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Abstract 

Lake Matano, Indonesia is a well-known ancient ocean analogue as its anoxic ecosystem in the 

subsurface sediments allow the growth of microorganisms capable of mediating anaerobic 

oxidation coupled to iron reduction. An anoxic, ferric iron rich BSR was kept for 163 days to 

culture iron reducing bacteria in an environmental sample from Lake Matano sediment. 

Microscopy analysis was performed periodically to look for morphology trends using DAPI 

staining. Phylogenetic analysis was performed using CARD-FISH microscopy to target the 

Geobacter genus, known for electroactive abilities through pilA and interactions with iron 

particles. Cell counts correlated with iron reduction throughout the culturing period indicating iron 

reducing microorganisms were present in the environmental sample. Filamentous, coccus, bacillus 

and vibrio morphologies were observed through the culturing period with vibrio and bacillus being 

predominant at later stages of the culture. Particle association instances were observed at days 20, 

62, 86 and 126 and DIET interactions at day 86. Characterizing these microorganisms opens a 

broad range of possibilities for wastewater treatment (strip mining groundwater contamination), 

use in bioelectrochemical systems biofilms (due to external electron transport pilA) and 

understanding the importance of this microorganisms in Iron cycling. 
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Abbreviations 
 
SBR    Sequencing Batch Bioreactor 
 
CARD-FISH   Catalyzed reporter deposition fluorescence in situ hybridization 
 
DAPI   4′,6-diamidino-2-phenylindole (fluorescent stain) 
 
EUB 338  Most Bacteria Probe    
 
DELTA 495  Deltaproteobacteria Probe 
 
GEO A/B/C  Geobacter Cluster Probe 
 
DIET   Direct interspecies electron transfer  
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Introduction 

Literature Review. Environmental microbiology has explored the role microorganisms in 

subsurface environments play in the iron cycle. Iron-reducing prokaryotes conserve energy for 

growth by transferring electrons from organic substrates to ferric iron (Fe(III)) oxides. These 

anaerobic microbes are widespread in sediments and soils due to the availability of ferric iron, 

which precipitates as ferric oxides at circumneutral pH. Microbes can perform the difficult process 

of extracellular electron transport by either physically contacting Fe(III) oxide particles, by 

excreting organic iron chelators to increase the solubility of Fe(III), or without physical contact 

using electron-shuttling compounds (Kappler et. al, 2005). Some iron-reducing bacteria can also 

pass electrons to other organisms by direct interspecies electron transfer (DIET) (Loveley et. al 

2014). 

  Previous studies have shown that Deltaproteobacteria, specifically members of the 

Desulfuromondales, are highly enriched in Fe(III)-reducing environments (Bray et al. 2017). 

Geobacteraceae, a family within the order Desulfuromonadales, is known for its ability to reduce 

Fe (III) and oxidize acetate through various mechanisms (Rölling, 2014). Lake Matano Indonesia 

is a permanently stratified tropical lake boasting Iron rich anoxic sediments overlaid by an anoxic 

water column (Crowe et al. 2008). Therefore, Lake Matano is a novel yet understudied 

environment for characterizing iron reducing microorganisms.  

Description of research problem. This study aimed to characterize the activity, morphology, and 

phylogeny of Fe(III)-reducing bacteria enriched from an anoxic, iron-rich (ferruginous) lake 

sediment from Lake Matano, Indonesia. We used a continuously stirred sequencing batch 

bioreactor (SBR) for anoxic enrichments in a freshwater enrichment medium to mimic 

environmental conditions. Fe(III) was provided in the form of amorphic Fe(III) oxide 

(ferrihydrite). We monitored Iron reduction and fixed bacterial samples for both DAPI and CARD-
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FISH fluorescent microscopy analysis. Cell growth followed iron reduction rates meaning iron 

reducers were present in the sample exhibiting vibrio and bacillus morphologies. Instances of 

particle association and DIET interactions were found in microscopy samples providing an insight 

of possible electron transfer mechanisms. Furthermore, we found that 63% percent of cells were 

bacteria, 24% Deltaproteobacteria and 18% of cells pertained to the Geobacter cluster. 

This physiological, morphologic, and phylogenetic characterization of Fe(III)-reducing bacteria is 

applicable to soil contaminant bioremediation and microbial fuel cells. 

 

Methods and Materials  

In this study, a continuously stirred SBR was used for anoxic enrichments in a freshwater 

enrichment medium. Fe(III) was provided in the form of amorphous Fe(III) oxide (ferrihydrite). 

Iron reduction activity was measured by HCl-soluble Fe(II) concentration over time using 

ferrozine colorimetry. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-

FISH) was used to identify the phylogeny, morphology, and particle association of enriched 

bacteria. Probes targeting most Bacteria (EUB 338), Deltaproteobacteria (DELTA495A) and 

Geobacter (GEO3-A/B/C) were applied to cultured samples (Table 1). 

 

Sample Collection and Storage 

A 15-cm sediment core from 200 m water depth in Lake Matano, Sulawesi Island, Indonesia 

(2°26′S, 121°15′E; in situ sediment temperature ~27°C), was sampled in November 2014 and 

subsampled at 5-cm increments (Bray et al., 2017). Sediments from 0–5 to 5–10 cm depth were 

fluffy and black, and 10–15 cm was dark gray. Sediments were sealed in gastight bags with no 

headspace (Hansen, Thamdrup, & Jørgensen, 2000) and stored at 4°C until incubation began in 

September 2017. 
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Enrichment Medium and Substrate Synthesis 

For mimicking environmental conditions, a freshwater enrichment medium lacking nitrate and 

sulfate developed based on the pore water composition of Lake Matano sediments (S.A. Crowe 

and D.A. Fowle, unpublished work) was used. The medium contained 825 μM MgCl2, 550 μM 

CaCO3, 3 mM NaHCO3, 3.5 μM K2HPO4, 5 μM Na2HPO4, 225 μM NH4Cl, 1 μM CuCl2, 1.5 

μM Na2MoO4, 2.5 μM CoCl2, 23 μM MnCl2, 4 μM ZnCl2, 9.4 μM FeCl3 and 3 mM Na2NTA, 

0.07 μM vitamin B12, 0.4 μM biotin, and 68.5 μM thiamine.  

Filter-sterilized vitamin and 500 µM acetate solutions were added after autoclaving. Ferrihydrite 

(Fe(OH)3) was synthesized as described in Schwertmann & Cornell (1991) and added to the 

bioreactor as described below in a periodic basis as described below.  

 

Sediment Enrichment Culturing (Bioreactor Sediment enrichment) 

For enrichment culturing, Multifors 2 (INFORS HT) continuous stirred tank BSR of 500 mL 

volume was selected. To favor iron reduction, anaerobic conditions were maintained by constantly 

flushing the bioreactor with inert gas (90%N2 and 10%CO2 mix). To further prevent oxygen 

contamination, an Oxygen trap was placed between the gas tanks and the bioreactor gas inlets 

(Jeon, Dempsey Brian, Royer Richard, & Burgos William, 2004). Wasting was performed every 

2 weeks, 250 mL BSR liquid content was replaced with new enrichment media and 500 µM 

Ferrihydrite as substrate. For maintaining a circumneutral environment, pH and temperature were 

continuously monitored. The bioreactor culturing lasted 163 days. 

 

HCl-extractable Fe2+ and Fe3+ and soluble Fe2+ 

Samples were taken from the bioreactor using a plastic syringe through the sampling port. The 

bioreactor sampling port was flushed with inert gas after sampling to prevent oxygen 
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contamination. To measure microbial activity HCl-extractable Fe2+ analyses were taken, 100 μl 

of sediment slurry was extracted with 400 μl 0.6 N HCl in the dark for 30 minutes followed by 

measurement of 100 µL supernatant and 900 µL Ferrozine reagent in 46 mm HEPES (pH 8.3) mix 

at absorbance at 562 nm (Stookey, 1970) in spectrophotometer.  

 

Microscopy: CARD-FISH with DAPI staining 

For the fixing process, 500 uL of culture mix were fixed in 1 ml 4% PFA and incubated for 1 hour 

at room temperature. The samples were then tripled washed with 1ml of 0.2m filtered PBS after 

centrifuging for 5 min at 10,000 g. A volume of 500 µl sample was filtered in a 0.45 µm backing 

filter and 0.22 µm polycarbonate filter using a vacuum at > 10 mm Hg and washed with 1 ml of 

0.2 µm filtered PBS.  The filters were then embedded with 0.2% low melting agarose, placed in a 

parafilm wrapped glass slide and dried at 45 C. Permeabilization followed by incubating the 

samples in Lysozyme (10 mg/mL) for 30-60 min, washed with H2O, incubated In 0.01 M HCl for 

15 min and tripled washed with H2O. Hybridization was performed using 50 mL thin-walled falcon 

tubes as the humidity chamber skeleton, horseradish peroxidase (HRP) probe was added to the 

hybridization buffer to a concentration of 0.17 ng/µL, added to the filters and incubated for 3 hours 

at 46 C. After incubation, the filter was washed in pre-warmed washing buffer for 30 minutes at 

48 C. Signal amplification was performed by dipping the filter in amplification buffer (1 : 1000 

tyramide, .0015% H2O2), placed onto parafilm covered slide, covered to keep at dark and incubated 

for 1 hr at 46 C. The following steps took place in dark conditions: washing with PBS and etOH 

and DAPI staining. Slides were stored at -20 C. Cell number per volume was obtained from cell 

counts using Image J. 

Table 1 shows CARD-FISH probes.  
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Table 1. CARD-FISH probes utilized in this study 
Common 

probe name 
Generic name Target(s) Sequence (5′-3′) Position 

no. 
Formamide 
Concentrati
on 

Reference 

NON338 NA None ACTCCTACGGGA
GGCAGC 

NA 30 % Wallner, 
Amann, and 
Beisker 
(1993) 

EUB338-I S-D-Bact-0338-
a-A-18 

Most Bacte
ria 

GCTGCCTCCCGT
AGGAGT 

338-355 30 % Amann et al. 
(1990) 

DELTA495A S-C-dProt-0495-
a-A-18 

Most Delta
proteo-
bacteria 

AGTTAGCCGGTG
CTTCCT 

495-512 30 % Loy et al. 
(2002) 

GEO3-A S-G-Geob-0818-
a-A-21 

 
 
Geobacter 
cluster 

CCGCAACACCTA
GTACTCATC 

818-838 20% and 
30% 

Richter, 
Lanthier, 
Nevin, and 
Lovley 
(2007) 

GEO3-B S-G-Geob-0818-
b-A-21 

CCGCAACACCTA
GTTCTCATC 

818-838 

GEO3-C S-G-Geob-0818-
c-A-21 

CCGCAACACCTG
GTTCTCATC 

818-838 

 
 

Results 

Iron Reduction 

Figure 1 shows Fe(II)-HCl  (µM) and number of cells (number /mL) in culture over the course of 

incubation. Iron reduction varied through the experiment with highest reduction period between 

days 80 and 100 of culture (Figure 1). Peak iron reduction was observed at day 98 with 997.1 

µM Fe (II)-HCl in culture. Medium-high reduction was observed at early stages (days 10-20) and 

later stages (days 120- 140) of culturing.  

 

Cell number was consistent with iron reduction throughout the culturing period. Cell counts were 

from measurements taken at days 20, 42, 64, 86 and 126 from cell lighting with DAPI staining. 

Maximum cell counts were at sample days 64 and 86.  

Iron reduction rates were consistent with cell counts, signifying iron reducers were enriched in 

the culture (Figure 2). The sample taken at day 64 showed the highest reduction rate per cell 

counts, meaning that cells sample at that day are the most representative or iron reducers.  
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Figure 1. Fe(II)-HCl for the SBR bioreactor and cell number in time. Total culturing time of 163 

days. Green squares represent 250 mL wasting and orange triangles represent 500 µL 

Ferrihydrite added.  

 

Figure 2. Iron reduction rates in orange and cell count in blue for the SBR bioreactor through 

time. 
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Morphology 

We observed varies cell morphologies at days 20, 42, 64, 86 and 126 of culture incubation 

including coccus, filamentous, bacillus and vibrio (Figure 3). By 64, only bacillus and vibrio 

morphologies were observed. At day 64, samples were taken from the top and bottom of the 

vessel after a non-stirring period of 2 weeks. Top samples were abundant in bacillus morphology 

(75%) while bottom samples were abundant in vibrio morphology (96%). 

 We noticed that many of the cells from our culture formed aggregates (see supplemental 

material). Highest number of cells in aggregates were observed in day 64 from top samples 

(65%). Bottom samples show the least number of cells in aggregate (3%) (Figure 4). All cells in 

aggregates expressed a bacillus morphology.  Percent cells in aggregate decreased with time 

(Figure 5). 

 

Figure 3. Observed culture morphologies from DAPI stained images at 100x.  

 

We then used CARD-FISH to identify specify bacterial taxa from our cultures under the 

microscope at days 86 (EUB and DELTA probes) and 126 (GEO-A/B/C probe). Fluorescing 

morphologies included bacillus and vibrio. Most eubacteria showed a vibrio (61%) morphology 
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while delta proteobacteria probe fluorescing cells were mainly bacillus (79%). All Geobacter 

probe fluorescing cells were bacillus. 

 

Figure 4. Observed culture morphologies from fluorescing cells from CARD-FISH 

microscopy at 100x augmentation. 

 

Figure 5. Percent cells in aggregate from DAPI stained images at 100x.   
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All cells in aggregate expressed a bacillus morphology. At day 86, fluorescing cells of EUB and 

DELTA probes showed aggregates formation (39% and 29% of cells respectively). At day 126, 

fluorescing cells of GEO-A/B/C probe showed a lower number of cells in aggregates (15%). Not 

all cells in aggregate at day 126 fluoresced with the GEO-A/B/C probes. 

 

Figure 6. Percent cells fluorescing in aggregate from CARD-FISH microscopy at 100x 

augmentation. 

 

Phylogeny   

As expected most cultured microorganisms were bacteria EUB 338 (63%), from the total cell 

counts a quarter were deltaproteobacteria DELTA 495A (24%) or 38% of bacteria were 

deltaproteobacteria and from total cell counts about a fifth were from the geobacter genus GEO-

A/B/C (18%) or 75% of all deltaproteobacteria were from the geobacter cluster (figure 7).  
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Figure 7. Relative abundance from CARD-FISH microscopy. 

 

Discussion 

Iron reduction 

Cell counts correlated with iron reduction throughout the culturing period indicating iron reducing 

microorganisms were present in the environmental sample. Iron reducing microorganisms have 

been determined in other environmental sediments studies (Potomac River (Lovley & Phillips, 

1988) and Coonamessett River (Erbs & Spain, 2002)). As expected, iron reduction increased with 

time given that the system favored culturing of iron reducing microorganisms.  

 

Morphology 

Filamentous, coccus, bacillus and vibrio morphologies were observed through the culturing period 

with vibrio and bacillus being predominant at later stages of the culture. As observed in the results 

from DAPI staining images and CARD-FISH images through the evolution of the experiment, 
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vibrio was also identified in aggregate formations at later stages of the culture in DIET formations. 

At lower iron reduction rates (early stages of culture), filamentous and coccus morphologies were 

identified meaning that other microorganisms present in the lake sediment do not favor iron 

reduction.  

 

Phylogeny 

As expected, bacteria were identified as the dominant domain in the lake sediment microbiome. 

Only a quarter of total cells were deltaproteobacteria and a fifth of total cells were from the 

geobacter genus. Given that iron reduction rates were significant at the time of CARD-FISH 

sampling it is possible that other iron reducing clusters (not Geobacter) were capable of 

contributing to the iron reduction rates.  

 

Particle Association 

Particle association instances were observed at days 20, 62, 86 and 126 (see supplemental material) 

from single cell associations to ferrihydrite particles. Particle association was observed using the 

GEO3 A/B/C probe at day 126 in rod like cells (from probe fluorescence it is hard to determine 

the morphology, either vibrio or bacillus, of the attached cells).  

 

DIET  

As seen in day 86 samples, DIET interactions occurred in members from bacteria (green lighting 

probe) and other non-bacteria microorganisms (archaea). It can be observed that another DIET 

interaction was observed with the DELTA 495 probe but it is unclear if the non-fluorescing 

microorganisms pertain to the bacteria domain.  
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Future work 

In the future, DNA extraction and polymerase chain reaction (PCR) amplification of the 16S rRNA 

gene could be used to determine the dominant species. Genomic characterization for the fixed 

samples, look at cytochrome proteins in genomic databases and SEM images for nanowires 

identification in particle association instances.  
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SUPPLEMENTAL MATERIAL 

Figures 1, 2, 3 and 4 at days 20, 42, 62 (top) and 62 (bottom) respectively, show the microcopy 

observations at 100x augmentation with DAPI staining.  

 

Figure 1. Microscopy with DAPI staining at day 20 
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Figure 2. Microscopy with DAPI staining at day 42. 
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Figure 3.  Microscopy with DAPI staining at day 62, top of reactor. 
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Figure 4.  Microscopy with DAPI staining at day 62, bottom of reactor.   

 

Figures 5, 6 and 7 show the microscopy observations from the EUB 338, DELTA 495A and 

GEO-A/B/C probes under 100x augmentation under GFP light.  
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Figure 5. EUB 338 probe, DAPI staining (blue) and probe fluorescing (green).  A. Control e. 

coli. B. Aggregate. C. Scattered cells. D. Scattered cells 
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Figure 6. DEL 495A probe, DAPI staining (blue) and probe fluorescing (green).  A. Control e. 

coli. B. Particle association. C Aggregate. D. Scattered cells. 
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Figure 7. GEO- A/B/C probe, DAPI staining (blue) and probe fluorescing (green).  A. Particle 

association. B. Scattered cells. C Scattered cells. D. Scattered cells. 


