

PROJECT REPORT FORM
 Copies to: Files McClenahan Weiner Holm

PROJECT NO.._ 2318
COOPERATORInstitute of Paper_Chemistr:
REPORT NO.-Six
DATE_Sanuary 28,1974

AUTOMATED INFORMATION RETRIEVAL

INTRODUCTION

Machine readable copy of the Abstract Bulletin of the Institute of Paper Chemistry (ABIPC) is available beginning with Volume 40 . The Keyword Supplement to the $A B I P C$ is also available in machine readable form.

Since early 1972 the Division of Information Services has offered a combined version of the two data bases for lease, and computerized information retrieval service using the new data base. This new data base is called "Complete Text plus Keywords" for the ABIPC.

The need for the combined version of the data base came as requests for literature searches that could not be found by the keywords alone began to arrive. Along with the data base which was created, a new information retrieval programming system was developed. Since then another system has been developed which permits the division to perform the information searches in less time on the computer.

PROGRAMMING SYSTEMS

The Institute of Paper Chemistry now uses and offers for lease the following information retrieval systems, LIRES-IF and LIRES-DF. The acronym LIRES implies LIterature REtrieval System. The postscripts distinguish the form of the data base which is actually searched for information: IF for searching the inverted file, and $D F$ for the direct file.

A direct file contains information arranged as it is seen in the printed. versions of our publications. An inverted file is one in which all "words"
have been separated and rearranged such that with each word, all abstract
numbers in which it appeared follow. The definition of "word" is qualified according to the rules found in the File Description section of this. report. .". "

Introduction

The LIRES-DF (LIterature REtrieval System - Direct File) program has been designed to permit information searches of the Complete Text, or the new Complete Text with Keywords data base tapes of the Abstract Bulletin. Search profile terms may be words to be found in the TITLE and/or the TEXT and/or the KEYWORDS of an abstract. Each search profile may search separate and distinct portions of an abstract. Profile terms may be truncated right or left or both, and may be assigned weights. The Abstract Bulletin data base tape and one temporary data file is all that is necessary for processing with this program. The current program system was written in the basic FORTRAN IV language with nine assembler language subprograms, and designed to run in 54 K of core storage or less on an IBM 360 computer.

A glossary of terms which are used in this program description manual follow:

1. LOGIC GROUP - a collection of words which have the usual "OR" connotation.
2. SEARCH PROFILE - a collection of logic groups which comprise the words of interest for an information search.
3. LOGIC STATEMENT - a statement of what combinations of logic groups constitute a "HIT" for a search profile.
4. HIT - an abstract which satisfies (or matches) a logic mask or masks for a search profile.
5. PROFILE TERMS - a word in the form that is to be used in a search against the data file, i.e., its truncated or full word form.
6. PROFILE TERM WEIGHT - a number assigned to a profile term, which if the term is found in an abstract is to be accumulated into a total for the abstract.
7. SEARCH PROFILE THRESHOLD - a minimum number which is compared against the accumulated profile term weights. If the logic mask of a profile indicates that an abstract is a hit, but the total of the weights does not equal or exceed the threshold, the abstract is not retrieved. If the logic mask is not satisfied, the abstract is not a hit regardless of the accumulated weights.

Program Description
The LIRES-DF program will accept a number of search profiles and search the Complete Text or Complete Text with Keywords data file of the Abstract Bulletin. A particular search profile may specify that all of its profile terms are to be searched against the abstract file, or against the text of the abstract, or against the keywords assigned to the abstract; or any combination of the three. The instructions for a particular search may specify that the output consist of: (1) only abstract numbers of hits, or (2) citations (title, journal reference, and keywords) for hits, or (3) complete abstracts and keywords for hits are to be printed as results. Items (2) and (3) automatically have the profile terms which caused the hit printed with each abstract.

The following restrictions apply to a SEARCH PROFILE:

1. Not more than ten (10) logic groups may be defined in one search profile.
2. Profile terms should not exceed forty (40) characters in length.
3. Profile term weights may not exceed 999 or -999.
4. Profile terms which are to be searched against the title and/or text of an abstract must be single word terms (all forms of truncation apply).
5. A profile term which is to be searched against the assigned keywords of an abstract must be an accepted keyword term (all forms of truncation apply). The "keyword" may of course consist of several individual words.

The following restrictions apply to one program run (one pass of the data file):

1. Not more than thirty-two (32) search profiles may be included.
2. The total character count for profile terms for all profiles must not exceed 4000 characters (no restrictions for a particular search).
3. Not more than 100 logic masks may be specified (no restrictions for a particular search).
4. Not more than 320 words in total may be specified (no restrictions for a particular search).
5. Not more than 100 logic groups may be specified (not more than 10 per search, but otherwise no restriction).

All of the above restrictions may be lifted or modified by some simple modifications of the source program decks and recompiling the programs.

Preparing a Search Profile
The following instructions apply to one search profile which will ultimately be combined with others to perform a search of the data base.

Organize a list of profile term words which describe the interest profile into logic groups, and indicate the type of truncation desired for the words by placing astierisks as follows:

WORD1 - no truncation desired, must have an exact match
*WORD2 - pre-truncated word, any data base word with this ending is to be found
WORD3 - post-truncated word, any data base word with this beginning is to be found
"WORD4* - root form word, any data base word with this root is to be found
also write the profile term weight which is to be assigned. Prepare the information for the search profile parameter card, which consists of the following information:

1. The type of printed output desired.

1 - Abstract numbers only.
2 - Citations and keywords for hits.
3 - Full text of each abstract for hits.
2. The portion of each abstract that is to be searched for all profile terms in this search.

1 - Search abstract title only.
2 - Search abstract text only.
3 - Search abstract title and text.
4 - Search abstract keywords only.
5 - Search abstract title and keywords.
6 - Search abstract text and keywords.
7 - Search abstract title, țext, and keywords.
3. The search profile threshold; the accumulation of weights must be at least equal to this threshold number for an abstract to be a hit.
4. The number of logic statements which are to be entered with this profile.
5. The list of numbers indicating the number of profile terms in each logic group.

The logic statement(s) should be prepared at this time. A logic statement defines which groups are to be "AND"ed. More than one logic statement may be entered describing combinations of logic groups which if satisfied will constitute a hit. "NOT" logic is indicated in logic statements by punching a minus sign by the logic group number. A logic statement, for example to define logic groups 1,2 , and not 4 as a hit is written (and punched) as 12 - 4 . At least one logic statement must be present for a search profile. Logic masks are generated from the statements on a one-for-one basis except for a statement with "NOT" logic. An extra mask is generated for each statement containing "NOT" logic.

As an example, consider a profile concerning computers in process control; -the keywords_only are to be searched, and citations only are to be printed. The keywords will be searched for exact match (no truncation). The deck for this search profile would be punched:

Card	Information Punched
1	COMPUTERS IN PROCESS CONTROL - SAMPLE PROFILE
2	. $2 . . .4$. . .0....2....1....6.... 6
3	COMPUTERS
4	ANALOG COMPUTERS
5	AUTOMATIC CONTROL
6	DIGITAL COMPUTERS
7	PAPER MILLS
8	PROCESS CONTROL
9	PULP MILLS
10	BATCH PROCESS
11	COMPUTER PROGRAMS
12	CONTROL SYSTEMS
13	DIGESTERS
14	PERMANGANATE NUMBER
15	TEMPERATURE
16	-
17	. $2 . .3$

Card 1 of the deck is the title of the search; it will be printed on the output. Card 2 is the parameter card (the dots indicate blank columns) where the 2 will cause a printout of citations and keywords; the 4 will cause only the keywords to be searched; the 0 is the search profile threshold; the 2 indicates that there are two logic statements describing what combinations of logic groups will be hits; the last three numbers indicate that there are 3 logic groups of 1,6 , and 6 words, respectively. "The absence of asterisks indicate no truncation. Cards 3 through 15 are the profile terms. Cards 16 and 17 are the logic statements; 1 indicates that any abstract containing the word from logic group 1 (COMPUTERS) is to be cited; and the 2 and 3 indicate that if an abstract contains any of the words from logic group 2 AND logic group 3, it is also to be cited. See the sample run for the results of this search.

The format for punching the search profile parameter card is five (5) columns for each parameter entered (maximum of 14 parameters); and three (3) columns for each logic group number indicated on a logic statement card (maximum of 10 logic group numbers). All numbers must be right-justified in their position. All other cards are free format alphanumeric information and should begin in column one of the card.

Selection of Profile Terms

The choice of profile terms is arbitrary for those searches which are to be processed against the title and text of an abstract. A concordance of Volume 41 of the Abstract Bulletin is provided to assist in the selection of profile terms. Particular attention should be paid to the standard abbreviations used by the abstractors.

The Pulp and Paper Research Institute of Canada's Thesaurus of Pulp and Paper Terms, Second Edition, should be used when choosing profile terms which are to be searched against the keywords assigned to an abstract.

Program Modifications

Installations using the LIRES-DF program may wish to ease some of the restrictions previously listed. The limitation of thirty-two searches per run cannot be altered easily. The LOR and LAND functions which manipulate binary bits are designed to operate on one word of core storage (32 bits) and modifications would be significant. Other alterations require changes in the DIMENSION statement and various input/output, and control statements. These may be tailored to the particular installation and the amount of core storage available.

Modifications of the restrictions may be effected as follows (refer to the source and cross reference listings):

1. In order to increase the number of logic groups (over 10), change the read statement (No. 24) in the main line program to ($\mathrm{WNO}(\mathrm{K}$), $K=1, n$) where ' n ' is the number of logic groups that is to be accommodated. In subroutine RDPROF change the limit of the DO loop statement (No. 7) to ' n '. Take care to alter the FORMAT statement 9002 to accommodate the number of items to be read.
2. In order to accommodate more than 320 words in total alter the DIMENSIONs for the variables WB , WL, WTS, TAB, LOG, and WT to the desired number in the main line program. Statement 16 in RDPROF will have to be changed to IF ($\mathrm{NE}-\mathrm{n}$) 24,24 , 17 also.
3. The limit of 4000 characters for profile terms can be increased by changing the DIMENSION for the variable WRD to $m=(n / 8)$ where the ' n ' is the desired character storage and ' m ' is the number to be put in the dimension. The statement LIMIT $=4000$ (No. 17) should be changed to ' n '. All of these changes are in the main line program.

Alterations of the LIRES-DF program to process a data file with a different format, or with different types of information is possible. Subroutine RDTEXT (see statement 88) would have to be replaced with a module which would read the new data file. The important information which is returned is the text and the parameter lists TB and TE. The text is expected to be in one continuous string. The variable lists $T B$ and $T E$ contain the beginning (TB) and ending (TE) character locations for the type of information (title, text, keywords, etc.) that is to be searched. Statements 84 and 85 in the main line program read the abstract heading information independently. They would also have to be altered to process a different type of record.

Introduction

The LIRES-IF (LIterature REtrieval System-Inverted File) system has been developed at the Computer Center of The Institute of Paper Chemistry. The system is designed to permit searches of an inverted file for information retrieval purposes. It is written in the basic FORTRAN-IV and in basic Assembler Languages. The IBM Sort/Merge utility is used at several stages in the searching process. The system is designed to run in 66 K of core storage, and requires two tape drives and sufficient disk space for temporary storage of data sets.

A glossary of terms which are used in this program description manual follows:

1. LOGIC GROUP - a collection of words which have the usual "OR" connotation.
2. PROFILE - a collection of logic groups which comprise the words of interest for an information search.
3. LOGIC STATEMENT - a statement of what combinations of logic groups constitute a "HI'C" for a profile.
4. HIT - an abstract which satisfies (or matches) a logic mask or masks for a search profile.
5. PROFILE TERMS - a word in the form that is to be used in a search against the data file, i.e., its truncated or full word form.
6. PROFILE TERM WEIGHT - a number assigned to a profile term, which if the term is found in an abstract is to be accumulated into a total for the abstract.
7. PROFILE THRESHOLD - a minimum number which is compared against the accumulated profile term weights. If the logic mask of a profile indicates that an abstract is a hit, but the total of the weights does not equal or exceed the threshold, the abstract is not retrieved. If the logic mask is not satisfied, the abstract is not a hit regardless of the accumulated weights.

Program Description

The LIRES-IF program will accept up to 255 profiles to be searched against an inverted file. A direct file of the information contained in inverted form is required for the purpose of printing citations (and abstracts if desired).

A profile is comprised of identification and parameter information, search profile terms, and logic statements. The profile terms may be words up to 39 characters in length; they may be right truncated; and they may be weighted. Logic statements are used to indicate the combinations of logic groups which are to be called "hits." At least one word from each logic group identified in a logic statement must be found in order for an abstract (or document) to be retrieved.

The program searches the inverted file for the profile terms and collects the abstract (or document) numbers as the words are found. The numbers are sorted and compared to the logic statements. As a document number is found to satisfy a logic statement, the direct file is used to obtain the citation (and abstract or text) information. After gathering all citations that are to be printed, they are sorted in the following order:

1. Profile number.
2. The citation weight (from profile term weights).
3. The number of profile terms found in citation.
4. The document number.

The user has the option of specifying that the citation only or the citation and accompanying text be printed. Profile terms found in the citation are always printed.

The user may consider some profile terms more important than others for his search. He may assign unequal weights to the profile terms, and supply a threshold weight of zero. This will cause the citations with those important terms to be printed ahead of those of relatively lesser importance.

Profile Preparation

A search requires the following cards:
a. Search identification card free form, use all 80 columns
b. Parameter card - IND', NLOG; MAX, LIM, NWI, NW2,...
c. Profile terms - follow the term immediately with an
asterisk (*) for truncation
d. Logic statement(s) - LGI, LG2, \ldots (3 columns each, right
justified)

Repeat the instructions above for other searches (maximum of 255/pass). Place a card punched "END" in columns 1, 2, 3 after the last search to be included in the processing run.

Parameter Card Definitions (5 columns each, right justified)
IND $=1$ to print citations, $=2$ to print citation and text of abstract
NLOG = The number of logic statements for the search
MAX $=$ The profile threshold
LIM $=$ Limit on the number of hits to be printed
NWI-NW10 $=$ The number of words in logic groups one through ten.

Logic statement(s) are prepared according to the following scheme: A logic statement defines which combination of groups are to be "AND"ed together. More than one logic statement may be entered. These statements describe combinations of logic groups which, if satisfied, will constitute a hit. "NOT" logic is indicated in logic statements by punching a minus sign by the logic group number. A logic statement, for example, which defines logic groups 1,2 , and not 4 as a hit is written (and punched) as 12 -4. At least one logic statement must be present for a search profile. Logic masks are generated from the statements on a one-forone basis; a maximum of 500 masks are permitted for the 255 or fewer searches.

Restrictions

The following restrictions apply to a PROFILE:

1. Not more than ten (10) logic groups may be defined in one profile.
2. Profile terms should not exceed 39 characters in length.
3. Profile term weights should be in the range -999 to +999 .

The following restrictions apply to one processing run (one pass of the files):

1. Not more than 255 profiles.
2. The total word count for any one or all of the profiles may not exceed 2000.
3. The total number of logic statements for any one or all profiles may not exceed 1000 .

The restrictions on the number of words and the number of logic statements may be eased at the expense of more core storage for the program. Four bytes (one computer word) is required for each additional word and/or logic statement. More profiles may be handled at the expense of core storage and also disk storage. Profile terms, document numbers, and citations are stored on disk temporarily. An increase in the number of profiles would cost sixteen bytes (four computer words) for each additional profile to be handled. The system programmer should be consulted about the job control and disk space allocation for the additional profiles. The coding in the system makes it theoretically possible to handle more than a half-million profiles in one processing run.

A system programmers guide is provided with the source program to guide and assist the systems group in the installation of the system. The LIRES-IF system is being used under the Operating System (Release 19.6) and the RAX time sharing system at The Institute of Paper Chemistry.

Full Text with Keywords

The full text with keywords file of the Abstract Bulletin of The Institute of Paper Chemistry is prepared on 9 track, 800 b.p.i. computer tape. Each record contains 80 bytes (blocked $80 / 3600$) and an abstract records arranged as follows:

Record	Bytes	Information	Mode
1	1-4	Total Length of abstract data	Binary
	5-8	Abstract number	Binary
	9-12	Byte location of Author data	Binary
	13-16	Byte location of the Title	Binary
	17-20	Byte location of Reference data	Binary
	21-24	Byte location of Text data	Binary
	25-28	Byte location of Keywords	Binary
	29-32	Byte location of Volume, Issue	Binary
	33-36	Total length of abstract data	Binary
	37-80	The beginning of the abstract (44 bytes)	EBCDIC
$2-n$	1-80	Abstract data -'	EBCDIC

There will be a varying number of records for each abstract, depending upon the length of the various parts. One may determine the number " n " by dividing the total length (obtained from either location) by 80 . The file is terminated by a single 80 byte record with zeroes stored in all pointer and length locations. The EBCDIC data is in upper and lower case.

Inverted File

The inverted file of the Full Text with Keywords and the Keyword Supplement of the Abstract Bulletin of The Institute of Paper Chemistry is prepared on 9 track, 800 b.p.i. computer tape. Each record contains 80 bytes (blocked 80/3600).

In the case of the Full Text with Keywords File, all "words" have been converted to upper case EBCDIC characters. The meaning of "word" is as follows:

1. An author's full name is maintained as a word, i.e., blank spaces, and punctuation.
2. The name of the publishing journal is maintained as a word.
3. Keywords are as defined in the Thesaurus of Pulp and Paper Terms.
4. All other words are defined as the information between two blank characters after all punctuation has been removed.

All words on the inverted file have a maximum of 40 characters. Company names which appear as authors in patent abstracts that exceed the maximum have been truncated.

Abstract numbers have a source code affixed. The source codes have the following meaning:

1 - This word came from an author record.
2 - This word came from a title record.
5 - This word came from a journal reference
6 - This word came from the text of an abstract.
8 - This word came from the assigned keywords.

A11 numbers occupy four bytes (20 per record) in binary. The source code can be stripped from the abstract number by dividing the number by ten.

\qquad
DATE January 25, 1974

Copies to:	Files
	Church
	Holm
	McClenahan
	Whiner

AUTOMATED POSTING OF BROAD TERMS TO THE KEYWORD SUPPLEMENT INTRODUCTION

Beginning with Volume 42 of the Abstract Bulletin of The Institute of Paper Chemistry, indexing of abstracts has been performed using the Thesaurus of Pulp and Paper Terms as the authority. The thesaurus provides a hierarchy for all terms to be used in indexing; narrower, broader, related, used for, or use index terms if any are listed for each permissible term.

MANUAL INDEXING

Indexers at the Institute manually assign index terms to abstracts to the extent that the essential content of the abstract is indicated. These "keywords" are keypunched and verified, then are processed through the compuler system providing the inverted file and direct file of the Keyword Supplement of the Abstract Bulletin in machine-readable and hard copy versions.

SEMI-AUTOMATIC INDEXING

With Volume 44, number 1 a new dimension was added to the procedure. After the manual indexing process is completed, the broad terms for keywords assigned are automatically added before producing the magnetic tapes and printed versions. Now someone searching for information, and using the Keyword Supplement, about computer applications only has to look up "COMPUTERS" which is automatically posted for articles which had "DIGITAL COMPUTERS" or "ANALOG COMPUTERS" manually assigned. We say that the Keyword Supplement is upwards general-or downwards specific.

Computer systems have been developed which will search the magnetic tape version of the Keyword Supplement and report back abstracts which had specified combinations of keywords assigned to them. Unless the request is very general or very specific, two groups of index terms are usually organized and abstracts which have a word from each of the groups are retrieved. For instance, if "computer applications in information processing" was the topic of interest, the two groups of words might be

DIGITAL COMPUTERS	INFORMATION RETRIEVAL
COMPUTER PROGRAMS	INFORMATION SYSTEMS
DATA ;PROCESSING	DATA RETRIEVAL

A11 abstracts assigned a word from column one and a word from column two would be retrieved. References which are not pertinent to the topic are. sometimes retrieved along with the useful abstracts. Sometimes these "false drops" are more numerous than the "hits." The Institute offers monthly information on twenty-seven standard subject profiles. Twelve of these profiles have been tested to determine the effect of having the broad terms posted. Table I shows the results of the two searches.

TABLE I
SEARCH OF VOLUME 44, NUMBER 7
Broad Terms Not Posted
Broad Terms Posted

Profile Number	Hits	False Drops	Total	Hits	False Drops	Total	Extra Hits	.Extra False Drops
1	13	2	15	16	7	23	3	5
2	5	4	9	7	4	11	2	0
3	4	0	4	4	0	4	0	0
4	15	1	16	15	1	16	0	0
5	36	2	38	45	3	48	9	1
8		7	19	12	7	19	0	0
9	23	5	28	25	6	31	2	1
10	11	1	12	11	1	12	0	0
11	16	1.	17	16	1	17	0	0
12	11	0	11	11	0	11	0	0
13	4	0	4	4	0	4	0	0
15	$\frac{19}{169}$	$\frac{0}{23}$	$\frac{19}{192}$	$\frac{19}{185}$	$\frac{0}{30}$	$\frac{19}{215}$	$\frac{0}{16}$	$\frac{0}{7}$

From these data we draw the following conclusions:

1. That the addition of the broad terms does not produce an "avalanche"
 experiment.
2. That the ratio of hits to the total does not change significantly. The ratio was 88% before posting and 86% after.
3. That better results are obtained using the file with broad terms posted. - An increase of 9% in the number of hits (16/169) was obtained.

Custom profiles ate usually designed for a narrower interest than the standards tested above. Improved results should be forthcoming with the new file for custom profiles too. The searcher may choose a keyword at any level in the hierarchy and will obtain all references to more specific subject matter related to that keyword.

PROJECT REPORT FORM

Copies to: Files

R. Holm
J. Weiner

PPRIC THESAURUS

Computer Storage and Use of the Pulp and Paper Thesaurus

INTRODUCTION

The second edition of the pulp and paper thesaurus initiated by the Pulp and Paper Research Institute of Canada (PPRIC) and jointly supported and improved by PPRIC and The Institute of Paper Chemistry has recently been published. This source document is very useful in controlling the concepts and keyterms used in indexing information for efficient retrieval to serve the research and management needs of the pulp and paper industry.

In the development of lists of keywords to describe a particular area of concern, one often begins with only a few major keywords, and then proceeds to use the thesaurus to guide him in the selection of other narrower, broader, or related terms with which to improve the effectiveness of his search profile. This procedure becomes very tedious, time-consuming, and subject to error when the number of original terms is above five or so, or the concepts concerned are fairly general so the associated keyterms become numerous.

The objective of this work was threefold.

1. To store the complete pulp and paper thesaurus (PPT) on the

Institute computing system library.
2. To design, develop, and test a series of modular subroutines which would allow flexible access to the information thus stored.
3. To develop and test a program which demonstrates the conceptual capabilities of the system and which has a direct practical usefulness in developing better search profiles.

HOW TO GET THREE QUARTS OF WATER INTO A ONE QUART JAR
A complete magnetic tape copy of the PPT was sent to the Institute courtesy of Peter Nobbs. In its original complete form the thesaurus occupies $3,400,000$ bytes of space, roughly sixty percent of all the available space on our computer system file disk. It would have been possible to leave the PPT on tape and use it directly in that form, but then its use would be restricted to the single card-printer terminal in the main computer room. In order to use the PPT from one of the six video terminals, it was necessary to find some way of shoehorning it into a more reasonable portion of the system file disk.

In order to do this, the complete logical contents of the PPT were analyzed using specially designed computer programs, to break the complete contents of the PPT down into three separate, mutually dependent files which contained the essence of the complete PPT, and from which, should need arise, any portion of characteristic of the PPT could be regenerated.

The three files which were generated and which are used in all the subsequent programs occupy only one fifth of the original file size and yet contain all the information of the original PPT. A description of these files and their use follows.

The Keyterm File
This is the only truly alphabetic file of the three. This file contains the proper English listing of each keyterm in alphabetic order. The Address File

This numeric file is a series of six-number groups, one group for each of the 6197 keyterms. The six numbers in each group give information on the following six items for each keyterm:

1. The address within the "number" file where the list of narrower
terms begins:
2. The number of narrower terms assigned to that keyterm.
3. The address within "number" where the list of broader terms begins.
4. The number of broader terms assigned to that keyterm.
5. The address within "number" where the list of related terms begins.
6. The number of related terms assigned to that keyterm.

This file essentially collapses the logical structure of the PPT into one list of addresses and associated keyterm counts.

The Number File

This is also a numeric file, but rather than storing addresses and counts as the above file, it is a compact, complete list of the keyterm numbers for the associated keyterms actually listed in the PPT. The listing of the keyterm numbers rather than the alphabetic words themselves is the major source of savings in storage space.

GOING AROUND YOUR ELBOW TO GET TO YOUR THUMB
A typical example of how each file is dependent on the other
can be seen from the series of operations which could be made to retrieve and print an elementary result, the alphabetic list of all the keyterms which are posted as "related terms" for a particular word, e.g, 'bleaching'. The computer looks up 'bleaching' in the keyterm file and finds it keyterm number.

The computer then goes to the address file and finds the address and the number of related keyterms. The computer then goes to the number file at that address and gets that keyterm number and the following related numbers. :'Finally, the computer goes back to the keyterm file where it started and prints out the alphabetic words corresponding to each of the keyterm numbers retrieved from the number file.

This is an involved process, but the interaction of the three files in this manner can be accomplished in a direct and error-free manner with the equipment and programs on hand, and at the same time save the need for investment in tens of thousands of dollars worth of additional storage devices.

BOOTSTRAPS AND SHOESTRTNGS

In order to effectively use this stored set of files, a series of Fortran subroutines was written to perform each of the sequential operations needed in using the files. By combining these subroutines with simple sorting routines (such as "SORTAL") quite a broad range of programs can be developed to select, combine, analyze, and report on the relationships of the words implicit in the PPT. The final demonstration program described below shows only one example of the use of these subroutines in a connected, coherent manner.

The subroutines which are used to get to the information are FORM, NKT, ADDR, RBF and WORDS. The detailed list of parameters and description of the operation of these subroutines are included in the program listing in the 2318-02 work files, but a qualitative description of these routines is included here for your information.

Form Subroutine

This subroutane takes a full paragraph of words which have been typed into the video terminal with some arbitrary dividing mark (in the present caséa comma followed by a blank) and stretches it out so that the

All of the subsequent operations use this evenly-blocked word list.

Nkt Subroutine
This subroutine takes a series of words in a list and locates the corresponding values of the keyterm identification number assigned in the PPT.

Addr Subroutine

This subroutine retrieves the addresses and counts which tell where the keyterm numbers associated with a given keyterm are located in the third file. The addresses and counts specify these values for naryower; broader; and related keyterm numbers.

Ref Subroutine
This subroutine references the third file using the addresses and count supplied and pulls out the needed keyterm numbers.

ar

Words Subroutine

This subroutine uses a finally compiled and sorted (if desired) list of keyterm numbers and transfers the actual alphabetic words into a word list for reporting or further analysis.

AUTOPROFILE ONE
A helper program called AUTOPROFILE ONE was conceived, programmed and tested to demonstrate the capabilities of the individual segments described above to serve a particular need, in this case, the accumulation and reporting of generic and associated words related to a given set of original keyterms. The resulting list can then be used to suggest possible additional keyterms which might have been overlooked in the original analysis of the search question or abstract. A typical set of input data are listed in Table I. The output from this particularly extensive and complex profile analysis is given in Table II. Those related terms which occurred most frequently in the accumulation of the 286 related terms are given at the head of the list, together with a count of the frequency of occurrence of each term. Only the first hundred terms are printed, as these should be more than adequate for suggesting additional terms for practical search profiles.

THE MILIS OF THE GODS GRIND SLOW, BUT THEY GRIND EXCEEDING FINE The concept of the program development and its operation have been proven. Unfortunately the program runs very slowly due to the inefficient method in which the present subroutines read the disk files. A simple profile takes about 3 minutes on the time-shared system, and

TABLE I

TYPICAL INPUT TO• PROCRAM PPT

```
GlifClUDE PPT
hiodustirial bastes, pollution, pgllurion control, recycling, haste disposal, wastes, bARK, ELECTROSTASIC PRECIPITATORS, FLY ASH, LANCFILI, RECLALHED FIbERS,
```



``` SLUDGE DISPUSill, SULIDS, WASTE PAPERS, hOOD Waste,
```

EEND RUN

TYPICAL OUTPUT FROM RROGRAM PPT

DASIC KEY:ORDS

Project 2318-02
March 16, 1972
Page 8

```
1 BiRK
    ELECTROSTATIC PRECIPITATURS
    FLY ASH
    gnOUSTRIAL WASTES
    pOLLUTION
    pCllut DON COMTROL
    RECLAIMED FIHERS
    RECYCLING
    REJECTS
    RESIDUES
    SCMAP
    SCREENIIGGS
    SLUDGE
    SIUUGE DISPOSAL
    SOLIDS
    \mathrm{ hASTE DISPOSIL}
    WASTE PAPERS
    HaSTES
    NOOD WASTE
    HIARROFER AMD BRUUADER TERMS
) -2 . WNSTES
    VENEER WNSTE
    SHAVINGS
    Sabi fill.l reSIUUES
    SAW DUST
    oisposal
    %OOD %NSTE.
    WATER PCLLUTIUM
    TAll|iNGS
    SENAGE DISPOSAL
    SEWAGE
    SEPARATORS
    REFUSE
    PLANT TISSUES
    LAND FILL
    incusfrial hastes
    ASH
    AIF POLLUTTOM
    activared sluOge
    RELATED TERN:S
        NOASTES
    7 WASTE UISPOSAL
    A INDUSTRIAL :ASTES
    5 SCREEIINGS
    5 RECUVEPING
    4 TAilimGS
    4 SPEi!T LIGUORS
    4 SEMAGE TREAT:LANT
    4 PCLLUT1ON
    4 IFP!RITIES
    4 Mi? POLluTION
```

more complex ones like the one shown in Table I can take up to 15 or 20 minutes. This is still a large time saving over manual methods of com-
 for each profile, thus cutting the time to a bare minimum of approximately one or two minutes independent of the size or complexity of the profile. More efficient subroutines which have the same argument lists and produce the same results as the present brute force routines could be substituted
 the ${ }^{2}$ ogranit usefuiness expands and the demand is demonstrated. For the present; no further work is planned. Even at the present state of the program, it can be useful for checking and expanding exceptionally complex or important profiles, such as our standard monthly keyword profiles or for quality control checking of keyword assignments to abstracts.

ACKNOWLEDGMENT

This approach to information analysis would be completely impos, sible without the special utility subroutines which have been written and incorporated into our RAX system by John 0 . Church for the direct manipulation and comparison of alphabetic strings of characters. The availability of these utility subroutines has expanded the usefulness of our machine to make the conceptual level that of much larger and more expensive equipment. Notice of this contribution is called for and herewith recorded.
and can be used by typing any list of keyterms into the terminal in accord with Table III.

TABLE III

TYPICAL USE OF PPT FROM VIDEO TERMINAL
/INCLUDE PPT
ABIES, ABIES ALBA, ABIES AMABILIS, PICEA, FORESTRY HARVESTING, FOREST MANAGEMENT,
(a full ten lines is required, fill in with blank lines or blank cards if there are not enough words. Words may be on separate lines, but each must be tor llowed by a comma and one or more blank

WOOD HASTE,
\because UTIINTHION,
/END RUN

Some difficulties have arisen for longer profiles run from the

- Video terminals with regard to 'excessive output, job deleted.' If this occurs, try running the same program from the batch (card reader), terminal. Additional improvements to trade off the maxımum word list size (now 800 total basic, generic, and related words) with the input-output buffer size may be possible. Four hundred words (before sorting) might be adequate for all but the rare exceptions.

PROJECT REPORT FORM
Copies to: Files
Speckhard
Bachhuber
Brown
Dickey
Holm
Ne 1son
Roth
Weiner
Grow


```
cooperator
``` \(\qquad\)
\(\qquad\)

REPORT NO.- \(\qquad\)
DATE May 29,1968
NOTE BOOK.

PROCEDURES FOR PRODUCING THE KEYWORD SUPPLEMENT TO THE A.B.I.P.C.

SUMMARY

This report describes the procedures for producing the Keyword Supplement to the Abstract Bulletin using the IBM 1620 digital computer and ancillary equipment. Two indexes are prepared: the monthly supplement and the semiannual index which brings together \(s i x\) month's keywording effort. Several keyword lists are also prepared periodically for use in thesaurus updating, analysis of keyword usage, etc.

PREPARING THE MONTHLY SUPPLEMENT

A xeroxed copy of the manuscript of the Abstract Bulletin is made available to the keyworders within a few days after the closing date of the issue. After the keywords have been assigned, the manuscript is given to the keypunch operators. The abstracts are kept in numerical order with the corresponding-keywords attached. . The punched cards are prepared according to the format as shown in Fig. 1. Each keyword term is separated from one another by a comma and a double space. The last word on the card and its coma cannot be further to the right than column 74 as there must be at least two blank columns before the abstract number which is punched in the last four columns of the card. In the instances where the abstract number is less than four digits in length, the number is written so that the right hand digit is

Figure 1. Punched Cards as Prepared by the Keypunčh Operators
always in column 80. Each card should carry as many keywords as possible under the above limitation and as many additional cards as needed can be used. The abstract number must be repeated on every additional card used for the same abstract, however.

After all the cards are punched, the deck is listed on the printer and this list is then used to check for punching and keywording errors. The cards are corrected and repunched where necessary.

The cards are now ready to be loaded to disk in order to prepare the inverted index; i.e., keyword with corresponding abstract numbers. Both disk drives are used; the IBM 1311 disk storage drive model 3 (main drive) and the 1311 model 2 (satellite). The main drive will have the sort-merge disk pack mounted on it and the satellite will contain a scratch pack. The sort-merge disk pack contains all the programs needed for the production of the keyword supplement; therefore, all programs need only to be called up Into core storage at the time they are needed rather than be loaded manually each time. The program used for loading the disk pack for inverting the index is named PLIDFI. This program reads a card and pulls off the number and the first keyword on the card. It then proceeds to make number-keyword combinations out of the rest of the keywords on the card, reads the next card, and repeats the process. This continues until all numbers and keywords
are read into the computer. The number-keyword combinations are put into a large output area in the computer and when this area is filled, the records are put on the storage or scratch disk pack. The storage pack has space available for approximately 10,000 number-word combinations. The last thing this program does is put \(0+\infty\) on the disk for the convenience of the sortmerge program which follows.

The sort-merge program is basically an IBM program which they call SM047 and which is stored on the sort-merge disk pack by the name of SORT. This program does the actual inverting of the index. It generates tags which are made up of up to twenty-five letters of the keyword and information giving the location of the keyword on the storage disk pack. These tags are put into the work area of the main disk pack and alphabetized by keyword in groups. The groups are then merged resulting in all the tags being in alphabetical order on the main disk. The final operation of this program is to present record number one (the first tag in the alphabetical list) to be worked on by the next program.

The next program, named PPIKI, is brought into core automatically by the sort-merge program. This program prints and punches the inverted index. The program looks at record one presented by the previous program, goes to the storage disk location indicated,-stores the complete-keyword found there in a new storage location, stores the number, and prints and punches the complete keyword with a - punch in column 80. It then looks at the word in the location indicated by record two. If the word is the same as the one stored previously, the abstract number is stored next to the previous number. Since the format calls for a maximum of ten numbers per card, a counter is set up to count the number of abstract numbers being
stored. When the count reaches ten, the numbers are outputted along with the first twenty characters of the keyword. Figure 2 shows the so-called header card (full keyword and - punch in column 80) and its corresponding data cards. When a different keyword is encountered, the storage areas are cleared and the new record is treated as record one. In practice, the first pass of the file through the inverting procedures is only to produce a listing of the inverted index for editing purposes. Therefore, a print or print-and-punch option has been built into this program.

The corrected file of cards produced by PPIKI are then worked on by the program called annual keyword index program. This program reads the first card with a - punch in column 80 and all succeeding data cards and stops when it reaches another card with a - punch in column 80. It then arranges all the numbers into columns by last digit and prints out the final form of the inverted index. Figure 3 shows a sample of the printout from this program.

The direct index or keyword by abstract number index is prepared from the original punched cards using the program named PACKAN. This program simply prints the abstract number on the left followed by all the keywords belonging to that abstract. Aby-product of this procedure is an indication of the average depth of indexing. While the program is preparing the file for printing, it is also counting the number of abstract numbers and the number of keywords. By feeding the cards into the computer in two groups, periodical section and patent section, it is possible to get the average number of keywords per abstract for each section and for the total issue.

Figure 2. Header Card and Data Cards
```

ADDITIVES
7540
7431
8036
8066
ADHESION
$74747435 \quad 7397 \quad 7969$
ADHESIVE PAPERS
7872 7445
ADHESIVES
7390 7llllllllllllll
7430 7781 7732 8023 7574 -7395 7796 7578 7969
740
7580
7780
ADIPIC ACID
7782 7783
ADJUSTMENT
7824
8034

```
\(7474 \quad 7435\)
7584

7872
7445
```

7430	7781	7732	8023	7574	7395	7796	7578	7969

ADJUSTMENT

```

7824
8034
AERATION
7723
AFRICA
 7672
AGAR

7355
agGlomeration
7401
AGING

7345
7445
7665 7665

AGLYCONE GROUPS
AERATION
7723

AFRICA
7672
AGAR
\begin{tabular}{rl}
7381 & 7612 \\
& 7345 \\
& 7665
\end{tabular}
\(7576 \quad 7647\)
7319

AIR
7603

Figure 3. Sample Printout of the Inverted Index

Cumulative direct and inverted indexes are prepared twice a year and are distributed in place of issues 6 and 12 of the volume. The direct or keyword by number index is prepared by merely assembling the individual issue direct indexes in numerical order and putting them through the PACKAN program. The preparation of the cumulative inverted index is a little more involved.

The cards from the six monthly inverted indexes are sorted by the first letter of the keyword on an IBM 83 card sorter. The sorted cards are then loaded to the disk pack using the program named PLMIFR. This program prepares and stores records on the disk pack from the inverted file cards in the same manner that PLIDFI prepares and loads records from the direct file. Since space limitations on the disk allow for only 10,000 records to be stored at one time, the sorted inverted file must be loaded in batches. However, all the cards with keywords starting with the letter A, for example, must be loaded together. The number of records transferred to disk storage may be checked at any time during the operation by turning program switch one on at the console. After loading as many records as possible, the sortmerge program is called and the operation proceeds as in the preparation of the monthly inverted indexes.

PREPARATION OF KEYWORD LISTS

A list of all the keywords used to date along with their frequency of usage can be of use for thesaurus updating, checking consistency of class usage, determining how heavily certain keywords are posted, etc. A program has been written called CALANK to prepare a list of all keywords used in a six-month period, for example, along with the number of times the keyword has
been posted during that period of time. The program takes the cards produced by PPIKI from the semiannual file, reads the first keyword and counts the number of abstract numbers associated with it. When it comes to a new keyword, it prints the first word and its frequency of usage and repeats the process. A sample of this list can be found in Fig. 4. This list is also punched on cards. The original list was prepared after 18 months of keywording. In order to incorporate the last six months and make the list reflect the usage for a full two years, it became necessary to write a program to merge the two lists. This program is called MLOKAC. The shorter word list is loaded to disk using the loading program JOHN, which simply loads the data on the cards directly with no change. MLOKAC is called and the larger list is passed by the other list by feeding it through the card reader. The program compares words and, if the words are the same, adds up the frequencies of usage and prints the word and the new total. If the words are different, the program adds the word to the list in its proper alphabetical order. The new merged list is then printed and punched on cards.

This list of all keywords used has been the starting point for a number of special lists used primarily to facilitate thesaurus updating. Programs are available for producing the following lists: keywords used only once, keywords used 100 times or more, keywords having parenthetical phrases, hyphenated keywords, multi-term keywords, keywords ending in ing, keywords ending in er/or or ers/ors, keywords ending in ate or ates. There is also a program for giving the frequency distribution of keyword posting; i.e., the number of keywords used once, twice, three times, etc. Another program, which uses the list of multi-term keywords as its source, is one which produces a permuted keyword list. A multi-term keyword is defined
\begin{tabular}{|c|c|}
\hline 16 & ABATEMENT \\
\hline 1 & ABIENOL \\
\hline 82 & ABIES \\
\hline 9 & ABIES ALBA \\
\hline 5 & ABIES AMABILIS \\
\hline 25 & ABIES BALSAMEA \\
\hline 6 & ABIES CONCOLOR \\
\hline 11 & ABIES GRANDIS \\
\hline 5 & ABIES LASIOCARPA \\
\hline 1 & ABIES MAGNIFICA \\
\hline 1 & ABIES NORDMANNIANA \\
\hline 1 & ABIES PINDKOW \\
\hline 1 & ABIES PINSAPO \\
\hline 2 & ABIES SACHALINENSIS \\
\hline 4 & ABIES SIBIKICA \\
\hline 1 & ABIETADIENE \\
\hline 1 & ABIETENE \\
\hline 19 & ABIEIIC ACIDS \\
\hline 2 & ABIEIINAL \\
\hline 1 & ABIETINUL \\
\hline 3 & ABNOKMALITIES \\
\hline 9 & ABRASION \\
\hline 61 & ARKASION RESISTANCE \\
\hline 2 & ABRASION RESISTANT STEELS \\
\hline 1 & ABRASION TESTERS \\
\hline 11 & ABRASIVE PAPERS \\
\hline 4 & ABRASIVES \\
\hline 34 & ABSORBENT PAPERS \\
\hline 5 & ABSORBERS (EQUIPMENT) \\
\hline 8 & ABSORGERS (MATERIALS) \\
\hline 74 & ABSORPTION \\
\hline 26 & ABSORPTION SPECTRA \\
\hline 21 & -ABSORPTIVJTY \\
\hline 11 & ACACIA \\
\hline 1 & ACACIA ARABICA \\
\hline 1 & acacia latta hashab \\
\hline 1 & ACACIA MEARNSII \\
\hline 1 & acacia nilotica \\
\hline 1 & ACACIA PENNINERVIS \\
\hline 4 & ACACJA SENEGAL \\
\hline 7 & ACCELERATING (PROCESS) \\
\hline 3 & ACCELERATION (MECHANICAL) \\
\hline 1 & ACCELERATORS \\
\hline 1 & ACCEPTABILITY \\
\hline 3 & -ACCEPTANCE-- \\
\hline 26 & ACCESSIBILITY \\
\hline 1 & ACCESSORIES \\
\hline 2 & ACCIDENT PREVENTION \\
\hline 1 & ACCIDENTS \\
\hline 6 & ACCOUNTING \\
\hline 3 & ACCUMULATION \\
\hline 2 & ACCUMULATORS \\
\hline 8 & ACCURACY \\
\hline 23 & ACER \\
\hline 1 & ACER NEGUNDO \\
\hline 3 & ACER PLATANOIDES \\
\hline
\end{tabular}

Figure 4. List of Keywords Used and Frequency of Usage
as any keyword that consists of two or more words，is hyphenated，or contains a parenthetical phrase．The PICTAL／PICTAP pair of programs separates each multi－term keyword into its component words，collects all keywords that
```

ABSORPTION
ABSORPTION SPECTRA
ATOMIC ABSORPTION SPECTROSCOPY
ELECTROMAGNETIC ABSORPTION
ELECTRON ABSORPTION SPECTRA
INK ABSORPTION
OIL ABSORPTION
WATER ABSORPTION

```
ACACIA
 ACACIA ARABICA
 ACACIA LAETA HASHAB
 ACACIA MEARNSII
 ACACIA NILOTICA
 ACACIA SENEGAL
ACCELERATING
 ACCELERATING (PROCESS)
ACCIDENT
 ACCIDENT PREVENTION
ACETAL
 ACETAL RESINS
 POLYVINYL ACETAL RESINS
ACETATE
 ACETATE PULPS
 ACETATE RAYON
 BUTYL ACETATE
 CELLULOSE ACETATE
 CELLULOSE ACETATE BUTYRATE
 CEllULOSE acetate proplonate
 ETHYL ACETATE
 MERCURIC ACETATE
 POLYVINYL ACETATE
 VINYL ACETATE
ACETIC
 ACETIC ACID
 ACETIC ANHYDRIDE

にう引ule 5．Permuted Multi－term Keyword List
contain one of these component words，and prints them along with the component word common to all．Figure 5 is an example of this permuted keyword list．

Print－outs of all the programs mentioned in this report for producing

\section*{PLIDFI}
```

*NAMEPLIDFI
***PRODUCE INVERTED KWD INDEX FROM KWD BY ABSTR NO INDEX***
*****TO LOAD CARDS TO DISK FOR SM047******
*****PROJECT 2318-1*****
DORG20000,.,DEFINE ORIGIN AT 20000
N . DC 2.O.,DEFINE COUNTER FOR CARDS
OUT DSS 4000,.,AREA FOR 4O SECTUR OUTPUT AREA
GM DGM ..,GROUP MARK FOR TRANSFER TO DISK
START SK DISK
B1 *+12,00900,.TURN OFF LAST CAKD INDICATOR FOR START
CF CL1+1;,,CLEAR FLAG
CF CLI+4I
CF CL.1+81
BS + 12,1,,SELECT BAND 1 AND GO TO NEXT STATEMENT
BLXM*+12,OUT,10,PUT ADDRESS OF OUT IN REGISTER I AND GO TO
STI BI DONE,00900,,GO TO DONE IF LAST CARD
S12 TFM K,2,10,BEGIN COLUMN COUNT AT 2
TFM LEFT,INPUT-I
TFM RIGHT, INPUT+I
RACDINPUT,,,KEAD CARD INTU INPUT
BLXM*+12,INPUT+1,9,PUT AUDRESS OF COLUMN IN REGISTER 2
BLXM*+12,INPUT-1.910,PUT ADIIRESS OF FIRST COLUMN IN REGISTER3
TKNMPUTT+1,INPUT+2*75-1,.ARSTR NU TO OUTPUT
S15 SF (2)...SEI FLAG FOR COLUMN COMPARISUN
CM 1+(2),,10,CUMPARE COLUHIN TO BLANK
BE SIO...IF BLAIHK GO TO S10
S14 CM 1+(2).23,10,COMPARE COL.IMMN TO COMMA
CF (2),.,CLEAR FLAG FROM CULUMN
BE LOAD,,.,IF COMMA GO TO LOAD
S10. CF (2),,CLEAK FI,AG FKUM COLUMN
CM K,75,10,COMPAKE COLUMN COUNT TO 75 \ddots
BE ST1.,.IF COLUMN CUUNT IS 75 GO TO STI
S11 AM K,1,10,IF COLIJMN COUNT NOT 75 INCREMENT COLUMN COUNT \&Y 1
BXM S15,2,9,INCKEMENT COLUMN ADDRESS (REGISTER 2) BY 2 AND GO

* TO SIS
LOAD TH PUTT+11,CLEAR+11,,,CIEAR OUTPUT RECURD
TR (2),TKAK+1,,KEPLACE CUMMA WITH RECORD MARK
CF (2),.,CLEAK FLAG FROM KEYWORD COLUMN
TRNMPUTT+11,(3),,PUT KEYWOKIS IN OUTPUY AREA
TRNM(I),PUTY-1,.TKANSFER CARD IMAGE FRONI FIRST OUTPUT AREA TO
SECOND OUTPUT AKEA
AM N,1,10,INCREMENT CAKD IMAGE COUNT BY 1
CM. N,25,10,COMPARE CARD IMAGE COUNT TO 25
BE TRANS,IIF 25 GO TO TRANS
BXM EXIT,160,10,ADD 160 TO REGISTER I AND GO TO EXIT
TRANS WDGNDISK
TFM N,O,10,ZERO OUT CARD COUNT N
BLXM*+12,OUT,10,INITIALIZE REGISTER I FOR OUT
AM DISK+5,40,10,INCREMENT SECTOR ADDRESS BY 40
AM TRAK,1,10,INCREMENT IRAK COUNTER BY 1
CM TRAK,5,10,CHECK IF CYLINDER IS FILLED
BE SEEK,.,IF CYLINDER IS FILLED GO TO NEXT CYLINDER
B7 EXIT,.,IF CYLINDER IS NOT FILLEO GO TO EXIT
SEEK SK DISK
TDMM TRAK,O,.TRANSMIT ZEROP TO TRAK COUNTER
EXIT NOP
S21 AM K,1,10,INCREMENT COLUMN COUNT BY 1
CM K,75,10,COMPARE COLUMN COUNT TO }7
BE STI,.,IF COLUMN COUNT IS 75 GO TO STI

```
```

S23 BXM *+12,2,9,INCREMENT COLUMN ADDRESS (REGISTER 2I BY 2 GO TO
NEXT STATEMENT
SF (2)...SET FLAG FOR COLUMN COMPARISON
CM 1+(2),,10,COMPARE COLUMN TO BLANK
CF (2),.,CLEAR FLAG FROM COLUNN
BE S2I..,IF BLANK GO TO
S24 BSX * +12,LEFT,9,PUT ADDRESS IN REGISTER 2 IN LEFT AND GO TO
*
NEXT STATEMENT
BLX *+12,LEFT,910,PUT ADDRESS AT LEFT IN REGISTER 3 AND GO TO
NEXT STATEMENT
AM K,1,10,INCREMENT COLUMN COUNT BY 1
BXM * +12,2,9,INCREMENT COLUMN ADDRESS IREBISTER 2) BY I AND
GO TO NEXT STATEMENT
SF (21,..,SET FLAG FOR COLUMN COMPARISON
B7 S14
***TRANSHI-T-DIGITS-AND-RECORD MARKS TO MARK END OF DATA
DONE TF 2+(1),EOF-1
WDN DISK,.,WRITE END OF DATA MARKS ON DISK
BS *+12,0, IURN OFF INDEX BAND I AND GO TO NEXT STATEMENT
CALLEXIT,.,END OF PROGRAM
INPUT DAS I
DAS }7
RM DC 1,0
SEC DS .20000
SECT DS .040
DISK DDA ,3,SEC,SECT,OUT
TRAK DC 2,0
DC 2,00
DC 1,0
EOF DGM
K DC 2.0
LEFT DSA INPUT-I
RIGHT DSA INPUT+I
CLI DC 40.0
DC 40,0
DC 40,0
DC 40,0
DC 1.0
CLEAR DS 1,CL1-38
PUTT DAS 1
DAS }7
DC 1,0
DENDSTART

```

PPIKI
**********PROGRAM TO PRODUCE INVERTED KEYWORD INDEX FROM SORTED ****************KEYWORD FILE

DORG20000
ST1 BS * \(+12,1\), ,
BD READ,SWITCH, IF DIGIT IN SWITCH GO TO READ BLXM* +12 , OUTPUT \(+38,10\), PUT ADDRESS FOR NUMBERS IN REGISTER I
RCTY
WATYSTB
RCTY
WATYSTA
RCTY
H
CF ZEROS-49.,
CF ZEROS+1,..
CF ZEROS+41...
CF ZEROS+71...
CF ZERO-49...
CF ZERO+1...
CF ZERO+41,
TRNMOUTPUT-1,ZEROS-49.,
TDM SWITCH, 1, PPUT DIGIT IN SWITCH SO SECTION I WILL BE SKIPPD
SF 02686,.,SET FLAG FOR FIELD TRANSFER
TF ADRESS, 02690 , TTRANSMIT ADDRESS OF RECORD TO WORK AREA
AM ADRESS, 00160,7, CHANGE ADDRESS TO END OF FIELD
TD ADRESS,RM,G,PUT RECORD MARK AT END OF RECORD
SM ADRESS, 00160,7,CHANGE ADDRESS BACK TO BEGINNING OF FIELD
TRNMINPUT-1, ADRESS, 11 , MOVE RECORD FROM SORT-MERGE TO PPIKI
CF 02686...,CLEAR FLAG FOR PURPOSES DF SAFETY
TRANS SF INPUT+1,
SF INPUT+11,, SET FLAG FOR KEYWORD FIELD
IF OUTPUT+146. INPUT+158, ,TRANSFER KEYWORD TO OUTPUT CARD
TRNMOUTPUT+157, DASH-1, TRANSFER DASH TO OUTPUT CARD
BNCI*+24
WACDOUTPUT,.
PRA OUTPUT,,
IF WORD +146 .INPUT +158 , ,TRANSFER KEYWORD TO WORD FROM INPUT
TRNMOUTPUT-1,ZEROS-49, ,ZERO OUT OUTPUT AREA
TF OUTPUT+38. INPUT+50, TRANSFER 20 LETTER KEYWORD TO OUTPUT
\(8 X M+12,10,10, A D D 10\) TO ADDRESS FOR NUMBERS
IF (1), INPUT+10,.TRANSFER NUMBER TO OUTPUT
AM NUM, 1,. INCREMENT NUMBER COUNT BY 1
BSX 02836,0 , \(\operatorname{T}\) TURN OFF INDEX REGISTERS AND RETURN TO SORT-MERG
-READ -SF- \(02686, \ldots\) SET.FLAG FOR.FIELD. TRANSFER
TF ADRESS,02690,.TRANSMIT ADDRESS OF RECORD TO WORK AREA
AM ADRESS, 00160,7, CHANGE ADDRESS TO END OF FIELD
TD ADRESS,RM, \(6, P U T\) RECORD MARK AT END OF RECORD
SM ADRESS, OO 160,7 , CHANGE ADDRESS BACK TO BEGINNING OF FIELD
TRNMINPUT-1, ADRESS,11, MOVE RECORD FROM SORT-MERGE TO PPIKI
CF 02686,.,CLEAR FLAG FOR PURPOSES OF SAFETY
SF INPUT+1, , SET FLAG FOR NUMBER FIELD
SF INPUT+11, 1 , SET FLAG FOR KEYWORD FIELD
C INPUT +158 ,WORD +146 , , COMPARE SECOND WORD TO FIRST. WORD
BE TRANUM, I. IF SAME GO TO NUMBER TRANSFER
CM NUM, O, IF NOT SAME FIND OUT IF OUYPUT HAS ANY NUMBERS
8E TRANS, IIF NOT RETURN TO KEYWORD TRANSFER
PUNCH BNCI*+24
WACDOUTPUT
PRA OUITPUT,. .
TRNMOUTPUT-1, ZEROS-49, ZERO OUT OUTPUT AREA
```

    TFM NUN,OF:INITIALILE NURBER COUNTER TO O
    BLXH*+12,OUTPUT+38,10,PUT ADDRESS FOR NUMBERS IN REGISTER I
    B TRANS,ORETURN TO KEYWORD TRANSFER
    TRANUMEXM * 12,10,10,ADD 10 TO ADDRESS FOR NUMBERS
TF III,INPUT+IO,.TRANSFER NUMBER TO OUTPUT
AM NUH,I,IINCREMENT NUMBER COUNT BY }
CM NUM,10,,COMPARE NUMBER COUNT TO }1
BNE ST2
BNC1:+24
WACDOUTPUT,.,IF 10 PUNCH OUTPUY CARD
PRA OUTPUT...,
TFM NUM,O,.INITIALIZE NUMBER COUNTER TO O
BLXH*+12,OUTPUT +38,10,PUT ADDRESS FOR NUHBERS IN REGISTER I
TRNMOUTPUT+39,ZERO-49.,BLANK OUT NUMBER AREA OF OUTPUT
ST2 BSX 02836,O,.TURN OFF INDEX REGISTERS AND RETURN TO SORT-MERG
FINISHCM NUM,O,,SEE IF OUTPUT HAS ANY NUMBERS
BE STOP,..IF NOT GO TO HALT
BNC!*+24
WACDOUTPUT...
PRA OUTPUT-;.
STOP BS *+I2,O,ITURN OFF INDEX REGISTERS
H
callexIt
INPUT DAS 80,.,DEFINE INPUT AREA FOR CARD IMAGE
DC 1.0..
OUTPUTDAS 8O,.,DEFINE AREA FOR OUTPUT CARD IMAGE
BAC 1,*,.
DASH DAC 1,O,,DEFINE A DASH FOR THE FIRST OUTPUT CARD
DC 1,0,,
ZEROS DC 50,0,.DEFINE ZEROS TO BLANK OUT AREAS
DC 40,0,.
DC 30,0,.
DC 40,0,.
DC 1,0,%
WORD DAS 74,F,DEFINE AREA FOR KEYWORD STORAGE
DC 1,0
NUM DC 5,0,.
DC 1,0.,
ZERO DC 50,0,,DEFINE ZEROS TO BLANK OUT OUTPUT AREA
DC 40,0,,
DC 30,0,.
DC 1,0.,
ADRESSDS 5...
RM DC 1,0,.
SWITCHDC 1,O,,ESTABLISH NON~DIGIT INDICATOR IN SHITCH
ST3 DAC 26,SWITCH I ON TO PUNCH ALSOP.,
ST4 DAC 12,PRESS STARTO,,
DENDST1

```
```

    ANN. KWD. INDEX PROGRAM
    D=CDS(6.)
    D=RCD(6.)
    D=PAS(6.8061030)
    C THIS CLEARS THE AREA FOR THE PRINTER
DIMENSION A(10,170),J(10)
LCNT=0
DO 7 I=1.10
7 J(J)=0
PETm.05
3 D=RCB(1.)
IF(ZON(1,80))1,2,2
1 D=PAS(2.8018005)
D=PAS(2.8058080)
D=PRT(5.)
D=PAS(1.8058080)
D=PRT(5.)
LCNT =LCNT +2
D=PAS(1.8038080)
IF(L.CNT-60)3.11,12
11 LCNT=1
D=PAS(3.8058080)
D=PRT(5.)
GO TO 3
12 LCNT=LCNT-60
GO TO 3
2 1F(CMP(1.2032020))4.5.4
4 PaUSE
GO TO 3
5 CAT=1.2550
D0 6 l=1,10
R=GET(CAT)
IF(R)4,6,66
66 K=K*1000.
II=K/1000+1
J(II)=J(II)+1
K=J(1I)
A(II,K)=R
6 CAT=CAT+PET
D=RCD(1.)
IF(ZON(1.80))100,2,2
100 00 40 I=1,10
ID=J(I)
IFIIDT4-40,101-
101 M=10
200 M=M/2
IF(M) 300,40,300
300 K=ID-M
J:=1
41 II*JI
49 L=11+M
IF(A(1,11)-A(1,L))60,60,50
50 B=A(I,II)
A(I,II)EA(I,L)
A(I,L)m
11=11-M
JF(11)60,60,49
60 J!-JI+1
1F(JI-K)41,41,200
\triangleO CONTINUE

```
```

206 DOPAS(2.8048080)
M=0
DOG=4.07501
DO 210 I= 1.10
K=J(I)
IF(K)4,210,20!
201 J(I)*J(I.)-1
M=1
R=A(1,1)
D=PUT(DOG)
KM1:K-1
DO 202 L=1,KM1
LPI=L+1
202 A(I,L)=A(1,LP1)
210 DOG=DOG+.07
IF(M)4,1,205
205 IF(LCNT:60)203,204,4
203 D\&PAS(4.8058080)
D=PRT(5.)
LCNT=LCNT+1
GO 10 206
204 LCNT=2
D=PAS(3.8058080)
D=PRT(5.)
D=PAS(4.8058080)
D=PRT(5.)
GO 10 206
END

```
```

    PACKAN
    *NAMEPACKAN
START BS *+12,1,,TURN ON INDEX REGISTERS BAND I
BLXM*+12,CARD1-1,10,LOAD REGISTER 1 WITH ADDRESS CARDI-I
TF COMKNT,ZERO,,SET COMMA COUNTER TO ZERO
TFM COLKNT,O.,SET COLUMN COUNTER TO ZERO
TFM ABKNT,O,,SET ABSTRACT NUMHER TO ZERO
CF ZEROS+1,.,CLEAR FLAGS FOR FIELD TRANSFER
CF ZEROS+41
CF ZERUS+81
BI *+12,00900,.TURN OFF LAST CARD INDICATOR
TF CARDI+158,2EROS+120,,BLANK OUT CARD AREA
RACDCARDI,.,READ FIRST CARD
SF CARDI+149,.,SET FLAG FOR ABSTRACT NUMBER
STI TF NUMAB,CARDI+158,MOVE ABSTRACT NUMBER TO STORAGE
AM ABKNT,1,.INCREMENT ABSTRACT COUNTER BY I
TF CARD2+8,CARDI+158,,MOVF ABSTKACT NUMBER TO OUTPUT CARD
ST2 SF (1)..,SET FLAG FOR CHARACTER COMPARE
TFM CARD2+10,0,10,
CF CARD2+9
IF CARD2+158,CARIIT+146,,MOVE KEYWORDS TO OUTPUT CARD
PRA CARD2,.,PRINT OUTPUT
BCOV*+24
A *+24
SKIP,7,O
.ST25 CM 1+(i),23,, CUMPARE CHARACTER TO COMMA
BNE * +2A,.,IF NOT A COMMA NOT INCREMENT COUNTER
AM COMKNT.1.,INCREMENT COMMA COUNTER BY 1
AM COLKNT,1,.INCREMENT COLUMN COUNTER BY 1
CM COLKNT,75,,COMPARE COLUMN COUNTER TO }7
BE STJ,.,IF EUUAL GO TO NEXT CARD
BXM * + 12,2,10,INCREMENT INIFX REGISTER BY 2
SF (1)
B ST25,.,COMPARE THE NEXT CHARACYER
ST3 BLXM*+12,CARDI-1,10,INITIALIZE INDEX REGISTER 1 ,
TFM COLKNT,O,,SET COLUMN COUNTER TO ZERO
BI ST4,00900,,IF NO MORE CARUS GO TO OUTPUT
IF CARD1+158,ZEROS+120,.BLANK OUT CARD AKEA
RACDCARDI,.,READ NEXT CAKD
SF CARUI+149,.,SET FLAG FOR ABSTRACT NUMBER
C NUMAB,CARDI+158,,COMPARE. NEW ABSTRACT NUMBER WITH FORMER
BNE STI..,IF UNEQUAL INCREMENT ABSTRACT COUNTER
IF CARD2+10.ZEROES,,MOVE BLANKS TO OUTPUT AREA
B--ST2...IF-EOUAL BEGIN CHARACTER COMPARISON
ST4 RCTY
RCTY
CM KNTRL,O,.IS THIS PERIODICALS OR PATENTS
BNE ST5.,.IF NOT EQUAL GO TO PATENTS
WATYSTG
TF NUM1,COMKNT,,
WNTYNUMI-9
RCTY
RCTY
WATYSTY
TE NUM2,ABKNT .
WNTYNUM2-4
RCTY
RCTY
LO OOO9A,COMKNT,HLOAD'COMMA COUNTER AS DIVIDEND
D 00085,ABKNT,,DIVIDE COMMA COUNTER BY ABSTRACT COUNTER

```
```

        WATYST8
        TDM OUTPUT-1.7..
        TD OUTPUT,00088,%
        TDM OUTPUT+1,7,,
        TD OUTPUT+2,00089,.
        WATYOUTPUT
    TR 00095,NUM1+1,%
    WNTYOOO90,.,WRITE DECIMAL OUOTIENT
    TFM KNTRL,1,,SET KNTRL TO DO PATENT SECTION OUTPUT
    8 START
    ST5 RCTY
WATYST9
WNTYCOMKNT-9,.,WRITE NUMBER OF KEYWORDS
RCTY
RCTY
WATYSTIO
WNTYABKNT-4,,,WRITE NUMBER OF ABSTRACTS
RCTY
RCTY
LD 0009A,COMKNT,,LOAD NUMBER OF KEYWORDS AS DIVIDEND
D 00085,AGKNT,,DIVIDE NUMBER OF KEYWORDS BY NUMBER OF ABSTR
WATYSTII
TDM OUTPUT-1,7,.
TD OUTPUT,00088,. -
TDM OUTPUT+1,7,.
TD OUTPUT+2,00089,*
WATYOUTPUT,, WRITE FIRST PART OF QUOTIENT
TR 00095,NUM1+1,,SET RECOKD MARK AT END UF OUOTIENT
WNTY00090,.,WRITE DECIMAL QUOTIENT
A NUMI,COMKNT,,ADD PERIODICAL KEYWORDS TO PATENT KEYWORDS
A NIJMZ,ABKNT,,ADD PATENT ABSTRACTS TO PERIODICAL ABSTRACTS
RCTY
RCTY
RCTY
WATYSTI2
WNTYNUMI-9,,,WRITE TOTAL NUMBER OF KEYWORDS
RCTY
RCTY
WATYSTIS
WNTYNUM2-4,FWRITE TOTAL. NUMBER OF ABSTRACTS
RCTY
RCTY
LD OOO94,NUMI,,LOAD NUMBER OF KEYWORDS AS DIVIDEND
D OOO85,NIIM2,,DIVIDE RY NUMBER OF ABSTRACTS
WATYSTI4
TDM OUTPUT-1.7.,
TD OUTPUT,00088,,
TDM OUTPUT+1.7.,
TD OUTPUT+2,00089,,
WATYOUTPUT,,,WRITE FIRST PART OF QUOTIENT
TR 00095,NUM1+1,MOVE RECORD MARK TO END OF QUOTIENT
WNTY00090,.,WRITE DECIMAL PART OF QUOTIENT
H
TFM KNTRL,O,,RESET KNTRL FOR PERIODOCAL
B START
CARDI DAS 8O.F,CARD INPUT
CARD2 DAS 80,.,CARD UUTPUT
DAC 1,0,.
NUMAB DS 10,···,ABSTRACT NUMRER
ABKNT DS 5,.,NUMBER OF ABSTRACTS
DC 1,0..

```
```

COMKNTDS 10.,.NUMBER OF COMMAS
DC 1,0..
ZERO DC 10,0,,ZERO FIELD FOR INITIALIZATION
COLKNTDS 5,.,NUMBER OF COLUMNS
NUMI DS 10
DC 1,0,.
NUM2 DS 5
DC 1,0.,
ZEROS DC 40,O,,BLANK FOR INITIALIZATION
DC 40,0,.
DC 40,0%
DC 40,0,%
OUTPUTOAS 2
DAC 1....
DAC 1,0.,
ZEROESDC 12,0,%
KNTRL DC 5,0.,
ST6 DAC 33,NUMBER OF PERIODICAL KEYWORDS = *
ST7 DAC 34,NUMBER OF PERIODICAL ABSTRACTS =
ST8 DAC 50,AVERAGE NUMBER OF PERIODICAL KEYWORDS PER ABSTRACT
DAC 4, = *
ST9 DAC 29,NUMBER OF PATENT KEYWORDS = *
ST10 DAC 30,NUMBER OF PATENT ABSTRACTS = *
ST11 DAC 50,AVERAGE NUMBER OF PATENT KEYWORDS PER ABSTRACT = *
STI2 DAC 28,TOTAL NUMBER OF KEYWORDS = *
ST13 DAC 29.TOTAL NUMBER OF ABSTRACTS \#
STI4 DAC 43,AVERAGE NUMBER OF KEYWORDS PER ABSTRACT *
DENDSTART

```

PLMIFR
```

*NAMEPLMIFR

* ID NUMBER 0217
DORG20000
STI CF ZEROS-39...
CF ZEROS+1...
CF ZEROS+41...
CF ZEROS+81...
TFM KOUNTR,O.,
SK IJSK...
BI *+12,00900,.TURN OFF LAST CARD INDICATOR
BS *+12,1,., IURN ON BAND 1 INDEX REGISTERS
BLXM*+12,STORE, 10,LOAD KEGISTER 1 WITH ADDRESS OF STORE
BLXM*+12,CARD2+39,9,LOAD INDEX REGISTER 2 WITH ADDRESS OF NOS
READI RACDINPUT,.,READ FIRST CARD
SF INPUT+157,.,SET FLAG FOR COLUMN }80\mathrm{ COMPARE
CM INPUT+158,20,10,COMPARE COLUMN 80 10-
CFINPUT+157,..
BE CAT.,.IF EQUAL SKIP ERROR ROUTINE
WATYERMESI,.,TYPE ERROR MESSAGE 1
H
B READI
CAT- TRNMCARDI-1-INPUT-IT,MOVE FIRST CARD-TO FIRST INPUT STORAGE
SF CARDI-1,,,SET FLAG FOR WORD COMPARE
RACDINPUT,,,READ SECOND CARD
SF INPUT+157,.,SET FLAG FOR COLUMN 80 COMPARE
CM INPUT+158,20,10,COMPARE COLUMN 80 TO-
CF INPUT+157,.,
BNE DOG,,IF NOT EQUAL SKIP ERROR ROUTINE
ERR2 WATYERMES2,.,TYPE ERROR MESSAGE 2
H
B READI
DOG TRNMCARD2-1,INPUT-1,,MOVE SECUND CAKD TO SECOND INPUT STORAGE
SF CARD2-1,.,SET FLAG FOR WORD COMPARE
C CARD2+38,CARD1+38,,COMPARE KEYWORDS
BNE ERR2
ELK SF (2),,,SET FLAG FOR ABSTRACT NUMBER
C 9+(2),BLANK,,COMPARE ABSTRACT NUMBER TO BLANK
BE FOX,.,IF BLANK GO TO NEXT COLUMN
TF OUTPUT+10,Y+(2), MOVE ABSTRACT NUMBER TO OUTPUT
SF CARDI-1,.,SET FLAG FOR KEYWORD TRANSFER
TF OUTPUT+158,CARDI+146,,MOVE KEYWORD TO OUTPUT
CF OUTPUT+1
CF OUTPUT+1I
TKNM(1),UUTPUT-1, MOVE DUTPUT RECORD TO STORAGE
AM KOUNTK,1,,
BNCIBYRNE
RCTY
RCTY
WATYST2
WNTYKOUNTR=4
RCTY
BYRNE BXM * +12,00160,10,INCREMENT INDEX REGISYER 1 BY 160
TRNMOUTPUT-1, ZEKOS-39,,BLANK OUTPUT AREA
AM NUMREC,1,10,INCREMENT RECORD COUNTER BY 1
CM NUMREC,25,10,COMPARE RECORD COUNTER TO }2
BNE FOX,.,IF STORAGE NOT FIULL SKIP TRANSMIT ROUTINE
TRANS TD GM,EOF,.
WUGNJISK
BLXM*+12,STONE,10,INITIALIZE INDEX REGISTER I

```
```

    TFM NUMREC,0,10,ZERO OUT RECOKD COUNTER
    AM DISK+5,40,10,INCREMENT SECTOR COUNTER BY S
    AM TRAK,1,10,INCREMENT TRAK COUNTER BY 1
    CM TRAK,5,10,COMPARE TRAK COUNTER TO FULL
    BNE FOX
    SEEK SK DISK..,
TDM TRAK,O,,INITIALIZE TRAK COUNIER
FOX BXM * +12,10,9,INCREMENT REGISTER'2 BY 10
AM NUMNUM,1,IO,INCREMENT NUMBER COUNTER BY 1
CH NUMNUM,10,10,COMPARE NUMBER COUNTER TO 10
BNE ELK..,IF NOT EQUAL GO TO NEXT ABSTRACT NUMBER
GOAT BI FINISH,00900,.IF NOT MORE CARDS GO TO FINISH
BLXM*+12,CARD2+39,9,INITIALIZE NUMBER ADDRESS IN REGISTER 2
TFM NUMNUM,O,10,INITIALIZLE NUMBER COUNTER
RACDINPUT,.,READ ANOTHER CARD
SF INPUT+157,.,SET FLAG FOR COLUMN }80\mathrm{ COMPARE
CM INPUT+158,20,10,COMPARE COLUMN 80 TO -
CF INPUT+157
BE CAT,.,IF EQUAL MOVE CARD TO FIRST INPUT STORAGE
B DOG.,.IF NUT EQUAL MOVE CARD TO SECONO INPUT STORAGE
FINISHSF TRAK+1
TF 2+11),TRAK+3.,TRANSFER RECORD MARKS TO OUTPUT AREA
WDGNDISK..,WKITE OUTPUT AND RECORD MARKS ON DISK
BS *+12,0,,TURN OFF INDEX REGISTERS FUR JERRY BYRNE
RCTY
RCTY
WATYST2
WNTYKOUNTR-4
RCTY
CALLEXIT
INPUT DAS 80,.,
DAC 1,*..
ERMESIDAC 5O,FIRST CARD HAS NO - IN COLUMN 80 REARRANGE AND P
DAC 10,RESS START
DAC 1,0,.
CARDI DAS 80.,'
DAC 1,0,.
ERMES2DAC 50,CARDS OUT OF ORDER: REARRANGE STARTING WITH LAST
DAC 27,HEADER CARD AND PRESS START,,
DAC 1,0,.
CARD2 DAS BO...
DAC 1,0.,
OUTPUTDAS 80..,
DAC 1,0.,
BLANK -DC 10,0,.,
DC 40,0,.
DC 40,0%,
DC 1,0.,
KOUNTRDS 5...
DC 1,0.%
NUMRECDC 2,0%,
NUMNUMDC 2,0.,
DAC 1.0.,
STORE-DSS 4000...
GM DGM
SEC DS ,20000
SECT DS .040
DISK DDA ,3,SEC,SECT,STORE
TRAK DC 2,0.,

```

CALANK
```

*NAMECALANK
STI BS *+12.1.,TURN ON INDEX REGISTERS BAND I
CF BLANK+1
CF BLANK+41
CF BLANK+81
TF INPUT+158,BLANK+120,.
IF OUTPUT+158,BLANK+120.,
TFM NUMKNT,O,.INITIALIZE NUMBER COUNTER
SPTY
WATYST6
RACDOUTPUT
PRA OUTPUT
TF OUTPUT+158,BLANK+120,,
PRA OUTPUT
PRA OUTPUT
PRA OIITPUT
ST2 RACDINPUT,.,READ FIRST INPUT CARD
SF INPUT+157,.,SET FLAG FUR - COMPARE
CM INPUT+158, 20,10,CHECK COLUMN 80 FOR -
CF INPUT+157
BNE ST25,.,IF NO MINUS PUNCH COUNT NUMBERS
ST23 SF INPUT-1,.,SET FLAG FOR KEYWORD TRANSFER
IF OUTPUT+1S\&,INPUT + 124, TRANSFER KEYWORO TO OUTPUT
B ST2,,GO TO NEXT INMUT CARD
ST25 BLXM*+17., INPUT+39,10,LOAD INDEX REGISTER I WITH ADDRESS
BLXM*+12,INPUT+48,9,LOAD INDEX REGISTER 2 WITH ADDRESS
TFM COLKNT,O,,SET COLUMN COUNTER TO O
ST3 SF (Il.,.SFT FLAG FOR NUMBER COMPARE
C (2),ZERUS,.COMPARE FIELD TO BLANK
CF (1)
BE ST35,,,IF BLANK DO NOT INCREMENT NUMBER COUNTER
AM NIIMKNT,I,,INCREMENT NUMHER COUNTER BY I
ST35 AM COLKNT,1,.INCREMENT COLUMN COINTER BY I
CM COLKNT,IG,,COMPAKE COLUMN COUNTER TO 10
BE STA,.,IF EOUAL GO TO NEXT CARD
BXM *+12,10,10,IF NOT EQUAL INCREMENT ADDRESS BY 10
BXM * +12,10,9,INCREMENT ADDRESS FUR FIELD COMPARE BY 10
B ST3,.,COMPARE NEXT FIELD
ST4 RACDINPUT,,,READ NEXT CARD
SF INPUT+157,.,SET FLAG FOR - COMPARE
CM INPUY+158,20,10,COMPARE COLUMN 80 TO -
CF INPUT+157,.,
BNE-ST25,%,I'FNO- - COUNT NUMBERS-
TNF OUTPUT+ZB,NUMKNT,.,TRANSFER COUNTER TO ALPHAMERIC OUTPUT
BD ST5,OUTPUT+20,.
TDM OUTPUT+19,0,.
BD ST5,OUTPUT+22,.
TDM OUTPUT+21,0,:
BD ST5,OUTPUT+24.,
TDM OUTPUT+23,0,.
8D ST5,OUTPUT+26,.
TDM OUTPUT+25,0.,
ST5 TFM OUTPUT + 30,0,10,
BNC 1 + +24
WACDOUTPUT
PRA OUTPUT
BCOV*+24...
B * +24
SKIP,7,.,

```

Project 2318
May 29, 1968
Page 24
```

    SF BLANK-39
    TF OUTPUT+158,BLANK+120,.
    TFM NIIMKNT,O,.INITIALIZE NUMBER COUNTER
    B ST23
    ZEROS DC 10,0..
NUMKNTDS 5.,.NUMHER COUNTER
COLKNTDS S,.,NUMBER FIELD COUNTER
INPUT DAS 80.
OUTPUTDAS 80,
DAC 1,0,.
BLANK DC 40,0,,
DC 40,0,:
DC 40,0,.
DC 40,0.,
ST6 DAC 4O,TURN SWITCH I ON FOR PUNCHED OUTPUT ALSO.,
DAC 1,0,.
DENDST1--

```

MLOKAC

\section*{*namemlokac}

STI BS * \(+12,1, \ldots\) TURN ON INDEX REGITERS BAND 1 BI * \(+12,00900\), IURN OFF LAST CARD INDICATOR SPTY
watrstio
racdinputc.,.,READ HEADER CARD
pra inpuic.,.,READ header card
SPIM, 3.,
SK DISK
CF BLANK+1
CF BLANK+41
CF BLANK+81
ST12. RDN DISK,.,BRING RECORDS FROM DISK
AM DISK+5,40,10,INCREMENT SECTOR COUNTER
aM TRAK,1,10,
CM TRAK,5,10,
BNE *+36...IF NOT EQUAL READ FIRST RECORD
SK DISK
tDM trak, ofinitialize trak counter
BLXM*+12,INPUT,10,PUT ADDRESS OF INPUT IN REGISTER 1
tFM NUMREC,0,10,INITIALIZE RECORD COUN
STI7 CM NUMREC,25,10,CHECK IF ALL RECORDS USED
BE ST12,.,IF SO BRING IN NEW SET OF RECORDS FROM DISK
SF (1),.,SET FLAG FOR RECORDS TRANSFER
TF INPUTN+158,BLANK+120,,BLANK OUT INPUT AREA
TF INPUTD+158.159+(1),.,TRANSFER RECORDSFOR COMPARISON
BXM * \(+12,160,10\), INCREMENT INDEX REGISTER BY 160
am numrec, \(1,10,1\) INCREMENT RECORD COUNTER BY 1
SF INPUTD+31,.,SET FLAG FOR KEYWORD COMPARE
STI9 NOP ST3,.,CAN GE CHANGED TO BRANCH TO SKIP CARD READ
ST2 TF INPUTC+158, BLANK+120,.,BLANK OUT INUT AREA
racdinputc,.,rREAD Card record
SF INPUTC+31,.,SET FLAG FOR KEYWORD COMPARE
ST3 BNR * + 24, INPUTD + 1 , CHECK TO SEE IF DISK RECORD IS LAST ONE
b STT,.,IF SO GO TO END ROUTINE
C INPUTC \(+158,1\) PPUTD +158, COMPARE KEYWORDS
BE STA
bP str
BNC: \({ }^{*}+24, \ldots\) IF NEGATIVE CHECK SWITCH U FOR PUNCHING
WACDINPUTC,.,IF SWITCH 1 ON PUNCH CARD
PRA INPUTC,., PRINT CARDP
BCOV*+24
B *+24
SKIP.7..
BI STB,00900,.
\(B \quad \mathrm{ST} 2\)
Sta SF INPUTC+19,.,SET FLAG FOR NUMBER TRANSFER
SF NUMC-4
TNS INPUTC+28, NUMC, ,MOVE NUMBER TO NUMBERIC FIELD FOR ADD
SF INPUTD+19,.,SET FLAG FOR NUMBER TRANSFER
SF NUMD-4
TNS INPUTD+28,NUMD,,MOVE NUMBER TO NUMERIC FIELD FOR ADDITION
A NUMC,NUMD,,ADD TWO NUMBERS
SF NUMC-4
TNF INPUTC+28,NUMC, ,RETURN NUMBER TOTAL TO OUTPUT ALPHAMERIC
BD STS,INPUTC+20,.,
TDM INPUTC+19,0..
BD ST5,INPUIC+22,.
TDM INPUTC+21,0,.
```

        BI)ST5,INPUTC+24,.
        TDM INPUTC+23,0,,
        BD ST5.1NPUTC+26..,
        TDM INPUTC+25,0,.
    ST5 TFM INPUTC+30,0,10,PUT BALNK IN OUPUT AREA
BNC1*+24
WACDINPUTC
PRA INPUTC
BCOV*+24
B *+24
SKIP,7..
BI ST81,00900,.IF NO MORE CARDS GO TO FINISH ROUTINE
TDM ST19+1.1,.CHANGE STI9TO READ NEW. CARD
B ST17
ST6 BNCI*+24
WACDINPUTD
PKA INPUTD
BCOV*+24
B *+24
SKlP,7.,
TDM ST19+1.9.,CHANGE ST19 TO BRANCH AROUND CARD READ
B STI7
ST7 BNCI*+24
WACDINPUTC
PRA INPUTC
8COV*+24
B *+24
SKlP,7.,
BI ST9.00900,.
TF INPUTC+158,BLANK+120,,BLANK OUT INUT AREA
RACDINPUIC,OREAD CARD RECORD
B ST7
ST8 BNC1*+24
WACDINPUTD
PRA INPUTD
BCOV*+24
B * +24
SKIP,7.,
B ST81
ST80 RDN DISK,.,BRING RECOKDS FROM DISK
AM DISK+5,40,10,
AM TRAK,1,10.
CM TRAK,5,10,
BNE *+36
SK DISK
TDM TRAK,0,.
BLXM*+12,INPUT,10,
TFM NUMREC,0,10,
ST81 CM NUMREC,25,10,
BE ST80
SF (1)
IF INPUYD+158,BLANK+120,.BLANK OUT INPUT AREA
TF INPUTD+158,159+(1),.
BXM *+12,160,10,
AM NIIMREC.1,10,
BNR STB%INPUTD+1.,
8 STO
ST9 CALLEXIT
INPUTCDAS 80,.,INPUT AREA FOR CARDS
DAC 1,0..
INPUTDDAS BO,,.INPUT AREA FOR DISK RECORDS

```
```

    DAC 1.0.%
    NUMC DS 5,.,NUMBER FROM CARD INPUT
NUMD DS 5,.,NUMBER FROM DISK INPUT
STIO DAC 4OBTURN SWITCH I ON FOR PUNCHED OUTPUT ALSO.,
DAC 1,0,
NUMKECDC 2,0,,COINTER FOR NUMBER OF DISK RECORDS READ
SEC DS .20000
SECT DS .040
DISK DDA,3.SEC,SECT,INPUT
TRAK DC 2,0,%
INPUT DSS 4000
BLANK DC AO,O,,DEFINE ZEROSFOR ALPHAMERIC BLANK
DC 40,O,,DEFINE ZEROSFOR ALPHAMERIC BLANK
DC 40,0,,DEFINE ZEROSFOR ALPHAMERIC BLANK
DC 40,0,.DEFINE ZEROSFOR ALPHAMERIC BLANK
DENDST1

```
```

C KEYWORD FREQUENCY DISTRIBUTION
DIMENSION L(3000)
DO 2 I=1.3000
L(I)=0
2 CONTINUE
25 READ 3,N
3 FORMAT (IIX:I4:
L(N)=L(N)+1
IF(SENSE SWITCH 9)4,25
4 PRINT 41
41 FORMAT(1H,5X,9HFREQUENCY,3X,9HFREQUENCY)
PRINT 42
42 FORMAT(1H ,6X, BHOF USAGE,3X,12HDISTRIBUTIONI
PRINT 43
43 FORMAT(IH .//)
DO 5 I=1.3000
IF(L(I))5,5,44
44-PRINT 45,I.LII)
45 FORMAT(10X,14,3X,14)
5 CONTINUE
END

```
```

    DO-ALL
    *NAMEDO-ALL
START CF BLANK+1
CF BLANK+5I
CF BLANK+101
CF INPUT+159
8S + 12,1.,
BLXM*+12,OUTPUT,10.
BLXM*+12,LIST,9,
BLC * +12
RCTY
WATYMESS8
RCTY
WATYMESSI
RCTY
H
SKIP.7.,
PRA HDI00
SPIM,3.,
ST1 BLC ST3
JF JNPUT+158,BLANK+110,.
RACDINPUT
SF INPUT-1
TF 159+(1),INPUT+158,,
BXM*+12,160,10,
AM OUTCNT,1,.
CM OUTCNT,125,,
BNE ST2
SK DSKOUT
WBGNDSKOUT
TFM OUTCNT,O,,
AM DSKOUT+5,200,,
BLXM*+12,OUTPUT,10.
ST2 SF NUM=3
TNS INPUT+28,NUM,,
CF NUM-2
CF NUM-1
CF NIJM
CM NUM,100,8.
BN ST1
PRA INPUT
SPIM,1,.
BCOV*+24
B - *+24--
SKIP.7.,
BNC2*+24
WACDINPUT
BNCISTI
TR (2),INPUT-1,.
TK 162+(2),1NPUT+161,%
8XM *+12,200,9,
AM LSTCNT.1.,
CM LSTCNT,50,.
BNE STI
SK DSKLST
WDGNDSKLST
TFM LSTCNT,O..
AM DSKLST+5,100..
BLXMSTI,LIST,9,
ST3 TD (I),RM.,

```
```

    SK DSKOUT
    WDGNDSKOUT
    BNCIST9
    TD (2),RM..
    SK DSKLST
    WDGNDSKLST
    BLXM*+12,ST9,910.
    ST5 SKIP.7..
PRA HDIOO
SPIM,3.,
TFM DSKLST+5,20000%.
ST6 TFM LSTCNT,O,,
SK DSKLST
RDGNDSKLST
BLXM*+12,LIST,9,
ST7 BNR*+24,12),.
B ST8
PRA 1+(2)
SPIM,1,0
BCOV*+24
B * +24
SKIP,7..
BNC2*+24
WACDI+(2)
BXM *+12,200,9,
AM LSTCNT,1.,
CM LSTCNT,50..
BNE ST7
AM DSKLST+5,100%,
B ST6
ST8 WATYMESS2
RCTY
H
BCI ST5
B (3)
STg WATYMESS3
RCTY
H
SKJP,7,.
PKA HDI
SPIM,3.,
TFM OUTCNT,O,.
TFM LSTCNT,O,.
TFM OSKOUT+5,30000,,
TFM DSKLST+5,20000,.
BLXM*+12,OUTPUT,10,
BLXM*+12,LIST,9,
SK DSKOUT
RDGNDSKOUT
ST11 BNR * +24,(1),,
B ST14
SF {i}
TF INPUT+158,159+11),.
SF NUM-3
TNS INPUT+28,NUM,.
CF NUM-2
CF NIJM-1
CF NIIM
CM NUM,1,8,
BNE ST12
PRA INPUT

```
```

    SPIM,1,.,
    BCOV*+24
    B + +24
    SKIP,7,
    BNC2*+24
    WACDINPUT
    BNCISTI2
    TR (2),INPUT-1,.
    TR 162+(2),INPUT+161%
    BXM *+12,200,9,
    AM LSTCNT,1..
    CM LSTCNT,50,.
    BNE ST12
    SK DSKLST
    WDGNDSKLST
    TFM LSTCNT:O.,
    AM DSKLST*5,100,.
    BLXM*+12,LIST,9,
    ST12 AM OUTCNT,I..
SM OUTCNT.125,.
BNE STI3
AM DSKOUT+5,200,,
SK DSKOUT
RDGNDSKOUT
TFM OUTCNT,O.,
BLXMSTI1,OUTPUT,10,
ST13 BXM ST11,160,10,
STIA BNCISTIS
TD (2).KM..
SK DSKLST
WDGNDSKLST
BNCISTI5
TFM ST5+18,HD1,.
BLXMST5,ST15,910,
STI5 WATYMESSA
RCTY
H
SK1P,7,.
PRA HDPARP
SPIM,3,'
TFM OUTCNT,0,.
TFM LSTCNT,O.,
TFM DSKOUT+5,30000,.
TFM DSKLST+5,20000,.
BLXM*+12,0UTPUT,10,
BLXM*+12,LIST,9.
SK DSKOUT
RDGNDSKOUT
ST16 BNR *+24,(1).,PARENTHESIS SECTION
B ST21
SF (1)
IF lNPUT+158,159+11),.
BLXM*+12,INPUT+33,8,
TFM COLCNT,O.,
ST17 SF (4)
CM 1+(4),24,10,
CF (4)
BE ST18
AM COLCNT,1.,
CM COLCNT,63,.
BE STIG

```

Project 2318
May 29, 1968
Page 32
```

    BXM ST17,2,8,
    STI8 PRA INPUT
SPIM,1,.
BCOV*+24
B * +24
SKIP.7.,
BNC2*+24
WACDINPUT
BNCISTI9
TR (2.,INPUT-1..
TR 162+(2),INPUT+161,.
BXM *+12,200,9,
AM LSTCNT.1..
CM LSTCNT,50,.
BNE STIG
SK DSKLST
WDGNDSKLST
TFM LSTCNT.0.,
AM DSKLST+5,100.
BLXM*+12,LIST,9,
ST19 AM OUTCNT,1.,
CM DUTCNT,125.,
BE ST20
BXM_ST.16,160,10.
AM DSKOUT+5,200,,
SK DSKOUT
RDGNDSKOUT
IFM OUTCNT,O.,
BLXMST16,OUTPUT,10,
ST2l BNCIST22
TD (2),RM,.
SK DSKLST
WDGNDSKLST
TFM ST5+18,HDPARP
BLXMST5,ST22.910.
ST22 WATYMESS5,.,HYPHENATED SECTION
RCTY
H
SKIP,7,,
PRA HDHYPH
SPIM,3,.
TFM OUTCNT,O,,
TFM LSTCNT,O,.
TFM DSKOUT+5,30000,%
TFM USKLST+5,20000,.
BLXM*+12,0UYPUT,10,
BLXM*+12,LIST,9,
SK DSKOUT
RUGNDSKUUT
ST23 BNR *+24,(1),.
B ST28
SF (1)
JF INPUT+158,159+(1),,
BLXM*+12,INPUT+33,8,,
TFM COLCNT,O.,
ST24 SF (41-
CM 1+(4),20.10.
CF (4)
BE ST25
AM COLCNT.1..
CM COLCNT,63.,

```
```

        BE ST26
        BXM ST24,2,8,
    ST25 PRA INPUT
SPIM,1.,
BCOV*+24
B *+24
SKIP,7..
BNC2*+24
WACDINPUT
BNCIST26
TR (2),INPUT-1,%
IR 162+(2).INPUT+161,.
8XM*+12.200.9.
AM LSTCNT,1,.
CM LSTCNT,50,.
BNE ST26
Sk: DSKLSt
WDGNDSKLST
TFM LSTCNT,O,.
AM ISKLST+5,100,,
BLXM*+12,LIST,9,
ST26 AM OUTCNT,1,.
CM OUTCNT,125.,
BE ST27
BXM ST23,160,10,
ST27 AM DSKOUT+5,200,.
SK DSKOUT
RUGNIISKOUY
TFM OUTCNT,O,,
BLXMST23,0UTPUT,10,
ST28 BNCIST29
TD (2),KM,.
SK USKLST
WDGNISKLST
TFM STS+18,HDHYPH,,
BLXMST5,ST29,910.
ST2g WATYMFSSO, ICOMPUND TERMS SECTION
RCTY
H
SKIP,7.,
PRA HDCOMP
SPIM,3.,
TFM OUTCNT,O,.
TFM LSTCNT,O,,
TFM-DSKOUT+5,30000,,
TFM DSKLST+5,20000,%
BLXM*+12,0UTPUT,10,
BLXM*+12.LIST.9,
SK DSKOUT
RDGNDSKOUT
ST30 BNR *+24,(1):.
B ST36
SF (!)
TF INPUT+158,159+(1),.
BLXM*+12,INPUT+33,8,
TFM COLCNT,O,,
ST31 SF (4)
CM 1+(4),20,10,
CF (4)
BE ST33
SF (4)

```
```

    CM 1+(4),0,10,
    CF (4)
    BNE ST32
    SF 2+(4)
    CM 3+(4),0,10.
    CF 2+(4)
    BNE ST33
    B ST34
    ST32 AM COLCNT,1,.
CM COLCNT,63.,
BE ST34
BXM ST31,2,8,
ST33 PRA INPUT
SPIM,1,.
BCOV*+24
B *+24
SKIP,7,.
BNC2*+24
WACUINPUT
BNCISTS4
TR (2).INPUT-1.,
TR 162+(2),INPUT+161%,
BXM*+12,200,9,
AM LSTCNT;1,,
CM LSTCNT.50,.
BNE ST34
SK DSKLST
WDGNDSKLST
TFM LSTCNT,O,,
AM DSKLST+5,100%,
BLXM*+12,LIST,9,
ST34 AM OUTCNT,I,.
CM OUTCNT,125.,
BE ST35
BXM ST30,160,10,
ST35 AM DSKOUT+5,200,.
SK DSKOUT
RDGNDSKOUT
TFM OUTCNT,O,.
BLXMSTZO,OUTPUT,10,
ST36 BNCIST37
TD (2),RM.,
SK DSKLST
WDGNDSKLST
TFM ST5+18,HDCOMP,,
BLXMST5,ST37,910.
ST37 SKIP,7,.
PKA HDALLI
PRA HDALL?
SPIM,1.,
PRA HIALLI
SPIM,3.,
TFM DSKOUT+5,30000,.
ST38 SK OSKOUT
RDGNUSKOUT
TFM OUTCNT,O,.
BLXM*+12,OUTPUT,10,
3T39 BNR *+24,(1)%
B ST41
TD 159+(1),RM,.
PRA 1+11)

```
```

    SPIM,1,.
    BCOV*+24
    B *+24
    SKIP,7,.
    BNC2*+24
    WACD1+(1)
    AM OUTCNT,1,.
    CM OUTCNT.125..
    BE ST40
    BXM ST39,160,10,
    ST40 AM DSKOUT+5,200.,
B ST38
ST4I WATYMESS7
RCTY
H
BC1 ST37
CALL EXIT
BLANK DC 50.0,.
DC 50,0,.
DC 50,0,%
DC 12,0,.
INPUT DAS 80
DAC 1,0,
DC 37,0,.
DC 1,0,
RM DAC 1,0.,
OUTPUTDSS 20000
DGM
DAC 1,0.,
LIST DSS 10000
DGM
QUTCNTDC 5,0,.
LSTCNTDC 5,0,.
DSKOUTDDA ,3,30000,200,OUTPUT
DSKLSTDUA ,3,20000,100,LIST
NUM DS 4
MESSI DAC 48,SWITCH 1 ON FOR COPIES OF LIST 100, PRESS STARTO,,
MESS2 DAC 50,SWITCH 1 ON FOR MORE COPIES, OFF FOR NEW LIST, PRE,,
DAC 9,SS START*,'
MESS3 DAC 46,SWITCH I ON FOR COPIES OF LIST I, PRESS STARTO,.
HDIOO DAC 4%, LIST OF KEYWORDS USED 100 OR MORE TIMES*,,
HDI DAC 40, LIST OF KEYWORDS USED ONCEP,,
COLCNTDC 5,0,.
MESS4 DAC 47,SWITCH I ON FOR COPIES OF () LIST, PRESS STARTP,,

```

```

MESS6 DAC 49,SWITCH 1 ON FOK COPIES OF CMPD LIST, PRESS START*,.
MESS7 DAC 4I,SWITCH 1 ON FOR MORE COPIES, PRESS STARTQ,.
HDPARPDAC 44, LIST OF PARENTHETICAL KEYWORDSO.,
HDHYPHDAC 41. LIST OF HYPHENATED KEYWORDS*,.
HDCOMPDAC 39, LIST OF COMPOUND KEYWORDS*,'
HDALLIDAC 44, KEYWOKD AND FREQUENCY LISTO,.
HOALLZDAC 39,
HDALLSDAC 37, 6022 KEYWORDS*.,
MESS8 DAC 21,SWITCH 2 ON TO PUNCHO,.
DENDSTART

```

Project 2318
May 29, 1968
Page 36

ING
```

* NAMEING
    * PROGRAM TO PRODUCE LIST OF WORDS ENDING IN ING
STAKT SF ING-1
CF ZERO-49
CF ZERO+1
CF 2ERO+51
CF 2ERO+101
BS *+12,1%
WATYMESSI
RCTY
H
BNC1*+24
BLXM*+12,OUTPUT+200,9,
SKIP.7.,
RACDINPUT
PKA INPUT
BNCl*+4B
TR UUTPUT,INPUT-1,.,
IR UUTPPUT+162,INPUT+161,.:
TFM CNTR,1,.
SPIM,3.,
BLC *+12
STI BLC STG
TKNMINPUT-1,ZER0-49.,
RACIINPUT
BLXM*+12,INPUT+157,10,
ST2 SF (1)
CM 1+(1),0,10.
CF (1)
BNE ST.3
BXM ST2,-2,10,
ST3 SF (1)
CM-1+(1),4,10,
CF (i)
BNE STS
ST4 BXM *+12,-2,10,
SF (1)
CM 1+(1),24,10,
CF (1)
BNE ST4
BXM *+12,-4,10,
ST5 BXM*+12,-4,10,
SF (1)
C 5+(1),ING+4,%
CF (1)
BNE STI
PKA INPUT
SPIM,I.,
BCOV*+24
B *+24
SKIP.7,.
BNCIST1
TR (?).INPUT-1,'
IN 162++2I,INPUY+161,,
BXM *+12,200,9.
AM CNTR.1..
CM CNTR.100.,
BNE STI
SK DISK

```
```

        WDGNDISK
        AM #19K+5,200,
        TFM :ONTR.O,,
        HLXAST&&|jTPUT,9,
    STg rD (%),R14,
SK DİK
WDGINJISK
ST65 TFM LNTR,O,,
SKI⿴囗ノ...
SK DISNR
RDGNDISKF
BLXI4**12,OUTHUT.G.,
PGA 1+(2)
SPIM,3,.
AM CNTR,I,.
sT% BXM *+12,201,9.
STS BNR + +24,(2)
B STH
PRA 1+(2)
SPli4,1..
BCOV*+24
B **24
SNIP,7..
AM CNTR,I..
CM CNTR,100...
BNE STT
AM DISKR+5.20U..
Sk cisk%
RUGMDISxA
TFM LiNTR,G..
BLXMST8,OUTPUT.\&.
ST9 WATYMESS2
RCIY
H
TFM DISKK+5,20000..
B ST65
INPUT DAS 8IJ
DAC 1.*..
DC 37,0.,
OC 1.0..
DGM
ING DAC 3.ING.:
ZERO DC 50.0..
DC 50,0..
DC - 50.0.0.0
DC 10.0.,
OC 1.0.,
DISK DDA,3,20000.200,0UTPUT
CNTR DC 5.0..
MESSI DAC 5O,TURN SWITCH I ON FOR MULTIPLE COPIES. PKESS STARIO.*
DISKR DDA, 3,20000.200,0UTPUT
RM DAC 1.0..
OUTPUTDSS 20000
DGM
MESS2 OAC 2O,PRESS START FOR ANOTHEN COPYO.,
DENDSTART

```

Project 2318
May 29, 1968
Page 38

\section*{EORATE}
- NAMEEORATE

START SKIP,7,
BS \(\quad+\) 12, \(_{1,1}\)
PRA HEADI
SPIM, 3,
BLC \(*+12\)
STO TDM OUTPUT, O,:
AM CNT.1..
CM CNT,20000..
BE \(*+36\)
AM STO+6.1..
B STO
TFM CNT,O.,
ST1 8LXM*+12,OUTPUT,9,
TFM CNT,O.,
READ BLC STG
RACDINPUT
BLXM*+12,INPUT+157.10,
ST2 SF (1)
CM \(1+(1), 0,10\).
CF (1)
BNE ST3
BXM ST2, 2,1011 。
ST3 SF (1)
CM \(1+(1), 4,10\).
CF (1)
BNE STS
ST4. BXM *+12,2,1011,
SF (1)
CM \(1+(1), 24.10\).
CF (1)
BNE ST4
BXM * \(+12,4,1011\),
ST5 BXM *+12,2,1011,
SF (1)
C \(3+(1), E R+2\),
CF (1)
BE ST53
SF (i)
C \(\quad 3+(1), \mathrm{OR}+2\),
CF (1)
BE WRITEI
BXM**12,2,1011,
SF (1)
C \(\quad 5+(1), E R S+4,\).
CF (1)
BE ST55
SF (1)
C \(\quad 5+(1), 0 K S+4,0\)
CF (1)
BE WRITEI
SF (1)
C \(5+(1), A T E+4\),
CF (1)
BE WRITE2
BXM \(=+12.2 .1011\).
SF (1)
C \(7+(1), A T E S * 6\),
CF (1)
```

    BE WRITE2
    B READ
    Si53 BXM *+12,6,1011,
SF 11)
C 9+(1),PAPER+8,%
CF (1)
BNE WRITEI
B READ
ST55 8XM*+12,6,1011.
SF 11)
C 11+(1),PAPERS+10,%
CF (1)
BNE WRITEI
B READ
WRITEIPRA INPUT
SPIM,1,.
BCOV*+24
B *+24
SKIP,7,,
WACDINPUT
8 READ
WRITEZTR INPUT+158,RM,,
TK (2).INPUT-1.,
AM CNT,1,.
CM CNT,125,.
BE STORE
BXM KEAD,160,9,
STORE SK DISK
WUGNDISK
AM DlSK+5,200,%
B STl
3T6 TR (2),KM,,
SK OISK
WDGNDISK
ST65 SKIP,7,.
PRA HEAD2
SPIM,3,,
TFM DISK+5,20000.,
STg SK DISK
RUGNDISK
AM DISK+5,200:.
TFM CNT,O..
GLXM*+12,OUTPUT,9,
ST7 SNR *+24,(2)%,
PRA 1+(2)
SPIM,1,.
BCOV*+24
B *+24
SKIP,7,.
ST8 WACDi+(2)
AM CNT.1.,
CM CNT.125.,
BE ST9
BXM ST7,160,9.
ST10 TDM STB,4.,
TDM ST8+1,1,.
AM CNTR,I,,
CM CNTR,5,.
BNE ST65
CALLEXIT

```

Projec: 2318
May 23, 1968
Page 40
```

HEADI DAC 33. THE ER/OR COMPLEXO.,
HEAD2 DAC 36.
RM DAC 1.0..
OUTPUTDSS 20000
DGM
CNT DC 5,0,.
INPUT DASS 80
DAC 1,0.,
ER DAC 2,ER.,
OR DAC 2,OR,.
ERS DAC 3,ERS..
ORS DAC 3,ORS.,
ATE DAC 3.ATE.,
ATES DAC 4,ATES,,
PAPER DAC 5,PAPER;,
PAPERSDAC 6,PAPERS,,
DISK DDA -,3,20000,200,OUTPUT.
CNTR DC 5,O,,
DENDSTART

```

PICTAL
* NAMEPICTAL

START BS \(\quad+12.1,1\)
BLC * +12
SK DISK
CF CNTRL-49
CF CNTRL+1
CF CNTRL+51
CF CNTRL +101
CF CNTRL+151
CF CNTRL+201
CF CNTRL +251
CF CNTRL+301
CF BLANK-49
CF BLANK+1
CF BLANK+51
CF BLANK + 101
TRNMINPUT-1, BLANK-49,.
TFNMZERO, BLANK-39.2.
AM *-6.150..
CM \(\quad-18, Z E K O+1950 \therefore\)
BNE *-36
TRNMZERO+1950,BLANK+61,
TKNMSTORE, ZERO.,
BLXM*+12,STORE,9,
ST2 BLC STG
RACDINPUT
\(B L X M *+12,1 N P U T+33,10\),
ST22. TF 319.309 ,
ST23 SF (1)
CM \(1+(1), 0,10\).
CF (1)
8E STB
SF (1)
CM \(1+(1), 20,10\).
CF (1)
BNE *+36
BLXMST8, *+12.810,
B ST4
BXM ST23,2,10,
STB TD (1),RM,
\(\operatorname{TRNM}(2),(3),\).
TLM (1), O,
\(\therefore\) ST35 ..TRNM124+(2), INPUT + 33..
AM KNTR,I,"
CM KNTR,8,.
BNE * +36
BLXMWRITE,*+12,8,
B ST4
BXM \(+12,250,9\),
ST4 BXM *+12,2,10,
SF (1)
CM \(1+(1), 0,10\),
CF (1)
BE ST2
SF (i)
CM 1+11),24,10,
CF (1)
BNE ST22
ST5 BXM**12,2.10。
```

            TF 319,309..
    ST51 SF (1)
CM 1+(1),4,10,
CF (1)
BE ST54
SF (1)
CM 1+(1),0,10.
CF (1)
BE ST55
SF 11)
CM 1+(1),20.10.
CF (1)
BNE *+36
BLXMST8,**12,810,
B ST5
BXM ST51,2,10,
ST54 TD (I),RM,.
TRNM(2),(3),.
TDM (1),0,.
BXM ST35,2,10,
ST55 TD (1);RM,.
TRNM(2).(3).,
TDM (1).0.!
TRNM124+(2),1NPUT+33,.
AM KNTR,1,.
CM KNTR,8,.
BNE*+36
BLXMWRITE,*+12.8,
B ST5
BXM ST5,250,9,
ST8 TD (1),RM,.
TRNM(2),(3),.
TDM (1),2.,
TRNM124+(2),INPUT+33,.
AM KNTR,1,.
CM KNTR,8.,
BNE **36
BL.XMWRITE,*+12,8,
B (5)
BXM (5),250,9,
WRITE WDGNDISK
TRNMSTORE,ZERO.,
TFM KNTR,O,.
AM DISK+5,20,.
BLXM*+12.STORE,9,
AM CNT,1.,
CM CNT,10,,
BNE (4)
SK DISK
TFM CNT,O,,
B (4)
ST6 TDM (2),0,.
TD 1+(2),RM,,
TD 2+(2),RM,%
WDGNDISK
ST7 BS *+12,0,.
SK DSKSRT
HDGNDSKSRT
CALLLINK,SORT,
RM DAC 1,0,*
STORE DSS 2000

```
```

DGM
INPUT DAS 80
DC 1,0,0
KNTR DC 5,0,,
DISK DDA ,3,20000,20,STORE
CNT DC 5,0,.
DSKSRTDDA ,1,00000,004,CNTRL-49
DAC 1,0,
CNTRL DC 50,01000250050000000000120000000000247000000000000000000%,
DC 50,0000000000000000000000000000001000011000000000000000%,
DC 50,000000000000000000000000000000000000000000000000000000%.
DC 50,00100000002073727070707070707070707070707372707070,
DC 50,70707373757070707070707170717070727075767470707070,
DC 50,70707070707070707070707070707070707070707070707070,
DC 50,707070707070707070707300000000000000000000000000000.
DC 50,0000000000000000000000000000000000000000000000000000%%
DGM
BLANK DC 50,0,.
DC 50,0,%
DC 50,0,.
DC 10,0,,
DC 1,0,.
ZERO DSS 2000
DC 1,0,0
DENDSTART

```

Project 2318
May 29, 1968
Page 44

\section*{PICTAP}
- nameplctap
*ID NUMBER 0247
DORG20000
START BD ST2.DIGIT.,
TDM DIGIT.1.
CF ZERO-49
CF ZERO+1
CF ZERO+51
CF \(2 E R O+101\)
CF ZERO+151
CF ZERO+20.1
CF \(2 E R O+251\)
CF ZERO+301
SKIP.7..
SF 02690,.6.
AM 02690.123..
STI TF TERM+122.02690.11,
AM 02690.1 .
SF 02690,.6.
AM 02690.125,.
TF PHRASE \(+124,02690.11\),
PRA TERM
BCOV* +24
B \(\quad *+36\)
SK1P.7.,
ST5 PRA TERM
ST4 PRA PHRASE-10
BCOV*+24
B 02836
SK1P,7,
TDM KEY, 1,
B 02836
ST2 SF 02690., 6,
AM 02690.123.,
C TERM+122,02690,11.
BE STJ
TDM KEY, O,
SPIM,1,
BCOV \({ }^{\text {a }}+24\)
B STI
SKJP,7,.
B STI
ST3 AM 02690,1,
SF \(02690, .6\).
AM 02690,125,.
TF PHRASE+124,02690,11.
BD * \(+24, \mathrm{KEY}\),
B ST4
TDM KEY,0,
B ST5
FINAL SK DISK
WDGNDISK
CALLEXIT-
TERM DAS 62
DAC 1.0.,
DAC 5,
PHRASEDAS 63
DAC 1,0,
DIGIT DC 2.0.,
```

KEY DC 2,0,0
DAC 1,0.,
ZERO DC 50,0,.
DC 50,0,.
DC 50.0.,
DC 50,0.,
DC 50,0,.
DC 50,0..
DC 50;0,.
DC 50,0,.
DGM
DISK DDA ,1,00000,004,ZERO-49,
DENDSTART

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{PROJECT REPORT FORM}} & Peoject no 2318 \\
\hline & & COOPERATOR \\
\hline & & aeport no.- \(\frac{2}{\text { November 20, } 1967}\) \\
\hline \multirow[t]{9}{*}{Copies to:} & Files & NOTE HOOK \\
\hline & Nelson & PAGE - - 10 \\
\hline & Bachhuber & SGEED. \\
\hline & Brown & Richard W. Nelson \\
\hline & Roth & \\
\hline & Byrne & \\
\hline & Weiner & \\
\hline & Holm & \\
\hline & Dickey & \\
\hline
\end{tabular}

\section*{EXPERIMENTAL SEARCH SYSTEM}

\section*{SUMMARY}

This report describes an experimental search system, with which one may explore the possibilities of document retrieval by way of an inverted keyword file. The data, which are extensive enough to permit meaningful tests to be made, consist of the record of keywords for the documents in Volume 37 of the Abstract Bulletin. These have been stored, in encoded and compressed form, on (a portion of) a disk pack. A group of computer programs provide for the storage and extraction of records, and for processing the logic of search definftions involving as many as twenty keywords.

The construction of this system, and the execution of a number of searches with it, have given substance to several hypotheses: (1) it is feasible to carry out mechanized searches with a comparatively small computer system; (2) efficient design, even when a large computer is available, will require \({ }^{-}\)the \({ }^{-}\)elimination of unnecessary features;-such-as-Eng1ish-text-output-in large quantities; (3) an effective information system will require a mixture of storage media and search procedures, including printed books (which are by no means uneconomical for housing large masses of tabular material); and (4) effective use will demand adequate mutual comprehension of policy and practice among the persons in search of information, the specialists who prepare abstracts, and the designers of programs.

Project 2318 November 20, 1967 Page 2

THE INVERTED FILE AND DISK PACKING PROCESS

It has been found possible to store a one-year accumulation of keywords and document identifications on approximately one-fourth of one disk pack, which is mounted in one of the two 1311 drives of an IBM 1620 II computer. The information in question corresponds to Volume 37 of the Abstract Bulletin. The inverted file of keywords was punched on cards when prepared (for production of the Keyword Supplement), and this series had been merged (by hand) to give a single file for the complete volume. The file consists of title cards, containing keywords as these appear in the PPRIC Thesaurus and its extensions, each title card followed by a list of document numbers pertaining to it. The document numbers are the serial numbers of entries in the Abstract Bulletin.

The machine program (172A3) which constructs the disk record reads this file and as it does so performs the following functions: (1) as each new keyword is encountered, a code (six decimal digits) is assigned to it, beginning with \(\overline{0} 00001\), which happens to be the keyword ABATEMENT; (2) the disk address of the disk area which will next be loaded is also recorded, together with the keyword itself, in a "directory" which is printed for later reference as the processing proceeds (in the present system the first address is 20000); (3) the keyword code is entered in a strip of 500 core positions, preceded by a record mark, and following without a break whatever information had already been placed there; (4) the document numbers following the given keyword are read, edited (7001 becomes \(\overline{3} 707001\), where the first two digits indicate the volume of the Abstract Bulletin), and the resulting seven-digit groups are loaded in the strip following the keyword code; (5) when all the document numbers have been read and processed, the next
keyword is read, i.e., the cycle begins again at (1); (6) whenever the 500 . core position strip is full, the contents are loaded to the disk, and the current disk address (to be used in the next loading) is increased by 5 units.

Figure 1 contains a portion of the "diractory", Fig. 2 examples of coded and packed information as stored on the disk, and Fig. 3 a listing of the machine program. The preparation of the disk file proceeds essentially at cardreading speed and requires about 3 hours. The keyword accumulations for successive years can only be merged by reconstituting the file, since any differences in keyword vacabularies will require a new encoding for the combination.

In explanation of the choice of a six-digit field for the keyword code, even though no one presently contemplates the application of \(10^{6}\) keywords, it may be remarked that the extra digit ory two will permit experimentation with keywords which do not belong to the present scheme (as examples, one might consider descriptions of the nature of the document, the language in which it is written, its security status, etc:), and that, the packed file is not thereby lengthened excessively.

RECORD TRANSFER FROM DISK FILE

A subprogram (175A7), constructed as an SPS subroutine which can be called by Fortran mainline programs, extracts information from the disk in 5 sector blocks, and stores it in a strip of 500 core positions. Transfer begins at a sector address which must be furnished to the subprogram by the calling program. A "common" area is defined for communication between programs.
\begin{tabular}{|c|c|c|}
\hline 0100001 & 21000 & Ahattment \\
\hline 0000n2 & 20000 & AHIENOL \\
\hline 1060003 & 20040 & AHIES \\
\hline 0000004 & 20000 & AHIES ALbA \\
\hline 010006 & 20000 & AHIES AMABILIS \\
\hline 000000 & 201000 & ahies balsamea \\
\hline 000007 & 20000 & AHIES CUNCOLOR \\
\hline 00wuis & 20000 & ABIES GKANDIS \\
\hline u00009 & 20000 & aHIES LASIUCARPA \\
\hline 000010 & 20000 & AHIES MAGNIFICA \\
\hline 000011 & 20060 & ABIES NURDMANNIANA \\
\hline 00001? & 20000 & AHIES PINDKUW \\
\hline vouois & 20005 & ABIES PINSAPO \\
\hline 060114 & 20005 & ABIES SIBIKICA \\
\hline ư00) & 20005 & ABIETADIENE \\
\hline vollils & 20005 & ABIETIC ACIUS \\
\hline u000 \({ }^{\text {d }}\) & 20005 & ABIETINAL. \\
\hline uvools & 20005 & ABIETINOL \\
\hline 000019 & 201005 & AHNOKMALITIES \\
\hline 0000\% 0 & 20005 & AHMASION \\
\hline 000021 & 201105 & ABRASIIN RESISTANCE \\
\hline 000022 & 201105 & ABRASION RESISTANT STEELS \\
\hline 000023 & 20005 & ABRASIGN TESTERS \\
\hline 000024 & 20005 & AHKASIVE_PAPERS \\
\hline 0001225 & 20005 & AHRASIVES \\
\hline 000026 & 201105 & ABSURBENT PAPERS \\
\hline 000027 & 20005 & ABSURBENTS \\
\hline 000028 & 20005 & ABSURBERS (EQUIPMENT) \\
\hline 060029 & 20010 & ABSUKBERS (MATERIALS) \\
\hline 000030 & 20010 & ABSUKPTION \\
\hline 000031 & 20010 & ABSORPTION SPECTRA \\
\hline U00032 & 20010 & ABSURPTIVITY \\
\hline 000033 & 20010 & acacia \\
\hline 000034 & 20010 & acacia nilutica \\
\hline 000035 & 201010 & acacia senegal \\
\hline 000036 & 20010 & accelehating (Process) \\
\hline 000037 & 20010 & acceleration (mechanical) \\
\hline 000038 & 20010 & acceptance \\
\hline 000039 & 20010 & accessibility \\
\hline 000040 & 20010 & accessories \\
\hline 0010041 & 20010 & acciuent preventiun \\
\hline voluor? & 20010 & accounting \\
\hline umeuas & 20415 & accijmulation \\
\hline 000044 & 211115 & accumulatoks \\
\hline 000045 & 20015 & accuracy \\
\hline 000046 & 29015 & ACEK \\
\hline 000047 & 20015 & acer platanoides \\
\hline 000048 & 20015 & acer pseudoplatanus \\
\hline 000049 & 201015 & ACER RUBKUM \\
\hline 000050 & 20015 & ACER SaCCHarinum \\
\hline 000051 & 20015 & acer saccharum \\
\hline 00005 ? & 20015 & acetalothyde \\
\hline 000053 & 20015 & acetal resins \\
\hline 000054 & 20015 & acetals \\
\hline 000056 & 20015 & acetale pulps \\
\hline 000056 & 20015 & acetate kayon \\
\hline 000057 & 20015 & acetates \\
\hline 000058 & 201125 & acetic acid \\
\hline 060059 & 201025 & acetle anhydride \\
\hline 000060 & 20025 & acetolysis \\
\hline
\end{tabular}

Figure 1

\begin{abstract}
02001500539000
\(073133707194370731537073163707308 \ddagger 0000563707191 \ddagger 00\) \(0057570732237071635707313 \ddagger 00005857073083707318 \ddagger 000\) \(0593707128 \ddagger 000060370714737071483707149 \ddagger 00006137075\) 00370752037075403707444370747437072943707546370750 \(7570731737073483707218370730857074793707299 \ddagger 000062\) 37074403707450370784037072503707472370743337074733 \(707404370744537074663707369 \ddagger 0000633707197 \$ 00006437\) \(07178 \ddagger 000065 \$ 707198 \ddagger 000066370733337073363707816 \ddagger 00\) \(006737073333707336 \ddagger 0000683707179 \ddagger 00006937072043707\) \(307 \ddagger 000070 \$ 707307 \ddagger 000071 \xi 707564 \ddagger 000072 \xi 707216 \ddagger 0000\) \(\ddagger 000\)
\end{abstract}

\section*{02002000539000}
\(735707664 \ddagger 0000745707216 \xi 707878 \ddagger 0000753707181370786\) \(8 \ddagger 0000763707872 \xi 7078633707145 \% 707537 \xi 707159 \ddagger 000077\) \(37071453707537 \ddagger 0000785707162 \ddagger 0000793707159 \ddagger 0000805\) \(7073215707503 \ddagger 8000815707209 \ddagger 0000823707164370715537\) \(071563707258 \ddagger 0000833707494 \ddagger 00008437071203707400370\) 74603707112370730237071533707163570719337073833707 \(11437071543707284 \overline{3} 70710537071153707145370715537071\) \(06370719637071973707119 \ddagger 00008537071-3637.0713837 .0712\) \(9 \ddagger 0000863707593 \xi 707863 \ddagger 000087 \xi 707911 \ddagger 0000885707141\) \(3707136 \ddagger 0000895707162 \ddagger 00009057075313707375 \neq 0000913\) \(\ddagger 000\)

\footnotetext{
Two Consecutive Portions of Encoded File, as Stored on Disk (each portion is 500 digits long; the final row of zeros is not present on the disk and is to be disregarded)
}

Figure 2

Project 2318
November 20, 1967
Page 6

C DISK LOADING PROGRAM \(172 A 3\) REMOVE COMMENT CARDS BEFORE LOADING
C PART L LOADER
\(36200000050032200000000015200220000 \neq 3120004200104900000\)
C
PART A PRELIMINARIES
\(08500 \quad 323615800000\)
\(0851215351080000 \neq\)
08524163515519000
\(08536 \quad 15350560000 \neq\)
08548 1635005K0000
08560 1635055-0001
08572
08584
08596
08608
08620
08632
08644
08656
08668
\(08680 \quad 323600000000\)
08692
08704
08716

C
PART B READ-IN
\(09000 \quad 373600100500\)
\(09012 \quad 1436159000 \mathrm{KO}\)
\(09024 \quad 470950001200\)
09036 - 490910800000
09048 153515N0000才
\(09060 \quad 1135155000-1\)
\(09072 \quad 313515\) N35050
09084 1135155-0006
\(09096 \quad 490800000000\)
\(09108 \quad 263803936039\)
\(09120 \quad 1609499-9000\)
\(09132 \quad 490904800000\)

Figure 3

Figure 3 (Continued)

Project 2318
November 20, 1967
Page 8

C PART E PRINT DIRECTORY
\(08000 \quad 393594700900\)
08012460808402500
\(08024 \quad 470804803400\)
08036340000000971
08048
08060
08072
08084
08096
08132
08144
08156
08168
08180
C
07500
PART F DISK TRANSFER
383500000700
\(07512 \quad 460774003600\)
\(07524 \quad 460774003800\)
\(07536^{\circ} \quad 460774000700\) 07548 07560 07572 07584 07596 07608 07620 07632
07644
07656
07668
07680 07692 07740
07752 460774001600 460774001700 363500000701 460774003600 460774003700 460774003800 460774000600 460774001600 460774001700 1135005000-5 343500000701 733599535005 491009600000 480000000000 490750000000
```

C PART G STARTER
4908500

```

Figure 3 (Continued)

The subprogram now scans the strip to find a keyword code which agrees .with a keyword code previously established by the calling program. The document codes which follow the selected keyword code are edited and transmitted to an output strip, in which they are accessible to the mainline program. The output strip provides for 100 floating-paint variables, and the document code editing will, for example, change \(\overline{3} 707001\) to \(\overline{3} 7070010 \overline{0} 2\) before transfer to the output strip.

If the output strip becomes full before the last document number has been processed, a signal is set in the "common" area and control is transferred to the mainline program. The latter then.processes the output strip and returns control to the subprogram which then assembles more output.

On occasion, part of the desired keyword code will be filed at the beginning of the next group of five sectors. The subprogram then saves the beginning of the keyword code, reads in the next group of five sectors, and proceeds as above. If no part of the specified keyword code is to be found in the 500 core position strip, an error indicator is set and control returns to the main program.

The user must find the keyword code and sector address in the "directory" and supply these to the mainline program. While this part of the retrieval process could also be mechanized, it is considered that this feature -(which brings) with it a substantial storage space problem) belongs to a later stage of development.

A listing of the subprogram (which has the name ACCESS) appears in Fig. 4.

Project 2318
November 20, 1967
Page 10
```

*ASSEMBLE RELOCATABLE
*NAME ACCESS
*STORE RELOADABLE
*LIST PRINTER
S DS
DC 6,987898,5-S
DAC 6,ACCESS,7-S
DVLC22-S,5,LENGTH,2,8,2,4,5,ENTRY-6,5,0,30,0
DSC 17,0,0
DORGS-100
DAS }1
BAND DAS 251
DGM BAND+499
MARK DS 5
LOC DS 5
LOW DC 5,20000
HIGH DC 5,39999
CYL DC 3,0
DISK DAS 7
DDA DISK-1,0,20000,5,BAND-1
MSG2 DAC 1,F
DAC 1,0
DC 5,0
ENTRY AM ENTRY-1,1,10
CM 38979,0,8
B1 INIT,01100
TFM MARK,39006,7,
TFIM 38983,0,8,
TFM LOC,BAND+499,7,
CF 38996
SF 38994,.,
CF 38988
SF 33987,.,
TF D1SK+4,38991,,
TFM FILL-1, START,7,
C DISK+4,LOW
BNI ERRORI,01300
C DISK+4,HIGH
BI ERROR1,01100
LD 00099,DISK+4
DH 00097,200,9
C 00096,CYL
BI FILL+12,01200
TF CYL,00096
SK DISK-1,00701,,
SEEK
B FILL+12,., GO TO TRANSFER FROM DISK

```

Figure 4

INIT TFM MARK,39006,7, TFM 38983,0,8, B AGAIN
START TFM LOC,BAND-1,7,
NEXT BNR STEP,LOC,11
B CYCLE
STEP AM LOC, 1,10
CH LOC, BAND+498,7
BNI NEXT, 01100
B ERROR1
CYCLE AM LOC,6,10
CM LOC, BAND+498,7
TFM FILL-1,R1, 7
BI FILL, 01100
R1 C LOC, 38999,6
BNI STEP,01200
AGAIN AM LOC,1,10
CM LOC, BAND \(+498,7\) :
TFH FILL-1,R2,7
BI FILL,01100
R2 BNR SKIP,LOC,11
TFM 38979,0,8,
B ENTRY-1,.6,
SKIP AM LOC,6,10
CM LOC, BAND+498,7
TFM FILL-1,R3, 7
B) FILL,01100

R3 TF MARK,LOC,611
AM MARK, 1,10
TDH MARK,0,6
AM MARK,2,10
TFM NARK, 2,610
AM MARK,7,10
AM 38983,1,10
CM MARK,39996,7
BNI AGAIN, 01100
TFIK 38979,1,8,
B ENTRY-1, 6,
ERRORITFM \(38979,1,811\),
B ENTRY-1, 1,6 , DURG*+6
FILL TF BAND-2,BAND+498
SM LOC,500,8
READ RDGNDISK-1,00700
BI ERROR2,03600
BI ERROR2,03700
BI ERROR2,03800
B1 ERROR2,00600
B1 ERROR2,01600
BI ERROR2,01700
Figure 4 (Continued)

Project 2318
November 20, 1967
Page 12
```

    AM DISK+4,5,10
    LD 00099,DISK+4
    DM 00097,200,9
    C 00096,CYL
    BI FILL-1,01200,6
    TF CYL,00096
    SK DISK-1,00701
    B FILL-1,,6
    ERROR2K ,00102
WATYMSG2
H
B READ
LENGTHDC 1,0
DEND

```

The search program, discussed in the next section, processes a search definition which may contain a maximum of twenty keywords. Each keyword is presented to the program in the form of a keyword code and a sector address.

A typical search definition, intelligible to the program, is of the form
\[
(A \cup B \cup C) \cap(D \cup E) \cap(F \cup G \cup H \cup I) \cdot .
\]
in which a letter represents a set of documents filed under a keyword. Provided the maximum number of keywords is not exceeded, any arrangement of parentheses is accepted.

The symbols present in the search definition may also be of the form \(\bar{Q},-\) where \(Q\) is the set of documents filed under a keyword and \(\bar{Q}\) is the complement of that set. This makes it possible to exclude documents having certain qualities, and the program will process such definitions correctly provided that there is at least one parenthesis which contains no complements of sets.

The exceptional cases are not of practical importance. For example, the search definition \({ }^{-}\left(\overline{A^{\prime}}\right)\) Woūld call for al'l documents not belonging to the setA; the correct response would be an utterly useless list of nearly 10,000 documents. The computer program, in such a case, would indicate that no documents had the required property. In any event, the program can apply the search definition only to those documents which are listed, in the file, under one of the keywords which appear in the search definition.

Project 2318
November 20, 1967
Page 14

\section*{SEARCH PROGRAM}

The work of this program proceeds in two phases. In the first, a search definition is read and processed. As it lists the keyword codes and sector addresses and records the formal structure of the definition, the program extracts from the keyword file the document numbers listed under each of the keywords. These are stored, with duplications deleted, in a 500 position stack. There is provided an overflow area of the same size for use when more than 500 document numbers are returned. As each document is entered in the stack, an entry is made in the corresponding row of a 500 by 20 core position matrix (previously cleared), in the column corresponding to the keyword being processed. If the search definition refers to the set belonging to a certain keyword, the entry made is 1 when the document is listed under the keyword and 0 otherwise; but if the definition refers to the complement of the set, the entries are respectively 0 and 1 . When the document had previously been entered in the stack, the entry is made in the appropriate row and the same column of the matrix.

In the second phase, the program scans the matrix, row by row, to detect entries which conform to the search definition. The program tests agreement with each parenthesis in turn, starting from the left, and the item is rejected whenever a lack of agreement is observed. If the item is acceptable, the location (row) and the corresponding document number are printed. When the scan is complete, and at the option of the user (indicated by program switch settings), the program prints the contents of the document stack and the matrix.

If document numbers have been filed in the overflow area, the program provides for a second reading of the search definition, and these document numbers
are then processed as before, with similar output. When more than 1000 document numbers (without duplications) are returned from the disk file, the excess is discarded and the search proceeds with the items which have been retained; a warning message is printed. This limitation can be circumvented, in many cases, by changing the order in which the keywords appear in the search definition; this changes the order in which document numbers appear in the stack, and the items discarded may now be those which were retained in a previous trial.

The size of the matrix and of the stack and overflow area appear to be best for the available core capacity (40K). Temporary storage on disk as a means of increasing the effective dimensions of the work area is a possibility, but will require increased processing time, which is already appreciable for problems which do not exceed present capacities. Some processing time could be saved by more efficient coding (in SPS) of critical portions of the program.

A listing of the mainline program (176Al0, SEARCH) and the other of its two subprograms (187A7, TABLES) is given in Fig. 5.

\section*{PRELIMINARY TRIALS}

In the examples of output which follow this section, the program switches were-set for complete listings.- Example . 1 shows a search which was
intended to retrieve documents relating to the abatement of pollution in streams. The search definition is of the form
\[
(A \cup B \cup C \cup D) \cap(E \cup F) \cap(G \cup H)
\]
in the first parenthesis, \(A\) is the set of document numbers listed under the keyword

Project 2318
November 20, 1967
Page 16 .
```

\#FANDKO804
*LDISKSEARCH
*LIST PRINTER
C UTILITY PROGRAM 176A10 25 APR 1967
C PRELIMINARY VERSION OF DOCUMENT RETRIEVAL SYSTEM
C PART A, PRELIMINARIES
C COMMUNICATION AREA FOR ACCESS SUBPROGRAM
DIMENSION A(100)
COMMON A, NKEY1, NKEY2, NSEC1, NSEC2, NR, KT
C COMMUNICATION AREA FOR TABLES SUBPROGRAM
DIMENSION JUN(20), JSGN(20)
COMMON JUN, JSGN, JTO, JGR, JKWD, JDCM, JTAB
C
STORAGE ARRANGEMENTS FOR THIS PROGRAM
DIMENSION D(1000), ITEXT(21)
PRINT 308
101 LOAD = 1
IRECYC = 0
DO 103 I = 1, 1000
103 D(1) = 0.0
102 JKWD = 0
-JTAB-=1
CALL TABLES
JTAB = 2
KT = 0
C PART B, INPUT
READ 301, J
IF (J) 407, 407, 408
408 DO 405 1 = 1, J
READ }30
405 PRINT 307
PRINT 302
407 READ 301, JTO, JGR
PRINT 301, JTO, JGR
PRINT }30
C
DO 107 1 = 1, JGR
READ 303, JUN(1)
PRINT 303, JUN(1)
C
K = JUN(1)
DO 105 J = 1, K
JKWD = JKWD + 1
READ 304, NKEY2, NKEY1, NSEC2, NSEC1, JSGN(JKND), ITEXT
TEMP1 = NKEY1
TEMP2 = NKEY2
P = 10000.0 * TEMP2 + TEMP1
TEIAP1 = NSEC1
TEMP2 = NSEC2
Q = 10000.0 % TEMP2 + TEMP1

```

PRINT 305, \(P\), \(Q\), JSGN(JKWD), ITEXT
CALL ACCESS
C LOOP FOR CONSTRUCTION OF DOCUMENT CODE LIST
IF (KT) 105, 570, 570
570 IF (IRECYC - 1) 526, 526, 726
526 DO \(515 \mathrm{~L}=1\), NR,
LOADM1 \(=\) LOAD - 1 :
DO \(521 M=1\), LOADM1
IF (\(A(L)-D(M))^{\prime} 521,535,521\)
535 IF (M - 500) 551, 551, 515
\(551 \mathrm{JDCM}=\mathrm{M}\)
CALL TABLES
GO TO 515
521 CONTINUE
IF (LOAD - 1000) 554, 554, 555
555 1 RECYC \(=1\)
GO TO 515
\(554 \mathrm{D}(\mathrm{LOAD})=\mathrm{A}(\mathrm{L})\)
IF (LOAD - 500) 552, 552, 553
552 JDCM a LOAD
CALL TABLES
553 LOAD \(=\) LOAD +1
515 CONTINUE
IF (KT) 105, 105, 525
525 CALL ACCESS
GO TO 526
105 CONTINUE
107 PRINT 302
IF (IRECYC - 1) - \(556,-557,-575\)
557 PRINT 311
GO TO 561
556 IF (LOAD - 501) 575,575 究 576
576 \(\operatorname{RECYC}=1\)
561 TYPE 310
PART C, OUTPUT
\(575 \mathrm{~J}=0\)
DO 601 I = 1, JGR
\(601 \mathrm{~J}=\mathrm{J}+\mathrm{JUN}(1)\)
IF \(=J^{\prime}(J) 602,603,602\).
602 PRINT 309
\(603 \mathrm{JTAB}=3\)
IF (IRECYC - 1) 650, 650, 850
650 LOADM1 \(=\) LOAD - 1
JDCM \(=\) LOADM1
IF (JDCM -: 500) \({ }^{6}\) 610, 610, 611
\(611 \mathrm{JDCM}=500\)
61. CALL TABLES

IF (JTAB - 4) 604, 604, 605

Project 2318
November 20, 1967
Page 18
```

    604 PRINT 306, JDCM, D(JDCMA)
    GO TO 610
    605 PRINT 302
    IF (SENSE SWITCH 1) 652, 653
    6 5 2 0 0 6 5 1 ~ 1 ~ = ~ 1 , ~ L O A D M 1 ~
    6 5 1 ~ P R I N T ~ 3 0 6 , ~ 1 , ~ D ( 1 ) ~
        PRINT }30
    653 IF (SENSE SWITCH 2) 654, 655
    654 CALL TABLES
    PRINT 302
    655 IF (IRECYC - 1) 101, 670, 670
    670 1RECYC = 2
    GO TO 102
    C
726 DO 715 L = 1, NR
DO }721M=1, LOADM
IF (A(L) - D(M)) 721, 735, 721
735 JDCM = M - 500
IF (JDCM) 715, 715, 736
736 CALL TABLES
GO--TO-7.15
721 CONTINUE
715 CONTINUE
IF (KT) 105, 105, 725
725 CALL ACCESS
GO TO 726
850 JDCM = LOADM1 - 500
810 CALL TABLES
IF (JTAB - 4) 804, 804, 805
804 1 = JDCM + 500
PRINT 306, 1, D(1)
GO TO 810
805 PRINT 302
IF (SENSE SWITCH 2) 854, 855
854 CALL TABLES
PRINT 302
855 GO TO 101
C PART E, I/O ARRANGEIMENTS
301 FORIAAT (1H, 4X, 15, 5X, 15)
302 FORMAT (IHO)
303 FORMAT (1H, 4X, 15)
304 FORIMAT (2X, 214, 2X, 214, 5x, 15, 21A2)
305 FORIAAT (1H, 20X, F10.0, 10X, F10.0, 10X, 15, 21A2)
306 FORMAT (1H, 15X, 15, 5X, F10.5)
307 FORHAT (1H , 4X, 67H
1 )
308 FORMAT (1H, 4X, 31HUTILITY PROGRAM 176A10 SEARCH/)
309 FORIAAT (1H, 4X, 26HKEYWORD COUNT INCONSISTENT/)
310 FORMAT (23HRELOAD CURRENT DATA SET)
311 FORMAT -
END

```

Project 2318
November 20, 1967
Page 19
```

*LDJSKTABLES
*LISTPRINTER
C UTILITY PROGRAM 176A7
SUBROUTINE TABLES
DIMENSION BLANKA(100)
! COMMON BLANKA, KLANKB, KLANKC, KlANKD, KLANKE, KlANKF, KLANKG
DIMENSION JUN(20), JSGN(20)
COMMON JUN, JSGN, JTO, JGR, JKWD, JDCM, JTAB
DIMENSION JET(500,5)
GO TO (401, 402, 403, 404, 405), JTAB
401 D0 415 1=1,500
DO415 J = I, 5
4 1 5 \mathrm { JET } ( 1 , J ) = 0 . 0
RETURN
402 1 = JDCM
J = (JKWD + 3) / 4
K = JKWD - ((JKWD - 1):/ 4) * 4
GO TO (501, 502, 503, 504), K
5 0 1 ~ J E T ( I , J ) ~ = ~ J E T ( I , J ) ~ + ~ 1 0 0 0 ~
RETURN
502 JET(I,J) = JET(I,J) + 100
RETURN
503 JET(I,J) = JET(I,J) + 10.
RETURN
504 JET(I,J) = JET(I,J) + 1
RETURN
403 JTAB = 4
JEND = JDCM.
JDCM = 1
711 NGR = 1
|N|T = 1
716 IFIN = INIT + JUN(NGR) - 1
OO 708 JKWD = INIT, IFIN
I = JDCM
J = (JKWD + 3) / 4
K = JKWD - ((JKWD - 1) / 4) * 4
GO TO (701, 702, 703, 704), K
701 L = JET(1,J) / 1000
702 M = JET (1,J)
N=(JET(I,J) / 1000) * 1000
L = (M - N) / 100
GO TO }70
703 M = JET (I,J)
N=(JET(1,J) / 100) % 100
L=(M-N) / 10
GO TO 705

```

Project 2318
November 20, 1967
Page 20
```

704 M = JET(I,N)
N=(JET(1,J) / 10)* 10
L=M-N
705 1F (JSGN(JKWD)) 751, 752, 752
751 |F (L) 709, 709,708
752 IF (L) 708, 708, 709
708 CONTINUE
404 JDCM = JDCM + 1
IF (JDCM - JEND) 711, 711,725
725 JTAB = 5
RETURN
709 NGR = NGR + 1
INIT = IFIN + I
IF (NGR - JGR) 716, 716,717
717 RETURN
405 DO 410 1=1, JEND
410 PRINT. 301, 1, JET(1,1), JET(1,2), JET(1,3), JET(1,4), JET(1,5)
RETURN
301 FORMAT (1H , 15X, 15, 5X, 514)
END

```

ABATEMENT, B the set listed under the keyword ELIMINATION, etc. Thus, the first parenthesis refers to abatement and three synonyms, the second parenthesis to pollution and a synonym (actually a narrower term), and the third to streams and a synonym.

One item was retrieved (at row 5 in the stack and matrix, and the reference is to abstract 6654 of Volume 37 of the Abstract Bulletin). The same item would have been found if the search definition had been (A) \(\cap(E) \cap(H)\). The synonyms, in this example, were superfluous. But Example 2 shows that it is well to include them (when space limitations permit). Here the last line of the matrix indicates that a document was listed under STREAM POLLUTION' but not under POLLUTION. Reinforcement of the original cross-referencing by the user ordinarily costs little and may help to promote familiarity with the Thesaurus and more flexible design of search definitions.

Other qualitative conclusions which follow from preliminary experiments are that the user should be prepared to test a number of search definitions of varying structure and degrees of sharpness, and that the use of some heavily posted keywords can be expensive in terms of storage space and processing time.

The output for Examples 1 and 2 is shown in Fig. 6.

FURTHER DEVELOPMENTS

It has been considered unnecessary, in an experimental system, to provide such conveniences as output in the form of title, author(s), and publication reference. The storage of such information requires a magnetictape system, but apart from programming effort and other expense there should be no prohibitive difficulty.

Project 2318
November 20, 1967
Page 22
\begin{tabular}{llll}
SEARCH & 07800 & 15234 & LOADED \\
TARLES & 23034 & 12866 & LOADED \\
ACCESS & 35900 & 01584 & LOADED \\
03 & 37484 & 00474 & LOADED
\end{tabular}

UTILITY PROGRAM \(176 A 10\) SEARCH EXAMPLE 1 .

8

4

2

2
\begin{tabular}{|c|c|c|}
\hline 1. & 20000. & 0 \\
\hline 1363. & 21330. & 0 \\
\hline 3074. & 23000. & 0 \\
\hline 3240 。 & 23225. & 0 \\
\hline 2953. & 22835. & 0 \\
\hline 3768. & 23645. & 0 \\
\hline 3325. & 23295. & 0 \\
\hline 3769. & 23645. & 0 \\
\hline
\end{tabular}

ABATEMENT ELIMINATION PREVENTION REDUCTION

\section*{POLEUTION} STREAM POLLUTION

\section*{RIVERS} STREAMS

Figure 6 (Continued)
\begin{tabular}{ll}
76 & 37.03333 \\
77 & 37.00410 \\
78 & 37.00403 \\
79 & 37.07521 \\
80 & 37.07514 \\
81 & 37.07509
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 10011000 & 0 & 0 & 0 \\
\hline 2 & 10000 & 0 & 0 & 0 \\
\hline 3 & 10011000 & 0 & 0 & 0 \\
\hline 4 & 1000 & 0 & 0 & 0 \\
\hline 5 & 10001001 & 0 & 0 & 0 \\
\hline 6 & 1000 & 0 & 0 & 0. \\
\hline 7 & 10001000 & 0 & 0 & 0 \\
\hline 8 & 1000 & 0 & 0 & 0 \\
\hline 9 & 100 0 & 0 & 0 & 0 \\
\hline 10 & 1000 & 0 & 0 & 0 \\
\hline 11 & \(100 \quad 0\) & 0 & 0 & 0 \\
\hline 12 & 100 0 & 0 & 0 & 0 \\
\hline 13 & 100 & 0 & 0 & 0 \\
\hline 14 & 100 & 0 & 0 & 0 \\
\hline 15 & 100 & 0 & 0 & 0 \\
\hline 16 & 100 & 0 & 0 & 0 \\
\hline \(17^{\circ}\) & 10 0 & \(-0^{-}\) & 0 & \(0^{-}\) \\
\hline 18 & 100 & 0 & 0 & 0 \\
\hline 19 & 10 0 & 0 & 0 & 0 \\
\hline 20 & 100 & 0 & 0 & 0 \\
\hline 21 & 10 & 0 & 0 & 0 \\
\hline 22 & 10 & 0 & 0 & 0 \\
\hline 23 & 10 & 0 & 0 & 0 \\
\hline 24 & 10 & 0 & 0 & 0 \\
\hline 25 & 10 & 0 & 0 & 0 \\
\hline 26 & 10 & 0 & 0 & 0 \\
\hline 27 & 10 & 0 & 0 & 0 \\
\hline 28 & 10 & 0 & 0 & 0 \\
\hline 29 & 10 & 0 & 0 & 0 \\
\hline 30 & 10 & 0 & 0 & 0 \\
\hline 31 & 10 & 0 & 0 & 0 \\
\hline 32 & 10 & 0 & 0 & 0 \\
\hline 33 & 10 & 0 & 0 & 0 \\
\hline 34 & 10 & 0 & 0 & 0 \\
\hline 35 & 10 & 0 & 0 & 0 \\
\hline 36 & 10 & 0 & 0 & 0 \\
\hline 37 & 10 & 0 & 0 & 0 \\
\hline 38 & 10 & 0 & 0 & 0 \\
\hline 39 & 10 & 0 & 0 & 0 \\
\hline 40 & 10 & 0 & 0 & 0 \\
\hline 41 & 10 & 0 & 0 & 0 \\
\hline 42 & 10 & 0 & 0 & 0 \\
\hline 43 & 01000 & 0 & 0 & 0 \\
\hline 44 & 01000 & 0 & 0 & 0 \\
\hline 45 & 01000 & 0 & 0 & 0 \\
\hline 46 & 01000 & 0 & 0 & 0 \\
\hline 47 & 01000 & 0 & 0 & 0 \\
\hline 48 & 01001 & 0 & 0 & 0 \\
\hline 49 & 01000 & 0 & 0 & 0 \\
\hline 50 & 01000 & 0 & 0 & 0 \\
\hline 51 & 01000 & 0 &) & 0 \\
\hline
\end{tabular}

Figure 6 (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline 52 & 01000 & 0 & 0 & 0 \\
\hline 53 & 01000 & 0 & 0 & 0 \\
\hline 54 & 01100 & 0 & 0 & 0 \\
\hline 55 & 01000 & 0 & 0 & 0 \\
\hline 56 & 01000 & 0 & 0 & 0 \\
\hline 57 & 01000 & 0 & 0 & 0 \\
\hline 58 & 01101 & 0 & 0 & 0 \\
\hline 59 & 01000 & 0 & 0 & 0 \\
\hline 60 & 01000 & 0 & 0 & 0 \\
\hline 61 & 01000 & 0 & 0 & 0 \\
\hline 62 & 01000 & 0 & - 0 & 0 \\
\hline 63 & 01000 & 0 & 0 & 0 \\
\hline 64 & 01000 & 0 & 0 & 0 \\
\hline 65 & 01000 & 0 & 0 & 0 \\
\hline 66 & 01000 & 0 & 0 & 0 \\
\hline 67 & 01100 & 0 & 0 & 0 \\
\hline 68 & 01100 & 0 & 0 & . 0 \\
\hline 69 & 01000 & 0 & 0 & 0 \\
\hline 70 & 01100 & 0 & 0 & 0 \\
\hline 71 & 01100 & 0 & 0 & 0 \\
\hline 72 & 0100 & 0 & 0 & 0 \\
\hline 73 & 010 & 0 & 0 & 0 \\
\hline 74 & 010 & 0 & 0 & 0 \\
\hline 75 & 010 & 0 & 0 & 0 \\
\hline 76 & \(0 \quad 10\) & 0 & 0 & 0 \\
\hline 77 & 01 & 0 & 0 & 0 \\
\hline 78 & \(0 \quad 1\) & 0 & 0 & 0 \\
\hline 79 & 01 & 0 & 0 & 0 \\
\hline 80 & 01 & 0 & 0 & 0 \\
\hline 81 & 01 & 0 & 0 & 0 \\
\hline
\end{tabular}

Figure 6 (Continued)

Project 2318
November 20, 1967
Page 26

EXAMPLE 2
```

?
2
3768.
37.05065
37.05934
37.02071
37.02066
37.03632
37.03323
37.07150
37.07241
37.07513-
37.07504
37.07495
37.07518
37.09070
37.09082
37.09066
37.08869
37.06654
37.06537
37.06658
37.05163
37.05065
37.05165
37.05921
37.05923
37.05934
37.05924
37.04011
37.04321
37.04015
37.04305
37.00396
37.00027
37.00399
37.00037
37.02071
37.02066
37.03631
37.03632
37.03323
37.08280
1000 0 0 0

```

Figure 6 (Continued)

Project 2318
\begin{tabular}{rrllll}
2 & 1000 & 0 & 0 & 0 & 0 \\
3 & 1000 & 0 & 0 & 0 & 0 \\
4 & 1000 & 0 & 0 & 0 & 0 \\
5 & 1000 & 0 & 0 & 0 & 0 \\
6 & 1000 & 0 & 0 & 0 & 0 \\
7 & 1000 & 0 & 0 & 0 & 0 \\
8 & 1000 & 0 & 0 & 0 & 0 \\
9 & 1000 & 0 & 0 & 0 & 0 \\
10 & 1000 & 0 & 0 & 0 & 0 \\
11 & 1000 & 0 & 0 & 0 & 0 \\
12 & 1000 & 0 & 0 & 0 & 0 \\
13 & 1000 & 0 & 0 & 0 & 0 \\
14 & 1000 & 0 & 0 & 0 & 0 \\
15 & 1100 & 0 & 0 & 0 & 0 \\
16 & 1000 & 0 & 0 & 0 & 0 \\
17 & 1000 & 0 & 0 & 0 & 0 \\
18 & 1000 & 0 & 0 & 0 & 0 \\
19 & 1100 & 0 & 0 & 0 & 0 \\
20 & 1000 & 0 & 0 & 0 & 0 \\
21 & 1000 & 0 & 0 & 0 & 0 \\
22 & 1000 & 0 & 0 & 0 & 0 \\
23 & 1000 & 0 & 0 & 0 & 0 \\
24 & 1000 & 0 & 0 & 0 & 0 \\
25 & 1000 & 0 & 0 & 0 & 0 \\
26 & 1000 & 0 & 0 & 0 & 0 \\
27 & 1000 & 0 & 0 & 0 & 0 \\
28 & 1000 & 0 & 0 & 0 & 0 \\
29 & 1100 & 0 & 0 & 0 & 0 \\
30 & 1100 & 0 & 0 & 0 & 0 \\
31 & 1000 & 0 & 0 & 0 & 0 \\
32 & 1100 & 0 & 0 & 0 & 0 \\
33 & 1100 & 0 & 0 & 0 & 0 \\
34 & 100 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Figure 6 (Continued)

Project 2318
November 20, 1967
Page 28

There is no reason why the existing inverted file, stored on disk, cannot be reinverted to form a direct file. A direct file, also stored on disk, would make it possible to try direct search systems, and would extend the usefulness of the inverted file system. Thus, after a search of the inverted file, as described in this report, one could analyze the regularities (if any) in the keywords belonging to the documents which had been selected in a search. Additional search questions may be suggested by any patterns which develop.
\[
-
\]

\section*{PROJECT REPORT FORM}

Copies to: Files
C. L. Brown
E. E. Dickey
A. E. Grummer
R. W. Nelson
L. E. Roth
M. L. Scribner
J. G. Strange
E. F. Thode Jack Weiner R. P. Whitney

Reading Copy

DEVELOPMENT OF MECHANIZED METHODS FOR TECHNICAL INFORMATION RETRIEVAL

\section*{INIRODUCTION}

Institute activity in the development of retrieval systems for technical information has had two main goals:
1. The development of a generalized system of retrieval applicable to collections of various sizes in the paper industry with full compatibility of coding and searching procedures among the various collections (sub-systems).
2. The development of a highly mechanized and highly efficient retrieval system -- for our large, centralized collection -- which speaks to the needs of our staff. students and member companies.

The elements of experimentation on this project include six major steps; namely,
1. Preparation of a pulp and paper supplement to the Chemical Engineering Thesaurus.
2. Coding a large sample of documents from A.B.I.P.C.
3. Checking this coding for different sources of variation.
4. Experimenting with search configurations.
5. Providing means for inclusion of various externally and internally generated documents in the file.
6. Developing effective techniques for processing questions from and answers to users of the system.

Also involved in this effort is considerable education on the part of the study group on the techniques tried and found useful (or not) by others - furthermore, chere has been established close co-operation with the parallel program at the Pulp and Paper Research Institute of Canada.

\section*{PROBLEMS OF AN INFORMATION RETRIEVAL SYSTEM}

Before embarking on as complicated a venture as this, one must have the goal clearly in mind. Even more generalized than the goals just cited is that of the Engineers Joint Council program, of which our activity may properly be considered a sub-set. Slightly paraphrased, their statement of objectives is: "To improve the EFFICIENCY of ENGINEERS and TECHNOLOGISTS in the function of OBTAINING PERTINENI INFORMATION from the CURRENT TECHNICAL ITTTERATURE." The problems faced in setting up an information retrieval system must be viewed with keywords of this statement in mind,

We must consider, for one thing, "Who is to be served?" The answer is scientists, engineers and technologists in the pulp and paper industry.

Next, "What do they want?" The answer, pertinent technical information from the current (this term needs some defining) literature...
"Why do they want it?" - To be more effective and efficient on the job.

In other words, we must focus on the information needs of a very special audience and must serve these needs in such a way as to save the individuals time and effort in their vocational activities.

In dealing with commanication between any author and any reader (or, searcher for information) certain language problems always intervene. The four major classes of language problems which crop up in technical communications may be categorized as follows:
```

VIEWPOINT
MEANING
WORD ORDER
FAMILY RELATIONSHIPS

```

The problems of viewpoint and meaning are interrelated. A given term may have several different meanings regardless of viewpoint and requires use of a modifier for specificity. The term, "track", for example, may mean anything from a pair of iron rails attached to cross-ties to a sequence of animal footprints in snow, soft earth, etc. Furthermore, a term may have various meanings depending on the viewpoint of the observer or writer. To a heating engineer, writing about oil burners, "oil" is a mixture of paraffinic and naphthenic hydrocarbons of a restricted range of density and viscosity obtained by the distillation of crude petroleum. \(T O\) the wildcatter, oil is the crude itself; to the French chef, oil is something entirely different. Imagine the difficulties terms such as "chest", "headbox", "furnish" present to the person unaquainted with the language and viewpoint of the papermaker, However, in a specialized information retrieval scheme, the viewpoint of the author and reader may be very close, so that it is possible to restrict greatly the possible range of meanings for a..given_term.

Now, the way in which a writer arranges the words in a sentence or thoughts in a paragraph establishes a certain meaning by context. Contrast two titles. "The Organization of a Republican Form of Government" and "The Form and Government of a Republican Organization". An individual concerned with Republican Party affairs would have no interest in the former article, yet he would surely retrieve
it, among others, if it were indexed solely by keywords with no indication of context. To avoid excessive "false drops" of non-pertinent information in a mechanized system。 some provision must be made for preserving the contextual relationships of terms defined by the author.

Finally, there is the problem of family relationships of words. Different words in the English language may be used to describe exactly the same concept. "Methanol" and "methyl alcohol" are synonyms; imagine the confusion which would arise if half the documents in a system relating to this concept were coded or indexed under "methanol" and the other half under "methyl alcohol". Synonyms must be eliminated from a retrieval system; but when this is done, there arises the more complex problem of closely related terms describing slightly different concepts. Consider "crushing", "milling" and "pulverizing"; these are quite properly distinct concepts and an author may quite properiy use one or another of these terms to precisely designate both mode and degree of size reduction, according to the context of his paper. The seeker of information, however, may be uncertain about the precise mode and degree of size reduction about which he needs information: if so, he must be provided with a guide for exploring concepts closely related to that which orig. inally comes to mind. Examination of related concepts, furthermore, must be both vertical and horizontal. The seeker of information on milling may wish merely to explore this concept plus those of crushing and pulverizing; on the other hand, he may decide that all related concepts need coverage, in which case the search should be directed to the class concept, "size reduction". Thus, a guide to vertical relationships is also needed.

CONCEPT CO-ORDINATION

An appreciation and analysis of the above problems has led various literature specialists to the development of the technique of Concept Co-ordination Indexing as
a means of handling large or small collections of information in which complex logical relationships of thought may be found.

In the communication process, we must begin with the author, who in preparing his manuscript, first evolves a mental image (concept) of an action or a thing and then codes this concept in a language natural to him, committing this code (word) to paper. The thought processes of the author follow some logical pattern. which he attempts to communicate via the language by linking up the words representing his concepts in an orderly, co-ordinated fashion. The entire document may be represented by one (or more) logical structures describing the relationships of the principal concepts. The words used to describe these principal concepts are usually referred to as "keywords".

Although he seldom thinks of it in explicit terms, the searcher for information usually has in mind certain main concepts and a certain (incomplete) logical structure relating these concepts. In searching for information he is usually interested in finding out the answers to one or more of the following:
1. Has anyone linked up these particular concepts in the logical structure I have used?
2. If so, what results or observations derived from this co-ordination?
3.- Assuming -ny structure is partial, what extensions of the logical. structure have previous workers made?
4. Of what larger set of ideas is my argument a sub-set?
5. If my argument is highly generalized, what sub-sets exist?

The function of the indexer now becomes clear: He must so code the document for entry into the storage and retrieval system that both the concepts and the logical
processes of the author may be operated upon in response to the thought processes of the searcher. It is apparent that this coding must largely circumvent the language problems mentioned earlier.

Absolutely basic to a successful concept co-ordination system, then, is some means of defining the words, or terms, used to describe concepts and of establishing the relationships among terms. This is referred to as control of language and vocabulary; the task is eased greatly if the environment is limited in some manner. In our case, we limit the environment to the pulp and paper industry, and then define the terms by specifying that the language shall be English, as written by engineers and scientists in North America. The final step of vocabulary control is accomplished by compilation of a thesaurus, or collection of words, in which elimination of synonymous terms is accomplished in a prescribed fashion and the relationships between terms are rigidly defined. By reference to this thesaurus, the indexer may code the thoughts of the author for entry to the information system \(\checkmark\) using a consistent set of words, not necessarily the words the author originally employed in describing his concepts. The author, for example, may have used the term "methyl alcohol" for one of his principal concepts. Reference to the thesaurus shows that "methyl alcohol" is not an accepted term but that its synonym, "methanol", is. The indexer will therefore see that the concept is represented by the term, "methanol" and, in addition, by the generic term, "alcohol".

To meet the various needs just described, a thesaurus is essential; it should contain the following elements, when needed, for each acceptable term:
1. Scope notes, where the dictionary applies the word to two or more different concepts. For example, in a technical thesaurus it is necessary to enter the term referring to the most ancient physical science as MECHANICS / NOT PERSONNEL/\&
2. List of synonyms - not accepted for entry in the system.
3. List of closely (horizontally) related terms - accepted for entry in system。
4. List of important subordinate concept terms.
5. Name of term designating the class of concepts to which subject term belongs.

In addition, terms not accepted for entry in the system must be interfiled in the alphabetic listing of terms, with cross reference to the appropriate accepted term。

Documents may be entered intio a concept co-ordination indexing system in either of two standard ways - a sequential file in which the records are filed by accession number of the document and in which each record contains all the keyword codes (and modifiers, if any) pertaining to the document, or, an inverted file in which the records are filed by keyword and each record contains the accession numbers of all documents described by that keyword. : The inverted file has the great advantage that only a small portion of the file need be searched for any given inquiry and that the logic of the search may be accomplished by appropriate manipulation of keyword combinations.

The form of the records in the active system (library cards, edgenotched cards, Termatrex cards, IBM cards, paper tape, magnetic tape, photographic image, etc.) and the techniques of entering and retrieving the data are of relatively minor importance, and will vary depending on the number of terms and documents in the system, as well as the nature and frequency of inquiries.

Experience has shown that, except for the very small collection, it is of critical importance that the establishment and maintenance of the system be the function of experienced technical workers and that these technically trained
individuals do the actual programming of searches conducted in response to inquiries, By working closely with the originator of the inquiry, the technical information specialist is able to extract the maximum pertinent information with maximum efficiency.

\section*{PROGRESS ON IPC PROJECT}

\section*{THESAURUS}

Prior to the establishment of Project 2318, the Institute Information Retrieval Study Committee had decided to adopt the concept co-ordination system advanced by the American Institute of Chemical Engineers and to use the Chemical Engineering Thesaurus as a basic word-book. Since the experience of others clearly, indicate that even experimental coding of documents should not be done without a thesaurus, the first item of business was the preparation of a pulp and paper supplement to the basic Chemical Engineering Thesaurus.

Drawing on word-lists from various sources, a first, rather abbreviated draft was prepared at IPC in January and forwarded to PPRIC. This draft was reconciled with a longer PPRIC word list in conference in February, after which PPRIC prepared an extensive second draft. After this second draft had been studied and criticized, the PPRIC staff prepared a third draft of what they call the Pulp Technology Thesaurus in July, followed by a Forestry Thesaurus in late August. Sufficient well-related terms are now on hand in these three collections to permit the beginning of coding (i.e. the work of attaching index terms.) However, the various Thesauri are nowhere near complete and will require modification and extension as the work proceeds.

CODING ABSTRACTS FOR RETRIEVAL EXPERIMENTS

Since September 1, both IPC and PPRIC have been active in the task of
assigning keywords to abstracts from the current volume of the Abstract Bulletin (IPC).

It was suggested that in our particular environment, many inquiries would be concerned with publications of but a restricted viewpoint, say, mill experience. on one hand, or theoretical research, on another. It was, accordingly, decided to attach to the list of keywords describing a document, a type-of-publication keyword which would enable the inquirer to eliminate information from sources not pertinent to his viewpoint. These categories are:

RESEARCH, TGEORY
RESEARCH, LABORATORY EXPERIMENT
PRODUCT DEVELOPMENT, LABORATORY
PRODUCT DEVELOPMENT, MILL SCALE
PROCESS. DEVELOPMENT, LABORATORY AND PILOT PLANT
PROCESS DEVELOPMENT, MILL SCALE
PRODUCTION EXPERIENCE
DATA COMPILATION
REVIEW PAPER, THEORETICAL AND TECHNICAL
GENERAL TECHNICAL ARTICLE
NON \(\triangle\) TECHNICAL REVIEW
PATENT, PRODUCT
PATENT, PROCESS
PATENT, N.E.C.
Reaction to this classification technique has been mixed; it is not certain, how far it will be carried along with the experiment.

So far, there has been lack of agreement between the two institutions concerning the use of "links" and "roles" in applying keywords to documents, as recommended by the A.I.Ch。E. The attachment of role indicators to keywords is one way of preserving and indicating the context in which the corresponding word was used in a source document. Our committee believes that the problem with false drops will become severe with a large collection unless a system such as this is used. At the moment, the abstracts being coded at IPC all have role indicators attached.

It will eventually be necessary to translate this English-language keyword code to a more economical "language" for entry on punched cards. With this in mind a dictionary (or, more properly for now, a list) of all possible combinations of four alphabetic characters (from the Latin set) has been prepared on the 1620 computer at IPC.

OTHER EXPERIMENTS

In the absence of a significantly large set of properly coded documents, no extensive experimentation with search procedures has been carried out, although some programming of machine methods has been carried to the test-run stage at both institutions. One point seems quite clear from such early thought and activity with search configurations. With the large system we expect to have, it will be essential to provide for all the common types of logical operations used in information retrieval. It will not suffice to use the simple intersection of sets to retrieve related concepts: but search methods providing both for union of possibly desired sets and exclusion of undesired material will be necessary.

\section*{FUTURE WORK}

Work is proceeding at both institutions on the task of applying keywords to abstracts. A meeting has been set up for October 17 in Montreal to reconcile possible differences in approach in this phase of the experiment. Following this meeting, completion of the keyword assignments will depend on the time available of the technical people involved.

After the keyword assignment has been completed, a list of the keywords actually employed will be prepared and a set of memonic four-letter codes will be arbitrarily assigned to these words. The information on the abstract and keyword sheets will then be transferred to punched cards in this manner:

For each keyword on each abstract a card containing the document number and the single keyword will be punched. The cards will be sorted according to keyword, producing an inverted file, and then the information concerning documents to which a given keyword applied compressed into the minimum number of unit records (cards for IPC, tape for PPRIC).

At this point, the analysis of search configurations can begin in earnest. A tentative time schedule for completion of the various above phases will be considered at the Montreal meeting.

PERSONNEL

All of the members of the Literature Retrieval Committee have contributed to the thinking and the progress of the project; these are Curtis Brown, Edgar Dickey. Richard Nelson and Jack Weiner. Lillian Roth has done much of the indexing to date and has contributed valuable comments. Others doing active indexing have been E. Dickey and the writer. John Bachhuber has prepared the dictionary of fourletter words and performed other computer-related chores.
```

Nusit of Troject Repur: z, Pこojec: 2nig

```

\section*{DEVELOFMENT OR MECHANIZBD METHODS POR TECHNICAL INFORMATION RETRIEVAL TNIRODUCTION}

Institute activity in the development of retrieval systems for
technical information has had two main goals:
1. The development of a generalized system of retrieval applicable to collections of various sizes in the paper industry with full compatibility of coding and searching procedures between the various collections (sub-systems).
2. The development of a highly mechanized and highly efficient:
retrieval system for our large, centralized collection which speaks to the
needs of our staff, students and member companies.

The elements of experimentation on this project include six major
steps; namely,
1. Preparation of a pulp and paper supplement to the Chemical

Engineering Thesauxus.

3. Ghecking this coding for different sources of variation.
4. Exparimenting with gearch configurations.
5. Providing means-for inclusion of various externally and
internally generated documenta in the filen
6. Developing effective techniques for processing questions from
and answexs to users of the system.

Also involved in this effort is considerable education on the part of the study group on the techniques tried and found useful (or not) by
others - furthermore; there has been estabiished ciose co-operation with the parailel program at the pulp and Papex Research Institute of Canaden

RROBLEMS OR AN XNFGMMTTCA RETRTEVAL SISTEM

Before embaricing on as complicated a venture as ehls. one mast
have the goal clearly in mind. guen more generolized Ethen the goans jugt cited
is that of the Engineers Joint Council program, witwheh our activity may properly be constaered a subegeq. sidghty paraphased, thext stacement of objectives is: "To improve the EPRTOLENCYOE ENGTRERS and TECHEOLOGISMS in

gystem mati be viewed with keywores of thia acatenent in wind.,

Wh most concider, xor one shing, "Who fa to be served?" The

sadustry.

Next, "What do they want?" The answer, pertinent technical informe-
tion from the current (this term needs some defining) literature.
"Why do they want it?" - To be more effective and efficient on the
job。

Xn other words, we must focus on the information needs of a very
special audience and mast serve these needs in such a way as to save the individuals time and effort in their vocational activities.

In dealing with commanication between any author and any reader
(or, searcher for information) certain language problems always intervene \({ }_{c}\)

The four major classes of language problems which crop up in technical
commanications may be categorized as follows:

VIEWPOINT
mEANING
WORD ORDER
FAMILY RELATIONSHIPS

The problems of viewpoint and meaning are interrelated. A given
teminay have several different meanings regardess of viewpoint and requires
use of a modifier for specificity. The texm, "track", for example, may mean
anything from pair of iron rails attached to cross-ties to a sequence of
animal footprints in snow, soft earth, etc. Furthermore, a term may heve
various meanings depending on the viewpoint of the observer or witer, tos
a heating engineer, writing sbout oil bumers, "oil" is a mixcuxe of paraffinic
and naphthenic hydrocarbons of a mestricted range of density und viscosiky
obtained by the distillation of cxude petroleum. To the wildcatter, ofl is
the crude itself; to the French chef, oil is something entsrely different.

Imagine the difficulties terms such as "cheat", headbox", "furnish" present
to the person unaquaxuted with the langage and viexpotnt of the papermakex,

However, in a specialized infomation metrieval scheme, the viewnotntion bhe author and reader may be very close, so fhat it is possibide to mestrict
greatly the possible range of meanings for a giver term。

Now, the way ta thash a writer armangen the wocis fry sertexes

two titleg, "the organization of a Repubitican Pom of Govemment" ard she

Fom and Government of a Republican Orgendaaton' in fudivinurt soncermed

made for preserving the contextual relationships of cerms defined by the author.

Finally, there is the problem of family :elationship3 of words. Different words in the English language may be used to describe exactly the same concept. "Methanol" and "methyl alcotol" are synonyms; iwagine the confuaion ratch would arise if haif the dowments in a system relating to thys concept were coded or indexed under "tethanol" and the other half. under "methyl alcohol." Synonyms mate be eliminated from a recrieval system; out when this is done, there axises the more complex problem of cloaely gelated terms describing slightly different concepts. Consider
"crushbag"。"milling" and "pulverizing"; these ase quite propecly exstiact
concepts snd an suthor may quite properiy use one or anochex of theae texna
to prectiedy destgute both mode and degree of gito refuction, according to
tive context of his paper. The gasker of thornation, however, alay be na-

of relaced concepts, funthemore, mast be both vertical and horizontal. the
seeker of information on milling may wish merely to explore this concept
plus those of crushing and pulverizing; on the other hand, he mey decide
that all related concepts need coverage, in which case the seprch should be directed to the class concept, "size reduction". Thus, a guide to vercical relationships is also needed.

\section*{CONCEPT CO-ORDINATIOR}

An appreciation and analysis of the above problema has led various
literature specialists to the development of the techaique of concept Co-
ordination Indexing as a means of handing large or small collectiong of
information in which complex logical. relationships of thought may be found.

In the comanication process, we mase begin with the author, who,

In preparing his manucript, first evolves suental toage (concept of an action or a thing and then codes thin concopt in a language nacural to him, coumitting this code (mord) to papex. The thought processes of the authox follow some logical pattern, which he attempes to nommunicate via the language by
linking up the words representing his concept: in an oxderly, co-ordinated
fashion: The entire document mey be represented by one for more) logical
structures deacribing the relationships of the principal soncepts. The worde
used to describe these frincipal concepte are usuaty referted to as "keywords".

Although he aeldon thinks of it in explicir cerns, the semeiar
for information usually has in mind certain main concepts and a certain (incomplete) logical structure relating these concepts. in searching for information he is usually interested in finding out the answers to one or more of the following:
1. Has anyone linked up these partioular concepts in the logicul structure I have used?
2. If so, what resules or observations derived from thes co-
ordination?
3. Assuming my structase is partial, what extensions of the logiens grructure have provious wothers welle?
4. Of what inger set of jecss is ny argument a aub-get?
5. If my argume is highly genevalized, what sub-gets exist?

The functicn of the ind ger now beames clear: He was so whe the cocument for encry into the atorge son retrieval system that moth the
 reaponse to the thought procesber ot the sercher. It is apharent that thens coding must Targely circurvens the haguage prombens mentioned eavider

Absolutely basic to a successful concept co-ordination system, then,
is some means of defining the words, or tems, used to describe concepts and of establishing the relationships among terma. This is referxed to as control of language and vocabulary; the task is eased greatly if the environment is limited in some manner. In our case, we limit the environment to the pulp and paper industry, and then define the terms by specifying that the language shall be English, as written by engineers and scientists in North America. The final step of vocabulary control is accomplished by compilation of a thesaurus, or collection of words, in which elimination of synonymous terms is accomplished in a prescribed fashion and the relationships between terms are rigidly defined. By reference to this thesaurus, the indexer may code the thoughts of the author for entry to the information system using a consistent set of words, not necessarily the words the author originally employed in describing his concepts. .The author for example may have used the
 thesaurus showe that "methyl alcohol" is not an sccepted term but that its synonym_"methanol" is. The indexer will therefore see that the concept is represented by the term,"methanol" and in addition \({ }^{\text {b }}\) by the generic term,

To meet the various needs junt deseaberis a theormas is wandit:

It should contain the following elements, when needed, fox esth acceptable tern:

Io Scope notes, whexe, the situonary zprites the word to two or

entry in systera.

Lema belongs.

are filed by accession number of the documsite and in which cich recard
contadns all the keyword cones fend modifiers, if any pertaining to the document, or, an inverted file in wifh the recorcs are files by keymord and each record contains the accession mubers of all documents desuribed by that keyword. The inverted file has the great: edvantage shat oniy a mall portion of the fille need be seaxched for any given inquiry and that the logic of the

The form of the records in the autive aystan IIbraxy caris, edgen notched cards, Tematrear cards, TBM cards, paper rape, megnetic tapes phetographic: image, etc. and the fechniques of entering and retrjeving tine dara
 Eevins and socuments in the syoiem, as well bs hep nature gnd Erequency of intuities.

Experience has shown thet, except for the very mali ecjijection,
 sybtem be the fumbion of expericuced fechnfest worere and hat whane bech-

\title{
inquiry, the techndcal information specialist is able to extract the maxjmum pertinent Information with maximum efficiency.
}

PROGRBSS ON IPC PROIECI

THISAIIRUS

Prior to the establishment of erofect 2318 , the Institute

Information Retrieval Study Comittee had decided to adopt the concept co-ordinaction system advanced by the American Inatitute of Chericai Engineera and to use the Chemical Engineering Thesaurus as basic word-book. Since the experience of others clearly indicated that eyon experimental coding of documents should not be done wishout a thesaurus, the first item of buaneess
 Engineerjug thesaurus.

Drawing on word.insts from various sources, is first, rather
aborevieted drafe was prepered at TPC in Jamary and foxwaraed to EYBGO

This draft was reconciled with s longer peris word list in conferente fin Februay, after which PPRTC prepazed an exrensive second draxt. Afrex atas second draft hed been sturied and enftanedg, whe prit seaff preperen a
third draft of what they call. the Pulp Technology Thesaurus in July, followed by a Forestry Thesaurus in late August. Sufficient well-related teṛms are now 'on hand in these three collections to permit the beginning of coding (i.e. the work of attaching index terms.) However, the various Thesauri are nowhere near complete and will require modification and extension as the work proceeds.

CODING ABSTRACTS FOR RETRXEYAI. EXPERIMENTS

Since September 1, both IPC and PPRIC have been active in the taak
of assigning keywords to abstracts from the current volume of the Abstract Bulxetin TTPC:。

It was suggested by PRRIC personnel that in our particular
enviroment, many inquiries would be concemed with publications of tut a restricted viewpoint, say, mill experience, on one hand, or theoretical rebearch, on another, It wen, accordingly, decidea to attach to the list.

enable the ingurer to eliminate information from eources not pertinent to his viexpoint: These categories are:
```

PRODJJCT DEVELORMEANT, LABORATORY
PRODUCT DEVELOXMENT, MITLC SCAIS
PROCESS DEVELORMENT, LABORATORY AND PIJOT RLANTS
PROCESS DEVELOPMENT,, MILK SCALE
PRODOCTIOA EXPERIKNCE
DATA COMPIIATION
RBVIET PAPER, THEORBTICAK AND TECHNICAL
GRRIRRAL TECERICAI ARIICLS
NON-TBCHNICAE REVIEN
PAIYENT, PRCDOUCT
PATMEINT, PROCE88
PAMENTS, NoE.C.

```

So far, there has benn lack of agreement between the swo insti-
tutions concerning the use of "links" and "roleg" in applying keywords to
documents, as recommended by the \(A_{0} I_{0} C h_{0} B_{\text {. }}\) The attachment of role indicators
to keywords is one way of preserving and indicating the context in which the corresponding word was used in a source document. Our committee believes that
the problem with false drops will become severe with a large collection unless
a system such as this is used. At, the moment, the abstracts being coded at

IPC all have role indicators attached.

It will eventually be necessary to translate this English-1anguage
keyword code to a more economical "language" for entry on punched cards.

With this in mind a dictionary (or, more properly for now, a list) of all
possible coubinations of four alphabetic characters (from the latin set) has
been prepared on the 1620 computer at IPC.

OTHER EXPERTMENTS

In the absence of a significantly large set of properly coded documents, no extensive experimentation with search procedures has been carried out, although some programing of machine methods has been carried to the test-run stage at both institutions. One point seems quite clear from such early thought and activity with search configurations. With the large system we expect to have, it will be essential to provide for all the common types of logical operations used in information retrieval. It will not suffice to use the simple intergection of sets to retrieve related concepts; but search methods providing both for union of possibly desired gets and exclusion of undesired meterial will be minessiry.

FUTUKE WORK

Work is proceeding at both institutions on the tasik of applying
keywords to abstracts. A meeting has bean set up for october 17 in Montreel.
to reconcile possible differences in approach in this phans of the experf-
ment. Foilowing this meeting, compietion of the keyword assignments mill
depend on the time available of the tanlatical people involved.

After the keyword assignment has been completed; a list of the keywords actually employed will be prepared and a set ci. mnemonic four-letter codes will be arbjtrarily assigned to these words. The information on the abstract and keyword eheeta will then be transferred to punched cards in thsa manner: For each keyword on each sbetract a caxd contafning the document number and the single keyword will be punched. The cards whll be sorted according to keyword, producing an inverten file, and then the inforration concerning documents to winch a given keyword applied compressea Inco the mininum ramer of unit recovio eards for tPG, tape for PeRic).

At this point, the analysis of gearch configurations can begin
in eamest. A tentative time schambe fox completion of the varions dove phasea will be conafdered at the mincteal meting:```

