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SUMMARY

This research investigates wave propagation in an elastic half-space with a

quadratic nonlinearity in its stress-strain relationship. Different boundary conditions

on the surface are considered that result in both one- and two-dimensional wave

propagation problems. The goal of the research is to examine the generation of

second-order frequency effects and static effects which may be used to determine

the nonlinearity present in the material. This is accomplished by extracting the

amplitudes of those effects in the frequency domain and analyzing their dependency

on the third-order elastic constants (TOEC). For the one-dimensional problems, both

analytical approximate solutions as well as numerical simulations are presented. For

the two-dimensional problems, numerical solutions are presented whose dependency

on the material’s nonlinearity is compared to the one-dimensional problems. The

numerical solutions are obtained by first formulating the problem as a hyperbolic

system of conservation laws, which is then solved numerically using a semi-discrete

central scheme. The numerical method is implemented using the package CentPack.

In the one-dimensional cases, it is shown that the analytical and numerical solutions

are in good agreement with each other, as well as how different boundary conditions

may be used to measure the TOEC. In the two-dimensional cases, it is shown that

there exist comparable dependencies of the second-order frequency effects and static

effects on the TOEC. Finally, it is analytically and numerically investigated how

multiple reflections in a plate can be used to simplify measurements of the material

nonlinearity in an experiment.

xvii



CHAPTER I

INTRODUCTION

Ultrasonic measurement techniques have evolved into important tools for the nonde-

structive evaluation (NDE) of components in many fields of engineering. A recent,

significant application is the determination of a component’s remaining structural life

by quantitatively measuring its current damage-state.

While linear ultrasonic measurement techniques are usually applied to detect macro-

scopic damage such as cracks, they are not appropriate for measuring microscopic

damage; mainly because damage does not have a strong influence on a component’s

linear material properties as, for example, the Lamé constants. Thus, another mea-

surement technique is needed to detect microscopic fatigue damage that can develop

before any macroscopic damage arises. Such an early detection method is particularly

important for fatigue critical components. Therefore, nonlinear ultrasonic methods

have been considered to detect such fatigue damage. Here, the generation of “ad-

ditional” harmonics whose frequencies are integer multiples of the input signal’s fre-

quency is used to gain information on the damage-state of a component [10], [6]. This

generation of harmonics is in general due to a nonlinearity both in the stress-strain

relationship and the displacement-strain relationship of the material. A quadratic

nonlinearity in the stress-strain relationship can be expressed by the third-order elas-

tic constants (TOEC) which are also known as Murnaghan coefficients. In the recent

past, both experimental studies [10], [6], [8] and physical models [11] have shown that

fatigue damage is directly correlated to a nonlinearity parameter β which is a spe-

cific function of the TOEC. Therefore, an experimental determination of a material’s

nonlinearity from the additional harmonics generated can be used to measure the
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microscopic fatigue damage in a quantitative fashion. It should also be mentioned

that fatigue damage is not the only source for the presence of nonlinearity in a ma-

terial; there exist, for example, materials being naturally nonlinear such as rock or

sandstone.

An important prerequisite in any procedure to use nonlinear ultrasound to quantify

remaining structural life is the ability to the determine the TOEC of an in situ com-

ponent which will often result in the excitation of a complicated ultrasonic wave field.

Therefore, the focus of this research is on the analytical and numerical examination

of the relation between the TOEC and the nonlinear effects appearing in certain wave

fields in elastic solids.

The basic experimental approach that shall be reproduced with analytical and nu-

merical models looks as follows – a transducer is applied to the free surface of a

component and the particle velocity emerging at a certain position is measured. The

measured time signal is then analyzed in the frequency domain with an appropriate

signal processing in order to determine the amplitudes of the harmonics generated.

Note that the position selected for detection has a significant influence on the sig-

nal measured. Since these amplitudes are correlated to the TOEC, it is possible to

compute the TOEC of the material which carry the information about the current

damage-state of the material. Throughout this research, the geometry chosen as the

“component” is a half-space. Clearly, this is a relatively unrealistic scenario for an

experiment, but it is applied here in order to keep the analytical considerations and

numerical simulations as straightforward as possible. However, at the end of this

thesis, a plate-like geometry is also considered which is closer to an experimentally

realizable scenario. The transducer that is applied at the surface is modeled in differ-

ent ways which differ in their complexity. On the one hand, the transducer generates

either a pure pressure, a pure shear or a mixed traction. On the other hand, different
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shapes of the transducer are examined which correspond to different boundary condi-

tions at the surface which vary in their spatial dependency. Note that the transducer

is always modeled as a traction boundary condition because this approach is closer to

reality than prescribing the boundary condition in terms of the particle displacement

or the particle velocity.

The spatial form of the boundary condition determines the spatial dependency of the

wave field arising. In this research, only boundary conditions leading to one- or two-

dimensional wave fields are considered. However, only the one-dimensional ones are

investigated analytically for nonlinear materials because, to the author’s best knowl-

edge, no solution to the nonlinear two-dimensional problem is currently available.

These nonlinear approximate solutions have been derived by making use of the per-

turbation theory. It is shown that for an elastic material with quadratic nonlinearity

in its constitutive equation not only components with the frequency of the harmonic

excitation appear in the particle velocity field but also double-frequency and static

terms. Similar analytical derivations were presented in [22], [24], [26] or [5]. There, the

appearance of second-harmonic effects in the particle displacement due to a displace-

ment or velocity boundary condition is explained. Another analytical derivation with

a special focus on static effects occurring in nonlinear wave propagation is given in [7].

Moreover, since such static effects are an important aspect of this research, it shall be

pointed out that experiments investigating them have been conducted [25], [9], [20],

partly in recent past. Another aspect of this research is the reflection of an incident

plane wave at both a rigid and a stress-free boundary in a nonlinear material. An

analytical consideration of a reflection at a stress-free boundary is presented in [3].

The numerical investigation has been carried out with a simulation code that is based

on a numerical solver, CentPack [2], that has been adapted to the field of nonlinear

wave propagation in an elastic half-space by Küchler [12], [13]. CentPack is used here

to solve a hyperbolic system of conservation laws with a semi-discrete central scheme
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for a two-dimensional domain. A similar study on the numerical investigation of one-

dimensional nonlinear wave propagation has been previously presented in [18]. In

addition to the problems that have also been solved analytically as mentioned above,

two-dimensional problems are solved, including simulations where the traction ap-

plied to the half-space’s surface is either a uniform load, a line load or a transducer

model with a finite dimension.

This thesis is organized as follows – in Chapter 2, a brief survey of wave propagation

is given that shall introduce some general technical terms and explain general wave

phenomena. This is essential to understanding all of the subsequent chapters. In

Chapter 3, analytical (approximate) solutions to the one-dimensional problems inves-

tigated in this thesis are presented as well as a solution to the linear two-dimensional

problem. The latter one is given here because it is fundamental for the understanding

of the nonlinear two-dimensional problem. Chapter 4 gives an overview of the simu-

lation code that has been applied in order to obtain the numerical results presented

in this work. A short description of the numerical model and its computational im-

plementation is presented there. Additionally, major changes made to the original

code are outlined briefly. In Chapter 5, the results of the numerical simulations are

provided. Furthermore, they are discussed and compared to the analytical models

presented in Chapter 3. The last part of this thesis is Chapter 6 where final conclu-

sions are given.
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CHAPTER II

WAVE PROPAGATION IN ELASTIC SOLIDS

In this chapter, some fundamentals of wave propagation in elastic solids are provided.

These are important for the understanding of the subsequent chapters where the the-

ory of linear and nonlinear wave propagation in an elastic half-space will be presented.

At first, the governing differential equations describing dynamic elasticity are derived.

Therefore, several types of equations relating different field variables are presented

in the following. These will be combined in such a way that the resulting system of

partial differential equations is formulated only in terms of the displacement field.

2.1 Equations of Motion

The equations of motion for wave propagation in an elastic solid can be derived

by application of the principle of linear momentum to a three-dimensional free body.

This free body with volume V and surface S is supposed to be continuous. Its density

ρ may be a function of space and time. Here, both body forces b per unit mass and

traction t per unit area are considered. The situation is shown in Fig. 2.1. Thus, the

principle of linear momentum can be stated as
∫

S

t dS +

∫

V

ρ b dV =
d

dt

∫

V

ρv dV (2.1)

where v is the body’s velocity field. Introducing rectangular coordinates and index

notation, this can be restated as
∫

S

ti dS +

∫

V

ρbi dV =
d

dt

∫

V

ρvi dV. (2.2)

In Eq. (2.2), the traction can be expressed as

ti = σji nj (2.3)
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S

V

n

t dS

dS

dV

ρb dV

Figure 2.1: Balance of linear momentum.

where σji denotes the components of the stress tensor σ and nj represents the com-

ponents of the outward normal unit vector n of the body’s surface S. Application of

the divergence theorem to the surface integral and rearranging of all terms to the left

side, the momentum balance takes then the form

∫

V

[
∂σji

∂xj

+ ρbi − ρ
d2 ui

dt2

]

dV = 0 (2.4)

where the components of the displacement field u are related to the velocity field by

vi = dui

dt
. Since Eq. (2.4) is true for any arbitrary volume V , it can be stated for

each point that

∂σji

∂xj

+ ρbi − ρ
d2 ui

dt2
= 0. (2.5)

This formulation in index notation can be rewritten in a more compact form

σji,j + ρbi = ρ üi (2.6)

or in vector notation

∇ · σ + ρb = ρü. (2.7)
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Equations (2.6) are known as Cauchy’s Equations of Motion. It shall be pointed out

that, in a similar way, the symmetry of the stress tensor σ can be derived from the

moment of momentum principle. The derivation can be found in [16] or in [1].

2.2 Constitutive Equations

2.2.1 Linearly Elastic Solids

For a material with a linear relationship between stress and strain, the components

of the stress tensor σ are given by

σij = Cijkl εkl (2.8)

where εkl represents the components of the strain tensor that will be presented in the

following section. The components of the fourth-order tensor Cijkl are constant for a

homogeneous material, and according to [1], they can be expressed as

Cijkl = λδijδkl + µ (δikδjl + δilδjk) (2.9)

for an isotropic material. The material constants λ and µ are the second-order elastic

constants (or Lamé’s elastic constants). In this research, only homogeneous and

isotropic materials will be considered. Plugging Eq. (2.9) in Eq. (2.8) yields

σij = λεkkδij + 2µεij. (2.10)

2.2.2 Elastic Solids with Quadratic Nonlinearity

If third-order terms are to be considered in the relationship between the stress and

the strain, the internal energy density Γ can be used for the derivation since it is

σij =
∂Γ

∂ui,j

. (2.11)

In this case, according to [17], the internal energy density is given by

Γ =
λ+ 2µ

2
I2
1 − 2µI2 +

l + 2m

3
I3
1 − 2mI1I2 + nI3 (2.12)
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where l, m and n represent the third-order elastic constants which are also known as

Murnaghan coefficients. The terms I1, I2 and I3 denote the three invariants of the

strain tensor. They are defined as

I1 = εii,

I2 =

∣
∣
∣
∣
∣
∣
∣

ε22 ε23

ε32 ε33

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

ε33 ε31

ε13 ε11

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

ε11 ε12

ε21 ε22

∣
∣
∣
∣
∣
∣
∣

, (2.13)

I3 = det εij.

The strain tensor ε itself will be presented in more detail in the subsequent section.

2.3 Compatibility Equations

Finally, a relationship connecting the strain and the displacement in an elastic body is

needed. Since only small deformations and deformation gradients shall be considered

in this research, it is justified to use the so-called small strain in which geometric

nonlinearities are ignored. The small strain tensor ε is given by

ε =
1

2
(u∇ + ∇u) (2.14)

where higher-order terms are neglected and where u again is the displacement vector

field . In index notation, this is

εij =
1

2
(ui,j + uj,i) . (2.15)

2.4 Governing Equations for Wave Propagation

in a Linearly Elastic Solid

Now, Eqs. (2.6), (2.10) and (2.15) describe the problem of dynamic elasticity for an

linearly elastic material if geometric nonlinearity is neglected. They are formulated

in terms of the dependent field variables u, ε and σ. By plugging Eqs. (2.10) and

(2.15) in Eq. (2.6), the problem can be stated just in terms of the displacement u. In
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index notation, this is

µui,jj + (λ+ µ)uj,ji + ρfi = ρüi. (2.16)

Alternatively, this system of three coupled partial differential equations may be ex-

pressed in vector notation as

µ∇2u+ (λ+ µ)∇∇ · u+ ρf = ρü. (2.17)

Thus, Eq. (2.16), completed by an appropriate set of boundary conditions and initial

conditions, describes the problem of wave propagation in linearly elastic solids.

2.5 Displacement Potentials

Equations (2.16) and (2.17) have the considerable disadvantage that its three compo-

nents are coupled. A convenient approach to avoid this circumstance is to express the

components of the displacement vector in terms of the derivatives of some potential

functions. If body forces are not considered, Eq. (2.17) will become

µ∇2u+ (λ+ µ)∇∇ · u = ρü. (2.18)

In [1], it is suggested to apply the so-called Helmholtz decomposition to the displace-

ment vector. This decomposition has the form

u = ∇ϕ + ∇ ×ψ, (2.19)

where ϕ is a scalar function and ψ is a vector function. Plugging Eq. (2.19) in

Eq. (2.18) yields

µ∇2 [∇ϕ + ∇ ×ψ] + (λ+ µ)∇∇ · [∇ϕ + ∇ ×ψ]

= ρ
∂2

∂t2
[∇ϕ + ∇ ×ψ] .

(2.20)

With the vector identities ∇·∇ϕ = ∇2ϕ and ∇·∇×ψ = 0, this can be rearranged

so that

∇
[
(λ+ 2µ)∇2ϕ − ρϕ̈

]
+ ∇ ×

[

µ∇2ψ − ρψ̈
]

= 0. (2.21)
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Obviously, this means that Eq. (2.18) is satisfied if the equations

∇2ϕ =
1

c2l
ϕ̈ (2.22)

and

∇2ψ =
1

c2t
ψ̈ (2.23)

hold, where cl and ct are defined as

cl =

√

λ+ 2µ

ρ
and ct =

√
µ

ρ
. (2.24)

It should be mentioned that the Helmholtz decomposition in Eq. (2.19) relates the

three components of the displacement vector ui to one scalar potential ϕ and the

three components of the vector potential ψi. Clearly, an additional constraint to

these potentials has to be established in order to make the decomposition unique. In

[1], it is justified why the condition ∇ ·ψ = 0 is used in many cases.
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CHAPTER III

WAVE PROPAGATION IN AN ELASTIC

HALF-SPACE

In this chapter, analytical solutions for the wave fields arising in an elastic half-space

due to different boundary conditions are presented. A half-space is a half-infinite do-

main that has one boundary plane. In this research, all of the given presentations are

limited to both homogeneous and isotropic materials. Moreover, only small strain is

considered here, meaning that the relationship between displacement and strain is as-

sumed to be linear. However, the subsequent derivations are provided for two different

types of constitutive equations: a linear stress-strain relationship, and a stress-strain

relationship with quadratic nonlinearity. The boundary conditions applied can also

be divided into two different cases. The first case is a uniform traction on the the

entire boundary plane; both pressure and shear traction are considered. Since the

developing wave field will only depend on one spatial coordinate, this situation may

be considered as a one-dimensional problem. The second type of boundary condition

investigated is a uniform line traction on the surface of the half-space. Here, the aris-

ing displacement field will depend on two spatial coordinates so that this represents a

two-dimensional problem. Note that, for the case of nonlinear constitutive equations,

analytical solutions may not be available in a closed form without some restrictions.
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σxy = −Q2 F (t)

y, v

x, u

ρ, λ, µ

σyy = −Q1 F (t)

Figure 3.1: Half-space subjected to a uniform pressure and shear load.

3.1 Half-Space Subjected to a Uniform Surface

Traction

3.1.1 Linear Stress-Strain Relationship

The first and simplest case considered in this chapter is a half-space y ≥ 0 subjected

to a uniform surface traction. Here, the more general case of both pressure and shear

traction applied to the surface is considered. For now, the stress-strain relationship of

the half-space’s material is chosen to be linear, as given by Eq. (2.8). This situation is

shown in Fig. 3.1 where, for convenience, the notation u and v for the displacements

and x and y for the coordinates was introduced instead of the more general notation ui

and xi that was used in the previous chapter. The boundary condition for this case

can be formulated as

σyy(x, y = 0, t) = −Q1 F (t) (3.1)

σxy(x, y = 0, t) = −Q2 F (t) (3.2)

where Q1 and Q2 are the traction amplitudes and F (t) is a dimensionless shape

function of time with F (t) = 0 for t < 0. Since it is always possible to orient the

coordinate system in a way that the uniform shear traction is directed to one of the

axial directions (x-direction in this case), it is assumed without loss of generality
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y, v

x, u

ρ, λ, µ

σyy = −Q1 F (t)
σxy = −Q2 F (t)

y, v

x, u

ρ, λ, µ

Figure 3.2: Half-space subjected to uniform pressure load (left) and half-space
subjected to uniform shear load (right).

that the second shear traction on the surface vanishes. The initial condition for this

problem is that the half-space is assumed to be initially at rest.

However, for the derivation of the analytical solution to the developing wave field,

the problem is divided into two simpler problems. These problems will be solved

separately and the solutions found will be superposed what is possible because of the

linearity of the entire problem presented in this section. Note that this approach would

be inappropriate for the problems including a nonlinear stress-strain relationship that

will be considered later on. Here, linearity means that the equations of motion, the

compatibility equations and the constitutive equations are all linear. Figure 3.2 shows

how the initial problem is split into the two simpler problems.

3.1.1.1 Half-Space Subjected to a Uniform Pressure Load

At first, only the pressure boundary condition is considered, as shown on the left

side of Fig. (3.2). The solution to this problem is based on that one given by [1].

According to Eq. (3.1), the boundary condition is given by

σyy(x, y = 0, t) = −Q1 F (t) (3.3)

σxy(x, y = 0, t) = 0 (3.4)

where F (t) = 0 for t < 0. Obviously, every plane that is parallel to the y-axis has to

be a plane of symmetry because the boundary condition has no spatial dependency.

However, this means that displacements u in x-direction and w in z-direction vanish
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and only displacements v in the y-direction are possible. Moreover, since this a one-

dimensional problem, it is v = v(y, t). Equivalently, all of the other field variables

can only be functions of y and t. Using this insight, the equations of motion (2.6)

reduce to one equation for the displacement v (equivalent to u2) that can be written

in the absence of body forces as

ρ
∂2v

∂t2
=

∂σyy

∂y
. (3.5)

Accordingly, the linear compatibility equations (2.15) reduce to

εyy =
∂v

∂y
(3.6)

and the only stress component needed here, σyy, can be stated from (2.10) as

σyy = (λ+ 2µ) εyy. (3.7)

Plugging Eqs. (3.6) and (3.7) in Eq. (3.5) yields the equation of motion in terms of

the displacement v

∂2v

∂y2
=

1

c2l

∂2v

∂t2
(3.8)

where c l is defined as in Eq. (2.24).

The initial conditions may be expressed in terms of the displacement v in the bulk of

the half-space as

v(y, t = 0) = 0

v̇(y, t = 0) = 0







for y > 0. (3.9)

The general solution to the partial differential equation (3.8) is derived in [1] and can

easily be verified by inserting to be

v(y, t) = f

(

t−
y

c l

)

+ g

(

t+
y

c l

)

(3.10)

where f(·) and g(·) are two arbitrary functions which can be determined for a specific

problem by the application of both the initial and the boundary conditions. Thus,
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inserting in (3.9) yields

f

(

−
y

c l

)

+ g

(
y

c l

)

= 0

f ′

(

−
y

c l

)

+ g′
(
y

c l

)

= 0







for y > 0. (3.11)

Here, primes mean differentiations with respect to the argument of the respective

function. Now, differentiation of the first equation in (3.11) with respect to the

argument y

c l
yields a system of equations that is linear in f ′ and g′, that is

−f ′

(

−
y

c l

)

+ g′
(
y

c l

)

= 0

f ′

(

−
y

c l

)

+ g′
(
y

c l

)

= 0







for y > 0. (3.12)

Clearly, solving (3.12) leads to

f ′

(

−
y

c l

)

= 0

g′
(
y

c l

)

= 0







for y > 0. (3.13)

Integrating these expressions with respect to their arguments and making use of the

first equation in (3.11) yields the result

f

(

−
y

c l

)

= −g

(
y

c l

)

= A for y > 0 (3.14)

where A is a constant that still has to be determined from the boundary condition.

Now, considering only the situation t ≥ 0 and y > 0, the general solution to the

displacement v given by Eq. (3.10) may be split into two time intervals t > y

c l
and

t < y

c l
as

v(y, t) =







f
(

t− y

c l

)

− A for t > y

c l

0 for t < y

c l
.

(3.15)

This is possible since, here, the term t + y

c l
is always positive and thus, the term

g
(

t+ y

c l

)

is always equal to −A according to Eq. (3.14). Beyond that, the argument
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t − y

c l
is negative for t < y

c l
so that f

(

t− y

c l

)

is equal to A, also according to

Eq. (3.14). It is already possible to conclude from this intermediate result that any

material particle located at y = ȳ remains in its undisturbed position until the

wavefront traveling with the wave speed c l arrives at the time t̄ = ȳ

c l
.

Using Eq. (3.15) for times t > y

c l
to evaluate the boundary condition (3.3) at y = 0

yields

−
λ+ 2µ

c l

f ′(t) = −Q1 F (t). (3.16)

From this, it can be found by integration that

f

(

t−
y

c l

)

− f(0)
︸︷︷︸

B

=
c lQ1

λ+ 2µ

∫ s = t− y

c l

s = 0

F (s) ds. (3.17)

The unknown constant B can be determined by a comparison to Eq. (3.14). Consid-

ering t = 0, the integral in the equation above vanishes since the integrand F (s) is

zero for s < 0 (according to the definition of the boundary condition) and obviously,

it has to be B = A. This result can now be plugged into Eq. (3.15), yielding

v(y, t) =
c lQ1

λ+ 2µ

∫ s = t− y

c l

s = 0

F (s) ds. (3.18)

It shall be mentioned that the case differentiation of Eq. (3.15) is no longer needed

because the integral vanishes automatically for the case t < y

c l
.

The corresponding particle velocity v̇(y, t) is easily found by differentiation of the

particle displacement v with respect to time to be

v̇(y, t) =
c lQ1

λ+ 2µ
F

(

t−
y

c l

)

. (3.19)

3.1.1.2 Half-Space Subjected to a Uniform Shear Load

Now, only the shear boundary condition is considered, as shown on the right side

of Fig. 3.2. The solution to this problem is very similar to that one shown for the
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pressure load. Thus, only an abbreviated derivation will be presented in the following.

According to Eq. (3.1), the boundary condition is now given by

σyy(x, y = 0, t) = 0 (3.20)

σxy(x, y = 0, t) = −Q2 F (t) (3.21)

where F (t) is the same time signal as for the pressure load. Again, it is F (t) = 0 for

t < 0. Obviously, for this specific case, every plane that is parallel to the xy-plane is

a plane of symmetry. This implies that the displacement w in the z-direction has to

vanish.

Again, as in the above case for the pressure load, this problem is a one-dimensional

problem since the stated boundary condition does not depend on the coordinates x

or z. This means that every field variable can only be a function of y and t, including

the displacements u = u(y, t) and v = v(y, t). Application of this knowledge reduces

the displacement equations of motion (2.16) in the absence of body forces to the two

uncoupled partial differential equations, one for each considered displacement

∂2v

∂y2
=

1

c2l

∂2v

∂t2
(3.22)

∂2u

∂y2
=

1

c2t

∂2u

∂t2
(3.23)

where c l and c t are defined as in Eq. (2.24). Again, for t < 0, the half-space shall be

at rest so that the respective initial conditions can be formulated as

v(y, t = 0) = v̇(y, t = 0) = 0

u(y, t = 0) = u̇(y, t = 0) = 0







for y > 0. (3.24)

The solution for the displacement v in the y-direction follows exactly the derivation

given in Section 3.1.1.1 until the boundary condition is applied in Eq. (3.16). Of

course, in the present case, the new boundary condition (3.20) has to be used instead.
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Its evaluation for times t > y

c l
at y = 0 yields

−
λ+ 2µ

c l

f ′(t) = 0 or

f ′(t) = 0. (3.25)

Integration with fixed boundaries provides

f

(

t−
y

c l

)

− f(0)
︸︷︷︸

B

=

∫ s = t− y

c l

s = 0

0 ds = 0. (3.26)

If this term is evaluated for t = 0 and compared to Eq. (3.14) which still applies

since the initial conditions have remained unchanged, it becomes obvious that B = A.

Thus, plugging f
(

t− y

c l

)

= A in Eq. (3.15) yields the final result

v(y, t) = 0 for y > 0 (3.27)

meaning that the shear boundary condition does not create any displacement in the

direction of the propagation which is not very surprising. Moreover, it is of course

v̇(y, t) = 0 for y > 0. (3.28)

Now, the displacement u parallel to the free surface which is described by the partial

differential equation (3.23) shall be investigated. It shall be mentioned that the same

approach used above may be chosen to derive the solution to the other displacement u.

However, this problem is very similar to the case of the pressure load on the surface.

Actually, there are only some minor differences in the problem statement compared

to the case of the pressure boundary condition:

1. The field variable in Eq. (3.23) is the displacement u instead of the displace-

ment v in Eq. (3.8).

2. The transverse wave speed c t in Eq. (3.23) replaces the longitudinal wave

speed c l which was used in Eq. (3.8).
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3. The boundary condition is now formulated in terms of σxy instead of σyy. The

stress σxy is related to the displacement u by σxy = µ ∂u
∂y

(compare to Eqs. (3.6)

and (3.7)).

4. The stress amplitude factor of the shear boundary condition is called Q2, while

the respective factor corresponding to the pressure boundary condition was

denoted as Q1.

Thus, the solution to the partial differential equation can be directly written by

analogy to Eq. (3.18). This is

u(y, t) =
c tQ2

µ

∫ s = t− y

c t

s =0

F (s) ds (3.29)

u̇(y, t) =
c tQ2

µ
F

(

t−
y

c t

)

. (3.30)

3.1.1.3 Half-Space Subjected to a Uniform Pressure and a Uniform Shear Load

As mentioned earlier, the solution to the initial problem including both pressure and

shear traction on the surface of the half-space (see Fig. 3.1) can be obtained by

the superposition of the results for the two separated boundary conditions. This is

possible because of the linearity of the investigated problem. Thus, the entire solution

to the particle displacement field arising in a linear elastic half-space that is subjected

to the boundary conditions (3.1) and (3.2) and that is initially at rest is given by

u(y, t) =
c tQ2

µ

∫ s = t− y

c t

s = 0

F (s) ds (3.31)

v(y, t) =
c lQ1

λ+ 2µ

∫ s = t− y

c l

s = 0

F (s) ds (3.32)

w(y, t) = 0. (3.33)

The corresponding particle velocity field is

u̇(y, t) =
c tQ2

µ
F

(

t−
y

c t

)

(3.34)

v̇(y, t) =
c lQ1

λ+ 2µ
F

(

t−
y

c l

)

(3.35)

ẇ(y, t) = 0. (3.36)
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Clearly, this solution represents a plane elastic wave traveling in the positive y-

direction. All field variables depend spatially only on the y-position. Exemplarily,

these formulae are evaluated for a sinusoidal input signal F (t) starting at t = 0, as

given by

F (t) =







sin(ω t) for t ≥ 0

0 for t < 0

(3.37)

where ω = 2πf and f is the excitation frequency. Then, the expressions for the

non-vanishing particle displacements and velocities become

u(y, t) =







Q2

k t µ
[1 − cos (ωt− k ty)] for t ≥ y

c t

0 for t < y

c t

(3.38)

v(y, t) =







Q1

k l (λ+ 2µ)
[1 − cos (ωt− k ly)] for t ≥ y

c l

0 for t < y

c l

(3.39)

u̇(y, t) =







c tQ2
µ sin (ωt− k ty) for t ≥ y

c t

0 for t < y

c t

(3.40)

v̇(y, t) =







c lQ1

λ+ 2µ
sin (ωt− k ly) for t ≥ y

c l

0 for t < y

c l

(3.41)

where k l and k t denote the longitudinal and the transverse wavenumber.

Finally, the solution to the corresponding steady-state problem is presented here. Al-

though this problem is more trivial than the transient one solved above and although

the numerical solutions presented later in this thesis are transient, it is justified to

show these solutions because they will be the base for the nonlinear stead-state solu-

tion derived in the next section.
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Now, the boundary conditions applying are given by

σyy(x, y = 0, t) = −Q1 sin(ωt) (3.42)

σxy(x, y = 0, t) = −Q2 sin(ωt) (3.43)

for all t and the initial condition is that a steady-state has been reached. It is easy

to show that the solutions to the displacement become

u1(y, t) = −
Q2

k tµ
cos(ωt− k ty) + U1 (3.44)

v1(y, t) = −
Q1

k l(λ+ 2µ)
cos(ωt− k ly) + V1 (3.45)

and the solutions to the particle velocity are

u̇1(y, t) =
c tQ2

µ
sin (ωt− k ty) (3.46)

v̇1(y, t) =
c lQ1

λ+ 2µ
sin (ωt− k ly) . (3.47)

The difference compared to the transient solution is that there is no effect of wave

fronts traveling and that the displacements include arbitrary constant terms U1 and V1,

respectively.

3.1.2 Stress-Strain Relationship Including a Quadratic Nonlinearity

In this section, the half-space is subjected to the same boundary conditions (3.42)

and (3.43) as above, but now, the constitutive equations describing the half-space’s

material are assumed to be nonlinear. More specifically, the quadratic terms occurring

in the stress-strain relationship shall be taken into account in this section. The

situation is depicted in Fig. 3.3. It has to be mentioned that the subsequent derivation

will be limited to the steady-state solution in order to keep the nonlinear solution as

simple as possible. The derivation presented in the following is based on [22]. The

solution to the present nonlinear problem will have some similarities with the solution

to the linear problem presented in the previous section. At first, the solution has to

be again a plane wave traveling in the y-direction because the problem statement is
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σxy = −Q2 sin(ωt)

y, v

x, u

ρ, λ, µ, l, m, n

σyy = −Q1 sin(ωt)

Figure 3.3: Nonlinear half-space subjected to a uniform harmonic pressure and
shear load.

independent on the spatial coordinates x and z. This is the result of the boundary

condition that is uniform on the whole surface of the half-space. Moreover, because of

the symmetry of the half-space and the boundary conditions applied, there cannot be

any particle displacement in the z-direction, this is w(y, t) = 0. It shall be pointed

out that the displacement-strain relationship is still linear as given by Eq. (2.15).

However, the nonlinear constitutive equations have to be derived according to (2.11)

from the expression for the internal elastic energy density (2.12) which accounts for

terms up to cubic order. In the present case, this expression can be simplified because

some of the terms u i,j vanish because of the relatively simple geometry of this problem.

Being more specific, this is because the displacement w vanishes as depicted above

and because this is a one-dimensional problem what means that only the spatial

derivatives with respect to y do not vanish. Thus, only the terms ∂u
∂y

and ∂v
∂y

in u i,j

remain. Moreover, it can now be recognized from the compatibility equations (2.15)

that εxy and εyy are the only strains that do not disappear. With this knowledge, the

internal elastic energy density can be rewritten as

Γ =
λ+ 2µ

2
ε2

yy + 2µ ε2
xy +

l + 2m

3
ε3

yy + 2mεyy ε
2
xy. (3.48)
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Plugging in the applying displacement-strain relationships (2.15) yields

Γ =
λ+ 2µ

2

(
∂v

∂y

)2

+
µ

2

(
∂u

∂y

)2

+
l + 2m

3

(
∂v

∂y

)3

+
m

2

∂v

∂y

(
∂u

∂y

)2

. (3.49)

The governing equations for this problem are the same ones as for the linear prob-

lem (2.6). For the two non-vanishing displacements u and v, they reduce in the

absence of body forces to

ρ
∂2u

∂t2
=

∂σxy

∂y
(3.50)

ρ
∂2v

∂t2
=

∂σyy

∂y
. (3.51)

Therefore, the stresses σxy and σyy have to be computed now from (3.49) using

Eq. (2.12). This yields

σxy =
∂Γ

∂
(

∂u
∂y

) = µ
∂u

∂y
+ m

∂u

∂y

∂v

∂y
(3.52)

σyy =
∂Γ

∂
(

∂v
∂y

) = (λ+ 2µ)
∂v

∂y
+ (l + 2m)

(
∂v

∂y

)2

+
m

2

(
∂u

∂y

)2

. (3.53)

These nonlinear constitutive equations are inserted into Eqs. (3.50) and (3.51) what

results in the nonlinear displacement equations of motion

∂2u

∂t2
− c2t

∂2u

∂y2
= γ

∂

∂y

(
∂u

∂y

∂v

∂y

)

(3.54)

∂2v

∂t2
− c2l

∂2v

∂y2
= β

∂v

∂y

∂2v

∂y2
+
γ

2

∂

∂y

(
∂u

∂y

)2

(3.55)

where c l and c t are defined as usual and the constants β and γ are given by

β =
2 (l + 2m)

ρ
(3.56)

γ =
m

ρ
. (3.57)

Clearly, Eqs. (3.54) and (3.55) reduce to the linear displacement equations of mo-

tion (3.22) and (3.23) for β = γ = 0. Thus, the right sides may be considered

as nonlinear correction terms that distinguish between the linear and the nonlinear
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problem. An important difference between (3.54) and (3.55) shall be pointed out

here: the right side of (3.54) differs from the linear problem only if both longitudinal

and transverse displacements exist what means, for example, that the solution to the

transverse displacement u for a plane wave created by a pure shear boundary condi-

tion would be identical in the linear and the nonlinear case. On the other hand, the

nonlinear contribution on the right side of (3.55) contains a longitudinal and trans-

verse term which are independent of each other.

An approximate solution to the partial differential equations (3.54) and (3.55) can

be derived making use of the perturbation theory. This means that the nonlinear

solution to the displacements u and v is assumed to have the following form,

u(y, t) = u1(y, t) + u2(y, t) (3.58)

v(y, t) = v1(y, t) + v2(y, t) (3.59)

where u1 and v1 are the solutions to the corresponding linear problem, while u2

and v2 are additive nonlinear corrections. The linear solutions to the displacements

have been derived in the previous section and are stated by Eqs. (3.44) and (3.45).

The approach (3.58), (3.59) can now be inserted into the displacement equations of

motion

∂2u1

∂t2
+
∂2u2

∂t2
− c2t

∂2u1

∂y2
− c2t

∂2u2

∂y2

= γ
∂

∂y

[(
∂u1

∂y
+
∂u2

∂y

) (
∂v1

∂y
+
∂v2

∂y

)]

(3.60)

∂2v1

∂t2
+
∂2v2

∂t2
− c2l

∂2v1

∂y2
− c2l

∂2v2

∂y2

= β

(
∂v1

∂y
+
∂v2

∂y

) (
∂2v1

∂y2
+
∂2v2

∂y2

)

+
γ

2

∂

∂y

(
∂u1

∂y
+
∂u2

∂y

)2

. (3.61)

These longish equations can be rewritten in a simplified form. First, all terms on

the left sides containing the partial solution u1 (or v1, respectively) cancel out each

other according to Eq. (3.23) (or (3.22), respectively). Furthermore, since small
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displacements are assumed throughout this research, it is a reasonable approximation

to neglect the small nonlinear correction terms u2 and v2 on the right sides that

appear in a sum with the remaining much larger terms u1 and v1. This yields the

simplified displacement equations of motion

∂2u2

∂t2
− c2t

∂2u2

∂y2
= γ

∂

∂y

(
∂u1

∂y

∂v1

∂y

)

(3.62)

∂2v2

∂t2
− c2l

∂2v2

∂y2
=

β

2

∂

∂y

(
∂v1

∂y

)2

+
γ

2

∂

∂y

(
∂u1

∂y

)2

. (3.63)

In this simpler form, the two partial differential equations for u2 and v2, respectively,

are independent of each other. The right sides turn out to be perturbation functions

which are known since they contain only the solutions to the corresponding linear

problem u1 and v1. The neglecting of the correction terms on the right sides mentioned

is equivalent to using the subsequent simplified constitutive equations,

σxy = µ
∂u1

∂y
+ µ

∂u2

∂y
+ m

∂u1

∂y

∂v1

∂y
(3.64)

σyy = (λ+ 2µ)
∂v1

∂y
+ (λ+ 2µ)

∂v2

∂y

+ (l + 2m)

(
∂v1

∂y

)2

+
m

2

(
∂u1

∂y

)2

, (3.65)

where the expressions combining the third-order elastic constants and the higher-

order displacement correction terms are disregarded. Equations (3.62) and (3.63)

can be solved if the boundary conditions given by Eqs. (3.42) and (3.43). Note that

only the steady-state problem is considered in this nonlinear case. In contrast to the

different solutions to the linear problem in the previous section where it has been

distinguished whether the wave fronts have already arrived at a specific point of the

domain or not, the solution derived here will be only valid for the so-called steady

state. More specifically, this means that all of the waves appearing are supposed

to have already arrived at a respective point of consideration. The reason for this

proceeding is to keep the derivation following as simple and clear as possible.
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The complete solution to each of the two considered partial differential equations (3.62)

and (3.63) is the superposition of the respective general solution to the homogeneous

partial differential equation and a particular solution fulfilling the inhomogeneous

equation. The general solution to the homogeneous one-dimensional wave equation

has been already presented in Eq. (3.10). However, its second term describing waves

traveling in negative direction is discarded here a priori for reasons of plausibility.

The complete solution is presented without a more detailed mathematical derivation

as

u2(y, t) = f1

(

t−
y

c t

)

+ C1 sin ( 2ωt− (k l + k t) y)

−C2 sin ((k t − k l) y) (3.66)

C1 =
γ Q1Q2 (k l + k t)

6 (λ+ 2µ) µk2
l

(
c t

3
+ c l

)
(c l − c t)

(3.67)

C2 =
γ Q1Q2 (k t − k l)

2 (λ+ 2µ) µk2
l (c l − c t)

2 (3.68)

v2(y, t) = f2

(

t−
y

c l

)

+ C3 y cos (2 (ωt− k ly))

+C4 sin ((k t − k l) y) cos (2ωt− (k t + k l) y) (3.69)

C3 =
β Q2

1

8 c2l (λ+ 2µ)2 (3.70)

C4 =
γ Q2

2

4 k tµ2 (c2l − c
2
t)
. (3.71)

Clearly, the arbitrary functions f1 and f2 still have to be determined from the bound-

ary conditions. Using Eqs. (3.64) and (3.65), these can be stated as

[

µ
∂u1

∂y
+ µ

∂u2

∂y
+ m

∂u1

∂y

∂v1

∂y

]

y=0

= −Q2 sin(ωt) (3.72)

[

(λ+ 2µ)
∂v1

∂y
+ (λ+ 2µ)

∂v2

∂y
+ (l + 2m)

(
∂v1

∂y

)2

+

+
m

2

(
∂u1

∂y

)2
]

y=0

= −Q1 sin(ωt). (3.73)
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However, the linear solutions u1 and v1 have been already required in the previous

derivation to fulfill the boundary conditions considered what means

[

µ
∂u1

∂y

]

y=0

= −Q2 sin(ωt) (3.74)

[

(λ+ 2µ)
∂v1

∂y

]

y=0

= −Q1 sin(ωt). (3.75)

Thus, the nonlinear boundary conditions can be reduced by plugging in the linear

boundary conditions to

[

µ
∂u2

∂y
+ m

∂u1

∂y

∂v1

∂y

]

y=0

= 0 (3.76)

[

(λ+ 2µ)
∂v2

∂y
+ (l + 2m)

(
∂v1

∂y

)2

+
m

2

(
∂u1

∂y

)2
]

y=0

= 0. (3.77)

The unknown functions f1 and f2 can now be determined from these boundary con-

ditions by inserting the complete solutions (3.66) and (3.69). The results are

f1

(

t−
y

c t

)

= −C5 sin (2 (ωt− k ty)) + U2 (3.78)

C5 =
γ Q1Q2k t

3k2
lµ (λ+ 2µ)

(
c t

3
+ c l

)
(c l − c t)

(3.79)

f2

(

t−
y

c l

)

= −C7 sin (2 (ωt− k ly)) + C8

(

t−
y

c l

)

+ V2 (3.80)

C7 =
β Q2

1

16k lc2l (λ+ 2µ)2 +
γ Q2

2 (k t − k l)

8µ2k2
t (c2l − c

2
t)

(3.81)

C8 =
β Q2

1

4c l (λ+ 2µ)2 +
γ Q2

2

4c lµ2
(3.82)

where U2 and V2 are arbitrary constant displacements. The total steady-state solu-

tion to the displacements in the nonlinear half-space considered arising due to the

harmonic traction boundary condition is according to the approximation given by
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Eqs. (3.58) and (3.59)

u(y, t) = −
Q2

k tµ
cos (ωt− k ty) − C5 sin (2 (ωt− k ty))

+C1 sin (2ωt− (k l + k t)y) − C2 sin ((k t − k l)y) + U (3.83)

v(y, t) = −
Q1

k l(λ+ 2µ)
cos (ωt− k ly) − C7 sin (2 (ωt− k ly))

+C8

(

t−
y

c l

)

+ C3 y cos (2 (ωt− k ly))

+C4 sin ((k t − k l)y) cos (2ωt− (k t + k l)y) + V (3.84)

where the arbitrary constant displacement terms U = U1 +U2 and V = V1 + V2 have

been introduced. To conclude this derivation, the corresponding particle velocities

are stated as

u̇(y, t) =
c tQ2

µ
sin (ωt− k ty) − 2ω C5 cos (2 (ωt− k ty))

+ 2ω C1 cos (2ωt− (k l + k t)y) (3.85)

v̇(y, t) =
c lQ1

λ+ 2µ
sin (ωt− k ly) − 2ω C7 cos (2 (ωt− k ly))

+C8 − 2ω C3 y sin (2 (ωt− k ly))

− 2ω C4 sin ((k t − k l)y) sin (2ωt− (k t + k l)y) . (3.86)

Finally, some remarks concerning the validity of the analytical solutions derived shall

be given. Unfortunately, there are some restrictions since several assumptions have

been made in the process of the derivation. First of all, the solutions presented rep-

resent only the relatively easy case of an steady state. This means that it is only

valid at a specific point of the domain considered if all of the waves involved have

arrived this point and the respective wave fronts have already reached a sufficiently

large distance from it. Clearly, one has to consider this fact if the analytical solutions

stated are to be used to interpret wave fields arising due to an input signal that has

not infinite length. Another point that should be recalled is the circumstance that

only the small strain tensor has been applied instead of the finite strain tensor. As

described in Section 2.3, this approach is, of course, only valid if only sufficiently
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small strains occur in the domain considered. This can be made sure if the traction

amplitudes Q1 and Q2 applied at the boundary are limited to an appropriate value.

Another restriction has been imposed on the solutions derived by making use of the

perturbation approach in Eqs. (3.58) and (3.59). This approach inherently implies

that the nonlinear solution is basically close to the linear one except of specific cor-

rection terms which are assumed to be small compared to the linear solution. Thus,

it has to be concluded that the approximate solutions derived are only close to the

actual wave field developing as long as the correction terms u2 and v2 are actually

very small compared to u1 and v1, respectively. However, if the correction terms reach

orders of magnitude that cannot be considered small compared to the linear solutions

anymore, the perturbation solution will probably a bad approximation to the actual

wave field. This problem can be avoided if the input traction amplitudes Q1 and Q2

are chosen to be sufficiently small because all of the terms occurring in u2 and v2

depend quadratically on the traction amplitudes. Thus, it can always be guaranteed

that the correction terms are small compared to the linear solution by an appropriate

choice of the input parameters but clearly, in a practical problem, it will not be pos-

sible to decrease Q1 and Q2 arbitrarily because this would lead to low signal-to-noise

ratios both in experiments and simulations. Thus, it has to be kept in mind that

the nonlinear solutions derived in this section are just approximate solutions that are

only valid for certain circumstances.

3.2 Half-Space Subjected to a Uniform Line Load

3.2.1 Linear Stress-Strain Relationship

In this section, wave propagation in an elastic half-space is investigated that is excited

by a line load as depicted in Fig. 3.4, where F (t) may be an arbitrary dimensionless

function of time and Q an amplitude stress. In this case, the line load generates a

deformation in plane strain. Therefore, this is a two-dimensional problem and the
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σyy = −QF (t)

y, v

x, u

z, w

Figure 3.4: Half-space subjected to line load.

solution will not depend on the coordinate z. For convenience, the notation will be

adapted to the coordinate system shown in Fig. 3.4 which was also done in the pre-

vious sections. Thus, the displacements in x- and y-direction will be denoted again

u(x, y, t) and v(x, y, t), respectively, instead of u1(x1, x2, t) and u2(x1, x2, t). Corre-

sponding notation is applied to the other field variables. Obviously, the boundary

conditions for this problem are given by

σyy(x, y = 0, t) = −QF (t)δ(x) (3.87)

σxy(x, y = 0, t) = σyx(x, y = 0, t) = 0. (3.88)

The half-space is assumed to be initially at rest which means that the initial conditions

can be stated as

u(x, y, t = 0) = v(x, y, t = 0) = 0 (3.89)

u̇(x, y, t = 0) = v̇(x, y, t = 0) = 0. (3.90)
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In the linear case, that is, if both material and geometric nonlinearities are neglected,

this problem was analytically solved by H. Lamb in a very detailed manner [15]. Thus,

it is also known as Lamb’s problem and its solution can be also found in [19] or [1]. A

short version of that solution will be given in the following part of this chapter. The

analytical solution to the linear case begins with the governing equations (2.7) that

can be rewritten for the two-dimensional case in absence of body forces as

∂σxx

∂x
+
∂σyx

∂y
= ρü (3.91)

∂σxy

∂x
+
∂σyy

∂y
= ρv̈ (3.92)

Plugging in Hooke’s law (2.10) and the linear strain-displacement relationship (2.14)

yields

µ

(
∂2u

∂x2
+
∂2u

∂y2

)

+ (λ+ µ)

(
∂2u

∂x2
+

∂2v

∂x∂y

)

= ρü (3.93)

µ

(
∂2v

∂x2
+
∂2v

∂y2

)

+ (λ+ µ)

(
∂2u

∂x∂y
+
∂2v

∂y2

)

= ρv̈. (3.94)

These two coupled partial differential equations can now be separated by applying

the Helmholtz decomposition presented in Eq. (2.19). In this case of plane strain, the

displacement potentials take the simpler form

ϕ = ϕ(x, y, t) and ψ =









0

0

ψ(x, y, t)









(3.95)

so that no additional constraint is necessary (see Section 2.5). The result yields the

two uncoupled partial differential equations in terms of the displacement potentials

∂2ϕ

∂x2
+
∂2ϕ

∂y2
=

1

c2l

∂2ϕ

∂t2
(3.96)

∂2ψ

∂x2
+
∂2ψ

∂y2
=

1

c2t

∂2ψ

∂t2
. (3.97)

The goal of this chapter is a relatively quick solution to these differential equations

using the initial and boundary conditions stated above. This solution is based on

that one given in [19] where additional information may be found.
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3.2.2 Transformed Solution

The first step of the presented solution is the application of the one-sided Laplace

transformation to Eqs. (3.96) and (3.97) with respect to the time variable t. The

Laplace transform and its inverse are given by

f̄(p) =

∞∫

0

f(t) e−pt dt (3.98a)

f(t) =
1

2πi

γ + i∞∫

γ − i∞

f̄(p) ept dp. (3.98b)

It should be mentioned that p is a complex variable in general. This yields

∂2ϕ̄

∂x2
+
∂2ϕ̄

∂y2
=

1

c2l
p2ϕ̄ (3.99)

∂2ψ̄

∂x2
+
∂2ψ̄

∂y2
=

1

c2t
p2ψ̄, (3.100)

where ϕ̄ = ϕ̄(x, y, p) and ψ̄ = ψ̄(x, y, p). It was used that ϕ(x, y, t = 0) = ϕ̇(x, y, t =

0) = 0 and ψ(x, y, t = 0) = ψ̇(x, y, t = 0) = 0 what is true since the initial condi-

tions (3.89) have to be satisfied.

Now, the exponential Fourier transform is applied to the obtained result with respect

to the spatial coordinate x. The definition of the Fourier transform used here and its

inverse are given by

f̂(ξ) =

∞∫

−∞

f(x) e−iξx dx (3.101a)

f(x) =
1

2π

∞∫

−∞

f̂(ξ) eiξx dξ (3.101b)

where the transformation variable ξ is real. The double-transformed equations

−ξ2 ˆ̄ϕ+
∂2 ˆ̄ϕ

∂y2
=

1

c2l
p2 ˆ̄ϕ (3.102)

−ξ2 ˆ̄ψ +
∂2 ˆ̄ψ

∂y2
=

1

c2t
p2 ˆ̄ψ, (3.103)
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where ˆ̄ϕ = ˆ̄ϕ(ξ, y, p) and ˆ̄ψ = ˆ̄ψ(ξ, y, p) are obtained using the fact that

lim
x→∞

ϕ̄→ 0, lim
x→∞

∂ϕ̄

∂x
→ 0

and lim
x→∞

ψ̄ → 0, lim
x→∞

∂ψ̄

∂x
→ 0.

Equations (3.102) and (3.103) represent two ordinary linear differential equations and

can be rewritten as

∂2 ˆ̄ϕ

∂y2
−

α2
l

︷ ︸︸ ︷(

ξ2 +
p2

c2l

)

ˆ̄ϕ = 0 (3.104)

∂2 ˆ̄ψ

∂y2
−

(

ξ2 +
p2

c2t

)

︸ ︷︷ ︸

α2
t

ˆ̄ψ = 0. (3.105)

The complete solutions to these two differential equations can be easily found to be

ˆ̄ϕ (ξ, y, p) = A(ξ, p) e−αl y + C(ξ, p) eαl y (3.106)

ˆ̄ψ (ξ, y, p) = B(ξ, p) e−αt y + D(ξ, p) eαt y (3.107)

where the terms A(ξ, p), B(ξ, p), C(ξ, p) and D(ξ, p) still have to be determined from

the boundary conditions. From here on, for convenience, these terms will be just

denoted as A,B,C and D.

However, in this case, it is sufficient to consider only real and positive values for the

Laplace transformation variable p so that it is possible to select only the real and

positive branches of αl and αt. Specific explanation and links to the mathematical

proofs are given in [19]. Therefore, since the displacement potentials have to vanish

for y →∞, it can be concluded that C = D = 0. Thus, they can be rewritten here

as

ˆ̄ϕ (ξ, y, p) = A e−αl y (3.108)

ˆ̄ψ (ξ, y, p) = B e−αt y. (3.109)
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Before the boundary conditions (3.87), given in terms of stresses, can be used for

the determination of A and B, they have to be transformed in the same way as the

displacement potentials,

ˆ̄σyy (ξ, y = 0, p) = −QF̄ (p) (3.110)

ˆ̄σxy (ξ, y = 0, p) = 0. (3.111)

Formulas for the stresses σyy and σxy in dependence of the displacement potentials

can be found by inserting the Helmholtz decomposition (2.19) in Eq. (2.10),

σyy(x, y, t) = λ∇2ϕ+ 2µ

[
∂2ϕ

∂y2
−

∂

∂y

(
∂ψ

∂x

)]

=
λ

c2l

∂2ϕ

∂t2
+ 2µ

[
∂2ϕ

∂y2
−

∂2ψ

∂x∂y

]

(3.112)

σxy(x, y, t) = µ

[

2
∂2ϕ

∂x∂y
+

∂

∂y

(
∂ψ

∂y

)

−
∂

∂x

(
∂ψ

∂x

)]

= µ

[

2
∂2ϕ

∂x∂y
+ 2

∂2ψ

∂y2
−

1

c2t

∂2ψ

∂t2

]

(3.113)

where Eqs. (3.96) and (3.97) have been used. If both the Laplace transform and the

Fourier transform are applied as above, the double-transformed stresses ˆ̄σyy and ˆ̄σxy

become

ˆ̄σyy(ξ, y, p) =
λp2

c2l
ˆ̄ϕ+ 2µ

[

∂2 ˆ̄ϕ

∂y2
− iξ

∂ ˆ̄ψ

∂y

]

(3.114)

ˆ̄σxy(ξ, y, p) = µ

[

2iξ
∂ ˆ̄ϕ

∂y
+ 2

∂2 ˆ̄ψ

∂y2
−
p2

c2t

ˆ̄ψ

]

. (3.115)

Now, Eqs. (3.110) and (3.111) can be evaluated by inserting the stress-potential re-

lationships (3.114), (3.115) and the general solution for the double-transformed po-

tentials (3.108), (3.109) which yields the two equations

λp2

c2l
A+ 2µ

[
α2

lA+ iξαtB
]

= −QF̄ (p) (3.116)

−2iξαlA+ 2α2
tB −

p2

c2t
B = 0. (3.117)
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This system of equations which is linear in A and B can be solved as usual. The

result is

A(ξ, p) = −
QF̄ (p)

µ

p2

c2t
+ 2ξ2

R(ξ, p)
(3.118)

B(ξ, p) = −
QF̄ (p)

µ

2iξαl

R(ξ, p)
, (3.119)

where

R(ξ, p) = ξ4

[(
p2

c2tξ
2

+ 2

)2

− 4

√

1 +
p2

c2lξ
2

√

1 +
p2

c2tξ
2

]

. (3.120)

Obviously, the term R(ξ, p) has a considerable similarity to the so-called Rayleigh

equation. It is stated in [1] or [19] as

(

2−
c2

c2t

)2

− 4

√

1−
c2

c2l

√

1−
c2

c2l
= 0 (3.121)

and is satisfied for c = ±c r, where c r is the speed of propagation of the Rayleigh

surface wave. By inspection, it can be concluded now that Eq. (3.120) has zeros if

p2

ξ2
= −c2r. (3.122)

Thus, the double-transformed solution to this problem is now completely determined

in terms of the displacement potentials. However, it is more convenient to present it

in terms of displacements, so the relevant components of Eq. (2.19) are also subjected

to both a Laplace and a Fourier transform, resulting in

ˆ̄u(ξ, y, p) = iξ ˆ̄ϕ+
∂ ˆ̄ψ

∂y
(3.123)

ˆ̄v(ξ, y, p) =
∂ ˆ̄ϕ

∂y
− iξ ˆ̄ψ (3.124)

or, with the double-transformed displacement potentials (3.108) and (3.109), in

ˆ̄u(ξ, y, p) = iξAe−α ly − α tBe−α ty (3.125)

ˆ̄v(ξ, y, p) = −α lAe−α ly − iξBe−α ty. (3.126)
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3.2.3 Cagniard-deHoop Inversion of the Transformed Solution

The evaluation of the inverse transformations that have to be applied to Eqs. (3.125)

and (3.126) in order to obtain a solution u(x, y, t) and v(x, y, t) is a major part of

the approach presented here. Formal application of the inverse Fourier transform

(3.101b) yields





ū(x, y, p)

v̄(x, y, p)




 =

1

2π

∞∫

−∞






ˆ̄u(x, y, p)

ˆ̄v(x, y, p)




 e−iξx dξ

=
QF̄ (p)

2πµ

∞∫

−∞







−iξ

(

2ξ2+ p2

c2
t

)

e−α ly eiξx

R(ξ,p)
+ 2iξ α lα t e−α ty eiξx

R(ξ,p)

α l

(

2ξ2+ p2

c2
t

)

e−α ly eiξx

R(ξ,p)
− 2ξ2α l e

−α ty eiξx

R(ξ,p)







dξ. (3.127)

The next step is the introduction of a new variable

η =
ξ

p
, (3.128)

which is real since ξ is real and p has been considered as real and positive. Addition-

ally, for an easier notation, the slownesses s l and s t will be used which are defined

as

s l =
1

c l

and s t =
1

c t

.

Then, after some mathematical manipulation, Eq. (3.127) may be written in terms

of the new variable η as





ū(x, y, p)

v̄(x, y, p)




 =

QF̄ (p)

2πµ

∞∫

−∞






f l(η)e
−pg l(η) + f t(η)e

−pg t(η)

h l(η)e
−pg l(η) + h t(η)e

−pg t(η)




 dη (3.129)
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where the definitions for the newly introduced terms are given by

g l(η) =
√

η2 + s2
l y − iηx, (3.130)

g t(η) =
√

η2 + s2
t y − iηx, (3.131)

f l(η) = −
iη (2η2 + s2

t)

R̃(η)
, (3.132)

f t(η) =
2iη
√

η2 + s2
l

√

η2 + s2
t

R̃(η)
, (3.133)

h l(η) =

√

η2 + s2
l (2η

2 + s2
t)

R̃(η)
, (3.134)

h t(η) = −
2η2
√

η2 + s2
l

R̃(η)
(3.135)

and

R̃(η) =
(
2η2 + s2

t

)2
− 4η2

√

η2 + s2
l

√

η2 + s2
t. (3.136)

With the same argument as before, R̃(η) becomes zero if

η2 = −c2r. (3.137)

The evaluation of Eq. (3.129) can be done by the application of the Cagniard-deHoop

method. Its basic idea is to separate the integral in Eq. (3.129) into a part that has

the term g l(η) in its exponent and a part that has the term g t(η) in its exponent.

Then, separately for both parts, the path of integration will be deformed off the real

axis (from −∞ to ∞) by setting g l(η) = t and g t(η) = t, respectively, where the

variable t is real and positive. This separation can be stated as





ū(x, y, p)

v̄(x, y, p)




 =

∞∫

−∞

[f l(η) + f t(η)] dη (3.138)

where

f l(η) =
QF̄ (p)

2πµ






f l(η)

h l(η)




 e−pg l(η) and f t(η) =

QF̄ (p)

2πµ






f t(η)

h t(η)




 e−pg t(η).

For the integration along those deformed paths in the complex plane, branch cuts

and poles of the functions f l(η), h l(η), g l(η) or f t(η), h t(η), g t(η), respectively, have
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to be considered. The functions f l(η), h l(η), f t(η) and h t(η) have branch points at

η = ± is l and η = ± is t as well as simple poles at η = ± is r where the slowness of

the Rayleigh surface wave s r is defined as

s r =
1

c r

.

On the other hand, the term g l(η) has branch points at η = ± is l, while g t(η) has

those at η = ± is t. Both the branch cuts and the poles are marked in the complex

η-plane in Fig. 3.5. Additionally, a closed path of integration is shown there. This

path does neither surround or touch any pole nor cross one of the depicted branch

cuts. Thus, it can be stated

∫

C1

f(η) dη +

∫

C2

f(η) dη −

∫

C4

f(η) dη +

∫

C5

f(η) dη −

∫

C3

f(η) dη = 0 (3.139)

where f(η) represents either one of the two summands of the integrand in Eq. (3.138).

However, it is shown in [19] that, for x > 0 and y ≥ 0, Jordan’s lemma may be applied

to the integrals over the circular paths C2 and C3. Specifically, this means that these

integrals will vanish if R→∞. From this fact, it follows that Eq. (3.139) becomes

∞∫

−∞

f(η) dη =

∫

C4

f(η) dη −

∫

C5

f(η) dη =

∫

C4−C5

f(η) dη (3.140)

where the path C4 − C5 is basically arbitrary but has to satisfy certain conditions.

First, it has to start at infinity in the second quadrant and end at infinity in the

first quadrant. Moreover, as shown in Fig. 3.5, it has to cross the imaginary axis at

any point between η = 0 and η = is l, where the last one is excluded. As mentioned

before, the evaluation of the integrals over the two summands in Eq. (3.129) is done

by separating the integral into two parts. Thus, the first term which is given by





ūl(x, y, p)

v̄l(x, y, p)




 =

QF̄ (p)

2πµ

∞∫

−∞






f l(η)

h l(η)




 e−pg l(η) dη (3.141)
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C4

is t

−is l

−is t

−is r

is r

is l

ℜ(η)

ℑ(η)

C5
C3 C2

C1

R

Figure 3.5: Paths of integration used in the Cagniard-deHoop method.

will be analyzed in the following. At first, as already stated, the term in the exponent

g l(η) will be set equal to t which is real and positive. As it be seen later, doing so

corresponds to a deformation of the original path to an equivalent path −C5 +C4 as

shown in Fig. 3.5. Plugging in the definition of g l(η) leads to

t =
√

η2 + s2
l y − iηx. (3.142)

Because of the cylindrical nature of Lamb’s problem, polar coordinates are introduced

now in order to accomplish a simpler statement of the following equations. The polar

coordinates that shall be used here are shown in Fig. 3.6 and can be obtained from

the Cartesian coordinates used so far by

r =
√

x2 + y2 0 ≤ r <∞

θ = arctan

(
x

y

)

−
π

2
≤ θ ≤

π

2
.

This yields

t =
√

η2 + s2
l r cos(θ)− iηr sin(θ) (3.143)
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x

y

rθ

Figure 3.6: Definition of the introduced polar coordinates r and θ.

what can be solved for η l±, the new path of integration in the complex η-plane,

η l±(t) = ±

√

t2

r2
− s2

l cos(θ) +
it

r
sin(θ) s l ≤

t

r
≤ ∞. (3.144)

However, the angle θ can be limited to the range 0 ≤ θ ≤ π
2

because the physical

problem is symmetrical with respect to the y-axis. This limitation means that the

hyperbola given by Eq. (3.144) is always located in the upper half of the complex η-

plane; for negative values of θ, it would lie in the lower half. This path of integration

satisfies the conditions stated above, i.e. it goes to infinity in both the first and the

second quadrant. Moreover, as it can be seen in Fig. 3.7 it cuts the imaginary axis

at ηl(t = rs l) = i s l sin(θ) what fulfills ℑ(η) ≥ 0 and ℑ(η) < s l except for θ = π/2.

Thus, positions on the free surface of the half-space are excluded for the subsequent

investigation and will be considered separately later on.

The next step after this preparatory work is rewriting the integral (3.141) with the

help of (3.140) which yields





ūl(x, y, p)

v̄l(x, y, p)




 =

QF̄ (p)

2πµ

∫

η l +






f l(η)

h l(η)




 e−pg l(η) dη

−
QF̄ (p)

2πµ

∫

η l−






f l(η)

h l(η)




 e−pg l(η) dη (3.145)

where the new paths of integration given by (3.144) were used. Now, the variable of

integration η in the second integral term is replaced by −η, where η shall denote the
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t = r
c l

η l−

−∞→∞ ℜ(η)

ℑ(η)

i s l sin(θ)

is r

is t

is l

η l +

Figure 3.7: Equivalent path of integration for the longitudinal part.

complex conjugate of η,





ūl(x, y, p)

v̄l(x, y, p)




 =

QF̄ (p)

2πµ

∫

η l +






f l(η)

h l(η)




 e−pg l(η) dη

+
QF̄ (p)

2πµ

∫

η l−






f l(−η)

h l(−η)




 e−pg l(−η) dη. (3.146)

Now, simple inserting shows that the following relations hold,

g l(−η) = g l(η)

f l(−η) = f l(η)

h l(−η) = h l(η) (3.147)

where the bar again denotes the complex conjugate. Using these relations, it is

possible to express the second integral in (3.146) also in terms of the path η l +,
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yielding





ūl(x, y, p)

v̄l(x, y, p)




 =

QF̄ (p)

2πµ

∫

η l +






f l(η)

h l(η)




 e−pg l(η) dη

+
QF̄ (p)

2πµ

∫

η l−






f l(η)

h l(η)




 e−pg l(η) dη

=
QF̄ (p)

2πµ

∫

η l +






f l(η)

h l(η)




 e−pg l(η) dη

+
QF̄ (p)

2πµ

∫

η l +






f l(η)

h l(η)




 e−pg l(η) dη

=
QF̄ (p)

πµ

∫

η l +

ℜ












f l(η)

h l(η)




 e−pg l(η) dη







. (3.148)

The next step is to replace the variable of integration η by t which can be reached

by plugging in both the relation g l(η) = t that was chosen earlier and the relation

between t and η l + that is given by (3.144). The result is





ūl(x, y, p)

v̄l(x, y, p)




 =

QF̄ (p)

πµ

∞∫

r s l

ℜ












f l(η l +(t))

h l(η l +(t))






dη l +

dt







e−pt dt. (3.149)

This process will now be repeated for the second summand in the integrand of

Eq. (3.129). Since some steps will be very similar to the corresponding steps for

the first summand, an abbreviated approach is presented in the following.

In this case, again, the term appearing in the exponent g t is set equal to t what yields

the two relations for t and η

t =
√

η2 + s2
l r cos(θ)− iηr sin(θ) (3.150)

η t±(t) = ±

√

t2

r2
− s2

t cos(θ) +
it

r
sin(θ) s t ≤

t

r
≤ ∞. (3.151)

For reasons of symmetry, as above, the domain investigated here can be restricted to

angles 0 ≤ θ < π
2
. The free surface is again excluded. Then, (3.151) represents the
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branch of a hyperbola lying in the upper half of the complex η-plane. However, in

this case, the new path of integration cuts the imaginary axis at η = is t sin(θ). This

means that for some of the considered angles θ the path intersects the branch cut.

Thus, the further investigation has to be split into two cases. In the first one, the

path η t+ − η t− passes the imaginary axes below the branch cut, exactly as the the

path η l +−η l− does in Fig. 3.7. The condition for this case to occur is s t sin(θ) < s l,

or

θ < θcr where θcr = arcsin

(
s l

s t

)

. (3.152)

Clearly, this case for the range 0 ≤ θ < θcr will be somewhat similar to the solution

to the first summand in Eq. (3.138). The second case is then obviously given by the

range θcr ≤ θ < π
2

and will be more complex because there, the path of integration

intersects a branch cut.

As already mentioned above, the solution process for the case 0 ≤ θ < θcr is very

similar to the solution process for the first part of the integral in Eq. (3.138). Thus,

with the help of Eq. (3.151), the solution is directly stated here as





ūt(x, y, p)

v̄t(x, y, p)




 =

QF̄ (p)

2πµ

∞∫

−∞






f t(η)

h t(η)




 e−pg t(η) dη (3.153)

=
QF̄ (p)

πµ

∞∫

r s t

ℜ












f t(η t+(t))

h t(η t+(t))






dη t+

dt







e−pt dt. (3.154)

The situation in the complex η-plane for the second possible case, that is θcr ≤ θ < π
2
,

is shown in Fig. 3.8. In order to avoid that the path of integration actually intersects

the branch cut, an additional piece of path around the branch cut is introduced. It

is denoted η tl+ − η tl− and has to be taken into account if the second part of the

integral (3.129) shall be evaluated. Its basic features are that it approaches but does

not touch the cut and opens out in the known contour path η t + − η t− . Thus, in

the limit, the values for η on those additional paths are always pure imaginary. The
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t = r
c t

η t−

η tl− η tl+

−∞→∞ ℜ(η)

ℑ(η)

i s t sin(θ)

is r

is t

is l

η t+

Figure 3.8: Equivalent path of integration for the transverse part (second case).

linear parts of both new paths start at η = i s l and open out in the known paths η t+

and η t− at η = i s t sin(θ). It can be recognized from Eq. (3.151) that the two lineal

parts are represented by

η tl±(t) = −i

√

s2
t −

t2

r2
cos(θ) +

it

r
sin(θ)

= i

[

t

r
sin(θ)−

√

s2
t −

t2

r2
cos(θ)

]

(3.155)

if situations t
r
≤ s t are considered. The minimum time t tl that is reached at the

branch point η = i s l can be determined by plugging in this point into Eq. (3.155),

yielding

t tl = rs l



sin(θ) +

√
(
s t

s l

)2

− 1 cos(θ)



 (3.156)

which gives the interval of time t tl ≤ t ≤ s tr for which the paths η tl+ and η tl− are

represented by Eq. (3.155).

The small circular path around the branch point η = i s l shown in Fig. 3.8 has also to

be investigated. However, it can be shown that the integral along this path vanishes

as the radius of the circle goes to zero. A detailed proof for this circumstance is given

in [19]. Thus, only the lineal paths have to be considered in terms of the evaluation
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of Eq. (3.153) for the case θcr ≤ θ < π
2
. The solution is obtained by adding the

corresponding integrals along the path η tl+ − η tl− to the solution to the first case

0 ≤ θ < θcr. Starting from Eq. (3.153), the additional contributions from the lineal

paths to the Laplace transformed displacements ūtl and v̄tl can be written as





ūtl(x, y, p)

v̄tl(x, y, p)




 =

QF̄ (p)

2πµ

∫

η tl +






f t(η)

h t(η)




 e−pg t(η) dη (3.157)

−
QF̄ (p)

2πµ

∫

η tl−






f t(η)

h t(η)




 e−pg t(η) dη. (3.158)

These integrals are now evaluated with the help of (3.155) in the same way as the

corresponding integrals for the paths η t+ and η t−. This yields the displacement

contributions





ūtl(x, y, p)

v̄tl(x, y, p)




 = =

QF̄ (p)

πµ

r s t∫

t tl

ℜ












f t(η tl+(t))

h t(η tl+(t))






dη tl+

dt







e−pt dt (3.159)

that have to be added to the solution (3.154) if the case θcr ≤ θ < π
2

is considered.

Clearly, the wave field developing in the current problem will have a more cylindrical

nature. Therefore, the displacement components

ur = sin(θ)u + cos(θ) v (3.160)

uθ = − cos(θ)u + sin(θ) v (3.161)

corresponding to polar coordinates are introduced. Then, the Laplace transformed

solution to Eq. (3.129) that has been derived can be expressed in polar coordinates
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as

ūr, l =
QF̄ (p)

πµ

∞∫

r s l

t

r
ℜ

{
(s2

t + 2η2
l+)

R̃(η l +)

dη l +

dt

}

e−pt dt (3.162)

ūθ, l =
QF̄ (p)

πµ

∞∫

r s l

√

t2

r2
− s2

l ℜ

{
i(s2

t + 2η2
l +)

R̃(η l +)

dη l +

dt

}

e−pt dt (3.163)

ūr, t =
QF̄ (p)

πµ

∞∫

r s t

√

t2

r2
− s2

tℜ

{

−2η t +

√

s2
l + η2

t +

R̃(η t+)

dη t+

dt

}

e−pt dt (3.164)

ūθ, t = −
QF̄ (p)

πµ

∞∫

r s t

t

r
ℜ

{
i(s2

t + 2η2
l +)

R̃(η t+)

dη t+

dt

}

e−pt dt (3.165)

ūr, tl =
QF̄ (p)

πµ

r s t∫

t tl

√

s2
t −

t2

r2
ℜ







2iη tl+

√

s2
l + η2

tl+

R̃(η tl+)

dη tl+

dt






e−pt dt (3.166)

ūθ, tl = −
QF̄ (p)

πµ

r s t∫

t tl

t

r
ℜ







2iη tl+

√

s2
l + η2

tl+

R̃(η tl+)

dη tl+

dt






e−pt dt (3.167)

where Eqs. (3.144), (3.151) and (3.155) have been used. The entire solution for the

transformed displacements in the half-space are thus given for positions 0 < r < ∞

and 0 ≤ θ < π
2

by

ūr (r, θ, p) = ūr, l + ūr, t + ūr, tl (3.168)

ūθ (r, θ, p) = ūθ, l + ūθ, t + ūθ, tl (3.169)

where the last term in each displacement applies only in the case θcr ≤ θ < π
2

as it

was explained above.

Finally, the case θ = π
2

(or y = 0, in Cartesian coordinates) shall be examined.

According to Eq. (3.160), the displacements in polar coordinates at the surface are

given by

ūr

(

r,
π

2
, p
)

= ū
(

r,
π

2
, p
)

(3.170)

ūθ

(

r,
π

2
, p
)

= v̄
(

r,
π

2
, p
)

. (3.171)
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η tl+

−∞→∞

Figure 3.9: Equivalent paths of integration for θ = π
2
, longitudinal part (left) and

transverse part (right).

Basically, the solution to the displacements in Eqs. (3.170) and (3.171) is obtained

by just plugging in θ = π
2

in the derivation following Eq. (3.138). However, special

consideration has to be given to the specific paths of integration in the complex η-

plane arising for the given situation. This is also why this situation was excluded

from the general derivation for the interior of the half-space. The paths of integration

applying now are shown in Fig. 3.9. Of course, for the transverse part, the case θ ≥

θcr has to be considered. The paths can be determined by inserting θ = π
2

into

Eqs. (3.144), (3.151) and (3.155). This yields

η l±(t) =
it

r
s l ≤

t

r
≤ ∞ (3.172)

η t±(t) =
it

r
s t ≤

t

r
≤ ∞ (3.173)

η tl±(t) =
it

r

t tl

r
≤
t

r
≤ s t (3.174)

where t tl = rs l in the case considered. Obviously, the paths of integration are

identical for both terms in the integrand of Eq. (3.138). This makes sense because

the terms g l(η) and g t(η) appearing in the exponents happen to be identical in this
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ηR− ηR +

is r

Figure 3.10: Paths of integration around the Rayleigh pole at η = is r.

specific case, that is

g l(η) = g t(η) = −iηr. (3.175)

As mentioned earlier in this derivation, it can be shown that the integrals along the

small circular paths around the branch point η = is l vanish if their radius goes

to zero. Thus, only the integrals along the paths stated above have to be taken

into account. However, this means that, so far, there is no difference between the

derivation of the solution to the displacements on the surface and the derivation of

the solution in the interior of the half-space for the specific case θ = π
2

what would

mean that the displacement solutions should be identical. However, there is one fact

that is different for the solution on the surface: here, the paths of integration η l± and

η t± shown in Fig. 3.9 touch the Rayleigh simple pole which is located at η = is r. This

means that the integrals along those paths exist only as Cauchy principal values and

additional contributions to the integrals due to integration “around” the Rayleigh

pole have to be considered. The situation is shown in Fig. 3.2.3. The additional

circular paths are called ηR− and ηR +. They may be expressed as

η = is r + rReiϕR . (3.176)

48



Then, the additional contribution ū rR of the Rayleigh simple pole is computed by

repeating the derivation beginning at Eq. (3.138) for the circular path mentioned.

The separation into two terms is not necessary anymore since the terms in the expo-

nentials and thus, also the paths of integration, are identical. This yields the Laplace

transformed displacement ū r, R in radial direction as

ū r, R

(

r,
π

2
, p
)

= ūR

(

r,
π

2
, p
)

=
QF̄ (p)

2πµ
lim

rR→0

∫

ηR + − ηR−

[f l(η) + f t(η)] eipηr dη

=
QF̄ (p)

πµ
lim

rR→0

∫

ηR +

ℜ
{
[f l(η) + f t(η)] eipηr dη

}
. (3.177)

In the last step, the conjugate properties of the functions f l(η) and f t(η) have been

used to rewrite the integral in a similar way as it was done with the integral in

Eqs. (3.146) - (3.148). Plugging in the definitions of f l(η) and f t(η) which are given

by Eqs. (3.132) and (3.133) yields

. . . =
QF̄ (p)

πµ
lim

rR→0

∫

ηR +

ℜ







iη
[

2
√

η2 + s2
l

√

η2 + s2
t − (2η2 + s2

t)
]

R̃(η)
eipηr dη






. (3.178)

Now, the approximation

R̃(η) ≃ rReiϕRR̃′(is r) where R̃′(is r) =

[

dR̃

dη

]

η=is r

(3.179)

which is valid near η = is r is introduced. It can be used to reformulate Eq. (3.178)

as

ū r, R

(

r,
π

2
, p
)

= −
QF̄ (p)

4µ

s2
t (2s2

r − s
2
t)

3

8 (s2
t − s

2
l) s

6
r − 4s6

ts
2
r + s8

t

e−ps rr (3.180)

where the definition of R̃(η) in Eq. (3.136) has been used.

The Laplace transformed displacement ū θ, R in tangential direction can be obtained in

an easier way. Consideration of the numerator in the integrand of Eq. (3.178) shows
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that it becomes pure real in the vicinity of η = is r. More specifically, it is
[

iη

(

2
√

η2 + s2
l

√

η2 + s2
t −

(
2η2 + s2

t

)
)]

η = is r

= s r

[

2
√

s2
r − s

2
l

√

s2
r − s

2
t + s2

t − 2s2
r

]

. (3.181)

Here, the fact that s r > s l and s r > s t hold for real materials was used. Now, the

additional contribution ū θR of the Rayleigh simple pole to the Laplace transformed

tangential displacement is written according to Eqs. (3.177) and (3.178) as

ū θ, R

(

r,
π

2
, p
)

= v̄R

(

r,
π

2
, p
)

=
QF̄ (p)

2πµ
lim

rR→0

∫

ηR + − ηR−

[h l(η) + h t(η)] eipηr dη

=
QF̄ (p)

πµ
lim

rR→0

∫

ηR +

ℜ
{
[h l(η) + h t(η)] eipηr dη

}
(3.182)

=
QF̄ (p)

πµ
lim

rR→0

∫

ηR +

ℜ

{

s2
t

√

η2 + s2
l

R̃(η)
eipηr dη

}

. (3.183)

Now, considering the numerator of the integrand in Eq. (3.183) in the vicinity of

η = is r yields
[

s2
t

√

η2 + s2
l

]

η = is r

= is2
t

√

s2
r − s

2
l. (3.184)

Here, the numerator of the integrand becomes pure imaginary since it is s r > s l. Since

it can be shown [19] that R̃′(is r) is also pure imaginary, the value of the integral in

Eq. (3.183) will be pure imaginary, too, if rR → 0. Thus, it can be concluded that

ū θ, R

(

r,
π

2
, p
)

= 0 (3.185)

because only the real part of the integral mentioned is taken into account in Eq. (3.183).

Therefore, the Laplace transformed solutions to the displacements on the surface of

the half-space are given by

ū r

(

r,
π

2
, p
)

= [ ūr, l + ūr, t + ūr, tl ] θ = π
2

+ ū r, R

(

r,
π

2
, p
)

(3.186)

ūθ

(

r,
π

2
, p
)

= [ ūθ, l + ūθ, t + ūθ, tl ] θ = π
2

. (3.187)
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The very last step of this derivation is the inversion of the Laplace transformed

solutions to the displacements. In [19], it is described why the inversion of the dis-

placements to the time domain is unique if the transform variable p is real and greater

than some fixed positive value. Recalling that p was indeed required to be real and

positive in order to select only the real and positive branches of αl and αt before

Eqs. (3.108) and (3.109), it is clear that the inversion of Eqs. (3.186) and (3.187) has

to be unique.

At first, the input time signal F (t) will be restricted to be a unit impulse F (t) = δ(t).

Later on, it will be shown that it is relatively easy to expand this specific solution to

a general input time signal. These specific solutions to the radial and the tangential

displacements for the input described are denoted uδ
r(r, θ, t) and uδ

θ(r, θ, t), respec-

tively. Then, the corresponding Laplace transformed input signal is F̄ (p) = 1.

Having a closer look at the form of the solutions (Eqs. (3.168) and (3.169) in combina-

tion with Eqs. (3.162) - (3.167)) to the displacements in the interior of the half-space

and comparing them to the definition of the Laplace transform (3.98a) shows imme-

diately that

uδ
r (r, θ, t) =

Q

πµ

{

t

r
ℜ

[
(s2

t + 2η2
l+)

R̃(η l +)

dη l +

dt

]

H

(

t−
r

c l

)

+

√

t2

r2
− s2

tℜ

[

−2η t +

√

s2
l + η2

t+

R̃(η t+)

dη t+

dt

]

H

(

t−
r

c t

)

(3.188)

+

√

s2
t −

t2

r2
ℜ




2iη tl+

√

s2
l + η2

tl+

R̃(η tl+)

dη tl+

dt





[

H (t− t tl)−H

(

t−
r

c t

)]}

and

uδ
θ (r, θ, t) =

Q

πµ

{√

t2

r2
− s2

l ℜ

[
i(s2

t + 2η2
l+)

R̃(η l +)

dη l +

dt

]

H

(

t−
r

c l

)

+
t

r
ℜ

[
i(s2

t + 2η2
l+)

R̃(η t +)

dη t+

dt

]

H

(

t−
r

c t

)

(3.189)

+
t

r
ℜ




2iη tl+

√

s2
l + η2

tl +

R̃(η tl+)

dη tl+

dt





[

H (t− t tl)−H

(

t−
r

c t

)]}
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are valid inversions of the Laplace transformed solutions which have been derived

if H(·) denotes the Heaviside step function. Since, as mentioned above, the inversion

has to be unique in the present case, it follows that Eqs. (3.188) and (3.189) are the

only time-domain solutions to the displacement field in the interior of the half-space

investigated.

The appearance of the Heaviside step functions in Eqs. (3.188) and (3.189) can be

explained by the fact that the limits of the integrals in Eqs. (3.162) - (3.167) deviate

from those in the definition of the Laplace transform (3.98a). In order that the

integrals in each of the terms derived and the one in the Laplace transform represent

the same value although their limits are different, the integrands are set to zero

outside of the time intervals which the respective integrals have in common; this is

realized with the Heaviside step functions. Equations (3.188) and (3.189) are valid

for 0 < r < ∞ and 0 ≤ θ < π
2
; however, the third term in both equations applies

only in the case θcr ≤ θ < π
2
.

The time-domain solution to the displacements at the surface θ = π
2

can easily be

found by making use of the Laplace transformation pair

δ(t− T )
L
←→ e−pT (3.190)

where T is a positive constant. This yields

uδ
r (r,

π

2
, t) =






R.H.S. of Eq. (3.188)

evaluated at θ = π
2






−
Q

4µ

s2
t (2s2

r − s
2
t)

3

8 (s2
t − s

2
l) s

6
r − 4s6

ts
2
r + s8

t

δ

(

t−
r

c r

)

(3.191)

uδ
θ (r,

π

2
, t) =






R.H.S. of Eq. (3.189)

evaluated at θ = π
2




 . (3.192)

As mentioned earlier, the solutions uδ
r and uδ

θ in Eqs. (3.188) - (3.192) to a unit im-

pulse F (t) = δ(t) can be relatively easy extended to a more general input signal F (t).
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θcr

σyy = −QF (t)
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c l t0

S

P

HH

y

Figure 3.11: Nature of the arising displacement field in a half-space due to a line
load σyy(x, y = 0, t) = −QF (t)δ(x) at a fixed time t = t0.

Making use of the convolution theorem, which is given by

t∫

0

f1(τ) f2(t− τ) dτ
L
←→ f̄1(p) f̄2(p), (3.193)

yields the final result of this derivation





ur (r, θ, t)

uθ (r, θ, t)




 =

t∫

0

F (t− τ)






uδ
r (r, θ, τ)

uδ
θ (r, θ, τ)




 dτ. (3.194)

The displacement solution given by Eqs. (3.188), (3.189), (3.191) and (3.192) for the

Lamb’s problem arising due a unit impulse input signal shows that four different types

of waves occur. Their essential nature is shown in Fig. 3.11 for a fixed time t = t0

where the symmetry to the y-axis mentioned earlier in the derivation is used to

illustrate the domain which is defined by 0 < r < ∞ and −π
2
≤ θ < 0. The

first wave occurring is a cylindrical wave traveling from the origin outwards with the

propagation speed c l. It covers the domain 0 < r ≤ c l t0 which is denoted P . A
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second wave also spreading cylindrically from the origin travels with the propagation

speed c t and covers the region 0 < r ≤ c t t0 called S. The third wave arising is

the so-called head wave which is also referred to as von Schmidt wave. It is not a

cylindrical wave but it has two straight wavefronts on each side of the axis of symmetry

as it is shown in Fig. 3.11. On the surface, these wavefronts arrive as soon as the first

wave traveling with the propagation speed c l does. For smaller angles θ, this wave

arrives later with respect to the first cylindrical wave. For θ = θcr, its wavefronts

merge tangentially into the wavefront of the second cylindrical wave traveling with

the propagation speed c t. Obviously, the domains H of the head wave are given by

c t t0 ≤ r ≤
c l t0

sin | θ | +

√
(

c l

c t

)2

− 1 cos | θ |

(3.195)

θcr ≤ | θ | ≤
π

2
. (3.196)

Its direction of propagation is normal to the straight wavefronts mentioned and its

speed of propagation is c t. The last wave occurring is the so-called Rayleigh surface

wave which travels out from the origin in both directions at the surface. Its speed of

propagation is c r.

3.2.4 Stress-Strain Relationship Including a Quadratic Nonlinearity

In this section, an elastic half-space subjected to a line load at its surface is considered

analog to Section 3.2.1; see Fig. 3.4. However, now, the stress-strain relationship of

the half-space’s material is assumed to include a quadratic nonlinearity. Thus, the

only differences between this problem and the one described in the previous section

are the constitutive equations, while the governing equations (3.91), the boundary

conditions (3.87) and the initial conditions (3.89) are identical. Again, only small

displacement and strains shall be considered. As explained in the previous section,

the issue investigated is again a two-dimensional problem in plane strain for reasons of

symmetry, meaning that there cannot arise any displacement in z-direction and that
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all derivatives with respect to z have to vanish. In order to determine the nonlinear

constitutive equations, Eq. (2.11) again has to be applied. The invariants of the strain

tensor which are needed to find the internal elastic energy density Γ reduce, according

to Eq. (2.13), to

I1 = εxx + εyy

I2 = εxxεyy − ε
2
xy (3.197)

I3 = 0

since it is εxz = εyz = εzz = 0 . Plugging these and the displacement-strain relation-

ships (2.15) applying into Eq. (2.12) yields

Γ =
λ+ 2µ

2
(εxx + εyy)

2 − 2µ
(
εxxεyy − ε

2
xy

)

+
l + 2m

3
(εxx + εyy)

3 − 2m (εxx + εyy)
(
εxxεyy − ε

2
xy

)
(3.198)

=
λ+ 2µ

2

(
∂u

∂x
+
∂v

∂y

)2

− 2µ

(

∂u

∂x

∂v

∂y
−

1

4

(
∂u

∂y
+
∂v

∂x

)2
)

+
l + 2m

3

(
∂u

∂x
+
∂v

∂y

)3

− 2m

(
∂u

∂x
+
∂v

∂y

)(

∂u

∂x

∂v

∂y
−

1

4

(
∂u

∂y
+
∂v

∂x

)2
)

. (3.199)

The nonlinear constitutive equations are now derived from Eq. (2.11) as

σxx =
∂Γ

∂
(

∂u
∂x

) = (λ+ 2µ)
∂u

∂x
+ λ

∂v

∂y
+ (l + 2m)

(
∂u

∂x

)2

+ l
∂v

∂y

(

2
∂u

∂x
+
∂v

∂y

)

+
m

2

(
∂u

∂y
+
∂v

∂x

)2

(3.200)

σyy =
∂Γ

∂
(

∂v
∂y

) = (λ+ 2µ)
∂v

∂y
+ λ

∂u

∂x
+ (l + 2m)

(
∂v

∂y

)2

+ l
∂u

∂x

(

2
∂v

∂y
+
∂u

∂x

)

+
m

2

(
∂u

∂y
+
∂v

∂x

)2

(3.201)

σxy =
∂Γ

∂
(

∂u
∂y

)

=
∂Γ

∂
(

∂v
∂x

) =

(
∂u

∂y
+
∂v

∂x

)[

µ+m

(
∂u

∂x
+
∂v

∂y

)]

. (3.202)
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These nonlinear constitutive equations complete the current problem statement. Clearly,

the linear problem can be obtained if the third-order elastic constants are chosen

to vanish, that is l = m = 0 . Plugging in the new stress-displacement relation-

ships (3.200) - (3.202) in the governing equations (3.91) yields two coupled nonlinear

second-order partial differential equations. However, the integral transforms used for

the solution to the linear problem in the previous section are based on the assumption

of linearity meaning that they are inappropriate for the derivation of the solution to

the present nonlinear problem. For the boundary conditions (3.87) and initial con-

ditions (3.89) mentioned, to the best knowledge of the author, no analytical solution

is available at this point of time. Thus, only numerical solutions obtained by the

application of a simulation code can be found for this problem as described in the

subsequent chapters.

3.3 Normal Reflection of a Plane Wave Gen-

erated by a Uniform Surface Traction in a

Plate

In this section, normal reflections of plane waves traveling in a plate consisting of

an elastic material with quadratic nonlinearity in its stress-strain relationship are in-

vestigated. The motivation for this investigation is due to the fact that half-spaces

which have been considered in the previous sections are relatively unrealistic in terms

of the realization of a corresponding experimental measurement because it is not

straightforward to create an experimental setup that represents a domain with semi-

infinite dimensions. Another point that makes this derivation desirable is the question

whether the effects of refection may be used to measure a material’s nonlinearity in a

more convenient way. More specifically, since the nonlinear effects partly depend on

the propagation distance of a wave as shown in Subsection 3.1.2, it may be possible to

increase the distance covered by a wave by multiple refections in the plate. Because

56



one of the nonlinear effects depends linearly on the propagation distance, this pro-

ceeding could provide a possibility to amplify this effect which is usually very small

compared to the linear behavior. Thus, it could be easier to obtain better results in

experimental measurements if the effects of reflection were exploited.

Note that the scenario presented in this section is similar to the wave propagation in

a nonlinear half-space as it is described in Subsection 3.1.2. The main difference is,

as already explained, that the domain considered has now a finite dimension in the

direction of wave propagation in contrast to the half-space which has been used in the

subsection mentioned. Another difference will be the traction input signal applied at

one side of the plate. Here, only a pure pressure traction will be treated in order to

keep the presentation as clear and simple as possible. Moreover, since reflection phe-

nomena may be understood more clearly if the superposition of incident and reflected

wave is avoided, a sinusoidal finite-length pres

In this derivation, the two special cases of a reflection at a perfectly rigid and at a

perfectly stress-free boundary are treated. The two different scenarios are shown in

Figures 3.12 and 3.13.

3.3.1 Incident Wave

At first, a solution to the incident wave arising due to the pure pressure boundary

condition shall be presented. Because of the symmetry of this problem, displace-

ments may only occur in y-direction. According to the constitutive equations (3.52)

and (3.53), this means also that only normal stresses σyy in y-direction can develop.

The boundary condition for the incident wave can be formulated as

σyy(x, y = 0, t) = −Q1 F (t) (3.203)

σxy(x, y = 0, t) = 0. (3.204)
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v(x, y = L, t) = 0

y, v

x, u

ρ, λ, µ, l, m, n

σyy(x, y = 0, t) = −Q1 F (t)

L

Figure 3.12: Plate subjected to a surface pressure at one side and clamped rigidly
at the opposite side.

Ly, v

x, u

ρ, λ, µ, l, m, n

σyy(x, y = 0, t) = −Q1 F (t)

σyy(x, y = L, t) = 0

Figure 3.13: Plate subjected to a surface pressure at one side and a stress-free
opposite side.
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The dimensionless time function F (t) is given by

F (t) =







sin(ωt) for ∆t ≥ t ≥ 0

0 otherwise

(3.205)

where ∆t is the length of time of the input pressure impulse. The initial condition

is that the entire domain of the plate is at rest for t < 0. The linear solution v
(i)
1

to this problem was already derived in Subsection 3.1.1. According to Eqs. (3.18)

and (3.19), the solution to the particle displacement v
(i)
1 becomes

v
(i)
1 (y, t) = −

Q1

k l (λ+ 2µ)







0 for t− y

c l
< 0

(cos(ωt− k ly)− 1) for ∆t ≥ t− y

c l
≥ 0

(cos(ω∆t)− 1) for t− y

c l
> ∆t.

(3.206)

Obviously, the solution for the range ∆t ≥ t− y

c l
≥ 0 is identical to the steady-state

solution (3.45) if its constant displacement term V1 is adapted to the initial condition.

The further investigation is limited to the range mentioned so that the derivation will

be close to the one presented for the steady-state solution. Making again use of the

perturbation theory, the partial differential equation for the displacement correction

term v
(i)
2 in this range is given by Eq. (3.63). Thus, the solution to the displacement v

(i)
2

given by Eq. (3.69) is also valid for the present problem in the range ∆t ≥ t− y

c l
≥ 0

if the constant displacement term V2 is chosen appropriately according to the initial

condition. The total displacement v(i) in y-direction is then given by

v(i)(y, t) = −
Q1

k l(λ+ 2µ)
(cos (ωt− k ly)− 1)

−C7 sin (2 (ωt− k ly)) + C8

(

t−
y

c l

)

+C3 y cos (2 (ωt− k ly)) for ∆t ≥ t−
y

c l

≥ 0 (3.207)
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where the terms C3, C7 and C8 are defined as in Subsection 3.1.2. The corresponding

particle velocity v̇(i) is then

v̇(i)(y, t) =
c lQ1

λ+ 2µ
sin (ωt− k ly) − 2ω C7 cos (2 (ωt− k ly)) + C8

− 2ω C3 y sin (2 (ωt− k ly)) for ∆t ≥ t−
y

c l

≥ 0. (3.208)

3.3.2 Reflection at a Rigid Boundary

In this subsection, the appearance of the reflection of the incident wave (3.207) at

a rigid boundary shall be investigated. The situation has already been shown in

Fig. 3.12. In order to keep this presentation clear, only those situations shall be con-

sidered where the incident wave impulse has already completely reached the boundary.

Then, the wave field will consist only of the reflected wave.

The rigid boundary condition at the opposite side of the plate can be written as

u(x, y = L, t) = 0 (3.209)

v(x, y = L, t) = 0. (3.210)

Since only displacements v in y-direction appear in the case considered, the first

boundary condition is automatically fulfilled. The reflection of the fundamental inci-

dent wave which would develop in a linear material is

v
(r)
1 (y, t) =

Q1

k l (λ+ 2µ)
(cos(ωt− k l(2L− y))− 1) (3.211)

for ∆t ≥ t−
2L− y

c l

≥ 0

which fulfills the boundary condition (3.210).

Considering now the nonlinear case, the reflected wave has to include a correction

term v
(r)
2 corresponding to the term v

(i)
2 in the incident wave. According to Eq. (3.207),

this has been

v
(i)
2 (y, t) = −C7 sin (2ωt− 2k ly)) + C8

(

t−
y

c l

)

+C3 y cos (2ωt− 2k ly)) for ∆t ≥ t−
y

c l

≥ 0. (3.212)
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In order to find a solution to v
(r)
2 , the partial differential equation describing the ap-

pearance of the nonlinear correction term has to be resolved. This partial differential

equation is Eq. (3.63) in which the displacement u1 disappears and v1 has to be cho-

sen accordingly to the reflected fundamental wave in Eq. (3.211). More specifically,

this yields

∂2v
(r)
2

∂t2
− c2l

∂2v
(r)
2

∂y2
=

β

2

∂

∂y

(

∂v
(r)
1

∂y

)2

(3.213)

=
β Q2

1

c2lk l (λ+ 2µ)2
sin(ωt+ k ly − 2k lL) cos(ωt+ k ly − 2k lL) (3.214)

for ∆t ≥ t−
2L− y

c l

≥ 0.

Note that this formulation does not account for some effects of interaction occurring

when the incident impulse has exactly reached the boundary at y = L, i. e., when the

front part of the impulse has already been reflected and the rear part is still traveling

towards the boundary. The effects of this second part are neglected in Eq. (3.213)

because only the fundamental wave traveling backwards is considered on the right

side. However, in the frame of the assumptions and simplifications

The general solution to Eq. (3.213) is

v
(r)
2 (y, t) = f(ωt− k ly) + g(ωt+ k ly)

+C10

(
4ωy cos(2ωt− 2k l(2L− y))

− c l sin(2ωt− 2k l(2L− y))
)

(3.215)

for ∆t ≥ t−
2L− y

c l

≥ 0

where

C10 =
βQ2

1

32ωc2l (λ+ 2µ)2
. (3.216)

The term f(ωt − k ly) in Eq. (3.215) is discarded here a priori because the reflected

wave is a disturbance traveling only in the negative y-direction, while the remaining

term g(ωt + k ly) has to be determined from the boundary condition at y = L. In

61



terms of the incident and the reflected wave, the boundary condition (3.210) is written

as

v(x, L, t) = v(i)(x, L, t) + v(r)(x, L, t) = 0

⇒ v
(r)
2 (x, L, t) = −v

(i)
1 (x, L, t) − v

(i)
2 (x, L, t) − v

(r)
1 (x, L, t). (3.217)

Since the right side of Eq. (3.217) is known, the actual appearance of the solution to

the nonlinear correction term v
(r)
2 presented in Eq. (3.215) can be determined to be

v
(r)
2 (y, t) = C7 sin(2ωt− 2k l(2L− y))

−C8

(

t−
2L− y

c l

)

−C3 (2L− y) cos(2ωt− 2k l(2L− y)) (3.218)

for ∆t ≥ t−
2L− y

c l

≥ 0.

Thus, the total solution to the reflected wave is given by

v(r)(y, t) =
Q1

k l (λ+ 2µ)
(cos(ωt− k l(2L− y))− 1)

+C7 sin(2ωt− 2k l(2L− y))

−C8

(

t−
2L− y

c l

)

−C3 (2L− y) cos(2ωt− 2k l(2L− y), (3.219)

v̇(r)(y, t) = −
Q1c l

λ+ 2µ
sin(ωt− k l(2L− y))

+ 2ω C7 cos(2ωt− 2k l(2L− y)) − C8

+ 2ω C3 (2L− y) sin(2ωt− 2k l(2L− y)) (3.220)

for ∆t ≥ t−
2L− y

c l

≥ 0.

As mentioned before, the solution presented is only valid for domains where incident

and reflected wave are completely separated.

3.3.3 Reflection at a Stress-Free Boundary

Now, the same problem is considered but with a stress-free boundary at y = L. All

other assumptions are identical to those in the previous subsection. Formally, the
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boundary condition can be written as

σyy(x, y = L, t) = 0 (3.221)

σxy(x, y = L, t) = 0 (3.222)

whereas the second boundary condition is automatically fulfilled in the problem con-

sidered.

The subsequent derivation of the reflected wave will be close to the previous one

for the rigid boundary, so only an abbreviated version is presented in the following.

Beginning again with the linear case, it can easily be verified that

v
(r)
1 (y, t) = −

Q1

k l (λ+ 2µ)
(cos(ωt− k l(2L− y))− 1) (3.223)

for ∆t ≥ t−
2L− y

c l

≥ 0,

together with the fundamental incident wave in Eq. (3.206), fulfills boundary condi-

tion (3.221). As above, the reflected fundamental wave is used on the right side of

the partial differential equation that describes the correction term v
(r)
2 in the nonlin-

ear case. However, by inspection of Eq. (3.213), it can be recognized that inserting

Eq. (3.223) yields the same partial differential equation and thus, also the same gen-

eral solution as in the case for the rigid boundary. This means that Eq. (3.215) also

applies for the situation of a stress-free boundary at the opposite side of the plate.

Again, the term f(ωt − k ly) is disregarded a priori for the same reasons as above

while the term g(ωt+ k ly) has to be determined from boundary condition (3.221). It

is rewritten as

σyy(x, L, t) = σ(i)
yy (x, L, t) + σ(r)

yy (x, L, t) = 0. (3.224)

Therefore, both the incident wave (3.207) and the general form of the reflected

wave (3.215) have to be formulated as stress waves. This can easily be accomplished
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by making use of the nonlinear constitutive equation (3.65). Then, after some math-

ematical manipulation, it is found that the desired term is

g(ωt+ k ly) =
3

2
C7 sin (2ωt− 2k l(2L− y)) − C8

(

t+
y

c l

)

+ G. (3.225)

The undetermined constant term G arises because Eq. (3.224) actually represents

a boundary condition on the derivative of g(ωt + k ly) meaning that the boundary

condition is fulfilled for every constant G. It has to be determined from other con-

siderations later on.

Now, inserting the result found into Eq. (3.215) yields the correction term v
(r)
2 . Adding

this to the solution to the fundamental wave (3.223) provides the total solution to the

displacement v(r). The only task remaining is the determination of the constant G.

The condition applied here is that all of the terms occurring in the total solution

must have a common wavefront since all parts of the wave field arising have to travel

with the wave speed c l. This means that the static displacement term has also to be

a function of the argument t − 2L−y

c l
. If this additional constraint is applied to the

solution, the total displacement field v(r) of the reflected wave becomes

v(r)(y, t) = −
Q1

k l (λ+ 2µ)
(cos(ωt− k l(2L− y))− 1)

+C7 sin (2ωt− 2k l(2L− y))

+C3 y cos (2ωt− 2k l(2L− y))

−C8

(

t−
2L− y

c l

)

(3.226)

for ∆t ≥ t−
2L− y

c l

≥ 0.
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The respective particle velocity field v̇(r) is then given by

v̇(r)(y, t) =
Q1c l

λ+ 2µ
sin(ωt− k l(2L− y))

+ 2ω C7 cos (2ωt− 2k l(2L− y))

− 2ω C3 y sin (2ωt− 2k l(2L− y))

−C8 (3.227)

for ∆t ≥ t−
2L− y

c l

≥ 0.
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CHAPTER IV

NUMERICAL SIMULATION OF NONLINEAR

WAVE PROPAGATION

A major goal of this research is the numerical investigation of wave propagation

developing in an elastic material with a quadratic nonlinearity in its stress-strain

relationship. Therefore, a simulation code that is based on the numerical solver

CentPack [2] is applied. This solver was adapted to handle two-dimensional nonlinear

wave propagation problems in plane strain by Küchler [12], [13]. In this chapter, a

brief description of the simulation model applied and the simulation procedure is

presented.

4.1 Description of the Simulation Model

4.1.1 Numerical Scheme

The numerical scheme that is applied in the simulations of this research is a high-

resolution semi-discrete central scheme for a two-dimensional domain as presented

in [14]. “Semi-discrete” means here that only the spatial domain is discretized while

the evolution in time has to be solved with any ODE solver (here, an explicit second-

order Runge-Kutta method is used). The meaning of the term “central scheme” in

contrast to an “upwind scheme” is given in [12] but an important point is that such

schemes are independent on the eigenstructure of a system considered. The package

CentPack includes such a scheme for hyperbolic systems of conservation laws. A

conservation law is a system of first-order partial differential equations and has in the
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two-dimensional case the general form

∂v

∂t
+

∂

∂x
f(v) +

∂

∂y
g(v) = 0, [x, y] ∈ R

2, t > 0 (4.1)

where the vector of state v is a function of x, y and t. The functions f and g are

vector-valued and called flux functions. This conservation law is called hyperbolic if

the matrix H which is given by

H(v,ω) = B · ωx + C · ωy (4.2)

has only real eigenvalues with a complete family of eigenvectors for any v and any

real unit vector ω = [ωx, ωy]
T . The terms B and C are the Jacobian matrices of the

flux functions f and g, respectively. A detailed description of the numerical scheme

applied is presented in [12]. A comprehensive disquisition on hyperbolic conservation

laws and their numerical treatment is given in [4].

4.1.2 Implementation

In order to simulate two-dimensional nonlinear wave propagation with the scheme

described above, the problem statement that has already been presented in Chapter 3

has to be transformed into the form of a conservation law. The complete problem

statement consists of the two-dimensional wave equations (3.91) and (3.92) and the

appropriate constitutive equations presented in Eqs. (3.200) - (3.202); initial and

boundary conditions will be used later on. At first, the state vector q which represents

the numerical approximation of v is defined here as

q =
















q1

q2

q3

q4

q5
















=
















u̇

v̇

ux

vy

uy + vx
















. (4.3)
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This definition is used to rewrite the two wave equations so that the problem state-

ment can be expressed as a conservation law in terms of q as















q1

q2

q3

q4

q5
















,t

+
















−1
ρ
σxx (q3, q4, q5)

−1
ρ
σxy (q3, q4, q5)

−q1

0

−q2
















,x

+
















−1
ρ
σxy (q3, q4, q5)

−1
ρ
σyy (q3, q4, q5)

0

−q2

−q1
















,y

= 0. (4.4)

Clearly, it is qi = qi(x, y, t). The initial condition that has to be specified in order

to complete the problem statement is always given by Eqs. (3.89) and (3.90) while

the boundary conditions applied in the simulations depend on the specific problem

considered. Before these boundary are discussed in more detail, a brief remark on

the hyperbolicity of the conservation law (4.4) is given. It shall be pointed out that

this hyperbolicity is not assured in general but it can be shown that it is guaranteed

in the case of the linear constitutive equations. However, since the numerical scheme

applied is only valid for conservation laws which are always hyperbolic at every point

of the domain it has to be made sure that, according to the above description of

hyperbolicity, the matrix H has only real eigenvalues. In [12], it is shown that this

can be established if the values of the spatial derivatives of the displacements, that

is q3, q4 and q5, are limited. Since these spatial derivatives always correlate with

the amplitude of the input signal that excites the wave propagation in the domain,

the hyperbolicity of the conservation law can be guaranteed if the input signal is

chosen small enough. Note that this is no additional constraint to the simulation

model because small strain has been assumed in the derivation of the constitutive

equations (3.200) - (3.202).

The last point that has to be mentioned is the definition of appropriate boundary

conditions. In this research, two basic situations are considered. Most of the time,

a two-dimensional half-space is considered as domain at whose surface, a traction
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Numerical BC

Traction BC

x

y

Figure 4.1: Numerical domain representing a half-space with a traction boundary
condition at its surface.

boundary condition is applied. The other situation is the simulation of a plate with

a finite thickness. Here, either a traction or a displacement boundary condition is

applied at each side. Note that, using the package CentPack, only rectangular do-

mains can be realized. This means that every domain simulated has always to have

four borders which have all to be expressed as an appropriate boundary condition.

Because it is obviously impossible to simulate half-infinite domains, some of the four

borders are realized as numerical boundary conditions that absorb any incident wave.

At these boundaries, no reflections into the domain under consideration occur and

thus, the same wave field arises in this domain as in the respective part of a domain

with half-infinite dimensions. The two situations are depicted in Figs. 4.1 and 4.2.

The domains shown have to be completely discretized with cells having appropriate

spatial dimensions ∆x and ∆y. How these values have to be chosen is explained in

the next subsection. At this point, it is pointed out that the (different) boundary

conditions are always realized by the so-called ghost cells method. This method is

based on the introduction of additional layers of cells surrounding the actual domain

that is to be simulated. These additional cells are called ghost cells and are used to
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Numerical BC Numerical BC
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Traction or displacement BC

x
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Figure 4.2: Numerical domain representing a plate with different boundary condi-
tions applied at its surfaces.

realize the boundary condition that belongs to the respective border. For a detailed

description, the interested reader is again referred to [12], but the basic procedure

is as follows: the values of the state qi in the ghost cells are chosen in a way that

the specific boundary condition prescribed is fulfilled. For example, if the traction

is prescribed, the states q3, q4 and q5 which represent the spatial derivatives of the

displacements are set in the ghost cells in such a way that, according to the consti-

tutive equations (3.200) - (3.202), the average stresses between the outer cells of the

domain and the ghost cells fulfill the boundary condition. On the other hand, if the

displacement at a boundary is specified, the states q1 and q2 which denote the particle

velocities are determined in the ghost cells in a way so that the average displacements

between the outer cells and the ghost cells obey to the values prescribed. The re-

spective components of the vector of state not involved in the boundary condition are

extrapolated symmetrically

4.1.3 Evaluation

An important factor for the numerical simulation of wave propagation is the determi-

nation of an appropriate discretization of the domain. Since ultrasonics are considered

in this research, it can be easily imagined that the grid will have to be very fine in
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order to resolve the short-wave appearance of the wave field arising. However, the

fineness of the discretization has an extremely strong influence on the computational

efforts needed. For example, reducing the cell length ∆x = ∆y (only squarish cells

are used for the simulations) by factor of 2 approximately increases the calculation

time by factor of 8. The reason is that not only the number of cells grows by factor of

4 but also that the numerical scheme, according to the spatial discretization, applies

a smaller time step in the calculation of the results. Thus, an acceptable compromise

for the discretization must be found. In [12], a sufficiently fine discretization was

determined by the numerical solution of the linear Lamb’s problem and comparing

this solution to the analytical solution that has been presented in Section 3.2. It was

shown that one wavelength should be discretized with at least about 60 cells in order

to reach an acceptable convergence to the analytical solution in both the time and

the frequency domain. This reference value is the basis for the simulations done in

the frame of this research. However, the exact discretization used for each simulation

will be always presented together with the numerical results presented in Chapter 5.

4.2 Description of the Simulation Procedure

In this section, a short remark on the general procedure of running a simulation with

the simulation code described is presented.

The starting point for the simulations performed in the frame of this research has

been the source code which Küchler had used in his research [12], [13]. It has been

written in C++. Clearly, in order to adapt the code to the problems investigated here

and to increase its performance regarding convenience of usage and the reduction of

calculation time, numerous changes and enhancements have been implemented. The

two most important changes are explained in the following.

First, a convenient way of defining different boundary conditions at the borders of the

simulation domain has been introduced. On the one hand, this includes that different
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types of boundary conditions (traction BC, displacement BC or absorbing BC) can

be realized at the four borders of the domain. Therefore, the code has become able

to simulate a couple of different problems. However, only the situations shown in

Figs. (4.1) and (4.2) are discussed in this thesis. On the other hand, spatially more

complex boundary conditions can be defined with the enhancements made. While the

original version of the code was mainly used to model a point source (corresponding

to a line source applied to a three-dimensional half-space) at a stress-free boundary

(Lamb’s problem), the current version is able to realize boundary conditions with an

arbitrary shape along the boundary. One example is the transducer model with a fi-

nite size which shall provide insight into the actual wave field excited by a transducer

in a real experiment. It is presented in the Chapter 5.

The second major enhancement is the parallelization of the source code in order to

increase the performance of computation. This action has become necessary because

the calculation times for some of the simulations would have become unrealistically

long without such a parallelization. Since a computer cluster whose nodes have been

equipped with multi-core processors (described in more detail later on) has been avail-

able, the application programming interface OpenMP (Open Multi-Processing) has

been applied which is intended to be used together with shared memory systems. Be-

cause the original source code had featured a relatively high level of parallelizability,

an effective speedup S4 ≈ 3 could be achieved on the computer nodes used which are

equipped with four cores each.

The computer system used for this research is a computer cluster consisting of 16 in-

dependent nodes. These nodes are DELL PowerEdge 1950 servers which are equipped

with two Dual-Core Intel Xeon processors with a clock rate of 3.00 GHz and a mem-

ory of 8 GB.

Lastly, the single steps of the simulation procedure are described schematically in

order to illustrate the course of action:
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1. Definition of the simulation parameters in four input text files. There is one

input file for the definition of the simulation domain, simulation length and

certain numerical parameters, one for the description of the material parame-

ters and the appearance of the input signal (duration, frequency, amplitude),

another one defines a map of positions in the domain where the time signal

simulated is to be saved to the output files and the last one includes the spa-

tial distribution of an amplitude prefactor which controls the appearance of the

boundary condition.

2. Compilation of the source code. The source code is compiled using an OpenMP-

capable compiler.

3. Simulation. Output text files are generated which include the time domain data

of particle displacements, particle velocities, strains and stresses according to

the definitions made in the input files. The calculation time depends mainly

on the size of the domain, the discretization and the length of the simulation.

In this research, it has varied for the different problems simulated between a

couple of minutes and several weeks.

4. Generation of the data desired. In this step, the data actually needed are

selected from the raw data saved in the output files. This is important because

the output files obtained from the simulation are typically too big to be handled

efficiently on a standard computer so that the data desired have to be saved to

smaller files. Optionally, a coordinate transformation to polar coordinates can

be executed in this step.

5. Postprocessing. In the last step, signal processing and evaluation of the data

are performed with MATLAB. Results from different simulations are compared

and presented in figures.
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CHAPTER V

NUMERICAL RESULTS

This chapter applies the numerical code developed in the previous chapter to in-

vestigate problems affiliated with the determination of the nonlinearity present in a

half-space’s material. As discussed earlier, the amount of nonlinearity present in the

stress-strain relationship of a component’s material is related directly to the amount

of microplasticity induced damage. Since changes in the nonlinearity of a mate-

rial are much more reflected in changes in the third-order elastic constants than in

changes in the second-order elastic constants, it is desired to find possibilities to mea-

sure changes in these third-order elastic components of a real component’s material.

Thus, wave propagation in a component due to a transducer applied at a plane stress-

free surface is simulated. This research considers a half-space subjected to different

boundary conditions at its surface which model a transducer source. The half-space

is chosen as the “component” examined because its geometry is close to many plate-

like structural components whose investigation is of considerable practical interest,

while it is still providing a relatively simple wave field compared to more complex

structures. However, the focus of this research is only on the investigation of one-

and two-dimensional problems since the simulation code applied is not capable of

handling real three-dimensional problems. This means that only special wave propa-

gation problems depending only on two spatial directions can be reproduced. More

specifically, this means that the boundary condition applied to a three-dimensional

half-space’s surface must be constant at least over one spatial direction. Therefore,

the simulations performed here have to be seen as approximations to actual experi-

mental setups including the application of a transducer to a stress-free plane surface.
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The validity of these approximations clearly depends on the respective situation.

At the beginning of this chapter, one-dimensional problems which are due to a bound-

ary condition being a spatially constant traction over the whole surface are considered.

At large distances from the transducer that excites the wave field arising, these prob-

lems are reasonable approximations to the situation of a real transducer emitting

waves into a plate. The results obtained are compared to the analytical solutions

which were presented in Chapter 3.

Subsequently, two-dimensional problems are simulated that provide more realistic re-

sults concerning a real experimental setup. They are modeled by the application of

a line source at the surface of the half-space. However, in the case of a nonlinear-

elastic material, no analytical solutions describing the wave fields arising are available.

Clearly, this fact makes a quantitative analysis of the data obtained difficult but sim-

ilarities to the one-dimensional problems are discussed.

Another objective of this research is the investigation of the effects appearing due to

a more realistic modeling of an actual transducer and possible limitations to the prac-

tical measurement of a material’s nonlinearity. Therefore, the transducer is modeled

as realistically as possible in the frame of the restriction that only two-dimensional

wave propagation can be simulated here. This means that the transducer model gets

a finite size and the spatial distribution of the surface traction is shaped like a Gaus-

sian.

At the end of this chapter, reflections of a one-dimensional incident plane wave at

both a rigid and a stress-free boundary are examined. The results obtained by the

simulations are compared to the analytical approximate solutions given in Chapter 3.

It is suggested how these reflection effects can be used in an experimental measuring

of the third-order elastic constants.
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Table 5.1: Material parameters of Aluminum D54S.

ρ λ µ l m
[

kg
m3

] [
N
m2

] [
N
m2

] [
N
m2

] [
N
m2

]

2719 4.91× 1010 2.6× 1010 −38.75× 1010 −35.8× 1010

5.1 Half-Space Subjected to a Uniform Surface

Traction

In this section, the situation of a half-space whose surface is subjected to a harmonic

uniform load is investigated. The half-space is initially at rest. Three different prob-

lems are considered that vary in the load applied. The first load is a pure pressure

traction, the second one a pure shear traction and the third one a combination of

pressure and shear traction.

The material used in the simulations throughout this thesis is Aluminum D54S. Its

third-order elastic constants (TOEC) l and m can be found in [23] and are presented

together with its other relevant material parameters, the density ρ and the Lamé

constants λ and µ, in Table 5.1. The third TOEC n is not listed there because it

does not appear in the constitutive equations (3.200) - (3.202) that apply. However,

note that the values for the TOEC have been varied systematically in the subsequent

simulations in order to illustrate how the nonlinearity of the material influences the

wave field arising. The way in which the TOEC are changed will be presented in the

legends of the figures that show the results of the simulations. The simulation param-

eters that have been used for the subsequent simulations are presented in Table 5.2:

the frequency ff of the harmonic input signal, the reference stress Q that is used to

describe the traction boundary condition in the following and the lengths of the grid

cells ∆x and ∆y which express the fineness of the domain’s discretization.
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Table 5.2: Simulation parameters used for the one-dimensional problems.

ff Q ∆x ∆y

[MHz]
[

N
mm2

]
[m] [m]

5.0 2.22 4.5× 10−6 4.5× 10−6

0 1 2 3 4 5 6 7 8
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

v̇
[

m
s

]

t [µs]

Figure 5.1: Particle velocity in y-direction at ȳ = 2 mm.

5.1.1 Pure Pressure Traction

In this subsection, the situation of a half-space subjected to a pure pressure boundary

condition is considered. Clearly, this is the simplest boundary condition that can be

applied and will generate only a one-dimensional wave field without any dependency

on the spatial coordinate x. Furthermore, for reasons of symmetry, it is obvious that

there cannot be any particle motion in x-direction. The coordinate system that is

used here is shown in Fig. 4.1. According to the notation of Chapter 3, the boundary

condition applied in this simulation can be formulated as Q1 = 10Q and Q2 = 0.

In Fig. 5.1, the time signal of the particle velocity in the direction of wave propaga-

tion (here, the y-direction) at ȳ = 2 mm is shown. It is recognizable that the wave

front arrives at the time t̄ = ȳ

c l
= 0.33µs. Afterwards, a purely sinusoidal oscillation

with periodic time T = 0.2µs seems to develop; clearly, this periodic time is due to
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Figure 5.2: FFT of the particle velocity in y-direction at ȳ = 2 mm. The magnitude
is normalized to its peak value.

the excitation frequency ff = 5 MHz. This fact shows a general issue of nonlinear

wave propagation problems – the nonlinear effects are typically small compared to

the dominating linear behavior and thus, the time domain is relatively inappropriate

for a detailed investigation of such effects. Therefore, throughout this research, the

time signals obtained from the simulations are transformed to the frequency domain

in order to analyze these effects. This procedure is realized by the application of an

FFT to a sufficiently long part of the signal when a steady state has been reached.

Note that a Hanning window [21] is used in order to avoid the disturbing influence

of fringe effects. The frequency domain representation of the time signal in Fig. 5.1

is shown in Fig. 5.2. The range of frequency is limited there to 12.5 MHz. The rea-

son for this limit is the fact that effects correlated to even higher frequencies cannot

be expected to be resolved correctly because of the discretization used in the sim-

ulations. Note that higher frequencies correspond to shorter wavelengths and that

shorter wavelengths require a finer discretization. However, as described in Chapter 4,

the fineness of the discretization cannot be increased arbitrarily because of the com-

putational efforts. Thus, this research is restricted to the frequency range mentioned,

meaning that second-harmonic effects at f2 = 2ff = 10 MHz are the highest-harmonic
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effects considered in this research.

Figure 5.2 presents the magnitude of the signal and shows clearly what has been con-

cluded from the time signal – the peak belonging to the fundamental frequency f1 = ff

is dominant. However, it can also be seen that there are parts of the wave field related

to f0 = 0 MHz and f2 = 10 MHz. Note that the magnitude is scaled to its maximum

value because the absolute value does not have a physical meaning.

In the following, the signals will only be analyzed in the frequency domain. The pro-

cedure will always be as described above – the explicit presentation of time domain

results is set aside here in order to keep as much clarity as possible. Additionally,

the following notation is introduced: the peak magnitudes of the particle velocity in

the direction of wave propagation (the y-direction for the one-dimensional problems

presented here) at the harmonic frequencies f0, f1, f2 will be called A0, A1 and A2.

Accordingly, the terms B0, B1 and B2 are introduced for the peak magnitudes of the

particle velocity in the direction normal to the direction of wave propagation. The

latter ones will be needed later on for more complex wave fields. With this new ter-

minology, it is possible to present the results from the simulations in a more compact

fashion. Then, the outcome of an FFT as shown in Fig. 5.2 can be summarized for

different positions in the domain in one plot. This will be the way the results obtained

are presented in the following.

5.1.1.1 Second-Harmonic Effects

In this paragraph, the appearance of A2 over propagation distance y is presented.

Note that A2 is normalized to A2
1 in the following because this has been the way

comparable results have been presented previously, for example in [5] or [7]. Further-

more, no absolute values for this ratio are provided because those would reflect an

inherent influence of the FFT applied. Instead, the ratio has been normalized to the

maximum value that occurs in the respective figure.
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Figure 5.3: Normalized ratio A2

A2
1

over the propagation distance y for different values

of the third-order elastic constants.

Figure 5.3 presents the ratio A2

A2
1

over the propagation distance y for different com-

binations of the TOEC. It is shown in the legend that the TOEC used are varied

by multiplying the TOEC of Aluminum D54S according to Table 5.1 with different

factors. In this figure, l and m are always multiplied by the same factor. One can

recognize a linear growth of the ratio with the propagation distance where the slope

depends on the TOEC. Generally, it can be remarked that the slope increases for

higher TOEC. In order to investigate how the graphs exactly change, the ratio A2

A2
1

for each combination of TOEC is divided by the specific ratio obtained for the com-

bination with the original TOEC values of Aluminum D54S. The result is shown in

Fig. 5.4. It can be concluded that the ratio A2

A2
1

has to depend linearly on a specific

linear combination of l and m because the factors they have been multiplied with can

be directly recognized as scaling factors.

The numerical data are now compared to the analytical solution provided in Chap-

ter 3. Making use of the fact that Q2 = 0, Eq. (eq:4723) can be used to find analytical
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Figure 5.4: Ratio A2

A2
1

over the propagation distance y for different values of the

third-order elastic constants, normalized to the specific ratio obtained for the TOEC
of Aluminum D54S.

expressions for A1 and A2. This yields

A1 =
c lQ1

λ+ 2µ
(5.1)

A2 =
ω |l + 2m|Q2

1

2 (λ+ 2µ)3

√

y2 +
1

4 k2
l

(5.2)

A2

A2
1

=
ω |l + 2m|

2 (λ+ 2µ) c2l

√

y2 +
1

4 k2
l

. (5.3)

This shows that the ratio is actually proportional to a linear combination of the

TOEC. Note that the absolute value of this combination occurs above because the

TOEC can be (and here, actually are) negative. Furthermore, one can recognize that

the value of the ratio depends more sensitively on m than on l. Thus, a change of m

will result in a stronger change in the slope of the graph. Another interesting point

is the spatial dependency; one can see that the behavior is only linear for y >> 1
2k l

.

In Fig. 5.5, a closer look at Fig. 5.3 for small y is provided. It shows the behavior

predicted by Eq. (5.3). In order to conclude this paragraph, it shall be remarked that,

for the traction presently applied at the half-space’s surface (Q2 = 0), no particle
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Figure 5.5: Normalized ratio A2

A2
1

over the propagation distance y for different values

of the third-order elastic constants, focused on small y.

displacement in x-direction arises. Lastly, several figures (Figs. 5.6 - 5.9) showing the

higher sensitivity of A2

A2
1

on changes in m than on l as explained above are presented.

5.1.1.2 Static Effects

Now, the appearance of static effects in the particle velocity at f0 = 0 MHz shall

be investigated. Therefore, the ratio A0

A2
1

is defined in analogy to the one used in

the previous paragraph. The subsequent proceeding is absolutely identical to that

for the second-harmonic effects. The behavior of A0

A2
1

over the propagation distance

is shown in Figs. 5.10 and 5.11, the normalization used is exactly the same as for

the investigation of the second-harmonic effects. Figure 5.10 shows two basic facts.

First, there does not seem to be any spatial dependency of A0

A2
1

, its value is constant

for every position y. Second, there has to be a similar dependency on the TOEC as

for A2

A2
1

if they are varied. This can be seen in more detail in Fig. 5.11 where one can

recognize that the ratio A0

A2
1

has again to depend linearly on a linear combination of

the TOEC because the factors used to vary the TOEC appear as scaling factors of
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over the propagation distance y for different values of the

third-order elastic constants, normalized to the specific ratio obtained for the TOEC
of Aluminum D54S.

83



 

 

2 4 6 8 10 12
0
0

20

40

60

80

100

120

y [mm]

A2

A2
1

1.0 l ; 1.4m

1.0 l ; 1.2m

1.0 l ; 1.0m

1.0 l ; 0.8m

1.0 l ; 0.6m

0.0 l ; 0.0m

Figure 5.8: Normalized ratio A2

A2
1

over the propagation distance y for different values

of the third-order elastic constants.

 

 

2 4 6 8 10 12
0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y [mm]

A2

A2
1

1.0 l ; 1.4m

1.0 l ; 1.2m

1.0 l ; 1.0m

1.0 l ; 0.8m

1.0 l ; 0.6m

0.0 l ; 0.0m

Figure 5.9: Ratio A2

A2
1
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the ratio.

Having again a look at Eq. (3.86), one can find the analytical expressions

A0 =
|l + 2m|Q2

1

2 ρc l (λ+ 2µ)2
(5.4)

A1 =
c lQ1

λ+ 2µ
(5.5)

A0

A2
1

=
|l + 2m|

2 c l (λ+ 2µ)
. (5.6)

Equation (5.6) confirms that there is neither a spatial dependency of the magnitudeA0

nor of the ratio A0

A2
1

. Moreover, it shows that the ratio is proportional to |l+ 2m|, just

as the ratio A2

A2
1

describing the second-harmonic effect. This dependency is again

illustrated in Figs. 5.12 - 5.15 by varying only one TOEC systematically while the

other one is kept constant. It is again recognizable that a change in m has a more

significant impact on the ratio A0

A2
1

than the same change in l.

Finally, a remark on the practical importance of the second-harmonic and the static

effect shall be given. Clearly, both can be used to investigate the current appearance

of the term |l + 2m| in a nonlinear material by determining either A2 and A1 or A0

and A1 from a measurement. However, if these values cannot be obtained in an

absolute way because of the FFT which has to be applied, it is only possible to

determine changes between two different states of a material. More specifically, this

means that one has to have one measurement in an “initial” state of the material and

to find the peak values mentioned with an appropriate FFT. Then, one can repeat

the measurement in a “current” state of the material and determine the new peak

values with the same signal processing. The change of A2

A2
1

or A0

A2
1

has to be the same

change as in the parameter |l + 2m|.

5.1.2 Pure Shear Traction

The second scenario that may be useful for the determination of the TOEC is the

model of a half-space subjected to a pure shear boundary condition. Like the pure

86



 

 

2 4 6 8 10 12
0
0

20

40

60

80

100

120

y [mm]

A0

A2
1

1.2 l ; 1.0m

1.0 l ; 1.0m

0.8 l ; 1.0m

0.0 l ; 0.0m

Figure 5.12: Normalized ratio A0

A2
1

over the propagation distance y for different values

of the third-order elastic constants.

 

 

2 4 6 8 10 12
0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y [mm]

A0

A2
1

1.2 l ; 1.0m

1.0 l ; 1.0m

0.8 l ; 1.0m

0.0 l ; 0.0m

Figure 5.13: Ratio A0

A2
1
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pressure traction, this will generate a one-dimensional wave field without any depen-

dency on the spatial coordinate x. However, it will be shown that there develops

particle motion both in the x- and in the y-directions. The boundary condition ap-

plied in this simulation is formulated in terms of Chapter 3 as Q1 = 0 and Q2 = Q.

The proceeding will be very similar to the one for the pressure boundary condition.

However, since the wave field developing is now due to Q2, the ratio A2

B2
1

will be used

to analyze the second-harmonic effect, while the ratio A0

B2
1

will be applied for the

corresponding static effect that arises.

5.1.2.1 Second-Harmonic Effects

In this paragraph, the second-harmonic particle velocity in the direction of wave

propagation due to a shear traction at the surface is applied to gain information on

the TOEC. Note that there will not arise any fundamental particle velocity term in

this direction; this particle motion in the direction of propagation is a purely nonlinear

effect.

Here, analytical expressions are derived first from Eqs. (3.83) and (3.84) for the

case Q1 = 0. This yields, after some mathematical manipulation,

B1 =
c tQ2

µ
(5.7)

A2 =
c t|m|Q

2
2

2µ3

[

1−
(

c t

c l

)2
]

√
(
k ′

2

)2

+ sin2 ((k t − k l) y) [1− k ′ ] (5.8)

A2

B2
1

=
|m|

2 c tµ

[

1−
(

c t

c l

)2
]

√
(
k ′

2

)2

+ sin2 ((k t − k l) y) [1− k ′ ] (5.9)

where k
′

= k t−k l

k t
. Note that it can also be found that A1 = 0 and B2 = 0. Equa-

tion (5.9) shows an important result: the ratio A2

B2
1

depends only on one TOEC, that

is |m|. Thus, this scenario provides a direct means of determining changes of one

TOEC, while the situation of the pure pressure traction presented in the previous
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Figure 5.16: Normalized ratio A2

B2
1

over the propagation distance y for different values

of the third-order elastic constants.

subsection offers an opportunity of measuring a change in a combination of both

TOEC. However, the spatial dependency is relatively complicated here, but there

is one special point that is different from the case of the pure pressure traction –

although the ratio A2

B2
1

oscillates with the propagation distance, it does not “grow”

from a more global point of view meaning that it is not cumulative. A characteristic

feature of the ratio’s spatial behavior is the distance ∆y of one period. It can be

derived using the approach

(k t − k l)∆y = π

⇒ ∆y =
1

2 ff

(
1
c t
− 1

c l

) ≈ 0.63 mm. (5.10)

Since Eq. (5.9) suggests that the ratio A2

B2
1

depends only onm, only this TOEC is varied

in the simulations at first. Figures 5.16 and 5.17 show the results where the same

normalization as usual is applied. There, one can recognize a relatively complicated

spatial behavior that is in agreement with Eq. (5.9). The graphs begin at a local

minimum and show then a periodic behavior with a period length as predicted by

Eq. (5.10). Furthermore, it is recognizable that there is a significant dependency on
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Figure 5.17: Ratio A2
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third-order elastic constants, normalized to the specific ratio obtained for the TOEC
of Aluminum D54S.

the value of m which can seen best in Fig. 5.17. There, the linear dependency of

ratio A2

B2
1

on |m| can be seen because the prefactors which m has been multiplied with

appear as scaling factors of the graphs presented.

Now, the influence of the TOEC l on A2

B2
1

shall be analyzed in the numerical results.

Therefore, m is kept constant while l is changed systematically in Figs. 5.18 and 5.19.

The outcome is very clear – the graph does not change at all if the material parameter l

is varied. This fact confirms what Eq. (5.9) suggests – the ratio A2

B2
1

is not a function

of l. In order to conclude this paragraph, both TOEC are varied in the same fashion

in Figs. 5.20 and 5.21. Noting that the outcome is the same as in the case when

only m has been varied in Figs. 5.16 and 5.17, one can again see that a variation of l

has no influence on the appearance of ratio A2

B2
1

.

5.1.2.2 Static Effects

Now, the static effects appearing in the nonlinear wave field due to a pure shear

traction at the surface are inspected. Again, Eqs. (3.83) and (3.84) are used at first
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to derive analytical expressions for the amplitudes of the harmonics. One can directly

find

A0 =
|γ|Q2

2

4 c lµ2
(5.11)

B1 =
c tQ2

µ
(5.12)

A0

B2
1

=
|m|

4 c lµ
. (5.13)

Similar as in the case of a pure pressure traction, the dependency of the static effect

on the TOEC is identical to the dependency of the second-harmonic effect on the

TOEC. More specifically, the ratio A0

B2
1

is proportional to |m|. However, this ratio has

no spatial dependency, exactly as the static effect arising in the case of the pressure

boundary condition. The behavior is described can be found in the following figures.

Figures 5.22 and 5.23 show the variation of m with a constant l while Figs. 5.24

and 5.25 present the result of changing l with a constant m. All figures show the

behavior that has been expected. To conclude this paragraph, equal changes in both

TOEC are presented in Figs. 5.26 and 5.27. At the end of this subsection,
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Figure 5.25: Ratio A0
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third-order elastic constants, normalized to the specific ratio obtained for the TOEC
of Aluminum D54S.
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Figure 5.26: Normalized ratio A0

B2
1

over the propagation distance y for different values

of the third-order elastic constants.

96



 

 

2 4 6 8 10 12
0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y [mm]

A0

B2
1

1.2 l ; 1.2m

1.0 l ; 1.0m

0.8 l ; 0.8m

0.6 l ; 0.6m

0.0 l ; 0.0m

Figure 5.27: Ratio A0

B2
1

over the propagation distance y for different values of the

third-order elastic constants, normalized to the specific ratio obtained for the TOEC
of Aluminum D54S.

a conclusion on a possible practical meaning of the second-harmonic and the static

effect discussed above shall be provided. Both of them can be used to determine

changes in |m| by measuring either A2 and B1 or A0 and B1. Again, note that only

relative changes can be obtained, no absolute values (as long as an FFT is applied).

One possible advantage of using the static effect A0

B2
1

instead of the second-harmonic

effect A2

B2
1

may be the fact that it does not have a spatial dependency while the second-

harmonic effect has a relatively complicated spatial behavior.

5.1.3 Mixed Traction

The last uniform load case considered in this thesis is the more general mixed sce-

nario Q1 = Q and Q2 = Q. This boundary condition will still generate a one-

dimensional wave field but with particle motion both in x- and in y-direction. Note

that the nonlinear effects arising in the particle velocity v̇ in the direction of wave

propagation will be very complex (see Eq. (3.84)). Thus, only nonlinear effects ap-

pearing in the particle velocity u̇ normal to the direction of propagation are considered
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in this subsection.

Since the wave field developing is now due to bothQ1 andQ2, the ratios B2

A1 B1
and B0

A1 B1

are used for the subsequent analysis. Doing so will cancel out the input stress ampli-

tudes Q1 and Q2 applied, exactly as for the two load cases already analyzed.

5.1.3.1 Second-Harmonic Effects

Here, the second-harmonic term of the particle velocity along the direction normal to

the direction of wave propagation is investigated. Note that this effect only occurs

if Q1 6= 0 and Q2 6= 0. Again, an analytical expression describing this second-

harmonic effect is derived first from Eqs. (3.83) and (3.84). The result is

A1 =
c lQ1

λ+ 2µ
(5.14)

B1 =
c tQ2

µ
(5.15)

B2 =
|γ|Q1Q2ω

k2
lµ (λ+ 2µ) (c t + 3 c l) (c l − c t)

h(y) (5.16)

B2

A1B1

=
|m|

k tµ
(

c t

c l
+ 3
)

(c l − c t)
h(y) (5.17)

h(y) =

√

(k t − k l)2 + 8 k t(k l + k t) sin2

(
k t − k l

2
y

)

. (5.18)

The appearance of Eq. (5.17) is very close to the one of the corresponding term A2

B2
1

in Eq. (5.9) presented for the previous load case. The dependency on the TOEC is

equal – both ratios are proportional to |m| and do not depend on l. Furthermore, the

spatial behavior is also a periodic oscillation that is very similar to that of A2

B2
1

in a

qualitative way. Its periodic length can be computed in the same way as it was done

above using

k t − k l

2
∆y = π

⇒ ∆y =
1

ff

(
1
c t
− 1

c l

) ≈ 1.3 mm. (5.19)
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Figure 5.28: Normalized ratio B2

A1 B1
over the propagation distance y for different

values of the third-order elastic constants.

The results of the simulations are shown in the same order as for the pure shear

traction boundary condition since the same dependency on the TOEC is expected

here, according to Eq. (5.17). First, one can see in Figs. 5.28 and 5.29 that the

graphs are actually proportional to |m| because the prefactor which is used to vary m

can be directly recognized as a scaling factor of the ratio A2

B2
1

. Moreover, the spatial

behavior suggested by Eq. (5.17) is confirmed; for example, the periodic length is in

good agreement with the value given in Eq. (5.19). Figures 5.30 and 5.31 show that

there is no dependency on l since the ratio B2

A1 B1
is invariant to changes in l. Lastly,

Figs. 5.32 and 5.33 conclude this paragraph. The TOEC are changed equally there

but the same result as in Figs. 5.28 and 5.29 occurs – again, a clear evidence of the

independency on l and a confirmation of the analytical description in Eq. (5.17).

5.1.3.2 Static Effects

The last part needed in order to completely conclude the one-dimensional problems

would be the consideration of static effects in the particle velocity u̇ generated by

the mixed traction applied at the half-space’s surface. However, a closer look at
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Figure 5.29: Ratio B2

A1 B1
over the propagation distance y for different values of the

third-order elastic constants, normalized to the specific ratio obtained for the TOEC
of Aluminum D54S.
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over the propagation distance y for different

values of the third-order elastic constants.
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Figure 5.31: Ratio B2

A1 B1
over the propagation distance y for different values of the

third-order elastic constants, normalized to the specific ratio obtained for the TOEC
of Aluminum D54S.
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over the propagation distance y for different

values of the third-order elastic constants.
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Figure 5.33: Ratio B2
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third-order elastic constants, normalized to the specific ratio obtained for the TOEC
of Aluminum D54S.

Eq. (3.85) shows that there is no static contribution to the particle velocity in the

direction normal to the direction of wave propagation. This is quite obvious because

it would not make sense if the material would move statically either in the positive

or in the negative x-direction because the boundary condition does not “prefer” one

of those. Thus, the absence of a static particle velocity term in u̇ can also be justified

with the symmetry of the problem. This means that the static effects cannot be used

for the determination of the TOEC with the present load case.

Thus, in order to conclude the treatment of the mixed traction boundary condition,

a remark is given on how it may be used for the actual determination of a material’s

nonlinearity. Clearly, the second-harmonic effects can be used in the same way as the

second-harmonic effects of the scenario with the pure shear traction in order to find

a change in |m|. However, the complicated spatial appearance of the ratio B2

A1 B1
may

make this methodology difficult. Nevertheless, it is an additional way to determine a

change in m.
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5.1.4 Conclusion

Three different traction boundary conditions have been applied to the half-space’s

surface. It was found that a pure pressure load can be used determine a change

in |l + 2m| where one could make use of either the second-harmonic effect or the

static effect. Note that the second-harmonic effect has a cumulative nature meaning

that the effect increases linearly with propagation distance. This fact may be impor-

tant if one is interested in a good signal-to-noise ratio. On the other hand, the static

effect is independent of the position of the measuring device what would make the

determination of the actual position unnecessary. This would become significant if

the peak values in the particle velocity could be directly determined from the time

signal since then, one could use absolute values in order to compute the absolute

value of |l + 2m|. The second scenario considered has been the application of a pure

shear traction. Here, it was possible to find changes in |m| by making use of either

the second-harmonic or the static effect. Their main difference is their spatial depen-

dency on the propagation distance which could be an issue in an actual measurement.

Lastly, a mixed traction boundary condition has been applied and the particle veloc-

ity u̇ has been made use of – in contrast to the two previous load cases where the

the nonlinear effects in v̇ had been analyzed. Here, only the second-harmonic effect

is appropriate to measure a change in |m|.

Thus, it can be concluded that two different measurements are needed to determine

changes in both TOEC – or to find their absolute values, if no FFT is involved in the

determination of the different harmonic amplitudes.

At last, a remark on the validity of the analytical expressions derived in Chapter 3

is given. Since it is not possible to find the absolute values of the harmonic ampli-

tudes in this research because of the FFT applied, it is not possible to just compare

analytical and numerical results. But one may compare the relative sizes of certain

harmonic amplitudes as long as the signal processing needed for their determination
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is identical. This is done exemplarily here for the second-harmonic effect and the

static effect appearing in the wave field arising due to the pure pressure traction be-

cause there, the existence of second-harmonic effects has been confirmed (for other

boundary conditions) by previous research [22], [26], [24].

Thus, in order to verify the theory presented, the specific distance yp where the

magnitude of the second-harmonic magnitude which is dependent on the distance of

propagation reaches the p-fold value of the static effect’s magnitude which is indepen-

dent on the position considered shall be determined both analytically and from the

simulations. The analytical value can easily be obtained by equating the expressions

for A0 and A2

A2 = pA0

⇒ yp =
1

k l

√

p2 −
1

4
. (5.20)

For p = 10, for example, this yields y10 = 1.94 mm. Figure 5.34 shows the two

magnitudes over the propagation distance for the original material values of Alu-

minum D54S. The point of intersection is approximately at y10 = 1.97 mm which

is in good agreement with the analytically computed value. Therefore, this can be

considered as an exemplary confirmation of the analytically derived static effect by

the corresponding numerically computed static effect.

5.2 Half-Space Subjected to a Uniform Line Load

In this section, a half-space subjected to a harmonic line load which is applied as

shown in Fig. 3.4 is analyzed. The half-space is again assumed to be initially at

rest. However, not only a pressure line load as depicted in the figure but also a shear

load will be investigated – similarly to the previous section. The remaining surface

adjacent to the line where the load is applied is always stress-free.

The material of the half-space is again Aluminum D54S whose material parameters
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Figure 5.34: Normalized amplitudes A2 and 10A0 over the propagation distance y
for the TOEC of Aluminum D54S. The point of intersection is approximately at y10 =
1.97 mm.

Table 5.3: Simulation parameters used for the two-dimensional problems.

ff Q ∆x ∆y

[MHz]
[

N
mm

]
[m] [m]

5.0 10 9.0× 10−6 9.0× 10−6

have been presented in Table 5.1. Note that the TOEC will be varied systemati-

cally again in order to illustrate their impact on the wave field arising. The further

parameters used for the following simulations are stated in Table 5.3. The spatial dis-

cretization chosen is not as fine as the one for the simulations of the one-dimensional

problems in the previous chapter. Clearly, this will result in less reliable data but a

higher discretization would have led to unrealizable computational efforts. The rea-

son is that for the line load applied a two-dimensional wave field will arise and thus,

a much bigger domain has to be simulated in order to unravel the properties of this

wave field. Additionally, a reference line load is introduced in Table 5.3 that will be

used to express the pressure load Q1 and the shear load Q2 applied in the different
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load cases.

The motivation for the analysis of these complex problems is that actual wave fields

generated by ultrasonic transducers in experimental measurements are not one-dimensional

in general because of the finite size of the transducers. Thus, it is not straightfor-

ward to draw conclusions from one-dimensional analytical solutions to these wave

fields; instead, the dependency of the two-dimensional wave fields arising on the ma-

terial’s nonlinearity has to be investigated in detail first. However, to the author’s

best knowledge, such solutions to the nonlinear problem are currently not available

so that it is tried to numerically gain information on how the material’s nonlinearity

influences the appearance of wave propagation in a nonlinear material.

5.2.1 Pure Pressure Traction Line Load

At first, the scenario of a pure pressure line load is investigated which is given

by Q1 = Q and Q2 = 0. An analytical solution to this problem has been presented

in Section 3.2 for a linear material. Here, the material is nonlinear but it is expected

that the nonlinear effects will be small as they have been in the one-dimensional

problems. Therefore, the results obtained from the two-dimensional simulations will

be analyzed in the frequency domain in order to quantitatively detect these nonlinear

phenomena. However, in order to exemplarily show the agreement of the analytical

solution and the numerical results, the particle velocity field simulated is shown in

Figs. 5.35 and 5.36 at a fixed time. Note that the components of the particle velocity

are described in polar coordinates (see Fig. 3.6) because of the problem’s cylindrical

nature. All of the wave phenomena predicted by the analytical solution in Fig. 3.11

are recognizable but, as for the one-dimensional problems, additional nonlinear effects

cannot be detected. Considering the linear solution given by Eqs. (3.188) and (3.189),

one may expect that the wave field arising at the plane of symmetry x = 0 has some
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Figure 5.35: Particle velocity field u̇r over the entire domain at t = 1.68µs.
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Figure 5.36: Particle velocity field u̇θ over the entire domain at t = 1.68µs.
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Figure 5.37: Normalized ratio A2

A2
1

over the propagation distance r at θ = 0° for

different values of the third-order elastic constants.

similarities with a corresponding one-dimensional problem. For example, there, par-

ticle motion can only appear in the direction of the excitation. Thus, the nonlinear

behavior is analyzed in more detail at the plane of symmetry described by x = 0 (or

θ = 0°) in the following.

Figures 5.37 and 5.39 present the normalized ratio A2

A2
1

over the propagation distance

where the terms A1 and A2 are defined as the amplitudes of the first and the second

harmonic of the particle velocity along the direction of wave propagation, just as in

the previous section. After the near field in the vicinity of r = 0 mm has been left,

this second-harmonic effect shows a relatively linear dependency on the propagation

distance what means that it actually behaves similar as in the one-dimensional case

(compare to Figs. 5.6 and 5.8). Furthermore, it can be recognized that a change in

the TOEC m has a more significant influence on the ratio than a change in l what

also corresponds to the one-dimensional case where a dependency on the combina-

tion |l + 2m| was found. This influence of the TOEC can be seen in more detail in

Figs. 5.38 and 5.40.
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Figure 5.40: Ratio A2
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5.2.2 Pure Shear Traction Line Load

In this subsection, a shear traction line load is applied to the half-space’s surface which

is given by Q1 = 0 and Q2 = 0.1Q. Again, the evaluation of the data simulated is

restricted to the plane of symmetry. Here, both second-harmonic and static effects

are analyzed.

5.2.2.1 Second-Harmonic Effects

In order to describe the second-harmonic effect for this load case, the ratio A2

B2
1

is

used again, in analogy to the one-dimensional case. It is shown in Fig. 5.41 for

different values of m. Its spatial behavior features the same periodicity as it was found

analytically in Eq. (5.10) for the corresponding one-dimensional problem. In Fig. 5.42,

the graphs of Fig. 5.41 are related to the graph obtained for the original TOEC

of Aluminum D54S. Note that only the local maxima are visualized there because

considering values too close to zero would give numerical errors too much weight.

The plot shows relatively clearly that ratio A2

B2
1

is proportional to |m|. On the other
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Figure 5.41: Normalized ratio A2

B2
1

over the propagation distance r at θ = 0° for

different values of the third-order elastic constants.

hand, Figs. 5.43 and 5.44 show that it is independent on the second TOEC l. This

dependency on the TOEC is absolutely identical to the corresponding one-dimensional

case.

5.2.2.2 Static Effects

Analogously, the ratio A0

B2
1

is now applied to investigate static effects. In Figs. 5.45

and 5.47, one can recognize that the static effect is not constant over the propagation

distance as the static effects in the one-dimensional problems have always been. But

Figs. 5.46 and 5.48 show clearly that A0

B2
1

is proportional to |m| and that it is invariant

to changes in l, exactly as in the one-dimensional case.

5.2.3 Conclusion

The investigations have shown that there actually are several similarities between

one-dimensional wave fields and two-dimensional wave fields analyzed at their plane

of symmetry. On the one hand, the dependency on the propagation distance is partly

similar – for the pressure line load, a linear behavior was found while, for the shear
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over the propagation distance r at θ = 0° for
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TOEC of Aluminum D54S.
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Figure 5.48: Ratio A0

B2
1

over the propagation distance r at θ = 0° for different values

of the third-order elastic constants, normalized to the specific ratio obtained for the
TOEC of Aluminum D54S.

line load, the same periodicity appeared in the graph as in the one for the one-

dimensional wave field due to a uniform shear load. However, the more important

point is probably the dependency on the TOEC. At the plane of symmetry, all of

the two-dimensional problems examined above feature the same dependency on the

TOEC as the corresponding one-dimensional problems. This knowledge may allow

the determination of changes in the TOEC if measurements are performed at a fixed

position at the symmetry plane since changes in the particle velocity field arising can

then be directly related to changes in the TOEC.

However, it has also to be mentioned that the quality of the results is not as good

here as in Section 5.1 what is due to the worse discretization.

5.3 Simulation of a Finite-Size Transducer

The goal of this section is to investigate how the wave field generated by a real trans-

ducer with finite dimensions differs from the one that arises due to the line load that

was applied in the previous section. Therefore, the spatial traction distribution that
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Figure 5.49: Spatial distribution of the pressure traction Q1 applied at the half-
space’s surface which is used to model a transducer with length b.

a real transducer applies at the surface of a component is tried to be modeled in the

following. Therefore, again a half-space is considered that is subjected to a boundary

condition that is a function of the coordinate x (see Fig. 3.4, for example). Note

that, since only two-dimensional problems in plane strain can be simulated with the

available simulation code, it is not possible to model a circular transducer. Instead, a

transducer with one finite length b in x-direction is considered. Implicitly, the bound-

ary condition can only be constant in z-direction so that the model actually represents

a transducer with a rectangular surface whose one dimension is large compared to

the other one with length b.

The spatial distribution of the transducer model is based on a Gaussian function;

in Fig. 5.49, the pressure amplitude applied is shown in dependency on the spatial

coordinate x in terms of the reference stress amplitude Q. Note that the Gaussian

was cut on both sides at positions where its value went below a limit of one percent

of its maximum value.

In order to analyze the influence of this transducer shape in comparison to the line
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Figure 5.50: Directivity pattern at a propagation distance r0 = 1.6 b obtained for
the transducer model and for a line load, expressed by the ratio A1(θ)

A1(0°)
over the angle θ.

load, a linear material is chosen in order to separate the influence of the new shape

from the one of the nonlinearity. Thus, it is l = m = 0 while all other material

parameters are the same as in Table 5.3. The simulation parameters used here are

the same as used for the previous two-dimensional problems and are presented in

Table 5.3.

Figure 5.50 shows the appearance of the directivity pattern arising. There, the nor-

malized fundamental amplitude A1 of the particle velocity u̇r in radial direction is

plotted over the angle θ at a fixed distance r0. The amplitude is normalized to its

maximum value occurring at θ = 0°. Additionally, the directivity pattern that ap-

pears for the corresponding simulation with a line load is shown. Figure 5.51 presents

the same data in a semi-logarithmic scale.

It is clearly recognizable that the transducer model generates a more directive wave

field than the line load meaning that a main lobe occurs at θ = 0°. For angles |θ| > 30°,

the transducer does not generate a particle motion in radial direction while the line

load does so at every angle θ of the range considered.
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Figure 5.51: Directivity pattern of Fig. 5.50 expressed in a semi-logarithmic scale.

5.3.1 Conclusion

The simulations confirm that the finite size of real transducers has a significant in-

fluence on the appearance of the wave field developing. Therefore, this fact has to

be kept in mind if experimental data are compared to analytical two-dimensional

solutions as, for example, provided in Section 3.2. The results indicate that the mea-

suring device in an experiment should be located at or close to the plane of symmetry

described by θ = 0° in order to achieve an ideal signal-to-ratio, for example. Note

that this circumstance also justifies the more detailed analysis of the two-dimensional

wave fields presented in Section 5.2 at their plane of symmetry.

5.4 Simulation of Reflection Effects

In this section, reflection effects in a nonlinear material are simulated and compared

to the analytical expressions derived in Section 3.3. The material analyzed is again

Aluminum D54S whose material parameters are provided in Table 5.1. The simulation

parameters used for the subsequent simulations are stated in Table 5.4. The goal of

this section is the investigation of how the nonlinear effects behave after reflections at
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Table 5.4: Simulation parameters used for the reflection problems.

ff Q ∆x ∆y ∆t L

[MHz]
[

N
mm2

]
[m] [m] [µs] [mm]

5.0 2.22 4.5× 10−6 4.5× 10−6 1.0 24.75

different boundaries. The main difference between the simulations presented here and

those of the previous sections is the geometry considered. Here, a plate with infinite

side lengths but a finite thickness L (in the y-direction) is investigated. This means

that the simulation domain has now two physical and two numerical boundaries as

shown in Fig. 4.2. Initially, the plate is at rest but another difference from former

simulations is the fact that the time in which the harmonic input signal is applied is

now limited to the duration ∆t. This means that a wave with finite length will travel

through the plate. The wave will be excited by a pure pressure traction Q1 = 0.1Q

that is applied at one side of the plate. It will travel through the plate, be reflected

at the boundary at y = L, travel back, be reflected again at y = 0, and so on. For

the reflections, the boundaries are considered as either stress-free or rigidly clamped.

Three different scenarios are investigated in the following. Note that – similar to the

problem in Subsection 5.1.1 – a one-dimensional wave field with particle motion only

in the direction of wave propagation (y-direction) will arise.

5.4.1 Plate with Two Stress-Free Sides

In this subsection, both of the physical boundaries are modeled to be stress-free (of

course, except for the time when the pressure traction is applied at one side). The

focus is again on the nonlinear effects so that an appropriate signal processing is

applied to determine the harmonic amplitudes A1, A2 and A0 in dependency on the

position in the plate. As in Subsection 5.1.1, the ratio A2

A2
1

is used to analyze the

second-harmonic effect while the ratio A0

A2
1

is applied to describe the static effect.
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Figure 5.52: Normalized ratio A2
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1

over the accumulated propagation distance r

which is expressed in multiples of the plate’s thickness L. Both sides of the plate are
stress-free.

In the subsequent simulations, the duration of the simulation is chosen in such a way

that the wave travels through the plate twice in positive y-direction and twice in

negative y-direction. The results are shown in Figs. 5.52 and 5.53. Note that the

spatial dependency is not expressed in terms of the coordinate y but in terms of the

accumulated propagation distance r. In Fig. 5.52, one can recognize that the ratio A2

A2
1

behaves as usual as long as the wave travels towards the opposite boundary. However,

after the reflection, it shows a linear decreasing what means that the term A2 is not

proportional to the accumulated distance of propagation r as one could have expected.

When the wave arrives again at y = 0 and is reflected there, the ratio A2

A2
1

starts

increasing linearly again, and the action is repeated exactly as in the first cycle. Note

that the signal processing that has been applied is not capable of handling situations

where an incident and a reflected wave interfere. Unfortunately, this results in the

peaks occurring around the positions where the wave is reflected.

At this point, the behavior at y = L is explained exemplarily with the analytical

expressions for a reflected wave presented in Section 3.3. From Eq. (3.227) that
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which is expressed in multiples of the plate’s thickness L. Both sides of the plate are
stress-free.

describes the particle velocity field v̇(r) of a wave reflected at a stress-free boundary,

one can derive the expressions for the harmonic amplitudes as

A1 =
c lQ1

λ+ 2µ
(5.21)

A0 =
|l + 2m|Q2

1

2 ρc l (λ+ 2µ)2
(5.22)

A2 =
ω |l + 2m|Q2

1

2 (λ+ 2µ)3

√

y2 +
1

4 k2
l

(5.23)

A0

A2
1

=
|l + 2m|

2 c l (λ+ 2µ)
(5.24)

A2

A2
1

=
ω |l + 2m|

2 (λ+ 2µ) c2l

√

y2 +
1

4 k2
l

. (5.25)

Remember that the reflected wave travels in negative y-direction from y = L back

to y = 0. Therefore, Eq. (5.25) explains the decreasing nature of the ratio A2

A2
1

in

Fig. 5.52 between r = L and r = 2L. Further reflections can be easily explained in

an absolutely analogous way. It can be concluded that the second-harmonic effect

always changes the sign of its slope when it is reflected at a stress-free boundary.
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A2
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over the accumulated propagation distance r

which is expressed in multiples of the plate’s thickness L. Both sides of the plate are
rigidly clamped.

Accordingly, Eq. (5.24) shows that the ratio A0

A2
1

for the reflected wave is a constant

with the same value as the incident wave had before its reflection (see Eq. (5.6)).

5.4.2 Plate with Two Rigidly Clamped Sides

The next scenario considered here includes two rigidly clamped boundaries. Clearly,

this is a more theoretical investigation because it may be hard to realize a wave due

to a pressure traction at one side that turns to a rigid boundary during the time when

the wave travels through the plate and back. However, it may be realized with a more

complex experimental setup and its realization is not critical within a simulation.

The results are shown in Figs. 5.54 and 5.55. Figure 5.54 reveals a different behavior

of ratio A2

A2
1

after the reflection at the rigid boundary compared to Figure 5.52. Now,

it keeps on increasing linearly after every reflection at a rigid boundary. Again, this

behavior can be explained if the analytical expression (3.220) for the particle velocity

field arising in the reflected wave is used to determine expressions for the harmonic
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amplitudes

A1 =
c lQ1

λ+ 2µ
(5.26)

A0 =
|l + 2m|Q2

1

2 ρc l (λ+ 2µ)2
(5.27)

A2 =
ω |l + 2m|Q2

1

2 (λ+ 2µ)3

√

(2L− y)2 +
1

4 k2
l

(5.28)

A0

A2
1

=
|l + 2m|

2 c l (λ+ 2µ)
(5.29)

A2

A2
1

=
ω |l + 2m|

2 (λ+ 2µ) c2l

√

(2L− y)2 +
1

4 k2
l

. (5.30)

Equation (5.30) explains the behavior of A2

A2
1

between r = L and r = 2L. Since the

wave travels from y = L to y = 0, ratio A2

A2
1

grows with increasing r in the range

considered. The same behavior is recognized at the other reflections in Fig. 5.54.

Thus, one can conclude that the second-harmonic effect keeps the sign of its slope if

it is reflected at a rigid boundary what is in contrast to its behavior at a stress-free

boundary.
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over the accumulated propagation distance r

which is expressed in multiples of the plate’s thickness L.

Furthermore, Eq. (5.29) shows that the ratio A0

A2
1

is not changed in any way if the

wave is reflected at a rigid boundary. It remains constant, exactly as for the stress-

free boundary in Subsection 5.4.1.

5.4.3 Plate with One Stress-Free and One Rigidly Clamped Side

This last scenario applies a stress-free boundary at y = 0 and a rigid boundary

at y = L. The numerical results are shown in Figs. 5.56 and 5.57. Figure 5.56

confirms the conclusions that were found from the previous scenarios. It shows that

the ratio A2

A2
1

keeps increasing at r = L where a rigid boundary is hit by the wave.

In other words, it maintains the sign of its slope there. At r = 2L, a stress-free

boundary is reached, and the second-harmonic effect changes the sign of its slope.

Finally, at r = 3L, the wave reaches the rigid boundary again, and keeps the negative

sign of its slope.

Ratio A0

A2
1

in Fig. 5.57 shows also the behavior expected – it is invariant to reflections

at both rigid and stress-free boundaries.
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Figure 5.57: Normalized ratio A0

A2
1

over the accumulated propagation distance r

which is expressed in multiples of the plate’s thickness L. The side of the transducer
is stress-free, the opposite side is rigidly clamped.

5.4.4 Conclusion

The simulations have shown how the second-harmonic and the static effect behave

if the wave is reflected at either stress-free or rigid boundaries. The results agree

with the analytical solutions to the reflected waves derived in Section 3.3. It shall

be pointed out that these reflection effects may be used in experiments in order to

increase the signals to be measured because the typically small nonlinear effects may

be hard to detect in a quantitative sense. Thus, one could think of an experimental

setup that enables multiple reflections at rigidly clamped boundaries so that the

signal-to-noise ratio of the measurement is improved. On the other hand, it has to be

kept in mind that reflections at stress-free boundaries are inappropriate to enhance

the signal strength of the second-harmonic effect. Lastly, it was shown that the

static effect is not influenced by reflections and that its signal-to-noise ratio cannot

be improved with this methodology.

125



CHAPTER VI

CONCLUSION AND OUTLOOK

This research provides some basic insights into certain effects of nonlinear wave prop-

agation and illustrates how these effects can be used to determine the nonlinearity

present in a certain material.

One-dimensional wave propagation in an elastic half-space was considered first. This

problem has been analyzed analytically and experimentally by many researchers in

the past because it provides a convenient opportunity to measure changes in a mate-

rial’s nonlinearity. More specifically, the second-harmonic amplitude of the particle

displacement or the particle velocity field can be measured and used to compute a

nonlinearity parameter which is a specific function of the TOEC. However, it should

be noted that there is a considerable disadvantage in the application of this method

because the determination of the second-harmonic amplitude usually includes the us-

age of an FFT algorithm which is applied to the time signal measured. Thus, the

absolute values cannot be determined – only relative changes can be monitored.

The analytical derivations of [22] or [24] present a boundary condition formulated in

terms of the particle displacement prescribed at the half-space’s surface; in contrast,

this research considers a traction boundary condition at the surface. The reason for

this approach is that real transducers in an actual measurement prescribe the stress

at the surface instead of the displacement or velocity. Therefore, it is expected that

the results obtained for the traction boundary condition of this research will be a

better approximation of actual experimental results. It is found that the analytical

approximate solution to the traction boundary condition problem in terms of the

particle velocity has some significant differences from those presented in both [22]
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and [24]. While the behavior of the second-harmonic terms are relatively similar in a

qualitative way, it can be seen that a static term appears in the particle velocity field.

It is like the second-harmonic effect proportional to a combination of the TOEC. Ex-

perimental measurements in the past have shown the actual existence of such static

effects [25], [9], [20]. Furthermore, in [7], an analytical derivation explaining such

effects is provided. However, both the derivation which is based on a displacement

boundary condition and the results are different from those presented in this thesis.

The investigation of static effects is also interesting because it may provide an ad-

ditional means of measuring a material’s nonlinearity, and can be used to verify the

results found from the second-harmonic amplitude results. Since the static effect de-

scribed in this research is a constant term in the particle velocity field, it may be

possible to find a procedure to determine this static nonlinearity term without the

application of an FFT. Then, the disadvantage of the FFT described above would be

eliminated. Such a procedure, which is relatively simple has been presented in [20].

At this point, it should be mentioned that the TOEC (or changes in the TOEC)

cannot be determined individually from one measurement. Therefore, at least two

measurements are necessary in order to measure the values for the two TOEC which

are involved in the problems considered in this research. The third TOEC does

not appear here because it only plays a role if three-dimensional problems or two-

dimensional problems in plane-stress are analyzed. For the first measurement of these

TOEC, a pure pressure boundary condition can be applied, while a shear or a mixed

traction may be used for the second measurement.

The results predicted by the analytical solution can be confirmed with the results

of the simulations. It is shown in detail how the second-order and the static effects

change, if the TOEC are varied for the three different traction boundary conditions

mentioned above.

The next step of this research is the investigation of two-dimensional problems. Here,
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no analytical solutions are available but an attempt was made to find similarities

with the one-dimensional problems. Thus, the wave field arising at the plane of sym-

metry has been analyzed, because it is expected that its appearance there would be

closest to the one-dimensional problems. It was shown that both second-order and

static terms in the particle velocity develop there, too. Furthermore, although the

spatial dependency of the wave field is completely different from the one-dimensional

case, it could be recognized that the dependency on the TOEC is very similar. This

means that the TOEC can basically be measured with a similar procedure as in the

one-dimensional case, as long as the position of the measuring device is opposite to

the emitting transducer. However, the numerical results obtained are not as clear as

there. This is due to the fact that the discretization used was not as fine as that possi-

ble for the one-dimensional problems because the same discretization would have led

to calculation times that would have exceeded the frame of time set for this research

by far.

A further aspect treated in this thesis is the influence of a transducer’s finite size on

the wave field developing. As expected, it is shown that a specific directivity pattern

occurs with a main lobe at the plane of symmetry. This behavior suggests that, in an

experiment, the measuring device applied should be placed there in order to achieve

a good signal-to-noise ratio.

The last topic investigated in the frame of this research was the reflection of an inci-

dent plane wave due to a pure pressure traction at the surface traveling in a nonlinear

material. Here, both a perfectly rigid and a perfectly stress-free boundary were ana-

lyzed. The main focus was on the second-harmonic term with linear dependency on

the propagation distance. It is analytically and numerically shown that the ampli-

tude of the particle velocity is linearly proportional to the accumulated propagation

distance in the case of a rigid boundary, while it starts decreasing linearly after the

reflection at a stress-free boundary. This effect may be interesting for experimental
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measurements if the value of the amplitude mentioned is too small to be measured

accurately – for example if the component under consideration is very thin. Then,

one could think of an experimental setup where the incident wave is reflected several

times at rigid boundaries so that the amplitude of this second-harmonic term is in-

creased accordingly. Doing so would increase the signal-to-noise ratio and improve

the quality of the measurement.

All investigations presented in this thesis were purely theoretical. Thus, it would

be interesting to compare the results provided here to measured data obtained from

appropriate experiments. However, this would clearly exceed the scope of this thesis;

the corresponding experimental measurements are left for future work.
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