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SUMMARY 

Because of their complexity and the unforgiving environment in which they operate, 

aerospace vehicles are vulnerable to mission-critical failures. In order to prevent these 

failures, aerospace vehicles often employ Fault Detection, Isolation, and Recovery (FDIR) 

systems to sense, identify the source of, and recover from faults. Typically, aerospace 

systems use a rule-based paradigm for FDIR where telemetry values are monitored against 

specific logical statements such as static upper and lower limits. The model-based 

paradigm allows more complex decision logic to be used for FDIR. State machines are a 

particular tool for model-based FDIR that have been explored by industry but not yet 

widely adopted. This study develops a generic and modular state machine FDIR 

architecture that is portable to flight software. The study will focus on FDIR for the 

Guidance, Navigation, & Control subsystem, but it will be presented in a manner that is 

applicable to all vehicle subsystems. The state machine formulation is applied for on-board 

model-based fault diagnosis. Two specific case studies are employed to demonstrate the 

architecture. The first is a terrestrial application of unmanned aerial vehicles for 3D 

scanning and mapping, which is validated through flight testing. The second is a space-

based application of automated close approach and capture for a Mars sample return 

mission, which is validated through software-in-the-loop testing with flight-like software 

components.
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CHAPTER 1.  INTRODUCTION:                                                   
FAULT PROTECTION STATE-OF-THE-ART 

1.1 Motivation 

The capability to recover gracefully from hardware or software faults is critical for 

many aerospace applications. This is particularly true for autonomous missions involving 

proximity operations (ProxOps), where multiple vehicles are operating at close range. 

Previous ProxOps missions have experienced faults that resulted in a failure to meet 

mission objectives. For example, NASA’s Demonstration of Autonomous Rendezvous 

Technology (DART) spacecraft was designed to rendezvous with the Multiple Paths, 

Beyond-Line-of-Sight Communications (MUBLCOM) satellite in space and perform 

ProxOps maneuvers, as shown in Figure 1. DART experienced a mission failure when it 

collided with MUBLCOM during automated operations due to software errors that led to 

inaccurate range estimation. In a failure investigation report for DART, NASA 

recommended that “designers for such spacecraft should develop and adhere to a robust, 

detailed set of requirements for fault detection, isolation, and recovery in order to prevent 

a mishap” [1]. 
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Figure 1 – DART and MUBLCOMM performing ProxOps in space [1] 

In the development of aerospace systems, verification and validation (V&V) are 

often focused on demonstrating that software algorithms and systems will work under 

nominal conditions. The robustness of the system to off-nominal scenarios is often not 

tested. Even when system robustness is evaluated, it is difficult to evaluate all possible 

failure modes. As more missions undertake autonomous operations, there is an increased 

need for real-time prevention of failures through fault protection. These capabilities are 

especially necessary for time-critical operations such as rendezvous and ProxOps. Deep 

space proximity operations applications require advanced autonomy and fault protection 

due to the significant round-trip light time from Earth. 
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1.2 Background 

Some standardized fault protection nomenclature has been established in the 

aerospace industry. Also, several key paradigms of fault protection have been developed. 

This section provides some insight into trends in fault protection practice.  

1.2.1 Key Definitions 

The NASA Fault Management Handbook defines a failure as “the unacceptable 

performance of an intended function,” while a fault is defined as “a physical or logical 

cause, which explains a failure” [2]. This distinction is important because while failures 

should be avoided, faults are often unavoidable. For example, system designers may not 

be able to prevent a sensor malfunction (a fault), but they can prevent this malfunction from 

becoming a catastrophic failure through the use of fault protection (FP). Thus, fault 

protection systems aim to perform a three-step process called Fault Detection, Isolation, 

and Recovery (FDIR) in order to prevent failures. Fault detection involves determining that 

something unexpected has occurred. Fault isolation (also connected to diagnosis) 

determines the possible source of a fault. Fault recovery is an action taken to attempt to 

retain or regain control of the system state and mitigate the impact of the fault. These 

activities often happen simultaneously and can take on various degrees of specificity. FDIR 

systems avoid the presence of both false positives (non-faults that trigger the detection 

system) and false negatives (faults that go undetected). These FDIR errors are illustrated 

in Table 1. 
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Table 1 – Terminology of true and false positive & negative fault detection [3] 

  Fault Detection 

  Positive Negative 

Ground truth 
Positive True positive False negative 

Negative False positive True negative 

1.2.2 Rule-Based Fault Protection Paradigm 

Over the past decade, the development of FDIR for space missions has advanced 

significantly. A typical aerospace FDIR system is “a smart embedded system that is able 

to react to some know[n] events and to select a decision among a predefined set” [4]. 

Currently, the state-of-the-art in spacecraft FDIR involves using a set of rules that are 

checked against telemetry. These telemetry monitors are searching for fault symptoms, 

“ranging from explicitly detected constraint violations, to unexpected hardware behavior, 

to excessive performance errors, to broken deadlines and more” [5]. Pre-programmed 

responses are executed when one of these rules is violated [6,7]. For example, if a 

parameter persistently exceeds its expected range an action is taken by the system, such as 

transitioning the vehicle into safe mode, stopping all normal mission tasks and turning off 

all non-essential hardware until ground operators can resolve the fault.  
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Figure 2 – Example of the rule-based fault protection paradigm 

Consider the scenario illustrated in Figure 2, where a sample telemetry dataset 

representing the Y position of the vehicle in meters is plotted against time in minutes. The 

rule shown in the yellow box indicates that a fault is detected if the value of Y drops below 

1 meter or exceeds 2.5 meters for more than 1 min. Around 0.75 min, a single data point 

exceeds the limit, however a fault is not detected because the 1 min persistence threshold 

is not exceeded. Around 1.75 min, the Y value violates the lower limit consistently and 

triggers a fault detection around 2.75 min.  

Of course, the case presented here is a simple example. Many combinations of 

logical rules are possible, and they are implemented in FDIR systems with increasing 

complexity. For example, the Dawn mission to explore the asteroid belt makes use of 

Relative Time Sequences (RTS) that are triggered in response to Telemetry Monitors 

(TMons) being tripped [8]. Each RTS can then enable, disable, or start other RTS’s and 

can enable or disable TMons. Dawn contains over 250 RTS and over 250 TMons, all of 
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which are documented in an Excel spreadsheet. The system is so complex that a model-

based SPIN model checker was used for V&V to ensure that it was constructed with logical 

soundness [8]. 

Another key component of the rule-based FP paradigm is the use of “safe mode”. 

If something goes wrong that cannot be solved onboard, the spacecraft will autonomously 

transition to safe mode. Safe mode involves stopping all normal mission tasks, turning off 

all non-essential hardware to conserve power, orienting the spacecraft in a favorable 

attitude (for thermal concerns, power generation, and communications), and waiting for 

commands from the ground to return the spacecraft to normal operation mode. These 

functions are shown in Figure 3.  

 

Figure 3 – Typical changes to spacecraft functionality during Safe Mode 

A spacecraft should be able to survive in safe mode, but it will not be able to 

continue its mission until the problem is resolved on the ground and normal operations are 

restored. In this paradigm, detection of fault symptoms is usually mapped directly to a pre-

determined response sequence. In other words, fault diagnosis is performed by FP 

engineers at design time rather than by the system on-board in real-time. A typical sequence 
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for fault protection response is shown in Figure 4, with an example given for a camera 

power fault.  

 

Figure 4 – Typical Fault Protection response sequence 

Traditional Fault Protection proceeds in a hierarchical fashion [9], as shown in 

Table 2. First, a fault is detected inside a particular spacecraft hardware or software 

component and local corrections are attempted (Level 0). Next, the fault propagates up to 

subsystem software (Level 1). If subsystem software cannot resolve the fault, or if several 

faults occur simultaneously, then the system will be reconfigured (Level 2), such as 

switching to a full suite of redundant hardware. Failure of system control hardware or 

software, such as the flight computer that houses fault protection (Level 3) will also result 

in system reconfiguration. If multiple Level 2 or 3 failures or any major overall system 

failure occurs (Level 4), the spacecraft will transition into safe mode and rely on the ground 

team to investigate the fault and provide a resolution. 
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Table 2 – Traditional FDIR Response Structure, adapted from [9] 

Fault 
Level 

Response 
Level 

Description Impact Fault Detection System Recovery 

Level 0 Unit Internal Failure without 
effects on 
performance 

No impact on 
system 
performance 

Local in-unit 
checks 

Local in unit 
command retry, 
unit reboot 

Level 1 Subsystem 
Software 

Unit failure or 
subsystem 
performance 
degradation 

Degraded 
performance 
of subsystem 

In respective 
subsystem; 
limit checking of 
unit parameters 

Switch to 
redundant unit, 
command retry, 
reboot 

Level 2 System 
Reconfiguration 

Subsystem 
failure not 
recovered by 
previous levels 

Performance 
loss of 
subsystem 

Several alarms 
from unit level 0 
consistency 
checks 

Switch to 
redundant side, 
command retry 

Level 3 System Control 
Software 

Failure of 
equipment 
involved in 
FDIR 

Performance 
loss of 
subsystem 

Faults on FDIR 
units 

Switch to 
redundant side, 
command retry 

Level 4 Flight 
Operations 
System on 
Ground 

Multiple level 
2/3 failures, 
major overall 
system failure 

System 
performance 
loss; mission 
interruption 

Several alarms 
from level 2 & 3, 
Hardware alarms 

Change to 
safe mode, wait 
for ground to 
recover system  

In addition, it should be noted that for critical events such as orbit insertion, flybys, 

entry, descent, and landing, or rendezvous & ProxOps, safe mode is often “disabled” 

because the spacecraft must maintain a “fail-operational” rather than “fail-safe” response 

from onboard FDIR systems [2]. The critical event sequences must be completed and 

cannot simply be paused if a fault occurs because of the risk of loss of vehicle or mission. 

Typically, autonomous FDIR systems will put the vehicle into safe mode when a fault is 

detected and await input from ground operators, as occurred with the Japanese Venus 

Climate Orbiter Akatsuki during orbit insertion [10]. If the vehicle enters safe mode during 

mission-critical times, such as Akatsuki’s orbit insertion, certain objectives may not be met. 

In the case of Aktsuki, the spacecraft failed to enter orbit. It is the presence of such critical 

events that motivates a need for greater FP autonomy, especially in highly complex 

interplanetary missions. The rule-based paradigm often cannot handle critical events in a 
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fail-operational manner when long signal time delays make ground controllers unable to 

respond to faults in a timely manner [9].  

The rule-based fault protection paradigm has been used successfully for decades 

and is fairly straightforward to understand and test. Rule-based systems can be pre-

programmed without anticipating every possible scenario. The rule-based paradigm is the 

current standard for spacecraft fault protection and is used extensively in industry because 

of its utility and ease of implementation. However, several problems with this paradigm 

have been identified by FDIR practitioners. Adding logical expressiveness to enable more 

advanced rules (such as adding different kinds of logical operators or enabling multiple 

logical conditions in each rule) adds complexity to the system, reduces ease of 

understanding for developers and reviewers, and vastly increases testing time [6,7].  An 

example of a complex rule from [6] is shown here: 

OBS_NODE != MODE_ASCENT && TWTA_VOLT_EU > 5.0 && RF_EPC_ST 

> 0x4A && RF_TWT_ST > 0x4A && (( BATT_PRES1_EU > 650.0 && 

BATT_PRES1_ST == MUX_AD_OK ) || ( BATT_PRESS2_EU > 650.0 && 

BATT_PRESS2_ST == MUX_AD_OK )) 

Also, ad hoc approaches can result in gaps and inefficiencies in overall FDIR design [11]. 

In real mission scenarios, it can be difficult to determine the meaning or the cause when a 

fault detection rule is triggered, and it is not always clear how to respond to rule triggers. 

For example, as one FP practitioner has said in [5]: 

“Fault management systems generally respond to problematic “errors”, as 

undesirable deviations, but there is little discrimination between deviations from 
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modeled behavior, deviations from predictions, deviations from objectives, or 

deviations from “nominal” or “safe” conditions (neither of which is well defined). 

Similarly, it is not clear, when a threshold is tripped, whether this reflects an 

assessment of system state (e.g., a device has failed), an objective violation (e.g., 

the device cannot perform some required function), or a control decision (e.g., 

something must be done about the failure). In conventional designs, it could be any 

or all of these, conflated and demoted to an inscrutable act of arithmetic.” 

Another FP researcher [9] states that:  

“Literature reports conventional FDIR methods suffering from significant 

shortcomings, like often missing isolation of faults and failures on-board, only 

partial observability of the actual system status and no on-board knowledge at all 

about the general operational capabilities of the system.”  

Finally, although FDIR responsibilities are similar on various missions, the 

implementation of FDIR systems (including logical rule statements) often does not carry 

over from previous missions [6]. While principles of FDIR design and lessons learned do 

sometimes carry over, spacecraft design teams tend to develop custom sets of FDIR rules 

and rule-based systems from scratch based upon the specific needs and requirements of 

each new mission. 

1.2.3 Model-Based Fault Protection Paradigm  

The use of a new paradigm called model-based fault protection has been explored 

and implemented in some scenarios. This paradigm uses a model of the flight system’s 
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behavior and selects the “state” of the system based on telemetry. Model-based 

architectures are necessarily state-based, because all models used for system control must 

be state-based [5]. Using behavior models of system state allows more complex and 

insightful decisions to be made by the autonomous system about fault determination and 

response.  

One space systems engineering team at the Jet Propulsion Laboratory (JPL) has 

begun to analyze the FDIR problem in depth using model-based systems engineering 

approaches [11]. This team has developed an FDIR architecture using the SysML modeling 

language. Although this architecture is used for identifying, evaluating, and managing 

failure modes during the design and V&V phases, the implementation of FDIR for flight 

software (FSW) does not stem directly from the architecture. The example in Figure 5 

shows a model-based architecture of Guidance, Navigation, & Control (GN&C) failure 

modes for a generic Earth-orbiting satellite mission. Here GN&C activities (magenta) are 

connected to various failure modes (red), which could be related to a number of different 

possible causes (blue), and may result in various subsystem effects (yellow) and system-

level effects (orange). More recently, JPL has developed an ontology (formal technical 

vocabulary) for this kind of analysis, one important step toward enabling automated 

creation of traditional FP analyses such as Failure Modes, Effects, and Criticality Analysis 

(FMECA), Fault Tree Analysis (FTA), and Fault Containment Region (FCR) diagrams 

[12]. As mentioned in the previous section, the Dawn mission team at JPL also made use 

of a model-based logic checker during V&V of its FP system. A model of system behavior 

is required in order to perform checks of logic for consistency against specifications [8]. 
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Figure 5 – Example model-based fault protection architecture [11] 
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1.2.4 State Machine Logic and Applications 

The “state” of a system includes any “aspects of the system that we care about for 

the purposes of control” [13]. Traditionally, state variables have included continuous 

physical parameters such as position, velocity, attitude, temperature, and pressure. 

However, state variables can also include discrete quantities such as operating modes and 

device health. These discrete states can then be represented as state machines. State 

machines, or state charts, are a specific model-based tool used to represent complex logical 

relationships. They provide a visual block-diagram development that is fairly 

straightforward to understand and can be applied to fault protection [13]. Each block 

represents a specific state or sub-state of the system, and arrows between blocks represent 

transitions between states. A logical condition is associated with each transition, and if the 

condition associated with the transition becomes true, then the active state of the diagram 

will move from one state to another.  
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Figure 6 – Example usage of state machines for fault protection [13] 

The example state machine in Figure 6 shows the possible states of a camera power 

switch. There are two primary states of the switch, “Open” and “Closed”. Transitions 

between the states are activated when an “Open-cmd” or “Close-cmd” command is sent to 

the camera. Additional states and transitions such as “Tripped Open” (a fault state) and 

“Load overcurrent” (a root cause of the fault state) are added to illustrate a known fault 

condition of the system. Finally, fault states “Failed Open” and “Failed Closed” are added 

into the system, showing how the state machine can be used to implement fault detection. 

State machine representations may be significantly simpler than the actual physical 

or software processes they represent, which is why they are considered models. However, 

a state machine for FDIR purposes can be developed in a way that represents all possible 

states relevant to mission success. FP systems expressed in terms of system state will be 



 15 

better able to protect the system in question [5]. Knowledge of the state is not the same as 

the state itself, and the status of a state machine representation at any time is only as 

accurate as the information that is provided to it. If input data is outdated or incorrect, the 

active state chosen by the state machine representation may be outdated or incorrect as 

well. Proper state knowledge always includes this resulting uncertainty [5]. 

Within MATLAB/Simulink, the Stateflow toolbox [14] provides a simple graphical 

interface for developing state machines, which can be used to represent the current state of 

different vehicle hardware or software components. Stateflow charts can be very simple, 

representing only a few possibilities, or they can involve numerous complicated nested sets 

of states. Transitions are indicated by blue arrows with Boolean conditions; if a condition 

registers as true, the transition will be activated to move from one state (or substate) to 

another. “Default” transitions specify the initial conditions of the diagram and are indicated 

by an arrow beginning at a dot and ending at the initial state or substate. Stateflow animates 

active states and transitions in dark blue during simulation so that the developer can 

monitor the simulation as it runs for debugging and confirmation that the chart is properly 

constructed.  

An example Stateflow chart representing a thruster controller developed for the 

Prox-1 small satellite mission [15] is shown in Figure 7. This chart contains three states 

(Startup, ThrustOff, ThrustOn), transition conditions between the states, and an embedded 

function “fuel_check” written in MATLAB syntax. The chart determines whether the 

thruster should be on or off based on whether the controller has received a command to fire 

(“ready”), the amount of time commanded (“time”), and whether sufficient fuel is available 

(determined by the output “enough_fuel” from the MATLAB function). 
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Figure 7 – Sample Stateflow chart representing a thruster controller [15] 

The Stateflow chart is integrated within a Simulink model as a Stateflow block with 

inputs and outputs, as shown in Figure 8. Stateflow logic allows complex decisions to be 

made in a hierarchical way, where conditions and logical states in individual spacecraft 

components, FDIR algorithms, and higher level “master” FSW mode logic all influence 

one another. 

 

Figure 8 – Example of Stateflow block integration in Simulink [15] 

Several space mission teams have made use of the Stateflow toolbox in 

MATLAB/Simulink [14] to develop FDIR algorithms as state machines. These algorithms 
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are then converted into C/C++ code using a process called “autocoding.” Missions that 

have autocoded FDIR algorithms from MATLAB/Simulink into FSW include Deep Space 

1 [16] and Deep Impact [17]. NASA’s Johnson Space Center has used 

MATLAB/Simulink, including Stateflow, to develop algorithms for GN&C, which are 

later autocoded into FSW [18]. JPL has also developed an open-source Statechart 

Autocoder that converts state machines from the Unified Modeling Language (UML) 

format to C/C++ [19]. Stateflow has been used to evaluate errors in FDIR algorithms during 

spacecraft system V&V [20]. Another FDIR architecture developed with Stateflow uses 

model-based design techniques to bring V&V earlier in the design cycle by providing a 

link between subsystem design and FDIR design [21]. Finally, JPL has developed an 

ontology for enabling formal description and specification of state-based system behavior, 

which includes modeling using state machines [22]. 

State machines offer several advantages over the rule-based FP paradigm. One 

significant advantage is the generation of a graphical product that is easier for designers, 

peer reviewers, and managers to understand and review. Other advantages include ease of 

accounting for subsystem interdependencies and implementing sequences with several 

decision points and/or path-dependent responses. The Johns Hopkins Applied Physics Lab 

(APL) conducted a formal trade study to determine whether their “ExecSpec” state-based 

fault protection system [6,7] or a more traditional rule-based system was more 

advantageous using the Solar Probe Plus mission as a case study [23]. They found that both 

methods were able to equivalently express all desired fault protection rules but that the 

state machine system is favored based on some of the advantages mentioned above. 

However, APL ultimately chose to continue using the rule-based system due to its 
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extensive flight heritage.  A direct comparison showing the same FP logic implemented in 

both a rule-based and a state-based system is shown in Figure 9 and Figure 10, as originally 

published by APL [6].  This logic was used to monitor a radio frequency amplifier in the 

Solar TErrestrial RElations Observatory (STERO). Note how much more readily the 

graphical state machine can be interpreted and checked for accuracy.
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Figure 9 – Rule-Based Fault Management of STEREO Radio Frequency Amplifier [6] 



 20 

Figure 10 – State-Based Fault Management of STEREO Radio Frequency Amplifier [6] 
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1.2.5 Goal-Based Autonomy Paradigm 

Although this dissertation will not utilize it directly, an introduction to goal-based 

autonomy is appropriate at this point. FP is actually a subset of system autonomy, and goal-

based methods are an area of current research in spacecraft autonomy. A goal-based 

architecture uses objectives to control an autonomous system rather than directly 

commanding all actions in sequences of linear commands. An objective “is nothing more 

or less than a model of desired changes of state in the system under control” so that “a goal-

based architecture is necessarily state-based as well” [5]. One key goal-based autonomy 

platform is Remote Agent [24], which was deployed as a technology demonstration (not as 

the primary control software) on the Deep Space 1 mission. Although goal-based 

architectures can be used for FDIR, they are inherently full-system autonomy architectures 

and are thus out of the scope of this dissertation. 

1.2.6 On-Board Model-Based Fault Diagnosis 

Fault diagnosis is usually performed by FDIR engineers at design time, and the 

detection of a specific symptom is directly mapped to the appropriate response for the pre-

diagnosed fault. Though not typical for space missions, on-board fault diagnosis has been 

an area of research since the 1990s. One researcher [5] states that: 

“Error monitors in general tend to have…problems when errors are not interpreted 

through models or correlated and reconciled with other evidence. When such a 

diagnostic layer is absent, and responses are triggered directly by monitor events, 

it becomes hard to put one’s finger on what exactly a system believes it is 

responding to.” 
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This reflects the ad hoc nature of pre-programmed responses triggered directly by 

fault symptom detection. According to one FDIR overview paper, model-based fault 

diagnosis is considered a structured and mature field of research and many methods have 

been proposed and discussed in the control community [9]. One extensive survey of model-

based fault diagnosis methods discusses various mathematical control/estimation methods 

for aeronautical vehicles [25]. Remote Agent featured model-based “mode identification” 

and “mode reconfiguration” for fault diagnosis, which identify components whose failures 

explain detected anomalies [24]. Cassini’s Attitude Control Fault Protection is one of the 

few examples of a system where on-board fault diagnosis was performed in-flight [26,27]. 

One method for on-board diagnosis that has been used in research studies is called 

constraint suspension. It has been used to diagnose which component of a system is faulty 

[28,29]. 

1.3 Contributions of This Investigation 

This dissertation analyzes the FDIR problem for aerospace vehicles in the generic 

sense, focusing on the GN&C subsystem. The complexity, ubiquity, and autonomous 

nature of GN&C makes it a relevant example case for exploring fault protection advances 

that apply across all subsystems for many different aerospace applications. This 

investigation results in three key contributions that advance the state-of-the art in aerospace 

FDIR. 

1.3.1 Generic Fault Protection Architecture 

Contribution 1: Develop a generic, modular, and portable FDIR architecture that can be 

used for the GN&C subsystem on a wide variety of aerospace missions and vehicles. 
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Many missions build custom fault protection systems from the ground up while 

adapting principles from previous missions. Also, FDIR is often a specialized task 

performed by systems engineers after mission and vehicle design has been completed. This 

contribution aims to develop a generic architecture that is applicable to any type of 

aerospace vehicle or mission. A modular architecture is built with components that can be 

easily added, removed, or rearranged, allowing system design and FDIR design to be 

completed in parallel. This moves FDIR development earlier in the flight project lifecycle, 

thus allowing FDIR to influence system design and to be validated during system-level 

testing. The FDIR architecture is also portable to FSW. In other words, it is straightforward 

to convert the design implementation derived from the architecture for a particular mission 

to code that is used onboard the vehicle. The scope of the architecture in this study focuses 

on GN&C, but it is be presented in a manner that is applicable to all vehicle subsystems. 

1.3.2 On-Board Model-Based Diagnosis 

Contribution 2: Use a state machine formulation of the generic FDIR architecture to 

perform on-board model-based fault diagnosis. 

Although the model-based paradigm for fault protection has been explored by 

industry, it has not yet been widely adopted. This study focuses on the state machine 

approach to model-based FDIR, which has been used in several flight projects and research 

studies because it is intuitive, logic-based, and simple to interpret visually. State-of-the-art 

fault protection practice involves monitoring telemetry or sensor data of an aerospace 

system for symptoms of faults such as upper or lower limit violations. Diagnosis is usually 

performed by FDIR engineers at design time, and the detection of a specific symptom is 
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directly mapped to the appropriate response for the pre-diagnosed fault. This study 

advances the state-of-the-art in state-based fault protection by developing an on-board 

diagnostic system that assesses symptoms, isolates fault sources (while accounting for 

uncertainty), and selects corrective actions based on models of system behavior. 

1.3.3 UAV and Space-Based ProxOps Applications 

Contribution 3: Adapt the state machine FDIR architecture for terrestrial unmanned aerial 

vehicle and space-based proximity operations fault protection applications. 

To demonstrate the applicability of the state machine FDIR architecture to realistic 

scenarios from a wide variety of aerospace vehicles and missions, two applications are 

explored in very different domains. Each of these applications makes use of GN&C and 

undergoes V&V. The first is a terrestrial application involving the use of multi-rotor 

unmanned aerial vehicles (UAVs) for 3D scanning and mapping. This application 

undergoes V&V through flight testing. The second application is a space-based scenario 

involving automated rendezvous and ProxOps for orbital capture in a Mars Sample Return 

mission. This application undergoes V&V through software-in-the-loop (SITL) testing in 

a flight-like spacecraft software simulation environment. 
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CHAPTER 2. THEORY:                                                                 
GENERIC FAULT PROTECTION ARCHITECTURE 

 The study presented here advances the state-of-the-art in FDIR and builds on 

previous work by bringing together capabilities such as model-based design and 

autocoding to FSW into a single generic, modular FDIR architecture that is portable to 

FSW. This architecture also features model-based on-board fault diagnosis using state 

machines. While most previous FDIR implementations have involved large, high-resource 

missions with custom-built FDIR, the proposed architecture is designed to be applicable to 

a wide variety of platforms and missions. The architecture also allows alternate 

configurations that enable testing of various scenarios. 

2.1 FDIR Architecture Concept Overview 

 The FDIR architecture collects data from the vehicle which is used to determine the 

likely state of the vehicle. This state can be classified as either “fault” or “no fault” based 

on how the decision logic is structured. The architecture isolates faults by performing 

diagnosis to determine their precise source and performs preventative actions to recover 

from faults before they become mission-critical failures. Outputs from the architecture can 

either send commands to the vehicle autonomously or notify ground operators to take 

corrective action. 

2.1.1 FDIR Architecture Requirements 

At the beginning of this study, high-level requirements were identified to guide the 

development of this FDIR architecture: it must be generic, modular, and portable to FSW. 

A generic architecture is applicable to any type of aerospace vehicle or mission. A modular 

architecture allows components to be easily rearranged, added, or removed. A portable 
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architecture means that it is straightforward to convert the design implementation derived 

from the architecture for a particular mission to code that is used onboard the vehicle. 

In addition to the three primary requirements of generic, modular, and portable, 

additional guidelines for the architecture were also established. V&V of the FDIR 

architecture should assess its capability to meet the following goals. It should detect and 

possibly correct software and hardware faults at multiple levels: component, subsystem, 

and system. These faults may include sensor/actuator malfunctions, errors or degradation, 

improper controller gain settings, non-convergence of GN&C algorithms, and avionics 

software or processor hardware faults. The architecture should detect and avoid mission-

level failure modes, such as vehicle collision or uncontrolled behavior that renders the 

mission objectives unattainable. Faults should be detected, diagnosed, and corrected in 

real-time onboard as they occur, not in post-processing or by operators examining data on 

the ground. 

The architecture should utilize model-based decision logic rather than the rule-

based paradigm. Model-based approaches allow the system to select the best course of 

action when multiple options exist. Finally, the architecture should demonstrate FP logic 

that allows the system to avoid aborts by responding to correctible errors in real-time to 

meet mission objectives. Because different missions have different risk classes (A,B,C,D) 

[30], the architecture should scale to meet the requirements of the mission. 

2.1.2 Development Environment in MATLAB/Simulink 

The architecture discussed in this study leverages the development of a Six-Degree-

of-Freedom (6DOF) simulation environment for the Prox-1 small satellite mission and 
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several other projects at Georgia Tech. The simulation environment models in-flight 

conditions of actual vehicles and missions and contains environment and hardware models 

with configurable settings. The original purpose of this MATLAB/Simulink platform was 

for Prox-1 GN&C algorithm integration and testing [15,31] and it has been used for 

feasibility studies of constellations of CubeSats at Mars [32] and a Processor-in-the-Loop 

testbed for high-fidelity testing of avionics boards for relative proximity operations called 

SoftSim6D [33]. Functionality has been added to the simulation environment that can be 

applied generally to aerospace mission scenarios to test a variety of FDIR algorithms and 

mission architectures.  

2.1.3 Enabling Advances in FDIR 

The primary area of applicability of this architecture to the NASA Technology Area 

Breakdown Structure is element 4.5.1 System Health Management under section 4.5 

System Level Autonomy within Technology Area 04: Robotics and Autonomous Systems. 

System health management “monitors, predicts, detects, and diagnoses faults and 

accommodates or mitigates the effects either on-board or through telemetry processing on 

the ground” [34]. The FDIR architecture results in on-board real-time system health 

management software and will address many of the desired technical capabilities of 

element 4.5.1. For example, complex logic allows the FDIR architecture to include 

prognostic and diagnostic components as an integral part of the system. The logic is also 

able to take complicated vehicle states into account to avoid false positives when faults are 

not present and false negatives when faults are present. It may even be used to anticipate 

faults and adapt to new situations that do not have pre-programmed responses. Finally, this 
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study advances paradigm-shifting model-based approaches for FDIR that can be easily 

transitioned to FSW and validated using SITL and flight testing for V&V. 

2.2 FDIR Architecture Characteristics 

This section focuses on explaining how the architecture meets the primary 

requirements of generic, modular, and portable. The architecture itself are described in the 

following section. 

2.2.1 Generic 

A generic architecture is applicable to any type of aerospace vehicle or mission. The 

FDIR architecture is comprised primarily of five generic diagrams that are described in the 

following section. The MATLAB/Simulink simulation environment in which the 

architecture is developed allows setting vehicle parameters including physical dimensions 

and trajectory. It is applicable to a multitude of possible mission scenarios and permits 

alternate configurations, such as individual vehicles or multiple cooperative or non-

cooperative vehicles. The simulation environment also contains generic modules for 

commonly used components such as sensors and actuators. The simulation environment 

has previously been adapted for use with many scenarios, missions, and vehicles, including 

the Prox-1 small satellite mission [15,31], various ProxOps scenarios with hardware such 

as a modular attitude determination system CubeSat avionics board [33], and a Mars 

communication relay CubeSat constellation [32]. Each of the five diagrams described in 

the following section are implemented without focusing on any particular application or 

vehicle. Chapters 3 and 4 demonstrate how the architecture can be adapted for two distinct 

and very different applications. While the generic architecture presented here is focused 
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particularly on FDIR for faults related to the GN&C subsystem, the same principles and 

design can be applied to any other faults and subsystems on an aerospace vehicle. 

2.2.2 Modular 

A modular architecture allows components to be easily added, removed, or 

rearranged. The visual block diagram environment offered by MATLAB/Simulink can be 

altered and reconfigured easily and allows for testing of many combinations of software 

modules and hardware components. For example, the investigator could replace the 

sensor/actuator suite and GN&C software modules. An example of such a reconfiguration 

is shown in Figure 11 and Figure 12, where an image generation (ImageGen) block is added 

to the generic sensor suite. This block allows generation of simulated images from visual 

and infrared sensors used during ProxOps. 

Also, various initial conditions, environmental scenarios, and physical vehicle 

properties can be easily redefined in a MATLAB initialization script and edited or 

rearranged in Simulink. These include spacecraft orbit and attitude dynamics, spacecraft 

properties such as mass properties and outer mold line, relative dynamics for multiple 

spacecraft, sensor and actuator properties such as field of view and resolution, GN&C 

software components, and central body or environment properties. Parameters for FDIR 

algorithms can also be adjusted, such as fault injection times, wait times, and trigger 

thresholds. The five diagrams described in the following sections can also be easily 

adjusted and rearranged to adapt them for various vehicles and missions.
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Figure 11 – Generic sensor suite (before reconfiguration) 
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Figure 12 – Generic sensor suite (after reconfiguration) with ImageGen Sensor Model added 
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2.2.3 Portable 

A portable architecture allows straightforward conversion of its design 

implementation for a particular mission to code that is used onboard the vehicle. The FDIR 

architecture allows rapid transition from development to flight. The computational 

requirements of the FDIR architecture match the capability generally available on flight 

processors. The architecture has the ability to make the kinds of complex decisions 

normally required for autonomous FSW and is evaluated by testing its response to realistic 

conditions rather than “canned” scenarios. It is well integrated with other hardware and 

software components, allowing new components to be quickly evaluated. Finally, the 

architecture features the capability to easily convert the architecture into FSW code via 

autocoding, a process which has been used with the Prox-1 mission as described in [15]. 

In this process, algorithms developed in MATLAB/Simulink are converted to C code and 

integrated with other FSW code in C. Autocode performance is validated via a “day in the 

life” test in a testbed using flight hardware. Although the autocoding process is not 

demonstrated directly in this study, technical memos written by the Prox-1 team are 

included in Appendix A to provide guidance for future researchers or engineers desiring to 

reproduce it. Many FDIR algorithms have been developed by other researchers for 

hardware and software faults, and the architecture developed in this work enables these 

algorithms to be rigorously tested and implemented. This will greatly facilitate the 

transition of new FDIR algorithms from concept design to implementation. 
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2.3 Generic Architecture Diagrams 

 The FDIR architecture presented in this study is made up primarily of five generic 

diagrams: a GN&C subsystem taxonomy, fault tree analysis, functional state machine, 

diagnostic state machine, and FDIR architecture block diagram. Each of these diagrams is 

described in detail in this section. 

2.3.1 Generic GN&C Subsystem Taxonomy 

To prepare for the development of the FDIR architecture, it is useful to develop a 

generic taxonomy of aerospace vehicle subsystems. Subsystems such as telemetry, tracking 

& control (TT&C), electrical power subsystem (EPS), structures and mechanical systems 

(S&MS), and GN&C each have many hardware and software components that could 

manifest faults. Because aerospace vehicle systems are quite complicated, it is useful for 

FDIR designers to focus more effort on subsystems that are historically prone to fault by 

examining anomaly trends [35]. One study by the Aerospace Corporation found that among 

twenty Earth-orbiting vehicles, GN&C accounted for 40% of failures, EPS accounted for 

40%, TT&C accounted for 10%, and S&MS accounted for 10% [36]. GN&C is often 

highlighted as a failure-prone subsystem and thus provides an appropriate scope of focus 

for the FDIR architecture. The generic subsystem taxonomy in Figure 13 shows the various 

high-level systems in an aerospace mission, a generic set of vehicle subsystems, and the 

typical components of an aerospace vehicle GN&C subsystem. Only the GN&C subsystem 

is expanded here because it is the focus of this study. Each of the other subsystem blocks 

could be expanded in a similar fashion. 
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Figure 13 – Generic aerospace vehicle GN&C subsystem taxonomy
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Almost all aerospace vehicles are reliant upon ground support systems, which range 

from a laptop and antenna for uploading commands to a UAV to communications ground 

stations and mission control centers for space missions. Many vehicles (including 

terrestrial ones) also depend on space-based assets such as the Global Positioning System 

(GPS) satellite constellation, communication relay systems, or weather satellites. 

Vehicle systems include hardware and software components that are integrated into 

the vehicle. The GN&C subsystem is responsible for both attitude and translational motion 

of the vehicle. Guidance algorithms are responsible for planning where the vehicle should 

move or rotate. Navigation algorithms use sensors to determine the attitude state (including 

angular velocity and acceleration) and translational state (absolute and relative position, 

velocity, and acceleration) of the vehicle. Control algorithms use actuators to command the 

vehicle to perform both attitude and translational maneuvers. Finally, GN&C mode logic 

and decision software is used to manage each of these components based on the current 

mission phase, as well as to parse commands from ground operators. 

2.3.2 Generic Fault Tree Analysis 

One important quality of fault protection systems is that they should be designed in 

a way that all reasonably probable fault scenarios are considered and addressed. In addition 

to enumerating the various components that make up a system, it is necessary to determine 

potential sources of faults that may impact the system. It is important for mission and 

vehicle designers to “use historical data to determine what fault types are most likely to be 

introduced or … perform a risk analysis to determine what fault types would be most 

devastating if overlooked” [37]. 
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One critical tool used to identify potential faults is called fault tree analysis (FTA). 

FTA allows system designers to identify key failure points based on the requirements and 

specifications of the system. An FTA provides a systematic top-down symbolic approach 

to model chains of possible faults for a given system [38]. The fault tree is made up of a 

top level event, which is a foreseeable, “undesirable event toward which all fault tree logic 

paths flow” [39]. Each key failure event is then traced back using conditional logical 

operators (such as AND and OR) to identify all possible basic fault events that could lead 

to that top-level failure event. The top event is connected to various intermediate events 

that could cause it. In turn, each intermediate event is connected to other intermediate 

events that could cause it. The bottom level is comprised of basic events or root cause 

events. These are initiating events whose cause is not analyzed further. Events are 

connected by AND and OR logic gates. OR implies that each one of the connected 

causative events is both necessary and sufficient for the resulting event to occur, even if 

none of the other events occur. AND implies that all connected causative events must occur 

and together form the necessary and sufficient condition for the resulting event. Although 

other logical operators are possible, most fault trees can be constructed with only the AND 

and OR symbols [38]. The result is a fault tree that identifies all basic fault events that 

should be considered by a fault protection system. 

Previous literature has developed a “Fault Tree to State Machine” algorithm to 

transform a fault tree into a “fault state machine” that tracks the off-nominal (or “hazard”) 

states of a system [40].  This is distinct from a “functional state machine” that tracks all 

possible states of a system. The algorithm also has the capability to map states and 

transitions of the fault state machine to states and transitions of the functional state 
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machine. If a functional state machine of the system is available, the fault state machine 

can be linked to specific system states and transitions, which are based on the hardware 

and software status of the system. This is preferable to the traditional rule-based approach 

because it allows the design of the fault state machine to be explicitly linked to the fault 

tree analysis and ensure that no fault conditions are missed unintentionally. 

A generic fault tree analysis is shown in Figure 14.  In this analysis, the top level 

failure is assumed to occur if any of the 2nd level events occur, as indicated by the OR gate. 

Each 2nd level events is in turn caused by any of the 3rd level basic events below it. For 

example, one of the 2nd level events, “Environmental Fault” can be caused by either 3rd 

level basic events or the lone 3rd level intermediate event “Physical Environment Fault”, 

which in turn is caused by one of the 4th level basic events such as “Radiation Event” or 

“Debris Event”. Each basic event can be mapped to a specific component of the vehicle or 

mission and assigned a probability if a quantitative failure analysis is desired. 

2.3.3 Generic Functional State Machine 

As mentioned in the previous section, a functional state machine is a model that 

describes the behavior of a system by tracking the “mode state” of the system [40]. Mode 

states are high level descriptions of the overall system behavior and are distinct from 

dynamic states (such as position & velocity) or vehicle component states (such as battery 

level or processor temperature). Each vehicle and mission will have a distinct state machine 

describing how these modes change and the logical conditions to switch between them.  

The generic functional state machine shown in Figure 15 provides a template for 

constructing this diagram.  It features generic modes that may be present in many different 
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Figure 14 – Generic fault tree analysis 
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Figure 15 – Generic functional state machine
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contexts. The initial state in the bottom left is “Standby,” which is a passively safe mode 

where the vehicle waits for further commands to proceed. 

If no faults have been detected (FaultDetectedMode=0) then a command 

(BeginComplexProcess=1) allows a “complex process” to begin. Complex processes 

could include autonomous or piloted operations. An optional transition phase occurs before 

the complex process state begins. The complex process has several sub-states. First is 

“Standoff” (ArriveAtStandoff=1), which is a phase where the complex process is 

“armed” but not initiated and the vehicle is awaiting permission to proceed. Standoff is 

distinct from Standby because the vehicle may not necessarily be in a passively safe 

dynamic state. If no faults are detected (FaultDetectedMode=0) the complex process 

begins when a command is provided (ReadyToGo=1). At this point the NominalZone 

state begins. This is a nominal region where faults are acceptable and can generally be 

detected and responded to safely while still continuing nominal operations.   

At some point, based on the dynamic state of the system, safe operation under fault 

conditions may no longer be possible (EnterAbortZone=1). When this occurs, the 

AbortZone state begins, and at any time if a fault detection is triggered or a human operator 

decides conditions are unsafe, an Abort can be commanded (Abort=1). The abort stops 

the complex process and moves the vehicle to a safe dynamic state, eventually returning to 

the Standby state (ArriveAtStandby=1). Additionally, an “Interact” state allows the 

vehicle to interact with other vehicles, target objects, or the environment. A pre-interaction 

region called the InteractZone is entered from the AbortZone when 

(EnterInteractZone=1). The Interact state can be entered from either AbortZone or 

InteractZone when a command is received (BeginInteraction=1). The vehicle 



 41 

cannot enter the Interact state directly from NominalZone because interaction almost 

always involves hazardous conditions. If a fault or other hazard occurs during Interact, an 

abort can be triggered (Abort=1). If no anomalies occur, the vehicle will return to 

passively safe standby after the interaction is complete (ArriveAtStandby=1). 

2.3.4 Generic Diagnostic State Machine 

To implement on-board model-based fault diagnosis, the generic diagnostic state 

machine shown in Figure 16 has been developed. The diagnostic state machine consists of 

two primary states: NoFaultDetected and FaultDetected. During all nominal mission 

phases, NoFaultDetected is activated, but when a fault detection trigger is observed 

(FaultDetected=1), the FaultDetected state will be activated. If the functional state 

machine is in any state other than AbortZone, then the diagnostic state machine will enter 

“Diagnose” immediately when a fault is detected. If the functional state machine is in the 

Abort Region (AbortZone=1) when a fault is detected, the diagnostic state machine does 

not attempt to determine which fault has occurred. An abort maneuver is commanded 

immediately, returning the vehicle to a passively safe dynamic condition before entering 

the Diagnose state. 

The Diagnose state consists of sub-states for each possible fault. Each sub-state 

begins by running a diagnostic routine to determine if that particular fault has occurred. If 

the diagnostic routine returns FaultConfirmed=1, then the appropriate fault response 

routine is called and the diagnostic sub-state for the next fault is activated while the 

response runs in the background. If the diagnosis does not result in fault confirmation 

within a user-defined wait time, then the active sub-state moves to the next possible fault 
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Figure 16 – Generic diagnostic state machine 
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and the process repeats. Once all possible faults have been evaluated, the active sub-state 

returns to the first fault until the fault has been resolved by one of the corrective actions. 

Note that fault diagnostic checks are distinct from fault detection checks. None of 

the diagnostic checks are performed unless they are called by the diagnostic state machine, 

which is only activated once the fault detection triggers are activated. Thus, a fault will not 

be detected if one of the fault diagnosis conditions is met but the fault detection conditions 

have not been met. Once a fault has been diagnosed, the diagnostic state machine calls the 

appropriate fault response routine. When the fault is resolved and a user-specified recovery 

time has passed, the active state returns to the NoFaultDetected state. 

2.3.5 Generic Architecture Block Diagram 

The functional state machine and diagnostic state machine described in the previous 

two sections are designed to work together in the fault protection architecture along with 

several additional components in the MATLAB/Simulink environment. An overview 

showing the architecture components and their connections is illustrated by the block 

diagram in Figure 17. The diagram is divided into the system under control (entity being 

controlled) and the control system (entity exercising the control) according to the 

terminology defined in [5].  

During initial development and testing, the system under control is composed of 

simulation models and state variables that track the status of these models. For example, 

environment models keep track of time systems, dynamic perturbations on the vehicle, and 

ephemerides for the positions of planets, moons, and the Sun. Environment states include  
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Figure 17 – Generic architecture block diagram 
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the current time, atmospheric and temperature conditions, and eclipse/occultation status for 

planets and moons. The simulation environment also includes vehicle dynamic models for 

inertial and relative translational dynamics (position, velocity, acceleration) and inertial 

attitude dynamics, including angular velocity and acceleration. Generic vehicle 

sensor/instruments and actuator/propulsion models are also included in simulation to 

provide sensor outputs and receive actuator inputs based on the state of the simulation. Other 

vehicle components and their health status can also be accounted for.  Again, these 

simulation models are only a development tool and are not used as part of the on-board 

software system for the FDIR architecture when it is deployed on a flight computer. 

The “Control System” contains the core of the FDIR architecture as well as vehicle 

GN&C algorithms and state estimates. The GN&C algorithms include sensor data 

processing and filters for estimating vehicle position, velocity, attitude, and angular velocity 

and guidance & control algorithms for both vehicle trajectory and vehicle attitude. The fault 

& mode portions of the architecture are the main focus of this study, and these components 

are shown in the example Simulink diagram in Figure 18, which illustrates how each of the 

components interacts with the others.  

The two primary components are the functional state machine and the diagnostic state 

machine. These are Stateflow blocks which have been described in the previous two 

sections. Most of the inputs to the functional state machine are produced by the generic 

mode management block, a MATLAB function which takes in vehicle state information and 

ground commands and calculates the logical variables that are evaluated in functional state 

machine transitions. One output from the functional state machine to the diagnostic state 
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Figure 18 – Simulink diagram for generic fault protection architecture 
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machine (AbortZone) describes whether the AbortZone state is active. Two inputs 

(FaultDetectedMode and Abort) are generated by the diagnostic state machine. 

The inputs to the diagnostic state machine come from several sources. One variable 

(ArriveAtStandby) is generated by the mode management MATLAB function block. 

Another variable (AbortZone) is generated by the functional state machine. Fault 

detection checks are performed by a MATLAB function block and result in two variables 

(FaultDetected and FaultResolved). Two variables are input as constants 

(WaitTime and RecoverTime), and a set of variables indicating fault confirmation 

(FaultConfirmed1,2,3, etc.) are input from the fault diagnosis/resolution 

MATLAB function block for each fault. Two output commands for each fault 

(Diagnose1,2,3, etc. and CorrectiveAction1,2,3, etc.) are fed into the 

respective fault diagnosis/resolution function blocks. Note that only one 

diagnosis/resolution function is shown for clarity but most systems will consider more than 

one fault and will have a diagnosis/resolution function for each fault. 

2.4 Mapping the Generic Architecture to a Particular Application 

Each of the generic architecture diagrams described in the preceding section can be 

adapted for particular applications. This section presents a general process for mapping 

from generic to specific, and the following two chapters provide examples for two very 

different applications. It is important to note that the generic diagrams provide more or less 

detail than necessary, depending on the application. Detail can be added or removed in 

each diagram as needed. 



 48 

The first step in adaptation is to adjust the generic aerospace vehicle subsystem 

taxonomy in Figure 13 to the specific vehicle being considered. The goal is not to provide 

scrupulous detail of every miniscule component but instead to identify and categorize the 

main components that may have an impact on tasks and processes relevant to fault 

protection. The engineer must use their judgement to determine the level of granularity 

required, but in general a component-level taxonomy should be sufficient. Subsystems and 

GN&C components can be added or removed from the generic taxonomy as needed. 

Although this diagram is not used directly to generate other aspects of the overall 

architecture, it provides an extremely useful reference for standardizing terminology and 

vehicle configuration. 

The next step involves performing a fault tree analysis for the application. The 

template in the generic fault tree in Figure 14 can be used as a guide for this, or the fault 

tree structure can be followed without using the same intermediate and root cause events. 

Additionally, other industry standard analyses such as the Failure Modes, Effects, and 

Criticality Analysis (FMECA) or Fault Containment Regions (FCR) can be developed [12]. 

An important step in this process is determining which faults are considered credible and 

must be addressed by a FP system and which faults can be ignored as accepted risks. 

Quantitative risk metrics are useful for this purpose but are beyond the scope of this study. 

Next, a functional state machine should be created, using the generic functional state 

machine in Figure 15 as a template. This can be done in Stateflow, a state machine toolbox 

within MATLAB/Simulink, or in alternate software tool such as UML/MagicDraw. Some 

states from the generic diagram such as TransferToComplexProcess, Abort, and Interact 

may not be relevant for all applications, and some applications may require that additional 
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states be added. Transition conditions between states can also be modified, added, or 

removed as needed. The main purpose of this diagram is for other aspects of the FDIR 

architecture such as the diagnostic state machine to reference the mode state of the vehicle. 

Additionally, supporting functions such as the mode management MATLAB block should 

be written to generate the logical inputs used in transitions between states. Although 

alternate representations of mode state (such as simple code functions or Simulink blocks) 

can also be used, the state machine paradigm provides a useful graphical tool that should 

be relatively straightforward to interpret without intimate knowledge of the system.  

A diagnostic state machine should also be developed from the template in Figure 16 

using selected faults from the fault tree. The behavior of fault responses during the 

AbortZone should be determined, as this is reflected in the diagnostic state machine. Also, 

supporting functions for fault detection, diagnosis, and response should be written to 

provide inputs to and receive commands from the diagnostic state machine. These 

functions can be placed in MATLAB code blocks and connected to the functional and 

diagnostic state machines as shown in Figure 18. 

Finally, a V&V method such as a numerical simulation, testbed, or flight test should 

be should be developed to evaluate the FP architecture using the template shown in the 

block diagram in Figure 17. The block diagram should be adapted to the particular 

application as a reference for understanding how all components interact. Creating this 

diagram also helps the developer to determine if any important components have been left 

out. Once the FP architecture has been thoroughly evaluated, it is ready to be deployed. 

The following two chapters provide examples of this process for both a terrestrial UAV 

application and a space-based automated proximity operations application.  
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CHAPTER 3. TERRESTRIAL APPLICATION:                     
FALCONVIZ UAV NERVOUS SYSTEM 

One application of the state machine FDIR architecture has been developed for a 

multirotor UAV system. This has been dubbed the “UAV Nervous System,” and serves as 

a proof of concept of the state machine FDIR architecture. Several flight tests 

demonstrating successful detection of faults have been completed. The results of one set of 

flight tests were published at the 67th International Astronautical Congress in Guadalajara, 

Mexico [41]. 

3.1 Overview of FalconViz UAV Hardware and Typical Missions 

 FalconViz is a start-up company based out of the King Abdullah University of 

Science and Technology (KAUST) in Saudi Arabia. It was founded in 2015 by two 

research faculty and a PhD student at KAUST: Dr. Neil Smith, Dr. Mohamad Shalaby, and 

Luca Passone. FalconViz designs and flies custom UAVs for a variety of applications such 

as aerial surveying & mapping, inspection & monitoring, and surveillance. The company 

also collaborates with other research groups at KAUST such as the Hydrology, Agriculture 

and Land Observation (HALO) group led by Dr. Matthew McCabe. The HALO group uses 

modeling, remote sensing, and in-situ measurements to better understand elements such as 

water usage, crop health, and regional climate conditions. One effort of the HALO group 

involves the use of UAVs to capture thermal and hyperspectral imagery of desert 

agricultural plots. 

 At KAUST during Summer 2016, a FalconViz hexacopter (six rotors) shown in 

Figure 19 was used as a proof-of-concept testbed for the UAV Nervous System. One 

specific fault was addressed as a starting point: unbalanced propellers (leading to excess 
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vibration). Detecting this fault provides a more reliable vehicle for performing aerial 

surveys and other tasks with FalconViz UAVs. Additional modifications and flight tests 

were performed during Summer 2017 to add more vibration sensors and the capability to 

detect additional faults using temperature, voltage, and current sensors. 

Figure 19 – FalconViz hexacopter in flight [41] 

3.2 UAV Nervous System Requirements 

Unbalanced propellers in multi-rotor UAVs cause excess vibration and can lead to 

screws coming loose and potential crashes. The basic requirement for the first iteration of 

the UAV Nervous System is to detect excess vibrations and provide a response action. This 

must be accomplished in real-time via onboard measurements only and should utilize the 

Stateflow FDIR architecture developed in MATLAB/Simulink. Also, the detection should 

not be triggered unless an unbalanced propeller is confirmed. In other words, intermittent 

fault triggers are not desired; the fault status should not constantly flip back and forth 

between “fault” and “no fault” during flight. In addition, the UAV Nervous System should 
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be a standalone system that has minimal impact on the operation of the UAV. It should not 

add excessive mass or power drain to the UAV. 

3.3 FalconViz UAV Subsystem Taxonomy and Fault Tree 

The generic subsystem taxonomy has been adapted for the FalconViz UAV as shown 

in Figure 20. Most FalconViz UAV components are Commercial Off-the-Shelf, while the 

structure and overall design of the UAVs are produced in-house. A few of the fault-prone 

components are outside of the GN&C subsystem but directly affect it. For example, 

batteries and Electronic Speed Controls (ESCs) are components of the EPS that provide 

power to GN&C components such as propeller motors. The telemetry receiver, which 

connects the UAVs to hand controllers and ground stations, is a key TT&C component. 

Key GN&C components include the six motors and propellers, which are the sole attitude 

and translational control actuators on the vehicle. Note that the propellers of a multirotor 

UAV typically have fixed pitch; they perform both attitude and translational maneuvers by 

altering the speed of individual propeller rotations via the ESCs to change the direction of 

the resultant lift/thrust vector [42]. Some key translational sensors include a GPS receiver, 

a barometer, and accelerometers. Key attitude sensors are a rate gyroscope and a magnetic 

compass (magnetometer). Most GN&C software is embedded within the flight controller, 

including a set of translational guidance waypoints that can be uploaded by mission 

planning software on a ground station laptop. The GPS satellite constellation is also used 

by the GPS receiver to calculate the UAV’s position and velocity. 
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Figure 20 – Subsystem Taxonomy for UAV Nervous System 
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A fault tree for the FalconViz UAVs is shown in Figure 21. This is an expansion of 

the Internal Vehicle Flight Hardware branch of the generic fault tree from Section 2.3.2 

and shows basic event faults identified by the FalconViz engineering team. The top-level 

failure for this analysis is “Loss of control” which can be traced back to each the identified 

faults.  The three most important faults identified were “Motor not spinning,” “Motor or 

ESC overheats” and “Excessive vibration.”
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Figure 21 – Fault Tree for FalconViz UAVs
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3.4 Fault Detection and Recovery Strategy 

Vibration detection is accomplished by evaluating accelerometer data measured from 

the arms of the UAV that house the propellers. A machine learning algorithm determines 

the health of the system from the data. If the propellers are unbalanced, then there will be 

much more vibration in the system. Once it is trained and validated on the ground, the 

machine learning model then identifies the health of the system from live data onboard the 

UAV. These outputs are sent into the state-based FDIR architecture in Stateflow. 

A SparkFun Triple Axis Accelerometer and Gyro Breakout – MPU-6050 [43], shown 

in Figure 22a, is installed on one arm of the hexacopter. Data is collected via a 

microcontroller programmed with Arduino protocols called the Teensy 3.2 [44], shown in 

Figure 22b. The Teensy is then connected to a MeegoPad T02 compute stick [45], shown 

in Figure 22c, via USB. 

 

Figure 22 – (a) SparkFun Triple Axis Accelerometer & Gyro Breakout – MPU-6050 
[43]; (b) Teensy 3.2 [44]; (c) MeegoPad compute stick [45] 

 

 

 

 

a.) b.) c.) 
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Figure 23 – Shrink-wrapped accelerometer installed on hexacopter arm,  
with sensor coordinate axes indicated [41] 

The shrink-wrapped MPU-6050 breakout board is mounted just below the propeller 

motor, as shown in Figure 23. The Teensy is installed on a SparkFun Teensy Arduino 

Shield Adapter [46] and connected to the MPU-6050 and other components via jumper 

cables and custom harnesses, as shown in Figure 24.  

 

Figure 24 – Teensy installed on Arduino Shield Adapter [46] 
with USB and jumper cable connections [41] 

If the propellers are unbalanced, there will be much more vibration in the system. A 

Simulink model run in Windows on the MeegoPad records data from the accelerometer 
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and feeds it through a supervised machine-learning classification algorithm in MATLAB 

called K-nearest neighbors (KNN) [47]. The KNN algorithm determines the health of the 

system from the data. Once it is trained and validated on the ground, the KNN model then 

identifies the health of the system from live data onboard the UAV. These outputs are sent 

into the state-based FDIR architecture in Stateflow. For tests, the propeller is unbalanced 

by adding a few pieces of electrical tape on one side, as shown in Figure 25. 

 

Figure 25 – Hexacopter propeller unbalanced by adding electrical tape [41] 

Flight test data is captured for both an unbalanced propeller (with tape) and a 

balanced propeller (without tape) and is used to train the KNN classification model in 

MATLAB on the ground. Training data plotted in Figure 26 shows that the unbalanced 

propeller has a higher vibration magnitude in y and z and that the y data shifts into the 

negative region. However, this information is not provided to the KNN algorithm.  
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Figure 26 – Training data for KNN classification model [41] 

Raw data from the two flights is combined and manually labelled by the user. 

Combined raw data for each axis (x,y,z) and assigned labels are fed into the KNN training 

algorithm in MATLAB. After training, the static KNN model is stored for use in flight and 

is not adapted further. The detection accuracy of the static model is verified with 

independent flight test validation data captured in the same way as the training data. The 

KNN classification detection algorithm then uses the trained KNN model to select the 

labels for each data point. The validation results, shown in Figure 27, exhibit a detection 

accuracy of 86.8%. 
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Figure 27 – Detected activity levels from KNN model validation data [41]28 

Once model training and validation is complete, the system is ready for in-flight 

detection. Data collected from the accelerometer in real-time is fed into the Simulink model 

shown in Figure 28 via a serial connection over USB. The Teensy and serial connections 

run at 115,200 baud (bits per second). The data is converted from ASCII characters to 

Figure 28 – Simulink diagram for UAV nervous system [41]27 

(see Figure 29) 
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numerical values by a custom MATLAB function and is saved to memory. It is then fed 

into the MATLAB KNN fault detection algorithm, which uses the trained static model to 

determine if the propeller is balanced or not. The detection is run on 100 samples at a time, 

and if 50 or more of these samples are classified as “unbalanced” by KNN, then the 

vibration FaultDetected flag is set to 1; otherwise the flag is set to 0, indicating the 

propeller is “balanced”. This FaultDetected flag is fed into the Stateflow diagram 

shown in Figure 29, which conducts state machine fault protection. Note that this diagram 

was developed before the generic architecture discussed in the previous chapter. It is 

adapted to fit the generic architecture in the Section 3.7. 

The Stateflow diagram begins with an initial state of “Normal” at the bottom right 

and an initial substate of “Standby”. If FaultDetected is set to 1, the substate within 

Figure 29 – Stateflow diagram for vibration fault detection [41] 
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“Normal” transitions to “PotentialFault.” If the condition “FaultDetected=1” persists 

for a length of time specified by FaultPersistence, then the state transitions from 

“Normal” to “Fault”. However, if FaultDetected does not remain at 1 for long enough, 

then the state will remain “Normal” and the substate will return to “Standby”. Very similar 

logic applies for transitioning from “Fault” back to “Normal”: the condition 

FaultDetected=0 must persist for a length of time specified by 

ResolutionPersistence. The FaultStatus flag is the output signal matching 

the current state of the Stateflow chart, with 0 indicating “Normal” and 1 indicating 

“Fault”. The fault response involves sending the FaultStatus signal to the telemetry 

receiver. Simulink sends the FaultStatus signal back to the Teensy and then on to the 

FrSky X8R telemetry receiver [48] shown in Figure 30a. The pilot can view the value of 

FaultStatus on their Taranis X9D handheld radio controller [49], shown in Figure 30b, 

to indicate whether the propeller is balanced or not (0 or 1). If the variable is set to 1, the 

controller is programmed to begin beeping. When the variable is set to 0, the controller 

stops beeping. 

 

Figure 30 – a.) FrSky X8R telemetry receiver [48] installed on the hexacopter;  
b.) Taranis X9D Plus radio [49] 

  

a.) b.) 
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3.5 Flight Test Results 

The UAV Nervous System has been flight-tested and successfully indicates the 

state of vibrations during flight. Figure 31 shows data recorded during the V&V test flight. 

The top three plots show accelerometer data and the bottom plot shows the FaultStatus 

signal output by the Stateflow diagram. The flight begins with the copter on the ground in 

segment A, and tape is placed on the propeller to unbalance it. The copter takes off and 

flies with an unbalanced propeller in segment B. The nervous system quickly detects the 

imbalance and outputs a FaultStatus of 1 at around 12 sec, shortly after segment B 

begins. During segment C, the copter lands, and the tape is removed to restore the propeller 

balance. Segment D shows balanced flight, and around 25 sec the nervous system detects 

that balance has been restored and sets FaultStatus to 0. The copter lands again in 

segment E and tape is added again. During segment E near 35 sec, a FaultStatus of 1 

occurs, and since there is no persistent “normal flight” data entering the system, 

FaultStatus does not return to 0. Unbalanced flight resumes during segment F, and 

FaultStatus remains at 1.  The tape is not well adhered to the propeller during this 

segment, and it comes loose and flies off at 40 sec. The copter transitions to balanced flight 

in segment G, which the nervous system detects around 45 sec, returning FaultStatus 

to 0. The delays in FaultStatus transitions are expected, as the system is tuned to avoid 

constant flipping between 0 and 1. 
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Figure 31 – Flight test data demonstrating successful vibration detection [41] 
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3.6 UAV Nervous System Upgrades 

 The flight test described above provided a proof-of-concept for the UAV Nervous 

System. In addition to the vibration sensor, a One Wire Digital Temperature Sensor 

DS18B20 [50] is used to monitor heating of the motors. It is important to detect when 

motors overheat because their shutdown and can lead to loss of the vehicle. Figure 32a 

shows the DS18B20 sensor and Figure 32b shows it installed on a motor with thermally 

conductive epoxy. The temperature reading in deg C is collected by the Teensy then 

downlinked to the Taranis radio via the telemetry receiver. This value is displayed on the 

radio for the pilot, and the radio is programmed to give a verbal warning (“too high”) when 

the temperature exceeds a predetermined threshold. This threshold is set by the pilot on the 

radio itself. An example plot of saved temperature values from the DS18B20 is shown in 

Figure 33. 

  

Figure 32 – a.) One Wire Digital Temperature Sensor DS18B20 [50]                              
b.) Temperature sensor installed on UAV motor with thermal epoxy 

 

a.) b.) 
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Figure 33 – Example plot of DS18B20 temperature data [41] 

Next, the 90 A AttoPilot Voltage and Current Sense Breakout Board [51], shown 

in Figure 34b is added by splicing the power wires between the lithium polymer battery 

[52], shown in Figure 34c, and the ESC shown in Figure 34a. Telemetry for ESC voltage 

and current are fed into the Teensy and routed to Simulink for fault protection.  

  

Figure 34 – a.) Electronic Speed Control (ESC) [41] b.) 90 A AttoPilot Voltage and 
Current Sense Breakout Board [51], c.) lithium polymer battery [52] 

Once all of these sensors were added successfully, completing the sensor suite for 

a single arm of the copter, a second identical sensor suite was also installed on an adjacent 

arm of the copter as shown in Figure 35. The Teensy on one arm is designated as a central 

b.) a.) c.) 
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Teensy and is connected to the Simulink FP system on the Meego. A complete connection 

diagram is shown in Appendix B. The Inter-Integrated Circuit (I2C) protocol is used for 

streaming data from each arm to the central Teensy. Although only two arms are initially 

instrumented, the FalconViz team can duplicate the sensor suite for each arm and deploy 

the system on their copters for future flights. 

 

Figure 35 – Duplicate sensor suites installed on two adjacent UAV arms 

The Simulink model for two arms, shown in Figure 36, is constructed by using a 

state machine for each sensor reading on each arm, resulting in a bank of eight state 

machines total, two each for acceleration, temperature, current, and voltage. All of these 

sensor readings are fed to the central Teensy via I2C and then to the Meego via a USB 

Serial connection. Each ASCII value for the sensor readings is decoded into numeric values 

in MATLAB. Then, the accelerometer values are fed into the KNN algorithm and the 

temperature, current, and voltage values are compared against minimum and maximum 

values, based on the limits defined in Table 3.       
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 Figure 36 – Simulink model for UAV Nervous System on two arms with four sensor readings each
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Table 3 – Input parameters for UAV Nervous System 

Sensor 
Reading 

Minimum 
Threshold 

Maximum 
Threshold 

Time to 
Detect 

Time to 
Resolve 

Acceleration 
(m/s2) 

n/a n/a 0.025 sec 0.03 sec 

Temperature 
(deg C) 

n/a 60 deg C 1.5 sec 1.5 sec 

Voltage (V) 21.6 V 
(6 cell*3.6 V) 

25.2 V 
(6 cell*4.2 V) 

1.5 sec 1.5 sec 

Current (A) 1 A 25 A 2 sec 1.5 sec 

Although the state machine in Figure 29 is used in the UAV Nervous System, it 

should be noted that for temperature, voltage, and current sensing a simple rule-based 

paradigm (with persistence) is implemented through state machines for fault detection. The 

acceleration detection method is a bit more complex because machine learning is used to 

determine if a fault has occurred or not, but ultimately the fault detection threshold is based 

on persistence for the outputs of the machine learning algorithm. 

A series of additional test flights was completed to ensure that the upgraded UAV 

Nervous System was working properly. These test flights were completed with one arm 

first and then with both arms. Each of the thresholds for temperature, current, and voltage 

were tested by adjusting them slightly above and below the nominal values for each sensor. 

The acceleration detection was also tested, repeating the test shown in Figure 31. Because 

the helicopter had been in a crash since the previous flight test, it was necessary to 

rebalance the propellers as shown in Figure 37. 
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Figure 37 – Rebalancing UAV propellers using an iPhone accelerometer 

3.7 Adaptation of Generic FDIR Architecture to UAV Nervous System 

After the generic FDIR architecture described in Chapter 2 was created, the UAV 

Nervous System case study was revisited and adjusted to match the generic architecture.  

First, the generic functional state machine was adapted for the FalconViz UAV test flight, 

as shown in Figure 38. Many of the states from the generic diagram were unnecessary 

because of the relative simplicity of the UAV test flight. The Standby state in the bottom 

left is the starting state and represents the copter sitting stationary on the lab bench at the 

beginning of the test flight when the UAV Nervous System is activated and data recording 

begins. When the copter is being carried outside (CarryingCopter=1), the Transfer 

state begins. The Transfer state ends when the copter is set down on the ground outside 

(ArriveAtStandoff=1), which begins the Piloted phase. During Standoff, the first 

substate of the Piloted phase, the copter is sitting on the ground, waiting for the pilot’s 

command to proceed. When the pilot begins throttling up the motors to launch the copter 
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(Liftoff=1), the NominalZone substate begins, indicating that the copter is flying. 

When the copter lands and the motors are powered down (Landed=1), the active state 

returns to Standoff. Note that no additional abort states are included in this functional state 

machine because the standard abort procedure when a fault is detected is for the pilot to 

land the copter. 

 

Figure 38 – Functional state machine for FalconViz UAV test flight 

Next, the generic diagnostic state machine was adapted for the UAV Nervous System 

as shown in Figure 39. In this case, the trigger for fault detection (FaultDetected=1) 

is set to the output of the machine learning algorithm for vibration detection. This is done 

without regard to persistence, so whenever the machine learning algorithm indicates a fault 

detection, the FaultDetected state and Diagnose substate become active. Because only one 



 72 

fault could be caused by this particular detection, only one fault diagnosis substate is 

present in the diagnostic state machine. The “Propeller Unbalanced” fault is diagnosed if 

the fault detection trigger remains active for the “Time To Detect” of 0.025 sec from Table 

3, and if the current state of the functional state machine is NominalZone (indicating the 

copter is flying). This check is evaluated by the fault diagnosis routine. The routine then 

sets the FaultConfirmed1 variable to 1, causing the diagnostic state machine to enter 

the RespondA1 substate. The CorrectiveAction1 variable is then set to 1, causing a 

signal to be sent to the pilot to land the copter as described in previous sections. If the fault 

detection is only intermittent, then fault diagnosis will be inconclusive. In either case, when 

the fault detection flag from the machine learning algorithm is set to zero for the “Time to 

Resolve” length of 0.03 sec the state machine will return its active state to 

NoFaultDetected. 

 
Figure 39 – Diagnostic state machine for UAV Nervous System 
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 To demonstrate the modified FDIR architecture, recorded flight test data was 

loaded from a data file and replayed in Simulink using the model shown in Figure 40. The 

fault detection algorithm was kept unmodified from Figure 36 for one arm of the copter. 

The functional and diagnostic state machines described above were added, and MATLAB 

functions were written to calculate mode management inputs to the functional state 

machine and fault diagnostic inputs to the diagnostic state machine. The bank of FP state 

machines were kept but were used only to compare their output to the output of the new 

architecture. An adapted flow chart showing the interactions of the various components of 

the FDIR architecture for the UAV Nervous System is shown in Figure 41.  

 The recorded flight test data and FDIR architecture output are shown in Figure 42. 

Note that this flight test data is similar but not exactly the same as the flight test data shown 

in Figure 31; the flights were performed on different dates and at different stages of 

development of the UAV Nervous System. The top three plots in Figure 41 show 

accelerometer data and the bottom plot shows the FaultConfirmed1 signal output by 

the diagnostic function in the FDIR Architecture. The data begins with the copter on the 

lab bench in segment A and tape is placed on the propeller to unbalance it. The copter is 

carried outside from the lab during segment B. The copter takes off and flies with an 

unbalanced propeller in segment C. The FDIR architecture quickly detects the imbalance 

and outputs a FaultConfirmed status of 1 at around 3 sec, shortly after segment C 

begins. At the end of segment C the copter lands, and the FDIR architecture immediately 

resets the fault confirmed status to 0. During segment D the copter is on the ground, and 

the tape is removed to restore the propeller balance. Segment E shows balanced flight, and 

the copter lands again at the end of segment E. During segment F, tape is added again while 
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Figure 40 – Simulink diagram for modified UAV Nervous System FDIR Architecture 
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Figure 41 – Flow chart for UAV Nervous System FDIR Architecture 
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Figure 42 – Results of test flight replay with UAV Nervous System FDIR Architecture 
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the copter is on the ground. Unbalanced flight resumes during segment G, and between 11 

and 12 sec the FDIR architecture quickly detects the imbalance and outputs a 

FaultConfirmed status of 1. The copter lands at the end of segment G, and the FDIR 

architecture immediately resets the FaultConfirmed status to 0. Note that inaccuracies 

in the fault status of Figure 42 are much less than in the flight test shown in Figure 31 using 

the previous iteration of the UAV Nervous System. Although the new system is operating 

on similar flight data to the previous system, the improved performance is attributable to 

the addition of a state machine monitoring the state of the UAV. By monitoring the ESC 

current, the updated architecture is able to determine whether the UAV is flying or not and 

takes this into account when diagnosing whether a fault is present. For example, in segment 

D of Figure 31 the previous system took several seconds to correctly report balanced flight, 

but segments D and E of Figure 42 do not exhibit the same issue. 

The UAV Nervous System FDIR Architecture has been developed and tested for a 

terrestrial rotary wing UAV. The Nervous System utilizes a suite of sensors for two arms, 

each containing an accelerometer, a temperature sensor, and a voltage/current sensor. The 

system proof-of-concept has been shown by V&V through flight testing. The generic FDIR 

architecture has been successfully adapted for use with the UAV Nervous System and has 

been demonstrated in MATLAB/Simulink using recorded flight test data. Additional 

suggestions for future studies are described in Chapter 5. 
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CHAPTER 4. SPACE APPLICATION: MARS SAMPLE RETURN 
RENDEZVOUS AND ORBITING SAMPLE CAPTURE 

A second use of the state machine FDIR architecture has been developed for an 

automated relative ProxOps application. This work supports development of a Mars 

Sample Return (MSR) mission. The process for development of requirements of the MSR 

fault protection behavior was published at the 68th International Astronautical Congress in 

Adelaide, Australia [53] and the Symposium on Space Innovations in Atlanta, GA [54]. 

4.1 Overview of Relative Proximity Operations 

 Relative ProxOps have been performed in Earth orbit and cis-lunar space since the 

early years of the space age. There is an increased need for autonomous relative ProxOps 

in such applications as rendezvous and docking for human space exploration and sample 

return missions, satellite servicing and on-orbit inspection, construction, and debris 

mitigation. Deep space proximity operations applications require advanced autonomy and 

fault protection due to the significant round-trip light time from Earth. Many autonomous 

ProxOps systems have been developed and proven in flight for large and complex systems 

[55-57] and are increasingly being used with small satellites [58,59], including the Prox-1 

mission being developed at Georgia Tech [15,31]. One researcher has conducted a detailed 

survey of the history of relative ProxOps and describes many other recent missions [60]. 

Development of spacecraft GN&C software architectures often involves bringing together 

individually developed algorithms and evaluating them using simulation and Software-in-

the-Loop (SITL) or Processor-in-the-Loop (PITL) testing [61]. The process of spacecraft 

GN&C algorithm development and integration using model-based design in Simulink and 

later autocoding into FSW has been exercised by the Orion spacecraft team at NASA’s 
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Johnson Space Center [18]. Other missions have used selective autocoding of GN&C 

algorithms into FSW [62-64]. 

4.2 Overview of Mars Sample Return Mission Concept 

The top priority stated in the current planetary science decadal survey is to perform 

a MSR mission [65]. NASA, JPL, and the European Space Agency are in the process of 

formulating a series of missions that will culminate in the return of scientifically selected 

Mars samples to Earth [66]. In one mission concept, a Mars orbiter would rendezvous with 

a sample canister launched from the surface and capture it for return to Earth [67]. The last 

stage of this rendezvous operation, including capture, must be autonomous. During this 

autonomous phase, fault protection should be used to ensure mission success [68].  

In the current MSR mission concept, the Mars 2020 rover will collect soil and rock 

samples and cache them on the Martian surface. They will then be collected by a 

subsequent “fetch” rover (or other vehicle) and inserted into an Orbiting Sample container 

(OS). The OS will be placed on a Mars Ascent Vehicle (MAV) and launched into Mars 

orbit, as shown in Figure 43a. Once the MAV reaches orbit, it will release the OS into a 

passive near-circular orbit. The Sample Return Orbiter (SRO) will perform ground-in-the-

loop rendezvous with the OS, as shown in Figure 43b, followed by autonomous approach 

and capture operations (also known as “terminal rendezvous and capture”) to collect the 

OS, as shown in Figure 43c [67]. The final approach will encompass approximately the 

last 100 meters of rendezvous and must be autonomous due to communication time delays 

for signals to travel over the large distance between Earth and Mars (between 4 and 24 

minutes) [69]. Finally, the samples would be returned to Earth or cis-lunar space for 
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recovery and laboratory study. The GN&C process for the terminal rendezvous and capture 

phase is complex, with a number of risk areas that could result in failure to capture the OS.  

This mission-critical autonomous activity presents the need for a comprehensive FP 

approach to ensure that operations proceed under nominal conditions, take action to address 

certain fault conditions, or abort the capture phase. 

 

Figure 43 – Mars Sample Return rendezvous concept [53] 

4.3 Reference Frame and Relative Orbital Element Definitions 

This study makes use of several inertial and rotating reference frames, as well as 

dynamical parameters called relative orbital elements that are useful for visualizing the 

relative orbit geometry. Background information on coordinate systems and relative orbital 

elements is presented in this section. 

Three primary reference frames are utilized in this chapter for describing orbit and 

attitude dynamics. The Mars International Astronomical Union (Mars IAU) reference 

b) a) 

c) 



 81 

frame is an inertial frame centered at Mars analogous to the Earth-Centered Inertial 

reference frame. This frame is defined by NASA’s Navigation and Ancillary Information 

Facility at JPL for the Spacecraft, Planet, Instrument, Orientation, & Events (SPICE) 

ephemeris toolkit [70]: 

Mars Mean Equator and IAU vector of J2000. The IAU-vector at Mars is the point                      

on the mean equator of Mars where the equator ascends through the earth mean 

equator. This vector is the cross product of Earth mean north with Mars mean north.  

The Local Vertical Local Horizontal (LVLH) reference frame is used to describe 

relative orbit dynamics. The LVLH frame is an orbit-defined frame whose origin typically 

lies at the center of mass of the target satellite with the three axes defined by the position 

vector (radial), velocity vector (along-track) and their cross product (cross-track). Figure 

44 shows an illustration of this coordinate frame. Note that the LVLH frame is constantly 

translating and rotating as the OS moves in its orbit about Mars. 

For the MSR mission, it is assumed that no a priori knowledge of the OS inertial 

position and velocity is known. Thus, the origin of the LVLH frame is located at the OS’s 

estimated position relative to the SRO, but the orientation of the LVLH frame is based on 

the SRO’s inertial position. As a result, the orientation of the basis vectors �𝑹𝑹� ,𝑺𝑺�,𝑾𝑾��  are 

defined by Eq. (1), where 𝒓𝒓𝑆𝑆𝑆𝑆𝑆𝑆 and 𝒗𝒗𝑆𝑆𝑆𝑆𝑆𝑆 are the positon and velocity vectors of the SRO in 

the Mars IAU frame and the x superscript represents the skew function. When the skew  
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Figure 44 – Visual representation of the LVLH frame [15] 

function is applied to a vector, a skew symmetric matrix is created which, when multiplied 

with another vector, produces the same result as a cross product between the two vectors. 

The following assumptions are applied in calculation of the LVLH frame unit vectors: the 

distance between the SRO and OS is small compared with the OS orbit radius, and the 

inertial orbital velocity of the OS is approximately equal to the orbital velocity of the SRO. 

𝑹𝑹� ≔ 𝒓𝒓𝑆𝑆𝑆𝑆𝑆𝑆
||𝒓𝒓𝑆𝑆𝑆𝑆𝑆𝑆||

      𝑾𝑾� ≔ 𝒓𝒓𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 𝒗𝒗𝑆𝑆𝑆𝑆𝑆𝑆
��𝒓𝒓𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 𝒗𝒗𝑆𝑆𝑅𝑅𝑂𝑂��

    𝑺𝑺� ∶= 𝑾𝑾�𝑥𝑥𝑹𝑹�

��𝑾𝑾�𝑥𝑥𝑹𝑹���
    (1) 

 The Body-Fixed Frame is a coordinate frame that is fixed with respect to the SRO. 

It is centered at the SRO center of mass with the three basis vectors {𝑥𝑥�𝑏𝑏 ,𝑦𝑦�𝑏𝑏 , 𝑧̂𝑧𝑏𝑏} defined such 

that 𝑦𝑦�𝑏𝑏 is oriented along the imager boresight, 𝑧̂𝑧𝑏𝑏 is normal to the bottom plate and oriented 

away from the body of the satellite, and 𝑥𝑥�𝑏𝑏 is defined by the right hand rule.  The main 

purpose of this coordinate frame is to determine the attitude and angular velocity of the 

SRO relative to the Mars IAU Frame. Since the SRO does not yet have a defined shape, 

Figure 45 shows the orientation of the body-fixed frame with respect to the Prox-1 

spacecraft as an example. 
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Figure 45 – Prox-1 Body-Fixed Frame orientation [15] 

 Relative orbital elements (ROEs) describe the relative motion of one object with 

respect to another in orbit, in an analogous way to the conventional orbital elements used 

to describe a two-body orbit [60]. ROEs were developed based on the Clohessy-Wiltshire 

model and rely on the corresponding assumptions of a circular target spacecraft orbit and 

small relative distance to the target. The ROEs described in Cartesian LVLH coordinates, 

where the x-axis is represented by 𝑹𝑹� , the y-axis is represented by 𝑺𝑺�, and the z-axis is 

represented by 𝑾𝑾�, are derived in detail in [71] and are given by Eqs. 2-7, where n is the 

mean motion of the target spacecraft, 𝑡𝑡0 is a reference time, 𝑡𝑡 is the evaluation time, 

𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0 are the initial LVLH position states at 𝑡𝑡0, and 𝑥̇𝑥0, 𝑦̇𝑦0, 𝑧̇𝑧0 are the initial velocity 

states at 𝑡𝑡0. 

𝑥𝑥𝑟𝑟 = 4𝑥𝑥0 +
2𝑦̇𝑦0
𝑛𝑛

 (2) 

𝑦𝑦𝑟𝑟 = 𝑦𝑦0 −
2𝑥̇𝑥0
𝑛𝑛

− (6𝑛𝑛𝑥𝑥0 + 3𝑦̇𝑦0)(𝑡𝑡 − 𝑡𝑡0) (3) 
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𝑎𝑎𝑟𝑟 =  ��6𝑥𝑥0 +
4𝑦̇𝑦0
𝑛𝑛
�
2

+ �
2𝑥̇𝑥0
𝑛𝑛
�
2

 (4) 

𝐸𝐸𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 �
2𝑥̇𝑥0
𝑛𝑛

, 6𝑥𝑥0 +
4𝑦̇𝑦0
𝑛𝑛
� + 𝑛𝑛(𝑡𝑡 − 𝑡𝑡0) (5) 

𝐴𝐴𝑧𝑧 =  �𝑧𝑧02 + �
𝑧̇𝑧0
𝑛𝑛
�
2

 (6) 

𝜓𝜓 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 �𝑧𝑧0,
𝑧̇𝑧0
𝑛𝑛
� + 𝑛𝑛(𝑡𝑡 − 𝑡𝑡0) (7) 

 The orbit of the chaser spacecraft about the target is a two-by-one ellipse about the 

instantaneous center of motion (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟) with a semi-major axis of 𝑎𝑎𝑟𝑟, a semi-minor axis of 

1
2
𝑎𝑎𝑟𝑟, and a cross-track amplitude of 𝐴𝐴𝑧𝑧. 𝐸𝐸𝑟𝑟 is the relative eccentric anomaly of the ellipse, 

and 𝜓𝜓 is the cross-track phase angle. Figure 46 shows this relative orbit geometry, and Eqs. 

8-13 describe the LVLH Cartesian position and velocity state in terms of ROEs. 

𝑥𝑥 = 𝑥𝑥𝑟𝑟 −
1
2
𝑎𝑎𝑟𝑟 cos(𝐸𝐸𝑟𝑟) 

(8) 

𝑦𝑦 = 𝑦𝑦𝑟𝑟 + 𝑎𝑎𝑟𝑟 sin(𝐸𝐸𝑟𝑟) (9) 

𝑧𝑧 = 𝐴𝐴𝑧𝑧 sin(𝜓𝜓) (10) 

𝑥̇𝑥 =
𝑛𝑛
2
𝑎𝑎𝑟𝑟 sin(𝐸𝐸𝑟𝑟) (11) 

𝑦̇𝑦 =  −
3
2
𝑛𝑛𝑥𝑥𝑟𝑟 + 𝑛𝑛𝑎𝑎𝑟𝑟 cos(𝐸𝐸𝑟𝑟) 

(12) 

𝑧̇𝑧 = 𝑛𝑛𝐴𝐴𝑧𝑧 cos(𝜓𝜓) (13) 
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Figure 46 – Relative orbit geometry 

4.4 Rendezvous & Capture Concept of Operations 

In collaboration with the MSR rendezvous team at JPL, a detailed process has been 

defined for the overall MSR rendezvous and capture concept of operations. This section 

presents the detailed process, with particular attention to autonomous terminal rendezvous. 

A description of rendezvous maneuvers using ROEs and example trajectories are also 

presented. An overview of the full process is shown in Figure 47.  



 86 

 
Figure 47 – Overall rendezvous and capture process 

4.4.1 Initial Rendezvous Process 

Phase 0 of the rendezvous process involves launching the MAV from the surface 

of Mars and releasing the OS into orbit around Mars. Phase 1 is initial acquisition and orbit 

matching, in which the SRO first acquires images of the OS from thousands of kilometers 

away. Relative orbit determination is performed by engineers on the ground, and once a 

reliable relative orbit estimate is obtained maneuvers are performed to begin matching the 

SRO orbit to within about 10 km of the OS. During Phase 2, the OS is continually inspected 

by the SRO to obtain a refined relative orbit estimate with ground-in-the-loop navigation 

solutions. Approach maneuvers or “hops” are also performed during Phase 2 to gradually 

move the SRO closer to the OS. This study begins in Phase 2C, after the SRO is placed in 

a passively safe “standby” orbit within 100 m of the OS. This orbit is an inclined “safety 

ellipse” in either a leading or trailing orbit relative to the OS. As shown in Figure 48, the 

relative orbit has an out-of-plane cross-track component. If there is any altitude difference 

between the SRO’s relative center of motion and the OS, the relative orbit of the SRO may 
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drift along-track toward or away from the OS. There is no risk of collision if drift occurs 

because the SRO’s relative orbit is not in-plane with the OS. 

 
Figure 48 – Illustration of passively safe standby trajectory (not to scale)  

a.) Radial view (looking towards Mars) b.) Along-track view (along OS velocity vector) 

 

4.4.2 Autonomous Terminal Rendezvous & Capture Process 

 The terminal rendezvous and capture process in Phase 3 was developed into a 

functional state machine, shown in Figure 49. This state machine is based on the generic 

functional state machine and is used by the fault protection system to determine how to 

respond to various faults as they are detected. This section walks through each step of this 

process and explains how the state machine operates. Two types of approach strategies are 

currently under consideration for the terminal rendezvous phase. The first is a forced 

motion approach, which involves approaching the target using autonomous closed-loop 

control either via the along-track direction (v-bar) [56], radial direction (r-bar) [55], or 
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Figure 49 – State machine for rendezvous and capture process 
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some hybrid between the two directions. The second strategy is a ballistic approach, which 

involves performing a single maneuver to place the spacecraft on a ballistic collision 

course. The ballistic approach is computationally simpler but has fewer safety 

considerations. This study assumes a forced motion v-bar approach, but differences 

between the forced motion and ballistic approach will be mentioned in the description of 

the rendezvous process. 

Fault responses are calibrated based on the relative risk to the mission in each sub-

phase. The state machine in Figure 49 represents both nominal and off-nominal processes. 

The flow of the nominal process begins in the bottom left corner and continues upwards 

around the border of the chart to the bottom right. Off-nominal processes are shown in the 

middle of the chart.  

4.4.2.1 Phase 2C: Passive Standby 

 The SRO begins in a passively safe standby orbit at the end of the ground-in-the-

loop rendezvous process, as described in Section 4.4.1; this is the state in the bottom left 

of Figure 49. The SRO can remain in Phase 2C for an extended period of time if necessary. 

A ground command must be provided (GroundCommand=1) to initiate the autonomous 

sequence (Phase 3). Even when a ground command is provided, the autonomous sequence 

will not initiate if a fault has been detected (FaultDetectedMode=1). 

4.4.2.2 Phase 3A: Final Hop 

If a forced motion approach strategy is chosen, the autonomous sequence would 

include a Final Planar Hop from the out-of-plane passively safe trajectory to the plane of 
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the terminal approach corridor, removing the cross-track motion provided by the safety 

ellipse while also moving closer to the target in the along-track direction. The planar hop 

ends when the SRO arrives at a standoff position (ArriveAtStandoff=1) just before 

the start of the final approach. Note that the Final Hop phase is not necessary if a ballistic 

approach strategy is chosen. 

4.4.2.3 Phase 3B-1: Standoff 

 The closed-loop approach sequence (Phase 3B) is shown in Figure 50. This phase 

begins with the SRO holding position in a standoff tens of meters away from the OS on the 

along-track axis. When proper lighting (SunlitOS=1) and communication conditions 

(Earth not occulted by Mars, CommPossible=1) are achieved and the OS has been 

acquired by all rendezvous sensors that can see it at that range 

(OSInView_AllSensors=1), the Rendezvous OS Capture System (ROCS) capture 

mechanism is armed (ArmROCS=1) and the approach begins. Even if all of these 

conditions are met, the final approach will not initiate if a fault has been detected 

(FaultDetectedMode=1). Although real-time two-way communication is not possible 

during autonomous terminal approach and capture (Phase 3) because of communication 

time delays, the communication condition is imposed to allow the ground team to monitor 

autonomous operations by streaming telemetry and possibly live video to the ground. 
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Figure 50 – Closed-Loop Approach Sequence 

4.4.2.4 Phase 3B-3: Zone 1 – Passive Miss Region 

“Zones of Criticality” have been specified for the final approach after leaving the 

standoff position. The zones shown in Figure 51 are used to alter fault protection behavior 

based on distance to the target and time to intercept. Durations and distances listed are 

dependent on the rendezvous approach strategy and specific parameters selected, so the 

transition conditions between these zones may vary, but the criticality (and thus impact on 

FP behavior) of the zones will endure regardless of the implementation selected. Also note 

that Zone 1 (Passive Miss Region) does not exist if a ballistic terminal approach is selected. 

The closest approach distance and minimum velocity used to calculate the zone transitions 

are computed by propagating the ROEs after each maneuver using Clohessey-Wiltshire 

assumptions and then converting to Cartesian coordinates. 
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Figure 51 – Notional “zones of criticality” 

Zone 1 is called the “passive miss region”. During this zone the SRO must perform 

regular maneuvers to remain on an intercept course with the OS. If the SRO stops 

maneuvering (a passive abort), then it will pass by the OS harmlessly.  

4.4.2.5 Passive Abort 

If at any point in the Passive Miss Region something goes wrong, the system simply 

stops maneuvers (StopManuevers=1) and enters Passive Abort, allowing the SRO to 

drift away from the OS. Once the SRO has reached a safe distance from the OS 

(ArriveAtStandby=1), it returns to the out-of-plane Passive Standby trajectory and 

awaits ground commands before resuming autonomous operations. 

4.4.2.6 Phase 3B-4: Zone 2 – Active Abort Region 

If no problems occur during the Passive Miss Region, the system will enter the 

“Active Abort Region” when the minimum propagated range from the SRO to the OS 

becomes less than the defined capture distance from the SRO’s center of mass. During this 
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zone, if the SRO stops maneuvers it will intercept the OS, but if an active abort maneuver 

is performed intercept can be avoided. 

4.4.2.7 Active Abort 

If at any point during the Active Abort Region something goes wrong, an abort can 

be commanded (Abort=1) to return to Passive Standby via the Active Abort mode. The 

active abort maneuver immediately adds out-of-plane motion and moves away from the 

target to avoid an intercept. It then allows the SRO to drift slowly away from OS until it 

returns to the out-of-plane Passive Standby trajectory (ArriveAtStandby=1). 

4.4.2.8 Phase 3B-5: Zone 3 – Unavoidable Intercept Region 

Finally, just before intercept the system enters the third zone, which is called the 

“unavoidable intercept region”. The condition to enter Zone 3 is that the abort thrust 

required must be higher than the SRO’s propulsion system can generate, in addition to the 

minimum propagated range from the SRO to the OS being less than the defined capture 

distance from the SRO’s center of mass. During this zone, the SRO can no longer avoid 

intercepting the OS even if an abort maneuver is performed. It must either capture the OS, 

or it will likely collide. Note that Zone 3 may be very short (on the order of seconds) if the 

SRO has a robust thrust capability. 

4.4.2.9 LocateOS 

If capture is unsuccessful and the OS does not enter the capture volume 

(OSEnterCaptureVolume=1) within the specified WaitTime, the system enters the 

“LocateOS” state. It will attempt to determine where the OS is located 
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(OSLocatedOutside=1) before performing any slew or thrust maneuvers. Once the 

OS is found (OSConfirmed=1), an abort maneuver is commanded (Abort=1).  

4.4.2.10 Phase 3C: Capture 

 If the OS enters the capture volume successfully, the capture process (Phase 3C) 

begins. This process is shown in Figure 52. The OS passes by a sensor such as a laser 

curtain, which indicates that it is entering the capture volume. Once the OS has cleared the 

laser curtain and is fully inside the capture volume, a command is sent to close to capture 

door (CloseDoor=1). A confirmation sensor then verifies that the OS is inside 

(OSConfirmed=1). If the OS cannot be confirmed inside the capture volume within the 

specified WaitTime after the door has closed, the system enters the LocateOS state and 

commands an abort (Abort=1). 

 
Figure 52 – OS Capture Process 
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4.4.3 Description of Terminal Rendezvous Maneuvers 

 While there are many different approach schemes that can be used for terminal 

rendezvous, a v-bar approach has been selected to create scenarios to test the FP system. 

This approach begins with the SRO ahead of the OS in the same orbit. The semi-major axis 

of the SRO’s orbit is then slightly reduced so that the two spacecraft will drift apart further 

if a maneuver cannot be performed. Reducing the semi-major axis results in an eccentricity 

change, creating the appearance of “hops” in the LVLH plane. The SRO then executes a 

maneuver in the radial direction to begin another hop every time it crosses the orbit of the 

OS. ROEs are used to visualize and design the approach and to provide an initial estimate 

of the velocity change (ΔV) required for each maneuver. 

 The ΔV required to cancel out the cross-track velocity is found with the following 

procedure. First, z is set to zero in Eq. 10, the cross track phase angle 𝜓𝜓 is obtained, and 

this value and the current Cartesian LVLH state are substituted into Eq. 7 to obtain the time 

of xy-plane crossing. The ΔV applied at this time is the negative (-) of Eq. 13. This 

maneuver marks the beginning of the Final Hop. At the end of the Final Hop, a “hold 

position” maneuver is performed to hold the relative position constant. In this maneuver, 

all relative velocity is cancelled out when the chaser crosses the LVLH x-axis. At any time, 

the relative drift of the spacecraft in the along-track direction can be stopped by setting 𝑥𝑥𝑟𝑟 

to zero (giving both spacecraft the same semi-major axis) and solving Eq. 2 for 𝑦̇𝑦0. This is 

known as a “freeze drift” maneuver. 

 When defining the v-bar approach maneuvers, ROEs are helpful in describing the 

size of each hop. The ROE approach parameters 𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎 completely describe the 
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distance that will be traveled in each hop, the time each hop will take, and the rate at which 

the along-track center of motion of the SRO will move away from the OS in the event of a 

passive abort. The time required for each hop, Δ𝑡𝑡, is given in Eq. 14. This equation is 

obtained by setting Eq. 8 to zero and substituting the chosen values of 𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎. 

The along-track distance traveled in each hop, Δ𝑦𝑦, is given in Eq. 16. This equation is 

obtained by substituting Eq. 14 into Eq. 15 then substituting the result into Eq. 9. Eq. 15 is 

a redefinition of Eq. 3 in terms of ROEs rather than Cartesian coordinates. 

Δ𝑡𝑡 =
2
𝑛𝑛
�𝜋𝜋 − acos�

2𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎
�� (14) 

𝑦𝑦𝑟𝑟 = 𝑦𝑦𝑟𝑟0 −
3
2
𝑛𝑛𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎(t − t0) (15) 

Δ𝑦𝑦 =  −3𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎 �𝜋𝜋 − acos�
2𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎
�� − 2𝑎𝑎𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ sin�acos�

2𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎
�� (16) 

 
 

4.4.4 Example Mission Scenarios 

Plots of example trajectories are shown in this section to illustrate a nominal 

terminal rendezvous approach, a passive abort scenario, and an active abort scenario. These 

plots have been generated by MATLAB code assuming linear relative dynamics and 

impulsive ΔV maneuvers. For each scenario, an xy-projection of the trajectory, a three-

dimensional (3D) view, and time histories of the relative position and velocity are shown. 

Impulsive maneuvers are shown in the xy-projection and the 3D view as red vectors 

indicating location, ΔV direction, and ΔV magnitude. Note that ΔV magnitudes are scaled 

automatically in each plot by MATLAB’s quiver3 function for visibility, so they only have 

meaning relative to one another in the same plot and their exact magnitudes cannot be read 

directly from an individual plot or compared directly with other plots. Red diamonds 
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indicate the location of maneuvers in the time history plots. Impulsive maneuvers are 

represented as discontinuities in the velocity time history plot.  

The SRO initial orbit conditions for all scenarios are expressed in terms of ROEs. 

The conditions are given by setting 𝑥𝑥𝑟𝑟 to 0 m, 𝑦𝑦𝑟𝑟 to 50 m, 𝑎𝑎𝑟𝑟 to 20 m, 𝐴𝐴𝑧𝑧 to 10 m, 𝐸𝐸𝑟𝑟 to 

zero, and 𝜓𝜓 to zero. For the v-bar approach, 𝑥𝑥𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ is set to -0.5 m and 𝑎𝑎𝑟𝑟,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ is 

set to 4 m. These parameters result in a Δ𝑡𝑡 of 4,251 sec (70.85 min) and a Δ𝑦𝑦 of -10.48 m 

per hop, with the negative indicating a decreasing 𝑦𝑦𝑟𝑟 with each hop. 

4.4.4.1 Nominal Approach Trajectory 

A nominal approach trajectory is shown in Figures 53-56 and involves the 

following phases. First, out-of-plane natural motion occurs in the passively safe standby 

trajectory before any control is activated; this is the blue portion of the trajectory in the 

plots. Once trajectory control is activated (at the start of the black portion of the trajectory), 

the controller allows the SRO to continue in natural motion until the xy-plane is reached. 

At this point, a planar hop maneuver is commanded to remove all out-of-plane motion and 

the red portion of the trajectory begins. The controller allows the SRO to continue coasting 

until the along-track axis is reached. At this point, a hold position maneuver is commanded 

to hold the SRO at a fixed relative position. A small maneuver is commanded to begin the 

v-bar approach (blue portion of the trajectory), and subsequent hops are performed until 

the SRO is near the OS. At this point, the green portion of the trajectory begins and the 

controller allows the SRO to coast until it reaches the point of closest approach (the red x) 

at a range of 1.08 m, where another hold position maneuver is performed to represent OS 
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capture. This final maneuver is for illustration purposes only and may not be necessary to 

capture the OS dynamically. Detailed capture dynamics are not simulated. 

Figure 53 – Relative orbit xy-projection (LVLH) for nominal trajectory 
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Figure 54 – Relative orbit three dimensional view (LVLH) for nominal trajectory 

 

20
-20

-15

10

  

-10

-5

0

60

x (Radial) [m]

5

0

z 
(C

ro
ss

 T
ra

ck
) [

m
] 10

50

15

20

y (Along Track) [m]

25

40 -10

30

30
20 -20

10
0

Natural Motion (out-of-plane)

Preparation for Planar Hop

Preparation for Hold Position

V-Bar Approach

Preparation for Hold Position

SRO Initial Position

OS Position

Closest Approach

Delta-V Locations (magnitude & direction)



 100 

 
  

Figure 55 – Relative position time history (LVLH) for nominal trajectory 
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Figure 56 – Relative velocity time history (LVLH) for nominal trajectory 
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At this point, a safety ellipse maneuver is performed (magenta portion of the trajectory) to 

inject out-of-plane cross-track motion. Finally, a freeze drift maneuver is performed in the 

yellow portion of the trajectory to eliminate along-track drift of the out-of-plane passively 

safe standby ellipse. 

Figure 57 – Relative orbit xy-projection (LVLH) for passive abort 
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Figure 58 – Relative orbit three dimensional view (LVLH) for passive abort 
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Figure 59 – Relative position time history (LVLH) for passive abort 
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4.4.4.3 Active Abort Trajectory 

The active abort trajectory is shown in Figures 61-65. Figure 63 shows an additional 

3D view to more clearly illustrate the active abort. This scenario is identical to the nominal 

approach until the active abort occurs in the green portion of the trajectory. Assuming a 

fault has been detected, a maneuver is performed to inject out-of-plane cross-track motion. 

This location becomes the point of closest approach at a range of 6.92 m. During the 

Figure 60 – Relative velocity time history (LVLH) for passive abort 
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magenta portion of the trajectory, natural motion causes the out-of-plane ellipse to drift 

back away from the target in the negative along-track direction until it reaches the standby 

distance of 50 m from the OS. Finally, a freeze drift maneuver is performed in the yellow 

portion of the trajectory to eliminate along-track drift of the standby ellipse. 
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Figure 61 – Relative orbit xy-projection (LVLH) for active abort 
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Figure 62 – Relative orbit three dimensional view (LVLH) for active abort 
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Figure 63 – Relative orbit three dimensional view (LVLH) for active abort 
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Figure 64 – Relative position time history (LVLH) for active abort 
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Figure 65 – Relative velocity time history (LVLH) for active abort 
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4.5 MSR Fault Protection Requirements Development 

A desired set of fault protection behaviors is established in this section for the 

autonomous rendezvous and capture phase of the SRO mission. A fault tree analysis is 

performed to determine which faults should be considered based on input from subject 

matter experts. Several major areas are considered, including relative orbit determination, 

guidance & control, sequencing, and capture operations. Next, a selected subset of faults 

in each of these areas is expanded in detail. Criticality, detection, diagnosis, and response 

strategies are examined at various stages of the rendezvous and capture process. These 

details are used to define a set of potential fault protection requirements that accounts for 

different conditions in different stages of the process. In the following section, a fault 

protection architecture is developed that shows how fault protection could be implemented 

during this unique and challenging mission phase.  

The terminal rendezvous and OS capture scenario provides an excellent case study 

for fault protection research. The initial portion of this study develops a desired set of FP 

behaviors for autonomous rendezvous and capture of the OS. This has been done in 

collaboration with the Mars Sample Return (MSR) mission formulation team at JPL. The 

MSR rendezvous working group is made up of members from three disciplines: relative 

orbit determination, guidance & control, and sequencing. A separate ROCS team is 

developing concepts for the flight hardware subsystem that will perform the capture 

operation. Inputs have also been sought from the SRO flight systems working group about 

various aspects of spacecraft subsystem concepts. 
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There are three desired outcomes for the MSR team. First, a set of initial FP 

requirements should be defined. These requirements may then be used to drive the initial 

design of the SRO rendezvous and capture system. Next, the MSR team desires to integrate 

fault protection with mission concept development, influencing design decisions during 

Pre-Phase A based on FP considerations. Finally, the MSR team desires to apply the FP 

process used in this study to other aspects of MSR mission design. 

Several key requirements guided this study. First, mission success is vital. Fault 

protection should be designed to ensure the SRO mission to capture the OS can be 

completed or aborted without ground intervention, even under fault conditions. As stated 

earlier, autonomy is a key feature, since terminal rendezvous and capture occur fully 

autonomously. Safety is also a key concern, and fault protection should prevent the 

spacecraft from colliding with the OS. Finally, time criticality should be taken into account. 

For example, a fault response may be quite different at the beginning of the autonomous 

rendezvous sequence when the SRO is 100 m from the OS than in the last 5 or 10 meters. 

Several different tasks were undertaken in order to define the fault protection behavior 

for autonomous rendezvous and capture. Some of these are standard fault protection 

practices, and others were customized for this study. All tasks have been completed at the 

preliminary level only, since detailed design has not yet begun for this mission concept. 

4.5.1 MSR GN&C Subsystem Taxonomy and Fault Trees 

To aid in clarifying terminology, a subsystem taxonomy (or system block diagram), 

shown in Figure 66, was constructed based on the generic subsystem taxonomy. This 

diagram lists out various elements, subsystems, and components of the system and was 



 113 

also used to help team members understand conceptually what components should be 

considered for the fault protection process. An example of terminology clarification is the 

naming of various rendezvous cameras, shown in the expansion of Figure 66. Because the 

terms “Narrow Angle Camera” and “Wide Angle Camera” have different meanings in 

different contexts, the rendezvous team developed animal names for each camera. The 

“hawk” is a camera that can see far away, the “dog” is a shorter-range camera with a wider 

field of view, and the “fish” is a very wide-angle camera with a short range. A readable 

version of the complete Subsystem Taxonomy is shown in Appendix C. 

 

Figure 66 – Subsystem taxonomy, with an example expanded [53] 

 An important step in developing fault protection requirements is to perform a fault 

tree analysis. Through discussions with subject-matter experts from the MSR rendezvous 

working group, a fault tree was defined that captures faults that could result in failure of 

the terminal rendezvous phase, as shown in Figure 67. 
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Figure 67 – High-level fault tree for autonomous rendezvous & capture [53] 

 The first discipline considered is Relative Orbit Determination, which involves 

calculating relative position & velocity from rendezvous sensor data. Next is Guidance & 

Control, which is responsible for attitude determination/control and trajectory control 

during rendezvous. In addition, sequencing uses the Virtual Machine Language (VML) to 

direct the autonomous process based on state machines that are developed on the ground 

and loaded onboard [72]. Finally, Capture deals with the mechanical and logical 

components for capturing the OS. 

 An initial fault tree was developed prior to consulting the MSR team. However, in 

order to capture the inputs from JPL experts representing each discipline, various breakout 

meetings were held to revise and expand this initial fault tree. These meetings were 

designed to simply brainstorm, add, remove, rearrange, or rename potential faults from the 

fault tree. Figure 68 shows one example of the results of these breakout sessions. 
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Figure 68 – Result of a fault tree brainstorming session  
for relative orbit determination [53]

 Finally, the results of all the breakout discussions were compiled to create 

comprehensive fault trees. A complete fault tree including over 50 root cause events 

(shown in Appendix D in text form) was constructed to capture all faults specific to 

rendezvous and capture. A second fault tree shown in  

Figure 69 was used to capture generic spacecraft subsystem (non-GN&C) faults that could 

occur during rendezvous and capture.



 116 

 

Figure 69 – General spacecraft subsystem fault tree [53] 
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4.5.2 MSR Rendezvous & Capture Requirements 

A subset of faults (bolded in the fault tree shown in Appendix D) was selected from 

the completed fault tree. Several representative faults were chosen from each discipline 

(relative orbit determination, guidance & control, sequencing, and capture). The selected 

faults are challenging to detect, diagnose, or respond to in a quick, efficient, and safe way. 

These faults were expanded in detail, and time-to-criticality, detection methods, diagnosis 

methods, and response strategies are examined at various stages of the rendezvous and 

capture process. These details were then used to define a set of potential fault protection 

requirements that accounts for different conditions in different stages of the rendezvous 

process. One example strategy for a single fault is shown in Figure 70, and the related 

possible fault protection requirements are shown in Figure 71. Note that both the time to 

criticality and response strategy for this particular fault are too complex to fit into the table 

in Figure 70 and are described in depth in the following section. Details of strategies and 

requirements for all of the selected faults are provided in Appendix E. After completion of 

these requirements, a second round of breakout meetings was held with technical experts 

in each area to share the results and seek direction for the next steps. 
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Figure 70 – Example fault protection strategy [53] 

 

Figure 71 – Example of possible fault protection requirements [53] 

 
4.6 Fault Detection, Diagnosis, and Recovery Strategy 

An example case (“No OS data received from sensors”) was selected to demonstrate 

how a spacecraft fault protection system may diagnose faults on-board. The fault protection 

architecture utilizes state machines so that fault responses are tied to the state of the system 

rather than simply as a reaction to the detection of symptoms.  
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The study focuses on four faults as a proof of concept. Each of these faults has a very 

similar symptom used for initial detection, but each fault also has a distinct diagnosis and 

response procedure. The four faults are “Sensor Loses Power”, “SRO Angular Rates Too 

Great”, “OS in Eclipse” and “Filter Does Not Converge”. Initial fault detection is 

performed by examining the result of an image processing algorithm developed for the 

Prox-1 small satellite mission [73]. This algorithm receives the simulated sensor image of 

the OS as an input and outputs a simple logical variable called InView. This variable is 

set to 1 if the OS is visible in the image and to 0 if the OS is not visible. An image timer 

tracks the amount of time since the last OS image has been seen, and if this timer surpasses 

a user-defined time threshold (and the OS has been seen previously), then a fault detection 

is triggered. A fault detection can also be triggered by an input variable indicating relative 

orbit filter non-convergence. 

Once a fault is detected, the diagnostic state machine shown in Figure 72 is activated. 

This state machines operates exactly like the generic diagnostic state machine described in 

Section 2.6. The diagnostic state machine consists of two primary states: NoFaultDetected 

and FaultDetected. During all nominal mission phases, NoFaultDetected is activated, but 

when one of the fault detection triggers described above is observed, FaultDetected will be 

activated. If the rendezvous process state machine in Figure 49 has any state active other 

than the Passive Miss or Active Abort Regions (Zones 1 and 2), then the diagnostic state 

machine enters the “Diagnose” state immediately when a fault is detected. If the 

rendezvous process is in the Passive Miss Region (ZonePassive=1) or Active Abort 

Region (ZoneActive=1), then the diagnostic state machine does not attempt to 

determine which fault has occurred. An active or passive abort maneuver is commanded  
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 Figure 72 – Diagnostic state machine for MSR Simulation 
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immediately, returning the spacecraft to a passively safe standby orbit as described in 

Section 4.4.3 before entering the Diagnose state.  

 The Diagnose state consists of sub-states for each possible fault, which operate as 

described in Section 2.6. The “Sensor Loses Power” fault is diagnosed if 

SensorPowerState is equal to zero. “SRO Angular Rate Fault” is diagnosed if the 

maximum absolute value of any element of the angular velocity vector exceeds the user 

defined MaxAllowableRate. “OS in Eclipse” is diagnosed if OSEclipseState is 

equal to one. Finally, “Filter Does Not Converge” is diagnosed if 

FilterConvergenceStatus is equal to zero.  

Once a fault is diagnosed, the diagnostic state machine calls the appropriate fault 

response. If “Sensor Loses Power” is diagnosed, the response is to send a command to reset 

the sensor power. If “SRO Angular Rates Too Great” is diagnosed, the response is to send 

a command to point the rendezvous sensor at the target. If “OS in Eclipse” is diagnosed, 

the response is to turn on a flashlight to enable imaging the OS during eclipse. Finally, if 

“Filter Does Not Converge” is diagnosed, the response is to reset the navigation filter. 

4.7 Evaluation in Simulation 

A simulation has been developed for the MSR application in MATLAB/Simulink to 

evaluate the generic FDIR architecture described in Chapter 2. This investigation builds on 

capabilities developed at Georgia Tech for other projects, including a high-fidelity 

ProxOps GN&C simulation for the Prox-1 small satellite mission [15,31], simulation 

models for feasibility studies of constellations of CubeSats at Mars [32], and a PITL testbed 

for high-fidelity testing of avionics boards for relative ProxOps called SoftSim6D [33].  
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4.7.1 Simulation Description 

An overview of the simulation is shown in Figure 73 and the interaction of various 

components is illustrated by the architecture block diagram in Figure 74. The diagram is 

based on the generic architecture block diagram from Section 2.3.5. It is divided into the 

simulation environment representing the system under control (entity being controlled) and 

the control system (entity exercising the control) according to terminology defined in [5]. 

 
Figure 73 – Overview of MSR Simulation 
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Figure 74 – MSR Simulation Block Diagram 
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The simulation environment is composed of foundational SoftSim6D simulation 

components and state variables that track the status of these models. For example, space 

environment models include time systems, gravitational forces, and orbit perturbations. 

The initial simulation epoch is input as a Gregorian date & time and is then translated into 

a Julian Date. Force and moment perturbations are included for the SRO and OS orbits 

around Mars for J2 non-spherical gravity, third body effects from Phobos and Deimos, 

aerodynamic drag, solar radiation pressure, and gravity gradient. The ephemeris of the Sun 

in the Mars IAU frame is obtained from the JPL SPICE toolkit in order to determine when 

the OS and SRO are in eclipse. The ephemeris of the Earth in the Mars IAU frame is also 

obtained to determine when Earth is occulted by Mars and communication of the SRO with 

the ground is not possible. 

The simulation environment also includes spacecraft dynamic models for inertial 

orbital dynamics, relative orbital dynamics, and attitude dynamics. The inertial orbit and 

attitude of each spacecraft is computed and numerically integrated separately, and the 

relative states are calculated by differencing the inertial states. A detailed model of the 

rendezvous visual sensor has also been developed. This model includes an image 

generation capability originally developed for Prox-1 [15]. The image generator takes the 

relative orbit and attitude of the SRO and OS as inputs to generate a simulated image of 

the OS as seen by the camera on the SRO. A screenshot of the Simulink sensor model 

(unreadable, but with descriptive labels) and a simulated image are shown in Figure 75.  

In order for an image to be generated, the OS must be within the field of view (FOV) 

of the sensor, the sensor power must be turned on, and the OS must be in sunlight (not in 

eclipse). The sensor power model is a logical variable representing on/off states as 0 or 1. 
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The model features a fault injection capability which causes the sensor to lose power at a 

specified input time. Sensor power can be restored by sending a sensor reset command. 

There is also a flashlight model, which is a simple on/off state represented by 0 or 1. If the 

OS is in eclipse, the flashlight can be activated by a “flashlight on” command to illuminate 

it, allowing an image to be generated in the absence of sunlight.  

 
It should be noted that additional generic spacecraft sensor and actuator models are 

included in the SoftSim6D suite, but for simplicity in this study perfect state knowledge 

and control input execution is assumed (including impulsive ΔV maneuvers) and these 

sensor and actuator models are not utilized. Of course relaxing these assumptions would 

Figure 75 – Screenshot of rendezvous sensor model & simulated OS image 
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provide a greater degree of realism to the simulation, but for the faults examined in this 

study it was not necessary. 

The next segment of the block diagram in Figure 74 is the Control System, which is 

arranged according to the generic state-based architecture containing components for state 

determination (evaluating evidence to determine the current state), state variables 

(maintaining state knowledge), and state control (computing control commands) [5]. There 

are two types of components in the Control System: GN&C Software Components which 

are focused on simulating the spacecraft’s orbit & attitude control subsystem and 

Fault/Mode components which are used for FDIR and spacecraft mode management.  

First, it should be noted that state determination for spacecraft dynamics and 

component states is not simulated explicitly through estimation algorithms. Instead, “truth” 

states from the simulation components are fed in directly to the control system as state 

variables. Dynamic states treated in this manner include spacecraft inertial and relative 

positions and velocities, attitudes and attitude rates, and eclipse/occultation status. This is 

in accordance with the assumption of perfect state knowledge mentioned above. Although 

navigation filter algorithms are not simulated, a variable representing filter convergence 

status is included in the simulation and is used to evaluate how the fault protection system 

responds to situations where such algorithms are not converged via user-defined fault 

injection. Sensor power status is also fed directly from the rendezvous sensor model into 

the Control System. 

The spacecraft six-degree-of-freedom (6DOF) control includes two components: 

attitude target tracking and relative trajectory control. The attitude target tracking algorithm 
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is identical to the algorithm developed for Prox-1 using a small satellite Control Moment 

Gyroscope [15], which points the camera boresight along the negative relative position 

vector. Because the simulation assumes perfect relative position and attitude knowledge, 

pointing the camera in this direction allows images of the OS to be generated by the 

rendezvous sensor model. As mentioned previously, perfect control input execution is 

assumed, so the torque commanded by the attitude target tracking algorithm is 

instantaneously imparted to the spacecraft attitude dynamics model. ROE-based relative 

trajectory control algorithms are also implemented to realize the concept of operations 

described in Section 4.4. Maneuvers are calculated dynamically and commanded onboard 

the SRO based on the current relative state rather than at preset times.  

4.7.2 Simulation Results 

A closed-loop V&V test of the FDIR system has been performed using SITL testing 

in the MATLAB/Simulink simulation described in the previous section. The initial relative 

orbit conditions are the same as those described in Section 4.4.3. The following rendezvous 

strategy parameters are also specified for the simulation. The maximum ΔV of the SRO is 

set to 0.25 m/s. This is used to determine when the SRO enters the Unavoidable Intercept 

Region. The capture distance is set to 1 m. This is used to determine when capture has 

occurred since the simulation does not include rigid body capture dynamics. The minimum 

safe distance is set to 10 m. This is used to determine the size of the safety ellipse for aborts. 

The standby distance is set to 50 m. This is used to determine when to end an abort; the 

SRO performs a maneuver to return to passively safe standby only after it has drifted this 

distance away from the OS in the along-track direction. 
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4.7.2.1 Nominal Approach 

In Case 1, a nominal approach is performed, as shown in Figure 76. In this scenario, 

the SRO proceeds all the way to capture, with no faults injected and no recovery actions 

taken. A minimum range of 1 m occurs at 20,534 seconds, and the simulation ends to 

 
Figure 76 – Simulation Results for Case 1: Nominal Approach 

 



 129 

represent capture. Note that this scenario is identical to the one presented in Section 4.4.4.1, 

except that no hold position maneuver is performed at the end of the simulation. However, 

unlike the previous scenario, this simulation does not assume linearized dynamics but 

propagates the full inertial orbits for both the SRO and the OS non-linearly and includes 

orbital perturbations. The simulation also includes a full 6DOF propagation including 

attitude dynamics. 

4.7.2.2 Faults Prior to V-Bar Approach 

Next, three scenarios are performed where different faults are injected during the 

planar hop prior to the start of the v-bar approach. In each of these scenarios the fault 

protection system successfully detects, diagnoses and responds to the fault and proceeds to 

capture the OS. 

In Case 2, an angular rate fault results in the loss of the OS from the imager FOV. 

A fault is injected at 1,050 sec during the planar hop by turning off the attitude tracking 

controller. The OS slowly drifts out of the imager FOV until it is no longer visible, 

triggering a fault detection. The fault protection system then initiates a sky search slew, 

which scans the sky and quickly finds and tracks the OS again, as shown in the attitude and 

angular velocity plots in Figure 77. Note that only the portion of the simulation near the 

fault detection and recovery is shown for clarity. After reacquiring the OS in the imager 

FOV, the SRO continues to capture the OS at 20,534 sec and a minimum range of 1 m, as 

in Case 1. Note that the slew used for the sky search was designed for a small satellite with 

an agile attitude control system. For an actual SRO implementation, the slew rate would 

likely be much lower. 
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Figure 77 – Simulation Results for Case 2: Angular Rate Fault 
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In Case 3, the OS enters eclipse at 5,005 sec during the planar hop. The OS image 

is no longer visible in the sensor FOV, triggering a fault detection. Once the planar hop is 

complete, the system enters a position hold until eclipse ends before beginning the v-bar 

approach at 6,411 sec. This is seen in Figure 78 as a zero relative velocity in all axes and a 

constant relative position in all axes. After eclipse ends, the SRO continues to capture the 

OS at 22,978 sec and a minimum range of 1.4 m. Note that this scenario indicates that the 

SRO’s autonomous system is “surprised” by the eclipse. Since eclipse is very predictable 

based on the Mars IAU ephemerides of the OS and the Sun, the autonomous system and 

ground support systems should be designed to anticipate and accommodate eclipse in the 

final rendezvous approach strategy. 

In Case 4, a fault is injected at 5,400 sec during the planar hop indicating that the 

relative orbit determination filter is unconverged. The fault protection system detects this 

fault and commands a filter reset, which takes about 100 seconds to confirm. As in Case 3, 

the SRO enters a position hold until the fault is resolved before beginning the v-bar 

approach, as shown in Figure 79. Note that only the portion of the simulation near the fault 

detection and recovery is shown for clarity. The SRO then continues to capture the OS at 

20,618 sec and a minimum range of 1 m. 
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Figure 78 – Simulation Results for Case 3: OS Enters Eclipse 
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Figure 79 – Simulation Results for Case 4: Unconverged Relative Orbit Filter 
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4.7.2.3 Faults During V-Bar Approach 

Finally, two scenarios are simulated where different faults are injected during the 

v-bar approach. In each of these scenarios, the fault protection system successfully detects 

the fault and immediately proceeds to a passive or active abort, bypassing the diagnostic 

step. This is the desired behavior specified by the requirements described in Section 4.5. 

In Case 5, a fault is injected at 6,000 sec indicating that the relative orbit 

determination filter is unconverged, similar to Case 4. Unlike Case 4 however, in this 

scenario the planar hop has already been completed and the v-bar approach has begun 

before the fault is injected. The fault protection system detects the fault and immediately 

commands a passive abort because the SRO is in the Passive Miss Region (Zone 1) of the 

v-bar approach. The SRO then stops maneuvers and begins drifting. It passes through a 

minimum range of 24.23 m at 8,706 sec (about 30 minutes after the fault time). After this 

minimum range, the SRO drifts away from the OS in the negative along-track direction, as 

shown in Figure 80. As in the scenario described in Section 4.4.4.2, once the along-track 

distance reaches 50 m the SRO injects cross-track motion and returns to a passively safe 

out-of-plane standby trajectory. 
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Figure 80 – Simulation Results for Case 5: Unconverged Relative Orbit Filter 
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In Case 6, a camera power fault is injected at 19,000 sec during the v-bar approach. 

The OS image is no longer visible in the sensor FOV, triggering a fault detection. The fault 

protection system detects this fault and immediately commands an active abort because the 

SRO is in the Active Abort Region (Zone 2) of the v-bar approach. The SRO then injects 

out-of-plane cross-track motion and begins drifting away from the OS in the negative 

along-track direction, as shown in Figure 81. This location becomes the point of closest 

approach at a range of 4.32 m. As in the scenario described in Section 4.4.4.3, once the 

along-track distance reaches 50 m the SRO freezes the along-track drift to return to the 

passively safe standby trajectory. A summary of all six simulation test cases is shown in 

Table 4. 

Table 4 – Simulation test case summary 

Case Description Fault 
Time 

Region 
Occurred 

Response 
Taken 

Minimum 
Range 

Time of 
Min Range 

1 Nominal approach n/a n/a n/a 1 m 20,534 sec 
2 Angular rate results in 

loss of OS from FOV 
1,050 sec Planar Hop Recovery 1 m 20,534 sec 

3 OS enters eclipse 5,005 sec Planar Hop Recovery 1.4 m 22,978 sec 
4 Unconverged Relative 

Orbit filter (before v-bar)  
5,400 sec Planar Hop Recovery 1 m 20,618 sec 

5 Unconverged Relative 
Orbit  filter (during v-bar) 

6,000 sec Passive Miss 
Region 

Passive 
Abort 

24.23 m 8,706 sec 

6 Camera power fault  
(during v-bar) 

19,000 sec Active Abort 
Region 

Active 
Abort 

4.32 m 19,000 sec 
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Figure 81 – Simulation Results for Case 6: Camera Power Fault 
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4.8 Conclusion 

Each of the tasks described above has been completed successfully for an initial 

treatment of defining fault protection behavior for autonomous rendezvous and capture of 

the OS. A detailed fault tree has been defined, along with a detailed rendezvous and capture 

process concept of operations and a system block diagram. Initial fault protection strategies 

and requirements have been generated for a total of about 20 key faults from the various 

discipline areas. The architecture has been tested in simulation for several fault cases. 

One goal of introducing fault protection earlier in the design cycle (during Pre-Phase 

A mission formulation) has been to help guide mission design considerations. One major 

observation is that the process of fault protection has been a forcing function for the MSR 

mission formulation team to clarify architecture and concept of operation decisions. In 

some cases, mission design and concept of operations assumptions have been documented 

for the first time. This has been an unexpected but welcome result, showing the value of 

fault protection not just as an add-on to a space mission design but as an essential 

component of the system design from the beginning. 

Defining terminology clearly is very important. There have been miscommunications 

at several meetings because of different understandings for the definitions of certain 

terminology. For example, although terms like “guidance, navigation, & control” have 

fairly standard definitions, they may have different connotations in different contexts. Even 

the term “fault protection” means different things to different people. This challenge has 

been addressed by inviting open discussion and feedback in group meetings and by 

attempting to clarify any terms that could be confusing or misunderstood when they are 
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presented. When developing tools like a fault tree, it is important to anticipate how terms 

will be understood by team members from various disciplines and define any terms that 

may be misinterpreted.  

Another challenge has been determining what to do next when each step is 

completed. Since a new method of fault protection design is being experimented with, there 

is not a defined process to follow. A final challenge has been a backlog in the 

communication of progress throughout the project. Because of the cadence of meeting 

cycles, work was often completed several weeks before it could be communicated to all 

relevant stakeholders. These challenges have been addressed by seeking additional 

direction and advice of fault protection experts and rendezvous/capture subject matter 

experts. Their suggestions helped refine the direction of the study 
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CHAPTER 5.  CONCLUSIONS AND FUTURE WORK 

 
5.1 Conclusions 

This study has presented a fault protection architecture for aerospace vehicles that 

is generic, modular, and portable to flight software and enables model-based on-board fault 

diagnosis using the state machine paradigm. The architecture is generic and can be applied 

to any aerospace vehicle or mission. It features a generic simulation capability used for 

development, verification, & validation. Multiple applications have been used to 

demonstrate the generic utility of the architecture in simulation and flight tests. The 

architecture is also modular and contains components that can be added, removed, and 

rearranged easily. Environment models, vehicle sensor & actuator models, and dynamics 

models can be selected, modified, and rearranged in the simulation block diagram. Initial 

conditions, vehicle properties, and environmental scenarios can be easily redefined in an 

initialization script. The architecture is portable to flight software and it is straightforward 

to convert the initial design into flight software that is flown onboard the vehicle. An 

autocoding process has been defined and demonstrated for the Prox-1 small satellite. 

The generic architecture is composed of five primary diagrams. A generic 

subsystem taxonomy defines the primary subsystems common to most aerospace vehicles 

and details common components for the guidance, navigation, & control subsystem. A 

generic fault tree analysis defines a process for determining which root cause and 

intermediate fault events could lead to an undesirable vehicle or mission failure. A generic 

functional state machine provides a model of vehicle mode state behavior by detailing 

processes common to many aerospace missions. A generic diagnostic state machine has 
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been developed to enable on-board model-based diagnosis of faults. Lastly, a generic 

architecture block diagram illustrates how the fault and mode components work together 

with vehicle and environmental components to perform fault protection in simulation and 

in flight. A process has been defined for adapting the generic architecture to specific 

applications, and two case studies have been demonstrated for very different applications. 

The first case study of the fault protection architecture is a terrestrial application 

for unmanned aerial vehicles known as the UAV Nervous System. The concept for the 

nervous system has been developed in collaboration with a company called FalconViz 

based at the King Abdullah University of Science and Technology in Thuwal, Saudi 

Arabia. A subsystem taxonomy and fault tree have been constructed and used to design a 

system to detect excess propeller vibration using supervised machine learning algorithms 

and alert the pilot by playing an audible signal from the radio hand controller. Upgrades 

have been added to the system to allow detection of propeller vibration faults, motor 

temperature faults, and electrical current/voltage faults on two arms of a six-arm rotary 

wing UAV simultaneously. These capabilities have been successfully demonstrated 

through flight testing. Finally, functional and diagnostic state machines have been created 

for the vibration detection case to develop a full fault protection architecture block diagram. 

The full architecture has been demonstrated in simulation using recorded flight test data. 

Flight tests and simulation using flight test data have demonstrated desired detection, 

diagnosis, and response performance for excess vibration faults and desired detection and 

response performance for temperature, current, and voltage faults. 

The second case study of the fault protection architecture is a space-based 

proximity operations application for autonomous terminal rendezvous and capture of a 
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Mars Sample Return orbiting sample container. The concept and requirements for the fault 

protection architecture have been developed in collaboration with the Mars Sample Return 

team at the NASA Jet Propulsion Laboratory. A subsystem taxonomy, detailed rendezvous 

and capture fault tree, and concept of operations including a functional state machine have 

been developed with input from subject-matter experts at JPL. Detailed trajectory design 

has been completed for nominal approach, passive abort, and active abort scenarios, and 

autonomous trajectory control logic has been developed and demonstrated in simulation. 

A diagnostic state machine has been implemented in concert with diagnostic and response 

routines to detect and correct four distinct faults in various phases of autonomous approach. 

Each of these faults has similar detection criteria but distinct diagnostic and resolution 

processes. Abort logic has also been developed and demonstrated when faults occur during 

regions that risk the sample return orbiter colliding with the orbiting sample return canister.  

All of these components have been combined into an integrated fault protection 

architecture and demonstrated in simulation using realistic guidance, simulation, & control 

algorithms and components. Six simulation cases have been evaluated, and in each scenario 

the behavior of the fault protection architecture is consistent with desired results for fault 

detection, diagnosis, and recovery in accordance with the defined requirements. 

In summary, a generic, modular, and portable architecture has been developed for 

aerospace vehicle fault protection. The architecture has been adapted to two distinct 

scenarios and has demonstrated the ability to successfully detect, diagnose, and respond to 

a variety of faults in real time using a state-based on-board system. Flight testing and 

detailed simulation have been used to thoroughly develop, verify, and validate this 

capability. A summary of all tasks for this investigation is shown in Table 5. 
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Table 5 – Task summary for this investigation 

Status Task Completion Date 

Complete Initial FDIR literature review Oct 2015 

Complete Initial FDIR architecture concept development Apr 2016 

Complete UAV Nervous System proof-of-concept July 2016 

Complete UAV Nervous System initial V&V flight tests July 2016 

Complete UAV Nervous System conference paper [41] Oct 2016 

Complete Dissertation proposal Jan 2017 

Complete UAV Nervous System expansion June 2017 

Complete UAV Nervous System final V&V flight tests June 2017 

Complete MSR fault tree and requirements definition July 2017 

Complete MSR FDIR conference paper [53] Sept 2017 

Complete FDIR literature review revision Dec 2017 

Complete MSR FDIR detailed design Jan 2018 

Complete MSR FDIR SITL V&V Mar 2018 

Complete Submit MSR FDIR peer-reviewed journal article [74] Apr 2018 

Complete Generic FDIR architecture detailed design Apr 2018 

Complete Demonstration of generic architecture  
with UAV flight test data May 2018 

Complete Dissertation defense June 2018 

Complete FDIR architecture peer-reviewed journal article June 2018 
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5.2 Publications 

In addition to the dissertation proposal and defense, several relevant publications are 

planned or completed. Other publications by the author are also listed.  

Peer-Reviewed Journal Articles: 

[15] P.Z. Schulte, D.A. Spencer, Development of an Integrated Spacecraft Guidance, 
Navigation, & Control Subsystem for Automated Proximity Operations, Acta 
Astronautica, 118 (Jan-Feb 2016), 168-186, doi:10.1016/j.actaastro.2015.10.010. 

[31] D.A. Spencer, S.B. Chait, P.Z. Schulte, K.J. Okseniuk, M. Veto, Prox-1 University-
Class Mission to Demonstrate Automated Proximity Operations, Journal of 
Spacecraft and Rockets, July 2016, doi:10.2514/1.A33526. 

 
[74] P.Z. Schulte, D.A. Spencer, M. Goggin, Mars Sample Return Terminal Rendezvous 

Fault Protection, Journal of Spacecraft and Rockets, submitted Apr. 2018. 
 
[75] P.Z. Schulte, D.A. Spencer, Generic State Machine Fault Protection Architecture for 

Aerospace Vehicle Guidance, Navigation, & Control, Journal of Aerospace 
Information Systems, submitted Jun. 2018. 

 

Conference Papers Relevant to This Work: 

[76] P.Z. Schulte, D.A. Spencer, Development of an Integrated Spacecraft Guidance, 
Navigation, & Control Subsystem for Automated Proximity Operations, 65th 
International Astronautical Congress, Toronto, Canada, Oct. 2014, IAC-14-
C1.6.4x21108. 

 
[77] K.J. Okseniuk, S.B. Chait, P.Z. Schulte, D.A. Spencer, Prox-1: Automated Proximity 

Operations on an ESPA Class Platform, 29th AIAA/USU Conference on Small 
Satellites, Logan, Utah, Aug. 2015. 

 
[41] P.Z. Schulte, D.A. Spencer, N.G. Smith, M.F. McCabe, Development of a Fault 

Protection Architecture Based Upon State Machines, 67th International Astronautical 
Congress, Guadalajara, Mexico, Sept. 2016, IAC-16-D1.IP.2x32540. 
  

[53] P.Z. Schulte, D.A. Spencer, State Machine Fault Protection for Automated Proximity 
Operations, 68th International Astronautical Congress, Adelaide, Australia, Sept. 
2017, IAC-17-C1.5.11x36573. 
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[54] P.Z. Schulte, D.A. Spencer, Fault Protection for Mars Sample Return Autonomous 
Rendezvous & Capture, Symposium on Space Innovations, Atlanta, Georgia, Oct. 
2017. (poster and presentation only) 

 
[78] P.Z. Schulte, D.A. Spencer, On-Board Model-Based Fault Diagnosis for Autonomous 

Proximity Operations, 69th International Astronautical Congress, Bremen, Germany, 
Sept. 2018, IAC-18-C1.6x45016. (abstract accepted) 
 
 

Other Conference Papers: 
 
[79] P.Z. Schulte, J.W. Moore, A.L Morris, Verification and Validation of Requirements 

on the CEV Parachute Assembly System Using Design of Experiments, AIAA-2011-
2558, 21st AIAA Aerodynamic Decelerator Systems Conference and Seminar, 
Dublin, Ireland, May 2011. 

 
[80] P.Z. Schulte, E.G. Lightsey, K.B. Brumbaugh, R.L Staehle, Utilization of a Solar Sail 

to Perform a Lunar CubeSat Science Mission, 2nd Interplanetary CubeSat Workshop, 
Ithaca, New York, May 2013. (presentation only; paper withheld by sponsor) 

 
[81] Pellegrino, M., Gibson, A., Mariscal, J.C., Schulte, P., “UNISPACE+50: Shared 

Vision, Common Action,” 68th International Astronautical Congress, Adelaide, 
Australia, Sept. 2017, IAC-17-E3.1.1x37185. 

 
 

5.3 Suggestions for Future Work 

This section presents possible extensions on this study. The suggestions for future 

work are organized based on the chapter divisions of this dissertation. 

5.3.1 Generic Fault Protection Architecture 

As described in Section 2.3.1, the subsystem taxonomy for the generic fault 

protection architecture lists generic subsystems for aerospace vehicles, but it only presents 

detailed generic components for the guidance, navigation, & control subsystem. It would 

be useful to add detailed components to the taxonomy for all subsystems. It addition, it 

would be beneficial to modify the generic subsystem taxonomy, fault tree, and functional 
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state machine to be more object oriented and automated. It would also be helpful to define 

more detailed generic classes of faults for the fault tree and diagnostic state machine and 

link them to taxonomy and functional state machine. As indicated by Rasmussen, robust 

fault protection requires a measure of uncertainty [5], so it is desirable to formally define 

such a measure for use in fault diagnosis. Also, future researchers could utilize the generic 

fault protection architecture to implement and evaluate more advanced diagnostic 

capabilities [25], including constraint suspension [28-29] and other techniques 

demonstrated on Deep Space One [24] and Cassini [26,27]. The generic architecture could 

facilitate the use of these diagnosis methods for a wide variety of aerospace applications.  

One possible method for these extensions would be to use the formal ontologies for 

fault protection and behavior modelling defined by JPL using SysML [12,22]. These 

formal ontologies might also be useful to define a more automated process to convert the 

generic architecture to a particular application and for developing content. For example, a 

future study could implement a “fault tree to state machine” algorithm to create the 

diagnostic state machine and link it to the functional state machine [40]. Such a process 

could also be used to populate each of the diagrams with content that is linked to other 

systems engineering processes for projects using formal methods for modelling. Finally, it 

would be immensely useful to extend the generic fault protection architecture beyond 

aerospace applications for domains such terrestrial robotics and autonomous cars. 

5.3.2 UAV Nervous System 

A next step to extend the UAV nervous system would be to expand the number of 

sensors with a full suite of vibration, temperature, current, and voltage sensors on each arm 
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of the six arm hexacopter. Fault detection can be performed on all arms independently and 

simultaneously. Then, if a propeller imbalance or other fault is detected, the nervous system 

can indicate which propeller needs to be balanced. Similarly, temperature and 

current/voltage sensors can be placed on each motor and ESC and the nervous system can 

record all variables as a function of time and indicate to UAV designers and operators 

which components tend to overheat or break first. 

Further sensors can also be added to expand the set of detectable failures. For 

example, many times when there is a problem with a UAV the first indication to the 

operators is an unusual sound. Thus, microphones collecting audio data near each propeller 

may be able to provide additional warning of faults. Data from microphones could be 

processed through a machine learning algorithm similarly to the acceleration data. 

Examples of other issues/failures on the UAVs that could be addressed by future work 

include monitoring the GPS receiver and magnetic compass (which can malfunction in 

flight, leading to the regularly reported problem of “fly-aways”), adding tachometers to 

detect changes in blade rotating speed, and ensuring healthy navigation filters (i.e. GPS 

position/velocity and attitude determination for roll/pitch/yaw angles and rates). 

Monitoring navigation variables would require communication with the flight controller, 

but redundant navigation systems could also aid in detecting navigation errors. 

 Another necessary update to the nervous system is smoothing out the startup 

process. Although quite convenient for prototyping and rapid development and testing, 

running Simulink in Windows onboard the copter is not a very elegant solution. It requires 

manually starting up Windows and initiating the Simulink model on a lab bench while 

connected to a monitor, then carrying the copter outside to begin flying. An intermediate 
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step is to set up a high-definition video downlink to interact with Simulink in the field. 

Ultimately it would be desirable to remove the Windows/Simulink component from the 

system completely and perform all fault detection and data recording directly on the Teensy 

with a Secure Digital (SD) card shield attached. The Teensy can be fully customized by 

programming in C, and Simulink has the capability to generate C code via autocoding. If a 

simple KNN classification detection algorithm is implemented in C (or if an autocodable 

MATLAB algorithm is available), it can be integrated with autocode from Simulink and 

sensor interface code directly on the Teensy. This would streamline the process for using 

the nervous system and make it much easier to seamlessly integrate it with a copter. 

5.3.3 Mars Sample Return Rendezvous & Capture 

 There is potential for some of the Mars Sample Return work to continue at JPL by 

adding more detail for the SRO rendezvous and capture FP strategy and by extending these 

FP concepts to other aspects of MSR concept development. Some of these methods could 

also be fed back into JPL’s general fault protection processes to continue to advance state-

based fault protection (especially diagnosis) for future missions. In retrospect, there are a 

few things that could be done differently in the Mars Sample Return study based on lessons 

learned. It would make sense to build the fault tree with a more functional structure rather 

than one based on rendezvous discipline areas. For example, if the OS is not seen in the 

rendezvous sensor’s field of view, there could be an issue with relative orbit determination, 

attitude control, or sequencing that could cause this. The current version of the fault tree 

places this fault under relative orbit determination and not the other two branches. A more 

functional structure was suggested by a JPL fault protection expert, but the work was 

already far enough along that it was decided to leave the fault tree in its current format. 
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Additionally, several changes could be made to the simulation to make it more useful 

for Mars Sample Return mission designers. Adding maneuver execution error would make 

the sim more robust for evaluating additional faults. It would also be useful to include 

attitude and relative orbit filters for more realistic evaluation of fault protection 

performance with uncertain state information and for evaluating FDIR performance for 

filter faults. Collaborator McClain Goggin is developing a tool that allows the user to easily 

create and compare rendezvous trajectories and evaluate them based on passive safety and 

the probability of collision. In order to accurately evaluate the passive safety, the user will 

be able to select from a range of default sensor and filter models (or add their own) so that 

the state uncertainty covariance can be accurately determined for each case. 

As mentioned in Section 4.7.2, several changes to the detailed implementation of the 

MSR fault protection architecture are necessary before a flight implementation is 

developed. The sky search slew rate used for reacquiring the OS when it drifts out of the 

sensor FOV should be adjusted for a large SRO spacecraft. Also, the autonomous system 

and ground support systems should be designed to anticipate and accommodate eclipse in 

the rendezvous approach strategy. In addition, detailed capture dynamics should be 

modeled and included in the analysis. Care should be taken when defining the transition 

between Zone 2 (Active Abort Region) and Zone 3 (Unavoidable Intercept Region) to 

ensure that active abort maneuvers have no chance of the SRO impacting the OS if the 

aborts are performed at a very close range. This is especially necessary if relative orbit 

information is lost during the abort. One way to account for this situation is to add margin 

to the capture distance, but regardless the amount of margin added should be determined 

by analysis. 
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APPENDIX A: AUTOCODING TECHNICAL MEMOS 
 
This appendix is referenced by Section 2.2.3 and contains two technical memos written at 
Georgia Tech by the Prox-1 small satellite Guidance, Navigation, & Control team, of which 
the author was the subsystem lead. These memos describe the autocoding process which 
was developed for converting the GN&C subsystem code developed in 
MATLAB/Simulink to C/C++. Although MATLAB/Simulink has the capability to 
generate autocode, some small modifications and configuration setting changes were 
required for the process to work properly. 
 
Technical Memorandum 
December 2, 2014 
 
TO: Prox-1 Design Team 
 
FROM: Meet Raj Patel & Jacob Sussman  
 
SUBJECT: Autocoding of GN&C MasterSim  
 
REFERENCES:      
(1) Fraticelli, J., “Simulink Code Generation: Tutorial for generating C code from 

Simulink Models using Simulink Coder,” NASA Marshall Space Flight Center, 2012. 
(2) “Call MATLAB Functions,” Simulink Documentation, Mathworks, 2013. 

[http://www.mathworks.com/help/simulink/ug/calling-matlab-
functions.html#bq1h2z9-48]. 

(3) “Simulink Documentation Center,” Mathworks, 2013. 
[http://www.mathworks.com/help/simulink/index.html].  

 

Purpose/Summary 

This document provides guidelines for generating C code from an individual GN&C 
module and the entire developed GN&C Master Simulation of PROX-1. In order to 
successfully achieve the code generation process, specific steps have been documented 
along with appropriate reasoning. Common errors are also documented in this report. The 
report is divided in two main sections: 

1. Assembling & Running the simulation  
2. Autocoding procedure  

 
 For this report, examples are given specifically using the 

“HIL_6DOF_MasterSim3-_APF_NoNav” Simulink model. Autocoding any other 
MasterSim should be fairly similar to this report’s design. Considerations for 
future MasterSim releases are addressed when appropriate and are preceded with 
the same bullet point used for this section. 
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[NOTE: Good ideas that have yet to be implemented or properly looked into will be 
encased in square brackets and preceded by “NOTE:” in bold letters. If agreeable to 
those in command, they should be implemented in the Spring 2015 semester.] 

Assembling & Running the Simulation  

Steps:  

• Open T-square, and download GNC_Current folder. Make sure to download the 
recent working folder of the simulation. After downloading and unzipping the file 
check that it has the following subfolders: Control, Documentation, Guidance, 
Navigation and SimArchitecture. Re-download if necessary. Open the 
“SimArchitecture” folder. The image shown below shows the subfolders. 

 

 

•  Access “MasterSim_3.0” folder and open “HIL_6DOF_MasterSim3_APF_ 
NoNav” Simulink model. Multiple graphic windows, Matlab main window and 
Simulink main model should be available. 

 

 
 

• In the “HIL_6DOF_MasterSim3_APF_NoNav” Simulink window there should be 
few un-referenced blocks. There modules appear to look red since model-
referencing is required. Right click on those blocks (the one with red dotted blocks), 
and select “Block Parameter (model referencing)”.  The window may appear as 
shown below: 
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• The preceding image shows the model reference block which includes “Model 
name” under “Parameters” window. Click on “Browse” and select the file name 
corresponding to the model name. For instance, “Slew_Controller_Model4” file 
Simulink model file is selected from the main GNC Control folder. After the file is 
selected, a prompt may ask to add the selected model to the current path. Click 
“Add path” and continue. The red dotted module will now turn its boundary into a 
darker one to signify that the model is found and ready to be used. 

 

 

• Follow the similar procedure for rest of the modules with red dotted unreferenced 
model. For current Sim model, model referencing should be made for 
“Slew&Tracking” model, “Detumble” model and Prox-1 Hardware and spacecraft 
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plant model. In order to reference the Prox-1 Hardware and spacecraft plant model, 
click on the model. This will open a sub-model consisting of “Prox-1 Hardware 
Models”, “Prox-1 Spacecraft Plant”, “Prox-1 Sensor Suit” and “Power Production 
Models”. Select the “Prox-1 Hardware Models”. 
 

• Inside this “Prox-1 Hardware Models” there are 4 sub-models. 
‘Thurster_SMC’,’TorqueRod_SMC’,’UT_Austin_Thruster’ and ‘TorqueRod_ 
Hardware’. Referencing each model is not required; referencing just one model out 
of 4 will suffice.  This is because each of these models are in the same folder, so 
that when the path to the folder is added for one of the models Simulink 
automatically detects the others. The Final Sim is shown below: 

 

 Future MasterSim releases will have more externally-referenced sub-
models, but the process for adding them is the same: click the broken 
model link, find the model, add the folder path. 

 
• Time to initialize the workspace environment. Make sure to run the initialization 

file from the current folder in main Matlab window. For this demonstration, open 
any of the following matlab.m files located in the same folder as the MasterSim 
model: HIL_6DOF_MasterSim3_Init_NMC.m, HIL_6DOF_MasterSim3_ 
RestToRest.m,  or HIL_6DOF_MasterSim3_Init_LeadingOrbit.m. Running one of 
these files will initialize various model simulation parameters, e.g., the mass of the 
spacecraft, the target’s location, or a simulated initial noise matrix. 
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 Later MasterSim versions may require more than one initialization file to 
run. For example, the current version of MasterSim 4 (as of December 
2014) requires an additional “SpacecraftPlant_EnvironmentModel_Init.m” 
file to be run pre-simulation in order to function properly. If you are unsure 
about how many initialization files are required for the current MasterSim 
ask someone in the know. [NOTE: An up-to-date document should be put 
in the MasterSim folder detailing the initialization files needed to properly 
run the current MasterSim.] 

 
• Go back to the main Simulink file and run the simulation. Any errors cause during 

the simulation will be related to errors in the .m input file or a built error of 
Simulink. Any other source of error in running the simulation should be addressed 
and tackled by interpreting the error details provided by Matlab. 
  

• If the run is successful then the plots of simulation variables will update with each 
time-step. If you can, check that the plots make sense. If you already closed every 
plot you can reopen a target plot by double-clicking on the respective scope block, 
as shown below:  
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Autocoding Procedure  

Now that the simulation is up and running the autocoding process can begin. The principles 
of this process can be distilled into 5 parts:  

1. Documentation: Organizing what you learned from trial and error. Prevents re-
inventing the wheel. See: this report. 

2. Configuration: Certain configuration parameters should be in place for a smooth 
autocoding experience.  Changing these parameters (especially the hardware 
configuration settings) will initially prevent proper simulation of the model. 

3. Simulation: After setting the configuration parameters, the model needs to be set 
up again so that it can properly run as before. This time, however, the model can 
go through the Code Generation process. 

4. Generation: Code Generation is the cornerstone of autocoding. If the model is set 
up right, then the Simulink Coder should be able to convert the simulation into C 
code. 

5. Compilation: The final autocoding step consists of compiling the C code to run on 
the BeagleBoard and adding possibly preprocessor directives to analyze the C 
model in real-time.  

Configuration 

Steps:  

• Locate the BlankConfig file. This is a Simulink model that is entirely empty save 
for its configuration parameter settings. This BlankConfig file was created in order 
to speed up the Configuration part of the Autocoding process. Simply copy the 
entire MasterSim and paste it into the BlankConfig file. Close the original model 
and save the newly-pasted model as the original MasterSim file (or some closely 
named variant thereof). 
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• If this is done correctly and the BlankConfig file has the right settings then 
Configuration is done. When dealing with new models, however, the settings may 
not be properly set up. What follows is a guide for what configuration settings are 
some of the most important. 
 

• To access a model’s Configuration Settings first click the ‘Simulation’ tab and then 
click the ‘Model Configuration Parameters’ button. A GUI should open containing 
the configuration settings. With ‘Solver’ selected the source file template is chosen 
as ‘ert_code_template.cgt’. ‘.cgt’ stands for Code Generation Template, and ‘ert’ 
stands for Embedded Real Time. This file contains a template for the Coder to base 
its code generation off of. This .cgt file must be selected for other settings to 
function (notably the package and zip function which only appears to exist in this 
template file). ‘Generate an example main program’ is checked in order to simplify 
joining the C files together. 
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• In the ‘Optimization’ selection, and under ‘Accelerating simulations’ the Compiler 
optimization level is set for faster runs. This will make the building of the C code 
take longer but the resulting code will be more efficient. Taking more time now in 
order to save time once the mission is in effect.  
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• In the ‘Signals and Parameters’ menu, ‘Enable local block outputs’, ‘Reuse local 
block outputs’, ‘Eliminate superfluous local variables (expression folding)’, and 
‘Reuse global block outputs’ are all checked in order to make the C code more 
efficient. [NOTE: Flight Software has expressed an interest in the use of Inline 
parameters. Effective use of inline parameters can results in cleaner, faster C code. 
Configuring inline parameters should be looked into.] 

 

• Under ‘Hardware Implementation’ the right production hardware needs to be 
selected for the BeagleBoard XM. It has an ARM Cortex processor and each option 
for this device has been personally checked with the hardware itself to make sure 
they are correct for the BeagleBoard. The byte ordering is Little Endian. The signed 
integer division rounds to zero. The signed integer arithmetic shift is a shift right. 
And long long is an enabled variable. The test hardware should be set to the 
MATLAB Host Computer. The ‘Hardware Implementation’ menu is what messes 
up the ability for the model to simulate as before. In the simulation section it will 
be explained how to overcome this issue. 
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• Similar to previous options, under ‘Code Generation’ the system target file must be 
set to ‘ert.tlc’ in order for certain settings to be active, ‘Build Configuration’ should 
be set to ‘Faster Runs’ to trade off time wasted now versus time wasted later, and 
the ‘Prioritized Objectives’ are set to Execution, RAM and ROM efficiency to 
speed up the C code. Also in this menu, the ‘Package code and artifacts’ must be 
checked. It forces the Coder to zip up every required file for the C program into one 
zip file. If this is not checked then you must individually find certain header files 
in your computer’s MATLAB root. This is not an easy task, and it is arduous work. 
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• Finally, another very helpful option to check off is ‘Create code generation report’ 
located under ‘Code Generation’ and ‘Report’. This allows you to see the generated 
C code in a user-friendly way once the code is finished building. 

 

 Future versions of MasterSim will likely break with these current settings. 
Each new model requires understanding and configuring more new 
configuration parameters. This is one of the most tedious parts of the 
autocoding process (Aside from waiting for the actual code to generate). 

  



 161 

Simulation 

Steps: 

• With the new Configuration settings the MasterSim will likely not run. This is 
because changing the settings for the MasterSim does not automatically change the 
settings in all of the externally-linked submodels. Clashing settings crashes the 
simulation. And if you can’t run the simulation then you definitely can’t generate 
code from it. To fix this, open up an offending external model, and then copy and 
paste it into the MasterSim. Link up the new subsystem just like the old one and 
then promptly delete the old link from existence. Congratulations, the new 
subsystem is an actual part of the MasterSim now (not just a link) and it has 
inherited all of the configuration parameters of the MasterSim. Repeat for every 
externally-linked model. [NOTE: This entire process and the whole BlankConfig 
trick also might be negated or greatly simplified through the use of Configuration 
Reference. Look into for the future.] 

Generation 

Steps: 

• Highlight every piece of the MasterSim that will not be autocoded (Environment 
need not be included), right click, and select ‘Create Subsystem From Selection’. 
Do the same for what will be autocoded. You should have two main subsystems 
now. Right click the subsystem to be autocoded, scroll over ‘C/C++ Code’ and 
select ‘Build This Subsystem’. The actual autocoding process should now begin. 
Confirm the decision to build the code on any screens that may appear and let the 
Coder do its work. 
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 In all MasterSim versions starting at version 4.0 and later, it is easy to tell 
which subsystems need to be autocoded and which ones don’t, because the 
ones that should not be autocoded are grayed out. 
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• If the code successfully builds then congratulations! The hardest part is over and 
the Simulink model has been converted to C code. All that remains is to check that 
the C code is functional. If it doesn’t then try to comprehend the error that the Coder 
is giving you and work out the problem. Make sure that you followed each of the 
previous steps. 
 

• A possible error that may occur is that an extrinsic function was used in the 
simulation. In brief, an extrinsic function is one that requires MATLAB to run, and 
therefore cannot be autocoded. If this occurs, try to find an autocodable equivalent 
to the extrinsic function. If not can be found then you must take up the job of coding 
the function into C yourself. Import this C function into MATLAB and replace the 
old extrinsic function where necessary. Hopefully, this will not happen too often. 
(It really takes the ‘auto’ out of ‘autocoding’ and is a fairly difficult problem to 
solve.) 

Steps: 

• While most of the Compilation step actually falls outside the realm of autocoding, 
you can manually put in preprocessor commands into the C code in order to eyeball 
and roughly make sure that the outputted values from the C code are reasonably 
accurate. Use the preprocessor commands to set up different debugging modes. 
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Each mode will let the program print out the selected variable at each time step. 
The value acquired from the program printing can then be compared to the data 
created during the Simulation, and if they seem to match then the program is 
probably on the right track. This is slightly advanced and requires some basic C 
concepts to understand. It also is not a very efficient use of time. As a result, this 
method is more or less summarized without graphical representation or in-depth 
explanation, which would not add much value for those who understand C and 
would most likely confuse those who do not know what is going on. [NOTE: Future 
Documentation Guides will go into the Compilation step of Autocoding when it is 
more refined. Currently, it is in its infancy. Also, for the future a more statistically 
sound way of doing this should be implemented. A C program that automatically 
checks C values versus Simulink values would be ideal. Until then, this should 
suffice.] 

 

 

 



 165 

Technical Memorandum 
Original: April 8, 2015  
Updated: March 10, 2017 

TO: Air Force Research Lab, University Nanosatellite Program 

FROM: Peter Schulte (GN&C Lead), Jacob Sussman (GN&C), Nolan Coulter 
(GN&C), Matthew Krumwiede (FSW) 

SUBJECT: Prox-1 Autocoding Process, Verification, and Software Integration 
 

The Simulink design of the Guidance, Navigation, and Control (GN&C) algorithms for 
Prox-1 is autocoded into C/C++ using Simulink Coder for integration with Flight Software 
(FSW). Some modifications are made to ensure the models are codable, such as avoiding 
the use of incompatible MATLAB functions. This process of GN&C algorithm 
development and integration in Simulink and later autocoding into flight software has been 
pioneered by the Orion spacecraft team at NASA’s Johnson Space Center in Houston, 
Texas [1]. 

1. Autocoding Process 

The process for autocoding from a Simulink master simulation to C code is described in 
this section based on work completed by Prox-1 team members Jacob Sussman and Meet 
Patel. This process is illustrated at a high level by the flowchart in Figure 1.  
 

 
Figure 1: Autocoding process flowchart 

The first step in this process is documentation, which is critical for capturing detailed 
instructions and lessons learned such as best practices and how to deal with common errors. 
Next is model configuration, which involves setting a multitude of parameters within the 
Simulink model to be autocoded. Proper model configuration allows for smoother model 
simulation and code generation. Also, these configuration parameters can optimize the 
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resulting generated code to run on a specific embedded processor. Once the proper 
configuration settings are determined, they can be saved as a separate file and maintained 
using configuration control. Developers can then apply these standard configuration 
settings to any model by importing that file in Simulink. 
 
The next step is model simulation. A Simulink model such as the Prox-1 GN&C master 
simulation (MasterSim) shown in Figure 2, cannot be autocoded if it does not run properly 
in simulation. In the version of the MasterSim shown above, the Simulink diagram includes 
many GN&C components such as the Relative Orbit (RelOD) filter, Artificial Potential 
Function (APF) guidance, and torque rod (TR) controller. Gray blocks are only used for 
simulation purposes, while white blocks will be autocoded into GN&C flight software 
(FSW). For configuration control, most of the GN&C component blocks are integrated into 
the master simulation using model reference blocks. These allow each component to be 
saved as a separate Simulink file that can be integrated into multiple master simulations. 
 

 
Figure 2: A version of the Prox-1 6DOF “master simulation” 

After it is verified that the simulation model can run and provides the desired outputs, any 
blocks included from separate files as model references are copied and pasted into a single 
Simulink model to simplify the autocoding process. The model is then reconfigured so that 
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all GN&C blocks to be autocoded are combined into a single monolithic GN&C algorithm 
block as shown in Figure 3. The spacecraft plant and environment models remain in 
separate blocks and will not be autocoded. Before autocoding of the GN&C algorithms 
begins, the reconfigured simulation is run again to ensure that no changes in performance 
or outputs have been introduced by the reconfiguration process. 
 

 
Figure 3: Master sim model prepared for autocoding by creating a single GN&C block 

Once all of these changes have been made, the model is ready for code generation. Many 
errors can occur during this stage, and each error must be understood and corrected. An 
error appendix detailing common errors and how to fix them is located at the end of this 
document. After the code is generated, it must be compiled to run on the BeagleBoard XM 
flight computer. Finally, the compiled code should be run to verify that the outputs match 
those of the Simulink model.  

Space Environment Models 

Spacecraft 
Plant Models 

GN&C 
Algorithms 
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2. Autocoding Verification 

At the beginning of the Spring 2015 semester, Prox-1 team member Nolan Coulter was 
assigned the task to develop a process to verify the outputs created by the autocoded C 
version of the GN&C algorithms matched the corresponding outputs given by the Simulink 
program in MATLAB. This would allow the team to verify that the autocoded program 
(from here on referred to as just autocode) performs properly and there are no errors in the 
autocode. Our team used this verification process with several variations of the MasterSim 
Simulink program. With this verification process, the team was able to conclude that the 
outputs from the autocode matched the outputs produced by the Simulink program within 
a very small degree error. 

2.1 Verification Process for “MATLAB-logging” Autocode 

The process used to conclude that the autocode outputs corresponded with the Simulink 
outputs involved a series of steps that took the autocode and compared it to the Simulink 
program. When working with the autocode, the first step to be able to compare the data 
with the Simulink data is to give the proper commands to the autocode to record and log 
the outputs. After being autocoded with default settings, the program performs the basic 
calculations required to produce the outputs for each timestep; however, the autocode by 
default does not record each timestep. In the autocode, there is an “xxx_step” method that 
is used to update the outputs after each timestep. Near the end of this method, it updates 
the memory variables needed to perform the next timestep’s calculations. These variables 
are needed to verify the outputs. At the end of this method, after the memory updates, the 
code shown in Figure 4 was added to record the data after each timestep. This code creates 
an output file called “out.csv” in csv format that logs the variables of interest. 
 

 
Figure 4: C-code to generate output file 

 
After this output file is created, the file can then be used to graph the variables of interest 
over time or be directly uploaded into MATLAB for comparison. Once the required data 
is put into this format, the outputs of the autocode can be compared to the outputs from the 
Simulink program by going into the individual output arrays in MATLAB which are 
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created after running the Simulink simulation. After running the simulation, the variables 
needed for comparing can be found in the MATLAB Workspace. The correct output array 
can be determined by noting the name of the output array MATLAB uses to save the values 
of the variable to the Workspace. The name is found under the “History” tab in the settings 
window of the variable’s corresponding scope in Simulink. Figure 5 depicts the scope of 
the BurnTime variable in Simulink, while Figure 6 provides a view of the MATLAB output 
arrays and the ThrusterCMD1 array (which contains the value of BurnTime) used to verify 
the autocode BurnTime output. The left column of the ThrusterCMD1 array shows the 
simulation time in seconds and the right column shows the BurnTime command, also in 
seconds. 
 

 
Figure 5: View of Simulink “Scope” for the BurnTime variable 
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Figure 6: Table of MATLAB Output Arrays (left) and ThrustCMD1 Output Array (right) 
 
If the data in the MATLAB output array is equivalent to the data in the output .csv file 
from the autocode, then the autocode performs as expected and contains no errors. This 
comparison can be seen in Figure 7. 
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Figure 7: Comparison between the BurnTime output as seen in the MATLAB workspace 

(left) and the BurnTime output as seen from the autocode .csv output file (right) 

2.2 Verification Process for non-“MATLAB-logging” Autocode 

The process described in Section 2.1 was developed using autocode, that when being 
autocoded, used the option “include MATLAB logging.” This option in the autocoding 
process created a library of the variables and their values that the resultant autocode could 
access and use to initialize the timestep. This option was not used in more recent versions 
of the autocode, which means that additional steps are required to acquire the needed data 
from the autocode to compare with Simulink. 
 
In order to initialize the timestep method which then calculates the required data at each 
subsequent timestep, the initialization data from MATLAB must first be recorded 
manually. This requires observing the Simulink simulation file and the autocode to see 
which input variables are necessary to begin the timestep method. After listing the needed 
variables, the code found in Figure 8 must be added to the embedded MATLAB code 
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within Simulink corresponding to the generation of that variable. After running the 
simulation in Simulink with this added code, the variables will be output as a .csv file by 
MATLAB.  
  

 
Figure 8: MATLAB code to record a required variable (in this example BurnTimeFlag) 

Once the necessary variables’ data is logged into separate .csv files, changes in the 
autocode must be made. Going into the autocode’s header file, the variables previously 
logged manually must be defined according the same dimensions found in the MATLAB 
output array.  This header file initializes and defines the structure of the variables used 
throughout the autocoded functions. The code required to define these structures is shown 
in Figure 9.  
 

 
Figure 9: Code to define structure of input variable array in autocoded functions 

 
Once this data is given a defined structure, it can then be assigned to the proper variable 
found in the autocode. Figure 10 shows the code required to assign the data to the 
corresponding variable in the autocode’s main file. Once the necessary variables are 
defined, the autocode functions should run and produce the outputs. These files can then 
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be compared to the MATLAB output arrays in a similar fashion as the “MATLAB-
logging” capable process. 
 

 
Figure 10: Block of code that assigns autocode variables to input data arrays 

2.3 Error in Data Comparisons 

While comparing the autocode outputs with the Simulink outputs, it is important to note 
that the two types of data do not match exactly. This is largely due to rounding errors in 
the .csv file. Looking at the .csv file containing the data of the autocode outputs, for certain 
variables such as the relative velocity vector, the values appear as -0.00000X while the 
corresponding value in the MATLAB output array is has more significant figures and a 
more precise value. The .csv file rounds these excessive significant figures. However, these 
small rounding errors can be disregarded since the two output files agree to several 
significant figures.  

2.4 Autocoding Verification Conclusions 

The process developed to verify that the autocode outputs were equivalent to the Simulink 
and MATLAB outputs was successful. The outputs from the autocode matched the outputs 
from Simulink simulation within the aforementioned degree of error. However, it is 
important to distinguish that this verification process is an open-loop system and does not 
test a closed-loop dynamic model. The inputs fed into the autocode are simply saved values 
from the Simulink code. This means that at each timestep, there is an already defined input 
used to calculate the corresponding output. The output from the previous timestep is not 
fed back into the next timestep through spacecraft plant and dynamics models because 
these models are not autocoded. If the output from a previous timestep was then used to 
calculate the input for the next, this would be a closed loop system. In the process described 
in this section, the inputs are independent of the outputs from the previous timestep. With 
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a closed loop process, the necessary Spacecraft Hardware Plant and Environment Models 
would need to be autocoded in addition to the GN&C algorithms. Although a closed-loop 
test was not performed, it was verified that the C code provides the same results as the 
Simulink models at each individual open-loop timestep. 

3. Integration with Flight Software 

After the C code has been generated for use on the BeagleBoard, it must be integrated with 
FSW.  In the current understanding of the Prox-1 GN&C and FSW teams, the GN&C code 
will be integrated as a monolithic sub-routine that is called during each timestep. This 
process is illustrated in Figure 11, which shows that external variables are collected by 
FSW from various sensors (1) and sent into the GN&C code (2), which then operates in 
various modes. GN&C returns commands to FSW (3), which then distributes those 
commands to actuator hardware such as the Propulsion and Attitude Determination and 
Control Subsystem (ADCS) microcontrollers. In (2) and (3) FSW and GN&C will also 
exchange mode logic variables, such as a command to enter ProxOpsMode from the ground 
or an indication from GN&C that a Guidance command has been successfully executed.  

 

Figure 11: GN&C/FSW interface illustration 

(Original Spring 2015 text; applicable when Prox-1 was using the Core Flight Executive) 
 
The actual mechanism of integration between GN&C and FSW involves the Core Flight 
Executive (CFE), which is code produced by NASA that greatly facilitates in the 
production of flight software [2]. Once the C code is generated from Simulink, all files are 
transferred to the Prox-1 CFE github repository. Under the apps directory, which is located 
in FSW/cFE, a new gnc_app directory is created, and all the auto-coded files are relocated 
here. The structure of the gnc_app directory is shown in Figure 12. 
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Figure 12: gnc_app directory structure 

Most of the code is transferred to the src directory, while the header files that have 
important information for other apps are placed in the platform_inc directory. Once the 
files are relocated, a new C file is created, gnc_app.c, along with a header file, gnc_app.h. 
The new C file follows CFE protocol for creating an app. The main function of gnc_app.c 
listens for messages from other applications (mainly Prox_app, the master application for 
Prox-1 FSW). The messages will contain a data type, along with a command ID that tells 
GN&C what input the data corresponds to (message ID’s are defined in the platform_inc 
subdirectory). The main function also has logic that determines if all thirteen inputs 
necessary for GN&C to run have been received. If not, the main function continues on a 
loop. 
 
Once all the inputs are received, gnc_app.c calls MasterSubsystem0.c, which is the main 
auto-coded C file from Simulink. The Master Subsystem takes the inputs and calculates an 
output structure.  The output structure is forwarded back to the main application of 
gnc_app.c, and then sent via a software bus to other applications.   
 
To determine how to compile the application, MasterSubsystem0.c and its dependencies 
were all compiled outside of CFE, independently, alongside a tester file ert_main.c. It was 
discovered that the C flag –lm is required for compilation. With this information, 
compilation of gnc_app with CFE was very straightforward. The makefile within the 
for_build subdirectory was modified to include all the necessary dependencies and the –lm 

gnc_app

FSW

for_build
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C flag necessary for compilation. Everything else was taken care of by the CFE, so that 
when the whole of Flight Software was compiled, gnc_app compiled as well. 
Testing of the FSW/GNC integration will be performed through an external daemon server 
that poses as a serial device interacting with CFE. Since the flight computer will not receive 
actual relevant data from hardware until it is in orbit, the daemon simulator is necessary to 
test the performance of GN&C in an open-loop manner. The daemon server will obtain 
“fake” input data from text files. The fake inputs are collected from the original Simulink 
code, which has a hardware simulation module. These fake inputs are fed through the serial 
port one by one, interacting first with the serial app, then going through the main Prox_app, 
then finally making their way to gnc_app. The first test will involve making sure that the 
autocoded GN&C function does not execute the first iteration until it receives all thirteen 
inputs. The next test will involve running GN&C through a certain number of iterations 
while comparing the output structures to the outputs in the original Simulink model outputs 
using a process similar to the one presented in Section 2.  
 
Finally, a closed-loop test will be performed using hardware-in-the-loop simulation with 
the FSW on the BeagleBoard connected to the Spacecraft Plant and Environment models 
in Simulink via MATLAB’s xPC Target toolbox. This test will verify that the completed 
gnc_app within the FSW code performs in the same manner as the GN&C algorithms in 
Simulink using the same Simulink simulation plant and environment models. 
 
(Updated Spring 2017 text after Prox-1 abandoned cFE in favor of a custom executive) 
 
The algorithms, initially after the autocoding process, are stored in a main C file as 
hundreds of individual functions.  Within this C file, four main functions (here called step 
functions) handle the operation of the algorithms, and thus act as the main functions of the 
autocode.  For each time step, a step function is called, with the hardware variables (sun 
sensor data, accelerometer data, etc.) as inputs.  The step function then determines which 
algorithms to run, based on the elapsed time of the mission.  All four step functions must 
work together in unison at any given time step, such that the entire system resembles the 
Simulink model as closely as possible.  
  
The goal of the integration process is to retrieve the hardware variables from flight software 
and pass them into all four step functions synchronously at each time interval.  The outputs 
of the model must then be read and sent to the hardware as soon as possible, ideally within 
the same time step.  To facilitate this integration process, a C file was created in the flight 
code directory that was responsible for handling the GN&C step functions.  Called gnc.c, 
this file first defines all of the flight parameters that are not hard-coded into the model.  
This includes variables such as moments of inertia, mass, dimensions.  It also includes 
variables which are subject to change.  The file therefore contains a function, which, if 
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called from the main flight code (due to a ground command), would change the value of 
the parameter and update the system.  This allows for real-time parameter tuning. 
   
After defining the parameters, the gnc.c file has an initial function which is called by the 
main flight code on startup.  This function essentially creates the memory blocks which 
will store all of GN&C’s data structures, and then populates them with the appropriate 
initial values.  It also creates mutexes.  Mutexes are useful for accessing the same variable 
from two different synchronous processes.  If one process locks a mutex, it can perform a 
line of code that can’t be accessed by another process until the mutex is unlocked.  This 
avoids the essential problem of different threads trying to read and write to the same 
memory block at the same time (which would result in data corruption). 
  
The “main” function of gnc.c is essentially a loop that runs every 0.1 seconds.  During each 
iteration of the loop, the inputs for GN&C are retrieved.  Most inputs are simply pulled 
from the flight code, which is already set up to retrieve hardware states via C&DH.  Some 
inputs, however, are liable to change depending on how much time has passed, or on what 
state the satellite is in.  For example, during detumble, certain inputs to GN&C must be 
manually set off (more information regarding the specifics of GN&C inputs can be found 
in other documentation).  Therefore, the chief role of this main function is to use a series 
of logical checks, based on global state and mode variables, as well as the elapsed time of 
the mission, to determine the settings of certain inputs.  After all inputs are obtained, they 
are stored inside of GN&C’s global inputs structure using mutexes. 
   
A separate function in gnc.c, called the run loop, runs separately from the main loop.  It 
also runs every 0.1 seconds.  At each iteration, the inputs structure is passed to each of the 
four step functions.  The output of the step functions are stored in the outputs structure.  
The run loop then reads variables from the outputs structure and passes them to the main 
flight code, which are then sent to the appropriate hardware modules for command 
actuation. 
 
In the main flight code, two pthreads are created at execution (after the startup routine).  
Pthreads are essentially sub-processes that can run independent of the main flight code.  
The first pthread calls the main loop of gnc.c, while the second pthread calls the run loop.  
At this point in the code, GN&C will start running in the background.  This method of 
integration makes it much easier for engineers working on the main flight code to interface 
with GN&C.  For example, each time Flight Software takes a hardware reading, it must 
simply store the corresponding values in the input structure of GN&C.  The subprocess 
will take care of everything else.  Likewise, to send an appropriate command to a piece of 
hardware, Flight Software must simply read the corresponding value from the output 
structure.     
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Appendix: Common Autocoding Errors 

This section will show examples of common errors that occur during the autocoding 
process and how to fix them. When referenced, a “MasterSim” is a term for the Simulink 
file that is your master simulation, which contains all GN&C algorithms, spacecraft plant, 
and environment models. Errors shown list specific variable/function/model/path names 
but when debugging your own MasterSim the errors will be customized to your design. 
 
Good rules of thumb to help with deal with errors: 

1. Save often. You never know when MATLAB is going to throw a fit and you 
suddenly lose all of your unsaved work. 

2. Make sure all Paths and proper initialization files are set up correctly. 
3. Before the building phase, create a MasterSim which contains every component in 

one giant model as opposed to linking to external files. While this is a tedious 
process, it will prevent many future headaches. 

4. Make sure your MasterSim can compile before you even try to build it. If it can’t 
even run in MATLAB why would it run in C? 

Initialization Errors 

These errors occur because the initialization files (MATLAB scripts that must be run before 
the Simulink model is run) are not behaving properly. 
 
“Undefined function or variable 'RP'. 
Error in SpacecraftPlant_EnvironmentModel_Init (line 108) 
P = (RE + RP)*(1+e_LS); %Semi-latus rectum (m)” 
 
If there is more than one initialization file it is standard practice for one file to be the 
‘primary’ initialization file. This primary .m file will then usually call all other necessary 
initialization files. When working under this design paradigm, it is therefore only necessary 
to call the primary file. If you run the wrong file mistaking it for the primary one or even 
run a secondary initialization file after already running the primary one, you may get this 
error. Secondary initialization files are written to assume they will be called by the primary 
file, meaning running them on their own will usually fail due lack of access to all of the 
defined primary variables. 
 
“License checkout failed. 
License Manager Error -4 
Maximum number of users for Aerospace_Toolbox reached. 
Try again later. 
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To see a list of current users use the lmstat utility or contact your License 
Administrator. 
 
Troubleshoot this issue by visiting: 
http://www.mathworks.com/support/lme/R2014b/4 
 
Diagnostic Information: 
Feature: Aerospace_Toolbox 
License path: 
C:\Users\jsussman3\AppData\Roaming\MathWorks\MATLAB\R2014b_licenses;C
:\Program Files\MATLAB\R2014b\licenses\license.dat;C:\Program 
Files\MATLAB\R2014b\licenses\network.lic 
Licensing error: -4,132. 
 
Error in HIL_6DOFMasterSim4_Init_TACTest (line 149) 
q0_P1 = angle2quat(0,1,0); %initially point toward target” 
 
The model was written with a Mathworks toolbox that you do not have access to. In this 
case it is the Aerospace Toolbox. To prevent this error from happening either make 
absolute sure everyone in the team is developing on the same environment or try to 
minimize use of toolbox functions in favor of writing custom versions yourself. To fix this 
example for instance you can rewrite line 149 as follows: 
 
Q0_P1 = vector2quat([0;1;0]); 
 
As long as you actually write the vector2quat function to be functionally equivalent to its 
toolbox’s counterpart, the initialization file should be able to run. This newly written 
function however is probably slower to execute than the toolbox version since it is not 
designed for efficiency by MathWorks. Be careful of replacing too many toolbox functions. 
It can make your code harder to debug and can slow development considerably. In an 
industry like Aerospace if you can’t afford a required software license, you probably can’t 
afford launching satellites in the first place. 
 
“Undefined function 'ROT3' for input arguments of type 'double'. 
 
Error in SpacecraftPlant_EnvironmentModel_Init (line 121) 
r0_LS = 
(ROT3(omega_LS)*ROT1(inc_LS)*ROT3(Omega_LS))'*[r0_LS*cos(f0
_LS); 
 
Error in HIL_6DOFMasterSim5_Init_TACTest (line 268) 
SpacecraftPlant_EnvironmentModel_Init;” 
 
This error was caused by an initialization file which referenced a function located in a 
model not currently in the Path. To fix this, simply add the offending model to the Path and 
run the initialization file again. 
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Compilation Errors 

These errors occur when attempting to run the MasterSim. Failure at this step prevents you 
from moving on towards code generation. 
 
“Model 'Detumble_Controller_Model3_2012a' not found.” 
 
In this case, a certain model (the Detumble Controller) is not connected to the MasterSim. 
To fix this, locate the model in MasterSim. It should be blocked in red. Double click on 
this block and point Simulink to where the model is located. When the popup box appears 
asking to add the file’s location to the Path click ‘Add to Path’. 
 
“Error evaluating expression 't0' for 'StartTime' specified in the Configuration 
Parameters dialog for block diagram 'Detumble_Controller_Model3_2012a': 
Undefined function or variable 't0'.” 
 
Did you run the initialization file before running the MasterSim? This error can occur if a 
user is so hasty to compile the MasterSim that they forget to run the initialization files first. 
 
“Undefined function or variable 'v_desired'. The first assignment to a local variable 
determines its class. Function 'P1 - Guidance (FOUO)/p1_r2r_apf_v2 (FOUO)' 
(#135.3666.3675), line 93, column 17: "v_desired" Launch diagnostic report.” 
 
When preparing a model for autocoding or simply when rearranging a model for aesthetic 
purposes in Simulink, you may accidentally break one of the MasterSim’s connection lines. 
To remedy this, locate where the undefined function/variable is in the context of the entire 
MasterSim and then trace the model to the offending location, fixing any broken 
connections lines along the way. 
 
“Size mismatch (size [3 x 1] ~= size [3 x 3]). Function 'P1 - Guidance 
(FOUO)/p1_r2r_apf_v2 (FOUO)' (#135.2475.2529), line 55, column 32: 
"((rDc_trans*P*rDc)-1)*Q*rCt-(rCt_trans*Q*rCt)*P*(-rDc)"” 
 
This error can occur if there is a broken connection just like the previous error. An 
undefined variable used in a matrix declaration can change a matrix’s size and throw off 
the rest of a model that anticipates a different size. This also could simply be a coding 
mistake, where the programmer messed up on declaring a matrix of the proper size. 
 
“File…5update\HIL_6DOFMasterSim5_Init_TaCTest.m is not found in the current 
folder or on the MATLAB path. 
 
To run this file, you can either change the MATLAB current folder or add its folder 
to the MATLAB path.” 
 
This error will occur if your current working directory for MATLAB is not the one the 
MasterSim is located in or if the MasterSim’s folder is not in the Path. In the pop-up that 
follows this error click ‘Change to folder’ or ‘Add folder’ to remedy this.  

matlab:open_system%20('Detumble_Controller_Model3_2012a')
matlab:das_dv_hyperlink('DAS','id','135.3666.3675')
matlab:das_dv_hyperlink('DAS','id','135.2475.2529')
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 “MATLAB has encountered an internal problem and needs to close. 
The unsaved information you were working on may be lost. We are sorry for the 
inconvenience. 
Click Never Send to disable sending information to MathWorks (saved in 
preference). 
Click Send to send this information to Mathworks. 
Click End Now to close MATLAB now. 
Click Attempt to Continue to try to return briefly to MATLAB. You might be able to 
save your work. 
Do not continue your MATLAB session after trying to save your work. Further 
operations are unreliable. 
You must close and restart MATLAB in order for the program to operate correctly. 
Click Details to see what will be sent to MathWorks if the Send button is clicked.” 
 
Sometimes compilation will result in an ultimate error that forces you to shut down your 
working session and restart. 
 
Clicking on Details usually results in a file telling you that an Access violation has been 
detected. This can have happened for a number of reasons. A simple example would be if 
you had a mismatched GOTO tag that didn’t have a proper pair. To prevent issues with 
GOTO tags in general you can bus every variable into the required model. This requires 
more effort but is generally safer and results in less issues during the building phase. 

Building Errors 

These are errors that occur when building the compiled model into C code. Most building 
errors occur from either not having MATLAB properly set up, not compiling the 
MasterSim in the form of one complete file, or not ridding your simulation of extrinsic 
functions. 
 
“An installed compiler was not detected. Certain simulation modes, as well as host-
based coder builds require that a compiler be installed. Please install one of the 
supported compilers for this release as listed at: 
http://www.mathworks.com/support/compilers/R2014b/win64.html MATLAB must 
be restarted after the compiler is installed.” 
 
As the error tells you, the proper compiler is not installed. Make sure you have the right 
compiler and then continue. 
 
“Configuration component 'RTWSystemTargetFile' of model 
'HIL_6DOF_MasterSim4_APF_RelOD_TA' and configuration component 
'RTWSystemTargetFile' of model 'ImageGen_SensorModel_v3' are not 
compatible. The error message returned by the comparison function is: The 
parameter setting for 'RTWSystemTargetFile' must be the same for all models in 
the model reference hierarchy” 
 

matlab:das_dv_hyperlink('DAS','mdl','HIL_6DOF_MasterSim4_APF_RelOD_TA')
matlab:das_dv_hyperlink('DAS','mdl','ImageGen_SensorModel_v3')
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If you try to build a model that contains externally-linked models there are a whole slew 
of problems that can occur. This is an example of MATLAB telling you directly that the 
configuration setting for two models are incompatible. Oftentimes, the Diagnostic Viewer 
is much less telling and you might spend an hour or more researching and debugging the 
error only to end up finding out that what caused the issue was a simple difference between 
configuration settings for the two models. This is why it is a good paradigm to either 
develop all models with the same configuration parameters from the get-go or to at the very 
least create a version of the MasterSim that replaces a link to an external model with the 
model itself. 
 
“Error in Model block 
'HIL_6DOF_MasterSim4_APF_RelOD_TA/NotocodeSubsystem/Prox-1 
Hardware and Spacecraft Plant/Prox-1 Hardware 
Models/Detumble_Controller_Model': the 'Application lifespan' must match 
between the parent model 'HIL_6DOF_MasterSim4_APF_RelOD_TA' and the 
referenced model 'TorqueRod_Hardware'.  The parent model has a value of '1.0', 
while the referenced model has a value of 'Inf'.  To change this parameter, go to 
the 'Optimization' page of the Configuration Parameters dialog.” 
 
This is another example of an error caused by dealing with externally-linked models. With 
this error luckily the Diagnostic Viewer tells you how to fix the problem. 
 
“The extrinsic function 'frame2im' is not available for standalone code generation. 
It must be eliminated for stand-alone code to be generated. It could not be 
eliminated because its outputs appear to influence the calling function. Fix this 
error by not using 'frame2im' or by ensuring that its outputs are unused.” 
 
This is an error caused by your model containing an extrinsic function. In MATLAB, an 
extrinsic function is one which requires MATLAB to run. Since the function requires 
MATLAB’s overhead it is not available for standalone code generation. Since the entire 
point of autocoding is to reduce the overhead of a model without affecting its behavior you 
should eliminate every output-affecting extrinsic function from the MasterSim and replace 
it with an autocodeable variant. 
 
This can be more difficult that it appears at first. While some extrinsic functions are 
relatively simple and can be avoided by adding slightly more long-winded code, some 
extrinsic functions (especially ones related to image processing) may take days to work 
around. In these cases, you should read up on as much of the documentation for the 
extrinsic function as possible and make sure you fully understand how the function works. 
Then you have the choice of either: 

a) Writing a MATLAB function that mimics the extrinsic function. This may be the 
easier option but it can result in slower code. 

b) Writing C code that mimics the extrinsic function and either manually inserting 
this code into already generated code or importing the C function into MATLAB 
as a .s file and referencing this function instead of the original extrinsic one. 
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Whichever way you choose, note that you should rigorously test your self-designed 
function in order to make sure it is equal to Mathworks’ version in every conceivable 
scenario the function would be put through. 

Final Note 

Just because your final C code was produced without throwing any errors in MATLAB 
does not necessarily mean your code is error-free. It would be wise to test the C code 
independently using the process defined in Section 2 to determine if in fact your model 
behaves as expected. 
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APPENDIX B: UAV NERVOUS SYSTEM CONNECTION DIAGRAM 
 

This appendix is referenced in Section 3.6 and shows the electrical connections for the upgraded UAV Nervous System. This version 
of the nervous system contains two suites of sensors for two separate arms of a rotary wing UAV. Each arm of the copter has a Teensy 
microprocessor (using Arduino code), an MPU-6050 accelerometer, a DS18B20 temperature sensor, and a 90A AttoPilot voltage and 
current sense breakout board. One Teensy is powered by a 5V Universal Battery Elimination Circuit (UBEC) connection to the copter’s 
lithium polymer battery, and the second Teensy is powered by a USB connection to the MeegoPad compute stick, which is also powered 
by a 5V UBEC connection to the lithium polymer battery. Note that only one Teensy processor is connected to the MeegoPad via USB, 
and sensor data is collected by the other Teensy and passed to the first Teensy over an I2C connection.  
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APPENDIX C: MARS SAMPLE RETURN  
SUBSYSTEM TAXONOMY 

 

This appendix is referenced in Section 4.5.1 and contains the complete subsystem 
taxonomy for the Sample Return Orbiter (SRO). It is shown in text format for readability. 
This includes components for the Rendezvous OS Capture, Telecom, Flight Software, 
Command & Data Handling, Guidance, Navigation, & Control, Propulsion, Electrical 
Power, and Thermal Control subsystems. Note that the SRO is still in the preliminary 
design phase, so these components are listed in a generic and functional way because 
specific components have not been selected for the mission. 

 

Ground Support Systems 

Mars Ascent Vehicle (MAV) 

Orbiting Sample container (OS) 

Space-Based Support Systems 

Sample Return Orbiter (SRO) 
 

Telecom 
  

Antennas & Gimbals 
  

Radio Hardware/Software 
  

Capture Door Closure Fault 

 Flight Software 
  

Fault Protection software 

     VML Sequencing 
 

Command & Data Handling 
  

Flight Processor 

  Solid State Recorder 
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  Data Busses 

 Propulsion 

    Reaction Control System (RCS) Thrusters 

  Solar Electric Propulsion (SEP) Thrusters 

  Propellant Tanks 

 Electrical Power 
  

Solar Arrays & Gimbals 

  Batteries 

  Power Distribution & Busses 

 Thermal Control 

  Thermal Sensors 

  Heaters 
 

Guidance, Navigation, & Control (GN&C) 

  GN&C Mode/Decision Logic 
  

GN&C Software Components 
   

Attitude GN&C Software 

    Attitude Determination Algorithms 

    Attitude Guidance Algorithms 

     OS Mosaicing Algorithm 

     Attitude Constraints 

    Attitude Control Algorithms 

   Translational GN&C Software 

    Orbit Determination Algorithms 
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     Image Processing Algorithms 

     Orbit Determination Filters 

    Orbit Control Algorithms 

    Orbit Guidance Algorithms 

     Solar Electric Propulsion Inertial Guidance 

     Rendezvous Relative Guidance 
  

GN&C Hardware Components 
   

Attitude Determination Sensors 

    Inertial Measurement Unit 

    Star Tracker 

    Sun Sensors 

   Attitude Control Actuators 

    Reaction Wheels 

    RCS Thrusters (propulsion) 

   Rendezvous Sensors 

    Narrow Angle Camera (NAC) [hawk] 

    Medium Angle Camera (MAC) [dog] 

    Wide Angle Camera (WAC) [fish] 

    Long-Wave Infrared (LWIR) 

    LIDAR 

 Rendezvous OS Capture System (ROCS) 

  OS Sensors 

      Laser Curtain 
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   OS Confirmation Sensor 

   Force/Torque Sensors 

  Flashlight 

  Capture Volume (container for capturing OS) 

  Capture Door 

  Reorientation Hardware 

  Break-the-Chain Hardware 

  Earth Entry Vehicle (EEV) 
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APPENDIX D: FULL FAULT TREE FOR MARS SAMPLE RETURN 
TERMINAL RENDEZVOUS AND CAPTURE PHASE 

This appendix is referenced in Section 4.5.1 and lists the complete GN&C fault tree for the 
Mars Sample Return autonomous terminal rendezvous and capture phase. A text format is 
used here for the fault tree rather than a graphical format to improve readability. Faults in 
bold were selected to be examined in greater detail, as described in Appendix E. 

 

Failure to Capture the OS 
 

Fault During Approach 
  

Relative Orbit Determination Fault 
   

Rendezvous Sensor Data Fault 
    

Sensor Hardware Fault 
     

Sensor Loses Power 
     

Sensor Settings Incorrect 
     

Solid-State Recorder Malfunction 
    

Sensor Background Noise 
     

Radiation-Induced Noise 
     

Temperature-Induced Noise 

          Stray Light Glint 
    

OS Passes Too Quickly Through Imager FOV 
     

SRO Angular Rates Too Great 
     

OS Relative Velocity Too Great 
    

Sensor FOV Impaired 
     

Lens Fogged Due to Outgassing 
     

Spacecraft Component in FOV 
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Debris in FOV 

    
Poor Conditions for OS Tracking 

     
OS Surface Properties Unfavorable 

     
OS Blends Into Background 

     
OS in Eclipse or Shadow (visual only) 

     
Phase Angle Unfavorable 

     
Flashlight Malfunction (visual only) 

    
LIDAR/IR Sensor Faults 

        No OS Data from Sensors 
   

Orbit Determination Computation Fault 
    

Image Processing Fault 
    

Navigation Software Fault 
    

Mosaicing Algorithm Misses OS 
    

Orbit Perturbations Differ from Models 
     

OS Outgassing Perturbs Orbit 

          SRO Plume Impingement on OS 
     

Atmospheric Drag Perturbs Relative Orbit 
     

Other Orbit Perturbation Mismodeling 
    

Incorrect Model Parameters (i.e. OS optical properties) 
    

Ephemeris or Timing Fault 
    

Filter Does Not Converge 
  

Guidance & Control Fault 
   

Attitude Fault 
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Degraded Attitude Knowledge 

     
Inertial Measurement Unit Fault 

     
     No Data Output 

     Reset/Excessive Reset 

     Bias/Scale Factor Offset 

     Measurement Drift 

     

     
Star Tracker Fault 

     
    No Output  

    
      Bias/Incorrect Output  

     
    Excessive Current Draw  

     
    Optics Contamination  

     
    Optics Coating Degradation  

     
    False/Intermittent Star ID  

              Temporary Lock-Up  
     

    Noisy Measurements  
     

    Sun Sensor Fault 

          Attitude Filter Does Not Converge 
    

Degraded Attitude Control 
     

Reaction Wheel Fault 
     

    Wheel Stuck/Seized/Not Rotating  
     

    Increased Drag/Friction  
     

    Excessive Current Draw  
     

    Excessive Vibration  
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    Tachometer Fault  

     
    Drive Electronics Fault  

              Wheel Momentum Saturated  
     

Reaction Control System Thruster Fault 
     

    Thruster Fails to Actuate  
     

    Thruster Stuck On  
     

    Tank heater fault  
     

    Propellant line freezing  
   

Trajectory Fault 
 

    
Maneuver Fault 

          Incorrect Timing, Direction, or Delta-V for Burn   

          Deadband Violation Does Not Trigger Manuever   
    

Degraded Translational Control 
    

Unable to place OS inside capture cone 

          OS not aligned with capture cone   

          Rotation Rate Too High   

          Relative Velocity Too High   
   

Guidance & Control Software Fault 
  

Sequencing Fault 
 

   
Spacecraft Reboot 

 

   
Unable to Meet Conditions that Allow Transfer to a Key State 

        Tolerances on parameters too tight 
    

Unexpected configuration 
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Telemetry Reporting Fault 

    
Logical Error in Sequence 

   
Premature Entry into any State 

    
Logical Error in Sequence 

    
Sequencing Software Coding Fault 

      Ground Command Halts or Unloads Sequence 
   

Incorrect Config File Version Loaded 
 

Fault During Capture 
 

  
Capture Door Closure Fault 

 

   
Door Close Timing Fault (Early/Late Closure) 

      Door Close Signal Does Not Activate 
   

Door Mechanism Fault 
 

  
Unexpected OS Dynamics 

 

      OS Spin Rate Exceeds Capture Requirement 
   

OS Energy Exceeds Capture Capability 
   

OS Impacts ROCS Components 
  

Capture Detection Sensor Fault 
   

Door Sensor Fault 
 

   
OS Confirmation Sensor Fault 

   
Force/Torque Sensor Fault 

      Sun Interference/Spoofing 
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APPENDIX E: PRELIMINARY MSR FAULT PROTECTION 
STRATEGIES AND REQUIREMENTS 

 

This appendix is referenced in Section 4.5.2 and lists preliminary fault protection strategies 
and requirements for the selected faults from the Mars Sample Return fault tree in 
Appendix D. The selected faults are difficult to detect, diagnose, or respond to in a safe 
and timely manner and have high consequences for autonomous rendezvous and capture. 

 

 Relative Orbit Determination Faults 

 No OS Data From Sensors 

 

o The flight system shall stop maneuvers if no OS data is received 
from the rendezvous sensors during the passive abort region (Zone 
1) of autonomous rendezvous. 

o The flight system shall abort from autonomous rendezvous if no OS 
data is received from the rendezvous sensors during the active 
abort region (Zone 2). 

o The flight system shall restore measurements of OS position within 
<30 seconds> (TBR) if no OS data is received from the rendezvous 
sensors during the unavoidable intercept region (Zone 3). 

o The flight system shall restore measurements of OS position within 
<15 minutes> (TBR) if no OS data is received from the rendezvous 
sensors during all other subphases. 
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 Stray Light Glint 

 

o The flight system shall stop maneuvers if stray light glint on the 
rendezvous sensors negatively impacts the ability to estimate the 
OS relative orbit during the passive abort region (Zone 1) of 
autonomous rendezvous. 

o The flight system shall abort from autonomous rendezvous if stray 
light glint on the rendezvous sensors negatively impacts the ability 
to estimate the OS relative orbit during the active abort region 
(Zone 2). 

o The flight system shall perform autonomous rendezvous in the 
presence of stray light glint on the rendezvous sensors during the 
unavoidable intercept region (Zone 3) 

o The flight system shall preserve <40%> (TBR) of nominal relative 
orbit estimation performance in the presence of stray light glint 
during all other subphases of autonomous rendezvous. 

 OS Plume Impingement Modeling Fault 

 

o The flight system shall stop maneuvers if plume impingement 
causes unmodeled OS dynamics during the passive abort region 
(Zone 1) of autonomous rendezvous. 

o The flight system shall abort from autonomous rendezvous if plume 
impingement causes unmodeled OS dynamics during the active 
abort region (Zone 2).  
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o The flight system shall perform autonomous rendezvous in the 
presence of unmodeled OS dynamics caused by plume 
impingement during the unavoidable intercept region (Zone 3). 

o The flight system shall perform autonomous rendezvous in the 
presence of unmodeled OS dynamics caused by plume 
impingement during all other subphases. 

 Filter Does Not Converge 

o The flight system shall stop maneuvers if the relative orbit filter 
does not converge during the passive abort region (Zone 1) of 
autonomous rendezvous. 

o The flight system shall abort from autonomous rendezvous if the 
relative orbit filter does not converge during the active abort 
region (Zone 2). 

o The flight system shall restore relative orbit filter estimation within 
<30 seconds> (TBR) if the relative orbit filter does not converge 
during the unavoidable intercept region (Zone 3) of autonomous 
rendezvous. 

o The flight system shall restore relative orbit filter estimation within 
<15 minutes> (TBR) if the filter does not converge during all other 
subphases of autonomous rendezvous. 

 Attitude Determination & Control Faults 

 Gyro Bias/Scale Factor 

 

o The flight system shall preserve <60%> (TBR) of nominal maneuver 
performance in the presence of a gyro bias or scale factor during the 
passive abort region (Zone 1) of autonomous rendezvous. 

o The flight system shall perform autonomous rendezvous in the 
presence of a gyro bias or scale factor during the active abort region 
(Zone 2). 

o The flight system shall perform autonomous rendezvous in the 
presence of a gyro bias or scale factor during the unavoidable 
intercept region (Zone 3). 

o The flight system shall preserve <40%> (TBR) of nominal maneuver 
performance in the presence of a gyro bias or scale factor during all 
other subphases of autonomous rendezvous. 
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o The flight system shall stop maneuvers in the presence of a gyro bias 
or scale factor during autonomous capture. 

 Star Tracker Temporary Lockup 

 

o The flight system shall preserve <60%> (TBR) of nominal maneuver 
performance in the presence of a temporary star tracker lockup during 
the passive abort region (Zone 1) of autonomous rendezvous. 

o The flight system shall perform autonomous rendezvous in the 
presence of a temporary star tracker lockup during the active abort 
region (Zone 2). 

o The flight system shall perform autonomous rendezvous in the 
presence of a temporary star tracker lockup during the unavoidable 
intercept region (Zone 3). 

o The flight system shall restore maneuver capability within <15 
minutes> (TBR) in the presence of a star tracker temporary lockup 
during all other subphases of autonomous rendezvous. 

o The flight system shall stop maneuvers in the presence of a star tracker 
temporary lockup during autonomous capture. 

  Attitude Filter Does Not Converge 

 

o The flight system shall stop maneuvers if the attitude filter does not 
converge during the passive abort region (Zone 1) of autonomous 
rendezvous. 

o The flight system shall abort from autonomous rendezvous if the 
relative orbit filter does not converge during the active abort region 
(Zone 2). 

o The flight system shall restore attitude filter estimation within <30 
seconds> (TBR) if the attitude filter does not converge during the 
unavoidable intercept region (Zone 3) of autonomous rendezvous. 
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o The flight system shall restore attitude filter estimation within <15 
minutes> (TBR) if the attitude filter does not converge during all other 
subphases of autonomous rendezvous. 

o The flight system shall stop maneuvers if the attitude filter does not 
converge during autonomous capture. 

 Reaction Wheel Momentum Saturated 

 

o The flight system shall preserve <60%> (TBR) of nominal maneuver 
performance in the presence of a reaction wheel momentum saturation 
during the passive abort region (Zone 1) of autonomous rendezvous. 

o The flight system shall perform autonomous rendezvous in the 
presence of a reaction wheel momentum saturation during the active 
abort region (Zone 2). 

o The flight system shall perform autonomous rendezvous in the 
presence of a reaction wheel momentum saturation during the 
unavoidable intercept region (Zone 3). 

o The flight system shall restore maneuver capability within <15 
minutes> (TBR) in the presence of a reaction wheel momentum 
saturation during standby in a holding location in autonomous 
rendezvous. 

o The flight system shall preserve <40%> (TBR) of nominal maneuver 
performance in the presence of a reaction wheel momentum saturation 
during all other subphases of autonomous rendezvous. 

o The flight system shall perform autonomous capture in the presence of 
a reaction wheel momentum saturation. 
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 Trajectory Maneuver Faults 

 OS Dynamics Exceed Capture Requirements 

 

o The flight system shall perform autonomous rendezvous even if the 
projected (to time of capture) OS spin rate exceeds 3 RPM, relative 
velocity exceeds 5 cm/s, or lateral offset exceeds 10 cm during the 
unavoidable intercept region (Zone 3). 

o The flight system shall abort from autonomous rendezvous if the 
projected (to time of capture) OS spin rate exceeds 3 RPM, relative 
velocity exceeds 5 cm/s, or lateral offset exceeds 10 cm during all 
other subphases. 

 Incorrect Timing/Direction/Delta-V 

 

o The flight system shall preserve <60%> (TBR) of nominal trajectory 
performance in the presence of a trajectory maneuver error during the 
passive abort region (Zone 1) of autonomous rendezvous. 

o The flight system shall perform autonomous rendezvous in the 
presence of a trajectory maneuver error during the active abort region 
(Zone 2). 

o The flight system shall perform autonomous in the presence of a 
trajectory maneuver error during the unavoidable intercept region 
(Zone 3). 

o The flight system shall preserve <40%> (TBR) of nominal trajectory 
performance in the presence of a trajectory maneuver error during all 
other subphases of autonomous rendezvous. 
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 Deadband Violation Does Not Trigger Maneuver 

 

o The flight system shall preserve <60%> (TBR) of nominal trajectory 
performance in the presence of a deadband violation error during the 
passive abort region (Zone 1) of autonomous rendezvous. 

o The flight system shall perform autonomous rendezvous in the 
presence of a deadband violation error during the active abort region 
(Zone 2). 

o The flight system shall perform autonomous rendezvous in the 
presence of a deadband violation error during the unavoidable 
intercept region (Zone 3). 

o The flight system shall preserve <40%> (TBR) of nominal trajectory 
performance in the presence of a deadband violation error during all 
other subphases of autonomous rendezvous. 

 Sequencing Faults 

 Tolerances on Transition Parameters Too Tight 

 

o The flight system shall restore nominal sequencing within <10 
minutes> (TBR) in the presence of a sequence parameter tolerance 
error during the passive abort region (Zone 1) of autonomous 
rendezvous. 

o The flight system shall abort from autonomous rendezvous in the 
presence of a sequence parameter tolerance error during the active 
abort region (Zone 2). 

o The flight system shall perform autonomous rendezvous in the 
presence of a sequence parameter tolerance error during the 
unavoidable intercept region (Zone 3). 



 203 

o The flight system shall perform autonomous capture after the OS 
enters the capture volume in the presence of a sequence parameter 
tolerance error. 

 Ground Command Halts or Unloads Sequence 

 

o The flight system shall restore nominal sequencing within <10 
minutes> (TBR) in the presence of a sequencing ground command 
error during the passive abort region (Zone 1) of autonomous 
rendezvous. 

o The flight system shall abort from autonomous rendezvous in the 
presence of a sequencing ground command error during the active 
abort region (Zone 2). 

o The flight system shall perform autonomous rendezvous in the 
presence of a sequencing ground command error during the 
unavoidable intercept region (Zone 3). 

o The flight system shall restore nominal sequencing within <15 
minutes> (TBR) in the presence of a sequencing ground command 
error during all other subphases of autonomous rendezvous. 

o The flight system shall perform autonomous capture in the presence of 
a sequencing ground command error. 

 Capture Faults 

 Door Close Signal Does Not Activate 

 

o The flight system shall restore capture door close capability within 
<10 seconds> (TBR) in the presence of a capture door close signal 
error during autonomous capture. 
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 Sun Interference/Spoofing of Laser Curtain 

 

o The flight system shall maintain <60%> (TBR) of nominal laser 
curtain sensor detection in the presence of sun interference or 
spoofing during autonomous capture. 
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