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Abstract

We propose a wavelet-based spectral method for estimating the (directional)

Hurst parameter in isotropic and anisotropic non-stationary fractional Gaussian

fields. The method can be applied to self-similar images and, in general, to d-

dimensional data that scale. In the application part, we consider denoising of

2-D fractional Brownian fields and the classification of the clouds/temperature
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satellite images. In the first application, we use Bayesian inference calibrated by

information from the wavelet-spectral domain to separate the signal, in this case

the 2-D Brownian field, and the noise. For the classification of geophysical images

we first estimate directional Hurst exponents and use them as an input to standard

machine learning algorithms.

KEY WORDS: Scaling, Wavelets, Self-similarity, 2D wavelet spectra.

1 Introduction

It is more the rule than the exception that high frequency data collected in real-life

experiments, scale in a regular fashion. This scaling is manifested as the “propa-

gation of energy” when observations are inspected at different scales/frequencies,

and its regularity is often labeled as ubiquitous or omnipresent. Examples are

numerous: high frequency bio-responses, atmospheric data, micro-economic in-

dices, internet data, etc. In many scenarios involving analysis of such data, stan-

dard statistical modeling techniques are simply not applicable.

The methodology used to analyze scaling is based on analysis of autocovari-

ances. The covariance dynamics in the domain of original data corresponds to the

“energy” scaling in the frequency or scale domains. The term “energy” connotates

the squared coefficients in frequency/scale representations of signal and images.

Standardly accepted measure of regular scaling is Hurst exponent which can be

connected with measures of regularity, dimension, and fractality in signals and

images.
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Many strategies for assessing the Hurst exponent exist. This assessment can be

done in the domain of the original measurements or in some transformed domain

(usually scale/frequency domains such as Fourier or wavelet). From the statisti-

cal point of view the Hurst exponent could be an informative summary of data

and it is often the case that standard statistical techniques are applied not on the

data directly, but on their scaling exponents (classification, regression, statistical

design).

The literature on the topic is vast (Beran, 1994; Chan and Wood, 2000; Con-

stantine and Hall, 1994; et al., 1995; Mandelbrot and Van Ness, 1968; Pesquet-

Popescu, 1999a,b; Pipiras, 2004, 2005; Taqqu et al., 1997). Most of the published

research concerns the scaling in one-dimensional data. The theoretical models

there are well understood, the estimation and simulation methodology is concep-

tually and calculatingly straightforward, and univariate high frequency signals that

scale are abundant. The definition of scaling in higher dimensions is more com-

plex since multiple formulations are possible. If the scaling is spatial, various di-

rections and choices of neighborhoods are possible, which leads to the possibility

of defining various anisotropies. Also, the computational complexity of estima-

tion and simulation methods is higher. However, in geophysical, medical, and

other applications the scaling analysis of images and higher-dimensional objects

is critically important.

This paper introduces a version of wavelet-based spectra for images and d-

dimensional data. The definition of such spectra is quite natural and a few ex-
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amples of its use are scattered in the literature (Heneghan et al., 1996; Parra et

al., 2003). However, a formal definition and systematic analysis of such spectra

was not provided. In addition, the existing applications concern mainly isotropic

images.

The idea behind the definition of 2-D wavelet spectra is the following: since

the tensor-product wavelet multiresolution analysis of d dimensional data com-

prises of 2d − 1 detail spaces, with each space containing the hierarchy of sub-

spaces with nested dyadic resolutions, it is quite natural to assess the energy scal-

ing in each hierarchy. This leads to 2d − 1 concurrent power spectra describing

a single d-dimensional data set. For example, multiresolution analysis of images

leads to three detail spaces described as “horizontal”, “vertical” or “diagonal,”

depending on the selection of the decomposing 2-D wavelet, or equivalently, the

order of applications of high- and low-pass wavelet filters on the rows and columns

of 2-D objects. Each of the three directional detail spaces contains a nested hier-

archy of submatrices corresponding to image details at different scales and each

leads to a distinctive power spectra.

The paper is organized as follows. In the Section 2 we discuss theoretical

background necessary for describing self-similarity and scaling in d dimensions.

In Section 3 we define the wavelet based directional spectra and discuss some of

its properties. Section 4 provides simulational and comparison study in which a

noisy 2-D fBm is filtered using properly calibrated Bayes rules. In this section a

real-life application of the proposed methodology is discussed: classification of
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satellite images with respect to time of their acquisition. In Section 5 we provide

conclusions and delineate some possible directions for future research.

2 Background

In this section we review the most popular statistical model for data that regularly

scale, the fractional Brownian motion. In one dimension, this process is a unique

Gaussian self-similar process with stationary increments. We also briefly discuss

multidimensional wavelet domains since the spectrum will be defined there.

2.1 Fractional Brownian motion and extensions

The fractional Brownian motion (fBm) is one of the most popular models for

modeling self-similar phenomena. It is a Gaussian, zero mean, non-stationary

stochastic process, originally proposed by Mandelbrot and Van Ness (1968). This

process is indexed by self-similarity parameter H , also known as Hurst exponent.

In one-dimensional case the fBm process, denoted by {BH(t), t ∈ R}, is charac-

terized by its covariance structure

RBH
(t, s) = E{BH(t)BH(s)} =

σ2
H

2

[|t|2H + |s|2H − |t− s|2H
]
, (1)

where σ2
H = Γ(1− 2H) cos(πH)

πH
. This process possesses a 1/f spectrum (Flandrin,

1989) given by

SBH
(ω) ∝ 1

|ω|2H+1
. (2)
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As it can be seen from (1), the fBm is a non stationary process (RBH
(t, s) is not

a function of |t − s|), but it has stationary increments. In addition, the fBm is a

self-similar process, that is, for all a > 0 it satisfies BH(at)
d
= aHBH(t), where

d
= denotes the equality in distribution.

These properties can be extended to any dimension. Unlike the 1-D case the

generalization of fBm to higher dimensions is not unique. A simple generaliza-

tion to a 2-D surface is the fractional Brownian field (fBf). The 2-D fractional

Brownian field is a Gaussian, zero mean, random field BH(u), where u denotes

the position in a selected domain, usually [0, 1]× [0, 1]. Then, the autocorrelation

function is

RBH
(u,v) = E [BH(u)BH(v)] =

σ2
H

2

(
‖u‖2H + ‖v‖2H + ‖u− v‖2H

)
, (3)

where 0 < H < 1 and ‖·‖ is the usual Euclidean norm in R2. The increments of

the 2-D fBf represent a stationary, zero mean Gaussian random fields. Because

of isotropy, the variance of the increments depends only on the distance ∆u, so

E
[|∆BH |2

] ∝ ∆uH . The average power spectrum of an isotropic fBf is given by

S (ω) ∝ ‖ω‖−2H−2 , (4)

or coordinatewise by

S (ωx, ωy) ∝ 1

(ω2
x + ω2

y)
H+1

.

The self-similarity property can be extended to random fields with stationary in-

crements. Let BH(u), u ∈ R2, be a continuous-space random field. It is called

self-similar with parameter H > 0 if for all a > 0 one has BH(au)
d
= aHBH(u),
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where d
= means the equality of all finite-dimensional probability distributions.

The extension of the fBf to d dimensional case is straightforward and the expo-

nent −2H − 2 in do not (4) is replaced by −2H − d. (see Reed et al., 1995).

Many generalizations have been proposed for defining anisotropic Gaussian

random fields. Bonami and Estrade (2003) defined an anisotropic fractional Brow-

nian field, with stationary increments, by considering a spectral density of the

form

S (ω) ∝ ‖ω‖−2H(ω)−2 ,

where H(ω) ∈ (0, 1) is an even function which depends on the direction ω
|ω| of

R2. Popescu and Vehel (2002) introduced anisotropic by linear spatial transforms

of an isotropic fractional field. Some other generalizations are Kamont, 1996; Wu

and Xiao, 2005, Peltier and Levy, 1996; and Benassi et al., 1997.

2.2 Wavelets

Wavelets are the building blocks of wavelet transforms the same way that the

functions einx are the building blocks of the ordinary Fourier transform. But in

contrast to sines and cosines, wavelets can be supported on an arbitrarily small

closed interval. Basics on wavelets can be found in many texts, monographs, and

papers at many different levels of exposition. The interested reader should consult

monographs by Daubechies (1992), Vidakovic (1999), among others.

In 2D (or higher dimensions) wavelets provide an appropriate tool for analyz-

ing self-similar objects and in particular, fractional Gaussian fields. The energy
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preservation in orthogonal wavelet analysis allows for defining wavelet spectra in

a manner similar to that in the Fourier domains. Operationally, the traditional 2D

wavelet transforms are constructed through the translations and the dyadic scaling

of a product of univariate wavelets and scaling functions,

φ(ux, uy) = φ (ux) · φ (uy)

ψh(ux, uy) = φ (ux) · ψ (uy)

ψv(ux, uy) = ψ (ux) · φ (uy) (5)

ψd(ux, uy) = ψ (ux) · ψ (uy) ,

which is known as separable 2D wavelets. The symbols h, v, d in (5) stand for

horizontal, vertical and diagonal directions, respectively, and describe the ability

of atoms in (5) to emphasize features in these three directions. Any function

f ∈ L2(R2) can be represented as

f(u) =
∑

k

cj0,kφj0,k(u) +
∑
j≥j0

∑

k

∑
i

di
j,k1,k2

ψi
j,k(u) (6)

where u = (ux, uy) ∈ R2, i ∈ {h, v, d}, k = (k1, k2) ∈ Z2, and

φj,k(u) = 2jφ(2jux − k1, 2
juy − k2)

ψi
j,k(u) = 2jψi(2jux − k1, 2

juy − k2).

for i = h, v, d. The decomposition in (6) can be extended to an arbitrary function
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f ∈ L2(Rd),

f(u) =
∑

k

cj0,kφj0,k(u)

+
∑
j≥j0

∑

k

2d−1∑
i=1

di
j,kψ

i
j,k(u), (7)

where k = (k1, . . . , kd) ∈ Zd, u = (u1, . . . , ud) ∈ Rd, and

φj;k(u) = 2jd/2

d∏
i=1

φ(2jui − ki)

ψl
j;k(u) = 2jd/2

d∏
i=1

ξ(2jui − ki)

with ξ = φ or ψ, but not all ξ = φ.

The index l corresponds to one of 2d − 1 possible directions. The d-dimensional

wavelet spectra will be defined using the wavelet coefficients in (7), namely 2d−1

nested detail spaces with coefficients di
j,k, along the scale index j.

3 2D Wavelet Spectra of fBm

Time-frequency representations are indispensable tool in analysis of the signals

and images. The spectra in such representations describes distribution of ener-

gies in the signal/image along frequencies of scales. Various definitions of spectra

exist, depending on the signal representation. Orthogonal discrete wavelets are

“energy preserving,” and as such, suitable for defining the spectra. Wavelets and

wavelet based spectra have been instrumental in analysis of self-similarity (Flan-

drin, 1989, 1992; Doukhan et al., 2003; Wornell, 1995). The definition of wavelet
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spectra involves average “energies” in the detail spaces of wavelet-transformed

signal.

Suppose that 1-D signal y of length n has wavelet decomposition d = Wy =

(cj0 , dj0 , dj0+1, . . . , dj), where j0 is a fixed level smaller than j = log2 n − 1,

cj0 are scaling, and dj’s are vectors of detail coefficients. The wavelet spectra is

defined as

S(j) = log2

(
d2

j

)

where d2
j is an average of squared components in vector dj .

In the 2D case three different hierarchies constitute detail spaces and the nat-

ural definition of wavelet spectra involves the three power spectra corresponding

to the hierarchies. Since the detail hierarchies are characterized by their direction

(horizontal, vertical and diagonal), the spectra will be sensitive in assessing the

energy content and dissipation along the angles of 0, π/2, and π/4.

Consider a 2-D fBm process, BH(u), that is standard model for self-similar

random fields. For this process the wavelet coefficients are given by

di
j,k = 2j

∫
B H(u)ψi(2ju− k)du, (8)

where the integral is taken over R2 and i = h, v or d. The detail coefficients are

random variables with zero mean and variance

E
[∣∣di

j,k

∣∣2
]

= 22j

∫∫
ψi

(
2ju− k

)
ψi

(
2jv − k

)
E [BH(u)BH(v)] dudv, (9)

(Heneghan et al., 1996). From the definition of ψh and ψv in (5), the integrand in

(9) is symmetric and the variances of the wavelet coefficients coincide for these
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two directions, that is

E
[∣∣dh

j,k

∣∣2
]

= E
[∣∣dv

j,k

∣∣2
]
. (10)

These two variances differ from the variance of the wavelet coefficients from the

diagonal hierarchy. From (9) one can derive

E
[∣∣di

j,k

∣∣2
]

=
σ2

H

2
Vψi2−(2H+2)j, (11)

where

Vψi =

∫∫
ψi(p + q) · ψi(q) |p|2H dpdq

depends only on wavelets ψi and H , but not on the scale j. The derivation is given

in the Appendix I.

By applying the logarithm to both sides of Eq. (11) the following equation is

obtained

log2 E
[∣∣di

j,k

∣∣2
]

= −(2H + 2)j + Ci, (12)

where

Ci = log2

σ2
H

2
Vψi(H). (13)

The Hurst coefficients of a 2D fBm field can be estimated from the slope in

the linear equation given in (12). The empirical counterpart of (12) is a regression

defined on pairs
(
j, log2

∣∣di
j,k

∣∣2
)

, i = h, v, d, (14)

where
∣∣di

j,k

∣∣2 is an empirical counterpart of E
[∣∣di

j,k

∣∣2
]
. The sample mean in (13)

can be replaced by sample median or any other location estimation to produce
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more robust estimators of the spectra. Also the regression should be weighted

since the variances in the levels are not equal anymore. Veich and Abry (1999)

discuss the bias of estimators in (14) and the method to correct it.

Anisotropic generalization is straightforward; the parameter H in the above

equations (8-14) can depend on the direction i and may be replaced by Hi. Given

the wavelet ψ, the intercept Ci in (12), is uniquely determined by H , and ini-

tial energy, σ2
H . Thus, if H and Ci vary independently, a novel, wavelet-specific

class of anisotropic self-similar random fields can be defined. Few examples are

provided for the isotropic and anisotropic cases. Figure 1(a) depicts simulated

isotropic fractional Brownian field with H = 0.3. Its 2D wavelet spectra based on

the Symmlet 4 filter, shown in Figure 1(b), demonstrates the estimation process is

consistent. The resulting estimates are Ĥh = 0.295, Ĥv = 0.298, and Ĥd = 0.299

for the horizontal, vertical and diagonal directions, respectively, which are close

to the original simulated value of H = 0.3. In order to select the best basis and

test performance of wavelet-based estimator, we simulated 1000 fractional Brow-

nian fields with various H and for each field estimated the Hurst parameter in

each of the three directions. The averaged wavelet-based estimator was compared

with Quadratic Variations (QV) estimator introduced by Istas and Lang (1997).

As typical for many wavelet based procedures, the choice of basis is important

but not decisive for the results and performance of the estimation algorithm. We

comprehensively explored Daubechies, Symmlet and Coiflet families for a range

of parameter values (vanishing moments) and the differences found were not sig-
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nificant (the Haar basis being an exception). We adopted short filters with differ-

ent smoothness and symmetry properties such the Daubechies 4, Symmlet 4 and

Coiflet 1 (as in Table 1). For comparative purpose we use Symmlet 4 since this

filter provides a good compromise of smoothness, locality and near-symmetry.

In Table 1 we provide the summary of this experiment. We found that the aver-

aged wavelet-based estimates are close to those obtained by the QV method for

isotropic fields simulated with H = 0.4 and with H = 0.6. These two exponents

are selected to represent antipersistency and long memory. Moreover, the wavelet

based estimator was more robust when the data are contaminated by noise, even at

a low level. For the estimation procedure of the wavelet spectra, we used the Ordi-

nary Least Square (OLS) estimator. We also implemented weighted least squares

(WLS) in the spirit of Veitch and Abry (1999). For calculating regression weights

we resampled detail spaces to obtain a surrogate sample of logarithms of average

level energies. These are further utilized to obtain proper weights via bootstrap

variances. The difference between the weighted and the ordinary least squares

regression was found to be minimal which was a consequence of typically large

sample sizes in image processing. The WLS also substantially increased computa-

tional complexity. For example, in the case of n = 10 simulated images 512×512

with H = 0.6 the OLS gave Ĥ = 0.6238 with a standard deviation of 0.04 while

the WLS gave Ĥ = 0.6232 with similar standard deviation.

In the second example we simulated an anisotropic Gaussian random field us-
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H = 0.4 H = 0.6

snr= ∞ snr= 20 snr= ∞ snr= 20

D4 0.3920 (0.042) 0.3828 (0.325) 0.6027 ( 0.035) 0.5775 (0.340)

S4 0.3968 (0.042) 0.3838 (0.326) 0.6005 ( 0.033) 0.5766 (0.359)

C1 0.3865 (0.042) 0.3766 (0.041) 0.5917 (0.037) 0.5715 (0.045)

Haar 0.3508 (0.041) 0.3427 (0.040) 0.5554 (0.035) 0.5327 (0.045)

QV 0.3886 (0.016) 0.3365 (0.027) 0.5886 (0.015) 0.2663 (0.086)

Table 1: Means and standard deviations (in brackets) of the estimated Hurst expo-

nents, by the wavelet-based estimators (D4, S4, C1 and Haar) and the QV estima-

tor, evaluated on 1000 simulated random fields with H = 0.4 and H = 0.6 and

length n = 256× 256, with and without noise in each case.

ing Daubechies 4 wavelet by controlling the scaling of variances in detail spaces.

An example of simulated field is given in Figure (2(a). In particular, we consid-

ered scaling equivalent to Hurst parameters equal to Hh = 0.3, Hv = 0.8, and

Hd = 0.5, for the horizontal, vertical, and diagonal direction, respectively. The

2D wavelet-spectra assessed by a wavelet different than generating (Daub 8) gave

the following estimates: Ĥh = 0.297, Ĥv = 0.820, and Ĥd = 0.511 (Figure 2(b))

which are very close to those utilized in the simulation of the field. The goal of

this exercise was to produce a specific direcy=tional anisotropy and to check that

2-D spectra consistently estimates the scaling when basis is changed.

In order to show the behavior of the intercepts Ci for each direction, we have

simulated N = 200 isotropic fractional Brownian fields on a regular grid (512 ×
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Figure 1: (a) Isotropic fractional Brownian field with H = 0.3; (b) The wavelet

spectra of the field in (a) estimated by Symmlet 4.
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Figure 2: (a) Gaussian random field with Hh = 0.3, Hv = 0.8, and Hd = 0.5 sim-

ulated by Daubechies 4; (b) The 2-D wavelet spectra of the field in (a) estimated

by Symmlet 4.
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Figure 3: Average differences of the intercepts for horizontal and diagonal direc-

tions, Ch − Cd, for different values of parameter H .

512) with parameters H ranging from H = 0.1 to H = 0.9. Figure 3 plots

the average difference of the intercepts for the horizontal and diagonal directions,

Ch − Cd. It is evident that the intercept is affected by the value of H: for higher

H the estimated difference Ch − Cd is larger.

The message of this analysis is the following: Even for the isotropic random

fields the amount of energy attributed to different directions differs. Note that

Ci = log2(σ
2
HVψi)− 1, where σ2

H is the variance of fBm and Vψi is given in (24),

and precise numerical evaluation of an intercept Ci is possible. Evaluation of Ci’s

is critical for the simulation of random fields using 2-D wavelets, since it specifies

how the total energy should be distributed to the directional subspaces.
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4 Applications

In this section we provide two applications in which 2-D wavelet spectra is instru-

mental. The first application concerns denoising task in which the signal image

exhibits scaling. The separation of the signal image and noise is done by Bayesian

wavelet filtering calibrated by the properties of the corresponding 2 −D spectra.

The second application involves the statistical task of image classification with 2-

D spectra parameters as discriminatory descriptors. In the spirit of a reproducible

research all MATLAB codes utilized in these applications are available from the

authors on request.

4.1 Bayesian filtering guided by spectral information

In this application we demonstrate how 2D wavelet spectra can be utilized in

filtering noisy images in which the “signal” part scales.

Suppose the observed image y is a convolution of an unknown “true” image

s, exhibiting scaling, and a random noise e,

y = s + e. (15)

It is assumed that the random noise is a matrix of iid zero mean Gaussians with

standard deviation σe and that the “true” image is well modeled by a fractional

Brownian motion, with its parameter H not known in advance. In the wavelet

domain, expression (15) becomes di
jk = θi

jk + εi
jk, where di

jk, θ
i
jk, and εi

jk are

the (j,k) coordinates in the traditional scale/shift wavelet-enumeration of trans-
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formed images y, s and e, respectively. This model preservation a consequence

of linearity and orthogonality of wavelet transforms. In the exposition that fol-

lows, we omit the double index j,k and the direction i, and work with a “typical”

wavelet coefficient, d. The conditional distribution of d given θ and σ2, [d|θ, σ2],

is N (θ, σ2). We utilize Bayesian Adaptive Multiscale Shrinkage (BAMS), a tech-

nique proposed in Vidakovic and Ruggeri (2001) to statistically estimate wavelet

coefficients, corresponding to 2D fBm, using a shrinkage rule in a Bayesian frame-

work.

In BAMS, σ2 and θ are assumed to be independent random variables. The

variance σ2 is given exponential E(µ) prior, while θ is given a mixture prior, as

standardly done. The mixture prior consists of a point mass at zero (represent-

ing the “parsimony” part) and a double exponential distribution (representing the

“spread” part) mixed in proportion (1− ε) : ε,

(1− ε)δ0 + εDE(0, τ).

The resulting Bayes rule is given by:

δ∗(d) =
(1− ε) m(d) δ(d)

(1− ε) m(d) + ε DE
(
0, 1√

2µ

) , (16)

where

m(d) =
τe−|d|/τ − 1√

2µ
e−

√
2µ|d|

2τ 2 − 1/µ

is the predictive distribution of d, and

δ(d) =
τ(τ 2 − 1/(2µ))de−|d|/τ + τ 2(e−|d|

√
2µ − e−|d|/τ )/µ

(τ 2 − 1/(2µ))(τe−|d|/τ − (1/
√

2µ)e−|d|
√

2µ)
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is the corresponding Bayes rule with respect to the squared error loss. The Bayes

rule depends on the hyper-parameters ε, τ , and µ. The elicitation of the hyper-

parameters is critical for good performance of Bayesian filtering. A variety of

default solutions are available, but default choice do not seem to be very suit-

able in function estimation, since observations can vary tremendously and but to

accommodate for possibly very different images and signal-to-noise ratios, a de-

gree of informativeness and/or data dependence should be exploited. The hyper-

parameters have been set using Empirical Bayes (EB) arguments, as in Vidakovic

and Ruggeri (2001) or Katul et al. (2006). The rule in (4.1) is close to a thresh-

olding rule: it heavily shrinks small-in-magnitude arguments while the large ar-

guments are only slightly shrunk.

Having the calibrated rule (4.1), the separation of s and e is performed as

follows: each wavelet coefficient d is split as

d = δ∗(d) + (d− δ∗(d)) = θ̂ + ε̂,

with δ∗(d) and (d− δ∗(d)) estimating signal and noise contributions, respectively.

All θ̂ = δ∗(d) form a matrix θ̂j,k which back-transformed to the original image

domain gives the estimator of denoised image.

This process of filtering is illustrated in Figures 4, 5, and 6 where we consider

a 2-D fBf with Hurst exponent H = 1/3 with an addittive Gaussian noise in which

the signal-to-noise ratio equal to snr = 2. In particular, Fig. 4 (a) show the the

2-D simulated fBf . In order to better show the effect of the noise on the image,

we show in panel (b) of Figure 4 the 100−th row of the simulated image with and
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without noise.
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Figure 4: a) Simulated 2D fBm with H = 1/3; (b) Signal of 100−th and signal

with noise.

Figure 5(a) shows the wavelet power spectra for the noisy and denoised images

utilizing the Symmlet 4 wavelet filter. The estimates for H , in each direction,

resulting from the slopes of Eq. (12), are Ĥh = 0.3204, Ĥv = 0.3161, and Ĥd =

0.2739, for the horizontal, vertical and diagonal direction, respectively. Note the

flattening of directional spectra (black solid lines) of the noisy image. That means

that noise which is affecting all scales and all coefficients, has sufficient energy

to leave its signature only on finest levels of details (high dyadic levels) where its

relative energy compared to that of the signal image is high.

The described filtering procedure based on Bayesian inference rule is able to

recover the simulated image since the estimator of H is close to the original and,

at the same time, the estimator of the noise is close to a matrix of iid Gaussians.
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Figure 5: (a) 2D wavelet-based spectra. Black solid lines depict the directional

spectra of the noisy images while the gray lines are “straightened” and correspond

to denoised image. (b) Signal of 100−th row and denoised image.

This is evident from Figure 5(b) and 6. While the panel (b) of Figure 5 shows

the result of denoising by comparing the 100−th row of the original image to the

100−th row reconstructed image after applying the Bayes rule, the 6 (a) shows

the marginal distribution of magnitudes of all residuals. The later suggest that

the components have zero-mean and bell-shaped distribution which is consistent

with the originally simulated noise. To show that the residuals are not “colored”,

we selected 100−th (out of 512) row of the estimated noise matrix. In addition

to their marginal Gaussianity, the autocorrelation of components in the 100−th

row is consistent with “whitenes”, i.e., no autocorrelations at nonzero lags are

significant. The autocorrelations for the first 100 lags are shown in Figure 6 (b).
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Figure 6: (a) Histogram of all residuals; (b) Autocorrelation function of 100−th

row in the residual matrix.

4.2 Classification of Cloud/Temperature Maps

In this application we illustrate how the wavelet-based estimators of directional

Hurst exponents can be utilized in classification of satellite images. The emphasis

here is on discrimination abilities of the Hurst summaries, and not on a solution of

a realistic environmental problem. It is straightforward to implement the described

analysis in various scientific areas in which 2-D data are instrumental: medical

imaging, geoscience, industrial applications, etc.

The source of the data is EUMETSAT (http://www.eumetsat.int).

EUMETSAT is an intergovernmental organization created through an interna-

tional convention signed by 17 European Member States. EUMETSAT’s Me-

teosat system is intended primarily to support the National Meteorological Ser-
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vices (NMS) of Member States. The NMS in turn distributes the image data to

other end-users, notably through the provision of forecasts on television several

times a day. In addition to the provision of images of the Earth and its atmosphere

every half an hour in three spectral channels (Visible, Infrared and Water Vapour),

a range of processed meteorological parameters is produced.

The satellite receives that part of the sun radiation which is reflected by the

earth surface or by cloudiness. It is a so-called window channel which means that

radiation is not significantly absorbed by the gases in the troposphere. The satellite

receives radiation which is emitted by the earth and the clouds because of their

temperature. Infra Red (IR) images via is window channel (Wavelength 3.9-13.4

microns (µ)) are useful for day and night cloud-mapping and determination of

surface temperature. A range of grey shades in the IR channel represent different

temperatures of the radiating surface which can either be the earth surface or the

cloud tops.

Our data set contains 160 IR satellite images of the Gulf of Guinea (West cost

of Africa and South Atlantic Ocean). The images are taken at 3.9 µ IR band for

40 consecutive days (11/1/2006 - 12/10/2006), and subsequently divided into 4

groups according to the hour of their acquisition: (i) night (0:12am), (ii) morning

(6:12am), (iii) noon (12:12pm), and (iv) evening (6:12pm). A typical observation

(6:12 am, 11/1/06, IR 3.9 µ) is shown in Figure 7.

There are factors, different than geography (terrain), possibly influencing the

scaling in the satellite image, such as clouds, wind, temperature level, humidity,
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Figure 7: Satelite IR image with wavelength 3.9 µ, taken on November 11, at

06 : 12am (morning group).

etc. These “background conditions” are differently influenced by time of day and

exhibit no regular behavior. It natural to base discrimination by global scaling

properties of the observed images.

In order to assess the efficacy of Hurst exponents to classify images to groups

with different texture characteristic, the following experiment was performed. We

randomly selected a portion of the data to fit the classification model and used

the reminder of data to test the model. Two scenarios are considered: the first

uses 50% of data as a training set and the second 70%. The random sampling of

training data was repeated 10000 times, so the prediction errors are averaged over

10000 runs.
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Figure 8: Training set (80 sample) and non linear boundaries by radial bases SVM

(c = 2). Observation with circles are support vectors.

Several exogenous variables (such temperature, wind, humidity, pressure) at

noon are different than the same variables at the other times of the day, we consid-

ered only two groups for the classification purpose: the “noon” group and “others”

group. For classifying the data we considered several classification procedures:

linear, quadratic and SVM (Support Vector Machines) (see Hastie et al., 2001). In

Table 2 we provide results obtained with the linear and quadratic classifiers and

with SVM with different kernel functions: linear, quadratic, polynomial (with de-

gree d = 3), and radial basis (with scaling parameter c = 2). Figure 8 shows an

example of classification of “noon” and “others” images by the radial basis SVM

(with c = 2) and in Table 2 we provide some results.

As evidenced by Table 2 the standard linear classifier outperforms all other.
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Testing Proportion Lin, Quad. Lin. SVM Quad. SVM Poly. SVM RBF SVM

50% 0.072 0.081 0.085 0.088 0.084 0.086

30% 0.069 0.077 0.086 0.086 0.079 0.084

Table 2: Misclassification errors for some classical classifiers (Lin. and Quad.)

and selected SVM methods (Lin. SVM, Quad. SVM, Poly. SVM, and RBF

SVM) for 50% and 30% of data used for testing.

This is a consequence of almost perfect linear separation between the “noon”

and “others”. We also performed classification experiments in which harder-to-

separate cases are considered. In these cases, the SVMs were distinctly superior

to the linear and quadratic classifiers. For example, in the “evening” and “others”

case the error rate was about 15% and in “morning” and “others” about 25%. This

later rate was affected by scaling similarities between “morning” and “midnight”

images belonging to different classes.

Figure 9 shows a linear classifier based on 50% of data and the testing set consist-

ing of remaining 50%. Only a few observations are misclassified.

On a horizontal-vertical Hurst plane, the asterisks correspond to the “noon”

group while the plus correspond to “others” containing the remainder of the data.

The misclassified cases are circled on the graph.

This example shows that in the case of anisotropy the directional spectra can

well capture informative anisotropies and produce discriminatory summaries. In
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Figure 9: Testing set (based on 50% of data) and linear classifier. The circled

observations are misclassified.
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particular, the horizontal and vertical directions captured most of significant dif-

ferences between the groups.

5 Conclusions

We have shown that a 2D wavelet-based spectra, evaluated trough the sample

moments of wavelet coefficients, can be used for estimating the Hurst parameter

vector in a variety of self-similar random fields. Examples of standard isotropic

fractional Brownian fields as well as anisotropic non-stationary Gaussian fields

are provided in the context of estimation of their directional Hurst parameters.

The methodology involving statistical models in the wavelet spectral domain

has been developed and applied in denoising of composite images in which the

“signal part” is self-similar. This is done by considering directional 2D spec-

tra and empirically calibrating a Bayesian shrinkage rule which preserves regular

scaling in the estimator of the signal image and assures marginal normality and

independence of the residuals. It is interesting that the signal image is a random

field itself and this application is in fact a challenging separation of two random

fields.

We also utilized the 2D wavelet spectra to classify geophysical images. In

particular, we classified clouds/temperature map images to their corresponding

groups by a linear discriminator fed by the vector of directional Hurst exponents.

The Hurst descriptors have shown to be discriminatory, leading to a classifier with

an excellent percentage of correct predictions (91.25%). Further extension of this
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methodology to other classes of anisotropic processes is under investigation.
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Appendix I

The tensor product wavelet transform are standard way of generating d−dimensional

multiresolution analysis. The atomic function in (5) is such that {ψi
j,k1,k2

=

2
j
2 ψi (2jux − k1, 2

juy − k2)} for each direction i. For a fBm process, B H(ux, uy),

the wavelet coefficients are

di
j,k1,k2

= 2j

∫∫
B H(ux, uy)ψ

h(2jux − k1, 2
juy − k2)duxduy (17)

By setting k = (k1, k2) and u = (ux, uy), Eq. (17) can be written as

di
j,k = 2j

∫∫
B H(u)ψi(2ju− k)du. (18)

The variance of the detail coefficients di
j,k is obtained in a similar way to the

continuous wavelet approach described in (Heneghan et al., 1996), is
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E
[∣∣di

j,k

∣∣2
]

= 22j

∫∫
ψi

(
2ju− k

)
ψi

(
2jv − k

)
E [BH(u)BH(v)] du dv (19)

Taking into the account the definition of the covariance function for a fBm in

2D, we have

E
[∣∣di

j,k

∣∣2
]

=
σ2

H

2
22j

∫∫
ψi

(
2ju− k

)
ψi

(
2jv − k

) |u|2H dudv

+

∫∫
ψi

(
2ju− k

)
ψi

(
2jv − k

) |v|2H dudv (20)

+

∫
ψi

(
2ju− k

)
ψi

(
2jv − k

) |u− v|2H dudv.

Since, ∫
ψi

(
2ju− k

)
du =

∫ (
2jv − k

)
dv = 0, (21)

the variance in (20) can be simplified as

E
[∣∣di

j,k

∣∣2
]

=
σ2

2
22j

∫∫
ψi

(
2ju− k

)
ψi

(
2jv − k

) |u− v|2H dudv (22)

By substituting p = 2j(u− v) and q =2jv − k, we obtain:

E
[∣∣di

j,k

∣∣2
]

=
σ2

H

2
22j

∫∫
ψi (p + q) ψi (q) 2−2jH |p|2H 2−4jdpdq

=
σ2

H

2
2−j(2H+2)

∫∫
ψi (p + q) ψi (q) |p|2H dpdq

=
σ2

H

2
Vψi2−j(2H−2), (23)

where Vψi denotes
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∫∫
ψi(p + q) · ψi(q) |p|2H dpdq, (24)

an integral depending on wavelet ψi and H , but free of the scale j.

E
[∣∣di

j,k

∣∣2
]

=
σ2

H

2
Vψi2−(2H+2)j (25)

By applying logarithm to both ends in (25) the following equation is obtained

log2 E
[∣∣di

j,k

∣∣2
]

= −(2H + 2)j + Ci,

(discussion previously on Section 3).
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