regarding the specifics of GN&C inputs can be found
in other documentation). Therefore, the chief role of this main function is to use a series
of logical checks, based on global state and mode variables, as well as the elapsed time of
the mission, to determine the settings of certain inputs. After all inputs are obtained, they
are stored inside of GN&C’s global inputs structure using mutexes.

A separate function in gnc.c, called the run loop, runs separately from the main loop. It
also runs every 0.1 seconds. At each iteration, the inputs structure is passed to each of the
four step functions. The output of the step functions are stored in the outputs structure.
The run loop then reads variables from the outputs structure and passes them to the main
flight code, which are then sent to the appropriate hardware modules for command
actuation.

In the main flight code, two pthreads are created at execution (after the startup routine).
Pthreads are essentially sub-processes that can run independent of the main flight code.
The first pthread calls the main loop of gnc.c, while the second pthread calls the run loop.
At this point in the code, GN&C will start running in the background. This method of
integration makes it much easier for engineers working on the main flight code to interface
with GN&C. For example, each time Flight Software takes a hardware reading, it must
simply store the corresponding values in the input structure of GN&C. The subprocess
will take care of everything else. Likewise, to send an appropriate command to a piece of
hardware, Flight Software must simply read the corresponding value from the output
structure.

177

References

[1] Jackson, M.C. and Henry, J.R., “Orion GN&C Model Based Development:
Experience and Lessons Learned,” AIAA-2012-5036, AIAA Guidance, Navigation,
and Control Conference, Minneapolis, Minnesota, August 2012.

[2] “Core Flight Executive (cFE),” Goddard Space Flight Center, Maryland, February
2015. [http://opensource.gsfc.nasa.gov/projects/cfe/index.php. Accessed 3/31/15.]

Appendix: Common Autocoding Errors

This section will show examples of common errors that occur during the autocoding
process and how to fix them. When referenced, a “MasterSim” is a term for the Simulink
file that is your master simulation, which contains all GN&C algorithms, spacecraft plant,
and environment models. Errors shown list specific variable/function/model/path names
but when debugging your own MasterSim the errors will be customized to your design.

Good rules of thumb to help with deal with errors:

1. Save often. You never know when MATLAB is going to throw a fit and you
suddenly lose all of your unsaved work.

2. Make sure all Paths and proper initialization files are set up correctly.

3. Before the building phase, create a MasterSim which contains every component in
one giant model as opposed to linking to external files. While this is a tedious
process, it will prevent many future headaches.

4. Make sure your MasterSim can compile before you even try to build it. If it can’t
even run in MATLAB why would it run in C?

Initialization Errors

These errors occur because the initialization files (MATLAB scripts that must be run before
the Simulink model is run) are not behaving properly.

“Undefined function or variable 'RP".
Error in SpacecraftPlant_EnvironmentModel_Init (line 108)
P = (RE + RP)*(1+e_LS); %Semi-latus rectum (m)”

If there is more than one initialization file it is standard practice for one file to be the
‘primary’ initialization file. This primary .m file will then usually call all other necessary
initialization files. When working under this design paradigm, it is therefore only necessary
to call the primary file. If you run the wrong file mistaking it for the primary one or even
run a secondary initialization file after already running the primary one, you may get this
error. Secondary initialization files are written to assume they will be called by the primary
file, meaning running them on their own will usually fail due lack of access to all of the
defined primary variables.

“License checkout failed.

License Manager Error -4

Maximum number of users for Aerospace_Toolbox reached.
Try again later.

178

To see a list of current users use the Imstat utility or contact your License
Administrator.

Troubleshoot this issue by visiting:
http://www.mathworks.com/support/Ime/R2014b/4

Diagnostic Information:

Feature: Aerospace_Toolbox

License path:
C:\Users\jsussman3\AppData\Roaming\MathWorks\MATLAB\R2014b_licenses;C
\Program Files\MATLAB\R2014b\licenses\license.dat;C:\Program
Files\MATLAB\R2014b\licenses\network.lic

Licensing error: -4,132.

Error in HIL_6DOFMasterSim4_Init. TACTest (line 149)
gq0_P1 = angle2quat(0,1,0); %initially point toward target”

The model was written with a Mathworks toolbox that you do not have access to. In this
case it is the Aerospace Toolbox. To prevent this error from happening either make
absolute sure everyone in the team is developing on the same environment or try to
minimize use of toolbox functions in favor of writing custom versions yourself. To fix this
example for instance you can rewrite line 149 as follows:

Q0_P1 = vector2quat([0;1;0]);

As long as you actually write the vector2quat function to be functionally equivalent to its
toolbox’s counterpart, the initialization file should be able to run. This newly written
function however is probably slower to execute than the toolbox version since it is not
designed for efficiency by MathWorks. Be careful of replacing too many toolbox functions.
It can make your code harder to debug and can slow development considerably. In an
industry like Aerospace if you can’t afford a required software license, you probably can’t
afford launching satellites in the first place.

“Undefined function 'ROT3' for input arguments of type 'double’.

Error in SpacecraftPlant_EnvironmentModel_Init (line 121)

ro_LS =
(ROT3(omega_LS)*ROT1(inc_LS)*ROT3(Omega_LS)) *"*[rO0_LS*cos(f0
_LS);

Error in HIL_6DOFMasterSim5_Init. TACTest (line 268)
SpacecraftPlant_EnvironmentModel_Init;”

This error was caused by an initialization file which referenced a function located in a

model not currently in the Path. To fix this, simply add the offending model to the Path and
run the initialization file again.

179

Compilation Errors

These errors occur when attempting to run the MasterSim. Failure at this step prevents you
from moving on towards code generation.

“Model 'Detumble_Controller Model3 _2012a’ not found.”

In this case, a certain model (the Detumble Controller) is not connected to the MasterSim.
To fix this, locate the model in MasterSim. It should be blocked in red. Double click on
this block and point Simulink to where the model is located. When the popup box appears
asking to add the file’s location to the Path click ‘Add to Path’.

“Error evaluating expression 't0' for 'StartTime' specified in the Configuration
Parameters dialog for block diagram 'Detumble_Controller_Model3_2012a'"
Undefined function or variable 't0'.”

Did you run the initialization file before running the MasterSim? This error can occur if a
user is so hasty to compile the MasterSim that they forget to run the initialization files first.

“Undefined function or variable 'v_desired'. The first assignment to a local variable
determines its class. Function 'P1 - Guidance (FOUO)/pl_r2r_apf v2 (FOUO)'
(#135.3666.3675), line 93, column 17: "v_desired" Launch diagnostic report.”

When preparing a model for autocoding or simply when rearranging a model for aesthetic
purposes in Simulink, you may accidentally break one of the MasterSim’s connection lines.
To remedy this, locate where the undefined function/variable is in the context of the entire
MasterSim and then trace the model to the offending location, fixing any broken
connections lines along the way.

“Size mismatch (size [3 x 1] ~= size [3 x 3]). Function 'P1 - Guidance
(FOUO)/pl_r2r_apf v2 (FOUO)' (#135.2475.2529), line 55, column 32:
"((rDc_trans*P*rDc)-1)*Q*rCt-(rCt_trans*Q*rCt)*P*(-rDc)"”

This error can occur if there is a broken connection just like the previous error. An
undefined variable used in a matrix declaration can change a matrix’s size and throw off
the rest of a model that anticipates a different size. This also could simply be a coding
mistake, where the programmer messed up on declaring a matrix of the proper size.

“File...5update\HIL_6DOFMasterSim5_Init._ TaCTest.m is not found in the current
folder or on the MATLAB path.

To run this file, you can either change the MATLAB current folder or add its folder
to the MATLAB path.”

This error will occur if your current working directory for MATLAB is not the one the

MasterSim is located in or if the MasterSim’s folder is not in the Path. In the pop-up that
follows this error click ‘Change to folder’ or ‘Add folder’ to remedy this.

180

matlab:open_system%20('Detumble_Controller_Model3_2012a')
matlab:das_dv_hyperlink('DAS','id','135.3666.3675')
matlab:das_dv_hyperlink('DAS','id','135.2475.2529')

“MATLAB has encountered an internal problem and needs to close.

The unsaved information you were working on may be lost. We are sorry for the
inconvenience.

Click Never Send to disable sending information to MathWorks (saved in
preference).

Click Send to send this information to Mathworks.

Click End Now to close MATLAB now.

Click Attempt to Continue to try to return briefly to MATLAB. You might be able to
save your work.

Do not continue your MATLAB session after trying to save your work. Further
operations are unreliable.

You must close and restart MATLAB in order for the program to operate correctly.
Click Details to see what will be sent to MathWorks if the Send button is clicked.”

Sometimes compilation will result in an ultimate error that forces you to shut down your
working session and restart.

Clicking on Details usually results in a file telling you that an Access violation has been
detected. This can have happened for a number of reasons. A simple example would be if
you had a mismatched GOTO tag that didn’t have a proper pair. To prevent issues with
GOTO tags in general you can bus every variable into the required model. This requires
more effort but is generally safer and results in less issues during the building phase.

Building Errors

These are errors that occur when building the compiled model into C code. Most building
errors occur from either not having MATLAB properly set up, not compiling the
MasterSim in the form of one complete file, or not ridding your simulation of extrinsic
functions.

“An installed compiler was not detected. Certain simulation modes, as well as host-
based coder builds require that a compiler be installed. Please install one of the
supported compilers for this release as listed at:
http://www.mathworks.com/support/compilers/R2014b/win64.html MATLAB must
be restarted after the compiler is installed.”

As the error tells you, the proper compiler is not installed. Make sure you have the right
compiler and then continue.

“Configuration component 'RTWSystemTargetFile' of model
'HIL_6DOF_MasterSim4_APF _RelOD_TA' and configuration component
'RTWSystemTargetFile' of model ‘ImageGen_SensorModel_v3' are not
compatible. The error message returned by the comparison function is: The
parameter setting for 'RTWSystemTargetFile' must be the same for all models in
the model reference hierarchy”

181

matlab:das_dv_hyperlink('DAS','mdl','HIL_6DOF_MasterSim4_APF_RelOD_TA')
matlab:das_dv_hyperlink('DAS','mdl','ImageGen_SensorModel_v3')

If you try to build a model that contains externally-linked models there are a whole slew
of problems that can occur. This is an example of MATLAB telling you directly that the
configuration setting for two models are incompatible. Oftentimes, the Diagnostic Viewer
is much less telling and you might spend an hour or more researching and debugging the
error only to end up finding out that what caused the issue was a simple difference between
configuration settings for the two models. This is why it is a good paradigm to either
develop all models with the same configuration parameters from the get-go or to at the very
least create a version of the MasterSim that replaces a link to an external model with the
model itself.

“Error in Model block
'HIL_6DOF_MasterSim4_APF_RelOD_TA/NotocodeSubsystem/Prox-1
Hardware and Spacecraft Plant/Prox-1 Hardware

Models/Detumble_Controller_Model: the ‘Application lifespan’ must match
between the parent model 'HIL_6DOF_MasterSim4_APF_RelOD _TA' and the
referenced model 'TorqueRod_Hardware'. The parent model has a value of '1.0',
while the referenced model has a value of 'Inf'. To change this parameter, go to
the 'Optimization’ page of the Configuration Parameters dialog.”

This is another example of an error caused by dealing with externally-linked models. With
this error luckily the Diagnostic Viewer tells you how to fix the problem.

“The extrinsic function 'frame2im' is not available for standalone code generation.
It must be eliminated for stand-alone code to be generated. It could not be
eliminated because its outputs appear to influence the calling function. Fix this
error by not using 'frame2im' or by ensuring that its outputs are unused.”

This is an error caused by your model containing an extrinsic function. In MATLAB, an
extrinsic function is one which requires MATLAB to run. Since the function requires
MATLAB’s overhead it is not available for standalone code generation. Since the entire
point of autocoding is to reduce the overhead of a model without affecting its behavior you
should eliminate every output-affecting extrinsic function from the MasterSim and replace
it with an autocodeable variant.

This can be more difficult that it appears at first. While some extrinsic functions are
relatively simple and can be avoided by adding slightly more long-winded code, some
extrinsic functions (especially ones related to image processing) may take days to work
around. In these cases, you should read up on as much of the documentation for the
extrinsic function as possible and make sure you fully understand how the function works.
Then you have the choice of either:
a) Writing a MATLAB function that mimics the extrinsic function. This may be the
easier option but it can result in slower code.
b) Writing C code that mimics the extrinsic function and either manually inserting
this code into already generated code or importing the C function into MATLAB
as a .s file and referencing this function instead of the original extrinsic one.

182

Whichever way you choose, note that you should rigorously test your self-designed
function in order to make sure it is equal to Mathworks’ version in every conceivable
scenario the function would be put through.

Final Note

Just because your final C code was produced without throwing any errors in MATLAB
does not necessarily mean your code is error-free. It would be wise to test the C code
independently using the process defined in Section 2 to determine if in fact your model
behaves as expected.

183

APPENDIX B: UAV NERVOUS SYSTEM CONNECTION DIAGRAM

This appendix is referenced in Section 3.6 and shows the electrical connections for the upgraded UAV Nervous System. This version
of the nervous system contains two suites of sensors for two separate arms of a rotary wing UAV. Each arm of the copter has a Teensy
microprocessor (using Arduino code), an MPU-6050 accelerometer, a DS18B20 temperature sensor, and a 90A AttoPilot voltage and
current sense breakout board. One Teensy is powered by a 5V Universal Battery Elimination Circuit (UBEC) connection to the copter’s
lithium polymer battery, and the second Teensy is powered by a USB connection to the MeegoPad compute stick, which is also powered
by a 5V UBEC connection to the lithium polymer battery. Note that only one Teensy processor is connected to the MeegoPad via USB,
and sensor data is collected by the other Teensy and passed to the first Teensy over an 12C connection.

184

Arm A

Friky X84 Talomatny Rocovor
-1

Marstor Toansy (Am A

Pad 28 [ECL1)

F BEARE)

Fad 30 (S0A1}

= |

MoogoPad Computa Stick

END Powar
SV UBEC

D Posar

BNV UBEC

e -1

GHD | F
i Digital Pin 3 GHD
. *
Posasor
GND D
- L, | GAD
usE E _"‘E;" *
-
o Pl e L
1 o4
use =313V
F Copinr Eattory |
T Peorastir
D5 18E20 (Temparaturad Sigruail il signai Y
——
- =5y
END GHE | |
GHD 2 =
AzoPilet Vollago and Currant Serso Breakout & - 508
ESG A GMD
GMD S04 Fower
Cumand Waas
woiie Voltage Moas|
Fowar

{SCLy

Analog Pin 5 ‘

Analog Pin

voo

« ELLM

Huoﬁ'ilu'c

185

Arm B

Pad 28 (SCL1)

Fad 30 (SDA1)

VoD

"o

GND
A Vi (5V)
»{s o
¢
DS 18820 (Tamparatures) Signa _m_.
|

AzoPilct Voitage and Curment Sensa Breakout B - 90A

ESC B GND

[

ESC B Powaor

p =
- 8
Power eV o

GND b———

[N *QUT
Currant Maas

"

sen*

AttoPilot

.

2
(=]
4
&

186

APPENDIX C: MARS SAMPLE RETURN
SUBSYSTEM TAXONOMY

This appendix is referenced in Section 4.5.1 and contains the complete subsystem
taxonomy for the Sample Return Orbiter (SRO). It is shown in text format for readability.
This includes components for the Rendezvous OS Capture, Telecom, Flight Software,
Command & Data Handling, Guidance, Navigation, & Control, Propulsion, Electrical
Power, and Thermal Control subsystems. Note that the SRO is still in the preliminary
design phase, so these components are listed in a generic and functional way because
specific components have not been selected for the mission.

Ground Support Systems
Mars Ascent Vehicle (MAV)
Orbiting Sample container (OS)
Space-Based Support Systems
Sample Return Orbiter (SRO)
Telecom
Antennas & Gimbals
Radio Hardware/Software
Capture Door Closure Fault
Flight Software
Fault Protection software
VML Sequencing
Command & Data Handling
Flight Processor

Solid State Recorder

187

Data Busses
Propulsion
Reaction Control System (RCS) Thrusters
Solar Electric Propulsion (SEP) Thrusters
Propellant Tanks
Electrical Power
Solar Arrays & Gimbals
Batteries
Power Distribution & Busses
Thermal Control
Thermal Sensors
Heaters
Guidance, Navigation, & Control (GN&C)
GN&C Mode/Decision Logic
GN&C Software Components
Attitude GN&C Software
Attitude Determination Algorithms
Attitude Guidance Algorithms
OS Mosaicing Algorithm
Attitude Constraints
Attitude Control Algorithms
Translational GN&C Software

Orbit Determination Algorithms

188

Image Processing Algorithms
Orbit Determination Filters
Orbit Control Algorithms
Orbit Guidance Algorithms
Solar Electric Propulsion Inertial Guidance
Rendezvous Relative Guidance
GN&C Hardware Components
Attitude Determination Sensors
Inertial Measurement Unit
Star Tracker
Sun Sensors
Attitude Control Actuators
Reaction Wheels
RCS Thrusters (propulsion)
Rendezvous Sensors
Narrow Angle Camera (NAC) [hawk]
Medium Angle Camera (MAC) [dog]
Wide Angle Camera (WAC) [fish]
Long-Wave Infrared (LWIR)
LIDAR
Rendezvous OS Capture System (ROCS)
OS Sensors

Laser Curtain

189

OS Confirmation Sensor
Force/Torque Sensors
Flashlight
Capture Volume (container for capturing OS)
Capture Door
Reorientation Hardware
Break-the-Chain Hardware

Earth Entry Vehicle (EEV)

190

APPENDIX D: FULL FAULT TREE FOR MARS SAMPLE RETURN
TERMINAL RENDEZVOUS AND CAPTURE PHASE

This appendix is referenced in Section 4.5.1 and lists the complete GN&C fault tree for the
Mars Sample Return autonomous terminal rendezvous and capture phase. A text format is
used here for the fault tree rather than a graphical format to improve readability. Faults in
bold were selected to be examined in greater detail, as described in Appendix E.

Failure to Capture the OS
Fault During Approach
Relative Orbit Determination Fault
Rendezvous Sensor Data Fault
Sensor Hardware Fault
Sensor Loses Power
Sensor Settings Incorrect
Solid-State Recorder Malfunction
Sensor Background Noise
Radiation-Induced Noise
Temperature-Induced Noise
Stray Light Glint
OS Passes Too Quickly Through Imager FOV
SRO Angular Rates Too Great
OS Relative Velocity Too Great
Sensor FOV Impaired
Lens Fogged Due to Outgassing

Spacecraft Component in FOV

191

Debris in FOV

Poor Conditions for OS Tracking
OS Surface Properties Unfavorable
OS Blends Into Background
OS in Eclipse or Shadow (visual only)
Phase Angle Unfavorable
Flashlight Malfunction (visual only)

LIDAR/IR Sensor Faults

No OS Data from Sensors

Orbit Determination Computation Fault

Image Processing Fault

Navigation Software Fault

Mosaicing Algorithm Misses OS

Orbit Perturbations Differ from Models
OS Outgassing Perturbs Orbit
SRO Plume Impingement on OS
Atmospheric Drag Perturbs Relative Orbit
Other Orbit Perturbation Mismodeling

Incorrect Model Parameters (i.e. OS optical properties)

Ephemeris or Timing Fault

Filter Does Not Converge

Guidance & Control Fault

Attitude Fault

192

Degraded Attitude Knowledge

Inertial Measurement Unit Fault
No Data Output
Reset/Excessive Reset
Bias/Scale Factor Offset
Measurement Drift

Star Tracker Fault
No Output
Bias/Incorrect Output
Excessive Current Draw
Optics Contamination
Optics Coating Degradation
False/Intermittent Star ID
Temporary Lock-Up
Noisy Measurements
Sun Sensor Fault

Attitude Filter Does Not Converge

Degraded Attitude Control

Reaction Wheel Fault
Wheel Stuck/Seized/Not Rotating
Increased Drag/Friction
Excessive Current Draw

Excessive Vibration

193

Tachometer Fault
Drive Electronics Fault
Wheel Momentum Saturated
Reaction Control System Thruster Fault
Thruster Fails to Actuate
Thruster Stuck On
Tank heater fault
Propellant line freezing
Trajectory Fault
Maneuver Fault
Incorrect Timing, Direction, or Delta-V for Burn
Deadband Violation Does Not Trigger Manuever
Degraded Translational Control
Unable to place OS inside capture cone
OS not aligned with capture cone
Rotation Rate Too High
Relative Velocity Too High
Guidance & Control Software Fault
Sequencing Fault
Spacecraft Reboot
Unable to Meet Conditions that Allow Transfer to a Key State
Tolerances on parameters too tight

Unexpected configuration

194

Telemetry Reporting Fault
Logical Error in Sequence
Premature Entry into any State
Logical Error in Sequence
Sequencing Software Coding Fault
Ground Command Halts or Unloads Sequence
Incorrect Config File Version Loaded
Fault During Capture
Capture Door Closure Fault
Door Close Timing Fault (Early/Late Closure)
Door Close Signal Does Not Activate
Door Mechanism Fault
Unexpected OS Dynamics
OS Spin Rate Exceeds Capture Requirement
OS Energy Exceeds Capture Capability
OS Impacts ROCS Components
Capture Detection Sensor Fault
Door Sensor Fault
OS Confirmation Sensor Fault
Force/Torque Sensor Fault

Sun Interference/Spoofing

195

APPENDIX E: PRELIMINARY MSR FAULT PROTECTION
STRATEGIES AND REQUIREMENTS

This appendix is referenced in Section 4.5.2 and lists preliminary fault protection strategies
and requirements for the selected faults from the Mars Sample Return fault tree in
Appendix D. The selected faults are difficult to detect, diagnose, or respond to in a safe
and timely manner and have high consequences for autonomous rendezvous and capture.

® Relative Orbit Determination Faults

e No OS Data From Sensors

|Time to Detection |Diagnosis |Response
Criticality

Depends on Time counter Test hypotheses Depends on
range to OS since last for various diagnosed fault
sensor possible faults

measurement

Possible Intermediate Faults:

» Sensor Hardware Fault * LIDAR/IR Sensor Faults
Sensor Background Noise * Orbit Determination
0S Passes Too Quickly Thru FOV Computation Fault
Sensor FOV Impaired * Orbit Perturbations Differ

Poor Conditions for OS Tracking from Models

o0 The flight system shall stop maneuvers if no OS data is received
from the rendezvous sensors during the passive abort region (Zone
1) of autonomous rendezvous.

o0 The flight system shall abort from autonomous rendezvous if no OS
data is received from the rendezvous sensors during the active
abort region (Zone 2).

o0 The flight system shall restore measurements of OS position within
<30 seconds> (TBR) if no OS data is received from the rendezvous
sensors during the unavoidable intercept region (Zone 3).

o0 The flight system shall restore measurements of OS position within
<15 minutes> (TBR) if no OS data is received from the rendezvous
sensors during all other subphases.

196

e Stray Light Glint

Depends on Change in Nature of Change attitude

Range to OS estimated 0s change in to remove glint;
Dynamics; estimated OS reacquire OS if
Increase in dynamics needed

relative filter
covariance?

The flight system shall stop maneuvers if stray light glint on the
rendezvous sensors negatively impacts the ability to estimate the
OS relative orbit during the passive abort region (Zone 1) of
autonomous rendezvous.

The flight system shall abort from autonomous rendezvous if stray
light glint on the rendezvous sensors negatively impacts the ability
to estimate the OS relative orbit during the active abort region
(Zone 2).

The flight system shall perform autonomous rendezvous in the
presence of stray light glint on the rendezvous sensors during the
unavoidable intercept region (Zone 3)

The flight system shall preserve <40%> (TBR) of nominal relative
orbit estimation performance in the presence of stray light glint
during all other subphases of autonomous rendezvous.

e OS Plume Impingement Modeling Fault

Depends on Change in Nature of Adjust
Rangeto OS estimated 0S changein maneuvers

Dynamics; estimated 0S5
Increase in dynamics
relative filter

covariance?

(0}

(0}

The flight system shall stop maneuvers if plume impingement
causes unmodeled OS dynamics during the passive abort region
(Zone 1) of autonomous rendezvous.

The flight system shall abort from autonomous rendezvous if plume
impingement causes unmodeled OS dynamics during the active
abort region (Zone 2).

197

o0 The flight system shall perform autonomous rendezvous in the
presence of unmodeled OS dynamics caused by plume
impingement during the unavoidable intercept region (Zone 3).

o0 The flight system shall perform autonomous rendezvous in the
presence of unmodeled OS dynamics caused by plume
impingement during all other subphases.

e Filter Does Not Converge

o The flight system shall stop maneuvers if the relative orbit filter
does not converge during the passive abort region (Zone 1) of
autonomous rendezvous.

o The flight system shall abort from autonomous rendezvous if the
relative orbit filter does not converge during the active abort
region (Zone 2).

o0 The flight system shall restore relative orbit filter estimation within
<30 seconds> (TBR) if the relative orbit filter does not converge
during the unavoidable intercept region (Zone 3) of autonomous
rendezvous.

o0 The flight system shall restore relative orbit filter estimation within
<15 minutes> (TBR) if the filter does not converge during all other
subphases of autonomous rendezvous.

@ Attitude Determination & Control Faults

e Gyro Bias/Scale Factor

Depends on Increase in filter Compare with Swap to
range to OS covariance, rate Star Tracker redundant unit
error Data or reset

0 The flight system shall preserve <60%> (TBR) of nominal maneuver
performance in the presence of a gyro bias or scale factor during the
passive abort region (Zone 1) of autonomous rendezvous.

0 The flight system shall perform autonomous rendezvous in the
presence of a gyro bias or scale factor during the active abort region
(Zone 2).

o0 The flight system shall perform autonomous rendezvous in the
presence of a gyro bias or scale factor during the unavoidable
intercept region (Zone 3).

o The flight system shall preserve <40%> (TBR) of nominal maneuver
performance in the presence of a gyro bias or scale factor during all
other subphases of autonomous rendezvous.

198

o The flight system shall stop maneuvers in the presence of a gyro bias
or scale factor during autonomous capture.

e Star Tracker Temporary Lockup

Depends on Data output Sun sensor Swap to

range to 0S stops or power is still redundant unit
constant while active or reset
rotating

0 The flight system shall preserve <60%> (TBR) of nominal maneuver
performance in the presence of a temporary star tracker lockup during
the passive abort region (Zone 1) of autonomous rendezvous.

o0 The flight system shall perform autonomous rendezvous in the
presence of a temporary star tracker lockup during the active abort
region (Zone 2).

o0 The flight system shall perform autonomous rendezvous in the
presence of a temporary star tracker lockup during the unavoidable
intercept region (Zone 3).

o The flight system shall restore maneuver capability within <15
minutes> (TBR) in the presence of a star tracker temporary lockup
during all other subphases of autonomous rendezvous.

o The flight system shall stop maneuvers in the presence of a star tracker
temporary lockup during autonomous capture.

e Attitude Filter Does Not Converge

Depends on Very high Timeout Reset filter
range to OS covariance or no algorithm
valid solution

o The flight system shall stop maneuvers if the attitude filter does not
converge during the passive abort region (Zone 1) of autonomous
rendezvous.

0 The flight system shall abort from autonomous rendezvous if the
relative orbit filter does not converge during the active abort region
(Zone 2).

o0 The flight system shall restore attitude filter estimation within <30
seconds> (TBR) if the attitude filter does not converge during the
unavoidable intercept region (Zone 3) of autonomous rendezvous.

199

o The flight system shall restore attitude filter estimation within <15
minutes> (TBR) if the attitude filter does not converge during all other
subphases of autonomous rendezvous.

o The flight system shall stop maneuvers if the attitude filter does not
converge during autonomous capture.

e Reaction Wheel Momentum Saturated

Depends on Momentum RWA power Depends on

range to OS monitor or turned on but mission phase:
ineffective RWA not responding either desat or
commands to commands use RCS only

Note: One possible mitigation strategy is to not use
reaction wheels at all during the terminal rendezvous and
capture phase and rely on RCS thrusters

0 The flight system shall preserve <60%> (TBR) of nominal maneuver
performance in the presence of a reaction wheel momentum saturation
during the passive abort region (Zone 1) of autonomous rendezvous.

0 The flight system shall perform autonomous rendezvous in the
presence of a reaction wheel momentum saturation during the active
abort region (Zone 2).

0 The flight system shall perform autonomous rendezvous in the
presence of a reaction wheel momentum saturation during the
unavoidable intercept region (Zone 3).

o0 The flight system shall restore maneuver capability within <15
minutes> (TBR) in the presence of a reaction wheel momentum
saturation during standby in a holding location in autonomous
rendezvous.

o The flight system shall preserve <40%> (TBR) of nominal maneuver
performance in the presence of a reaction wheel momentum saturation
during all other subphases of autonomous rendezvous.

o The flight system shall perform autonomous capture in the presence of
a reaction wheel momentum saturation.

200

@ Trajectory Maneuver Faults

e OS Dynamics Exceed Capture Requirements

Depends on Output from Any dynamic Zone 1/2: Abort
range to OS relative orbit ~ parameter Zone 3: Attempt
determination projected to be capture with
filter outside of limits thruster
@intercept time corrections

o0 The flight system shall perform autonomous rendezvous even if the
projected (to time of capture) OS spin rate exceeds 3 RPM, relative
velocity exceeds 5 cm/s, or lateral offset exceeds 10 cm during the
unavoidable intercept region (Zone 3).

0 The flight system shall abort from autonomous rendezvous if the
projected (to time of capture) OS spin rate exceeds 3 RPM, relative
velocity exceeds 5 cm/s, or lateral offset exceeds 10 cm during all
other subphases.

e Incorrect Timing/Direction/Delta-V

Depends on Drifting outside Frequency and Fire thrusters to

range to OS of deadband location of remain in
deadband deadband; add
violations correction to
burns

o0 The flight system shall preserve <60%> (TBR) of nominal trajectory
performance in the presence of a trajectory maneuver error during the
passive abort region (Zone 1) of autonomous rendezvous.

0 The flight system shall perform autonomous rendezvous in the
presence of a trajectory maneuver error during the active abort region
(Zone 2).

o0 The flight system shall perform autonomous in the presence of a
trajectory maneuver error during the unavoidable intercept region
(Zone 3).

o The flight system shall preserve <40%> (TBR) of nominal trajectory
performance in the presence of a trajectory maneuver error during all
other subphases of autonomous rendezvous.

201

e Deadband Violation Does Not Trigger Maneuver

Depends on Timer to Veering Reset control

range to OS response after significantly off- algorithm
deadband course
violation

The flight system shall preserve <60%> (TBR) of nominal trajectory
performance in the presence of a deadband violation error during the
passive abort region (Zone 1) of autonomous rendezvous.

The flight system shall perform autonomous rendezvous in the
presence of a deadband violation error during the active abort region
(Zone 2).

The flight system shall perform autonomous rendezvous in the
presence of a deadband violation error during the unavoidable
intercept region (Zone 3).

The flight system shall preserve <40%> (TBR) of nominal trajectory
performance in the presence of a deadband violation error during all
other subphases of autonomous rendezvous.

® Sequencing Faults

e Tolerances on Transition Parameters Too Tight

Dependson Timer on how Checkthat Update
range to OS long each state parameters are transition
is expected to close to desired conditions
last values for (Abort if in time
transition critical ops)

(0]

(0]

(0}

The flight system shall restore nominal sequencing within <10
minutes> (TBR) in the presence of a sequence parameter tolerance
error during the passive abort region (Zone 1) of autonomous
rendezvous.

The flight system shall abort from autonomous rendezvous in the
presence of a sequence parameter tolerance error during the active
abort region (Zone 2).

The flight system shall perform autonomous rendezvous in the
presence of a sequence parameter tolerance error during the
unavoidable intercept region (Zone 3).

202

o0 The flight system shall perform autonomous capture after the OS
enters the capture volume in the presence of a sequence parameter
tolerance error.

e Ground Command Halts or Unloads Sequence

Depends on Receive Ground Prevent
Range to 0S ground command command from

command affects Executing or

other than seguence return to

abort execution previous
sequence

o The flight system shall restore nominal sequencing within <10
minutes> (TBR) in the presence of a sequencing ground command
error during the passive abort region (Zone 1) of autonomous
rendezvous.

0 The flight system shall abort from autonomous rendezvous in the
presence of a sequencing ground command error during the active
abort region (Zone 2).

0 The flight system shall perform autonomous rendezvous in the
presence of a sequencing ground command error during the
unavoidable intercept region (Zone 3).

0 The flight system shall restore nominal sequencing within <15
minutes> (TBR) in the presence of a sequencing ground command
error during all other subphases of autonomous rendezvous.

o The flight system shall perform autonomous capture in the presence of
a sequencing ground command error.

@ Capture Faults

e Door Close Signal Does Not Activate

~10 seconds Timer Door remains Close door if 0OS

open, inside; find OS
confirmation and reevaluate
sensor sees OS if OS not inside

o The flight system shall restore capture door close capability within
<10 seconds> (TBR) in the presence of a capture door close signal
error during autonomous capture.

203

Sun Interference/Spoofing of Laser Curtain

Intermittent or Sun direction Ignore affected

~10 seconds
spurious laser toward capture sensor

curtain volume opening
detection

0 The flight system shall maintain <60%> (TBR) of nominal laser
curtain sensor detection in the presence of sun interference or
spoofing during autonomous capture.

204

[1]

[2]

3]

[4]

[5]

[6]

[7]

REFERENCES

N. Dennehy, J.R. Carpenter, NESC Review of Demonstration of Autonomous
Rendezvous Technology (DART) Mission Mishap Investigation Board Review
(MIB), NASA Engineering and Safety Center Report, RP-06-119, Dec. 2006,
http://www.nasa.gov/pdf/167813main_RP-06-119 05-020-E_DART _Report_
Final_Dec_27.pdf, (accessed 10/9/15).

L. Fesg, N. Dennehy, et al.,, Fault Management Handbook, NASA Technical
Handbook, NASA-HDBK-1002, Apr. 2012, https://www.nasa.gov/pdf/636372
main_NASA-HDBK-1002_Draft.pdf, (accessed 12/12/16).

J. Winn, C. Bishop, Model-Based Machine Learning, Online Book,
http://www.mbmlbook.com/LearningSkills_Learning_the_guess_probabilities.html,
(accessed 12/15/16).

A. Zolghadri, The Challenge of Advanced Model-Based FDIR Techniques for
Aerospace Systems: The 2011 Situation, Progress in Flight Dynamics, Guidance,
Navigation, Control, Fault Detection, and Avionics, Vol. 6, Dec. 2013, pp. 231-248,
doi: 10.1051/eucass/201306231.

R.D. Rasmussen, Thinking Outside the Box to Reduce Complexity in NASA Flight
Software, NASA Study on Flight Software Complexity, Jet Propulsion Laboratory,
Pasadena, California, Mar. 2009,
https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf (accessed
10/26/17).

G.J. Cancro et al., Emphasizing Understandability, Flexibility, and Verifiability in a
Spacecraft Fault Management Autonomy System, AIAA Infotech@Aerospace
Conference, Seattle, WA, Apr. 2009.

G.J. Cancro, APL Spacecraft Autonomy: Then, Now, and Tomorrow, Johns Hopkins
APL Technical Digest, Vol. 29, No. 3, 2010, pp. 226-233.

[8] G.H. Horvath, G. Jones, R. Joshi, A Model-Based Approach to Verification of

Spacecraft Software using the SPIN Model Checker, AIAA Space 2009 Conference
& Exposition, Pasadena, California, Sept. 2009.

[9] A. Wander, R. Forstner, Innovative Fault Detection, Isolation, and Recovery Strategies

On-Board Spacecraft: State of the Art and Research Challenges, Deutscher Luft- und
Raumfahrtkongress 2012, Berlin, Germany, Sept. 2012.

205

https://www.nasa.gov/pdf/636372

[10] M. Nakamra, Y. Kawakatsu, C. Hirose, et al., Return to VVenus of the Japanese Climate
Orbiter AKATSUKI, Acta Astronautica, Vol. 93, 2014, pp. 384-389, doi:
10.1016/j.actaastro.2013.07.027.

[11] J. Day, A. Murray, P. Meakin, Toward a Model-Based Approach to Flight System
Fault Protection, IEEE International Conference for Aerospace, Big Sky, MT, Mar.
2012.

[12] J.F. Castet, M. Bareh, J. Nunes, et al., Fault Management Ontology and Modeling
Patterns, AIAA Space 2016, Long Beach, California, Sept. 2016

[13] M.D. Ingham, R.D. Rasmussen, M.B. Bennett, and A.C. Moncada, Engineering
Complex Embedded Systems with State Analysis and the Mission Data System,
Journal of Aerospace Computing, Information, and Communication, 2 (Dec. 2005).

[14] Stateflow Documentation, The Mathworks, Inc., http://www.mathworks.com/help/
stateflow/index.html, (accessed 7/6/16).

[15] P.Z. Schulte, D.A. Spencer, Development of an Integrated Spacecraft Guidance,
Navigation, & Control Subsystem for Automated Proximity Operations, Acta
Astronautica, 118 (Jan-Feb 2016), 168-186, doi:10.1016/j.actaastro.2015.10.010.

[16] N.F. Rouquette, T. Neilson, G. Chen, The 13th Technology of Deep Space One, IEEE
Aerospace Conference, Aspen, CO, Mar. 1999.

[17] P.J. Pingree, et. al., Validation of Mission Critical Software Design and
Implementation Using Model Checking, IEEE Digital Avionics Systems Conference,
Oct. 2002.

[18] M.C. Jackson, J.R. Henry, Orion GN&C Model Based Development: Experience and
Lessons Learned, AlIAA-2012-5036, AIAA Guidance, Navigation, and Control
Conference, Minneapolis, Minnesota, August 2012.

[19] G. Watney, L. Reder, S. Chang, JPL Statechart Autocoder (SCA) Rev. 2 Repository,
NASA Jet Propulsion Laboratory, Nov. 2016,
https://github.com/JPLOpenSource/SCA. (accessed 12/18/17).

[20] M. Aguilar, Fault Management Using Model Based System Engineering (MBSE)
Tools and Techniques, NASA Spacecraft Fault Management Workshop, Sept. 2011,

206

http://www.mathworks.com/help/

http://www.nasa.gov/pdf/637605main_day 1-michael_aguilar.pdf.
(accessed 10/8/15).

[21] A.M. Homar, AOCS Fault Detection, Isolation and Recovery: A Model-Based
Dynamic Verification and Validation Approach, Master’s Thesis, Department of
Computer Science, Electrical and Space Engineering, Lulea University of
Technology, Sept. 2014.

[22] J.F. Castet, M.L Rozek, M.D. Ingham, et al., Ontology and Modeling Patterns for
State-Based Behavior Representation, AIAA Infotech @ Aerospace, AIAA SciTech
Forum, Kissimmee, Florida, Jan 2015.

[23] B. Van Besien, Investigating Model-Based Autonomy for Solar Probe Plus, Johns
Hopkins Applied Physics Laboratory, Dec 2013, http://flightsoftware.jhuapl.edu/
files/2013/talks/FSW-13-TALKS/BVB-FSW-Presentation.pdf, (accessed 12/13/16).

[24] N. Muscettola, P. P. Nayak, B. Pell, B. C. Williams, Remote Agent: to boldly go where
no Al system has gone before, Artificial Intelligence, Vol. 103, no. 1-2, 1998, pp. 5-
47,

[25] J. Marzat, H. Piet-Lahanier, F. Damongeot, E. Walter, Model-based fault diagnosis
for aerospace systems: a survey, Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering, Jan 2012.

[26] M.B. Brown, S.A. Johnson, An Overview of the Fault Protection Design for the
Attitude Control Subsystem of the Cassini Spacecraft, American Control Conference,
Philadelphia, Pennsylvania, June 1998.

[27] P.C. Meakin, Cassini Attitude Control Fault Protection Design: Launch to End of
Prime Mission Performance, AIAA Guidance, Navigation, & Control Conference and
Exhibit, Honolulu, Hawaii, Aug. 2008.

[28] L.M. Fesq, MARPLE: An Autonomous Diagnostician for Isolating System Hardware
Failures, PhD Dissertation, Department of Computer Science, University of
California Los Angeles, 1993.

[29] K.O. Kolcio, Model-Based Fault Detection and Isolation System for Increased
Autonomy, AIAA Space 2016, Long Beach, California, Sept. 2016.

207

http://www.nasa.gov/pdf/637605main_day_1-michael_aguilar.pdf
http://flightsoftware.jhuapl.edu/

[30] G.A. Johnson-Roth, Mission Assurance Guidelines for A-D Mission Risk Classes,
The Aerospace Corporation, Report No. TOR-2011 (8591)-21, June 2011,
http://aerospace.wpengine.netdna-cdn.com/wp-content/uploads/2015/04/TOR-
20118591-21-Mission-Assurance-Guidelines-for-A-D-Mission-Risk-Classes.pdf,
(accessed 12/15/16).

[31] D.A. Spencer, S.B. Chait, P.Z. Schulte, K.J. Okseniuk, M. Veto, Prox-1 University-
Class Mission to Demonstrate Automated Proximity Operations, Journal of
Spacecraft and Rockets, Vol. 53, No. 5, July 2016, 847-863, doi:10.2514/1.A33526.

[32] D.A Spencer, R. Deshmukh, S. Pujari, G. Guecha, Mars Telecommunications
CubeSat Constellation Relay, Georgia Institute of Technology, Dec 2015,
http://www_slideshare.net/RohanDeshmukh10/mars-cubesat-telecom-relay-
constellationjpl-final, (accessed 12/15/16).

[33] S.B. Chait, D.A Spencer, Georgia Tech Small Satellite Real-Time Hardware-in-the-
Loop Simulation Environment: SoftSim6D, Master’s Project Report, Georgia
Institute of Technology, Dec 2015.

[34] 2015 NASA Technology Roadmaps - TA 4: Robotics and Autonomous Systems,
National Aeronautics and Space Administration, July 2015,
http://www.nasa.gov/sites/default/files/atoms/files/2015 nasa_technology roadmaps
_ta_4 robotics_and_autonomous_systems_final.pdf, (accessed 10/9/15).

[35] N.W. Green, A.R. Hoffman, H.B. Garrett, Anomaly Trends for Long-Life Robotic
Spacecraft, Journal of Spacecraft and Rockets, Vol. 43, No. 1 (Jan-Feb 2006), 218-
224, doi: 10.2514/1.14497.

[36] Aerospace Mission Failure Analysis for NASA Ames Research Center Design for
Safety Initiative, The Aerospace Corporation, Sept. 30, 2001,
http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/ROCKET_FAILUR
ES_FailureCauses_Peinemann.pdf, (accessed 12/13/16).

[37] J.H. Hayes, Building a Requirement Fault Taxonomy: Experiences from a NASA
Verification and Validation Research Project, 14th International Symposium on
Software Reliability Engineering, Denver, CO, Nov. 2003.

[38] B.E. Goldberg, K. Everhart, et al., Systems Engineering “Toolbox” for Design-
Oriented Engineers, NASA Reference Publication 1358, Dec. 1994,
http://www.hq.nasa.gov/office/codeqg/doctree/rp1358.pdf, (accessed 12/13/16).

208

http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/ROCKET_FAILURES_FailureCauses_Peinemann.pdf
http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/ROCKET_FAILURES_FailureCauses_Peinemann.pdf

[39] RJ. Simmons, Fault Tree Analysis, Tunghai University, Feb 2009,
http://www2.nuu.edu.tw/~er/reportfile/saminar/Fault_Tree_Analysis.pdf, (accessed
12/13/16).

[40] H.J Kim, W. E. Wong, et. al, Bridging the Gap Between Fault Trees and UML State
Machine Diagrams for Safety Analysis, 2010 Asia Pacific Software Engineering
Conference, Sydney, Australia, Dec. 2010, 196-205, doi 10.1109/APSEC.2010.31

[41] P.Z. Schulte, D.A. Spencer, N.G. Smith, M.F. McCabe, Development of a Fault
Protection Architecture Based Upon State Machines, 67th International Astronautical
Congress, Guadalajara, Mexico, Sept. 2016, IAC-16-D1.1P.2x32540.

[42] H. Liu, D. Derawi, J. Kim, Y. Zhong, Robust Optimal Attitude Control of Multirotors,
Australasian Conference on Robotics and Automation, Sydney, Australia, Dec. 2013.

[43] SparkFun Triple Axis Accelerometer and Gyro Breakout - MPU-6050, SparkFun
Electronics, https://www.sparkfun.com/products/11028, (accessed 7/6/16).

[44] Teensy 3.2, SparkFun Electronics, https://www.sparkfun.com/products/13736,
(accessed 7/6/16).

[45] MeegoPad T02 Second Generation Intel Windows TV Stick,
http://www.x86pad.com/t02.html, (accessed 7/6/16).

[46] Teensy Arduino Shield Adapter, SparkFun Electronics,
https://www.sparkfun.com/products/13288, (accessed 7/6/16).

[47] Predict k-nearest neighbor classification — MATLAB, The Mathworks, Inc.,

http://www.mathworks.com/help/stats/classificationknn.predict.html, (accessed
7/6/16).

[48] X8R-products, FrSky Electronic Co., Ltd., http://www.frsky-
rc.com/product/pro.php?pro_id=105, (accessed 7/6/16).

[49] Taranis X9D Plus, FrSky Electronic Co., Ltd., http://www.frsky-
rc.com/product/pro.php?pro_id=137, (accessed 7/6/16).

[50] One Wire Digital Temperature Sensor - DS18B20, SparkFun Electronics,
https://www.sparkfun.com/products/245, (accessed 7/6/16).

209

[51] AttoPilot Voltage and Current Sense Breakout - 90A, SparkFun Electronics,
https://www.sparkfun.com/products/9028, (accessed 12/18/17).

[52] Gens ace 5300mAh 22.2V 30C 6S1P Lipo Battery Pack — Gens Ace, Genspow GmbH,
http://www.gensace.de/gens-ace-5300mah-22-2v-30c-6s1p-lipo-battery-pack.html,
(accessed 12/18/17).

[53] P.Z. Schulte, D.A. Spencer, State Machine Fault Protection for Automated Proximity
Operations, 68th International Astronautical Congress, Adelaide, Australia, Sept.
2017, IAC-17-C1.5.11x36573.

[54] P.Z. Schulte, D.A. Spencer, Fault Protection for Mars Sample Return Autonomous
Rendezvous & Capture, Symposium on Space Innovations, Atlanta, Georgia, Oct.
2017,

[55] S. Ueda, T. Kasai, H. Uematsu, HTV Rendezvous Technique And GN&C Design
Evaluation Based on 1st Flight On-orbit Operation Result, AIAA/AAS
Astrodynamics Specialist Conference, Toronto, Canada, Aug 2010.

[56] E. De Pasquale, ATV Jules Verne: a Step by Step Approach for In-Orbit
Demonstration of New Rendezvous Technologies, 12th International Conference on
Space Operations, Stockholm, Sweden, June 2012.

[57] R.B. Friend, Orbital Express Program Summary and Mission Overview, Sensors and
Systems for Space Applications Il Conference, Orlando, Florida, Mar 2008.

[58] M. Delpech, J.C. Berges, S. Djalal, et. al., Preliminary Results of the Vision Based
Rendezvous and Formation Flying Experiments Performed During the PRISMA
Extended Mission, 1AA-AAS-DyCo0SS1-12-07, Advances in the Astronautical
Sciences, Vol. 145, 2012, pp.1375-1390.

[59] M. Sabatini, M., G.B. Palmerini, P. Gasbarri, A Testbed for Visual Based Navigation
and Control During Space Rendezvous Operations, 65th International Astronautical
Congress, Toronto, Canada, Oct 2014.

[60] D.A. Spencer, Automated Trajectory Control for Proximity Operations Using
Relative Orbital Elements, PhD Dissertation, Georgia Institute of Technology, May
2015.

[61] S. Nolet, Development of a Guidance, Navigation, and Control Architecture and
Validation Process Enabling Autonomous Docking to a Tumbling Satellite, Ph.D.

210

Dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, 2007.

[62] V.H. Nguyen, A.K. Chaudhary, D. Poladian, et al., The GN&C of the SMV (Space
Maneuver Vehicle) Flight Test Vehicle: Rapid Design of an Unpowered Autolanding
System, AAS GN&C 98-024, Annual AAS Rocky Mountain Guidance and Control
Conference, Breckenridge, Colorado, February 1998, pp. 264-265.

[63] R. Da Costa, M. Markus, G. Ortega, Rapid prototyping tool for development and
validation of GN&C onboard software, 54th International Astronautical Congress,
Bremen, Germany, Vol. 3, October 2003, pp. 1287-1294.

[64] S.M. Stewart, L. Ward, S. Strand, Distributed GN&C Flight Software Simulation for
Spacecraft Cluster Flight, AAS 14-032, 37th Annual AAS Guidance and Control
Conference, Breckenridge, Colorado, Jan-Feb 2014.

[65] Vision and VVoyages for Planetary Science in the Decade 2013-2022, Committee on
the Planetary Science Decadal Survey, National Research Council of the National
Academies, 2011, https://solarsystem.nasa.gov/docs/131171.pdf (accessed 9/4/17).

[66] R. Mattingly, L. May, Mars Sample Return as a Campaign, 2011 Institute of Electrical
and Electronics Engineers Aerospace Conference, Big Sky, Montana, Mar. 2011. doi:
10.1109/AER0.2011.5747287.

[67] J.E. Riedel, J. Guinn, et al., A Combined Open-Loop and Autonomous Search and
Rendezvous Navigation System for the CNES/NASA Mars Premier Orbiter Mission,
26th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, USA,
Feb 2003.

[68] D. Henry, C. Le Peuveic, L. Strippoli, F. Ankersen, Model-based Fault Detection
Isolation and Recovery and Fault Accommodations for a Rendezvous Mission around
the Mars Planet: the Mars Sample Return Case, 4" International Federation of
Automatic Control International Conference on Intelligent Control and Automation
Sciences 2016, Reims, France, Vol. 49, No. 5, June 2016. doi:
10.1016/j.ifacol.2016.07.124.

[69] T. Ormston, Time delay between Mars and Earth, Mars Express Blog, European Space
Agency, http://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/,
(accessed 4/11/18).

211

[70] B.V. Semenov, SPICE Reference Frames, NASA Ancillary Information Facility,
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/reg/frames.html, (accessed 4/2/18).

[71] T.A. Lovell, D.A. Spencer, Relative Orbital Elements Formulation Based upon the
Clohessy-Whiltshire Equations, Journal of the Astronautical Sciences, Vol. 61, No. 4,
Feb. 2015, pp. 341-366. doi: 10.1007/s40295-014-0029-6.

[72] C.A. Grasso, VML 3.0 Reactive Rendezvous and Docking Sequencer for Mars Sample
Return, AIAA SpaceOps Conference, Pasadena, California, USA, May 2014.

[73] L. Walker, “Automated Proximity Operations Using Image-Based Relative
Navigation” 26" Annual USU/AIAA Conference on Small Satellites, Logan, Utah,
August 2012, SSC12-VII-3.

[74] P.Z. Schulte, D.A. Spencer, M. Goggin, Mars Sample Return Terminal Rendezvous
Fault Protection, Journal of Spacecraft and Rockets, submitted Apr. 2018.

[75] P.Z. Schulte, D.A. Spencer, Generic State Machine Fault Protection Architecture for
Aerospace Vehicle Guidance, Navigation, & Control, Journal of Aerospace
Information Systems, submitted Jun. 2018.

[76] P.Z. Schulte, D.A. Spencer, Development of an Integrated Spacecraft Guidance,
Navigation, & Control Subsystem for Automated Proximity Operations, 65th
International Astronautical Congress, Toronto, Canada, Oct. 2014, 1AC-14-
C1.6.4x21108.

[77] K.J. Okseniuk, S.B. Chait, P.Z. Schulte, D.A. Spencer, Prox-1: Automated Proximity
Operations on an ESPA Class Platform, 29th AIAA/USU Conference on Small
Satellites, Logan, Utah, Aug. 2015.

[78] P.Z. Schulte, D.A. Spencer, On-Board Model-Based Fault Diagnosis for Autonomous
Proximity Operations, 69th International Astronautical Congress, Bremen, Germany,
Sept. 2018, IAC-18-C1.6x45016.

[79] P.Z. Schulte, J.W. Moore, A.L Morris, Verification and Validation of Requirements
on the CEV Parachute Assembly System Using Design of Experiments, AIAA-2011-
2558, 21st AIAA Aerodynamic Decelerator Systems Conference and Seminar,
Dublin, Ireland, May 2011.

212

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html

[80] P.Z. Schulte, E.G. Lightsey, K.B. Brumbaugh, R.L Staehle, Utilization of a Solar Sail
to Perform a Lunar CubeSat Science Mission, 2nd Interplanetary CubeSat Workshop,
Ithaca, New York, May 2013.

[81] Pellegrino, M., Gibson, A., Mariscal, J.C., Schulte, P., “UNISPACE+50: Shared
Vision, Common Action,” 68th International Astronautical Congress, Adelaide,
Australia, Sept. 2017, IAC-17-E3.1.1x37185.

213

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	SUMMARY
	CHAPTER 1. Introduction: Fault Protection State-of-the-Art
	1.1 Motivation
	1.2 Background
	1.2.1 Key Definitions
	1.2.2 Rule-Based Fault Protection Paradigm
	1.2.3 Model-Based Fault Protection Paradigm
	1.2.4 State Machine Logic and Applications
	1.2.5 Goal-Based Autonomy Paradigm
	1.2.6 On-Board Model-Based Fault Diagnosis

	1.3 Contributions of This Investigation
	1.3.1 Generic Fault Protection Architecture
	1.3.2 On-Board Model-Based Diagnosis
	1.3.3 UAV and Space-Based ProxOps Applications

	CHAPTER 2. Theory: Generic Fault Protection Architecture
	2.1 FDIR Architecture Concept Overview
	2.1.1 FDIR Architecture Requirements
	2.1.2 Development Environment in MATLAB/Simulink
	2.1.3 Enabling Advances in FDIR

	2.2 FDIR Architecture Characteristics
	2.2.1 Generic
	2.2.2 Modular
	2.2.3 Portable

	2.3 Generic Architecture Diagrams
	2.3.1 Generic GN&C Subsystem Taxonomy
	2.3.2 Generic Fault Tree Analysis
	2.3.3 Generic Functional State Machine
	2.3.4 Generic Diagnostic State Machine
	2.3.5 Generic Architecture Block Diagram

	2.4 Mapping the Generic Architecture to a Particular Application

	CHAPTER 3. Terrestrial Application: FalconViz UAV Nervous System
	3.1 Overview of FalconViz UAV Hardware and Typical Missions
	3.2 UAV Nervous System Requirements
	3.3 FalconViz UAV Subsystem Taxonomy and Fault Tree
	3.4 Fault Detection and Recovery Strategy
	3.5 Flight Test Results
	3.6 UAV Nervous System Upgrades
	3.7 Adaptation of Generic FDIR Architecture to UAV Nervous System

	CHAPTER 4. Space Application: Mars Sample Return Rendezvous and Orbiting Sample Capture
	4.1 Overview of Relative Proximity Operations
	4.2 Overview of Mars Sample Return Mission Concept
	4.3 Reference Frame and Relative Orbital Element Definitions
	4.4 Rendezvous & Capture Concept of Operations
	4.4.1 Initial Rendezvous Process
	4.4.2 Autonomous Terminal Rendezvous & Capture Process
	4.4.2.1 Phase 2C: Passive Standby
	4.4.2.2 Phase 3A: Final Hop
	4.4.2.3 Phase 3B-1: Standoff
	4.4.2.4 Phase 3B-3: Zone 1 – Passive Miss Region
	4.4.2.5 Passive Abort
	4.4.2.6 Phase 3B-4: Zone 2 – Active Abort Region
	4.4.2.7 Active Abort
	4.4.2.8 Phase 3B-5: Zone 3 – Unavoidable Intercept Region
	4.4.2.9 LocateOS
	4.4.2.10 Phase 3C: Capture

	4.4.3 Description of Terminal Rendezvous Maneuvers
	4.4.4 Example Mission Scenarios
	4.4.4.1 Nominal Approach Trajectory
	4.4.4.2 Passive Abort Trajectory
	4.4.4.3 Active Abort Trajectory

	4.5 MSR Fault Protection Requirements Development
	4.5.1 MSR GN&C Subsystem Taxonomy and Fault Trees
	4.5.2 MSR Rendezvous & Capture Requirements

	4.6 Fault Detection, Diagnosis, and Recovery Strategy
	4.7 Evaluation in Simulation
	4.7.1 Simulation Description
	4.7.2 Simulation Results
	4.7.2.1 Nominal Approach
	4.7.2.2 Faults Prior to V-Bar Approach
	4.7.2.3 Faults During V-Bar Approach

	4.8 Conclusion

	CHAPTER 5. Conclusions and Future Work
	5.1 Conclusions
	5.2 Publications
	5.3 Suggestions for Future Work
	5.3.1 Generic Fault Protection Architecture
	5.3.2 UAV Nervous System
	5.3.3 Mars Sample Return Rendezvous & Capture

	Appendix A: Autocoding Technical Memos
	Appendix B: UAV Nervous System Connection Diagram
	Appendix C: Mars Sample Return
	Subsystem Taxonomy
	Appendix D: Full Fault Tree for Mars Sample Return Terminal Rendezvous and Capture Phase
	Appendix E: Preliminary MSR Fault Protection Strategies and Requirements
	REFERENCES

