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SUMMARY 

 
 
 
 The objective of this research is to advance the field of condition monitoring of 

electrolytic capacitors used in power electronics circuits.  

The construction process of an electrolytic capacitor is presented. Descriptions of 

various kinds of faults that can occur in an electrolytic capacitor are discussed. The 

methods available to detect electrolytic capacitor faults are discussed. The effects of the 

capacitor faults on the capacitor voltage and current waveforms are investigated through 

experiments. It is also experimentally demonstrated that faults in the capacitor can be 

detected by monitoring the capacitor voltage and current.  

Various ESR estimation based detection techniques available to detect capacitor 

failures in power electronics circuits are reviewed. Three algorithms are proposed to track 

and detect capacitor failures: an FFT based algorithm, a system modeling based detection 

scheme, and finally a parameter estimation based algorithm. The parameter estimation 

based algorithm is a low-cost real-time scheme, and it is inexpensive to implement. 

 Finally, a detailed study is carried out to understand the failure mechanism of an 

electrolytic capacitor due to inrush current. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVE OF RESEARCH 

 
 
 

1.1 Problem statement 

Aluminum electrolytic capacitors are used in most power electronic circuits 

because they can achieve high capacitance and voltage ratings in small, cost efficient case 

sizes. The high volumetric efficiency of an electrolytic capacitor is achievable because of 

its enhanced plate surface area and a very thin dielectric layer. This type of capacitor has 

traditionally been used for filtering, timing networks, by-pass, coupling, and other 

applications requiring a cost effective, volumetrically efficient, and highly reliable 

component. Unfortunately, electrolytic capacitors are considered to be a weak link in all 

of these applications [1].  

Condition monitoring of the electrolytic capacitor is therefore assuming a new 

importance in critical high performance applications. Early detection of faults would 

allow preventive maintenance to be performed, and provide sufficient time for the 

controlled shutdown of the process, thereby reducing the costs of outage-time and repairs. 

The common faults in electrolytic capacitor include initial catastrophic failures because 

of misapplication or manufacturing defect, and wear-out faults. However, some research 

works have been reported in literature for the diagnosis of the electrolytic capacitor 

faults, most of these research focuses on the capacitor fault because of aging [18-31]. 

These reported research works are difficult to implement in a cost-effective way, which is 
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further explained in Chapter 2. A new low-cost online monitoring scheme for an 

electrolytic capacitor failure is presented in Chapter 5. 

1.2 Objective 

The objective of this research is to advance the field of fault monitoring of an 

electrolytic capacitor operating in a power electronic circuit in a cost-effective way. This 

objective is addressed as three parts in this thesis. The first part, Chapter 3, 

experimentally characterizes the effects of the capacitor wear-out faults on the capacitor 

ripple voltage, and the capacitor ripple current. The second part, Chapter 4, develops 

methods to detect the capacitor faults by system modeling using the converter input 

current. A cost-effective method, Chapter 5, for the condition monitoring of the 

electrolytic capacitor, is presented using parameter-estimation technique. The parameters 

of the capacitor change because of aging and misapplication. Therefore, the condition of 

an electrolytic capacitor can be monitored by monitoring the parameters of the capacitor 

in real-time.  

Finally, electrolytic capacitor faults caused by inrush current due to line surge-

voltage are studied in Chapter 6, and a model of the capacitor is developed to explain the 

failure of an electrolytic capacitor due to inrush current. A summary of contributions 

appear in Chapter 7. 
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CHAPTER 2 

BACKGROUND MATERIAL AND PREVIOUS WORK 

 
 
 

2.1 Introduction 

 To facilitate a clear understanding of the proposed condition monitoring schemes, 

the construction of an electrolytic capacitor is now considered in more detail. The various 

modes of the capacitor failures are discussed. In addition, this chapter reviews and 

summarizes the existing research for condition monitoring of an electrolytic capacitor.  

2.2 Electrolytic capacitor 

The aluminum electrolytic capacitor is a passive component that has kept pace 

with advancements in technology. Aluminum electrolytic capacitors are used in various 

applications because they can achieve high capacitance and high voltage ratings in small, 

cost-efficient case sizes. This type of capacitor has traditionally been used for filtering, 

timing networks, bypassing, coupling, and other applications requiring a cost-effective, 

volumetrically efficient, and highly reliable component. To understand how this is 

accomplished, it is important to examine some of the basic properties of capacitors [2, 3].  

A capacitor is made up of two parallel plates, the electrodes, with a dielectric 

between them. The amount of capacitance is directly proportional to the surface area of 

the electrode, but inversely proportional to the dielectric thickness. If the thickness is 
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reduced by one-half, the capacitance is doubled. The high volumetric efficiency of an 

electrolytic capacitor is due to its enhanced plate surface area, which is enhanced by an 

etching process. A large internal surface can be created on the aluminum electrodes by 

electrochemical etching. The dielectric is typically an oxide with a high dielectric 

strength, which is electrochemically deposited in thin layers. This combination produces 

a high capacitance in a small volume [2-7]. The aluminum electrolytic capacitor consists 

of an anode foil, a cathode foil, and a separator paper that are wound together and 

impregnated with an electrolyte. The anode foil has an aluminum oxide layer acting as 

the dielectric. After the thin aluminum foil (65 to 100 microns) is electrochemically 

etched to increase the plate's surface area, the dielectric is produced by anodic oxidation 

on its surface. The cathode foil, in general, utilizes no oxidation process. An illustration 

of a typical aluminum electrolytic capacitor is shown in Figure 2.1.  

Tab

 
Figure 2.1 Cross section of an electrolytic capacitor. (Source: Precision Graphics) 
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2.3 Electrolytic capacitor construction process 

2.3.1 Etching [3] 

The plates, or electrodes, are made of high-purity thin aluminum foil (0.05 to 0.1 

mm thick). To get the maximum capacitance for a given electrode surface area, an 

electrochemical process called "etching" is used to dissolve some of the surface material 

and increase the surface area of the foil in the form of a dense network of microscopic 

channels. The etching process consists of continuously subjecting the aluminum foil to a 

chloride solution with an AC, DC, or AC/DC voltage applied between the etch solution 

and aluminum foil. The increase in surface area is referred to as foil gain, and can be as 

much as 100 times for foil being used in low-voltage capacitor applications, and 20 to 25 

times for higher-voltage applications [2]. 

2.3.2 Formation [3] 

The dielectric of the aluminum electrolytic capacitor is composed of a thin layer 

of aluminum oxide (Al2O3), which develops or “forms” on the surface of the etched 

aluminum foil during a process called “formation.” This process of forming the dielectric 

oxide on the aluminum foil (electrode) requires a continuous application of DC voltage at 

140% to 200% of the rated voltage for the capacitor being manufactured. The dielectric 

thickness of this aluminum oxide film is approximately 15 Å/volt [2]. The insulation 

strength is approximately 107 V/cm. Since capacitance is inversely proportional to the 

dielectric thickness and the dielectric thickness is proportional to the forming voltage, the 

relationship between capacitance and forming voltage is given by [2] 

constVC =×  (2.1)
where  C = capacitance, and V = forming voltage 
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This is true for high-voltage foil, which has a relatively coarse etch structure. 

However, for foils that have extremely fine etch structures, the conversion of aluminum 

to aluminum oxide has a significant smoothing effect on the etch structure, resulting in a 

non-linear relationship. 

2.3.3 Slitting [3] 

The etched and formed foil is then slit into various widths, depending on the 

specific size of the capacitor.  

2.3.4 Winding [3] 

Each capacitor contains two foils, the positive foil is called the anode and the 

negative is called the cathode. The anode and cathode foils, along with a separator paper, 

called the “separator,” are rolled into a cylindrical shape. The separator paper prevents 

the anode and cathode foils from coming into contact with each other, and shorting. As 

part of a highly automated winding process, aluminum tabs are attached to the anode and 

cathode foils. This completed assembly of etched and formed foil, separator paper, and 

attached tabs is called the capacitor “element” as shown in Figures 2.1, 2.2 and 2.3. 
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Figure 2.2 Wound capacitor elements. 

 
 

 
Figure 2.3 Cross section of wound capacitor element materials. 

2.3.5 Impregnation [3] 

The electrolyte is now added to the assembly by a process called “impregnation.” 

The method of impregnation requires the wound element to be immersed into the 

electrolyte by a vacuum/pressure cycle either with or without applied heat or simple 
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absorption. The electrolyte contains a solvent such as ethylene glycol and a solute such as 

ammonium borate. Should the dielectric film be damaged, the presence of the electrolyte 

will allow the capacitor to heal itself by forming more oxide. By selecting different 

electrolytes, capacitor characteristics such as operating temperature range, frequency 

response, shelf life, and load life, can be further improved. 

2.3.6 Sealing and aging [3] 

The impregnated element is then sealed in an aluminum can. The sealing material 

may be rubber, rubber-backed phenolic, molded phenolic resin, or polyphylenesulfide 

(PPS). The final process is “aging,” during which a voltage greater than the rated voltage 

of the capacitor is applied at elevated temperatures. The purpose is to reform (or repair) 

any oxide film that may have been damaged during the slitting, winding, and assembly 

processes.  

2.4 Application guide 

2.4.1 Dielectric absorption [2] 

 Dielectric absorption may be observed as the re-appearance of a voltage across a 

capacitor after the terminals have been shorted for a brief period, and the short removed. 

This characteristic is important in RC timing circuits, triggering systems, and phase shift 

networks. For aluminum electrolytic capacitors, dielectric absorption will allow up to 

10% recovery of the charging voltage between 100 s and 1000 s at 25°C and it is more 

pronounced at higher temperatures. Maximum dielectric absorption can be obtained by 

charging capacitors for 1 hour at rated voltage and discharging through a dead short for 1 

minute. Subsequent measurements over time can be made using a high impedance probe. 
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With high-voltage aluminum electrolytic capacitors, rebound voltages of 40 to 50 V are 

possible [2]. Rebound voltages are caused by internal chemical process in which there 

exists a small voltage across the capacitor terminals due to charge polarization in the 

capacitor dielectric-layer even in the absence of any external applied voltage. While such 

voltages are not a safety hazard, they can certainly create a frightening distraction if the 

terminals are shorted by a tool during installation. Conductive tape and wire shorting 

straps can be supplied to avoid this problem. The tradeoff is extra cost and the labor to 

remove them.  

2.4.2 Insulation and grounding [2] 

 With non-solid electrolyte, aluminum electrolytic capacitor cans connect to the 

negative terminals through the electrolyte of the capacitor. The resulting isolation 

resistance may vary from a few ohms to a few thousand ohms. For axial-leaded 

capacitors and flat packs, the case is connected to the negative lead. If objects contacting 

the cases are to be at a potential other than the negative terminals, capacitors with 

insulating sleeves are used. The plastic insulation sleeve can withstand 3000 Vdc or 2500 

Vac at 60 Hz [2].  

2.4.3 External pressure [2] 

 Aluminum electrolytic capacitors can operate at altitudes to 80,000 feet and at 

pressures as low as 3 kPa, and maximum air pressure depends on the size and style of the 

capacitor. Exceeding the maximum value can damage the capacitor by rupturing the case, 

opening the pressure-relief vent, or causing a short circuit. 
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2.4.4 Mechanical vibration [2] 

 Aluminum electrolytic capacitors can generally withstand 10 g vibration forces. 

To test vibration resistance, a capacitor is clamped to a vibrating platform and subjected 

to a simple harmonic motion having maximum peak-to-peak amplitude of 0.06 inches 

and a maximum acceleration of 10 g or 15 g as specified. The frequency of vibration is 

varied linearly between 10 and 55 Hz. The entire frequency range is traversed in 1 

minute. Unless specified otherwise, capacitors are vibrated for one and half hours with 

the direction of motion being parallel to the axis of the capacitor; then the capacitor is 

placed so that the direction of motion is perpendicular to the axis and vibration is 

continued for another one and half hours. During the last half hour of the test, the 

capacitor is connected to a bridge measuring circuit, and observations are made for any 

mechanical damage for a 3-minute period. In addition, there should not be any evidence 

of loosening of the capacitor element within the container when shaken by hand 

following the test. There should not be any indication of intermittent contact, open or 

shorting during the 3-minute observation period. 

2.4.5 Pressure-relief vents [2] 

 During operation of an aluminum electrolytic capacitor with non-solid electrolyte, 

gas pressure normally increases. The gas is mostly hydrogen and excess pressure is 

avoided by permeation of the gas through the capacitor’s seal. However, in some cases 

like the application of an overvoltage, reverse voltage, AC voltage or capacitor failure, 

excess pressure can cause the capacitor to explode. To avoid the risk of explosion, 

aluminum electrolytic capacitors are usually equipped with pressure-relief vent 

structures. These safety vents are intended to rupture and release the gas pressure. After 
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rupture, the capacitor has a limited life because it loses electrolyte and dries out. Care 

should be taken to avoid interfering with the operation of the vent, for instance by 

mounting elements, such as clamps, glue or potting compounds. In the case of large 

capacitors with the capacitor elements secured by thermoplastic potting, it should not be 

mounted with the safety vents down, as the potting may flow when the capacitors 

overheat, and block the vents. In rare cases, for capacitors mounted alone, and more often 

for capacitors in multiple-unit parallel capacitor banks, a fully functioning pressure relief 

device may not react in time. This could be from extreme overload or ignition of gas 

inside the capacitor through sparking caused by breakdown. Personnel should be 

protected from possible rupture of high-energy capacitors with substantial shielding. 

Examples of appropriate shielding for testing are quarter-inch thick steel or half-inch 

thick polycarbonate enclosures with one end open to redirect the explosion rather than 

contain it. The excess internal pressure will be relieved without violent expulsion of the 

capacitor element, or cover, or ignition of surrounding material. 

2.4.6 Contact with electrolyte [2] 

 The electrolyte in non-solid electrolyte capacitors is a biodegradable liquid based 

on a stable solvent with a high boiling point as the main ingredient. Common solvents are 

ethylene glycol (EG), dimethylformamide (DMF), and gammabutyrolactone (GBL) [2]. 

The electrolyte includes an acid base system, and other chemicals. The electrolyte is 

chemically neutral and contains no lead compounds, or halogenated compounds. It has a 

low toxicity but contact with the skin or eyes should be avoided, and avoid prolonged 

inhalation. Contact with electrolyte can be treated by rinsing the exposed area with water. 

If the electrolyte contacts eyes, it should be flushed for 10 minutes with running water. If 
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vapors are present, the room should be ventilated. Smoke from burning electrolyte is 

irritating but does not contain dioxins or similar toxic substances.  

2.4.7 Charge-discharge [2] 

 Frequent, rapid charging and discharging of aluminum electrolytic capacitors 

which were not designed for such service, can damage the capacitors by overheating, and 

overpressure, or breakdown with consequent failure by open or short circuit.  

2.4.8 Polarity – reverse voltage [2] 

 The polarity of each capacitor should be checked, both in circuit design and in 

mounting. While the capacitors can withstand continuous application of 1.5 V reverse 

voltage, exceeding that value can damage the capacitor by overheating, overpressure, and 

dielectric breakdown. This can result in associated open-circuit or short-circuit failures 

and rupture of the capacitor’s pressure-relief vent. 

2.4.9 Flammability [2] 

 Aluminum electrolytic capacitors contain materials, which can catch fire and 

support combustion when contacted by flames. Flammable parts include plastic parts, 

insulating sleeves, paper, and the electrolytes. Most capacitors will pass the needle-flame 

test requirements of UL 94V-O [48], and do not support combustion to the requirements 

of category B or C. In rare cases, the capacitor may self-ignite from heavy overload 

(high-ripple current) or capacitor defect. Hydrogen in the capacitor can ignite if sparking 

occurs during capacitor failure. In critical applications such as mining applications, fire-

resistant shields should be provided. 
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2.5 Capacitor parameters and equivalent circuit [2] 

The equivalent circuit of an aluminum electrolytic capacitor is shown in Figure 

2.2. Because of the physical design elements and construction, a capacitor not only has 

capacitance, but it also has a series resistance and an inductance as well as a parallel 

resistance allowing the flow of current. 

 
Figure 2.4 Electrolytic capacitor equivalent circuit, where C = capacitance, ESL = equivalent-

series-inductance, DCR = dielectric-leakage-resistance, R1 = electrolyte resistance, R2 = tab 
resistance. 

 

2.5.1 Capacitance 

The capacitance of aluminum electrolytic capacitor as well as other capacitors, is 

expressed by 

d
AC rµµ

=  (2.2)

where  µo = Dielectric constant in free space (8.8542 x 10-12 F/m) 

µr = Relative dielectric constant of the material 

A = Surface area of the dielectric (m2) 

d = Thickness of the dielectric (m) 

A large capacitance can be obtained when 

• The dielectric constant is high 

• The surface area is large 

• The dielectric is thin 
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In aluminum electrolytic capacitors, the relative dielectric constant is about 8 to 

10, and the aluminum oxide dielectric layer is thin (about 15 Å per volt). However, high 

gain foil produced by the electrochemical etching, creates a surface magnification, or 

gain, as much as 100 times for the low voltage foil, and 20 to 25 times for the high 

voltage foil. Therefore, an aluminum electrolytic capacitor can provide a large 

capacitance compared to other types of capacitors of the same volume. In addition, 

capacitance tolerance is the permitted minimum and maximum capacitance values 

expressed as a percentage decrease and increase from the rated capacitance, ∆C/C. 

Typical capacitance tolerances are ±10%, and ±20%, however, tighter tolerances are 

more readily available in high voltage capacitors, e.g., above 150 V, but tolerances tighter 

than ±10% are generally not available [3-7]. However, tighter tolerance parts may meet 

other tolerance rating requirements, and are readily substitutable if available. Finally, the 

capacitance also varies with temperature and frequency, and the variation itself is 

dependent on the rated voltage and the capacitor size. 

2.5.2 Dielectric leakage resistance (DCR) 

The dielectric of a capacitor has a high resistance, which prevents the flow of DC 

current. However, some defect areas in the dielectric allow a small amount of current to 

pass, called leakage current [8]. The areas allowing current flow are due to small foil 

impurity sites that are not homogeneous, and the dielectric formed over these impurities 

does not create a strong bond. These bonds break down when the capacitor is exposed to 

high DC voltages, and hence the leakage current increases. Leakage current is also 

determined by the following factors: 

• Capacitance value 
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• Applied voltage versus rated voltage 

• Previous history  

The leakage current is proportional to the capacitance and decreases as the applied 

voltage is reduced [2]. If the capacitor has been at elevated temperatures without voltage 

applied for an extended time, some degradation of the oxide dielectric may take place, 

which will result in a higher leakage current. Usually this damage will be repaired when 

voltage is reapplied. 

2.5.3 Equivalent series inductance (ESL) 

The inductance of a capacitor is a constant, and is due primarily to the capacitor 

terminal connection. The inductance varies anywhere from 10 nH for miniature radial 

capacitors to as high as 100 nH for large can type capacitors. Generally, the inductance 

does not affect the overall impedance unless the capacitor is operating at high 

frequencies, as shown in the Bode-plot of the equivalent-circuit impedance of an 

electrolytic capacitor in Figure 2.5 for a 1 mF, 85 ºC, 100 volt rated electrolytic capacitor. 
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Figure 2.5 Bode-plots of the electrolytic capacitor equivalent circuit impedance. 
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2.5.4 Equivalent Series Resistance (ESR) 

ESR leads to heat generation in the capacitor because of AC ripple current. The 

equivalent equation for ESR is shown in (2.3) [9]. 

321 RRRESR ++=  (2.3)

where  R1 = Frequency-sensitive resistance as a result of oxide thickness 

R2 = Temperature-sensitive resistance as a result of electrolyte 

R3 = Resistance because of the following components: 

• Foil length 

• Tabs 

• Lead wires 

• Ohmic contact resistance 

The effect of the frequency-dependent part, R1, appears in the ripple current 

multipliers provided by manufactures [7]. This effect is caused by energy losses in the 

alignment of dipoles in the dielectric, and the time it takes for the dipoles to become 

oriented [8]. It becomes more significant for higher rated voltage capacitors because their 

oxide layer is thicker. For applications with a single frequency ripple current, the ESR 

can be simply adjusted by using a multiplier [2]. The amount of heat generated by the 

ripple current depends upon the ESR of the capacitor [13]. To have a low ESR, it is 

necessary to control the characteristics of the electrolyte, the separator paper, the winding 

alignment of the element, the position of the tabs, and the magnification and pit 

construction of the etched foil. All these factors contribute to the ESR of the capacitor 

[13-16]. The parallel combination of DCR and C models the dielectric oxide layer of the 
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capacitor, as shown in Figure 2.2. Equation (2.4) describes the complex impedance of the 

capacitor in Figure 2.4. 

fESLjRR
fCj

DCR

Zcap π
π

2
21

1
32 +++

+
=  

(2.4)

 
where  Zcap= complex impedance of the capacitor, and f = frequency (Hz). 

The value of ESR can be calculated as, ESR = Real part of (Zcap) 

Real part of (Zcap) = 32222)2(1
RR

DCRCf
DCR

++
+ π

 (2.5)

 

32222321 )2(1
RR

DCRCf
DCRRRRESR ++

+
=++=

π
 (2.6)

 
Hence, the frequency-dependent part of ESR can be written as 

2221 )2(1 DCRCf
DCRR

π+
=  (2.7)

2.5.5 Operating temperature range [2] 

 The operating-temperature-range is the temperature-range over which the 

component will function, when energized, within the limits given in the specification. 

Capacitors are designed to operate over a range of ambient temperatures; moreover, the 

formation-voltage sets the high-temperature limit. Higher formation-voltages permit 

operation at higher operating temperatures but reduce the capacitance. The low-

temperature limit is set largely by the cold resistivity of the electrolyte. A higher value of 

cold resistivity increases the capacitor’s ESR 10 to 100 fold and reduces the available 

capacitance. Typical temperature ranges are: –20°C to +55°C, –25°C to 85°C, –40°C to 

85°C, –55°C to 85°C, –40°C to 105°C, –55°C to 105°C, and –55°C to 125°C. 
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2.5.6 Storage temperature range [2] 

 The storage temperature range is the temperature range to which the part can be 

subjected while un-energized while it retains conformance to specified electrical limits. It 

is the ambient temperature range over which the capacitors may be stored without 

damage for short periods. For longer period of storage, capacitors should be kept at cool 

room temperatures, and in an atmosphere free of halogen gases like chlorine and fluorine 

that can corrode the aluminum. Typical storage temperature ranges are from –55°C to the 

upper limit of the operating-temperature ranges. 

2.5.7 Rated DC voltage [2] 

 Rated DC voltage is the maximum peak voltage including ripple voltage that may 

be applied continuously between the terminals, and over the rated temperature range. 

Higher rated voltage capacitors may be substituted for lower rated voltage capacitors as 

long as case size, dispersion factor (DF), and ESR ratings are compatible [2]. 

2.5.8 Rated surge voltage [2] 

 Rated surge voltage is the maximum DC overvoltage to which the capacitor may 

be subjected at 25 °C for short periods not exceeding approximately 30 s at infrequent 

intervals of not less than 5 min. The surge voltage can be measured as follows: subject 

the capacitors to their rated surge voltage at normal room temperature and through a 1000 

Ω ±10% resistor. Cycle the voltage 30 s on followed by 4.5 minutes off during which 

each capacitor is discharged through the charging resistor or equal resistor, and repeat the 

cycle for 120 h. Post-test requirements are for the DCL, ESR, and DF to meet the initial 

requirements, and for there to be no evidence of mechanical damage or electrolyte 
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leakage. In addition, the electrolyte residue with no droplets or visible flow is permitted 

[2]. 

2.5.9 Transient over voltage [2] 

 Aluminum electrolytic capacitors can generally withstand extreme overvoltage 

transients of limited energy. An application of overvoltage more than about 50 V beyond 

the capacitor’s surge voltage rating causes high leakage current, and a constant-voltage-

operating mode similar to a zener diode operation. The capacitor may fail as a short-

circuit if the electrolyte cannot take the voltage stress, but even if it can, this operating 

mode cannot be maintained for long because hydrogen gas is produced by the capacitor, 

and the pressure build up will cause the capacitor to rupture. However, special designs 

are available that use the overvoltage, zener-clamping-effect to successfully protect 

equipment from overvoltage transients such as lightning strikes. 

2.5.10 Ripple current [2] 

 Ripple current is the AC current flowing in the capacitor. It is called ripple current 

because the associated AC voltage rides like ripple on water on the capacitor’s DC bias 

voltage. The ripple current heats the capacitor, and the maximum permitted ripple current 

is set by the capacitor’s load life specification. A significant temperature rise above the 

maximum permitted core temperature, will cause failure, even operation close to the 

maximum permitted core temperature dramatically shortens the expected life of the 

capacitor. The load life specifications for aluminum electrolytic capacitors operating at 

maximum permitted core temperature are typically 1000 to 10,000 hours. Ripple current 

ratings are specified for an expected temperature rise above the rated temperature. 
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Commonly, capacitor types rated at 85°C permit a temperature rise of 10°C, and have a 

maximum permitted core temperature of 95°C. However, types rated 105 °C permit a 

temperature rise of only 5°C, and have a maximum core temperature of 110 °C. 

Moreover, actual maximum permitted core temperatures may vary by type and 

manufacturer. Ripple current ratings usually assume that the capacitor is convection 

cooled and that the entire can is in contact with air. A convection coefficient of 0.006 

W/°C/in2 is used [2] to calculate the temperature rise from air to the case, and the core 

temperature is assumed to be same as the case temperature. The power dissipated is the 

ripple current squared times the ESR. Often the ESR value at 25°C, 120 Hz is used to 

calculate the power dissipated. With large-can capacitors, neglecting the temperature rise 

from the case to the core, can seriously overstate the ripple current capability. With some 

constructions, the core is 3 to 5°C per watt of ripple power hotter than the case. 

Therefore, the total temperature rise would be more than double the intended 10°C with 

rated ripple current and maximum ESR. However, generally it is safe to assume that the 

core temperature is the same as the case temperature for capacitors smaller than 25 mm in 

diameter [2].  

2.6 Capacitor bank configuration [2] 

2.6.1 Parallel connection 

 Capacitors may be connected in parallel for increased capacitance and ripple-

current capability. Parallel-connected capacitor banks have a minimum series inductance, 

and it requires a laminated bus or strip-line structure. Generally, one plane of the circuit 

board acts as the positive-connection and another plane as the negative-connection to all 
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capacitors in the bus. The circuit resistance external to each capacitor should be equal to 

ensure equal current sharing. While the ripple-current divides among the capacitors in 

proportion to capacitance values for low-frequency ripple, and high frequency ripple-

current divides in proportion to ESR values and the path resistance. In order to fuse the 

individual capacitors, a slow-start circuit should be included at equipment turn-on, and 

the fuse used for each capacitor should be rated at twice its expected, maximum ripple-

current [10]. The slow start circuit can be a resistor in series with the capacitors that is 

shorted after initial charging. 

2.6.2 Series connection 

 Capacitors can be connected in series for increased voltage withstanding 

capability. During charging, the voltage across each of the capacitors connected in series 

is proportional to the inverse of the individual capacitance, but upon reaching the final 

voltage, the voltage across each capacitor is proportional to the inverse of the capacitor’s 

leakage current. Of course, in a series-string, all leakage currents are the same, and the 

capacitors with a propensity for higher leakage current will get less voltage. Since 

leakage-current increases with applied voltage, a higher voltage results in higher leakage-

resistance and the voltages tend to equalize. High voltage bus capacitors in series pairs 

connected to supply voltages 10% above twice the rated voltage have good voltage 

sharing over the full temperature range. Moreover, two capacitors in series will seldom 

require balancing resistors for voltage sharing. As an alternative, capacitors from the 

same manufacturing lot should be used to ensure equal leakage currents, or a higher rated 

voltage can be used to permit voltage imbalance with different manufacturers. In 

addition, capacitors in series should have the same thermal environment.  
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2.6.3 Parallel-series connection 

 Capacitors connected as shown in Figure 2.6 with a common connection between 

multiple series combinations have the following considerations. 

 

Figure 2.6 Parallel-series connection. 
 
Advantages: As the number of capacitors in parallel increases, the total capacitance of the 

top group tends to equal the total capacitance of the bottom group even if individual 

capacitor values are not identical. This improves voltage balance during transients. In 

addition, the leakage current of the top group tends to equal the leakage current of the 

bottom group, so that voltage balance improves during steady-state conditions. Finally, 

only two balancing resistors are needed, and the top and bottom resistors are carefully 

matched so that it eliminates the need for any other balancing resistors. 

Disadvantage: If one capacitor fails short, the other half of the bank gets the entire bus 

voltage, so other capacitors will fail as well. Therefore, one capacitor failure can cause 

failure of the entire bank unless the shorted capacitor is blown open.  
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2.6.4 Series-parallel connection 

 Capacitors connected as shown in Figure 2.7 with multiple series combinations in 

parallel have the followings considerations. This configuration is the clear choice when 

balancing resistors are not used. 

 

Figure 2.7 Series-parallel connection. 
 
Advantages: If one capacitor fails short then the capacitor in series with it also fails, but 

other capacitors in the bank are unaffected. If balancing resistors are not used, then a high 

leakage current of one capacitor affects only a single pair of capacitors. The independent, 

series pairs permit fusing. 

Disadvantages: With balancing resistors, the construction is more complex; many 

resistors need to be fitted, and the cost increases. 

2.6.5 Non-polarized connection 

 If two, same-value, aluminum electrolytic capacitors are connected in series, 

back-to-back with the positive terminals or the negative terminals connected, then the 

resulting combined equivalent single capacitor is a non-polarized capacitor with half the 

capacitance to either of the original pair. Each capacitor individually rectifies the applied 



 24

voltage, and act as if they had been bypassed by diodes. When voltage is applied, the 

correct-polarity capacitor gets the full voltage. In non-polarized aluminum electrolytic 

capacitors and motor start aluminum electrolytic capacitors, a second anode foil 

substitutes for the cathode foil to achieve a non-polarized capacitor in a single can. While 

non-polar aluminum electrolytic capacitors are available for momentary-duty AC 

applications like motor starting and voltage-reversing applications, the high dispersion 

factor (DF) of aluminum electrolytic capacitors, from 2% to 150%, causes excess heating 

and a short life in most AC applications.  

2.7 Cooling strategies [2] 

 Capacitors conduct heat from the core to the bottom of the can more effectively 

than outwards to the sides. Advantage can be taken of this heat path can be taken by 

mounting the bottom of the capacitor cans directly to a metal chassis. In many can sizes, 

this method of mounting doubles the permitted ripple-current for the same temperature 

rise. Mounting can be done by using capacitors with special mounting studs and screwing 

the studs directly into the chassis plate, or it can be done by pressing the capacitors 

against a plate using the interconnecting bus structures. The seal pads create smooth 

bottoms by eliminating the steps at the sleeve rollovers [11]. The thermal resistance 

between the can and the chassis plate for capacitors merely sitting on the plate is about 

2.5°C/W. This decreases to less than 1°C/W if the capacitors are pressed into place. In 

large-can capacitors, especially ones with potting, there is a significant temperature rise 

from the case to the core, and the center of the capacitor is the hottest spot. As an 

illustration, 20 amps of ripple-current at 120 Hz with a maximum ESR of 20 mΩ, 

dissipates 4 W of power. Consider, a total thermal resistance of 3.07°C/W for air on all 
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sides and 1.02°C/W for the capacitor can pressed against a large metal plate, or chassis. 

With 4 W, the 3.07°C/W thermal resistance results in a temperature rise of 12.3°C, and 

the 1.02°C/W results in a 4.1°C rise. The 1.02°C/W assumes that there is no temperature 

rise in the metal plate. 

2.8 Shelf life [2] 

 Aluminum electrolytic capacitors stored for more than 5 to 10 years may have 

increased levels of DC leakage current. Leakage current should be measured before use 

to check whether it meets application requirements before placing in the service. High 

leakage current units should be reconditioned by applying rated voltage through 1,000 Ω 

resistor for 30 minutes. Shelf life is a measure of how the capacitors will withstand 

storage for longer durations of time, especially at high temperature.  

2.9 Process considerations [2] 

2.9.1 Soldering 

Strict soldering conditions such as temperature, duration, and minimum distance 

of solder from body should be considered for the protection of the capacitor. Contact with 

the insulating sleeve or other plastic parts with a soldering iron or molten solder should 

be avoided. In addition, any mechanical force like bending, straightening, twisting, or 

tilting of capacitors after soldering them into a printed circuit board, should be avoided. 

2.9.2 Mounting 

 At lower ambient temperatures aluminum electrolytic capacitors have longer 

operating lives, therefore, the capacitors should therefore be installed at the coolest place 
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on the circuit board. Aluminum electrolytic capacitors should be kept away from hot 

components like power resistors, power transistors, diodes, and transformers. Adequate 

space should be used to place the components for cooling air to circulate. This is 

especially important when high ripple current or charge/discharge loads are applied. In 

addition, aluminum electrolytic capacitors are normally polarized, and care should be 

taken to connect them with correct-polarity during installation in the circuitry. Adequate 

clearance should be provided for proper operation of the pressure-relief devise. The 

capacitors should be mounted such that the vent is at the top, or at least in the upper part 

of the capacitor. This assures that the least amount of the electrolyte will be expelled if 

the vent operates. Capacitors that include thermal-plastic potting should be mounted such 

that the potting cannot block the vent, should the potting melt during the capacitor failure.  

2.10 Disposal of electrolytic capacitors [2] 

 Aluminum electrolytic capacitors with non-solid electrolyte principally include 

high-purity aluminum foils, capacitor paper, electrolyte, aluminum case, cover and 

sealing parts (phenolic, thermoplastic, rubber and phenolic board), insulating sleeve 

(polypropylene, polyester or polyvinylchloride) and, perhaps, safety-vent plugs made of 

synthetic rubber [12]. It should be incinerated above 1200 °C, and residue can be 

disposed in appropriate landfills.  

2.11 Comparison to other types of capacitors [2] 

2.11.1 Ceramic capacitors 

 Ceramic capacitors have become the preeminent, general-purpose non-polarized 

capacitor, especially in surface mount technology (SMT) chip devices where their low 
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cost makes them especially attractive [2]. With the emergence of thinner dielectric, 

multilayer units with rated voltages of less than 10 V, capacitance values in the hundreds 

of microfarads have become available. This intrudes on the traditional, high-capacitance 

province of aluminum electrolytic capacitors. Ceramic capacitors are available in three 

classes according to dielectric constant and temperature performance. Class 1 (NPO, 

COG) is suitable for low capacitance, tight tolerance applications in the range of 1 pF to a 

few mF. Class 2 (X7R) has 20 to 70 times as much capacitance per case size, but the 

capacitance typically varies about ±10 % over its –55 to 125°C temperature range, with a 

maximum change of +15 % to –25 %. Class 3 (Z5U) with about 5 times the capacitance 

of Class 2 has large variations of capacitance with voltage and temperature. The 

temperature range is –25°C to 85°C, and capacitance varies by about +20 % to –65 % 

over this range [2].  

Ceramic capacitors are brittle and sensitive to thermal shock, so precautions need 

to be taken to avoid cracking during mounting, especially for high-capacitance large 

sizes. The typical temperature range for ceramic capacitors is –40°C to 85°C or 105°C, 

and their capacitance varies about +5 % to –40 % over this range, with a reduction in 

capacitance at cold temperatures. For example, capacitors rated at –55°C generally only 

have –10 % to –20 % capacitance losses at –40°C. Cold temperature performance for 

rated voltages of 300 V and higher is often worse, and temperature performance varies by 

manufacturer. Thus, Class 1 and 2 ceramic capacitors perform better than electrolytic 

capacitors at cold temperatures, and Class 3 ceramic capacitors perform worse at all 

temperatures [2].  
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Electrolytic capacitors give more capacitance and energy storage per unit volume 

than ceramic capacitors for all types except for low-voltage, Class 3 ceramic SMT chip 

type capacitors. While tolerances of ±5% and ±10% are routine for ceramic capacitors, 

±20%, and –10% to +50% are the norms for electrolytic capacitors. This makes 

electrolytic capacitors the choice for high capacitance applications like rectification filters 

and power hold up where more capacitance is a bonus and accuracy is not important. The 

low DF and high capacitance stability of Class 1 and 2 are ceramic capacitors especially 

suited to AC and RF applications. By comparison, electrolytic capacitors are polarized, 

and cannot withstand reverse voltages in excess of about 1.5 V. However, non-polar 

electrolytic capacitors are available for momentary duty AC applications like motor 

starting and voltage-reversing applications. High DF of electrolytic capacitors, from 2% 

to 150%, causes excess heating and short life in most AC applications. Ceramic 

capacitors are generally no more reliable than electrolytic capacitors because electrolytic 

capacitors have self-healing properties. Since high capacitance ceramic capacitors may 

develop micro-cracks, electrolytic capacitors are preferred for high capacitance values. 

However, small sizes of electrolytic capacitors may have limited life due to dry-out, and 

reliability becomes an issue when operating at high ambient temperatures, over 65 °C. 

2.11.2 Film capacitors [2] 

 Film capacitors offer tight capacitance tolerances, low leakage currents, and small 

capacitance changes with temperature. They are especially suited to AC applications 

through their combination of high capacitance, and low DF that permits high AC 

currents. However, they are relatively large in size and weight. The popular polymers 

used for plastic-film dielectric capacitors are polyester and polypropylene. The popular 
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polymer for SMT devices is polyphenylene sulfide (PPS). While film/foil construction is 

often used for small capacitance values less than 0.01 µF, and for high-current 

applications, the metallized-film types on the hand are usually preferred because they 

have smaller size, lower cost, and are self-healing. Film capacitors are general-purpose 

capacitors for through-hole applications and have special uses for tight-tolerance, AC 

voltage, high voltage, and snubbing. Polyester film capacitors operate from at –55°C to 

85°C at rated voltage; in addition, +85°C to 125°C with linear voltage derating to 50 % 

of rated voltage. The typical capacitance change over the entire range is less than –5 % to 

+15%, and as low as ±1% from 0°C to 50°C. Capacitance values are readily available up 

to 10 µF, and with special large sections up to 100 µF. Generally, available voltages are 

50 to 1000 Vdc and 35 to 600 Vac. AC current handling is limited by polyester’s high 

temperature DF of about 1%. Polypropylene film capacitors operate from –55°C to 85°C 

at rated voltage; in addition, 85°C to 105°C with linear voltage derating to 50 % of rated 

voltage. The typical capacitance change over the entire range is less than +2% to –4% 

with as low as ±1% from – 20°C to 60°C. Capacitance values are readily available up to 

65 µF, and with special large sections up to 1000 µF. Generally, available voltages are 

100 to 3000 Vdc and 70 to 500 Vac. AC current handling permits use in motor-run and 

other continuous duty AC applications. Compared to aluminum electrolytic capacitors, 

film capacitors take the lead in high voltage, AC voltage, and tight tolerance applications. 

However, aluminum electrolytic capacitors excel in capacitance and energy storage. 

2.11.3 Solid tantalum capacitors [2] 

 Like aluminum electrolytic capacitors, solid tantalum capacitors are polarized 

devices (1 V maximum reverse voltage), having distinct positive and negative terminals, 
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and are offered in a variety of styles. Case styles include both molded and conformal-

coated versions of radial, axial, and surface mount configurations. Typical capacitance 

values are from 0.1 µF to 1000 µF in voltage ratings from 2 V to 50 V. Typical maximum 

capacitance-voltage combinations are approximately 22 µF at 50 V for leaded styles, and 

22 µF at 35 V for surface mount. Advantages of solid tantalum capacitors are temperature 

stability, volumetric efficiency, and compatibility with all automated assembly systems. 

However, weaknesses are the limited voltage and capacitance ranges, and a short-circuit 

failure mode accompanied by catching fire. The operating temperature range is -55°C to 

85°C at rated voltage; in addition, + 85°C to 125°C with linear voltage derating to 2/3 of 

rated voltage. The typical capacitance change over the entire range is less than ±5%. 

Thus, electrolytic capacitors have a much broader voltage and capacitance ranges than 

solid tantalum capacitors but perform worse at cold temperatures. Solid tantalum 

capacitors are generally considered more reliable than electrolytic capacitors because 

solid tantalum capacitors do not wear out. Their failure rate decreases with time, while 

electrolytic capacitors wear out by drying-out of the electrolyte. As a practical matter, 

dry-out only affects the smallest capacitors operating in high-temperature environments. 

Larger electrolytic capacitors do not dry-out fast if operated in their specified conditions, 

and these are expected to last for 10 to 20 years for most applications. In addition, the 

open-circuit, dry-out failure in the electrolytic capacitors is benign compared to solid-

tantalum’s short circuit failure mode. 

2.12 Failure modes [2] 

 Failure modes of electrolytic capacitors can be classified as follows, Figure 2.8 

[2]. 
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Failure mode

Aluminum 
electrolytic 
capacitor body 
failure

Capacitor 
peripheral failure

Catastrophic failure

Degradation failure
(Wear)

Disconnected pattern

Short pattern

Corrosion

Ion migration

ESR increase, 
capacitance 
reduction, tanδ 
increase, Leakage

Air tightness failure 
of the vent (gas 
generation)

 

Figure 2.8 Failure mode chart. 

 In catastrophic failure, the function of the capacitor is completely lost; therefore, 

it is easily detected as a failure. In degradation failure, the characteristics such as, ESR, 

capacitance, tanδ, and leakage resistance, gradually deteriorate to the stage at which it is 

judged as a failure. However, the point of failure will vary greatly with the performance 

required by the power electronics system in which it is used. 

2.12.1 Air-tightness failure of the vent (gas generation) [2] 

 Aluminum electrolytic capacitors have characteristics, which quickly repair film 

defects by the mechanism shown in Figure 2.9 and equation (2.8). Oxidation at the anode 

will cause reduction at the cathode, resulting in the generation of hydrogen gas (H2). 

However, when used under a condition within the guaranteed ranges noted in the 

manufacturers’ catalog or delivery specifications, the generated hydrogen gas is 

extremely small, and any generated such gas is dissipated by the depolarization action of 

the electrolyte or through the sealing element, so there is no problem. However, if used 

under extreme conditions, such as high temperature, over voltage, reverse voltage, and 

excess ripple-current, exceeding the guaranteed ranges, damage to the dielectric film will 

increase, causing a sudden increase in hydrogen gas generated by the self-repairing 
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action. This will cause the internal pressure to rise rapidly, which leads to opening of the 

pressure-vent, or rupture of the capacitor can. 

 
Figure 2.9 Chemical characteristics of an electrolytic capacitor. 
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2.12.2 Open failure 

 Open failure can occur because of any of the following reasons [2]: 

• mechanical damage to the lead connection, 

• corrosion because of the infiltration of a corrosive material, 

• evaporation of the electrolyte because of opening of the vent, 

• final stage of gradual deterioration. 

 The first one occurs because of improper connection at the time of production or 

the lead being subjected to excessive stress, vibration, or impact. The second one occurs 

when halogenated ions (Cl-) enter during production, or the capacitor is cleaned with a 

halogenated cleaner, or is reinforced with a resin containing halogenated compounds and 

halogenated substances enter the capacitor. These corrode the leads or electrode foils 
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until an open condition results. Third occurs when the internal electrolyte evaporates 

thereby causing the capacitor to dry-up. This reduces the capacitance and increases the 

tanδ of the capacitor. The fourth reason occurs at the end of the life of the capacitor 

through the process of deterioration, i.e. the final stages of degradation failure in which 

the electrolyte gradually penetrates through the seal causing the capacitance to drop, and 

tanδ to increase. 

2.12.3 Short circuit 

 A good electrolyte quickly repairs any defect in the oxide film damage at the 

electrodes [2]. However, a significant amount of damage in oxide film causes local 

concentrations of current, and this leads to catastrophic failure, such as short circuits of 

the capacitor electrodes. In addition, defects such as metal or other conductive particles 

on electrode foils during production can provide conducting paths for the current, 

resulting in a short circuit of the electrodes. Moreover, mechanical stress of the capacitor 

leads may also lead to short-circuiting of the capacitor electrodes. 

2.12.4 Degradation failure 

 The capacitor parameters change (capacitance decreases and ESR increases) 

because of emission of electrolyte from sealing surface. However, the assessment of 

degradation depends on the type of applications, which is further explained in detail in 

Chapter 3. 

2.12.5 Failures of capacitor periphery 

 Electrolyte leaking from aluminum electrolytic capacitors may influence areas 

around their periphery on a PCB (especially, wiring pattern), in the following two ways: 
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• Disconnected pattern: The electrolyte corrodes the metal traces on the PCB board, 

and leads to a disconnected pattern of traces on the PCB. 

• Shorted pattern: Emitted electrolyte ions from the capacitor seal may migrate 

between two traces under the influence of the electric field, and lead to a short 

circuit between traces. 

A detailed chart of different failure modes of an aluminum electrolytic capacitor 

is shown in Figure 2.10 [7].  

 

Figure 2.10 Failure modes of an electrolytic capacitor [7]. 
 

2.13 Need of condition monitoring for electrolytic capacitor 

Condition monitoring is defined as the continuous evaluation of the health of the 

plant and equipment throughout its service life.  It is important to be able to detect faults 

while they are still developing, called incipient failure detection.  A timely warning that 
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can be followed by maintenance can avoid catastrophic failures and costly down times, 

and can provide a safe environment for human operators [18-31].  

An aluminum electrolytic capacitor is often utilized to smooth the output of a 

switching regulator, DC bus filtering in motor drives, and in many other applications. 

These capacitors are generally thought to be the weak link in the life expectancy of the 

system, as shown in Figure 2.11 [1].  
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Figure 2.11 Distribution of failure for various power components [1]. 

 

Figure 2.11 displays the failure distribution of different components in a static 

converter. In 60% of the failures, electrolytic capacitors are responsible for the failure of 

the static converter. This shows that by monitoring the condition of the electrolytic 

capacitor can drastically improve the reliability of the static converter. 

2.14 Reliability and fault detection 

With the advancements in aluminum electrolytic capacitor technology, capacitors 

can be used in equipment that must have long life or must operate under severe 

conditions. For example, the capacitors used in telecommunication applications have an 

expected life of more than 20 years [6]. On the other side, aluminum electrolytic 



 36

capacitors have run continuously at ~130 °C for more than one year. The careful 

selection of a capacitor for a particular application and proper installation in the circuit 

will assure good service life. All components will eventually fail. Usually this occurs by a 

slow, steady drift of parameters called wear-out. Sometimes there is a sharp change in 

capacitor properties, which is called a catastrophic failure. The failure rate of aluminum 

electrolytic capacitors follows a bathtub curve with time, as shown in Figure 2.12 [6]. 

Early failures are caused by deficiencies in design, structure, manufacturing 

processes, or severe misapplications. Such failures occur soon after the components are 

exposed to circuit conditions. In aluminum electrolytic capacitors, these failures are 

either corrected through aging or found during the inspection process. The initial failures 

resulting from capacitor misapplication such as inappropriate ambient conditions, over 

voltage, reverse voltage, or excessive ripple current can be avoided with proper circuit 

design and installation. 

The failure rate is the lowest during the normal useful life, as shown in Figure 

2.12. The failures during this period are not related to operating time but to application 

conditions. Aluminum electrolytic capacitors feature fewer catastrophic failures during 

this period than semiconductors and solid tantalum capacitors. 

 
Figure 2.12 Bathtub curve [6]. 
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The wear-out failure period is a period during which the properties of components 

gradually deteriorate, and the failure rate increases with time. Aluminum electrolytic 

capacitors end their useful life during this period. The criteria for judging failures vary 

with an application design factors. According to the failure criteria specified in [1], 

capacitance values should not fall below 80% of the rated value and the tanδ value should 

not change by more than 175% of its initial value. The capacitance decrease and the tanδ 

increase are caused by the loss of electrolyte in the wear-out failure period. This is due 

primarily to loss of electrolyte by diffusion (as vapor) through the sealing material. Gas 

molecules can diffuse out through the material of the end seal. If the electrolyte vapor 

pressure within the capacitor increases, by high temperatures for example, the diffusion 

rate increases. Swelling of the seal material by the electrolyte vapor pressure may also 

occur at elevated temperatures [17]. This swelling may further enhance diffusion and 

mechanically weaken the seal. Factors that can increase the capacitor temperature, such 

as ambient temperature and ripple current can further accelerate capacitor wear-out. 

Wear-out can also be increased by high internal pressure caused by gas generation from 

excessive leakage current or attack of the cathode foil by electrolyte. 

In summary, the life of aluminum electrolytic capacitors depends on 

environmental and electrical factors. Environmental factors include temperature, 

humidity, atmospheric pressure, and vibration. Electrical factors include operating 

voltage, ripple current, and charge-discharge duty cycle. Among these factors, 

temperature (ambient temperature and internal heating resulting from ripple current) is 

the most critical to the life of aluminum electrolytic capacitors, whereas conditions such 

as vibration, shock, and humidity will have little effect on the actual life of the capacitor. 
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Voltage within the allowed operating range has little effect on the actual life expectancy 

of a capacitor. The life of electrolytic capacitors is affected less by applied voltage than 

by operating temperature. Because a capacitor is essentially an electrochemical device, 

increased temperatures accelerate the chemical reaction rates within the capacitor 

(usually a 10°C rise in temperature will double the chemical reaction rate) [17]. 

Therefore, higher temperatures cause accelerated changes in decreasing capacitance and 

increasing tanδ because of the gradual evaporation of the electrolyte through the 

capacitor seal. The equivalent-series-resistance change (∆ESR) can be a measure of 

electrolyte loss and has been found experimentally to be dependent on temperature. 

2.15 Previous work 

Some work is reported in the literature for the condition monitoring of electrolytic 

capacitors in power electronic circuits, and some of these are summarized below [18-31]. 

2.15.1 Diagnosis of electrolytic capacitor using capacitor ESR 

The most common monitoring methods include ESR-based monitoring. Changes 

in chemical and physical properties of the capacitor electrolyte will affect the value of 

ESR [19, 20]. The conductivity of the capacitor electrolyte increases because of a rise in 

the temperature; hence, the value of the ESR will decrease with temperature. At the same 

time, higher temperature will accelerate the electrolyte vaporization. However, continued 

higher temperature will reduce the amount of electrolyte considerably, and it will lead to 

a rise in the ESR value [18, 26]. In these references, a life prediction model is presented 

by estimating the ESR value using the estimated core temperature of the capacitor. The 

value of cold ESR is calculated using 
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2)/(/ VVESRESR oo =  (2.9)

where ESR = equivalent-series-resistance, ESRo = initial ESR, V = volume of 

electrolyte, and Vo = initial volume of electrolyte.  

For this model, it is important to know the accurate value of the initial electrolyte 

volume in the capacitor but in practice, it is difficult to know the value of electrolyte 

volume for each capacitor. The model presumes that the rate of electrolyte loss is directly 

proportional to the vapor pressure of the electrolyte, as shown in equation (2.10) [18, 26]. 

A constant k in (2.10) is used to characterize the quality of the end seal.  

 kPdtdV =/  (2.10)

where t = time (hr), k = leak rate constant (Units/mmHg/hr), P = vapor pressure of the 

electrolyte (mmHg) 

The vapor pressures of liquids are a function of absolute temperature and 

chemical properties of the liquid, as shown in equation (2.11). Handbook [12] typically 

presents the data and tables of chemical formulas with their A and B values. Electrolytes 

are not simple compounds and ideally should have their A and B values measured, but 

the primary constituent is known to be Ethylene Glycol. 

⎟
⎠
⎞

⎜
⎝
⎛ +−

=
B

T
A

eP  (2.11)

For the Ethylene Glycol, A = 7060 and B = 21.63. 

In the next step, the value of the hot ESR (ESRhot) is estimated using equation 

(2.12). The value of the capacitor core temperature T is calculated using 

FT
hot YeDESRESR // −+=  (2.12)

The values of constants are experimentally found in [18] for a 400 V capacitor and it is 

given as 

D = 0.4 
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 Y = 5.26E+8 

 F = 14.23 (1/K) 

The change in the capacitor core temperature is estimated as 

TTT Ambient ∆+=  (2.13)

where  TAmbient = Ambient air temperature (°K), and ∆T = capacitor core temperature rise. 

The value of ∆T can be calculated as 

SH
IESR

T hot
2

=∆  (2.14)

where I = Capacitor ripple-current (rms) 

 H = Heat transfer per unit surface area (W/m2C) 

 S = Surface area (m2) 

For natural convection, the resistance from the case to the air is the largest 

contributor to the total thermal resistance from the element to the ambient air 

temperature. Typically, the radius of the element is smaller than the inside of the can, 

which creates a dead air space that should be accounted for. Equation (2.15) from [9] 

accounts for both.  

)/ln(1101 ERRR
GH

+
=  (2.15)

where  RE = element radius (m), and R = capacitor radius (m) 

It is experimentally found for the sleeved capacitors [12] that 

 G = 6.8 (W/m2°C) 

Typically a capacitor would have conductive heat transfer to either a circuit board 

or bus bars, but for simplicity, the capacitor surface-area will be assumed to behave with 

natural convection. Equation (2.16) is the total surface area of the capacitor as a cylinder 

along with two end surfaces of the capacitor.  
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)(2 2RRZS += π  (2.16)

where Z = capacitor height (m), R = radius of the capacitor cylinder (m). 

Equation (2.10) cannot be integrated to create a closed-form equation for 

electrolyte volume as a function of time and other physical parameters. It can be 

integrated numerically using equation (2.17), where ∆t is chosen to be sufficiently small. 

At each time step the new values for ESR, ESRhot, T, and P, are calculated to establish the 

new volume of the electrolyte Vt for the next time step.  

tkPVV tt ∆−= −1  (2.17)

where ∆t = Integration time step (hr)  

This method proceeds until the ESR exceeds some established limit, and the 

device is considered to have failed; Figure 2.13 demonstrates a flow-chart for these 

calculations. 
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ESR from (2.9)

ESRhot from (2.12)

∆T from (2.14)

T from (2.13)

P from (2.11)

Vt from (2.17)

If ESR > Limit
NO

DONE

 

Figure 2.13 Flow-chart for the capacitor ESR estimation. 

The model in [18] is based on the primary wear-out mechanism of electrolyte 

vaporization and loss through the end seal. The model incorporates relationships for ESR 

change with electrolyte loss, ESR change with temperature, and heat transfer value with 

geometric dimensions. Also included in the model is the effect of can diameter on the 

expected life. The capacitor life is proportional to the capacitor volume divided by seal 

circumference. As the can diameter increases, the circumference increases linearly, while 
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the capacitor volume increases with the square of the diameter. A detailed analysis of the 

work in [18] is presented in [21], which shows that the model in [18] overpredicts the life 

of the electrolytic capacitor. The electrolyte leakage and electrolyte deterioration 

characteristics have to be further understood and models should account for continuous 

and intermittent operation of the component [21]. 

2.15.2 Diagnosis of electrolytic capacitor using voltage and current signature 

A change in the value of capacitor ESR will affect the capacitor ripple current and 

voltage waveforms. Harada et al. [22] used two DC/DC converters to show how the 

capacitor voltage and current waveforms can be used to monitor the condition of an 

electrolytic capacitor. In this work [22], it is assumed that the time constant of the circuit 

is substantially longer than the period of the switching, and the state averaging method is 

used to calculate the capacitor ripple voltage and current. The ratio, γ1, of the capacitor 

ripple voltage and ripple current is plotted with load current for a normal and deteriorated 

capacitor, as shown in Figure 2.14. Harada et al. show that the ratio, γ1, is directly 

proportional to the value of the capacitor ESR, therefore, it can be used for condition 

monitoring of the capacitor [22]. However, it should be noted that it uses the converter 

mathematical model to estimate the capacitor voltage and current [22]. Therefore, it is 

dependent on the converter topology, and the model should be modified before using it in 

different circuit topologies.  
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Figure 2.14 γ1 versus load current, Io (where γ1 = (ripple-voltage peak to peak)/ ripple current 

peak to peak)). 
 
The value of the capacitor ripple-voltage is directly proportional of the capacitor 

ESR. Using this concept, Lahyani et al., [23-25] present an alternate algorithm to predict 

the failure of an electrolytic capacitor in a static converter using capacitor ripple voltage. 

In order to justify the aging status of the electrolytic capacitor, P. Venet [24] compared 

the measured ESR, determined by capacitor voltage and current, with the pre-calculated 

ESR, which is determined by the measured ripple voltage, ripple current, and operation 

temperature of a sound one. To avoid the wrong prediction caused by the load variation, 

Lahyani et al. proposed a computer-aided approach to determine a more accurate ESR. 

They [23] use a computer model along with capacitor ripple voltage at switching 

frequency, and temperature to estimate the ESR value of the capacitor. The model in [23] 

uses Arrhenius’ law [27] along with a linear inverse model for the ESR [18, 28] to 

develop a computer program. The computer program can predict and show the 

capacitor’s lifetime directly on a display-panel. It [23] presents a detailed algorithm to 
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estimate the value of the ESR for stationary system for any combination of load and 

operating temperature [23-25]. However, implementation of this method is difficult and 

expensive and it cannot be used for a non-stationary system because the model uses 

filtered components of the capacitor ripple voltage at the switching frequency, and the 

switching frequency is not constant in a non-stationary system. 

The work reported in [31] presents a method to determine the electrolytic 

capacitor parameter for an LC-filter type of applications. However, the presented work 

cannot be used for a real-time monitoring scheme because the capacitor has to be taken 

out of the circuit to measure the deterioration in the capacitor parameters. An external 

power source with varying frequency is utilized to estimate the parameters of the 

capacitor. 

Most of these reported works [18-31] address the detection of a failure because of 

aging of the capacitor. In addition, these schemes depend on the circuit topologies, are 

computationally demanding, and therefore, difficult to use in actual application. 

2.16 Summary 

This chapter has briefly reviewed the construction, electrical characteristics, and 

operation of an electrolytic capacitor. Further, a description has been presented of various 

kinds of faults that can occur in an electrolytic capacitor. Some methods available to 

detect such faults in an electrolytic capacitor have been discussed. Various ESR 

estimation-based techniques available to detect the capacitor faults have been reviewed. 

Most of the presented works are offline techniques, and cannot be used in real-time. In 

the next few chapters, new offline techniques are proposed, followed by parameter 

estimation technique for real-time fault monitoring. 
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CHAPTER 3 

FFT BASED FAILURE PREDICTION OF AN 

ELECTROLYTIC CAPACITOR 

 
 
 

3.1 Introduction 

The objective of this chapter is to identify experimentally potential capacitor 

failure by observing capacitor terminal quantities such as ripple voltage and ripple 

current. An electrolytic capacitor is considered failed if the value of the capacitance goes 

below 80% of its rated value and the ESR goes above 175% of the rated value [1]. 

3.2 Experimental setup 

A basic boost converter with constant load, Figure 3.1, is used to carry out 

experiments on the aging of an electrolytic capacitor. The experimental setup for the 

boost converter is shown in Figure 3.2, and the National Instrument (NI) data acquisition 

system appears in Figure 3.3. The switching frequency is held constant at around 10 kHz 

with a duty cycle of 0.6. The capacitor is placed in a temperature controlled oven at 115 

°C for accelerated aging, Figure 3.4. The capacitor voltage, the switching-signal, and the 

capacitor current appear in Figure 3.5. The sampling rate for data acquisition is 100 kHz 

which is well above the Nyquist limit. Moreover, aging of an electrolytic capacitor is a 

slow process, and a continuous data-acquisition will result in a large amount of data for 

further processing. It also requires large memory space to store this data. However, due to 
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the slow aging process, 5000 points of data are captured at 15 minute intervals to ensure 

an efficient use of the memory. With 100 kHz sampling frequency and 10 kHz switching 

frequency, 5000 data points amounts to 50 milliseconds of time duration. This gives 

sufficient resolution in the frequency domain because the minimum frequency in the 

system is 120 Hz, and this corresponds to around 8.3 ms.  

 

Figure 3.1 Boost-converter. 

 
It is demonstrated in section 3.2 that the capacitor aging process can be monitored 

by storing 5000 points at any given point of time, and it does not require storing any 

previous data. The NI data acquisition card 6036E along with Labview 7.1 is used for 
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acquiring the data. A detailed description of the data acquisition card 6036E is given in 

Appendix A. 

 

Figure 3.2 Boost converter experimental setup. 

 

 

Figure 3.3 Interface with NI data acquisition system. 
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Figure 3.4 Temperature controlled oven. 
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Figure 3.5 Waveforms of capacitor voltage, switching-signal, and capacitor current. 

The amplitude of the capacitor ripple voltage and current change because of a 

variation in the capacitor parameters. To observe the changes in these parameters over 

time because of aging, an electrolytic capacitor rated at 100 µF, 63 V, 85 °C is tested. 

Further, the test is repeated with other electrolytic capacitors, and it is observed 

that the results in this chapter are similar and consistent with results for other electrolytic 

capacitors. Each test is run for several days until there are significant changes in the 

capacitor ripple-voltage and ripple-current.  

3.3 Experimental results and discussion 

Table 3.1 shows the measured values of the capacitor parameters before and after 

aging for an electrolytic capacitor rated at 100 µF, 63 V, 85 °C. The capacitance 

decreases by more than 1000 times, while ESR increases by about 11 times, after about 

575 hours of continuous accelerated aging process, and these changes affects the 
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capacitor ripple voltage and ripple current. The Bode-plots of the capacitor impedance for 

new and worn-out condition are shown in Figure 3.6 and 3.7 respectively. Bode-plots of 

the capacitor impedance are plotted using a 4194A HP Impedance Analyzer, and the 

frequency is swept from 100 Hz to 4 MHz. Bode-plots are showing the variation in 

impedance and corresponding phase-angle frequency for a new capacitor and a worn-out 

capacitor. 

Table 3.1 Electrolytic capacitor parameters of new and worn out capacitor 

 New Capacitor Worn out Capacitor (at 575 hours)
Capacitance (C) 98.65 µF 89.23 nF 

Effective Series Resistance 
(ESR) 

317.85 mΩ 3.69 Ω 
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Magnitude

ESR 34 kHz
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Figure 3.6 Bode plot of a new capacitor. 

 

Magnitude PhaseMagnitude Phase

 
Figure 3.7 Bode plot of a worn-out capacitor at 575 hours. 

 
The effect of the parameter changes will reflect in the capacitor voltage and the 

capacitor current waveforms. Therefore, capacitor ripple voltage and current are 

monitored to monitor the condition of the capacitor. 

Fast-Fourier-transforms (FFT) plots for the capacitor ripple-voltage and capacitor 

ripple current are calculated as shown in Figure 3.8 and 3.9 respectively. As expected, it 
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can be observed from these plots that the dominant components of the capacitor ripple 

voltage and the capacitor ripple current are present at integer multiples of the switching 

frequency of 10 kHz. 

 
Figure 3.8 FFT plot for capacitor ripple voltage. 

 

 
Figure 3.9 FFT plot for capacitor current. 

 

 
Figure 3.10 Capacitor ripple-voltage fundamental component at 10 kHz variation with time. 

 



 53

 
Figure 3.11 Capacitor current fundamental component at 10 kHz variation with time. 

 
As explained in the previous section, the value of the capacitor parameters will 

change over time because of the aging effect [22, 32]. These changes in the parameter 

values will result in variations in the different frequency components of the capacitor 

ripple voltage, and the capacitor ripple current. In the proposed technique, only the 

variations in the fundamental frequency component are used to monitor the health of the 

capacitor. The fundamental frequency components of the capacitor ripple voltage and 

capacitor ripple current are plotted over time in Figures 3.10 and 3.11 respectively. 

Further, data in Figures 3.10 and 3.11 are used to plot the evolution of the impedance 

parameter over time in Figure 3.12, which is calculated using (3.1).  

( )( )
( )

V nZ n
I n

= (3.1) 

 
where V(n) = RMS value of fundamental component of capacitor ripple voltage at any 

time n 

           I (n) = RMS value of fundamental component of capacitor ripple current at any 
time n 
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Figure 3.12 Capacitor impedance variation over time. 

 
A significant change in the capacitor parameters starts to appear after 100 hour of 

operation and is reflected in the capacitor ripple voltage. It is observed that the 

fundamental frequency component of the capacitor ripple voltage changes significantly 

during the period from 100 to 125 hours of continuous operation, as shown in Figure 

3.10. However, it is observed that there are not large changes in the capacitor parameters 

during the period from 125 to 300 hours of operations. During this period, the electrolyte 

is vaporizing at a much faster rate and the capacitor fails after 300 hours of operation. In 

addition, it can be seen in Figure 3.11 that there is a large change in capacitor ripple 

current at around 300 hours, and it is believed that this is because of the breakdown in the 

dielectric oxide layer of the capacitor, which results in a large rise in the capacitor ripple 

current. Therefore, plots in Figures 3.10 and 3.11 together show that there are significant 

changes in the capacitor ripple voltage and ripple current because of changes in the 

capacitor parameters. However, these plots are oscillatory in nature, and it is difficult to 

set a threshold point for the fault prediction. This problem can be solved by using a time-

average plot for the fundamental component of the capacitor ripple voltage and the ripple 

current. 
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The time-average formula can be written as 

1

( )
( )

n

k
TA

V k
V n

n
==
∑

 
(3.2) 

 
where V(k) = Capacitor ripple-voltage sample at any given instant k. 

          VTA(n) = Time-average capacitor ripple-voltage at any given time n. 

 
Figure 3.13 Time-average plot of RMS values of fundamental component of the capacitor ripple 

voltage. 
 

 
Figure 3.14 Time-average plot of RMS values of fundamental component of the capacitor ripple 

current. 
 

The time-average formula is further used to calculate the time-average value of 

the capacitor impedance. Figures 3.13, 3.14 and 3.15 show the time-average plots for the 

fundamental components of the capacitor ripple voltage, capacitor ripple current, and 

capacitor impedance respectively. 



 56

 
Figure 3.15 Time-average plot of capacitor impedance. 

 
Equation (3.2) appears computationally intensive, but it can be simplified further 

as 

1

1
( ) ( )

( )

n

k
TA

V n V k
V n

n

−

=

+
=

∑
 (3.3) 

 
Using equation (3.2) in (3.3), and re-arranging it yields 

( ) ( 1) ( 1)( ) TA
TA

V n n V nV n
n

+ − −
= (3.4) 

 
Equation (3.4) allows a significant reduction in the required memory for actual 

implementation of the algorithm, as it is required to store only two data points.  

By comparing the plots in Figures 3.13, 3.14, 3.15 with the plots in Figures 3.10, 

3.11 and 3.12, it is clear that changes in the capacitor parameters are taking place at the 

same instant of time for time-average plots compared to the instantaneous time plots. 

However, the time-average plots are monotonic in nature, and it is easier to observe the 

status of the capacitor. 
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3.4 Summary 

The effect of changes in the ESR, and the capacitance value of the electrolytic 

capacitor are reflected in the capacitor ripple voltage and capacitor ripple current. It has 

been demonstrated that the capacitor ripple voltage signature analysis techniques can be 

applied to the diagnosis of an electrolytic capacitor in a power converter. In some 

applications, access to capacitor ripple voltage is not possible; however, it can be 

estimated by using some other accessible signals in the system, which is explained in 

next chapter. 
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CHAPTER 4 

FAILURE PREDICTION OF AN ELECTROLYTIC 

CAPACITOR USING SYSTEM MODELING 

 
 
 

4.1 Introduction 

This chapter is an extension of the work presented in Chapter 3. It was 

demonstrated in Chapter 3 that the effect of the changes in the capacitor parameters will 

reflect in the capacitor ripple voltage and the ripple capacitor current. Therefore, it was 

concluded that the capacitor ripple voltage and the capacitor ripple current signature 

analysis could be used in the diagnosis of an electrolytic capacitor. In this chapter, it is 

demonstrated that the converter input current can also be used to predict the failure of the 

output side capacitor using the converter system modeling and the principles of 

correlation among various signals in the system [37-40], which is further explained in 

later sections of this chapter. 

4.2 Experimental setup 

The basic boost converter with constant load, as in Chapter 3, is used to carry out 

experiments on the aging of the electrolytic capacitor. However, a different electrolytic 

capacitor with rating 100 volt, 85 °C, 1000 µF by Panasonic is used as the boost-

capacitor. The experimental setup is similar to that in Chapter 3 but the sampling rate for 
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data acquisition is 20,000 samples per second. As aging of an electrolytic capacitor is a 

slow process, therefore, at every 15 minutes interval 10,000 points are captured using the 

National Instrument (NI) data acquisition system, which is similar to the system 

described in Chapter 3. These 10,000 data points represent 500 ms for a sampling rate of 

20,000 samples per second. The switching frequency is held constant at around 5 kHz 

with a duty cycle of 0.6. The capacitor is placed in a temperature-controlled oven at 

around 115 °C for accelerated aging. 

4.3 Theory of system modeling 

In the presented work, it is assumed that the electrolytic capacitor installed in the 

system is not accessible; therefore, the capacitor ripple voltage required for the condition 

monitoring technique demonstrated in Chapter 3 cannot be implemented. However, the 

system input voltage and the input current can be accessed. It is demonstrated in this 

section that capacitor ripple voltage can be estimated using converter input current.  

Figure 4.1 depicts the block diagram of an adaptive filter. G(z) represents an 

actual physical plant, and W(z) is the digital model of the actual system G(z). The aim is 

to estimate the parameters of the model W(z). Based on a-priori knowledge of the plant, 

G(z), a transfer function W(z), with a certain number of adjustable parameters is selected 

first. The parameters of W(z) are then chosen through an adaptive filtering algorithm such 

that the difference e(n) between the plant output d(n), and the adaptive filter output y(n), 

is minimized. In this application, the circuit of Figure 3.1 is the actual system G(z), which 

is being modeled using the digital filter W(z). 
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Figure 4.1 Structure of the adaptive filter model. 

4.3.1 Correlation coefficient [38] 

In a system, various signals correlate with each other to varying degrees. 

Therefore, it is possible to estimate a signal that is not easily accessible in a system using 

other signals of the system, if the signals are strongly correlated with each other. 

Moreover, the amplitude of the error between the actual and the estimated signal depends 

on the value of the correlation coefficient between the signals [39-41]. Further, it is 

demonstrated that the capacitor ripple voltage is strongly related to the input current of 

the converter compared to input voltage. Therefore, it is possible to estimate the capacitor 

ripple-voltage with a small error using the converter input current.  

Figure 4.2 demonstrates the cross correlation coefficient (using a MATLAB 

function) variation between input voltage, vin, in Figure 3.1, and the capacitor ripple-

voltage, vo; the converter input current, iin, and the capacitor ripple-voltage, vo. It also 

shows that there is a stronger correlation between iin and vo compared with the correlation 

between vin and vo. This property is used in section 4.4 to demonstrate that the input 

current of the converter can be used to predict the failure of the capacitor in a converter, 
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by using adaptive filter modeling. First, a general least-mean-square-error (LMS) based 

adaptive filter theory is presented in sections 4.3.2 and 4.3.3, followed by derivation of 

the results in section 4.4. 
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Figure 4.2 Correlation coefficient plots over time. 

4.3.2 LMS based Wiener adaptive filter theory 

According to the Wiener filter theory [41], which comes from the stochastic 

framework, the optimum coefficients of a linear filter are obtained by minimization of its 

mean-square-error (MSE). The Least-mean-square (LMS) algorithm is the most basic 

and widely used algorithm in various adaptive filtering applications, and uses the 

instantaneous value of the square of the error signal as an estimate of the MSE. It turns 

out that this rough estimate of the MSE, when used with a small step-size parameter in 

searching for the optimum coefficients of the Wiener filter, leads to a simple and yet 

reliable adaptive algorithm [41]. 
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4.3.3 Derivation of the LMS algorithm 

Figure 4.3 depicts an N-tap transversal adaptive filter [41]. The filter input, x(n), 

the desired output, d(n), and the filter output, y(n), are related as, 

∑
−

=

−=
1

0
)()()(

N

i
i inxnwny (4.1) 

 
The tap weights wo(n), w1(n),……, wN-1(n) are selected so that the difference e(n) (error), 

is minimized in some sense.  

)()()( nyndne −= (4.2) 
 

 
Figure 4.3 FIR based adaptive filter model. 

 
The filter tap weights, shown in Figure 4.3 and equation (4.3) are functions of the 

time index, n, since they are continuously being adapted so that any variations in the 

signal’s statistics could be tracked. The LMS algorithm changes the filter tap weights so 

that e(n) is minimized in the mean-square sense. The filter tap-weights and input vectors 

are defined by column vectors as, 

w = [wo w1 . . . wN-1]T (4.3) 
 

and                                 x(n) = [x(n) x(n-1) . . . x(n-N+1)]T. (4.4) 
 

The filter output is,                          y(n) = wTx(n). (4.5) 
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The conventional LMS algorithm is a stochastic implementation of the steepest 

descent algorithm. It replaces the cost function ξ = E[e2(n)] by its instantaneous coarse 

estimate  ξ ≈ [e2(n)] in a steepest-descent recursion. Hence the tap-weight vector is 

updated as, 

         w(n+1) = w(n) - µ∇e2(n) (4.6) 
 
where µ is the algorithm step-size parameter and ∇ is the gradient operator defined as the 

column vector, 
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The ith element of the gradient vector ∇e2(n) is  
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From equation (4.2) and (4.5), 

              )()( inx
w
ne

i

−−=
∂
∂                                                  (4.9) 

Using equation (4.9) in equation (4.8) yields, 
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which can be written further in vector form as, 

         ∇e2(n) = -2e(n)x(n)   (4.11) 
 
Substituting (4.11) in (4.6) results in, 

w(n+1) = w(n)+2µe(n)x(n)  (4.12) 
 
This is referred to as the LMS recursion. It suggests a simple procedure for 

recursive adaptation of the filter coefficients after the arrival of every new input sample, 
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x(n), and its corresponding desired output sample, d(n). Equations (4.1), (4.2), and (4.12), 

specify the three steps required to complete the iteration steps of the LMS algorithm. 

Equation (4.1) is referred to as filtering. It is performed to obtain the filtered output of 

any signal. Equation (4.2) is used to calculate the estimation error. Equation (4.12) is the 

tap-weight adaptation recursion. The LMS algorithm is simple to implement as an 

adaptive filtering scheme. Its implementation requires 2N+1 multiplications (N 

multiplications for calculating the output y(n), one to obtain (2µ)×e(n) and N for the 

scalar-by-vector multiplication (2µe(n)) × x(n)) and 2N additions, where N is the order of 

the filter. By trial and error it is found that N=10 as the filter order gives a preferred filter 

tap-weights to model the converter system.  

4.4 Results and discussion 

The equivalent circuit parameters of the 1000 µF capacitor are measured at the 

beginning and after 480 hours of aging using an HP impedance analyzer.  
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Figure 4.4 Boost-converter circuit. 

A block diagram to model the system is shown in Figure 4.1. An FIR filter, Figure 

4.3, with order N = 10 is used to model the W(z) of the DC/DC boost-converter in Figure 

4.4 in order to estimate the output side boost-capacitor ripple voltage, vo, using the input 

current, iin.  

The adaptive filter tap-weights are estimated using the LMS algorithm with a 

step-size of µ=0.005 using equation (4.12). The input ripple current, iin, is used as the 

input signal, x(n), and the capacitor ripple voltage, vo, is used as the output signal, d(n), to 

determine the tap-weights of the adaptive filter by recursive adaptation. Around 2000 
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data files, which are captured during the aging process as explained in section 4.2, are 

used to train the tap-weights recursively. Each of these data files contains 10000 points of 

capacitor ripple voltage; hence, a total 2000×10000=20×106 data points are used for this 

adaptation. The LMS algorithm for filter order N = 10 can be written in the mathematical 

form for this application as follows: 
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Actual output of the system,     

            d(n) = vo(n) )4.16( 

Error signal, 

             e(n) = d(n) – y(n) )4.17( 

Weight update, 

w(n+1) = w(n) + 2µe(n)x(n) )4.18( 
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Figures 4.5 and 4.6 show the FFT plots for the actual and the estimated capacitor 

ripple voltage. The adaptive filter model is able to estimate the fundamental component at 

5 kHz accurately with only a small error as shown in Figures 4.5 and 4.6.  

 
Figure 4.5 FFT plot for actual capacitor ripple voltage. 

 

 
Figure 4.6 FFT plot for estimated capacitor ripple voltage. 

 
A portion of the RMS value of fundamental component of actual and estimated 

capacitor ripple-voltage plot over time is shown in Figure 4.7. It can be seen that the 

actual and the estimated fundamental components are tracking well with only a small 

error shown in Figure 4.8.  
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Figure 4.7 Portion of actual and estimated fundamental component of capacitor ripple voltage. 
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Figure 4.8 Percentage error variations over time. 

 
The proposed time-average formula (3.4) in Chapter 3 is used to draw the time-

average plot for the RMS value of fundamental components of actual and estimated 

capacitor ripple-voltage as shown in Figures 4.9 and 4.10 respectively. The proposed 

system modeling technique estimates the value of the capacitor ripple voltage accurately 

with only a small error using the input current of the converter, as shown in Figure 4.8. 

Therefore, a digital modeling technique can be used in condition monitoring of the 

electrolytic capacitor where capacitor ripple voltage is not accessible. 
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Figure 4.9 Time-average evolution of fundamental component of actual capacitor ripple voltage. 
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Figure 10 Time-average evolution of fundamental component of estimated capacitor ripple voltage. 

 

4.5 Summary 

Any drift in the capacitor parameters also appear in the converter input current 

along with the capacitor ripple-voltage because these two signals are strongly correlated. 

Therefore, it has been demonstrated that the converter input current can be used to predict 

the failure of the capacitor. The research works presented in Chapters 3 and 4 are offline 

techniques for monitoring the condition of an electrolytic capacitor. A real-time fault-

monitoring scheme is presented in Chapter 5. 
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CHAPTER 5 

CONDITION MONITORING OF ELECTROLYTIC 

CAPACITOR BY PARAMETER ESTIMATION 

 
 
 

5.1 Introduction 

Chapter 3 has demonstrated that the capacitor ripple voltage and ripple current 

can be tracked to monitor the condition of an electrolytic capacitor. However, it cannot 

give real-time monitoring information of an electrolytic capacitor, and in addition, cannot 

give correct information of the condition of an electrolytic capacitor used in a non-

stationary system. The objective of this chapter is to propose a new low cost method to 

detect the changes in the equivalent series resistor (ESR) and the capacitance value of an 

electrolytic capacitor in order to realize a real-time condition monitoring system for an 

electrolytic capacitor. Results are discussed to illustrate the proposed condition 

monitoring technique for a stationary system; however, the proposed technique can also 

be used for a non-stationary system. The proposed on-line failure prediction method has 

the merits of low cost and circuit simplicity.  

As explained in previous chapters, the electrolytic capacitors have been widely 

used in power electronics systems because of the features of large capacitance, small size, 

high-voltage, and low-cost. An electrolytic capacitor provides a low impedance path for 

the ac current and acts as a constant voltage source in power converters. Because of an 
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increase in the ESR for an aged electrolytic capacitor, the capacitor will not be able to 

provide a low impedance path for the ac current. Therefore, the ripple voltage across it 

will increase, and eventually the converter will fail to regulate the dc output voltage or 

even damage the converter itself. In addition, the capacitance value also changes because 

of the changes in the dielectric properties of the oxide layer and reduction in the amount 

of capacitor electrolyte. The Military Handbook [1] suggests that the capacitor should be 

considered as failed if there is a 20% decrease in the capacitance value, and the ESR has 

doubled from its initial value. Therefore, the estimation of the ESR and the capacitance 

are important parameters in condition monitoring of the capacitor. The main advantages 

of the proposed method include circuit simplicity, low-cost, and easy implementation. In 

the following sections, simulation results are presented to explain the proposed method. 

In addition, the circuit implementation of the proposed electrolytic capacitors failure-

detection method is introduced. 

 
Figure 5.1 Electrolytic capacitor equivalent circuit. 

 
The equivalent circuit of an aluminum electrolytic capacitor shown earlier in 

Figure 2.4, is repeated in Figure 5.1, where C = capacitance, R1 = resistance of the foil 

and terminals, R2 = temperature sensitive resistance due to electrolyte, DCR = dielectric 

leakage resistance, and ESL = equivalent series inductance. Equation (5.1) was derived in 

section 2.5.4 of chapter 2 to describe the complex impedance of the circuit in Figure 5.1. 
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where  Zcap= complex impedance of the capacitor and f = frequency (Hz). The value of 

ESR and the capacitance C of the capacitor are given by equations (5.2) and (5.3) 

respectively. 
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Equations (5.2) and (5.3) show that the values of the ESR and the capacitance are 

functions of frequency and DCR. However, for the operating frequency range of the 

switched-mode-converters, the effect of frequency on the value of the ESR and the 

capacitance is negligible. In addition, the effect of the effective series inductance (ESL) 

on the impedance of the capacitor is small for the operating frequency range of the 

converter; therefore, the effect of ESL is ignored in further analyses. 

5.2 Proposed method 

In this proposed method, the capacitor ripple voltage and ripple current assumed 

to be available and are used to estimate the capacitor parameters. Figure 5.2 shows the 

Bode-plot of the electrolytic capacitor impedance with equivalent series resistance, ESR 

= 200 mΩ, equivalent series inductance, L = 100 nH, and the capacitance C = 470 µF. 

The magnitude of the capacitor impedance, Zcap, is dominated by the value of the ESR of 

the capacitor in the frequency range from a few kHz to tens of kHz switching frequency. 

The 5 kHz of the switching frequency of the dc-dc converter falls within this range. 
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5.2.1 Theory 

An arbitrary shape waveform of voltage or current can be represented by the 

summation of different sine-wave components. In addition, at any given instant of time, 

the ratio of the RMS value of the different sine-wave components of the voltage and the 

current will be equal to the impedance of the capacitor for a particular frequency 

component.  

The Bode-plot in Figure 5.2 shows three clearly separated frequency bands. The 

capacitance C of the capacitor is dominant in the low frequency band, the ESR is 

dominant in the mid frequency band, and the ESL is dominant in the high frequency 

band. Therefore, the value of the ESR can be calculated using the following relationship 

in the mid frequency range 

s sf fESR V I=  (5.4) 

where, Vfs = RMS voltage of the capacitor ripple voltage at the switching frequency, Ifs = 

RMS current of the capacitor ripple current at the switching frequency, and fs = switching 

frequency. 
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Figure 5.2 Bode-plot of electrolytic capacitor. 

 
It can be further observed from Figure 5.3 that there is not a significant change in 

the value of the ESR compared to changes in the value of the Xc as the frequency moves 

from the mid-frequency band to the low-frequency band, where ( ) fCX c π21= . Therefore, it 

is possible to use the estimated value of the ESR from the mid-frequency band to 

calculate the value of the capacitance C in the low frequency band using equation (5.5). 

However, it is also possible to ignore the value of ESR in the calculation of the value of 

capacitance using equation (5.5) because the value of Xc at 120 Hz is much larger than 

the value of ESR.  

m
m

m
m fc

f

f
fccap XI

VESRXZ )()()( 22 ≅=+=  (5.5) 

Where Vfm = RMS value of capacitor ripple voltage at frequency fm, Ifm = RMS value of 

capacitor ripple current at frequency fm, where fm = 120 Hz, and( ) 1 2
mc mf

X f C= π .  
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Figure 5.3 Variation in XC and ESR with frequency. 

In the proposed method, a boost-converter in Figure 5.4 is used to verify the 

theory. The electrolytic capacitor on the output side of the boost converter, Co, is used as 

the test-element for the experiment. The scheme for the online parameter estimation is 

shown in Figure 5.5.  

Figure 5.4 Boost-converter. 
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Figure 5.5 Parameter estimation scheme. 
 

The capacitor’s voltage and current are passed through the band-pass filters with 

centre-frequency (fc) falling in the mid-frequency region of dominance of the capacitor 

ESR. The output of the band-pass filters are further passed through the RMS-calculator 

block, which gives the RMS values of the switching-frequency component of the 

capacitor ripple voltage and the capacitor current. Further, RMS values of the capacitor 

ripple voltage and the capacitor current are passed through analog-signal-divider blocks 

to give the ratio of the RMS values of the capacitor ripple voltage and current, as shown 

in Figure 5.5. This ratio is the impedance of the capacitor in the switching-frequency 

region, which is approximately equal to the ESR of the capacitor.  

The impedance is dominated by (Xc)fm, as described by equation (5.5), if the 

center-frequency of the band-pass-filter is around twice the line-frequency, where fm = 

120 Hz. Therefore, the capacitor voltage and current are passed through the band-pass 

filters with centre-frequency fc = 120 Hz, falling in the region of dominance of (Xc)fm. 
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The output of the band-pass filters are passed through the RMS-calculator blocks, which 

gives the RMS values of the 120 Hz frequency component of the capacitor ripple voltage 

and current. Further, the RMS values of the capacitor ripple voltage and current are 

passed through analog-signal-divider blocks to give the ratio of the RMS values of the 

capacitor ripple voltage and the capacitor current at 120 Hz. This ratio is the impedance 

of the capacitor at 120 Hz, which is approximately equal to the (Xc)fm of the capacitor. 

The operations of the RMS-calculator and the analog-signal-divider integrated circuits 

(ICs) are explained in Appendix B and Appendix C respectively.  

5.3 Results and discussion 

The boost-converter shown in Figure 5.4 is simulated using the circuit-simulation 

software Saber. Values for different components used in the simulation of the boost-

converter are listed below. Further, these values are also used in the experiment to verify 

the proposed method. 

• AC input-voltage to bridge-rectifier = 24 Vrms, 60 Hz  

• Inductance of the boost-inductor = 300 µH 

• Switching frequency of the boost-switch, fs = 5 kHz 

• Boost-switch duty-cycle = 0.6 

• Capacitance of the boost-capacitor = 470 µF, 85 ºC, ESR = 200 mΩ 

• Load resistance = 10 Ω 

5.3.1 Simulation results 

The capacitor voltage and current are passed through the band-pass filters with 

center frequency falling in the ESR dominated region. The simulated output of the band-
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pass filters, which are the switching-frequency components for the boost-capacitor 

voltage and the current, vc and ic, are shown in Figure 5.6. The switching-frequency 5 

kHz of the boost-switch is much greater compared to the input voltage vin ripple 

frequency 120 Hz. The effect of the 120 Hz voltage-ripple in vin, can be seen in the high-

frequency capacitor ripple-voltage, vc, and the capacitor ripple-current, ic, as shown in 

Figure 5.6. This effect can be also observed in the frequency-domain in the form of side 

bands, as shown in the FFT plots of vc and ic in Figure 5.7.  

 
Figure 5.6 High frequency filtered waveform of capacitor voltage and current, showing 

the effects of 120 Hz ripple in input voltage vin. 
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Figure 5.7 FFT plot of high frequency filtered waveform of capacitor voltage and current. 

 
The Bode-plot of an electrolytic capacitor shown in Figure 5.2 has a wide flat 

region around the switching-frequency in the magnitude plot. It means that there are 

small changes in the impedance of the capacitor around the switching-frequency of the 

converter, and it is approximately equal to the ESR of the capacitor. This concept is 

further written in mathematical form in equation (5.6). 
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Where Vfs = RMS value of the capacitor ripple voltage at the switching frequency 

Ifs = RMS value of the capacitor ripple current at the switching frequency 
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Vfs±fm, Vfs±2fm = RMS value of the side-band amplitude of the capacitor ripple 

voltage around the switching frequency 

Ifs±fm, Ifs±2fm = RMS value of the side-band amplitude of the capacitor ripple 

current around the switching frequency 

The RMS values of the capacitor ripple voltage and the capacitor current shown 

in Figure 5.7 can be calculated as follows 

2 2 2 2 20.261 +0.1619 +0.284 +0.701 +0.454= 0.95
2 2+0.287 +0.108

sf
V volt=  (5.9) 
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2 21.367 0.515sf
I amp+ + + += =

+ +
 (5.10)

The estimated value of the ESR can be calculated as 
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The actual value of the ESR used in the simulation is 200 mΩ. There is only a 

small error of 5.5% between the estimated and the actual values of the capacitor ESR, 

which indicates that the proposed method can be used for the estimation of the capacitor 

ESR. In addition, equation (5.8) states that the band-pass filter does not need a high Q-

value even in the presence of various side bands around the switching-frequency of the 

converter. The ratio in equation (5.8) is approximately equal to the actual value of the 

capacitor ESR.  

Similarly, the output of the band-pass filter waveforms for the capacitor ripple 

voltage and current in low frequency band are used to estimate the value of (Xc)fm, as 

described by equation (5.5).  The output of the band-pass filters, in the time and 
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frequency domains are shown in Figures 5.8 and 5.9 respectively. The estimated value of 

(Xc)fm using results in Figures 5.8 and 5.9 can be calculated as 

6.028( ) 2.829
2.131

m

m

m

f
c f

f

V
X

I
≈ ≈ ≈ Ω  (5.12)

where Vfm = RMS value of the capacitor ripple voltage at frequency fm, Ifm = RMS value 

of the capacitor ripple current at frequency fm, and fm = 120 Hz.  

The actual value of (Xc)fm can be calculated as 

6

1 1( ) 2.822
2 2 120 470 10mc f

m

X
f Cπ π −= = = Ω

× × ×
 (5.13)

The estimated value of (Xc)fm shown in equation (5.12) corresponds to estimated 

capacitance of C = 469 µF. 

 
Figure 5.8 Low frequency filtered waveform of capacitor voltage and current. 
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Figure 5.9 FFT plot of low frequency filtered waveform of capacitor 

current. 

 
5.3.2 Experimental results 

Figures 5.10 and 5.11 show the sensors and the analog band-pass filters used to 

sense and process the capacitor ripple voltage and ripple current to estimate the capacitor 

parameters. 

 
Figure 5.10 Voltage and current sensors. 
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Figure 5.11 Analog band-pass filters. 

 
Figures 5.12 to 5.15 show the measured waveforms of the band-pass filtered 

switching frequency components for capacitor ripple voltage and ripple current in the 

time and frequency domain. 

 
Figure 5.12 High frequency filtered waveform of capacitor voltage. 
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Figure 5.13 FFT plot of high frequency filtered waveform of capacitor voltage. 

 

 
Figure 5.14 High frequency filtered waveform of capacitor current. 

 

 
Figure 5.15 FFT plot of high frequency filtered waveform of capacitor current. 

 
The RMS value of the band-pass filtered capacitor ripple voltage at switching frequency 

is 



 85

mVVKV
sbandss frmsVffrms 580)()( ==  (5.14)

where KVfs = Gain of voltage sensor and band-pass filter. 

The RMS value of the filtered capacitor ripple current at switching frequency is 

AmpIKI
sbandss frmsIffrms 7.3)()( ==  (5.15)

where KIfs = Gain of current sensor and band-pass filter. 

The estimated ESR is given by, 

Ω≈= m
I
V

ESR
s

s

frms

frms 157
)(
)(

 (5.16)

and the measured ESR is, 

Ω≈ mESR 178  (5.17)

Figures 5.16 and 5.17 show the waveforms of the band-pass filtered 120 Hz 

frequency components for capacitor ripple voltage and ripple current in time and 

frequency domain.  

 
Figure 5.16 120 Hz frequency component of filtered waveform of capacitor current. 
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Figure 5.17 FFT plot of 120 Hz frequency component of filtered waveform of capacitor current. 

 
The RMS value of the band-pass filtered capacitor ripple voltage at 120 Hz frequency is 

mVVKV
mbandmm frmsVffrms 980)()( ==  (5.18)

where KVfm = Gain of voltage sensor and band-pass filter. 

The RMS value of the filtered capacitor ripple current at 120 Hz frequency is 

mAIKI
mbandmm frmsIffrms 290)()( ==  (5.19)

where KIfm = Gain of current sensor and band-pass filter. 

The estimated value of (Xc)fm ESR is given by, 

Ω≈= 4.3
)(
)(

)(
m

m

m
frms

frms
fc I

V
X  (5.20)

The estimated value of capacitance using the experimental results is 

FC µ390≈  (5.21)

and the measured value of capacitance using an LCR meter is 

FC µ457≈  (5.22)

 

Results presented in this section are summarized in Tables 5.1 and 5.2. 
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Table 5.1 Simulation results for estimated parameters 

ESRactual ESRestimated % Error 

200 mΩ 211 mΩ 5.5 

Cactual Cestimated  

470 µF 469 µF 0.2 

 
   Table 5.2 Experimental results for estimated parameters 

ESRactual ESRestimated % Error 

178 mΩ 157 mΩ 11 

Cactual Cestimated  

457 µF 390 µF 14 

 

5.4 Summary 

A new low cost method is proposed to detect the changes in the ESR and the 

capacitance values of an electrolytic capacitor in order to realize the real-time failure 

prediction of an electrolytic capacitor. For the proposed strategy, only the capacitor 

voltage and current waveforms are required. The results show that the proposed 

electrolytic capacitor failure-prediction method can be applied to power-converters 

successfully. The next chapter introduces a new type of capacitor fault caused by inrush 

current, which is different from the research work presented in Chapters 3 to 5, which 

described the slow steady gradual aging of the capacitor.  
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CHAPTER 6 

CAPACITOR FAILURE DUE TO INRUSH CURRENT  

 
 
 

6.1 Introduction 

 One of the most critical application parameters of an aluminum 

electrolytic capacitor is its voltage capability, typically expressed in terms of rated or 

working voltage, surge voltage, transient voltage, etc. Exceeding the voltage capability 

(even for a few milliseconds) can result in the immediate failure of the capacitor, or its 

performance can be degraded over the longer term. However, it is often impossible to 

determine the exact maximum voltage that will never be exceeded in an application, 

especially when considering short duration transients. The question is further complicated 

when using capacitor banks where the voltage on an individual capacitor is influenced by 

the capacitance of other capacitors, which can vary from component to component, and 

the capacitance of the individual capacitors may also vary over time [42]. The problem 

can be solved by using a wide safety margin between the voltage capability of the 

capacitor and the expected maximum voltage in an application. However, cost 

optimization requirements dictate the use of minimal safety margin. To do this 

successfully without undue risk, it is important to know both the characteristics of the 

application and the actual voltage capability (steady state, surge, and transient ratings) of 

the capacitor being used. The objective of this chapter is to give a further insight into the 
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behavior of aluminum electrolytic capacitors and the impact on capacitor life of short 

duration transient voltages, by exploring the work presented by Klug [42].  

The first part of this chapter deals with the experiments and test methods adopted 

in [42] to probe the voltage capabilities of high-voltage electrolytic capacitors. A 

comprehensive analysis of the failure mechanism and a failure model of an electrolytic 

capacitor, due to a surge current caused by a transient overvoltage, are presented. 

Experimental results are included in the second part of this chapter to give further insight 

into the failure mechanism due to surge current. 

6.2 Test setup and results by [42] 

 A detailed procedure to test capacitor voltage susceptibility was developed by 

Klug [42]. An experimental setup similar to Figure 6.1 was used by Klug [42] to charge a 

capacitor bank Cbank to a given voltage. The equivalent capacitance value of Cbank is much 

larger than the capacitance value of Ctest. A capacitor by Evox-Rifa with part number 

PEH200YU426, capacitance value of 2600 µF, rated voltage 450 V, height 115 mm, and 

diameter 75 mm is used as the test capacitor, Ctest. A current limiting inductor L is used to 

control the amplitude of the current pulse to the test capacitor.  The capacitor bank is 

discharged onto Ctest by closing the switch S. The effect is a powerful but short pulse on 

the test object at room temperature. If the capacitor is capable of absorbing the pulse 

without failure, a new pulse is given with a 50 V higher bank voltage within 30 seconds. 

The capacitor is discharged between the pulses, for about 15 milliseconds after each 

pulse. The process is repeated as long as the capacitor is functioning. 
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Figure 6.1 Experimental set up for transient over voltage effect. 

 

 The primary result is the highest measured voltage level U on the capacitor before 

failure, and a secondary result is the largest inrush current I (without failure). Figure 6.2 

shows an example where the capacitor is able to absorb the pulse without failure, and 

Figure 6.3 shows an example where the capacitor has failed to absorb the pulse. The 

latter shows that the voltage, instead of remaining at a high level, drops sharply after the 

failure, and the Ctest loses its property as a capacitor. Experimental data extracted from 

the results shown in Figures 6.2 and 6.3 are used to estimate the energy dissipated in the 

capacitor to calculate the excess energy responsible for the failure of the capacitor Ctest. 

 
Figure 6.2 Successful pulse test result [42]. 
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Figure 6.3 Unsuccessful pulse test result [42]. 

  

6.2.1 Discussion 

Figure 6.4 shows the plot of the capacitor voltage and current for a successful 

pulse followed by an estimated capacitor voltage plot for an ideal capacitor in Figure 6.5. 

Similarly, the capacitor voltage and current for an unsuccessful pulse are shown in Figure 

6.6, and corresponding plot for an ideal capacitor voltage is shown in Figure 6.7. Figure 

6.4 is divided into two regions, Region 1 and Region 2. Region 1 describes 

approximately a linear increase in the capacitor voltage until there is a voltage clamping 

across the capacitor, and it enters into region 2 where the capacitor voltage is almost 

constant even though the capacitor current is positive. Similarly, Figure 6.6 shows the 

plot for an unsuccessful pulse in which region 1 describes a linear increase in the 

capacitor voltage until there is a voltage clamping across the capacitor. However, region 

2 is much shorter compared to a successful pulse, and the capacitor voltage collapses and 

enters into region 3 where the capacitor has failed as short-circuit, and loses the property 

of a capacitor. 
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6.2.2 Analysis of successful pulse test results 
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Figure 6.4 Measured voltage and current plots for successful pulse test. 

 
 The capacitor acts as an ideal capacitor in region 1, and most of the supplied 

electric charge is stored in the capacitor dielectric. However, as it can be observed from 

Figure 6.4, the capacitor voltage is almost constant in region 2 even though the capacitor 

current is positive. The capacitor voltage would have continued to increase if there was 

no voltage clamping in region 2 as shown in Figure 6.5, and it can be described in the 

mathematical form as follows 

1
C c cv i dt ESR i

C
= + ×∫  (6.1)

 
 The results presented in Figure 6.4 and 6.5 are operating at close to the edge just 

before a failure occurs. In addition, it is important to note that the difference in the 

energies delivered to the capacitor under the influence of the voltage expressed by 

equation (6.1), and the clamped capacitor voltage in region 2, is converted into heat 
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energy inside the capacitor, and this heat may lead to failure of the capacitor. The energy 

converted to heat energy can be calculated as follows.  
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Figure 6.5 Voltage plots for successful pulse test. 

 
The total energy delivered to the capacitor, as shown in Figures 6.4 or 6.5, for the 

successful pulse, can be calculated as  

2

1

( ) ( ) 1795
t

t
t

E v t i t dt joule= =∫  (6.2) 

The energy delivered to the capacitor during region 1 in Figure 6.5, before voltage 

clamping occurs, can be calculated as 

∫ ==
ct

t

jouledttitvE
1

527)()(1   (6.3) 

where tc = Clamping time, as shown in Figure 6.5. 
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The energy delivered to the capacitor after clamping during region 2 in Figure 6.5 can be 

calculated  

∫ ==
2

1268)()(2

t

tc

jouledttitvE  (6.4) 

As expected,  

Et = E1 + E2 = 1795 joule (6.5) 

Figures 6.4 and 6.5 show that the measured capacitor voltage during region 2 is almost 

constant even in the presence of positive capacitor current. Therefore, this indicates that 

the energy delivered in region 2 is converted into heat. Further, the average power 

delivered to the capacitor during clamping in region 2 can be calculated as 

(Pc)Avg = 
ctt

E
−2

2  = 552 joule/ms (6.6) 

However, the average power delivered to the capacitor soon after clamping, region A in 

Figure 6.5, is much greater than in equation (6.6), as the magnitude of current in region A 

is high. It is calculated as 

(PA)Avg = 

( ) ( )
A

c

t

t

A c

v t i t dt

t t−

∫
 = 1017 joule/ms 

(6.7) 
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6.2.3 Analysis of unsuccessful pulse test results 

In this section, energies delivered to the capacitor in various regions are 

calculated for the unsuccessful pulse, and data are compared with energies presented for a 

successful pulse to understand the failure mechanism of the capacitor. 
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Figure 6.6 Measured voltage and current plots for unsuccessful pulse test. 

 
As explained in section 6.2.2, the capacitor acts as an ideal capacitor in region 1, 

and most of the supplied electric charge is stored in the capacitor dielectric. During the 

short period in region 2 in Figure 6.6, the capacitor voltage is almost constant. After the 

failure, the capacitor-voltage collapses as shown in region 3 and the capacitor is failing 

into a quasi-short-circuit, and loses its property as a capacitor. However, the voltage for 

an ideal capacitor would have continued to increase if there was no voltage clamping in 

region 2 and no capacitor failure in region 3. The voltage variation for the ideal capacitor 

can be described by using equation (6.1) and shown in Figure 6.7. 
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The total energy delivered to the capacitor for the unsuccessful pulse shown in Figure 6.7 

can be calculated as  

∫ ==
2

1

1704)()(
t

t
t jouledttitvE  (6.8) 

V
ol

t

 
Figure 6.7 Voltage plots for unsuccessful pulse. 

 
The energy delivered to the capacitor in Figure 6.6 before voltage clamping, indicated as 

region 1, can be calculated as 

∫ ==
1

1

685)()(1

ct

t

jouledttitvE   (6.9) 

The energy delivered to the capacitor in Figure 6.6 during clamping, indicated as region 

2, can be calculated as 

∫ ==
2

1

244)()(2

c

c

t

t

jouledttitvE  (6.10) 
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6.2.4 Conclusion of successful and unsuccessful pulse test results 

Region 2 in Figure 6.7 for an unsuccessful pulse is much shorter in time 

compared to region 2 in Figure 6.5 for a successful pulse. Therefore, energy delivered to 

the capacitor in region 2 for an unsuccessful pulse is much smaller than for a successful 

pulse, as shown in equation (6.4). However, the average energy delivered to the capacitor 

per unit time is an important quantity for the failure of the capacitor. The average power 

delivered to the capacitor during clamping in region 2 for an unsuccessful pulse in Figure 

6.6 can be calculated using equation (6.10) as 

(Pc)Avg = 2

2 1c c

E
t t−

 = 1630 joule/ms (6.11) 

The average energy per unit time delivered to the capacitor in region 2 for an 

unsuccessful pulse is much greater (1630 joule/ms) than for a successful pulse (552 

joule/ms), as it can be observed by comparing equations (6.6) and (6.11). However, an 

argument can be made that the average energy delivered to the capacitor soon after the 

clamping in region A in Figure 6.5 for a successful pulse, is also high because the 

magnitude of the current in this region is high. The average energy per unit time 

delivered to the capacitor in region A of Figure 6.5 is shown in equation (6.7), but even 

the value of 1017 joules/ms in equation (6.7) as 1017 joules/ms is significantly smaller 

than the value in equation (6.11). Therefore, the capacitor is damaged and it fails to 

maintain the voltage after region 2 in Figure 6.6. The results for successful and 

unsuccessful pulses are summarized in Table 6.1. 
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Table 6.1 Energy for successful and unsuccessful pulse 

 

Et 

(joule)

E1 

(joule)

E2 

(joule)

Energy per unit time near 

start of voltage clamping 

(joule/ms) 

Successful pulse 1795 527 1268 1017 

Unsuccessful pulse 1704 685 244 1630 

 

The difference in energy between a successful and an unsuccessful pulse (61 

joule), which damages the capacitor dielectric, is much smaller than the energy delivered 

(527 joule for successful pulse and 685 joule for unsuccessful pulse) to the capacitor in 

region 1. However, the difference in the average energy (613 joule/ms) delivered at the 

start of voltage clamping in unit time to the capacitor is much higher, which results in the 

failure of the capacitor. The capacitor current is concentrated in a small volume of the 

capacitor and results in hot spot regions inside the capacitor, which is further described in 

the next section.  

6.3 Failure mechanism 

The construction of an electrolytic capacitor is explained in detail in Chapter 2. 

However, it is re-visited in this section to draw an equivalent electrical circuit model for 

an electrolytic capacitor.  

6.3.1 Construction 

Figures 6.8 and 6.9 [50] show the X-ray view of an electrolytic capacitor. The 

actual image of an electrolytic capacitor cut in half, along with the aluminum foil and 

separator paper arrangement, are shown in Figure 6.10. 
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Figure 6.8 X-ray view of the electrolytic capacitor (Source: Micro Photonics Inc). 

 

 
Figure 6.9 3-D X-ray view of the electrolytic capacitor (Source: Micro Photonics Inc). 

 

Arrangements for the anode and cathode tabs are shown in Figures 6.8, 6.9 and 

6.11. The anode and cathode aluminum foils along with the separator paper are wrapped 

together in the form of a spiral, as shown in Figure 6.11.  
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Figure 6.10 Electrolytic capacitor. 

 

 
Figure 6.11 Electrolytic capacitor tab location. 

  
 The arrangement of a single layer in the spiral is shown in Figure 6.12. It consists 

of seven layers of aluminum anode foil, anode side oxide, anode side electrolyte, paper 

separator, cathode side electrolyte, cathode side oxide, and aluminum cathode foil. 

Thicknesses for these layers in Figure 6.12 are listed in Table 6.2. Further analysis is 

carried out using Matlab to understand the failure mechanism of an electrolytic capacitor. 

For simplicity, it is assumed that the capacitor has an arrangement of concentric 

cylindrical capacitors, instead of a spiral shown in Figure 6.11, connected in parallel with 

a fill-factor equal to 95 %. In addition, it is assumed that the capacitor consists of 225 

concentric cylindrical capacitors. These 225 concentric cylindrical capacitors are chosen 
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by trial-and-error because it gives the capacitance value close to 2600 µF used in the 

transient-voltage effect test described in section 6.3 [42] and also gives an outer diameter 

close to the actual 80 mm of the capacitor. The data listed in Table 6.2 is used in Matlab 

to plot the ESR and capacitance variation with diameter for 225 cylindrical capacitors 

using equations (6.12) and (6.13) are shown in Figure 6.13. 

 
Figure 6.12 Electrolytic capacitor single layer configurations. 

 

Table 6.2 Thickness of different layers in the cylindrical capacitor 

Anode side 

oxide 

 

(h1) 

Combined 

paper and 

electrolyte 

(h2) 

Aluminum 

anode foil 

 

(h3) 

Aluminum 

cathode foil 

 

(h4) 

Cathode side 

oxide 

 

(h5) 

600 nm 100 µm 100 µm 25 µm 3 nm 

 

( )
0

1 2

2
log

r LC k
d d

πε ε
=  (6.12) 
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where L = height of an electrolytic capacitor (m), k = area enhancement-factor because of 

etching (typically 200) [7], d1 = outer diameter of the cylindrical capacitor, d2 = inner 

diameter of cylindrical capacitor.  

3 42 log( )
ESR

L d d
λ

π
=  (6.13) 

Where λ = resistivity of paper-electrolyte system (Ω-m), d3 = outer diameter of paper-

electrolyte system cylinder, d4 = inner diameter of paper-electrolyte system cylinder. All 

dimensions shown in equations (6.12) and (6.13) are in S.I. units. 
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Figure 6.13 Variation of ESR and capacitance with diameter d (Figure 6.12). 

 
 Using equations (6.12) and (6.13), the capacitance and ESR of different layers of 

a capacitor are plotted in Figure 6.13. It can be observed that the value of ESR decreases 

with diameter and capacitance increases with diameter respectively. Figure 6.14 shows 
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the time-constant τ variation with diameter given by equation (6.14) of various 

cylindrical capacitors.  

ESR Cτ = ×  (6.14) 

 It is interesting to note that time-constants are almost constant with variation in 

the diameter of the capacitors. This suggests that the rate of charging of these parallel 

capacitors is the same. 
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Figure 6.14 Variation of capacitor layer time-constant with diameter d (Figure 6.12). 

 
6.3.2 Modeling and simulation results 

For simplicity, and to reduce computation time, the 225 cylindrical capacitors are 

grouped together into nine groups with 25 adjacent cylindrical capacitors in each group. 

One equivalent cylinder is formed from each of the nine groups of cylinders assuming 

each capacitor cylinder (of the 25 in a group) is connected in parallel, and the 

corresponding ESR and the capacitance values are listed in Table 6.3.  
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Table 6.3 Estimated values of parameters for equivalent cylindrical capacitors 

 C 1 

(Outer) 
C 2 C 3 C 4 C 5 C 6 C 7 C 8 

C 9 

(Inner)

ESR (mΩ) 195.4 220.6 253.6 298.1 361.5 459.1 629.0 998.4 2419.0

Capacitance 

(µF) 
567.7 502.6 437.5 372.4 307.4 242.3 177.2 112.1 46.96 

 
 The parameters listed for the nine capacitors in Table 6.3 are used to simulate in 

Saber circuit simulation software. The current distribution in the different parallel-

connected capacitor layers is shown in Figure 6.15. A triangular current pulse of time 

duration 2.4 ms I_source, shown in Figure 6.16, which closely resembles the 

experimental transient current shown in Figure 6.2, is applied to the parallel-connected 

capacitor layers. Figure 6.16 also shows the distribution of current through different 

capacitor layers for a successful pulse.  

It was observed in Figure 6.4 that the capacitor voltage is clamped in region 2 

even in the presence of positive capacitor current. Therefore, it can be interpreted that the 

aluminum-oxide layer inside the capacitor acts a ‘zener diode’ and causes the capacitor 

voltage clamping. However, the voltage clamping level depends upon the quality and 

thickness of the aluminum-oxide at each layer. In addition, each of the capacitor layers 

has almost the same time-constant, as shown in Figure 6.14. Therefore, the rate of 

charging of each capacitor across a ‘zener diode’ in Figure 6.15 is the same provided 

there is no voltage-clamping effect across any of these ‘zener diodes’. Furthermore, there 

is no dangerous concentration of current on a single layer provided each of these ‘zener 

diodes’ reaches its voltage-breakdown level almost at the same time. 
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 Figure 6.15 Electrolytic capacitor model. 

 
Figure 6.16 shows the effect of reaching ‘zener diodes’ voltage-breakdown level 

almost at the same time in region 2, and also shows that there is no dangerous 

concentration of current in any layers of the capacitor. This is further verified using the 

energy per unit volume of the capacitor layer plot in Figure 6.17, which is almost the 

same for every layer, and causes no harm to the capacitor.  

 
Figure 6.16 Distribution of the capacitor layers’ current for successful pulse. 

 
In order to illustrate the failure of the capacitor because of a concentration of 

current in a small region, the breakdown voltage of one ‘zener diode’ is now reduced in 

the simulation. This may occur because of the manufacturing defect of the capacitor, or it 

may occur if the amplitude of the current for a successful pulse in Figure 6.16 is high 

enough to cause partial damage to the capacitor layers. These damaged layers will exhibit 



 106

a lower breakdown-voltage compared to the other layers inside the capacitor for a 

subsequent operation. 

 
Figure 6.17 Distribution of energy per unit volume for electrolytic capacitor layers for successful 

pulse. 
  

Further, in order to understand the effect of lower breakdown-voltage of a ‘zener 

diode’, it is assumed that the first capacitor layer (outer most layer) represents the layer 

with a reduced breakdown-voltage. Region 1 in Figure 6.18 shows the distribution of 

current through the various capacitor layers follow the ESR values of those layers, when 

there is no voltage-clamping for any of ‘zener diodes’ in Figure 6.15. However, the 

‘zener diode’ in first layer of the capacitor reaches its breakdown-voltage level ahead of 

all the other ‘zener diodes’. This results in a dangerous concentration of current in the 

first capacitor layer. This phenomenon can also be observed in the energy per unit 

volume plot shown in Figure 6.19, which confirms that the energy density inside the first 

capacitor layer is much higher compared to the other layers inside the capacitor, and this 

may damage the capacitor.  
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 The effect of the breakdown of the first capacitor layer on the other capacitor 

layers, say the second layer, is now investigated further to understand the overall effect of 
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a capacitor layer breakdown. Suppose, VC1K and VC2K are the voltages across the first and 

second capacitor layers respectively, and I1 and I2 are the corresponding currents shown 

in Figure 6.15, and VAK is the overall voltage across the capacitor terminal.  

Using results from the Saber simulation, Figure 6.20 illustrates the effect of 

breakdown of the first capacitor layer on the second capacitor layer. Breakdown of the 

first capacitor occurs at the dotted line in Figure 6.20, and the majority of the current 

starts to flow through the first layer. The voltage across the first capacitor, VC1K, is 

clamped to the breakdown voltage of the ‘zener diode’ in the first capacitor layer. After 

voltage clamping in the first layer, the current through the second capacitor layer starts to 

decrease and goes to zero, and reverses the current direction to dump its energy to the 

first capacitor layer. This phenomenon continues in all other remaining capacitors layers. 

Therefore, it can be interpreted that the ‘zener diode’ breakdown in only one layer 

of the capacitor results in a dangerous concentration of a majority of the current at a 

single layer, and it may lead to a hot spot build up inside the capacitor, which may lead to 

partial or catastrophic failure of the capacitor. In the next section, experimental results are 

presented in order to understand the effect of a current surge on the leakage resistance of 

the capacitor. 
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 Figure 6.20 Effects of ‘Zener diode’ like breakdown. 

 

 
6.3.3 Experimental results 

 Figure 6.21 shows an experimental setup to test the effect of current pulses on an 

electrolytic capacitor. The capacitor bank Cbank is charged to a desired voltage by an auto-

transformer followed by a bridge-rectifier D1. Inductor L is used to control the amplitude 

of the current pulses to the test-capacitor Ctest. Diode D2 acts as a freewheeling diode for 

inductor L. Resistors R1 and R2 are potential divider elements to apply a predetermined 

voltage-bias to the test capacitor Ctest in a particular test. Diode D3 is used to prevent the 

test capacitor Ctest from discharging through resistor R2. In addition, a mechanical switch 

Smech is used to prevent charging of the capacitor Ctest during the discharge process of the 

capacitor through its own leakage resistance. IGBT is switched on for a short duration of 

time in order to generate a current-pulse for a given input voltage across Cbank and for a 

given voltage bias across Ctest. The gate of the IGBT is connected to an IGBT-driver 

BG2A by Powerex, and the datasheet for BG2A is listed in Appendix D. 
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Figure 6.21 Circuit diagram for effects of current-pulses testing. 

 

 The primary result is the highest measured voltage level on the capacitor before 

failure, and secondary result is the largest inrush current (without failure). Figure 6.22 

shows an example where the capacitor was able to absorb the pulse without failure, and 

Figure 6.23 shows an example where the capacitor failed to absorb the pulse. The latter 

shows that the voltage, instead of remaining at a high level, drops sharply after the 

failure, and loses the property of a capacitor and the capacitor is considered as damaged. 



 111

 
Figure 6.22 Voltage and current plots for a successful current pulse. 

 

 
Figure 6.23 Voltage and current plots for an unsuccessful current pulse. 
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A high bandwidth current sensor by Pearson Electronics Inc shown in the 

experimental setup in Figure 6.24 is used to capture the current pulse waveforms shown 

in Figures 6.22 and 6.23. The datasheet of the current sensor is given in Appendix E. The 

capacitor bank Cbank and the test capacitor Ctest are not shown in Figure 6.24, however, the 

oven shown in Figure 3.4 in Chapter 3 is used to hold Cbank and Ctest in order to prevent 

any exposure to atmosphere in the event of damage to the capacitors. In addition, the 

oven is also used to run the experiment with Ctest at the elevated temperatures. After each 

pulse, leakage-resistance of the capacitor is calculated by measuring time, ∆t = t2 – t1, 

between two known voltages v(t1) and v(t2), while the capacitor is discharging, using 

equation (6.15) 
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Figure 6.24 Experimental setup for current surge effects. 
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6.3.3.1 Effect of current pulses with short interval 

Figure 6.25 shows the effect of current pulses on leakage-resistance of electrolytic 

capacitors for three different electrolytic capacitors with the same ratings of 1000 µF, 50 

V, 85 ºC by Panasonic. Monotonic changes in the leakage resistances for the three 

capacitors are observed with successive pulses at approximate intervals of around one to 

15 minutes depending on the time taken by capacitor in discharging from v(t1) and v(t2), 

and values of leakage-resistances are measured between current pulses. The values of 

leakage resistances decrease with each current pulse as shown in Figure 6.25.  

 
Figure 6.25 Effect of current pulses on electrolytic capacitor leakage resistances. 

 
  
 Figure 6.25 indicates that damage to the capacitors takes place within the first few 

current pulses. The tested capacitors are left overnight to cool down and the leakage 

resistances for these capacitors are again measured. The relaxed leakage-resistances do 

not return to their original values, which indicate that there is permanent physical damage 

to the capacitor layers.  
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6.3.3.2 Effect of temperature 

 In order to understand the effects of temperature on the values of leakage-

resistance, a new capacitor and a current pulse weakened capacitor are placed in an oven 

and values of leakage resistances are plotted over temperatures in Figure 6.26. The 

leakage resistances decrease with temperature, however, after overnight relaxation, the 

leakage resistances of these two capacitors return to original values. This suggests that 

the change in leakage resistances due to temperature is a temporary effect, unlike the 

permanent effects due to current pulses shown in Figure 6.25. Therefore, it suggests that 

the short-duration high current pulses generate high temperatures in small-localized 

regions of the capacitor layers, which result in partial or complete damage to the 

capacitor layers. 

 
Figure 6.26 Effect on leakage-resistance of temperature on new and current pulse weakened 

capacitors. 

 

6.3.3.3 Effect of current pulses with a long interval between pulses 

Figures 6.27 and 6.28 show the effects of current pulses with 30 to 45 minutes of 

relaxation after each current pulse with two different capacitors but with the same ratings 
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of 1000 µF, 50 V, 85 ºC by Panasonic. Long time-interval of 35 to 45 minutes is chosen 

to ensure that capacitor is relaxed before applying next current pulse to the capacitor. 

 
Figure 6.27 Effect of current pulses with relaxation at 85 °C with first capacitor. 

  

Figure 6.27 shows the effect of current pulses at rated ambient temperature of 85 ºC. 

Each current pulse causes a permanent damage to the capacitor. After the test, capacitor 

is left at room temperature to relax for overnight, as it can be observed from the Figure 

6.27 that the capacitor leakage-resistance is not able to reach its original room-

temperature value, and suggests that the current pulses have caused permanent damage to 

the capacitor.  

Similar results are observed for current pulses at room temperature, as shown in 

Figure 6.28. These results suggest that the each current pulse causes physical damage to 

the capacitors. 
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Figure 6.28 Effect of current pulses with relaxation at room temperature with second capacitor. 

 

 

6.4 Summary 

 Aluminum electrolytic capacitors are especially sensitive components with 

respect to current-surges beyond the rated limits, which cause hot-spot regions inside the 

capacitor. However, it is often impossible to determine the exact maximum current-surge 

limit, which will never be exceeded in the application, especially when considering short 

duration transients. The usual solution for the problem is to require a safety margin 

between the current-surge capability of the capacitor and ripple-current requirement in an 

application. However, cost optimization requirements tend to drive design engineers to 

reduce the safety margin as much as possible. 
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CHAPTER 7 

CONCLUSIONS, CONTRIBUTIONS, AND 

RECOMMENDATIONS  

 

 
 

7.1 Summary and conclusions 

The purpose of this research is to advance the field of condition monitoring for 

electrolytic capacitors for power electronics applications. Electrolytic capacitors are 

responsible for an estimated 60 % of the failures in power electronics circuits [1]. 

Condition monitoring of electrolytic capacitors is therefore assuming a growing 

importance in critical high performance applications. Early detection of imminent faults 

would allow preventive maintenance, and provide sufficient time for the controlled 

shutdown of the process, thereby reducing the costs of unplanned outage-time and 

repairs. 

7.1.1 Conclusions of research of phase 1: Electrolytic capacitor ripple voltage 

and current behavior with aging 

 The fundamentals of an electrolytic capacitor construction, manufacturing 

process, and the failure modes are presented. A detailed literature survey is presented to 

summarize the state of the art techniques that are pertinent to the methods proposed in 

this research. The present research is organized into four sections. The first phase of this 
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research consists of the study of the effect of capacitor aging on the capacitor ripple 

voltage and current, assuming these are observable. There exists a direct relation between 

the aging of the capacitor and the capacitor ripple voltage and ripple current, and it is 

verified by experimental results. A time-average method is introduced for the condition 

monitoring of the capacitor using capacitor ripple voltage and current. A monotonic time-

average plot is drawn for the capacitor ripple voltage, and a threshold point can be set on 

the plot to predict the failure of the capacitor. Further, an impedance time-average plot is 

drawn using capacitor ripple voltage and ripple current, and a similar threshold can be set 

on the impedance plot to predict the failure of the capacitor. However, the time-average 

plot for the capacitor ripple voltage is also a function of the variation in the load 

resistance; therefore, it cannot be used for a converter with varying load. The time-

average plot for the impedance therefore gives a more reliable indication of the aging of 

the capacitor in variable load conditions because it is the ratio of the capacitor ripple 

voltage and ripple current fundamental. In other words, any change in the capacitor ripple 

voltage will result in a proportional change in the capacitor ripple current to keep the 

ratio of these two quantities equal to the impedance of the capacitor at the fundamental 

switching frequency. Results have showed that an aged capacitor typically has a 

reduction in capacitance by a factor of 1000, and in ESR by a factor of 11. 

7.1.2 Conclusions of research of phase 2: System modeling 

 The second phase of work is an extension of phase 1. It proposes a method for 

predicting a fault in the capacitor using the input current of the converter, which is easier 

to measure than the capacitor ripple voltage. There exists some correlation between the 

converter input current and the capacitor ripple voltage. Based on this a LMS based 
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system modeling of the converter is presented to estimate the value of the time-average 

values of the capacitor ripple voltage. Further, the time-average capacitor ripple voltage 

is plotted over time for fault monitoring of the capacitor, as described in phase 1, but this 

would suffer from the drawback during variable load conditions. This gives an alternate 

method of monitoring the condition of an electrolytic capacitor where capacitor ripple 

voltage and ripple current are not observable, nevertheless works well for a stationary 

system.  

7.1.3 Conclusions of research of phase 3: Real-time parameter estimation 

 The third phase of this research proposes a new low cost method to detect the 

changes in the equivalent series resistor (ESR) and the capacitance value of an 

electrolytic capacitor in order to realize a real-time condition-monitoring scheme for an 

electrolytic capacitor. In phase 2, it was demonstrated that effects of changes in the 

capacitor condition would be reflected in the capacitor ripple voltage and ripple current. 

However, the work in phase 3 has demonstrated that it is possible to measure the changes 

in the capacitor parameters directly in order to monitor condition of the capacitor. The 

main advantages of the proposed method include circuit simplicity, low-cost, and easy 

implementation. It uses the fact that the there exists three frequency-bands in the Bode-

plot of the capacitor where ESR, capacitance, and series inductance of the capacitor are 

individually dominant. The capacitor ripple voltage and current are processed in the three 

frequency bands to estimate the parameters of the capacitor. It is important to note that it 

is not required to remove the capacitor from the converter system, and that it monitors the 

capacitor parameters in real-time. The proposed method has been demonstrated for a 

stationary system, in a constant load condition. However, it is possible to use this method 
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in variable load conditions provided the frequency of load variation is slow. Slow 

variations in load will ensure that side-bands appear within the band-pass filter response 

described in Chapter 5. 

7.1.4 Conclusions of research of phase 4: Capacitor failure due to inrush 

current 

The fourth phase of this research presents fault characterization of electrolytic 

capacitors because of inrush current due to supply surge-voltage. Inrush current causes 

generation of hot spots inside the capacitor volume, and results in a decrease of the 

capacitor leakage-resistance. In addition, the capacitor may rupture with an explosive 

sound if the rise in the temperature is too high in the hot-spot regions. These hot-spot 

regions act as low resistance paths in parallel to the capacitor leakage-resistance and 

cause quasi-short-circuit conditions, which lead to rupturing of the capacitor. Results 

show that the leakage resistance decreases typically by a factor, which varies between 2 

and 5, depending on the repetitive rate of the pulses. A detailed study of the failure mode 

due to inrush current along with an electrical circuit model is introduced.  

7.2 Contributions 

Based on the research presented in Chapters 3 and 4, three papers have been 

presented in three IEEE conferences. The first paper titled “Condition Monitoring of 

Electrolytic Capacitor in Power Electronic Circuits Using Signal Processing Method” 

has been presented at the 20th IEEE Annual Applied Power Electronics Conference 

(APEC) in March 2005 in Austin, Texas [43]. The second paper titled “Condition 

Monitoring of Electrolytic Capacitor in Power Electronic Circuits Using Adaptive Filter 

Modeling” has been presented at the 36th IEEE Power Electronics Specialists Conference 



 121

(PESC) in June 2005 in Recife, Brazil [44]. The third paper titled “LMS Based Condition 

Monitoring of Electrolytic Capacitors” has been presented at the 32nd Annual Conference 

of IEEE Industrial Electronics Society (IECON) in Nov 2005 in Raleigh, NC [45]; this 

paper has also been submitted for journal review to the IEEE Transaction on Industrial 

Electronics and reports on the research in Chapter 4 [46]. 

Based on the research in Chapter 5, a paper titled “Real-Time Condition 

Monitoring of Electrolytic Capacitors by Parameter Estimation” has been presented at 

the 22nd IEEE Annual Applied Power Electronics Conference (APEC) in March 2007 in 

Anaheim, CA [47]. The sixth paper, which is based on the work presented in Chapter 6, 

has been accepted for IEEE IAS 2007 to be presented during September 23-27 at New 

Orleans, LA.    

The main contributions of this research to the field of electrolytic capacitor 

condition monitoring are summarized as follows: 

 An experimental study has been conducted to evaluate the effect of aging of 

the electrolytic capacitors on the capacitor ripple voltage and current and 

concluded that capacitor ripple voltage is a good indicator of aging when 

loads are relatively constant. For varying loads, the ratio of ripple voltage to 

ripple current is a good indicator. 

 When capacitor ripple voltage and ripple current are not available, an 

alternative system modeling-based technique has been proposed to estimate 

the capacitor ripple voltage from the converter input current, and use this 

estimated ripple voltage as an indicator of aging. 
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 As another alternative, a new low cost real-time condition monitoring of 

electrolytic capacitors scheme has been proposed which estimates the ESR 

and C values in real-time (using a low-cost analog electronic circuit) and 

which can be used as an indicator of aging. 

 Research works listed above are useful to monitor the capacitor failure 

because of aging. A detailed analysis of the failure of an electrolytic capacitor 

due to sudden inrush current can has been evaluated to show that local hot 

spots are created which lead to a decrease in leakage resistance and eventually 

to quasi-short circuit. 

7.3 Recommendations for future research 

The purpose of a dissertation is to advance the science in a given field. After this 

objective is achieved, there is generally still much work remaining to implement this new 

knowledge into widespread application. Nevertheless, there is still additional work 

required to poise these new condition-monitoring schemes for application in industries. 

Some of the works that could initiate interesting research in the future are as follows: 

7.3.1 Investigating different kinds of non-stationary operation 

Most of the reported works in this dissertation are verified for a stationary system. 

The reported fault-monitoring scheme using parameter estimation in Chapter 5 can be 

used for non-stationary systems such as inverters with variable load. As explained in 

section 7.1.3, parameter estimation technique can be used for variable load conditions 

provided frequency of load variation is slow. However, further research is needed to 

classify different non-stationary system frequency-spectrum to develop a comprehensive 

electrolytic capacitor fault-monitoring scheme. A detailed analysis of non-stationary 
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system frequency-spectra provides an opportunity to use an inexpensive analog-circuit 

proposed in Chapter 5 to process the capacitor ripple voltage and ripple current to 

estimate the parameters of the capacitor in real-time. 

7.3.2 Condition monitoring using temperature 

 The majority of power electronics systems often contain several temperature 

monitoring devices. One more could be added to monitor the temperature of the 

capacitor. More research works are needed to investigate further whether there is a direct 

relationship between the changes in the capacitor ripple voltage and temperature of the 

capacitor. This will give an opportunity to use the method demonstrated in Chapter 3 

using measured temperature instead of capacitor ripple voltage, or a combination of the 

two. 

7.3.3 Relaxation of pulse weakened capacitor with DC bias voltage 

 As discussed in Chapter 6, the leakage-resistance of the capacitor increases if left 

for overnight to relax. An electrolytic capacitor has a self-healing property, and it will be 

interesting to investigate whether this damage in the capacitor is reversible or not, 

particularly if relaxation is done with a DC bias voltage. 

7.3.4 Expansion to other faults in the system 

As discussed in Chapter 4, various waveforms in a system are correlated with each other 

with varying degrees of correlation. Therefore, it may be possible to implement a fault-

monitoring scheme that can use an optimal number of signals to monitor the condition of 

various other components in a system.  
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APPENDIX B 

LTC 1968: PRECISION WIDE BANDWIDTH RMS-TO-DC 

CONVERTER 
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APPENDIX C 

WIDE BANDWIDTH PRECISION ANALOG MULTIPLIER 
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APPENDIX D 

BG2A: UNIVERSAL GATE DRIVE PROTOTYPE BOARD 
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