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Summary

Neural networks have been extensively used for adaptive system identification as

well as adaptive and neuroadaptive control of highly uncertain systems. The goal of

adaptive and neuroadaptive control is to achieve system performance without exces-

sive reliance on system models. To improve robustness and the speed of adaptation

of adaptive and neuroadaptive controllers several controller architectures have been

proposed in the literature. In this dissertation, we develop a new neuroadaptive con-

trol architecture for nonlinear uncertain dynamical systems. The proposed framework

involves a novel controller architecture with additional terms in the update laws that

are constructed using a moving window of the integrated system uncertainty. These

terms can be used to identify the ideal system weights of the neural network as well

as effectively suppress system uncertainty. Linear and nonlinear parameterizations

of the system uncertainty are considered and state and output feedback neuroadap-

tive controllers are developed. Furthermore, we extend the developed framework to

discrete-time dynamical systems. To illustrate the efficacy of the proposed approach

we apply our results to an aircraft model with wing rock dynamics, a spacecraft model

with unknown moment of inertia, and an unmanned combat aerial vehicle undergo-

ing actuator failures, and compare our results with standard neuroadaptive control

methods.

Nonnegative systems are essential in capturing the behavior of a wide range of

dynamical systems involving dynamic states whose values are nonnegative. A sub-
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class of nonnegative dynamical systems are compartmental systems. These systems

are derived from mass and energy balance considerations and are comprised of ho-

mogeneous interconnected microscopic subsystems or compartments which exchange

variable quantities of material via intercompartmental flow laws. In this dissertation,

we develop direct adaptive and neuroadaptive control framework for stabilization,

disturbance rejection and noise suppression for nonnegative and compartmental dy-

namical systems with noise and exogenous system disturbances. We then use the

developed framework to control the infusion of the anesthetic drug propofol for main-

taining a desired constant level of depth of anesthesia for surgery in the face of

continuing hemorrhage and hemodilution.

Critical care patients, whether undergoing surgery or recovering in intensive care

units, require drug administration to regulate physiological variables such as blood

pressure, cardiac output, heart rate, and degree of consciousness. The rate of infu-

sion of each administered drug is critical, requiring constant monitoring and frequent

adjustments. In this dissertation, we develop a neuroadaptive output feedback con-

trol framework for nonlinear uncertain nonnegative and compartmental systems with

nonnegative control inputs and noisy measurements. The proposed framework is

Lyapunov-based and guarantees ultimate boundedness of the error signals. In addi-

tion, the neuroadaptive controller guarantees that the physical system states remain

in the nonnegative orthant of the state space. Finally, the developed approach is

used to control the infusion of the anesthetic drug propofol for maintaining a desired

constant level of depth of anesthesia for surgery in the face of noisy electroencephalo-

graphic (EEG) measurements. Clinical trials demonstrate excellent regulation of un-

consciousness allowing for a safe and effective administration of the anesthetic agent

propofol.

Furthermore, a neuroadaptive output feedback control architecture for nonlin-
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ear nonnegative dynamical systems with input amplitude and integral constraints

is developed. Specifically, the neuroadaptive controller guarantees that the imposed

amplitude and integral input constraints are satisfied and the physical system states

remain in the nonnegative orthant of the state space. The proposed approach is used

to control the infusion of the anesthetic drug propofol for maintaining a desired con-

stant level of depth of anesthesia for noncardiac surgery in the face of infusion rate

constraints and a drug dosing constraint over a specified period.

In addition, the aforementioned control architecture is used to control lung vol-

ume and minute ventilation with input pressure constraints that also accounts for

spontaneous breathing by the patient. Specifically, we develop a pressure- and work-

limited neuroadaptive controller for mechanical ventilation based on a nonlinear

multi-compartmental lung model. The control framework does not rely on any aver-

aged data and is designed to automatically adjust the input pressure to the patient’s

physiological characteristics capturing lung resistance and compliance modeling un-

certainty. Moreover, the controller accounts for input pressure constraints as well as

work of breathing constraints. The effect of spontaneous breathing is incorporated

within the lung model and the control framework.

Finally, a neural network hybrid adaptive control framework for nonlinear un-

certain hybrid dynamical systems is developed. The proposed hybrid adaptive con-

trol framework is Lyapunov-based and guarantees partial asymptotic stability of the

closed-loop hybrid system; that is, asymptotic stability with respect to part of the

closed-loop system states associated with the hybrid plant states. A numerical exam-

ple is provided to demonstrate the efficacy of the proposed hybrid adaptive stabiliza-

tion approach.
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Chapter 1

Introduction

1.1. Adaptive and Neuroadaptive Control

One of the primary reasons for the large interest in neural networks is their capa-

bility to approximate a large class of continuous nonlinear maps from the collective

action of very simple, autonomous processing units interconnected in simple ways.

Neural networks have also attracted attention due to their inherently parallel and

highly redundant processing architecture that makes it possible to develop parallel

weight update laws. This parallelism makes it possible to effectively update a neural

network on line. These properties make neural networks a viable paradigm for adap-

tive system identification and control of complex highly uncertain systems, and as a

consequence the use of neural networks for identification and control has become an

active area of research [19,25,27,34,40,63,82,91–93,104,105,108,109,114,121,129].

The goal of adaptive and neuroadaptive control is to achieve system performance

without excessive reliance on system models. Both controller approaches directly or

indirectly adjust feedback controller gains and improve system performance in the face

of system uncertainty. Specifically, indirect adaptive and neuroadaptive controllers

utilize parameter update laws to identify unknown system parameters and adjust

feedback gains to account for system variation, while direct adaptive and neuroad-

1



aptive controllers adjust the controller gains in response to system variations. The

fundamental difference between adaptive control and neuroadaptive control can be

traced back to the modeling and treatment of the system uncertainties as well as the

structure of the basis functions used in constructing the regressor vector. In particu-

lar, adaptive control is based on constant, linearly parameterized system uncertainty

models of a known structure but unknown parameters [5, 66, 103]. This uncertainty

characterization allows for the system nonlinearities to be parameterized by a finite

linear combination of basis functions within a class of function approximators such as

rational functions, spline functions, radial basis functions, sigmoidal functions, and

wavelets. However, this linear parametrization with a given basis function cannot, in

general, exactly capture the system uncertainty.

To approximate a larger class of nonlinear system uncertainty, the uncertainty

can be expressed in terms of a neural network involving a parameterized nonlinear-

ity. Hence, in contrast to adaptive control, neuroadaptive control is based on the

universal function approximation property, wherein any continuous nonlinear system

uncertainty can be approximated arbitrarily closely on a compact set using a neural

network with appropriate size, structure, and weights [92, 129], all of which are not

necessarily known a priori. Hence, while neuroadaptive control has advantages over

standard adaptive control in the ability to capture a much larger class of uncertain-

ties, further complexities arise when the basis functions are not known. In particular,

the choice and the structure of the basis functions as well as the size of the neural net-

work and the approximation error over a compact domain become important issues

to address in neuroadaptive control. This difference in the modeling and treatment

of the system uncertainties results in the ability of adaptive controllers to guarantee

asymptotic closed-loop system stability versus ultimate boundness as is the case with

neuroadaptive controllers [58].
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In this dissertation, we develop a new neuroadaptive control architecture for non-

linear uncertain dynamical systems. Specifically, the proposed framework involves a

new and novel controller architecture involving additional terms, or Q-modification

terms, in the update laws that are constructed using a moving time window of the

integrated system uncertainty. The Q-modification terms can be used to identify the

ideal neural network system weights which can be used in the adaptive law. In ad-

dition, these terms effectively suppress system uncertainty. Furthermore, we develop

a direct adaptive and neuroadaptive control framework for stabilization, disturbance

rejection, and noise suppression of nonnegative and compartmental dynamical sys-

tems.

1.2. Nonnegative and Compartmental Dynamical Systems

Nonnegative systems are essential in capturing the behavior of a wide range of

dynamical systems involving dynamic states whose values are nonnegative [13,35,47].

A subclass of nonnegative dynamical systems are compartmental systems [3, 14, 44,

47, 69, 70, 113]. These systems are derived from mass and energy balance consider-

ations and are comprised of homogeneous interconnected microscopic subsystems or

compartments which exchange variable quantities of material via intercompartmental

flow laws. Since biological and physiological systems have numerous input, state, and

output properties related to conservation, dissipation, and transport of mass and en-

ergy, nonnegative and compartmental systems are remarkably effective in describing

the phenomenological behavior of these dynamical systems. The range of applica-

tions of nonnegative and compartmental systems is not limited to biological and

medical systems. Their usage includes demographic, epidemic [69], ecological [100],

economic [13], telecommunications [36], transportation, power, and large-scale sys-

tems [124].
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In a recent series of papers [52–54] a direct adaptive control framework for linear

and nonlinear nonnegative and compartmental systems was developed. The frame-

work in [52–54] is Lyapunov-based and guarantees partial asymptotic set-point reg-

ulation, that is, asymptotic set point stability with respect to the closed-loop system

states associated with the plant. In addition, the adaptive controllers in [52–54] guar-

antee that the physical system states remain in the nonnegative orthant of the state

space.

In this dissertation, we develop direct adaptive and neuroadaptive control frame-

work for stabilization, disturbance rejection, and noise suppression for nonnegative

and compartmental dynamical systems with noise and exogenous system distur-

bances. We apply our results to automatically control anesthetic drug delivery for

maintaining a desired constant level of depth of anesthesia for surgery in the face

of continuing hemorrhage and hemodilution, noisy EEG measurements, and drug

infusion rate and drug dosage constraints. Finally, we develop a neuroadaptive con-

trol architecture to control lung volume and minute ventilation with input pressure

constraints that also accounts for spontaneous breathing by the patient.

1.3. Brief Outline of the Dissertation

The contents of the dissertation are as follows. In Chapter 2, we develop a new

and novel architecture called Q-modification for adaptive and neuroadaptive control

for nonlinear uncertain dynamical systems. In Chapter 3, we extend Q-modification

architecture to discrete-time systems. In Chapter 4, we develop a direct adaptive

disturbance rejection control framework for compartmental dynamical systems with

exogenous bounded disturbances. In Chapter 5, we develop a neuroadaptive output

feedback control framework for nonlinear uncertain nonnegative and compartmental

systems with nonnegative control inputs and noisy measurements. In Chapter 6, we

4



design a neuroadaptive output feedback control architecture for nonlinear nonnegative

dynamical systems with input amplitude and integral constraints. In Chapter 7,

we extend the neuroadaptive output feedback control architecture of Chapter 6 to

address the challenging problem of mechanical ventilation control. A neural network

hybrid adaptive control framework for nonlinear uncertain hybrid dynamical systems

is presented in Chapter 8. Finally, in Chapter 9 we give concluding remarks and

discuss future extensions.

5



Chapter 2

A New Neuroadaptive Control Architecture for

Nonlinear Uncertain Systems

2.1. Introduction

Neural networks have been extensively used for adaptive system identification as

well as adaptive and neuroadaptive control of highly uncertain systems [19,25,27,34,

40, 63, 82, 91–93, 104, 105, 108, 109, 114, 121, 129]. The goal of adaptive and neuroad-

aptive control is to achieve system performance without excessive reliance on system

models. The fundamental difference between adaptive control and neuroadaptive

control can be traced back to the modeling and treatment of the system uncertain-

ties as well as the structure of the basis functions used in constructing the regressor

vector. In particular, adaptive control is based on constant, linearly parameterized

system uncertainty models of a known structure but unknown parameters [5,66,103].

This uncertainty characterization allows for the system nonlinearities to be param-

eterized by a finite linear combination of basis functions within a class of function

approximators such as rational functions, spline functions, radial basis functions, sig-

moidal functions, and wavelets. However, this linear parametrization with a given

basis function cannot, in general, exactly capture the system uncertainty.

To approximate a larger class of nonlinear system uncertainty, the uncertainty
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can be expressed in terms of a neural network involving a parameterized nonlinear-

ity. Hence, in contrast to adaptive control, neuroadaptive control is based on the

universal function approximation property, wherein any continuous nonlinear system

uncertainty can be approximated arbitrarily closely on a compact set using a neural

network with appropriate size, structure, and weights [92, 129], all of which are not

necessarily known a priori. Hence, while neuroadaptive control has advantages over

standard adaptive control in the ability to capture a much larger class of uncertain-

ties, further complexities arise when the basis functions are not known. In particular,

the choice and the structure of the basis functions as well as the size of the neural net-

work and the approximation error over a compact domain become important issues

to address in neuroadaptive control. This difference in the modeling and treatment

of the system uncertainties results in the ability of adaptive controllers to guarantee

asymptotic closed-loop system stability versus ultimate boundness as is the case with

neuroadaptive controllers [58].

To improve robustness and the speed of adaptation of adaptive and neuroadaptive

controllers several controller architectures have been proposed in the literature. These

include the σ- and e-modification architectures used to keep the system parameter

estimates from growing without bound in the face of system uncertainty [92, 129].

In this chapter, a new neuroadaptive control architecture for nonlinear uncertain

dynamical systems is developed. Specifically, the proposed framework involves a new

and novel controller architecture involving additional terms, or Q-modification terms,

in the update laws that are constructed using a moving time window of the integrated

system uncertainty. The Q-modification terms can be used to identify the ideal neural

network system weights which can be used in the adaptive law. In addition, these

terms effectively suppress system uncertainty.

Even though the proposed approach is reminiscent to the composite adaptive

7



control framework discussed in [127], the Q-modification framework does not involve

filtered versions of the control input and system state in the update laws nor does it

involve a least-squares exponential forgetting factor. Rather, the update laws involve

auxiliary terms predicated on an estimate of the unknown neural network weights

which in turn are characterized by an auxiliary equation involving the integrated error

dynamics over a moving time interval. For a scalar linearly parameterized uncertainty

structure, these ideas were first explored in [136,137]. In this chapter, we extend the

results in [136] to vector uncertainty structures with nonlinear parameterizations. In

addition, state and output feedback controllers are developed. Finally, to illustrate

the efficacy of the proposed approach we apply our results to an aircraft model with

wing rock dynamics, a spacecraft model involving an unknown moment of inertia

matrix, and an unmanned combat aerial vehicle undergoing actuator failures, and

compare our results with standard neuroadaptive control methods.

2.2. Adaptive Control with a Q-Modification Architecture

In this section, we present the notion of the Q-modification architecture in adap-

tive control. Specifically, consider the adaptive control problem with error dynamics

given by

ė(t) = Ae(t) + b[∆(x(t)) − νad(t)], e(0) = e0, t ≥ 0, (2.1)

where e(t) ∈ R
n, t ≥ 0, is the system error signal, ∆ : R

n → R is the system

uncertainty, x(t) ∈ R
n, t ≥ 0, is the system state, νad(t) is the adaptive signal

whose purpose is to suppress or cancel the effect of the system uncertainty, A ∈

R
n×n is a known Hurwitz matrix, and b = [0, . . . , 0, 1]T ∈ R

n. For simplicity of

exposition, in this section we consider the case where the system uncertainty ∆(x(t)),

t ≥ 0, is a scalar function. Furthermore, in the first part of this section we assume
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that the system uncertainty can be perfectly parameterized in terms of a constant

unknown vector W ∈ R
N and a known vector of continuous basis functions θ(x(t)) =

[θ1(x(t)), . . . , θN(x(t))]T ∈ R
N such that θi(x(t)), i = 1, . . . , N , are bounded for all

t ≥ 0. In particular,

∆(x(t)) = WTθ(x(t)), t ≥ 0. (2.2)

The parametrization given by (2.2) suggests an adaptive control signal νad(t),

t ≥ 0, of the form

νad(t) = ŴT(t)θ(x(t)), (2.3)

where Ŵ (t) ∈ R
N , t ≥ 0, is a vector of the adaptive weights. Hence, the dynamics in

(2.1) can be rewritten as

ė(t) = Ae(t) + b[W − Ŵ (t)]Tθ(x(t)), e(0) = e0, t ≥ 0. (2.4)

The update law for Ŵ (t), t ≥ 0, can be derived using standard Lyaupunov analysis

by considering the Lyapunov function candidate

V (e, W̃ ) =
1

2
eTPe+

1

2
W̃TΓ−1W̃ , (2.5)

where W̃ , W − Ŵ , Γ = ΓT > 0, and P > 0 satisfies

0 = ATP + PA+R,

where R = RT > 0. Note that V (0, 0) = 0 and V (e, W̃ ) > 0 for all (e, W̃ ) 6= (0, 0).

Now, differentiating (2.5) along the trajectories of (2.4) yields

V̇ (e(t), W̃ (t)) = −1

2
eT(t)Re(t) + eT(t)PbW̃T(t)θ(x(t)) − W̃T(t)Γ−1 ˙̂

W (t), t ≥ 0.

The standard choice of the update law is given by

˙̂
W (t) = ΓeT(t)Pbθ(x(t)), Ŵ (0) = Ŵ0, t ≥ 0, (2.6)
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so that V̇ (e(t), W̃ (t)) = −1
2
eT(t)Re(t) ≤ 0, t ≥ 0, which guarantees that the error

signal e(t), t ≥ 0, and weight error W̃ (t), t ≥ 0, are Lyapunov stable, and hence, are

bounded for all t ≥ 0. Since e(t) and θ(x(t)) are bounded for all t ≥ 0, it follows that

ė(t), t ≥ 0, is bounded, and hence, V̈ (e(t), W̃ (t)) is bounded for all t ≥ 0. Now, it

follows from Barbalat’s lemma [48] that e(t) converges to zero asymptotically.

The above analysis outlines the salient features of the classical adaptive control

architecture. To improve the robustness properties of the adaptive controller (2.3)

and (2.6) a σ-modification term of the form σ(Ŵ − W 0), where σ > 0 and W 0 is

an approximation of the ideal neural network system weights, can be included to

the update law (2.6) to keep the adaptive weight (i.e., parameter estimate) Ŵ from

growing without bound in the face of the system uncertainty and system disturbances.

However, in this case, when the error e(t) is small,
˙̂
W (t) is dominated by σ(Ŵ −W 0)

which causes Ŵ to be driven to W 0. If W 0 is not a good approximation of the

actual system parameters W , then the system error can increase. To circumvent

this problem, an e-modification term of the form ε(e)(Ŵ − W 0), where, typically,

ε(e) = σ‖e‖, can be included to the update law (2.6) in place of the σ-modification

term. In both cases, however, the modification terms are predicated on W 0 involving

a best guess for some W ∈ R
N .

Next, we present a new and novel modification term that goes beyond the afore-

mentioned modifications by using continuous learning of the unknown weights to im-

prove system uncertainty suppression or achieve uncertainty cancelation without the

need for persistency of excitation. Specifically, consider the error dynamics given

by (2.4) and integrate (2.4) over the moving time interval [td, t], t ≥ 0, where

td , max{0, t − τd} and τd > 0 is a design parameter. Premultiplying (2.4) by

bT and rearranging terms we obtain

WTq(t, t− τd) = c(t, t− τd), t ≥ 0, τd > 0, (2.7)
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Figure 2.1: Visualization of Q-modification term.

where

c(t, t− τd) , bT
[
e(t) − e(t− τd) −

∫ t

td

Ae(s)ds

]
+

∫ t

td

ŴT(s)θ(x(s))ds,

t ≥ 0, τd > 0, (2.8)

q(t, t− τd) ,

∫ t

td

θ(x(s))ds, t ≥ 0, τd > 0. (2.9)

Hence, although the vector W is unknown, W satisfies the linear equation (2.7).

Geometrically, (2.7) characterizes an affine hyperplane L in R
N . For example, in the

case where N = 2, the affine hyperplane (2.7) is described by a line L with q(t, t− τd)

being a normal vector to L as shown in Figure 2.1. Note that the distance from pointA

to point B shown in Figure 2.1, which is the shortest distance from the weight estimate

Ŵ (t) to affine hyperplane L defined by (2.7), is given by c(t, t−τd)−ŴT(t)q(t, t−τd).

Next, define the square of the distance from the weight estimate Ŵ (t), t ≥ 0, to

the affine hyperplane L by

ρ(Ŵ (t), q(t, t− τd), c(t, t− τd)) ,
1

2

[
ŴT(t)q(t, t− τd) − c(t, t− τd)

]2

,

t ≥ 0, (2.10)

and note that the gradient of ρ(Ŵ (t), q(t, t− τd), c(t, t− τd)), t ≥ 0, with respect to
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Ŵ (t), t ≥ 0, is given by

∂ρ(Ŵ (t), q(t, t− τd), c(t, t− τd))

∂Ŵ (t)
=

[
ŴT(t)q(t, t− τd) − c(t, t− τd)

]
q(t, t− τd).

(2.11)

Now, consider the modified update law for the adaptive weights Ŵ (t), t ≥ 0, given

by

˙̂
W (t) = Γ

[
eT(t)Pbθ(x(t)) + k Q(t)

]
, Ŵ (0) = Ŵ0, t ≥ 0, (2.12)

where k > 0 and

Q(t) , −
[
ŴT(t)q(t, t− τd) − c(t, t− τd)

]
q(t, t− τd), t ≥ 0.

In contrast to (2.6), the update law given by (2.12) contains the additional term Q(t),

t ≥ 0, based on the gradient of ρ(Ŵ (t), q(t, t− τd), c(t, t− τd)) with respect to Ŵ (t),

t ≥ 0. We call Q(t), t ≥ 0, a Q-modification term. Note that for every t ≥ 0 the

vector Q(t) is directed opposite to the gradient ∂ρ(Ŵ (t), q(t,t−τd), c(t,t−τd))

∂Ŵ (t)
and parallel

to q(t, t − τd), which is a vector normal to the affine hyperplane defined by (2.7).

Hence, Q(t), t ≥ 0, introduces a component in the update law (2.12) that drives the

trajectory Ŵ (t), t ≥ 0, in such a way so that the error given by (2.10) is minimized.

Note that if Ŵ (t), t ≥ 0, satisfies

Ŵ (t)Tq(t, t− τd) = c(t, t− τd), t ≥ 0, (2.13)

then Q(t), t ≥ 0, is zero and the weight estimates Ŵ (t), t ≥ 0, lie on the affine

hyperplane defined by (2.7). If the weight estimates Ŵ (t), t ≥ 0, do not satisfy (2.13),

then Q(t), t ≥ 0, is a nonzero vector that is orthogonal to the affine hyperplane (2.7)

and points in the direction of the hyperplane. Thus, the Q-modification term drives

the weight estimate trajectory Ŵ (t), t ≥ 0, to the affine hyperplane characterized by

(2.7), wherein the ideal weights W lie. As shown below, the Q-modification technique
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can ensure convergence of the weight estimates Ŵ (t), t ≥ 0, to the ideal weights W

under persistency of excitation. However, it is important to note here that identifying

the unknown weights is not a goal of this research, nor is this necessary for the Q-

modification framework to achieve uncertainty suppression or uncertainty cancelation.

Next, we establish stability guarantees of the adaptive law (2.3) with (2.12).

Theorem 2.1. Consider the uncertain dynamical system given by (2.4). The

adaptive feedback control law (2.3) with update law given by (2.12) guarantees that

the solution (e(t), Ŵ (t)) ≡ (0,W ) of the closed-loop system given by (2.4) and (2.12)

is Lyapunov stable and e(t) → 0 as t→ ∞ for all e0 ∈ R
n and Ŵ0 ∈ R

n.

Proof. Consider the Lyapunov function candidate given by (2.5) and note that

using (2.7) the Lyapunov derivative V̇ (e, W̃ ) along the trajectories of the closed-loop

system (2.4) is given by

V̇ (e(t), W̃ (t))

= −1

2
eT(t)Re(t) + eT(t)PbW̃T(t)θ(x(t)) − W̃T(t)Γ−1 ˙̂

W (t)

= −1

2
eT(t)Re(t) − kW̃T(t)Q(t)

= −1

2
eT(t)Re(t) + k(W − Ŵ (t))T

[
ŴT(t)q(t, t− τd) − c(t, t− τd)

]
q(t, t− τd)

= −1

2
eT(t)Re(t)

+ k
[
WTq(t, t− τd) − ŴT(t)q(t, t− τd)

] [
ŴT(t)q(t, t− τd) − c(t, t− τd)

]

= −1

2
eT(t)Re(t) − k |ŴT(t)q(t, t− τd) − c(t, t− τd)|2

= −1

2
eT(t)Re(t) − kW̃T(t)q(t, t− τd)q

T(t, t− τd)W̃ (t)

≤ 0, t ≥ 0, (2.14)

which proves Lyapunov stability of the closed-loop system (2.4) and (2.12). This

guarantees that the error signal e(t), t ≥ 0, and the weight error W̃ (t), t ≥ 0, are
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Lyapunov stable, and hence, are bounded for all t ≥ 0. The result now follows from

Barbalat’s lemma [48] using the fact that ė(t), and hence, V̈ (e(t), W̃ (t)), are bounded

for all t ≥ 0.

Remark 2.1. The nonnegative term k |ŴT(t)q(t, t − τd) − c(t, t − τd)|2 in the

derivative of the Lyapunov function (2.14) appears due to the Q-modification term in

the update law (2.12) and is a measure of the (scaled) distance between the update

weights Ŵ (t), t ≥ 0, and the affine hyperplane given by (2.7).

Remark 2.2. The Q-modification architecture is reminiscent to the composite

adaptation technique [126,127] and the combined direct and indirect adaptation tech-

nique [32]. As in the Q-modification framework, composite adaptation involves a

linear equation of the unknown weights and uses a prediciton error-based estimation

error method to construct additional terms in the update law. However, the key

difference between the two methods is in how the linear equations involving the un-

known weights are constructed. Specifically, in the Q-modification technique we use a

moving time window of the integrated system uncertainty, whereas composite adap-

tation uses filtered versions of the control input and system state in the update law.

In addition, composite adaptation involves a least squares approach with exponential

forgetting.

Remark 2.3. The standard adaptive control algorithm of (6) adjusts the param-

eters in the direction defined by θ(x(t)), t ≥ 0. In the absence of noise, if θ(x(t)),

t ≥ 0, is constant for some period of time, then the parameters would be adjusted

along the vector θ(x(t)), t ≥ 0, until the error e(t) is zero. In the presence of noise,

however, the parameter would wiggle around in the vicinity of the hyperplane orthog-

onal to θ(x(t)), t ≥ 0, on which the error e(t) is small. This still allows the parameter

estimate Ŵ (t), t ≥ 0, to grow without bound.
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Figure 2.2: Weights identification using Q-modification architecture.

If N time intervals [ti − τd, ti], i = 1, . . . , N , can be appropriately identified such

that the corresponding vectors q(ti, ti − τd), i = 1, . . . , N , given by (2.9) are linearly

independent and

WTq(ti, ti − τd) = c(ti, ti − τd), ti ≥ τd, i = 1, . . . , N, (2.15)

where c(ti, ti − τd), i = 1, . . . , N , are given by (2.8), then W can be identified exactly

by solving the linear equation

MW = c, (2.16)

where

M =




qT(t1, t1 − τd)
...

qT(tN , tN − τd)


 , c =




c(t1, t1 − τd)
...

c(tN , tN − τd)


 . (2.17)

In the case where N = 2, Figure 2.2 shows the ideal weight W is identified as the

intersection of the two affine hyperplanes L1 and L2 characterized by the linearly

independent normal (to L1 and L2) vectors given by q(t1, t1 − τd) and q(t2, t2 − τd),

respectively.

If the ideal weights can be identified, then no further adaptation is necessary. In

this case, we can drive the trajectory Ŵ (t), t ≥ 0, to the point W satisfying (2.16) and
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setting Ŵ (t) = W for all t ≥ T , where T > maxi=1, ..., N{ti}, so that the uncertainty

∆(x) in (2.1) is completely canceled by the adaptive signal νad(t) for all t ≥ T .

This, of course, corresponds to an ideal situation. Although for simple problems it

may be possible to identify the ideal weights using the technique discussed above,

for most problems it is difficult to find N vectors q(ti, ti − τd), i = 1, . . . , N , such

that the matrix M given by (2.17) is nonsingular and well conditioned. Hence, if a

batch solution for N time intervals cannot be appropriately identified such that (2.16)

holds, then a moving time window of the integrated system uncertainty can be used

to construct the affine hyperplane (2.7) containing W and drive the update weight

trajectory Ŵ (t), t ≥ 0, to this hyperplane.

As elucidated above, the Q-modification technique is based on a gradient mini-

mization of the cost function defined by (2.10). However, there are other cost function

measures based on the integral of the system uncertainty that can be used. For ex-

ample, define the accumulated (or batch) least squares error

κ(t, Ŵ (t), qt, ct) ,
1

2

∫ t

0

[
ŴT(t)q(s, 0) − c(s, 0)

]2

ds, t ≥ 0, (2.18)

where the notation zt ∈ C denotes a function defined by zt = z(t+ τ, 0), τ ∈ [−t, 0],

at time t corresponding to the piece of the function z between 0 and t or, equivalently,

the element zt in the space of continuous functions C defined on the interval [−t, 0]

and taking values in R
v, where v = N or 1. The gradient of this cost function with

respect to Ŵ (t), t ≥ 0, is given by

∂κ(t, Ŵ (t), qt, ct)

∂Ŵ (t)
= L(t, qt)Ŵ (t) − h(t, qt, ct), t ≥ 0, (2.19)

where

L(t, qt) ,

∫ t

0

q(s, 0)qT(s, 0)ds, h(t, qt, ct) ,

∫ t

0

c(s, 0)q(s, 0)ds, t ≥ 0. (2.20)

For the statement of the next result define L̂(t) , L(t, qt), t ≥ 0, and ĥ(t) ,
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h(t, qt, ct), t ≥ 0, and consider the update law

˙̂
W (t) = Γ

[
eT(t)Pbθ(x(t)) + k

(
ĥ(t) − L̂(t)Ŵ (t)

)]
, Ŵ (0) = Ŵ0, t ≥ 0, (2.21)

where Γ = ΓT > 0 and k > 0. Furthermore, let λmin(·) and λmax(·) denote the

minimum and maximum eigenvalues of a Hermitian matrix, respectively.

Theorem 2.2. Consider the linear uncertain dynamical system given by (2.4).

The adaptive feedback control law (2.3) with update law given by (2.21) guarantees

that the solution (e(t), Ŵ (t)) ≡ (0,W ) of the closed-loop system given by (2.4) and

(2.21) is Lyapunov stable and e(t) → 0 as t → ∞ for all e0 ∈ R
n and Ŵ0 ∈ R

n.

Moreover, if q(t, 0), t ≥ 0, is persistently excited, that is, there exists T > 0 such that

∫ t+T

t

q(s, 0)qT(s, 0)ds ≥ αIN , t ≥ 0, (2.22)

where IN is the N × N identity matrix and α > 0, then e(t) → 0 and Ŵ (t) → W

exponentially as t→ ∞ with degree not less than

K =
min{λmin(R), 2kα}

max{λmax(P ), λmin(Γ)} . (2.23)

Proof. To show Lyapunov stability of the closed-loop system (2.4) and (2.21)

consider the Lyapunov function candidate given by (2.5). Note that since WTq(t, 0) =

c(t, 0), t ≥ 0, ĥ(t), t ≥ 0, can be rewritten as ĥ(t) = L̂(t)W , t ≥ 0. Hence, the time

derivative of the Lyapunov function candidate (2.5) along the trajectories of the

closed-loop system is given by

V̇ (e(t), W̃ (t)) = −1

2
eT(t)Re(t) − k W̃T(t)L̂(t)W̃ (t), t ≥ 0. (2.24)

Since L̂(t), t ≥ 0, is nonnegative definite, it follows from (2.24) that V̇ (e(t), W̃ (t)) ≤ 0

for all t ≥ 0, which proves Lyapunov stability of the closed-loop system (2.4) and

(2.21). Hence, e(t), t ≥ 0, and W̃ (t), t ≥ 0, are bounded for all t ≥ 0. Furthermore,
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since ė(t), t ≥ 0, and ˙̃W (t), t ≥ 0, are bounded, it follows that V̈ (e(t), W̃ (t)) is

bounded for all t ≥ 0. Now, it follows from Barbalat’s lemma [48] that e(t) → 0 as

t→ ∞.

Next, if q(t, 0), t ≥ 0, is persistently excited, then there exists t̂ > 0 such that L̂(t)

is positive definite for all t ≥ t̂, that is, there exists α > 0 such that L(t) ≥ αIN > 0,

t ≥ t̂. Hence,

V̇ (e(t), W̃ (t))

V (e(t), W̃ (t))
= −

[
eT(t), W̃T(t)

]T
[

1
2
R 0

0 k L̂(t)

] [
e(t)

W̃ (t)

]

[
eT(t), W̃T(t)

]T
[

1
2
P 0
0 1

2
Γ−1

] [
e(t)

W̃ (t)

] ≤ −K, t ≥ t̂, (2.25)

where K is given by (2.23). This proves that e(t) and W̃ (t) converge to zero expo-

nentially as t→ ∞, which completes the proof.

Remark 2.4. It follows from Theorem 2.2 that if q(t, 0), t ≥ 0, is persistently

excited, then Ŵ (t) approaches W exponentialy, where the point W is the optimal

solution that would result from a batch solution when N time intervals are appro-

priately identified and (2.16) holds. In the absence of persistency of excitation, the

update weights converge to the affine hyperplane (2.7) containing W .

Next, we show the efficacy of the Q-modification technique in addressing uncer-

tainty cancelation or suppression. Specifically, suppose that the weight estimates

Ŵ (t) satisfy (2.13) for some t ≥ 0 and the vector θ(x(t)) is parallel to q(t, t − τd),

that is, there exists k > 0 such that θ(x(t)) = k q(t, t − τd). In this case, the uncer-

tainty ∆(x(t)) is perfectly canceled by the adaptive signal νad(t). To see this, note

that it follows from (2.7) that

∆(x(t)) − νad(t) = k (W − Ŵ (t))Tq(t, t− τd) = c(t, t− τd) − c(t, t− τd) = 0,

t ≥ 0, (2.26)
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which shows uncertainty cancelation.

To show uncertainty suppression, note that since θi(x(t)), i = 1, . . . , N , are

bounded continuous functions for all t ≥ 0, it follows from the mean value the-

orem [48] that, for every i ∈ {1, . . . , N} and interval [td, t], t ≥ 0, there exists

s̄i ∈ [td, t] such that

qi(t, t− τd) =

∫ t

td

θi(x(s))ds = θi(x(s̄i))τd, t ≥ 0. (2.27)

Hence, for all t ≥ 0 and each i ∈ {1, . . . , N},

qi(t, t− τd) = θi(x(t))τd + εi(t, τd), (2.28)

where εi(t, τd) , τd [θi(x(s̄i)) − θi(x(t))], or, in vector form,

q(t, t− τd) = τdθ(x(t)) + ε(t, τd), t ≥ 0, (2.29)

where ε(t, τd) , [ε1(t, τd), . . . , εN(t, τd)]
T.

If Ŵ (t), t ≥ 0, satisfies (2.13), then

|∆(x(t)) − νad(t)| =
∣∣∣WTθ(x(t)) − Ŵ (t)Tθ(x(t))

∣∣∣

=

∣∣∣∣
1

τd
W̃T(t)q(t, t− τd) −

1

τd
W̃T(t)ε(t, τd)

∣∣∣∣

=

∣∣∣∣−
1

τd
W̃T(t)ε(t, τd)

∣∣∣∣

≤ 1

τd
‖W̃T(t)‖‖ε(t, τd)‖, t ≥ 0, (2.30)

where ‖ · ‖ denotes the Euclidean vector norm on R
N . Now, if τd is chosen such that

1
τd
‖ε(t, τd)‖ is sufficiently small, then it follows from (2.30) that |∆(x(t))−νad(t)| can

be made sufficiently small regardless of the magnitude of ‖W̃ (t)‖, t ≥ 0. Hence, the

Q-modification technique, which ensures that Ŵ (t), t ≥ 0, satisfies (2.13), guarantees

system uncertainty suppression. Finally, note that since 1
τd
ε(t, τd) = [ θ1(x(s̄1)) −

θ1(x(t)), . . . , θN(x(s̄N))− θN(x(t)) ]T, the choice of τd can be made to depend on the
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time rate of change of θ(x(t)), t ≥ 0. Hence, if we assume τd(·) is a time-varying

design parameter, then we can derive an optimal choice for τd(·) as a function of the

rate of change of θ(x(t)), t ≥ 0. This extension will be considered in a future research.

The Q-modification technique described above involves the integration of the sys-

tem uncertainty. To see this, note that (2.7) can be rewritten as

∫ t

t−τd

∆(x(s))ds = c(t, t− τd), t ≥ 0, (2.31)

where the integration is performed over a moving time window of fixed length [t−τd, t],

t ≥ 0. When the system uncertainty can be perfectly parameterized as in (2.2),

integration over the time interval [0, t], t ≥ 0, can be used instead of integration over a

moving time window of fixed length. Since perfect system uncertainty parametrization

eliminates approximation errors, integration over the time interval [0, t], t ≥ 0, does

not introduce any distortion of the information of unknown weights W given by

(2.7). However, in most practical problems, system uncertainty cannot be perfectly

parameterized. In this case, neural networks can be used to approximate uncertain

nonlinear continuous functions over a compact domain with a bounded error [92].

In particular, let ∆ : R
n → R be given by

∆(x(t)) = WTθ(x(t)) + ε(x(t)), t ≥ 0, (2.32)

where ε : Dx → R, Dx ⊂ R
n, is the modeling error such that |ε(x(t))| ≤ ε∗, ε∗ > 0,

for all x(t) ∈ Dx, t ≥ 0, where Dx is a compact set. In this case, integration of the

system uncertainty over the time interval [0, t] gives

WTq(t, 0) = c(t, 0) +

∫ t

0

ε(x(s))ds, t ≥ 0, (2.33)

where the term
∫ t

0
ε(x(s))ds can become very large over time. Hence, (2.33) cannot

be used effectively in the update law (2.12) with the appropriate modifications. Alter-

natively, if the system uncertainty is integrated over a moving time window [t−τd, t],
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Figure 2.3: Visualization of Q-modification with modeling errors.

t ≥ 0, then the unknown weights W satisfy

WTq(t, t− τd) = c(t, t− τd) +

∫ t

t−τd

ε(x(s))ds, t ≥ 0, (2.34)

where the term
∫ t

t−τd
ε(x(s))ds is bounded by ε∗τd. By choosing τd appropriately, one

can guarantee that ε∗τd is sufficiently small. Note that (2.34) defines a collection of

parallel affine hyperplanes in R
N , or a boundary layer, where the ideal weights W lie.

Figure 2.3 shows such a collection of affine hyperplanes S for the case where N = 2.

Note that in Figure 2.3 the width of the boundary layer, that is, the distance between

points A and B, is 2τdε
∗. In the subsequent sections we consider the case of non-

perfect parametrizations of the system uncertainty and show how the Q-modification

technique can be used to develop static and dynamic neuroadaptive controllers using

(2.34).

For illustrative purposes, in this section we considered a simplified version of an

adaptive control problem wherein the system uncertainty is a scalar function and

the adaptive weight is a vector. Our main goal in this section was to illustrate

the main idea of the Q-modification technique by focusing on the salient features

of the technical details. In the subsequent sections we develop the Q-modification

technique for general nonlinear dynamical systems with vector uncertainty structures,

nonlinear uncertainty parameterization, and state and output feedback neuroadaptive

controllers.
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2.3. Neuroadaptive Full-State Feedback Control for Nonlin-

ear Uncertain Dynamical Systems with a Q-modification

Architecture

In this section, we consider the problem of characterizing neuroadaptive full-state

feedback control laws for nonlinear uncertain dynamical systems to achieve reference

model trajectory tracking. Specifically, consider the controlled nonlinear uncertain

dynamical system G given by

ẋ(t) = A0x(t) +BΛ [G(x(t))u(t) + f(x(t), û(t)) + Ax(t)] , x(0) = x0, t ≥ 0,

(2.35)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

û(t) , [u(t− τ), u(t− 2τ), . . . , u(t− pτ)] is a vector of p-delayed values of the con-

trol input with p ≥ 1 and τ > 0 given, A0 ∈ R
n×n and B ∈ R

n×m are known matrices,

Λ ∈ R
m×m is an unknown positive-definite matrix, G : R

n → R
m×m is a known input

matrix function such that detG(x) 6= 0 for all x ∈ R
n, f : R

n×R
mp → R

m is Lipschitz

continuous and bounded in a neighborhood of the origin in R
n × R

mp but otherwise

unknown, and A ∈ R
m×n is unknown. Furthermore, we assume that x(t), t ≥ 0, is

available for feedback and the control input u(·) in (2.35) is restricted to the class of

admissible controls consisting of measurable functions such that u(t) ∈ R
m, t ≥ 0.

In order to achieve trajectory tracking, we construct a reference system Gref given

by

ẋref(t) = Arefxref(t) +Brefr(t), xref(0) = xref0 , t ≥ 0, (2.36)

where xref(t) ∈ R
n, t ≥ 0, is the reference state vector, r(t) ∈ R

r, t ≥ 0, is a bounded

piecewise continuous reference input, Aref ∈ R
n×n is Hurwitz, and Bref ∈ R

n×r. The

goal here is to develop an adaptive control signal u(t), t ≥ 0, that guarantees that
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‖x(t)− xref(t)‖ < γ, t ≥ T , where ‖ · ‖ denotes the Euclidean vector norm on R
n and

γ > 0 is sufficiently small.

Consider the control law given by

u(t) = G−1(x(t)) [un(t) + uad(t)] , t ≥ 0, (2.37)

where un(t), t ≥ 0, and uad(t), t ≥ 0, are defined below. Using the parameterization

Λ = Λ̂ + δΛ, where Λ̂ ∈ R
m×m is a known positive-definite matrix that can be chosen

and δΛ ∈ R
m×m is an unknown symmetric matrix such that Λ̂+δΛ is positive definite,

the dynamics in (2.35) can be rewritten as

ẋ(t) = A0x(t) +B
[
Λ̂uad(t) + Λf(x(t), û(t)) + ΛAx(t) + δΛun(t) + δΛuad(t)

]

+BΛ̂un(t), x(0) = x0, t ≥ 0. (2.38)

The following matching conditions are needed for the main results of this section.

Assumption 2.1. There exist Kx ∈ R
m×n and Kr ∈ R

m×r such that A0 +

BΛ̂Kx = Aref and BΛ̂Kr = Bref .

Now, let un(t), t ≥ 0, in (2.37) be given by

un(t) = Kxx(t) +Krr(t), t ≥ 0. (2.39)

In this case, the system dynamics (2.38) can be rewritten as

ẋ(t) = Arefx(t) +B
[
Λ̂uad(t) + Λf(x(t), û(t)) + ΛAx(t) + δΛun(t) + δΛuad(t)

]

+Brefr(t), x(0) = x0, t ≥ 0.

Defining the tracking error e(t) , x(t)− xref(t), t ≥ 0, the error dynamics is given by

ė(t) = Arefe(t) +B(Λ̂uad(t) + Λf(x(t), û(t)) + ΛAx(t) + δΛun(t) + δΛuad(t)),

e(0) = e0, t ≥ 0, (2.40)
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where e0 , x0−xref0 . We assume that the function f(x, û) can be approximated over

a compact set Dx×Dû by a nonlinear in the parameters neural network up to a desired

accuracy. In this case, there exists ε̃ : R
n × R

mp → R
m such that ‖ε̃(x, û)‖ < ε̃∗ ,

(x, û) ∈ Dx ×Dû, where ε̃∗ > 0, and

f(x, û) = WT
f σ̂(V T

f η(x, û)) + ε̃(x, û), (x, û) ∈ Dx ×Dû, (2.41)

where Wf ∈ R
s×m and Vf ∈ R

l×(s−1) are optimal unknown (constant) weights that

minimize the approximation error over Dx × Dû, σ̂(V T
f η(x, û)) , [1, σ1(V

T
f1
η(x, û)),

σ2(V
T
f2
η(x, û)), . . . , σs−1(V

T
fs−1

η(x, û))]T ∈ R
s, σi(z) , 1

1+exp(−aiz)
, ai > 0, i = 1, . . . ,

s− 1, V T
fi

denotes the ith row of V T
f , i = 1, . . . , s− 1, η : Dx ×Dû → R

l, and ε̃(·, ·)

is the modeling error.

Since f(·, ·) is continuous on R
n×R

mp, we can choose σ̂(η(·, ·)) from a linear space

X of continuous functions that forms an algebra and separates points in Dx × Dû.

In this case, it follows from the Stone-Weierstrass theorem [111, p. 212] that X is a

dense subset of the set of continuous functions on Dx×Dû. Now, as is the case in the

standard neuroadaptive control literature [92], we can construct a signal involving the

estimates of the optimal weights and basis functions as our adaptive control signal. It

is important to note here that we assume that we know both the structure and the size

of the approximator. This is a standard assumption in the neural network adaptive

control literature. In online neural network training, the size and the structure of

the optimal approximator are not known and are often chosen by the rule that the

larger the size of the neural network and the richer the distribution class of the

basis functions over a compact domain, the tighter the resulting approximation error

bound ε̃(·, ·). This goes back to the Stone-Weierstrass theorem which only provides

an existence result without any constructive guidelines.

24



Next, define

W1 , WfΛ, W2 , ATΛ, W3 , δΛT, (2.42)

and let uad(t), t ≥ 0, in (2.37) be given by

uad(t) = −
[
Λ̂ + ŴT

3 (t)
]−1 [

ŴT
1 (t)σ̂(V̂ T

f (t)η(x(t), û(t))) + ŴT
2 (t)x(t) + ŴT

3 (t)un(t)
]
,

t ≥ 0, (2.43)

where Ŵ1(t) ∈ R
s×m, t ≥ 0, Ŵ2(t) ∈ R

n×m, t ≥ 0, Ŵ3(t) ∈ R
m×m, t ≥ 0, and

V̂f (t) ∈ R
l×(s−1), t ≥ 0, are update weights. Using (2.41) and (2.42), it follows from

(2.43) that the error dynamics (2.40) can be rewritten as

ė(t) = Arefe(t) +B
[
WT

1 σ̂(V T
f η(x(t), û(t))) − ŴT

1 (t)σ̂(V̂ T
f (t)η(x(t), û(t)))

]

+ε̄(x(t), û(t)) +B(WT
2 − ŴT

2 (t))x(t) +B(WT
3 − ŴT

3 (t))v(t), e(0) = e0,

t ≥ 0, (2.44)

where ε̄(x, û) , BΛε̃(x, û). Define W̃i(t) , Wi − Ŵi(t), i = 1, 2, 3, t ≥ 0, and

Ṽf (t) , Vf − V̂f (t), t ≥ 0. As it is often done in the neural network literature, for

(x(t), û(t)) ∈ Dx×Dû and t ≥ 0, using a Taylor series expansion about (ŴT
1 (t), V̂ T

f (t))

for t ∈ [0,∞) (see [93] for details) it follows that

WT
1 σ̂(V T

f η(x(t), û(t))) − ŴT
1 (t)σ̂(V̂ T

f (t)η(x(t), û(t)))

= W̃T
1 (t)

[
σ̂(V̂ T

f (t)η(x(t), û(t))) − σ̂′(V̂ T
f (t), η(x(t), û(t)))V̂ T

f (t)η(x(t), û(t))
]

+ŴT
1 (t)σ̂′(V̂ T

f (t), η(x(t), û(t)))Ṽ T
f (t)η(x(t), û(t))

+W̃T
1 (t)σ̂′(V̂ T

f (t), η(x(t), û(t)))V T
f (t)η(x(t), û(t)) +WT

1 O(‖Ṽf (t)‖2), (2.45)

where σ′(V̂ T
f (t), η(x(t), û(t))) ∈ R

s×(s−1) is the Jacobian of σ̂ : R
s → R

s×(s−1) given

by

σ′(V̂ T
f (t), η(x(t), û(t))) =




0 . . . 0
dσ1(z1(t))

dz
· · · 0

...
. . .

...

0 · · · dσs−1(zs−1(t))
dz


 , (2.46)
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where zi(t) = V̂ T
fi

(t)η(x(t), û(t)), i = 1, . . . , s − 1, and O(‖Ṽf‖)/‖Ṽf‖ → 0 as

‖Ṽf‖ → 0. Since the update laws for Ŵ1(t), t ≥ 0, and V̂f (t), t ≥ 0, will be

predicated on the projection operator, it follows that W̃1(t), t ≥ 0, and Ṽf (t), t ≥ 0,

are bounded. Hence, for all t ≥ 0 and (x(t), û(t)) ∈ Dx ×Dû, there exists γ∗ > 0 such

that ‖γ(t)‖ ≤ γ∗, where γ(t) , BW̃T
1 (t)σ̂′(V̂ T

f (t), η(x(t), û(t)))V T
f (t)η(x(t), û(t)) +

BWT
1 O(‖Ṽf (t)‖2), t ≥ 0.

Using (2.45) the error dynamics (2.44) are given by

ė(t) = Arefe(t) +BW̃T
2 (t)x(t) +BW̃T

3 (t)v(t) +BW̃T
1 (t)

[
σ̂(V̂ T

f (t)η(x(t), û(t)))

−σ̂′(V̂ T
f (t), η(x(t), û(t)))V̂ T

f (t)η(x(t), û(t))
]

+ ε̄(x(t), û(t)) + γ(t)

+BŴT
1 (t)σ̂′(V̂ T

f (t), η(x(t), û(t)))Ṽ T
f (t)η(x(t), û(t)), e(0) = e0, t ≥ 0.

(2.47)

Defining

σ̄(V̂f (t), x(t), û(t)) , σ̂(V̂ T
f (t)η(x(t), û(t)))

−σ̂′(V̂ T
f (t), η(x(t), û(t)))V̂ T

f (t)η(x(t), û(t)), t ≥ 0, (2.48)

H(Ŵ1(t), V̂f (t), x(t), û(t)) , ŴT
1 (t)σ̂′(V̂ T

f (t), η(x(t), û(t))), t ≥ 0, (2.49)

and using (2.48) and (2.49), the error dynamics (2.47) can be rewritten as

ė(t) = Arefe(t) +BW̃T
1 (t)σ̄(V̂f (t), x(t), û(t))

+BH(Ŵ1(t), V̂f (t), x(t), û(t))Ṽ
T
f (t)η(x(t), û(t)) +BW̃T

2 (t)x(t)

+BW̃T
3 (t)v(t) + ε̄(x(t), û(t)) + γ(t), e(0) = e0, t ≥ 0. (2.50)

Next, we develop a neuroadaptive control architecture which involves additional

terms in the update laws that are predicated on auxiliary terms involving an estimate

of the unknown weights W1, Vf , W2, and W3. In particular, by integrating the error
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dynamics (2.47) over the moving time interval [td, t], where td , max{0, t− τd} and

τd > 0, we obtain

B
[
WT

1 , Σ(t)V T
f , W

T
2 , W

T
3

]
q(t, t− τd) = c(t, t− τd) − δ(t, t− τd), t ≥ 0, (2.51)

where

Σ(t) ,

∫ t

td

H(Ŵ1(ξ), V̂f (ξ), x(ξ), û(ξ))dξ, q(t, t− τd) ,

∫ t

td

µ(ξ)dξ, t ≥ 0,

(2.52)

µ(t) ,

[
σ̄T(V̂f (t), x(t), û(t)) ηT(x(t), û(t)) xT(t)) vT(t)

]T

, t ≥ 0, (2.53)

c(t, t− τd) ,

∫ t

td

B
[
ŴT

1 (ξ), H(Ŵ1(ξ), V̂f (ξ), x(ξ), û(ξ))V̂
T
f (ξ), ŴT

2 (ξ), ŴT
3 (ξ)

]

·µ(ξ)dξ + e(t) − e(td) −
∫ t

td

Arefe(ξ)dξ, t ≥ 0, (2.54)

δ(t, t− τd) ,

∫ t

td

[
BH(Ŵ1(ξ), V̂f (ξ), x(ξ), û(ξ))V

T
f η(x(ξ), û(ξ))

+ε̄(x(ξ), û(ξ)) + γ(ξ)] dξ −BΣ(t)V T
f

∫ t

td

η(x(ξ), û(ξ))dξ, t ≥ 0. (2.55)

Note that Σ(t), q(t, t− τd), and c(t, t− τd) are computable, whereas δ(t, t− τd) is an

unknown integrated modeling error such that ‖δ(t, t− τd)‖ ≤ τd (‖BΛ‖′ε̃∗ + γ∗ + δ1),

where δ1 > 0 is such that

∥∥∥∥
∫ t

td

[BH(Ŵ1(ξ), V̂f (ξ), x(ξ), û(ξ))V
T
f η(x(ξ), û(ξ))dξ −BΣ(t)V T

f

∫ t

td

η(x(ξ), û(ξ))]dξ

∥∥∥∥

≤ δ1τd, t ≥ 0,

where ‖·‖′ : R
n×m → R is the matrix norm induced by the vector norms ‖·‖′′ : R

n → R

and ‖ · ‖′′′ : R
m → R.

For the statement of next result, define the projection operator Proj(W̃ , Y ) given

by

Proj(W̃ , Y ) ,






Y if µ(W̃ ) < 0,

Y if µ(W̃ ) ≥ 0 and µ′(W̃ )Y ≤ 0,

Y − µ′(W̃ )Y

µ′(W̃ )µ′T(W̃ )
µ′T(W̃ ) otherwise,
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where W̃ ∈ R
s×m, Y ∈ R

n×m, µ(W̃ ) ,
tr W̃TW̃−w̃2

max

ε
W̃

, w̃max ∈ R is the norm bound

imposed on W̃ , and εW̃ > 0, and (·)′ denotes the Fréchet derivative. Note that for a

given matrix W̃ ∈ R
s×m and Y ∈ R

n×m, it follows that

tr[(W̃ −W )T(Proj(W̃ , Y ) − Y )]

=
n∑

i=1

[coli(W̃ −W )]T[Proj(coli(W̃ ), coli(Y )) − coli(Y )]

≤ 0,

where coli(X) denotes the ith column of the matrix X.

Next, we choose τd ≥ 0 such that ‖q(t, t − τd)‖ ≤ qmax and ‖c(t, t − τd)‖ ≤ cmax

for all t ≥ 0. Define

Φ(t) ,
[
WT

1 , Σ(t)V T
f , W

T
2 , W

T
3

]
∈ R

m×(s+l+n+m), t ≥ 0, (2.56)

Φ̂(t) ,

[
ŴT

1 (t), Σ(t)V̂ T
f (t), ŴT

2 (t), ŴT
3 (t)

]
∈ R

m×(s+l+n+m), t ≥ 0, (2.57)

and note that it follows from (2.51) that

BΦ(t)q(t, t− τd) = c(t, t− τd) − δ(t, t− τd), t ≥ 0. (2.58)

Now, using (2.58) it follows that, for every k > 0 and Γ = ΓT > 0,

tr
[
(Φ(t) − Φ̂(t))Γ−1

[
k Γq(t, t− τd)(BΦ̂(t)q(t, t− τd) − c(t, t− τd))

TB
]]

= k tr

[
B(Φ(t) − Φ̂(t))q(t, t− τd)

(
BΦ̂(t)q(t, t− τd) − c(t, t− τd)

)T
]

= −k ‖BΦ̂(t)q(t, t− τd) − c(t, t− τd)‖2 − k
(
BΦ̂(t)q(t, t− τd) − c(t, t− τd)

)T

·δ(t, t− τd)

≤ −k ‖BΦ̂(t)q(t, t− τd) − c(t, t− τd)‖2

+k(‖B‖′Φ̂maxqmax + cmax)(‖BΛ‖′ε̃∗ + γ∗ + δ1)τd, t ≥ 0, (2.59)

where Φ̂max is the norm bound imposed on Φ̂(t), t ≥ 0. Next, define the Q-
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modification term Qnl(t) by

Qnl(t) =




Qnl
1 (t)

Qnl
2 (t)

Qnl
3 (t)

Qnl
4 (t)


 , q(t, t− τd)

(
BΦ̂T(t)q(t, t− τd) − c(t, t− τd)

)T

B, t ≥ 0,

(2.60)

where for t ≥ 0, Qnl(t) ∈ R
(s+l+n+m)×m, Qnl

1 (t) ∈ R
s×m, Qnl

2 (t) ∈ R
l×m, Qnl

3 (t) ∈ R
n×m,

and Qnl
4 (t) ∈ R

m×m.

Consider the feedback control law (2.37) with un(t) and uad(t) given by (2.39) and

(2.43), and update laws given by

˙̂
W1(t) = Γ1Proj[Ŵ1(t), σ̄(V̂ T

f (t), x(t), û(t))eT(t)PB − k h(W̄ (t))Qnl
1 (t)],

Ŵ1(0) = Ŵ10, t ≥ 0, (2.61)

˙̂
V f (t) = ΓfProj[V̂f (t), η(x(t), û(t))e

T(t)PBH(Ŵ1(t), V̂
T
f (t), x(t), û(t))

−k h(W̄ (t))Qnl
2 (t)Σ(t)], V̂f (0) = V̂f0, (2.62)

˙̂
W2(t) = Γ2Proj[Ŵ2(t), x(t)e

T(t)PB − k h(W̄ (t))Qnl
3 (t)], Ŵ2(0) = Ŵ20, (2.63)

˙̂
W3(t) = Γ3Proj[Ŵ3(t), v(t)e

T(t)PB − k h(W̄ (t))Qnl
4 (t)], Ŵ3(0) = Ŵ30, (2.64)

where Γ1 ∈ R
s×s, Γf ∈ R

l×l, Γ2 ∈ R
n×n, and Γ3 ∈ R

m×m are positive-definite matrices,

P ∈ R
n×n is the positive-definite solution of the Lyapunov equation

0 = AT
refP + PAref +R, (2.65)

k > 0, σ̄(V̂ T
f (t), x(t), û(t)) and H(Ŵ1(t), V̂f (t), x(t), û(t)) are given by (2.48) and

(2.49), respectively, Qnl
1 (t), Qnl

2 (t), Qnl
3 (t) and Qnl

4 (t) are given by (2.60), W̄ (t) ,

(Ŵ1(t), V̂f (t), Ŵ2(t), Ŵ3(t)), and h : R
(s+l+n+m)×m → R is a bounded nonnegative

function taking values between 0 and 1 such that if tr ŴT
i (t)Ŵi(t) = ŵ2

i max, for

i = 1, 2, or 3, or tr V̂ T
f (t)V̂f (t) = v̂2

f max, then h(W̄ (t)) = 0, where ŵ2
i max, i = 1, 2, 3,

and v̂2
f max are the norm bounds imposed on Ŵi(t), i = 1, 2, 3, t ≥ 0, and V̂f (t), t ≥ 0,

respectively.
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Theorem 2.3. Consider the nonlinear uncertain dynamical system G given by

(2.35) with u(t), t ≥ 0, given by (2.37) and un(t) and uad(t) given by (2.39) and (2.43),

respectively, and reference model given by (2.36) with the tracking error dynamics

given by (2.50). Assume Assumption 2.1 holds. Then there exists a compact positively

invariant set Dα ⊂ R
n×R

s×m×R
l×(s−1)×R

n×m×R
m×m such that (0,W1, Vf ,W2,W3) ∈

Dα, where W1 ∈ R
s×m, Vf ∈ R

l×(s−1), W2 ∈ R
n×m, and W2 ∈ R

m×m, and the

solution (e(t), Ŵ1(t), Ŵ2(t), Ŵ3(t)), t ≥ 0, of the closed-loop system given by (2.50)

and (2.61)–(2.64) is ultimately bounded for all (e(0), Ŵ1(0), V̂f (0), Ŵ2(0), Ŵ3(0)) ∈

Dα with ultimate bound ‖e(t)‖ < θ, t ≥ T , where

θ >
[
(ρ+

√
ρ2 + ν)2 + λmax(Γ

−1
1 )ŵ2

1max + λmax(Γ
−1
f )v̂2

f max + λmax(Γ
−1
2 )ŵ2

2max

+λmax(Γ
−1
3 )ŵ2

3max

] 1
2
, (2.66)

ρ , λ−1
min(R)‖P‖′(‖BΛ‖′ε̃∗ + γ∗), (2.67)

ν , 2kλ−1
min(R)(‖B‖′Φ̂maxqmax + cmax)(‖BΛ‖′ε̃∗ + γ∗ + δ1)τd, (2.68)

ŵimax, i = 1, 2, 3 and v̂f max, are norm bounds imposed on Ŵi, and V̂f , respectively,

and P ∈ R
n×n is the positive-definite solution of the Lyapunov equation (2.65).

Proof. To show ultimate boundedness of the closed-loop system (2.50), (2.37),

(2.39), (2.43), (2.61)–(2.64), and (2.60) consider the Lyapunov-like function

V (e, W̃1, Ṽf , W̃2, W̃3) = eTPe+ tr W̃T
1 Γ−1

1 W̃1 + tr Ṽ T
f Γ−1

f Ṽf + tr W̃T
2 Γ−1

2 W̃2

+tr W̃T
3 Γ−1

3 W̃3, (2.69)

where P > 0 satisfies (2.65). Note that (2.69) satisfies α(‖z‖) ≤ V (z) ≤ β(‖z‖) with

z = [eT, (vec W̃1)
T, (vec Ṽf )

T, (vec W̃2)
T, (vec W̃3)

T]T and α(‖z‖) = β(‖z‖) = ‖z‖2,

where ‖z‖2 , eTPe + tr W̃T
1 Γ−1

1 W̃1 + Ṽ T
f Γ−1

f Ṽf + tr W̃T
2 Γ−1

2 W̃2 + tr W̃T
3 Γ−1

3 W̃3 and

vec(·) denotes the column stacking operator. Furthermore, note that α(·) and β(·)

are class K∞ functions. Now, letting e(t), t ≥ 0, denote the solution to (2.50) and
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using (2.61)–(2.64), it follows that the time derivative of V (e, W̃1, ṼfW̃2, W̃3) along

the closed-loop system trajectories is given by

V̇ (e(t), W̃1(t), Ṽf (t), W̃2(t), W̃3(t))

= 2eT(t)P
[
Arefe(t) +BW̃T

1 (t)σ̄(V̂f (t), x(t), û(t)) +BW̃T
2 (t)x(t) +BW̃T

3 (t)v(t)

+BH(Ŵ1(t), V̂f (t), x(t), û(t))Ṽ
T
f (t)η(x(t), û(t)) + ε̄(x(t), û(t)) + γ(t)

]

−2tr W̃T
1 (t)Γ−1

1
˙̂
W1(t) − 2tr Ṽ T

f (t)Γ−1
f

˙̂
V f (t) − 2tr W̃T

2 (t)Γ−1
2

˙̂
W2(t)

−2tr W̃T
3 (t)Γ−1

3
˙̂
W3(t)

= −eT(t)Re(t)

+2tr W̃T
2 (t)

[
x(t)eT(t)PB − Proj[Ŵ2(t), x(t)e

T(t)PB − k h(W̄ (t))Qnl
3 (t)]

]

+2tr W̃T
3 (t)

[
v(t)eT(t)PB − Proj[Ŵ3(t), v(t)e

T(t)PB − k h(W̄ (t))Qnl
4 (t)]

]

+2tr W̃T
1 (t)

[
σ̄(V̂f (t), x(t), û(t))e

T(t)PB − Proj[Ŵ1(t), σ̄(V̂f (t), x(t), û(t))e
T(t)PB

−k h(W̄ (t))Qnl
1 (t)]

]
+ 2tr Ṽ T

f (t)
[
η(x(t), û(t))eT(t)PBH(Ŵ1(t), V̂f (t), x(t), û(t))

−Proj[V̂f (t), η(x(t), û(t))e
T(t)PBH(Ŵ1(t), V̂f (t), x(t), û(t))

−k h(W̄ (t))Qnl
2 (t)Σ(t)]

]
+ 2eT(t)P (ε̄(x(t), û(t)) + γ(t))

≤ −λmin(R)‖e(t)‖2 + 2k h(W̄ (t))
[
tr W̃T

1 (t)Qnl
1 (t) + tr Σ(t)Ṽ T

f (t)Qnl
2 (t)

+tr W̃T
2 (t)Qnl

3 (t) + tr W̃T
3 (t)Qnl

4 (t)
]

+ 2‖e(t)‖‖P‖′(‖BΛ‖′ε̃∗ + γ∗)

≤ −‖e(t)‖
(
λmin(R)‖e(t)‖ − 2‖P‖′

(
‖BΛ‖′ε̃∗ + γ∗

))

+2k h(W̄ (t))tr
[
[W̃T

1 (t) Σ(t)Ṽ T
f (t) W̃T

2 (t) W̃T
3 (t) ]Qnl

]
, t ≥ 0. (2.70)

Next, using (2.56), (2.57), and (2.59), the time derivative of V (e, W̃1, ṼfW̃2, W̃3)

along the closed-loop system trajectories satisfies

V̇ (e(t), W̃1(t), W̃2(t), W̃3(t))

≤ −‖e(t)‖
(
λmin(R)‖e(t)‖ − 2‖P‖′

(
‖BΛ‖′ε̃∗ + γ∗

))

+2k h(W̄ (t))tr
[(

Φ(t) − Φ̂(t)
)
Qnl(t)

]
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≤ −‖e(t)‖
(
λmin(R)‖e(t)‖ − 2‖P‖′

(
‖BΛ‖′ε̃∗ + γ∗

))

−2k h(W̄ (t)) ‖BΦ̂(t)q(t, t− τd) − c(t, t− τd)‖2

+2k(‖B‖′Φ̂maxqmax + cmax)(‖BΛ‖′ε̃∗ + γ∗ + δ1)τd, (2.71)

Now, for ‖e(t)‖ ≥ αe , ρ +
√
ρ2 + ν, where ρ and ν are given by (2.67) and

(2.68), it follows that V̇ (e(t), W̃1(t), Ṽf (t), W̃2(t), W̃3(t)) ≤ 0 for all t ≥ 0, that

is, V̇ (e(t), W̃1(t), Ṽf (t), W̃2(t), W̃3(t)) ≤ 0 for all (e(t), W̃1(t), Ṽf (t), W̃2(t), W̃3(t)) ∈

D̃e\D̃r and t ≥ 0, where

D̃e ,

{
(e, W̃1, Ṽf , W̃2, W̃3) ∈ R

n × R
s×m × R

l×(s−1) × R
m×n × R

m×m : x ∈ Dc

}
,

D̃r ,

{
(e, W̃1, Ṽf , W̃2, W̃3) ∈ R

n × R
s×m × R

l×(s−1) × R
m×n × R

m×m : ‖e‖ ≤ αe

}
.

Finally, define

D̃α ,

{
(e, W̃1, Ṽf , W̃2, W̃3) ∈ R

n × R
s×m × R

l×(s−1) × R
m×n × R

m×m :

V (e, W̃1, Ṽf , W̃2, W̃3) ≤ α
}
,

where α is the maximum value such that D̃α ⊆ D̃e, and define

D̃η ,

{
(e, W̃1, Ṽf , W̃2, W̃3) ∈ R

n × R
s×m × R

l×(s−1) × R
m×n × R

m×m :

V (e, W̃1, Ṽf , W̃2, W̃3) ≤ η
}
,

where

η > β(µ) = µ2 = λmax(P )α2
e + λmax(Γ

−1
1 )ŵ2

1max + λmax(Γ
−1
f )v̂f maxλmax(Γ

−1
2 )ŵ2

2max

+λmax(Γ
−1
3 )ŵ2

3max. (2.72)

To show ultimate boundedness of the closed-loop system (2.50) and (2.61)–(2.64) as-

sume1 that D̃η ⊂ D̃α. Now, since V̇ (e, W̃1, Ṽf , W̃2, W̃3) ≤ 0 for all (e, W̃1, Ṽf , W̃2, W̃3) ∈
1This assumption is standard in the neural network literature and ensures that in the error space

D̃e there exists at least one Lyapunov level set D̃η ⊂ D̃α. In the case where the neural network
approximation holds in R

n with delayed values, this assumption is automatically satisfied.
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D̃e\D̃r and D̃r ⊂ D̃α, it follows that D̃α is positively invariant. Hence, if (e(0), W̃1(0),

Ṽf (0), W̃2(0), W̃3(0)) ∈ D̃α, then it follows from Corollary 4.4 of [48] that the so-

lution (e(t), W̃1(t), Ṽf (0), W̃2(t), W̃3(t)), t ≥ 0, to (2.50) and (2.61)–(2.64) is ulti-

mately bounded with respect to (e, W̃1, Ṽf , W̃2, W̃3) with ultimate bound given by

γ = α−1(η) =
√
η, which yields (2.66). This completes the proof.

Remark 2.5. Note that since e(t), t ≥ 0, and xref(t), t ≥ 0, are bounded, it

follows that x(t), t ≥ 0, is bounded, and hence, un(t), t ≥ 0, given by (2.39) is

bounded. Furthermore, since Ŵ3(t) is bounded for all t ≥ 0, it is always possible to

choose Λ̂ and ŵ2
3max so that

[
Λ̂ + ŴT

3 (t)
]−1

exists and is bounded for all t ≥ 0. This

follows from the fact that for any two square matrices A and B, det(A + B) 6= 0 if

and only if there exists α > 0 such that σmin(A) > α and σmax(B) ≤ α. Hence, it

follows that for A = Λ̂ and B = ŴT
3 (t), t ∈ [0,∞),

[
Λ̂ + ŴT

3 (t)
]−1

exists for all t ≥ 0

if ŵ2
3max is sufficiently small. Hence, the adaptive signal uad(t), t ≥ 0, given by (2.43)

is bounded. Since un(t), t ≥ 0, and uad(t), t ≥ 0 are bounded, and detG(x) 6= 0 for

all x ∈ R
n, it follows that control input u(t), t ≥ 0, given by (2.37) is bounded for all

t ≥ 0.

Remark 2.6. It is straightforward to show that the Q-modification framework

can be incorporated within a radial basis function neural network-based adaptive

controller and combined with the robust adaptive control laws discussed in [66], such

as σ- or e-modifications.

Remark 2.7. Note that the Q-modification terms in the update laws (2.61)–

(2.64) drive the trajectories of the neural network weights to a collection of affine

hyperplanes characterized by (2.51) involving the unknown neural network weights.
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2.4. Output Feedback Control for Nonlinear Uncertain Dy-

namical Systems with a Q-modification Architecture

In this section, we consider the problem of characterizing neuroadaptive dynamic

output feedback control laws for nonlinear uncertain dynamical systems to achieve

reference model trajectory tracking. Specifically, consider the controlled nonlinear

uncertain dynamical system G given by

ẋ(t) = A0x(t) +BΛ [u(t) + f(x(t), û(t))] , x(0) = x0, t ≥ 0, (2.73)

y(t) = Cx(t) +WT
y σy(ŷ(t), û(t)), (2.74)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

y(t) ∈ R
m, t ≥ 0, is the system output, û(t) , [u(t− τu), u(t− 2τu), . . . , u(t− pτu)]

is a vector of p-delayed values of the control input with p ≥ 1 and τu > 0 given,

ŷ(t) , [ y(t− τy), y(t− 2τy), . . . , y(t− qτy)] is a vector of q-delayed values of the

system output with q ≥ 1 and τy > 0 given, A0 ∈ R
n×n, B ∈ R

n×m, and C ∈ R
m×n are

known matrices with A0 Hurwitz, Λ ∈ R
m×m is an unknown positive-definite matrix,

f : R
n × R

mp → R
m is Lipschitz continuous and bounded in a neighborhood of the

origin in R
n × R

mp but otherwise unknown, Wy ∈ R
k×m is an unknown matrix, and

σy : R
mq×R

mp → R
k is a known bounded Lipschitz continuous function. Furthermore,

we assume that the control input u(·) in (2.73) is restricted to the class of admissible

controls consisting of measurable functions such that u(t) ∈ R
m, t ≥ 0.

In order to achieve trajectory tracking, we construct a reference system Gref given

by

ẋref(t) = Arefxref(t) +Brefr(t), xref(0) = xref0 , t ≥ 0, (2.75)

yref(t) = Cxref(t), (2.76)

where xref(t) ∈ R
n, t ≥ 0, is the reference state vector, r(t) ∈ R

r, t ≥ 0, is a bounded

piecewise continuous reference input, yref(t) ∈ R
m, t ≥ 0, is the reference output,
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Aref ∈ R
n×n is Hurwitz, and Bref ∈ R

n×r. The goal of the controller design is to

develop an adaptive control signal u(t), t ≥ 0, predicated on the system measurement

y(t), t ≥ 0, such that ‖y(t) − yref(t)‖ < γ, for all t ≥ T , where T ∈ [0, ∞) and γ > 0

is sufficiently small.

The following matching conditions are needed for the main results of this section.

Assumption 2.2. There exist Ky ∈ R
m×m and Kr ∈ R

m×r such that A0 +

BKyC = Aref and BKr = Bref .

Consider the control law given by

u(t) = Λ̂−1(un(t) + uad(t)), t ≥ 0, (2.77)

where Λ̂ ∈ R
m×m is positive-definite matrix, and un(t), t ≥ 0, and uad(t), t ≥ 0, are

defined below. Using the parameterization Λ = Λ̂ + δΛ, where δΛ ∈ R
m×m is an

unknown symmetric matrix, the dynamics in (2.73) can be rewritten as

ẋ(t) = A0x(t) +Bun(t) +B [uad(t) + Λf(x(t), û(t)) + δΛu(t)] , x(0) = x0, t ≥ 0.

(2.78)

Now, let un(t), t ≥ 0, in (2.77) be given by

un(t) = Kyy(t) +Krr(t), t ≥ 0. (2.79)

In this case, using Assumption 2.2 the system dynamics (2.78) can be rewritten as

ẋ(t) = Arefx(t) +B
[
uad(t) + Λf(x(t), û(t)) + δΛu(t) +KyW

T
y σy(ŷ(t), û(t))

]
,

+Brefr(t)x(0) = x0, t ≥ 0. (2.80)

Defining the tracking error e(t) , x(t)− xref(t), t ≥ 0, the error dynamics is given by

ė(t) = Arefe(t) +B
[
uad(t) + Λf(x(t), û(t)) + δΛu(t) +KyW

T
y σy(ŷ(t), û(t))

]
,

e(0) = e0, t ≥ 0, (2.81)
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where e0 , x0 − xref0 .

As in Section 2.3, we approximate the unknown function f(x, û), (x, û) ∈ Dx×Dû,

by a nonlinear in the parameters neural network. In particular, we assume that the

function f(x, û) can be approximated over a compact set Dx ×Dû by a nonlinear in

the parameters neural network up to a desired accuracy. In this case, (2.41) holds.

In order to develop an output feedback neural network, we use the approach

developed in [87] for reconstructing the system states via the system delayed inputs

and outputs. Specifically, we use a memory unit as a particular form of a tapped delay

line that takes a scalar time series input and provides an (2mn−r)-dimensional vector

output consisting of the present values of the system outputs and system inputs, and

their 2(n− 1)m− r delayed values given by

ζ(t) , [y1(t), y1(t− d), . . . , y1(t− (n− 1)d), . . . , ym(t), ym(t− d), . . . ,

ym(t− (n− 1)d);u1(t), u1(t− d), . . . , u1(t− (n− r1 − 1)d), . . . , um(t),

um(t− d), . . . , um(t− (n− rm − 1)d)]T, t ≥ 0, (2.82)

where ri denotes the relative degree of G with respect to the output yi, i = 1, . . . ,m,

r , r1 + · · · + rm is the (vector) relative degree of G, and d > 0.

Analogous to (2.43), consider the adaptive signal uad(t), t ≥ 0, given by

uad(t) = −
[
Im + ŴT

2 (t)Λ̂−1
]−1 [

ŴT
1 (t)σ̂(V̂ T

f (t)η̂(ζ(t), û(t))) + ŴT
2 (t)Λ̂−1un(t)

+ŴT
y (t)σy(ŷ(t), û(t))

]
, t ≥ 0, (2.83)

where Ŵ1(t) ∈ R
s×m, t ≥ 0, Ŵ2(t) ∈ R

m×m, t ≥ 0, Ŵy(t) ∈ R
k×m, t ≥ 0, and

V̂f (t) ∈ R
l×(s−1), t ≥ 0, are update weights, and η̂ : Dζ ×Dû → R

l is continuous and

bounded on Dζ × Dû , where Dζ ⊂ R
2mn−r is a compact set. Furthermore, define

W1 , WfΛ and W2 , δΛT.

Using (2.41), it follows from (2.83) that the error dynamics (2.81) can be rewritten
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as

ė(t) = Arefe(t) +B
[
WT

1 σ̂(V T
f η̂(ζ(t), û(t))) − ŴT

1 (t)σ̂(V̂ T
f (t)η̂(ζ(t), û(t)))

]

+ε̄(x(t), û(t)) +B(W2 − Ŵ2(t))
Tu(t) +BKy(Wy − Ŵy(t))

Tσy(ŷ(t), û(t))

+BWT
1

[
σ̂(V T

f η(x(t), û(t))) − σ̂(V T
f η̂(ζ(t), û(t))

]
, e(0) = e0, t ≥ 0, (2.84)

where ε̄(x, û) , BΛε̃(x, û). Define W̃i(t) , Wi − Ŵi(t), i = 1, 2, t ≥ 0, Ṽf (t) ,

Vf − V̂f (t), t ≥ 0, and W̃y(t) , Wy−Ŵy(t), t ≥ 0. As in Section 2.3 , for (ζ(t), û(t)) ∈

Dζ×Dû and t ≥ 0, using a Taylor series expansion about (ŴT
1 (t), V̂ T

f (t)) for t ∈ [0,∞)

(see [93] for details) it follows that

WT
1 σ̂(V T

f η̂(ζ(t), û(t))) − ŴT
1 (t)σ̂(V̂ T

f (t)η̂(ζ(t), û(t)))

= W̃T
1 (t)

[
σ̂(V̂ T

f (t)η̂(ζ(t), û(t))) − σ̂′(V̂ T
f (t), η̂(ζ(t), û(t)))V̂ T

f (t)η̂(ζ(t), û(t))
]

+ŴT
1 (t)σ̂′(V̂ T

f (t), η̂(ζ(t), û(t)))Ṽ T
f (t)η̂(ζ(t), û(t))

+W̃T
1 (t)σ̂′(V̂ T

f (t), η̂(ζ(t), û(t)))V T
f (t)η̂(ζ(t), û(t)) +WT

1 O(‖Ṽf (t)‖2), (2.85)

where σ′(V̂ T
f (t), η̂(ζ(t), û(t))) ∈ R

s×(s−1) is the Jacobian of σ̂ : R
s → R

s×(s−1) given

by

σ′(V̂ T
f (t), η̂(ζ(t), û(t))) =




0 . . . 0
dσ1(z1(t))

dz
· · · 0

...
. . .

...

0 · · · dσs−1(zs−1(t))
dz


 , (2.86)

where zi(t) = V̂ T
fi

(t)η̂(ζ(t), û(t)), i = 1, . . . , s − 1. Since the update laws for Ŵ1(t),

t ≥ 0, and V̂f (t), t ≥ 0, will be predicated on the projection operator, it fol-

lows that W̃1(t), t ≥ 0, and Ṽf (t), t ≥ 0, are bounded. Hence, for all t ≥ 0

and (ζ(t), û(t)) ∈ Dζ × Dû, there exists γ∗ > 0 such that ‖γ(t)‖ ≤ γ∗, where

γ(t) , BW̃T
1 (t)σ̂′(V̂ T

f (t), η̂(ζ(t), û(t)))V T
f (t)η̂(ζ(t), û(t)) +BWT

1 O(‖Ṽf (t)‖2), t ≥ 0.

Using (2.85) the error dynamics (2.84) are given by

ė(t) = BW̃T
1 (t)

[
σ̂(V̂ T

f (t)η̂(ζ(t), û(t))) − σ̂′(V̂ T
f (t), η̂(ζ(t), û(t)))V̂ T

f (t)η̂(ζ(t), û(t))
]
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+Arefe(t) +BŴT
1 (t)σ̂′(V̂ T

f (t), η̂(ζ(t), û(t)))Ṽ T
f (t)η̂(ζ(t), û(t)) +BW̃T

2 (t)u(t)

+BKyW̃
T
y (t)σy(ŷ(t), û(t)) +BWT

1

[
σ̂(V T

f η(x(t), û(t))) − σ̂(V T
f η̂(ζ(t), û(t))

]

+ε̄(x(t), û(t)) + γ(t), e(0) = e0, t ≥ 0. (2.87)

Defining

σ̄(V̂f (t), ζ(t), û(t)) , σ̂(V̂ T
f (t)η̂(ζ(t), û(t)))

−σ̂′(V̂ T
f (t), η̂(ζ(t), û(t)))V̂ T

f (t)η̂(ζ(t), û(t)), t ≥ 0, (2.88)

H(Ŵ1(t), V̂f (t), ζ(t), û(t)) , ŴT
1 (t)σ̂′(V̂ T

f (t), η̂(ζ(t), û(t))), t ≥ 0, (2.89)

and using (2.88) and (2.89), the error dynamics (2.87) can be rewritten as

ė(t) = Arefe(t) +BW̃T
1 (t)σ̄(V̂f (t), ζ(t), û(t))

+BH(Ŵ1(t), V̂f (t), ζ(t), û(t))Ṽ
T
f (t)η̂(ζ(t), û(t)) +BW̃T

2 (t)u(t)

+BKyW̃
T
y (t)σy(ŷ(t), û(t)) + ε(x(t), ζ(t), û(t)), e(0) = e0, t ≥ 0, (2.90)

where ‖ε(x(t), ζ(t), û(t))‖ ≤ ε∗ as long as (x(t), ζ(t), û(t)) ∈ Dx × Dζ × Dû, where

ε∗ , ‖BΛ‖′ε̃∗ + γ∗ + 2‖BW1‖′
√
s.

In order to develop an output feedback neural network, consider the estimator

given by

ξ̇c(t) = Arefξc(t) + L [y(t) − yc(t) − yref(t)] , ξc(0) = ξc0, t ≥ 0, (2.91)

yc(t) = Cξc(t) + ŴT
y (t)σy(ŷ(t), û(t)), (2.92)

where ξc(t) ∈ R
n, t ≥ 0, L ∈ R

n×m is such that Aref − LC is Hurwitz, and define

ỹ(t) , y(t) − yref(t). It follows from (2.74) and (2.76) that

Ce(t) = ỹ(t) −WT
y σy(ŷ(t), û(t)). (2.93)

Premultiplying (2.90) by C and integrating the resulting equation over the moving

time interval [td, t], where td , max{0, t−τd} and τd ≥ 0, and using (2.93), we obtain

B1

[
WT

1 , Σ(t)V T
f , W

T
2 , KyW

T
y

]
q(t, t− τd) = c(t, t− τd) − δ(t, t− τd), t ≥ 0, (2.94)
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where

Σ(t) ,

∫ t

td

H(Ŵ1(ξ), V̂f (ξ), ζ(ξ), û(ξ))dξ, q(t, t− τd) ,

∫ t

td

µ(ξ)dξ, t ≥ 0,

(2.95)

µ(t) ,

[
σ̄T(V̂f (t), ζ(t), û(t)) η̂T(ζ(t), û(t)) uT(t) σT

y (ŷ(t), û(t))
]T

, t ≥ 0,

(2.96)

c(t, t− τd) , B1

∫ t

td

[
ŴT

1 (ξ), H(Ŵ1(ξ), V̂f (ξ), ζ(ξ), û(ξ))V̂
T
f (ξ), ŴT

2 (ξ), KyŴ
T
y (ξ)

]

·µ(ξ)dξ + ỹ(t) − ỹ(td) − CAref

∫ t

td

ξc(ξ)dξ, t ≥ 0, (2.97)

δ(t, t− τd) , WT
y [σy(ŷ(t), û(t)) − σy(ŷ(td), û(t− τd)] + CAref

∫ t

td

(e(ξ) − ξc(ξ))dξ

+B1

∫ t

td

H(Ŵ1(ξ), V̂f (ξ), ζ(ξ), û(ξ))V
T
f η̂(ζ(ξ), û(ξ))dξ

−B1Σ(t)V T
f

∫ t

td

η̂(ζ(ξ), û(ξ))dξ + C

∫ t

td

ε(x(ξ), ζ(ξ), û(ξ))dξ, t ≥ 0,

(2.98)

and B1 , CB. Note that Σ(t), q(t, t− τd), and c(t, t− τd) are computable, whereas

δ(t, t − τd) is an unknown term such that ‖δ(t, t − τd)‖ ≤ 2‖Wy‖′σ∗
y + τdε

∗‖C‖′ +

‖CAref‖′τd maxs∈[td,t] ‖e(s) − ξ(s)‖ + τdδ1, where σ∗
y is such that ‖σy(ŷ, û)‖ ≤ σ∗

y for

all ŷ ∈ R
mq and û ∈ R

mp, and δ1 > 0 is such that

∥∥∥∥B1

∫ t

td

[H(Ŵ1(ξ), V̂f (ξ), ζ(ξ), û(ξ))V
T
f η̂(ζ(ξ), û(ξ))dξ −B1Σ(t)V T

f

∫ t

td

η̂(ζ(ξ), û(ξ))]dξ

∥∥∥∥

≤ δ1τd, t ≥ 0.

As in Section 2.3, we choose τd ≥ 0 such that ‖q(t, t − τd)‖ ≤ qmax and ‖c(t, t −

τd)‖ ≤ cmax for all t ≥ 0. Define

Φ(t) ,
[
WT

1 , Σ(t)V T
f , W

T
2 , KyW

T
y

]
∈ R

m×(s+l+m+k), t ≥ 0, (2.99)

Φ̂(t) ,

[
ŴT

1 (t), Σ(t)V̂ T
f (t), ŴT

2 (t), KyŴ
T
y (t)

]
∈ R

m×(s+l+m+k), t ≥ 0, (2.100)
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and note that it follows from (2.94) that

B1Φ(t)q(t, t− τd) = c(t, t− τd) − δ(t, t− τd), t ≥ 0. (2.101)

Now, using (2.101) it follows that, for every k > 0 and Γ = ΓT > 0,

tr
[
(Φ(t) − Φ̂(t))Γ−1

(
k Γq(t, t− τd)(B1Φ̂(t)q(t, t− τd) − c(t, t− τd))

TB1

)]

= k tr

[
B1(Φ(t) − Φ̂(t))q(t, t− τd)

(
B1Φ̂(t)q(t, t− τd) − c(t, t− τd)

)T
]

= −k ‖B1Φ̂(t)q(t, t− τd) − c(t, t− τd)‖2 − k
(
B1Φ̂(t)q(t, t− τd) − c(t, t− τd)

)T

·δ(t, t− τd)

≤ −k ‖B1Φ̂(t)q(t, t− τd) − c(t, t− τd)‖2 + ψ∗, t ≥ 0, (2.102)

where ψ∗ , k(‖CAref‖′τd maxs∈[td,t] ‖e(s) − ξ(s)‖ + τdε
∗‖C‖′ + 2‖Wy‖′σ∗

y)(‖B1‖′Φ̂max

·qmax + cmax), and Φ̂max is the norm bound imposed on Φ̂(t), t ≥ 0. Next, define the

Q-modification term Qnl(t) by

Qnl(t) =




Qnl
1 (t)

Qnl
2 (t)

Qnl
3 (t)

Qnl
4 (t)


 , q(t, t− τd)

(
B1Φ̂

T(t)q(t, t− τd) − c(t, t− τd)
)T

B1, t ≥ 0,

(2.103)

where for t ≥ 0, Qnl(t) ∈ R
(s+l+m+k)×m, Qnl

1 (t) ∈ R
s×m, Qnl

2 (t) ∈ R
l×m, Qnl

3 (t) ∈

R
m×m, and Qnl

4 (t) ∈ R
k×m.

Consider the feedback control law (2.77) with un(t) and uad(t) given by (2.79) and

(2.83), and update laws given by

˙̂
W1(t) = Γ1Proj[Ŵ1(t), σ̄(V̂ T

f (t), ζ(t), û(t))ξT
c (t)PB − k h(W̄ (t))Qnl

1 (t)],

Ŵ1(0) = Ŵ10, t ≥ 0, (2.104)

˙̂
V f (t) = ΓfProj[V̂f (t), η̂(ζ(t), û(t))ξ

T
c (t)PBH(Ŵ1(t), V̂

T
f (t), ζ(t), û(t)) (2.105)

−k h(W̄ (t))Qnl
2 (t)Σ(t)], V̂f (0) = V̂f0,
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˙̂
W2(t) = Γ2Proj[Ŵ2(t), u(t)ξ

T
c (t)PB − k h(W̄ (t))Qnl

3 (t)], Ŵ2(0) = Ŵ20, (2.106)

˙̂
Wy(t) = ΓyProj[Ŵy(t), σy(ŷ(t), û(t))ξ

T
c (t)(PBKy + P̃L) − k h(W̄ (t))Qnl

4 (t)],

Ŵy(0) = Ŵy0, (2.107)

where Γ1 ∈ R
s×s, Γf ∈ R

l×l, Γ2 ∈ R
m×m, and Γ3 ∈ R

k×k are positive-definite matrices,

P ∈ R
n×n is the positive-definite solution to (2.65), and P̃ ∈ R

n×n is the positive-

definite solution to the Lyapunov equation

0 = (A− LC)TP̃ + P̃ (A− LC) + R̃, (2.108)

where R > 0, k > 0, σ̄(V̂ T
f (t), ζ(t), û(t)) and H(Ŵ1(t), V̂

T
f (t), ζ(t), û(t)) are given

by (2.88) and (2.89), respectively, Qnl
1 (t), Qnl

2 (t), Qnl
3 (t), and Qnl

4 (t) are given by

(2.103), W̄ (t) , (Ŵ1(t), V̂f (t), Ŵ2(t), Ŵy(t)), and h : R
(s+l+m+k)×m → R is a bounded

nonnegative function taking values between 0 and 1 such that if tr ŴT
i (t)Ŵi(t) =

ŵ2
i max, for i = 1, 2, or y, or tr V̂ T

f (t)V̂f (t) = v̂2
f max, then h(W̄ (t)) = 0, where ŵ2

i max,

i = 1, 2, or y, and v̂2
f max are the norm bounds imposed on Ŵi(t), i = 1, 2, or y, t ≥ 0,

and V̂f (t), t ≥ 0, respectively. Note that projection operator guarantees boundness

of Ŵi(t), i = 1, 2, t ≥ 0, V̂ T
f (t), t ≥ 0, and Ŵy(t), t ≥ 0. In addition, we choose the

parameters ŵ2max and Λ̂ such that the inverse
[
Im + ŴT

2 (t)Λ̂−1
]−1

in (2.83) exists for

all t ≥ 0. In particular, there exists ν > 0 such that

‖Im + ŴT
2 (t)Λ̂−1‖′ ≤ ν, t ≥ 0. (2.109)

Next, we introduce several bounds needed to formulate the main result of this

section. Since η̂(ζ(t), (̂t)) and σy(ŷ(t), û(t)) are bounded for all t ≥ 0, there exist

η∗ > 0 and σ∗
y > 0 such that ‖η̂(ζ(t), û(t))‖ ≤ η∗, t ≥ 0, and ‖σy(ŷ(t), û(t))‖ ≤ σ∗

y ,

t ≥ 0. Hence, there exist σ̄∗ > 0 and H∗ > 0 such that ‖σ̄(V̂f (t), ζ(t), û(t))‖ ≤ σ̄∗,

t ≥ 0, and ‖H(Ŵ1(t), V̂f (t), ζ(t), û(t))‖′ ≤ H∗, t ≥ 0. Furthermore, there exist

x∗ref > 0 and r∗ > 0 such that ‖xref(t)‖ ≤ x∗ref , t ≥ 0, and ‖r(t)‖ ≤ r∗, t ≥ 0. It
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follows from (2.77), (2.79), and (2.83) that there exist αu > 0 and βu > 0 such that

‖u(t)‖ ≤ αu + βu‖e(t)‖, t ≥ 0, (2.110)

αu ≤ ‖Λ̂−1‖′
[
ν(ŵ1max

√
s+ ŵymaxσ

∗
y) + (1 + ŵ2max‖Λ̂−1‖′)(‖KyC‖′x∗ref

+‖KyWy‖′σ∗
y + ‖Ky‖′r∗)

]
, (2.111)

βu ≤ ‖Λ̂−1‖′(1 + ŵ2max‖Λ̂−1‖′)‖KyC‖′. (2.112)

Finally, define

αe , λmin(R) − 1 − βu‖PB‖′ (‖W2‖′ + ŵ2max) , (2.113)

αξ , λmin(R̃) − ‖P̃LC‖′2 − βu‖PB‖′(‖W2‖′ + ŵ2max), (2.114)

βe , ‖P‖′ε∗ + ‖PB‖′ (‖W1‖′ + ŵ2maxσ̄
∗) + αu‖PB‖′ (‖W2‖′ + ŵ2max)

+‖PB‖′H∗ (‖Vf‖′ + v̂f max) η
∗ + ‖PBKy‖′H∗ (‖Wy‖′ + ŵymax)σ

∗
y , (2.115)

βξ , βe − ‖P‖′ε∗. (2.116)

Theorem 2.4. Consider the nonlinear uncertain dynamical system G given by

(2.73) and (2.74) with u(t), t ≥ 0, given by (2.77). Assume Assumption 2.2 holds,

αe > 0, and αξ > 0. Then there exists a compact positively invariant set Dα ⊂

R
n × R

n × R
s×m × R

k×s × R
m×m × R

l×m such that (0, 0,W1, Vf ,W2,Wy) ∈ Dα and

the solution (x(t), ξc(t), Ŵ1(t), V̂f (t), Ŵ2(t), Ŵy(t)), t ≥ 0, of the closed-loop system

given by (2.73), (2.74), (2.91), (2.92), (2.104)–(2.107), is ultimately bounded for all

(x(0), ξc(0), Ŵ1(0), V̂f (0), Ŵ2(0), Ŵy(0)) ∈ Dα with ultimate bound ‖y(t)−yref(t)‖2 <

ε, t ≥ T , where

ε >

[(√
µ

αe

+βe

)2

+

(√
µ

αξ

+ βξ

)2

+ λmax(Γ
−1
1 )ŵ2

1max + λmax(Γ
−1
f )ŵ2

f max

+λmax(Γ
−1
2 )ŵ2

2max + λmax(Γ
−1
y )ŵ2

ymax

] 1
2 , (2.117)

ν , αeβ
2
e + αξβ

2
ξ + ψ∗. (2.118)
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Proof. Ultimate boundness can be established by considering the Lyapunov-like

function

V (e, ξc, W̃1, Ṽf , W̃2, W̃y) = eTPe+ ξT
c P̃ ξc + tr W̃T

1 Γ−1
1 W̃1 + tr Ṽ T

f Γ−1
f Ṽf

+tr W̃T
2 Γ−1

2 W̃2 + tr W̃T
y Γ−1

y W̃y.

The remainder of the proof is similar to the proof of Theorem 2.3 and, hence, is

omitted.

2.5. Illustrative Numerical Examples

In this section, we present three numerical examples to demonstrate the utility and

efficacy of the proposed Q-modification architecture for neuroadaptive stabilization

and command following.

Example 2.1 Consider the uncertain dynamical system describing wing rock

aircraft dynamics [20] given by

ẋ1(t) = x2(t), x1(0) = x10, t ≥ 0, (2.119)

ẋ2(t) = u(t) + ∆(x(t)), x2(0) = x20, (2.120)

where x = [x1, x2]
T, x1 represents the roll angle, x2 represents the roll rate, and

∆(x) = θ1+θ2x1+θ3x2+θ4|x1|x2+θ5|x2|x2+θ6x
3
1, where θi, i = 1, . . . , 6, are unknown

parameters. For our simulation we set θ1 = 0, θ2 = −0.01859521, θ3 = 0.015162375,

θ4 = −0.06245153, θ5 = 0.00954708, and θ6 = 0.02145291. These parameters are

derived from the aircraft aerodynamic coefficients. The initial conditions are x1(0) =

6◦ and x2(0) = 3◦/sec. A reference model is chosen in the form of (2.36) with

Aref =

[
0 1

−ω2
n −2ωnζ

]
, Bref =

[
0
ω2

n

]
,

where ωn = 0.5 rad/sec and ζ = 0.707, xref0 = [0, 0]T, and the roll command is set

to zero so that r(t) ≡ 0. Here, the control objective is to eliminate the oscillations
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caused by the wing rock phenomenon and to stabilize the roll dynamics to the trim

flight condition (x1, x2) = (0, 0). For this example, we let

A0 =

[
0 1

−ω2
n −2ωnζ

]
, B =

[
0
1

]
,

Λ = 1 which is assumed to be known, Λ̂ = Λ, G(x(t)) ≡ 1, A = 0, and f(x, û) =

WTσ(x), whereW = [θ1, θ2+ω
2
n, θ3+2ωnζ, θ4, θ5, θ6]

T and σ(x) = [1, x1, x2, |x1|x2,

|x2|x2, x
3
1]

T. Hence, Kx = [0, 0], Kr = ω2
n, and un(t) = 0, t ≥ 0.

Figure 2.4 shows the phase portrait of the uncontrolled and controlled (with k = 0)

system. Note that the uncontrolled system results in a limit cycle instability, whereas

the case where k = 0 corresponds to the Q-modification term turned off in the

adaptive controller. Figure 2.4 shows that for k = 0, adaptation takes place very

slowly for small gains and the system transient response exhibits large oscillations.

Figure 2.5 shows the phase portrait of the controlled system with the Q-modification

term active, with τd = 1 sec and different values of k. Finally, Figures 2.6 and 2.7

show the update weights versus time. Note that for k = 0 the update weights exhibit

oscillations and involve high gains, whereas with the Q-modification terms present

the update weights converge to their steady state values much faster and without

exhibiting excessive oscillations.

Example 2.2 This example considers a nonlinear dynamical system representing

a controlled rigid spacecraft given by

ẋ(t) = −I−1
b X(t)Ibx(t) + I−1

b u(t), x(0) = x0, t ≥ 0, (2.121)

where x = [x1, x2, x3]
T represents the angular velocities of the spacecraft with respect

to the body-fixed frame, Ib ∈ R
3 is an unknown positive-definite inertia matrix of

the spacecraft, u = [u1, u2, u3]
T is a control vector with control inputs providing

body-fixed torques about three mutually perpendicular axes defining the body-fixed
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Figure 2.4: Phase portrait of uncontrolled and controlled system without Q-
modification terms.
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Figure 2.5: Phase portrait of controlled system with Q-modification terms active.
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Figure 2.6: Neural network weighting functions versus time without Q-modification.
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Figure 2.7: Neural network weighting functions versus time with Q-modification.

frame of the spacecraft, and X(t) denotes the skew-symmetric matrix

X ,




0 −x3 x2

x3 0 −x1

−x2 x1 0



 .

Note that (2.121) can be rewritten in state-space form (2.35) with A0 ∈ R
3×3, B = I3,

Λ = I−1
b , G(x(t)) ≡ I3, f(x(t), û(t)) = −X(t)Ibx(t) − IbA0x(t), and A = 03×3.

Next, we use Theorem 2.3 to design a neuroadaptive controller given by (2.37)

with un(t) and uad(t) given by (2.39) and (2.43), respectively. Here, we used 6 nodes

(s = 2, m = 3) in the outer layer and 3 nodes (l = 1, m = 3) in the hidden layer of the

neural network. For our simulation we used Aref = diag[−1,−2,−3], A0 = 0.99Aref ,

Bref = I3, r(t) ≡ 0, xref0 = [0, 0, 0]T,

Λ̂ =




0.0351 0 −0.0021

0 0.0412 0
−0.0021 0 0.0468



 ,

Ŵ1(t) ∈ R
2×3, V̂f (t) ∈ R

3×1, η(x(t), û(t)) = x(t), t ≥ 0, a = 0.01, Ŵ2(t) ≡ 0,

Ŵ3(t) ∈ R
3×3, Ŵ10(t) = 02×3, V̂f (t) = [0, 0, 0]T, Ŵ30(t) = 03×3, Γ1 = 0.1I2, Γf = 0.1I3,

Γ3 = 0.01I3, P = diag[0.05, 0.25, 0.0167], and τd = 0.1 sec. With the above data

Assumption 2.1 holds with
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Figure 2.8: Angular velocities and control signals versus time.
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Figure 2.9: Angular velocities and control signals versus time with σ- and e-
modification controllers.

Kx =




−0.2857 0 −0.0386

0 −0.4857 0
−0.0129 0 −0.6429



 , Kr =




28.5714 0 1.2857

0 24.2857 0
1.2857 0 21.4286



 .
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Now, with

Ib =




20 0 0.9
0 17 0

0.9 0 15



 (2.122)

and initial conditions x0 = [0.4, 0.25,−0.2]T, Figure 2.8 shows the controlled angular

velocities and the control signals versus time with and without the Q-modification ar-

chitecture. It is clear from these simulations that the Q-modification neuroadaptive

controller achieves superior performance over a standard neuroadaptive controller.

Finally, we compare the Q-modification controller with the σ- and e-modification

schemes. For the σ- and e-modification schemes we modified the standard neural

network update laws to include the terms −σ(Ŵ −W 0) and −σ‖e‖(Ŵ −W 0), re-

spectively, where e is the state error. As expected, the performance of the σ- and

e-modification controllers depend on the design parameter W 0. Assuming that the

actual weights are unknown, here we let V 0
f = 03×1 and W 0

3 = 03×3, and construct

W 0
1 ∈ R

2×3 as a random matrix with entries corresponding to a Gaussian distribution

with zero mean and variance 0.01. In this case,

W 0
1 =

[
0.0591 0.0380 −0.0020
−0.0644 −0.1009 −0.0048

]
.

With σ = 0.1, Figure 2.9 shows the angular velocities and the control signals versus

time of the two approaches. Though the σ- and e-modification controllers can give

better performance than the standard neural network controller, the Q-modification

controller achieves superior performance as compared to all three designs.

Example 2.3 In this example, we design several neuroadaptive full-state feed-

back controllers based on the Q-modification architecture for the Boeing unmanned

combat aerial vehicle (UCAV), and compare the performance of three controllers to

conventional neural network controllers as well as σ- and e-modification neuroadap-

tive controllers. The UCAV consists of a tailless configuration with 3 elevon controls
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on each wing, along with thrust vectoring for yaw control. A linearized model for the

controlled UCAV at a single flight condition is given by [89,137].

ẋ(t) = A0x(t) +B1Λ [u(t) + f(xp(t))] +B2yc(t), x(0) = 0, t ≥ 0, (2.123)

where the state vector x(t) = [xT
p (t), xT

c (t)]T ∈ R
9, t ≥ 0, consists of the model

and baseline controller states. The system dynamic states xp(t) ∈ R
5 consist of the

angle of attack α(t), sideslip angle β(t), body roll rate p(t), body pitch rate q(t), and

body yaw rate r(t). The baseline controller states xc(t) ∈ R
4 consist of the pitch

integrator qc(t), roll integrator pc(t), yaw integrator rc(t), and yaw rate washout filter

signal rw(t) . The control input is given by u(t) = un(t) − uad(t) ∈ R
7, t ≥ 0, where

un(t) = −Kxx(t)+Kycyc(t), Kx andKyc are defined in the Appendix of [89], and uad(t)

is given by 2.43. The signal yc(t) ∈ R
4, t ≥ 0, is the inner loop command vector and

consists of the positive down vertical acceleration command Ar(t), the sideslip angle

command βr(t), the body roll rate command pr(t), and the yaw integrator command

rr(t). In (2.123), Λ ∈ R
7×7 is nominally an identity matrix, that is, Λ̂ = I7, and a

control failure is emulated by setting one of its diagonal entries to zero. The function

f : R
5 → R

7 is the matched uncertainty that depends on the UCAV model states

and is nonlinearly parameterized as in (2.41) with η(x(t), û(t)) = x(t). The system

matrices A0 ∈ R
9×9, B1 ∈ R

9×7, and B2 ∈ R
9×4 are defined in the Appendix of [89]. In

addition, the reference system matrices in (2.36) can be given as Aref = A0 +B1Λ̂Kx

and Bref = B2 +B1Λ̂Kr.

With the aforementioned definitions, the error dynamics in (2.44) can be rewritten

as

ė(t) = Arefe(t) +B
[
WT

1 σ̂(V T
f x(t)) − ŴT

1 (t)σ̂(V̂ T
f (t)x(t))

]
+B

[
WT

3 − ŴT
3 (t)

]
u(t)

+ε̄(x(t)), e(0) = 0, t ≥ 0,

which gives an appropriate error model for Q-modification approach. In our design, a
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right-out elevon (ROE) failure is introduced at t = 5 sec by setting a diagonal entry

of Λ̂ to zero, and the design goal is to stabilize the closed-loop system under this

failure while maintaining the nominal reference tracking performance.

Now, we design a neuroadaptive controller of the form given by (2.37) with un(t)

and uad(t) given by (2.39) and (2.43), respectively. We used 35 nodes (s = 5, m = 7)

in the outer layer, and 63 nodes (l = 9, m = 7) in the hidden layer of the neural

network. The initial conditions for the system and controller states as well as the

neural network weights were initialized at zero. Furthermore, the gains are selected

to be Γ1 = I5, Γf = I9, and Γ3 = I7, and we used R = I9 to solve the Lyapunov

equation given by (2.65) for P . In addition, the Q-modification design parameters

are selected to be k = 10 and τd = 0.5 sec.

Figures 2.10 and 2.11 show the nominal performance of the baseline controller for

a sequence of commands yc(t). For the design, the positive down vertical acceleration

Az(t) is computed as the system output signal that tracks the command Ar(t) defined

above [89]. Figures 2.12 and 2.13 show that the performance of the baseline controller

is seriously degraded when a right-out elevon (ROE) failure is introduced at t = 5 sec.

This shows that the baseline controller design does not make effective use of the

available control redundancy. One approach to solving this problem might be to

reconfigure the flight control system for this failure, however this presumes that the

failure is detected and correctly identified. Therefore, an alternative approach that

employs adaptation is pursued.

Figures 2.14–2.18 show the performance of a conventional neuroadaptive controller

with ROE failure, that is, a controller with the adaptation law given by (2.61), (2.62),

and (2.64) with k = 0 (without Q-modification). The weight histories for this case

are shown in Figures 2.16 and 2.17. Clearly, the performance in Figures 2.14–2.18

is better than the performance in Figures 2.12 and 2.13. Consequently, using a
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Figure 2.10: Nominal output response performance of the baseline controller.

conventional neuroadaptive controller improves the UCAV performance in the face

of a ROE failure at t = 5 sec. Figures 2.19–2.23 show the improvement obtained

when the Q-modification architecture is employed with k = 10 and τd = 0.5 sec. It is

obvious from Figures 2.19–2.23 that the performance of the neuroadaptive controller

with the Q-modification is superior to the conventional neuroadaptive controller. In

addition, the behavior of the weight histories are also significantly improved.

Finally, we compare the Q-modification controller with an e- and σ-modification

controllers. For the e- and σ modification controller design we modified the standard

neural network update laws to include terms of the form −σ‖e‖Ŵ and −σŴ , respec-

tively, where e is the system state error [65,102]. Figures 2.24 and 2.25 show that em-

ploying these modifications with σ = 10 degrades the performance of the conventional

neuroadaptive controller. One can surmise from these results that the Q-modification

controller provides superior performance to both the e- and σ-modification controllers

when a system failure occurs for a wide range of system gains. In this case, the

Q-modification controller performance monotonically improves, whereas the perfor-

mance of both the e- and σ-modification controllers monotonically degrade over the

range of the adaptation gains investigated.
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Figure 2.11: Nominal control response performance of the baseline controller.
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Figure 2.12: Output response of the baseline controller with a ROE failure.
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Figure 2.13: Control response of the baseline controller with a ROE failure.
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Figure 2.14: Output response of the neuroadaptive controller with ROE failure.
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Figure 2.15: Control response of the neuroadaptive controller with ROE failure.
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Figure 2.16: Update weights Ŵ1(t) of the neuroadaptive controller with ROE failure.
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Figure 2.17: Update weights V̂f (t) of the neuroadaptive controller with ROE failure.
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Figure 2.18: Update weights Ŵ3(t) of the neuroadaptive controller with ROE failure.
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Figure 2.19: Output response of the neuroadaptive controller with Q-modification
(k = 10, τd = 0.5 sec) with ROE failure.
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Figure 2.20: Control response of the neuroadaptive controller with Q-modification
(k = 10, τd = 0.5 sec) with ROE failure.
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Figure 2.21: Update weights Ŵ1(t) of the neuroadaptive controller with Q-
modification (k = 10, τd = 0.5 sec) with ROE failure.
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Figure 2.22: Update weights V̂f (t) of the neuroadaptive controller with Q-
modification (k = 10, τd = 0.5 sec) with ROE failure.
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Figure 2.23: Update weights Ŵ3(t) of the neuroadaptive controller with Q-
modification (k = 10, τd = 0.5 sec) with ROE failure.
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Figure 2.24: Output response of the neuroadaptive controller with e-modification
(σ = 10) with ROE failure.
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Figure 2.25: Output response of the neuroadaptive controller with σ-modification
(σ = 10) with ROE failure.
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Chapter 3

A Q-Modification Neuroadaptive Control

Architecture for Discrete-Time Systems

3.1. Introduction

As discussed in Chapter 2, neural networks have been extensively used for adap-

tive system identification as well as adaptive and neuroadaptive control of highly

uncertain continuous-time dynamical systems [25, 63, 91, 92, 104, 105, 108, 114, 129].

One of the primary reasons for the large interest in neural networks is their capability

to approximate a large class of continuous nonlinear maps from the collective action

of very simple, autonomous processing units interconnected in simple ways. Neural

networks have also attracted attention due to their inherently parallel and highly

redundant processing architecture that makes it possible to develop parallel weight

update laws. This parallelism makes it possible to effectively update a neural network

on line. Discrete-time extensions of neural network adaptive control methods have

also appeared in the literature; see [26,31,38,64,71,72,74,95,129] and the references

therein.

To improve robustness and the speed of adaptation of adaptive and neuroadap-

tive controllers several controller architectures have been proposed in the literature.

These include the σ- and e-modification architectures used to keep the system pa-
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rameter estimates from growing without bound in the face of system uncertainty and

system disturbances [72, 92, 129]. In Chapter 2 (see also [138, 139]), a new neuroad-

aptive control architecture for nonlinear uncertain dynamical systems was developed.

Specifically, the proposed framework involved a new and novel controller architecture

involving additional terms, or Q-modification terms, in the update laws that were

constructed using a moving time window of the integrated system uncertainty. The

Q-modification terms were shown to effectively suppress and cancel system uncer-

tainty without the need for persistency of excitation.

In this chapter, we extend some of the results of Chapter 2 to discrete-time uncer-

tain dynamical systems. As in the continuous-time case, the discrete-time update laws

involve auxiliary terms, or Q-modification terms, predicated on an estimate of the un-

known neural network weights which in turn involve a set of auxiliary equations char-

acterizing a set of affine hyperplanes. In addition, we show that the Q-modification

terms in the update law are designed to minimize an error criterion involving a sum

of squares of the distances between the update weights and the family of affine hyper-

planes. The proposed approach thus uses a linear subspace projection scheme with a

gradient-based search to estimate the neural network weights.

The notation used in this paper is fairly standard. Specifically, Z+ denotes the

set of nonnegative integers, (·)T denotes transpose, (·)† denotes the Moore-Penrose

generalized inverse, tr(·) denotes the trace operator, ln(·) denotes the natural log

operator, and ‖ · ‖ denotes the Euclidean norm.
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3.2. Neuroadaptive Control for Discrete-Time Nonlinear Un-

certain Dynamical Systems with a Q-modification Archi-

tecture

In this section, we consider the problem of characterizing neuroadaptive full-

state feedback control laws for discrete-time nonlinear uncertain dynamical systems

to achieve reference model trajectory tracking. Specifically, consider the controlled

discrete-time nonlinear uncertain dynamical system G given by

x(k + 1) = A0x(k) +B∆(x̂(k), û(k)) +BG(x(k))u(k), x(0) = x0, k ∈ Z+,

(3.1)

where x(k) ∈ R
n, k ∈ Z+, is the state vector, u(k) ∈ R

m, k ∈ Z+, is the control

input, x̂(k) , [ x(k), x(k − 1), . . . , x(k − p+ 1)] is a vector of p-delayed values of

the state vector with p ≥ 1, û(k) , [u(k − 1), u(k − 2), . . . , u(k − q)] is a vector of

q-delayed values of the control input with q ≥ 1, A0 ∈ R
n×n and B ∈ R

n×m are known

matrices, G : R
n → R

m×m is a known input matrix function such that detG(x) 6= 0 for

all x ∈ R
n, and ∆ : R

np × R
mq → R

m is an unknown nonlinear function representing

system uncertainty. Dynamical systems with uncertainty structures given by (3.1)

are discussed in [138].

We assume that ∆(x̂(k), û(k)), k ∈ Z+, can be perfectly parameterized as

∆(x̂(k), û(k)) = WTσ(x̂(k), û(k)), k ∈ Z+, (3.2)

where W ∈ R
l×m is an unknown matrix and σ : R

np ×R
mq → R

l is a known bounded

Lipschitz continuous function such that, for all x̂(k) ∈ R
np and û(k) ∈ R

mq, k ∈ Z+,

‖σ(x̂, û)‖ ≤ σ∗, where σ∗ > 0. Furthermore, we assume that the state x(k), k ∈ Z+,

is available for feedback.

In order to achieve trajectory tracking, we construct a reference system Gref given
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by

xref(k + 1) = Arefxref(k) +Brefr(k), xref(0) = xref0 , k ∈ Z+, (3.3)

where xref(k) ∈ R
n, k ∈ Z+, is the reference state vector, r(k) ∈ R

r, k ∈ Z+, is

a bounded reference input, Aref ∈ R
n×n is Shur, and Bref ∈ R

n×r. Since all the

eigenvalues of the matrix Aref lie in the unit disk, it follows from Lemma 13.2 of [129]

that there exists a positive-definite matrix P ∈ R
n×n such that

P = AT
refPAref +R, (3.4)

where R ∈ R
n×n is a positive-definite matrix. The goal here is to develop an adaptive

control signal u(k), k ∈ Z+, that guarantees x(k) → xref(k) as k → ∞.

The following matching conditions are needed for the main result of this section.

Assumption 3.1. There exist gains Kx ∈ R
m×n and Kr ∈ R

m×r such that A0 +

BKx = Aref and BKr = Bref .

Consider the control law given by

u(k) = G−1(x(k))(un(k) − uad(k)), k ∈ Z+, (3.5)

where

un(k) = Kxx(k) +Krr(k), k ∈ Z+, (3.6)

and

uad(k) = ŴT(k)σ(x̂(k), û(k)), k ∈ Z+, (3.7)

gives the output of the linearly parameterized neural network and Ŵ (k) ∈ R
l×m,

k ∈ Z+, is an update weight matrix.
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Using (3.5)–(3.7) and Assumption 3.1 the system dynamics (3.1) can be rewritten

as

x(k + 1) = Arefx(k) +Brefr(k) +BW̃T(k)σ(x̂(k), û(k)), x(0) = x0, k ∈ Z+,

(3.8)

where W̃ (k) , W − Ŵ (k), k ∈ Z+. Defining the tracking error e(k) , x(k)− xref(k),

k ∈ Z+, the error dynamics are given by

e(k + 1) = Arefe(k) +BW̃T(k)σ(x̂(k), û(k)), e(0) = e0, k ∈ Z+, (3.9)

where e0 , x0 − xref0 .

Now, for every k ∈ Z+, consider a linear subspace Ls, where s ≤ min{l, k}, formed

by s linearly independent vectors q(i), i = 1, . . . , s, such that

BWTq(i) = c(i), i = 1, . . . , s, (3.10)

where

q(i) = σ(x̂(i), û(i)), i = 1, . . . , s, (3.11)

c(i) = e(i+ 1) − Arefe(i) +BŴT(i)σ(x̂(i), û(i)), i = 1, . . . , s. (3.12)

Note that (3.10) is a direct consequence of (3.9). Furthermore, note that q(i), i =

1, . . . , s, and c(i), i = 1, . . . , s, given by (3.11) and (3.12) are computable. Hence,

although the matrix W is unknown, W satisfies a set of linear equations given by

(3.10). Equation (3.10) represents a system of s equations in terms of the entries of

W , where each of these equations characterizes an affine hyperplane. For example,

in the case where n = 1, m = 1, l = 2, s = 1, W = [W1, W2]
T, and B = 1, the affine

hyperplane (3.10) is described by a line Ls with q(i), i = 1, . . . , s, being a normal

vector to Ls as shown in Figure 3.1. Note that the distance from point A to point B
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Figure 3.1: Visualization of Q-modification term.

shown in Figure 3.1, which is the shortest distance from the weight estimate Ŵ (k) to

affine hyperplane Ls defined by (3.10), is given by c(i) − ŴT(k)q(i).

Next, define the error criterion

ρ(Ŵ (k), q̄(k), c̄(k)) ,
γQ

2
tr

[
c̄(k) −BŴT(k)q̄(k)

] [
c̄(k) −BŴT(k)q̄(k)

]T

, k ∈ Z+,

(3.13)

where γQ > 0, q̄(k) ,
∑s

i=1 αi(k)q(i), c̄(k) ,
∑s

i=1 αi(k)c(i), and αi(k) ∈ R, i =

1, . . . , s, k ∈ Z+, are design parameters. Note that (3.13) is a weighted sum of squares

of the distances between the update weights Ŵ (k), k ∈ Z+, and the family of affine

hyperplanes defined by (3.10). Now, note that the gradient of ρ(Ŵ (k), q̄(k), c̄(k)),

k ∈ Z+, with respect to Ŵ (k), k ∈ Z+, is given by

∂ρ(Ŵ (k), q̄(k), c̄(k))

∂Ŵ (k)
= −γQq̄(k)

[
c̄(k) −BŴT(k)q̄(k)

]T

B, k ∈ Z+. (3.14)

Next, define

H(k) , γQq̄(k)
[
c̄(k) −BŴT(k)q̄(k)

]T

B, k ∈ Z+, (3.15)

and note that if Ŵ (k), k ∈ Z+, satisfies

BŴT(k)q̄(k) = c̄(k), k ∈ Z+, (3.16)

62



then H(k), k ∈ Z+, is zero and the weight estimates Ŵ (k), k ∈ Z+, lie on the

collection of the affine hyperplanes defined by (3.10). If the weight estimates Ŵ (k),

k ∈ Z+, do not satisfy (3.16), then each nonzero row of the matrix H(k), k ∈ Z+, is

a vector that is orthogonal to the corresponding affine hyperplane defined by (3.10)

and points in the direction of the hyperplane. Finally, using (3.10), it follows that

trHT(k)W̃ (k) = γQ

∥∥∥c̄(k) −BŴT(k)q̄(k)
∥∥∥

2

≥ 0, k ∈ Z+. (3.17)

Theorem 3.1. Consider the nonlinear uncertain dynamical system G given by

(3.1). Assume Assumption 3.1 holds. Furthermore, assume that for a given γ > 0,

there exist positive-definite matrices P ∈ R
n×n and E ∈ R

m×m such that

1

γ(c+ σ∗2)
Im > (E +BTPB), (3.18)

where Im is the m ×m identity matrix and c > 0. Then, the neuroadaptive control

law (3.5)–(3.7) with update law given by

Ŵ (k + 1) = Ŵ (k) + Φ(k + 1) +Q(k + 1), Ŵ (0) = Ŵ0, k ∈ Z+, (3.19)

where Φ(k) ∈ R
l×m, k ∈ Z+, and Q(k) ∈ R

l×m, k ∈ Z+, are given by

Φ(k + 1) =
1

c+ σT(x̂(k), û(k))σ(x̂(k), û(k))
σ(x̂(k), û(k)) [e(k + 1) − Arefe(k)]

TB†,

(3.20)

Q(k + 1) =






H(k), if g(k) > 0,

0l×m, otherwise,
, k ∈ Z+, (3.21)

and

g(k) , γQ

∥∥∥c̄(k) −BŴT(k)q̄(k)
∥∥∥

2

− tr ΦT(k)H(k) − 1

2
trHT(k)H(k), k ∈ Z+,

(3.22)
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guarantees that there exists a positively invariant set Dα ⊂ R
n×R

l×m, with (0,W ) ∈

Dα, such that the solution (e(k), Ŵ (k)) ≡ (0,W ) of the closed-loop system given by

(3.9), (3.5)–(3.7), and (3.19)–(3.21) is Lyapunov stable and e(k) → 0 as k → ∞ for

all (e0, Ŵ0) ∈ Dα.

Proof. To show Lyapunov stability of the closed-loop system (3.9), (3.5)–(3.7),

and (3.19)–(3.21), consider the Lyapunov function candidate

V (e, W̃ ) = ln(1 + eTPe) +
1

γ
tr W̃TW̃ , (3.23)

where P > 0 satisfies (3.4) and γ > 0. Note that V (0, 0) = 0 and, since P is positive

definite and γ > 0, V (e, W̃ ) > 0 for all (e, W̃ ) 6= 0. Now, letting e(k), k ∈ Z+, denote

the solution to (3.9) and using (3.19)–(3.22), it follows that the Lyapunov difference

along the closed-loop system trajectories is given by

∆V (e(k), W̃ (k))

, V (e(k + 1), W̃ (k + 1)) − V (e(k), W̃ (k))

= ln

(
1 +

[
Arefe(k) +BW̃T(k)σ(x̂(k), û)

]T

P
[
Arefe(k) +BW̃T(k)σ(x̂(k), û)

])

− ln
(
1 + eT(k)Pe(k)

)
+

1

γ
tr W̃T(k + 1)W̃ (k + 1) − 1

γ
tr W̃T(k)W̃ (k)

= ln




1 +
[
Arefe(k) +BW̃T(k)σ(x̂(k), û)

]T

P
[
Arefe(k) +BW̃T(k)σ(x̂(k), û)

]

1 + eT(k)Pe(k)




+
1

γ
tr

[
W̃ (k) − Φ(k + 1) −Q(k + 1)

]T [
W̃ (k) − Φ(k + 1) −Q(k + 1)

]

−1

γ
tr W̃T(k)W̃ (k)

= ln
[(

1 + eT(k)Pe(k) − eT(k)Pe(k) + eT(k)AT
refPArefe(k) + 2eT(k)AT

refPB

·W̃T(k)σ(x̂(k), û(k)) + σT(x̂(k), û(k))W̃ (k)BTPBW̃T(k)σ(x̂(k), û(k))
)]

·
[
1 + eT(k)Pe(k)

]−1
+

1

γ
tr W̃T(k)W̃ (k) − 1

γ
tr W̃T(k)W̃ (k)

−1

γ
tr [Φ(k + 1) +Q(k + 1)]T

[
2W̃ (k) − Φ(k + 1) −Q(k + 1)

]
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= ln
[(

1 + eT(k)Pe(k) + eT(k)(AT
refPAref − P )e(k) + 2eT(k)AT

refPB

·W̃T(k)σ(x̂(k), û(k)) + σT(x̂(k), û(k))W̃ (k)BTPBW̃T(k)σ(x̂(k), û(k))
)]

·
[
1 + eT(k)Pe(k)

]−1 − 1

γ
tr [Φ(k + 1) +Q(k + 1)]T

·
[
2W̃ (k) − Φ(k + 1) −Q(k + 1)

]

= ln
([

1 + eT(k)Pe(k)
] [

1 + eT(k)Pe(k)
]−1

+
(
2eT(k)AT

refPBW̃
T(k)σ(x̂(k), û(k))

+eT(k)(AT
refPAref − P )e(k) + σT(x̂(k), û(k))W̃ (k)BTPBW̃T(k)σ(x̂(k), û(k))

)

·
[
1 + eT(k)Pe(k)

]−1
)
− 1

γ
tr [Φ(k + 1) +Q(k + 1)]T

·[2W̃ (k) − Φ(k + 1) −Q(k + 1)]

= ln
(
1 +

[
eT(k)

(
AT

refPAref − P
)
e(k) + 2eT(k)AT

refPBW̃
T(k)σ(x̂(k), û(k))

+σT(x̂(k), û(k))W̃ (k)BTPBW̃T(k)σ(x̂(k), û(k))
] [

1 + eT(k)Pe(k)
]−1

)

−1

γ
tr

(
[Φ(k + 1) +Q(k + 1)]T

[
2W̃ (k) − Φ(k + 1) −Q(k + 1)

])
. (3.24)

Next, let R1 > 0 and R2 > 0 be such that R1 +R2 = R and define

η(k) ,

[
eT(k), σT(x̂(k), û(k))W̃ (k)

]T

, k ∈ Z+, (3.25)

M ,

[
R2 −AT

refPB
−BTPAref E

]
> 0. (3.26)

Now, using (3.4) and the fact that ln(1 + a) ≤ a, a > −1, it follows from (3.24) that

∆V (e(k), W̃ (k))

≤ − eT(k)R1e(k)

1 + eT(k)Pe(k)
− 1

1 + eT(k)Pe(k)
ηT(k)Mη(k)

+
1

1 + eT(k)Pe(k)
σT(x̂(k), û(k))W̃ (k)

[
E +BTPB

]
W̃T(k)σ(x̂(k), û(k))

−1

γ
tr

(
[Φ(k + 1) +Q(k + 1)]T

[
2W̃ (k) − Φ(k + 1) −Q(k + 1)

])
. (3.27)

Using (3.20), (3.21), and the fact that σT(x̂(k),û(k))σ(x̂(k),û(k))
c+σT(x̂(k),û(k))σ(x̂(k),û(k))

< 1, c > 0, it follows

that

∆V (e(k), W̃ (k))
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≤ − eT(k)R1e(k)

1 + eT(k)Pe(k)
− 1

1 + eT(k)Pe(k)
ηT(k)Mη(k)

+
1

1 + eT(k)Pe(k)
σT(x̂(k), û(k))W̃ (k)

[
E +BTPB

]
W̃T(k)σ(x̂(k), û(k))

−1

γ

1

c+ σT(x̂(k), û(k))σ(x̂(k), û(k))
σT(x̂(k), û(k))W̃ (k)W̃T(k)σ(x̂(k), û(k))

−2

γ
tr

[
QT(k + 1)W̃ (k) − ΦT(k + 1)Q(k + 1) − 1

2
QT(k + 1)Q(k + 1)

]
. (3.28)

Finally, using (3.18), (3.21), and (3.17), it follows that

∆V (e(k), W̃ (k)) ≤ 0, k ∈ Z+. (3.29)

Next, define

D̃α ,

{
(e, W̃ ) ∈ R

n × R
l×m : V (e, W̃ ) ≤ α

}
, α > 0. (3.30)

Since ∆V (e(k), W̃ (k)) ≤ 0 for all (e(k), W̃ (k)) ∈ D̃α and k ∈ Z+, it follows that D̃α

is positively invariant. Now, since D̃α is positively invariant, it follows that

Dα ,

{
(e, Ŵ ) ∈ R

n × R
l×m : (e, Ŵ −W ) ∈ D̃α

}
(3.31)

is also positively invariant. Furthermore, it follows from (3.29) and Theorem 13.10

of [48] that the solution (e(k), Ŵ (k)) ≡ (0,W ) of the closed-loop system given by

(3.9) and (3.19) is Lyapunov stable and e(k) → 0 as k → ∞ for all (e0, Ŵ0) ∈ Dα.

The term Q(k), k ∈ Z+, in (3.19) given by (3.21) is a discrete-time analogue of

the Q-modification term introduced in Chapter 2 for continuous-time systems. As in

the continuous-time case, Q(k), k ∈ Z+, is an additional term that is introduced to

the update law that is designed to minimize the error criterion given by (3.13) and

is constructed based on information of the unknown weights W given by (3.10) and

the property given by (3.17). Note that for every k ∈ Z+, the vector Q(k) is directed

opposite to the gradient ∂ρ(Ŵ (k),q̄(k),c̄(k))

∂Ŵ (k)
and, in the case where the system uncertainty
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is a scalar function, is parallel to q̄(k), which involves a linear combination of vectors

normal to affine hyperplanes defined by (3.10). Hence, Q(k), k ∈ Z+, introduces a

component in the update law (3.19) that drives the trajectory Ŵ (k), k ∈ Z+, in such

a way so that the error criterion given by (3.13) is minimized.

3.3. Illustrative Numerical Example

In this section, we present a numerical example to demonstrate the utility and

efficacy of the proposed Q-modification architecture for discrete-time neuroadaptive

stabilization. Specifically, consider the following dynamical system given by

x(k + 1) = A0x(k) +B∆(x(k)) +Bu(k), x(0) = x0, k ∈ Z+, (3.32)

where

A0 =

[
0 1

−0.35 −0.25

]
, B =

[
0
1

]
, ∆(x(k)) = WTσ(x(k)), k ∈ Z+,

and σ(x) = [sin(x1), cos(x2), cos(x1), sin(x2), x1, x1|x1|]T is a known regressor vector.

Note that eigenvalues of A0 are λ1 = −0.1250− 0.5783 and λ2 = −0.1250 + 0.5783,

and hence, lie inside the unit disk.

Here our goal is to achieve stabilization of the uncertain system around the

origin. Hence, the reference model is given by (3.3) with Aref = A0, Bref = B,

xref0 = [0, 0]T, and r(k) ≡ 0. Next, we use Theorem 3.1 to design a neuroad-

aptive controller given by (3.5)–(3.7), with un(k) ≡ 0 and update laws given by

(3.19)–(3.21). Now, with initial conditions x0 = [3, 4]T and Ŵ0 = 06×1, and W =

[1.00, −1.50, 2.50, 3.50, 1.00, 0.50]T, Figures 3.2–3.5 show the state trajectories, the

control input, and the update weight trajectories versus time with and without the Q-

modification term activated. It is clear that the Q-modification architecture results

in a faster convergence and reduces system and weight oscillations. It is interest-

ing to note that for this example the update weights for both controllers converge
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to the same values. However, in the presence of persistency of excitation it can be

shown that the update weights of the Q-modification controller converge to the ideal

weights [138].
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Figure 3.2: System states versus time with and without the Q-modification con-
troller.
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Figure 3.3: Control input versus time.
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Figure 3.4: Update weights versus time without the Q-modification controller.

0 50 100 150
−1

−0.5

0

0.5

1

1.5

2

2.5

Time, k

Update weights with Q−modification

Figure 3.5: Update weights versus time with the Q-modification controller.
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Chapter 4

Adaptive Disturbance Rejection Control for

Compartmental Systems

4.1. Introduction

Nonnegative systems are essential in capturing the behavior of a wide range of

dynamical systems involving dynamic states whose values are nonnegative [12,35,47].

A subclass of nonnegative dynamical systems are compartmental systems [3, 14, 44,

47, 69, 70, 113]. These systems are derived from mass and energy balance consider-

ations and are comprised of homogeneous interconnected microscopic subsystems or

compartments which exchange variable quantities of material via intercompartmental

flow laws. Since biological and physiological systems have numerous input, state, and

output properties related to conservation, dissipation, and transport of mass and en-

ergy, nonnegative and compartmental systems are remarkably effective in describing

the phenomenological behavior of these dynamical systems. The range of applica-

tions of nonnegative and compartmental systems is not limited to biological and

medical systems. Their usage includes demographic, epidemic [69], ecological [100],

economic [13], telecommunications [36], transportation, power, and large-scale sys-

tems [124].

In a recent series of papers [52–54], a direct adaptive control framework for linear
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and nonlinear nonnegative and compartmental systems was developed. The frame-

work in [52–54] is Lyapunov-based and guarantees partial asymptotic set-point reg-

ulation, that is, asymptotic set point stability with respect to the closed-loop system

states associated with the plant. In addition, the adaptive controllers in [52–54] guar-

antee that the physical system states remain in the nonnegative orthant of the state

space. In this chapter, we extend the results of [53] to develop a direct adaptive con-

trol framework for adaptive stabilization and disturbance rejection for compartmental

dynamical systems with exogenous system disturbances. The main challenge here is

to construct nonlinear adaptive disturbance rejection controllers without requiring

knowledge of the system dynamics or the system disturbances while guaranteeing

that the physical system states remain in the nonnegative orthant of the state space.

While such an adaptive control framework can have wide applicability in areas

such as economics, telecommunications, and power systems, its use in the specific

field of anesthetic pharmacology is particularly noteworthy. Specifically, during stress

(such as hemorrhage) in an acute care environment, such as the operating room,

perfusion pressure falls and hypertonic saline solutions are typically intravenously

administered to regulate hemodynamic effects and avoid hemorrhagic shock. This

exogenous disturbance drives the system pharmacokinetics and pharmacodynamics

and can be captured as a system disturbance. In addition, exogenous system distur-

bances can be used to capture unmodeled physiological and pharmacological system

dynamics. Although the proposed framework develops adaptive controllers for gen-

eral compartmental systems with exogenous disturbances, the specific focus of this

chapter is on pharmacokinetic models with hemorrhage and hemodilution effects.
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4.2. Mathematical Preliminaries

In this section, we introduce notation, several definitions, and some key results

concerning linear nonnegative dynamical systems [12–14, 47] that are necessary for

developing the main results of this and next two chapters. Specifically, for x ∈ R
n we

write x ≥≥ 0 (resp., x >> 0) to indicate that every component of x is nonnegative

(resp., positive). In this case, we say that x is nonnegative or positive, respectively.

Likewise, A ∈ R
n×m is nonnegative2 or positive if every entry of A is nonnegative or

positive, respectively, which is written as A ≥≥ 0 or A >> 0, respectively. Further-

more, let R
n

+ and R
n
+ denote the nonnegative and positive orthants of R

n, that is, if

x ∈ R
n, then x ∈ R

n

+ and x ∈ R
n
+ are equivalent, respectively, to x ≥≥ 0 and x >> 0.

Finally, e ∈ R
n denotes the ones vector of order n, that is, e , [1, . . . , 1]T.

The following definition introduces the notion of a nonnegative (resp., positive)

function.

Definition 4.1 . Let T > 0. A real function u : [0, T ] → R
m is a nonnegative

(resp., positive) function if u(t) ≥≥ 0 (resp., u(t) >> 0) on the interval [0, T ].

The next definition introduces the notion of essentially nonnegative and compart-

mental matrices.

Definition 4.2 [14, 47]. Let A ∈ R
n×n. A is essentially nonnegative if A(i,j) ≥

0, i, j = 1, . . . , n, i 6= j. A is compartmental if A is essentially nonnegative and

ATe ≤≤ 0.

Next, consider the linear nonnegative dynamical system

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (4.1)

2In this dissertation it is important to distinguish between a square nonnegative (resp., positive)
matrix and a nonnegative-definite (resp., positive-definite) matrix.
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where x(t) ∈ R
n, t ≥ 0, and A ∈ R

n×n is essentially nonnegative. The solution to

(4.1) is standard and is given by x(t) = eAtx(0), t ≥ 0. The following lemma proven

in [14] (see also [47]) shows that A is essentially nonnegative if and only if the state

transition matrix eAt is nonnegative on [0,∞).

Proposition 4.1. Let A ∈ R
n×n. Then A is essentially nonnegative if and only

if eAt is nonnegative for all t ≥ 0. Hence, if A is essentially nonnegative and x0 ≥≥ 0,

then x(t) ≥≥ 0, t ≥ 0, where x(t), t ≥ 0, denotes the solution to (4.1).

The following theorem gives necessary and sufficient conditions for asymptotic

stability of a linear nonnegative dynamical system using a quadratic component de-

coupled Lyapunov function.

Theorem 4.1 [47]. Consider the linear dynamical system G given by (4.1) where

A ∈ R
n×n is essentially nonnegative. Then G is asymptotically stable if and only if

there exist a positive diagonal matrix P ∈ R
n×n and an n×n positive-definite matrix

R such that

0 = ATP + PA+R. (4.2)

Next, we note that every Hurwitz nonnegative matrix is equivalent, modulo a

similarity transformation, to a compartmental matrix.

Proposition 4.2 [47]. Let A ∈ R
n×n be Hurwitz. Then A is essentially nonneg-

ative if and only if there exists an invertible diagonal matrix S ∈ R
n×n such that

SAS−1 is a compartmental matrix.

Finally, in this section we consider controlled dynamical systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (4.3)
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where x(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, A ∈ R
n×n, and B ∈ R

n×m. The following

definition and proposition are needed for the main results of the chapter.

Definition 4.3. The linear dynamical system given by (4.3) is nonnegative if,

for every x(0) ∈ R
n

+ and u(t) ≥≥ 0, t ≥ 0, the solution x(t), t ≥ 0, to (4.3) is

nonnegative.

Proposition 4.3 [47]. The linear dynamical system given by (4.3) is nonnegative

if and only if A ∈ R
n×n is essentially nonnegative and B ∈ R

n×m is nonnegative.

It follows from Proposition 4.3 that the weighted control input signal Bu(t), t ≥ 0,

needs to be nonnegative to guarantee the nonnegativity of the state of (4.3). This

is due to the fact that when the initial state of (4.3) belongs to the boundary of

the nonnegative orthant, a negative input can destroy the nonnegativity of the state

of (4.3). Since stabilization of nonnegative systems naturally deals with equilibrium

points in the interior of the nonnegative orthant R
n

+, the following proposition provides

necessary conditions for the existence of an interior equilibrium point xe ∈ R
n
+ of

(4.3) in terms of the stability properties of the system dynamics matrix A. For the

next result recall that a matrix M ∈ R
n×n is semistable if and only if limt→∞ eMt

exists [14,15,47].

Proposition 4.4 [53]. Consider the nonnegative dynamical system (4.3) and as-

sume there exist xe ∈ R
n
+ and ue ∈ R

m

+ such that

0 = Axe +Bue. (4.4)

Then, A is semistable.

It follows from Proposition 4.4 that the existence of an equilibrium point xe ∈ R
n
+

for (4.3) implies that the system matrix A is semistable. Hence, if (4.4) holds for
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xe ∈ R
n
+ and ue ∈ R

m

+ , A is Hurwitz or 0 ∈ spec(A), where spec(A) denotes the

spectrum of A, is a semisimple eigenvalue of A and all other eigenvalues of A have

negative real parts since −A is an M -matrix [13]. In light of the above constraints, it

was shown in [30] using Brockett’s necessary condition for asymptotic stabilizability

[17] that if 0 ∈ spec(A), then there does not exist a continuous stabilizing nonnegative

feedback for set-point regulation in R
n
+ for a nonnegative system. However, that is

not to say that asymptotic feedback regulation using discontinuous feedback is not

possible.

Finally, we present a time-varying extension to Proposition 4.3 needed for the main

theorems of this section. Specifically, we consider the linear time-varying dynamical

system

ẋ(t) = A(t)x(t) +Bu(t), x(0) = x0, t ≥ 0, (4.5)

where A : [0, ∞) → R
n×n is continuous. For the following result the definition of

nonnegativity holds with (4.3) replaced by (4.5).

Proposition 4.5 . Consider the time-varying dynamical system (4.5) where A :

[0, ∞) → R
n×n is continuous. If for every t ∈ [0, ∞), A : [0, ∞) → R

n×n is essentially

nonnegative, B ∈ R
n×m is nonnegative, and u(t) is nonnegative, then the solution

x(t), t ≥ 0, to (4.5) is nonnegative.

Proof. The result is a direct consequence of the nonlinear analogue to Proposition

4.3 by representing the time-varying dynamical system (4.5) as an autonomous linear

system by appending another state to represent time. See [53] for a similar proof.
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4.3. Compartmental Systems with Exogenous Disturbances

In this section, we develop an adaptive disturbance rejection control framework for

asymptotic set point regulation of a disturbed linear compartmental system. Specif-

ically, we consider uncertain dynamical systems G of the form

ẋ(t) = Ax(t) +Bu(t) + d(x(t), t), x(0) = x0, t ≥ 0, (4.6)

where x(t) ∈ R
n, t ≥ 0, is the state vector, x0 ∈ R

n

+, u(t) ∈ R
m, t ≥ 0, is the control

input, d(x(t), t) ∈ R
n, t ≥ 0, is an unknown nonlinear disturbance signal, A ∈ R

n×n

is an unknown compartmental matrix, and B ∈ R
n×m is an unknown matrix given by

B =

[
Bu

0(n−m)×m

]
, Bu = diag[ b1, . . . , bm ], bi > 0, i = 1, 2, . . . ,m. (4.7)

Here we assume that for all i = 1, 2, . . . ,m, bi is unknown. The structure of B

implies that the control inputs are injected directly into m separate compartments.

For compartmental systems this assumption is not restrictive since control inputs

correspond to control inflows to each individual compartment. The control input u(·)

is restricted to the class of admissible controls consisting of measurable functions on

R
m, or R

m

+ if u(t), t ≥ 0, is constrained to be nonnegative.

In this chapter, we consider two cases for the disturbance signal d : R
n× [0, ∞) →

R
n. Namely, in the first case, the disturbance signal is given by

d(x(t), t) = −BΨ∗w(x(t), t), (4.8)

where Ψ∗ is an unknown constant diagonal disturbance weighting matrix given by

Ψ∗ = diag[ψ∗
1, . . . , ψ

∗
m ], ψ∗

i > 0, i = 1, 2, . . . ,m, (4.9)

and w(x, t) = [w1(x, t), . . . , wm(x, t) ]T is a known disturbance signal satisfying suf-

ficient regularity conditions so that (4.6) has a unique solution forward in time. Fur-
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thermore, we assume that for the uncontrolled (i.e., u(t) ≡ 0) system (4.6) the dis-

turbance signal w(x, t) is such that for any time t ∈ [0, ∞) such that xi(t) = 0,

wi(x(t), t) = 0. In this case, x(t) ∈ R
n

+ for all t ≥ 0 and u(t) ≡ 0.

In the second case, the disturbance signal d : R
n × [0, ∞) → R

n is given by

d(x(t), t) = J(x(t))w(t), (4.10)

where J : R
n

+ → R
n×d is an unknown bounded continuous function and w : [0,∞) →

R
d is an unknown continuous function such that w(·) ∈ L2. Note that since J(·) is

bounded, there exists α > 0 such that ‖J(x)‖ ≤ α, x ∈ R
n

+, where ‖ · ‖ is a matrix

norm on R
n×d. Furthermore, since w(·) is continuous on [0,∞) and w(·) ∈ L2, there

exists β > 0 such that ‖w(t)‖ ≤ β, t ≥ 0, where ‖ · ‖ is a vector norm on R
d. In

addition, we assume that J(x)w(t) ≥≥ 0 for all x ∈ ∂R
n

+ and t ≥ 0, where ∂R
n

+

denotes the boundary of the nonnegative orthant. This assumption ensures that the

uncontrolled (i.e., u(t) ≡ 0) system (4.6) remains nonnegative for all x(0) ∈ R
n

+.

Given a desired set point xe ∈ R
n
+\{x0} our goal is to design a measurable con-

trol law u : [0,∞) → R
m (or u : [0,∞) → R

m

+ ) guaranteeing partial asymptotic set

point stability of the closed-loop system; that is, asymptotic set point stability with

respect to part of the closed loop-system state. Since in many applications of non-

negative systems and in particular, compartmental systems, it is often necessary to

regulate a subset of the non-negative state variables which usually include a central

compartment, here we require that limt→∞ xi(t) = xdi
≥ 0 for i = 1, 2, . . . ,m ≤ n,

where xdi
is the desired set point for the ith state xi(t). In addition, we require that

the remainder of the state associated with the adaptive controller gains is Lyapunov

stable. Finally, we require that x(t) ∈ R
n

+ for all t ≥ 0.

In certain parts of this presentation we will use the following assumption regarding

the existence of an equilibrium point of the undisturbed (i.e., d(x(t), t) ≡ 0) dynamical
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system (4.6).

Assumption 4.1. For the undisturbed (i.e., d(x(t), t) ≡ 0) dynamical system

(4.6) and a given desired set point xd ∈ R
m
+ , there exist nonnegative vectors xu ∈ R

n−m
+

and ue ∈ R
n

+ such that (4.4) holds with xe , [ xd, xu ]T.

It follows from Proposition 4.4 that Assumption 4.1 implies that A is semistable.

4.4. Adaptive Control for Linear Compartmental Uncertain

Systems with Exogenous Disturbances

In this section, we consider the problem of characterizing adaptive disturbance

rejection feedback control laws for linear compartmental uncertain dynamical systems

of the form given by (4.6) with the disturbance d(x(t), t), t ≥ 0, given by (4.8).

Specifically, we consider the controlled uncertain dynamical system given by

ẋ(t) = Ax(t) +B[u(t) − Ψ∗w(x(t), t)], x(0) = x0, t ≥ 0. (4.11)

First, we consider the case where there is no restriction on the sign of the control

input u(t), t ≥ 0.

Theorem 4.2. Consider the linear uncertain dynamical system given by (4.11)

where A is essentially nonnegative, B is nonnegative and given by (4.7), and Ψ∗

is given by (4.9). Suppose Assumption 4.1 holds and assume that there exists a

diagonal matrix Kg = diag[ kg1 , . . . , kgm
] such that As , A+BK̃g is Hurwitz, where

K̃g ,
[
Kg, 0m×(n−m)

]
. Furthermore, let qi, q̂i, and γi, i = 1, . . . , m, be positive

constants. Then the adaptive feedback control law

u(t) = K(t)(x̂(t) − xd) + φ(t) + Ψ(t)w(x(t), t), t ≥ 0, (4.12)
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where K(t) , diag[ k1(t), . . . , km(t)], x̂(t) , [x1(t), . . . , xm(t)], φ(t) ∈ R
m, and

Ψ(t) , diag[ψ1(t), . . . , ψm(t)], t ≥ 0, or, equivalently,

ui(t) = ki(t)(x̂i(t) − xdi
) + φi(t) + ψi(t)wi(x(t), t), t ≥ 0, i = 1, . . . , m,(4.13)

with update laws

k̇i(t) = −qi(xi(t) − xei
)2, ki(0) ≤ 0, t ≥ 0, i = 1, . . . , m, (4.14)

φ̇i(t) =






0, if φi(t) = 0 and xi(t) − xdi
≥ 0,

−q̂i(xi(t) − xdi
), otherwise,

(4.15)

φi(0) ≥ 0, t ≥ 0, i = 1, . . . , m,

ψ̇i(t) =






0, if ψi(t) = 0 and (xi(t) − xdi
)wi(x(t), t) ≥ 0,

−γi(xi(t) − xdi
)wi(x(t), t), otherwise,

ψi(0) = 0, t ≥ 0, i = 1, . . . , m, (4.16)

guarantees that the solution (x(t), K(t), φ(t),Ψ(t)) ≡ (xe, Kg, ue,Ψ
∗) of the closed-

loop system given by (4.11)–(4.16) is Lyapunov stable and xi(t) → xdi
, i = 1, . . . , m,

as t→ ∞ for all x0 ∈ R
n

+. Furthermore, x(t) ≥≥ 0 for all x0 ∈ R
n

+ and t ≥ 0.

Proof. With u(t), t ≥ 0, given by (4.12), it follows from (4.4) that

ẋ(t) = As(x(t) − xe) +B(K(t) −Kg)(x(t) − xe) +B(φ(t) − ue) +B(Ψ(t) − Ψ∗)w(t),

x(0) = x0, t ≥ 0. (4.17)

Furthermore, since As is essentially nonnegative and Hurwitz it follows from Theorem

4.1 that there exist a positive diagonal matrix P , diag[ p1, . . . , pn ] and a positive-

definite matrix R ∈ R
n×n such that

0 = AT
s P + PAs +R. (4.18)
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To show Lyapunov stability of the closed-loop system (4.11)–(4.16) consider the

Lyapunov function candidate

V (x,K, φ,Ψ) = (x− xe)
TP (x− xe) + tr(K −Kg)

TQ−1(K −Kg)

+(φ− ue)
TQ̂−1(φ− ue) + tr(Ψ − Ψ∗)TΓ−1(Ψ − Ψ∗), (4.19)

where

Q , diag

[
q1
p1b1

, . . . ,
qm
pmbm

]
, Q̂ , diag

[
q̂1
p1b1

, . . . ,
q̂m
pmbm

]
,

Γ , diag

[
γ1

p1b1
, . . . ,

γm

pmbm

]
. (4.20)

Note that V (xe, Kg, ue,Ψ
∗) = 0 and, since P , Q, Q̂, and Γ are positive definite,

V (xe, Kg, ue,Ψ
∗) > 0 for all (x,K, φ,Ψ) 6= (xe, Ke, ue,Ψ

∗). Furthermore, V (x,K, φ,Ψ)

is radially unbounded. Now, letting x(t), t ≥ 0, denote the solution to (4.17) and

using (4.14)–(4.16) it follows that the Lyapunov derivative along the trajectories of

the closed-loop system (4.11)–(4.16) is given by

V̇ (x(t), K(t), φ(t),Ψ(t)) = 2(x(t) − xe)
TP [As(x(t) − xe) +B(K(t) −Kg)(x(t) − xe)

+B(φ(t) − ue) +B(Ψ(t) − Ψ∗)w(t)]

+2tr(K(t) −Kg)
TQ−1K̇(t) + 2(φ(t) − ue)

TQ̂−1φ̇(t)

+2tr(Ψ(t) − Ψ∗)TΓ−1Ψ̇(t)

= −(x(t) − xe)
TR(x(t) − xe)

+2
m∑

i=1

pibi(ki(t) − kgi
)

[
(xi(t) − xdi

)2 +
1

qi
k̇i(t)

]

+2
m∑

i=1

pibi(φi(t) − uei
)

[
(xi(t) − xdi

) +
1

q̂i
φ̇i(t)

]

+2
m∑

i=1

pibi(ψi(t) − ψ∗
i )

[
(xi(t) − xdi

)wi(x, t) +
1

γ̂i

ψ̇i(t)

]
.

Next, it follows from (4.14) that, for each i ∈ {1, . . . , m},

pibi(ki(t) − kgi
)

[
(xi(t) − xei

)2 +
1

qi
k̇i(t)

]
= 0, t ≥ 0.
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Using (4.15) it follows that if φi(t) = 0 and xi(t) − xdi
≥ 0, t ≥ 0, then

pibi(φi(t) − uei
)

[
(xi(t) − xdi

) +
1

q̂i
φ̇(t)

]
= −pibiuei

(xi(t) − xdi
) ≤ 0, t ≥ 0,

and if φi(t) 6= 0 or xi(t) − xdi
< 0, t ≥ 0, then

pibi(φi(t) − uei
)

[
(xi(t) − xdi

) +
1

q̂i
φ̇(t)

]
= 0.

From (4.16) it follows that if ψi(t) = 0 and (xi(t) − xdi
)wi(x(t), t) ≥ 0, t ≥ 0, then

pibi(ψi(t) − ψ∗
i )

[
(xi(t) − xdi

)wi(x, t) +
1

γ̂i

ψ̇i(t)

]
= −pibiψ

∗
i (xi(t) − xdi

)wi(x, t) ≤ 0,

t ≥ 0,

and if ψi(t) 6= 0, or (xi(t) − xdi
)wi(x(t), t) < 0, t ≥ 0, then

pibi(ψi(t) − ψ∗
i )

[
(xi(t) − xdi

)wi(x, t) +
1

γ̂i

ψ̇i(t)

]
= 0, t ≥ 0.

Hence,

V̇ (x(t), K(t), φ(t),Ψ(t)) ≤ −(x(t) − xe)
TR(x(t) − xe) ≤ 0, t ≥ 0,

which proves that the solution (x(t), K(t), φ(t),Ψ(t)) ≡ (xe, Kg, ue,Ψ
∗) of the closed-

loop system given by (4.11)–(4.16) is Lyapunov stable. Moreover, since R is positive

definite, it follows from Theorem 2.2 of [23] that x(t) → xe as t→ ∞.

To show that x(t) ≥≥ 0 for all x0 ∈ R
n

+ and t ≥ 0 note that the closed-loop

system (4.11)–(4.16) is given by

ẋ(t) = (A+B
[
K(t), 0m×(n−m)

]
)x(t) −BK(t)xd +Bφ(t) +BΨ(t)w(x(t), t)

−BΨ∗w(x(t), t)

= Ã(t)x(t) + v(t) + h(t) + g(t) + d(x(t), t), x(0) = x0, t ≥ 0, (4.21)

where Ã(t) , A + B
[
K(t), 0m×(n−m)

]
, v(t) , −BK(t)xd, h(t) , Bφ(t), and

g(t) , BΨ(t)w(x(t), t). Now, since A is essentially nonnegative, B is nonnegative
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and diagonal, K(t) is diagonal, and, by (4.14), ki(t) ≤ 0, t ≥ 0, i = 1, . . . ,m, it

follows that Ã(t) is essentially nonnegative pointwise-in-time and v(t) ≥≥ 0, t ≥ 0.

Next, it follows from (4.15) and (4.16) that φi(t) ≥ 0, t ≥ 0, i = 1, . . . ,m, and hence,

h(t) ≥≥ 0, t ≥ 0. Now, if g(t) ≡ 0 and d(x(t), t) ≡ 0, then it follows from Proposition

4.5 that x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
m

+ .

Finally, we show that the signals g(·) and d(x(·) , ·) are such that (4.21) remains

nonnegative. To see this, assume that for a given time t̂ ∈ [0,∞), x(t̂) ∈ R
n
+.

In this case, it follows from continuity of solutions with respect to the system initial

conditions that, over a sufficiently small interval of time, the nonnegativity of the state

of (4.21) is guaranteed irrespective of the sign of the components of g(·) and d(x(·) , ·).

Alternatively, suppose that x(t̂) ∈ ∂R
n

+. In this case, there exists i ∈ {1, . . . , m}

such that xi(t̂) = 0, and hence, by assumption (see the discussion in Section 4.3),

wi(x(t̂), t̂) = 0. Hence, di(x(t̂), t̂) = 0 and gi(t̂) = biψi(t̂)wi(x(t̂), t̂) = 0. Thus, the

signals g(·) and d(x(·) , ·) do not destroy the nonnegativity of (4.21). This completes

the proof.

Remark 4.1. In the case where (4.11) is such that w(x(t), t) ≡ 0, the controller

(4.13) with update laws (4.14)–(4.16) collapses to

ui(t) = ki(t)(xi(t) − xdi
) + φi(t), t ≥ 0, i = 1, . . . , m, (4.22)

with update laws (4.14) and (4.15). This is precisely the result given in [53], where

an adaptive control framework for nonnegative dynamical systems is developed for

the undisturbed case (i.e., w(x(t), t) ≡ 0).

Remark 4.2. It is important to note that the adaptive control framework ad-

dressed in this section requires that the bounded disturbance w(x(t), t), t ≥ 0, can

be accurately measured even though the disturbance signal d(x(t), t), t ≥ 0, is an un-

known bounded disturbance since BΨ∗ is unknown. Such a disturbance model can,
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for example, address sinusoidal disturbances with unknown amplitude and phase. In

the next section, we consider the more general problem of L2 disturbances.

Remark 4.3. Since the dynamical system considered in this section is minimum

phase, it is possible, in principle, to stabilize the system by simply employing the

controller (4.13) with φi(t) ≡ 0 and ψi(t) ≡ 0, and with a sufficiently high gain

ki(t), t ≥ 0, i = 1, . . . , m. However, this is a very unsafe strategy when the dis-

turbance w(x(t), t), t ≥ 0, is not accurately known and unmodeled system dynamics

are present. In this case, unsafe high gain levels can excite unmodeled dynamics and

drive the system to instability.

Next, we consider the case where the control input is constrained to be nonnega-

tive. In this case, we assume that w(x(t), t) ≥≥ 0 for all x(t) ∈ R
n
+ and t ≥ 0, and if

xi(t) = 0 for some t ∈ [0,∞), then wi(x(t), t) = 0.

Theorem 4.3. Consider the linear uncertain dynamical system given by (4.11)

where A is Hurwitz and compartmental, B is nonnegative and given by (4.7), and

Ψ∗ is given by (4.9). Suppose Assumption 4.1 holds. Furthermore, let q̂i and γi,

i = 1, . . . , m, be positive constants. Then the adaptive feedback control law

u(t) = φ(t) + Ψ(t)w(x(t), t), t ≥ 0, (4.23)

where φ(t) = [φ1(t), . . . , φm(t)] and Ψ(t) = diag[ψ1(t), . . . , ψm(t)], t ≥ 0, or, equiv-

alently,

ui(t) = φi(t) + ψi(t)wi(x(t), t), t ≥ 0, i = 1, . . . , m, (4.24)

with update laws φi(t), t ≥ 0, and ψi(t) given by (4.15) and (4.16), respectively,

guarantees that the solution (x(t), φ(t),Ψ(t)) ≡ (xe, ue,Ψ
∗) of the closed-loop system

given by (4.11), (4.23), and (4.24) is Lyapunov stable and xi(t) → xdi
, i = 1, . . . , m,
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as t → ∞ for all x0 ∈ R
n

+. Furthermore, u(t) ≥≥ 0, t ≥ 0, and x(t) ≥≥ 0 for all

x0 ∈ R
n

+ and t ≥ 0.

Proof. The proof is analogous to the proof of the Theorem 4.2 with K(t) ≡ 0,

and, hence, is omitted.

Finally, we consider the case where the control input is constrained to be nonneg-

ative and the disturbance signal d(x(t), t) is sign indefinite over a finite-time interval,

and nonpositive otherwise.

Theorem 4.4. Consider the linear uncertain dynamical system given by (4.11)

where A is Hurwitz and compartmental, B is nonnegative and given by (4.7), and

Ψ∗ is given by (4.9). Suppose Assumption 4.1 holds and there exists a finite-time

T > 0 such that w(x(t), t) ≥≥ 0 for all x(t) ∈ R
n
+ and t ≥ T , and if xi(t) = 0 for

some t ∈ [0,∞), then wi(x(t), t) = 0. Furthermore, let qi, q̂i and γi, i = 1, . . . , m, be

positive constants. Then the adaptive feedback control law

ui(t) = max{0, ûi(t)}, t ≥ 0, i = 1, . . . , m, (4.25)

where

ûi(t) = ki(t)(xi(t) − xei
) + φi(t) + ψi(t)wi(x(t), t), t ≥ 0, i = 1, . . . , m, (4.26)

with update laws ki(t), φi(t), and ψi(t) given by

k̇i(t) =






0, if ûi < 0,

−qi(xi(t) − xdi
)2, otherwise,

(4.27)

ki(0) ≤ 0, t ≥ 0, i = 1, . . . , m,

φ̇i(t) =






0, if φi(t) = 0 and xi(t) − xdi
≥ 0, or if ûi(t) < 0

−q̂i(xi(t) − xdi
), otherwise,

(4.28)

φi(0) ≥ 0, t ≥ 0, i = 1, . . . , m,
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ψ̇i(t) =






0, if ψi(t) = 0 and (xi(t) − xdi
)wi(x(t), t) ≥ 0, or if ûi(t) < 0

−γi(xi(t) − xdi
)wi(x(t), t), otherwise,

ψi(0) = 0, t ≥ 0, i = 1, . . . , m, (4.29)

guarantees that the solution (x(t), K(t), φ(t),Ψ(t)) ≡ (xe, Kg, ue,Ψ
∗), where Kg =

diag[ kg1 , . . . , kgm
], kgi

≤ 0, i = 1, . . . , m, φ(t) , [φ1(t), . . . , φm(t)]T, and Ψ(t) ,

diag[ψ1(t), . . . , ψm(t)], of the closed-loop system given by (4.11), (4.25)–(4.29) is Lya-

punov stable and xi(t) → xdi
, i = 1, . . . , m, as t→ ∞ for all x0 ∈ R

n

+. Furthermore,

u(t) ≥≥ 0, t ≥ 0, and x(t) ≥≥ 0 for all x0 ∈ R
n

+ and t ≥ 0.

Proof. First, note that the update laws (4.27)–(4.29) guarantee that for each i ∈

{1, . . . , m} and for all t ≥ 0 the adaptive gain ki(t) remains nonpositive, and adaptive

gains φi(t) and ψi(t) remain nonnegative. Next, define Ku , diag[ ku1 , . . . , kum
],

φu , [φu1 , . . . , φum
]T, and Ψu , diag[ψu1 , . . . , ψum

], where

kui
(t) =






0, if ûi(t) < 0

ki(t), otherwise,
i = 1, . . . , m, (4.30)

φui
(t) =






0, if ûi(t) < 0

φi(t), otherwise,
i = 1, . . . , m, (4.31)

ψui
(t) =






0, if ûi(t) < 0

ψi(t), otherwise.
i = 1, . . . , m, (4.32)

Now, note that with u(t), t ≥ 0, given by (4.25), it follows from (4.11) that

ẋ(t) = A(x(t) − xe) +BKu(t)(x̂(t) − xd) +B(φu(t) − ue) +B(Ψu(t) − Ψ∗)w(x(t), t),

x(0) = x0, t ≥ 0. (4.33)

Furthermore, since A is essentially nonnegative and Hurwitz it follows from Theorem

4.1 that there exist a positive diagonal matrix P , diag[ p1, . . . , pn ] and a positive-

definite matrix R ∈ R
n×n such that (4.2) holds.
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To show Lyapunov stability of the closed-loop system (4.11), (4.25)–(4.29) consider

the Lyapunov function candidate (4.19). Now, letting x(t), t ≥ 0, denote the solution

to (4.33) and using (4.27)–(4.29) it follows that the Lyapunov derivative along the

trajectories of the closed-loop system (4.11), (4.25)–(4.29) is given by

V̇ (x(t), K(t), φ(t),Ψ(t))

= 2(x(t) − xe)
TP [A(x(t) − xe) +B(Ku(t) −Kg)(x(t) − xe)

+B(φu(t) − ue) +B(Ψu(t) − Ψ∗)w(t)]

+2tr(K(t) −Kg)
TQ−1K̇(t) + 2(φ(t) − ue)

TQ̂−1φ̇(t)

+2tr(Ψ(t) − Ψ∗)TΓ−1Ψ̇(t)

= −(x(t) − xe)
TR(x(t) − xe)

+2
m∑

i=1

pibi

[
kui

(t)(xi(t) − xdi
)2 +

1

qi
(ki(t) − kgi

)k̇i(t)

]

+2
m∑

i=1

pibi

[
(φui

(t) − uei
)(xi(t) − xdi

) +
1

q̂i
(φi(t) − uei

)φ̇i(t)

]

+2
m∑

i=1

pibi

[
(ψui

(t) − ψ∗
i )(xi(t) − xdi

)wi(x, t)

+
1

γ̂i

(ψi(t) − ψ∗
i )ψ̇i(t)

]
. (4.34)

First, consider the case where w(x(t), t) >> 0, t ≥ 0. For each i ∈ {1, . . . , m}

the last three terms in (4.34) give:

(i) If ûi(t) < 0, t ≥ 0, then kui
(t) = 0, φui

(t) = 0, and ψui
(t) = 0. Furthermore,

since ki(t) ≤ 0, φi(t) ≥ 0, and ψi(t) ≥ 0, for all t ≥ 0, it follows from (4.26) that if

w(x(t), t) >> 0, t ≥ 0, then ûi(t) < 0, t ≥ 0, only if xi(t) > xdi
. Hence, it follows

from (4.27)–(4.32) that if w(x(t), t) >> 0, t ≥ 0, then

pibi

[
kui

(t)(xi(t) − xdi
)2 +

1

qi
(ki(t) − kgi

)k̇i(t)

]
= 0,

pibi

[
(φui

(t) − uei
)(xi(t) − xdi

) +
1

q̂i
(φi(t) − uei

)φ̇i(t)

]
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= −pibiuei
(xi(t) − xdi

)

≤ 0, (4.35)

pibi

[
(ψui

(t) − ψ∗
i )(xi(t) − xdi

)wi(x, t) +
1

γ̂i

(ψi(t) − ψ∗
i )ψ̇i(t)

]

= −pibiψ
∗
i (xi(t) − xdi

)wi(x, t)

≤ 0. (4.36)

(ii) Otherwise, if ûi(t) ≥ 0, t ≥ 0, then kui
(t) = ki(t), φui

(t) = φi(t), and ψui
(t) =

ψi(t), and hence,

pibi

[
kui

(t)(xi(t) − xdi
)2 +

1

qi
(ki(t) − kgi

)k̇i(t)

]
= kgi

(xi(t) − xdi
)2 ≤ 0, (4.37)

pibi

[
(φui

(t) − uei
)(xi(t) − xdi

) +
1

q̂i
(φi(t) − uei

)φ̇i(t)

]

=






−pibiuei
(xi(t) − xdi

) ≤ 0, if φi(t) = 0 and xi(t) − xdi
≥ 0,

0, otherwise,
(4.38)

pibi

[
(ψui

(t) − ψ∗
i )(xi(t) − xdi

)wi(x, t) +
1

γ̂i

(ψi(t) − ψ∗
i )ψ̇i(t)

]

=






−pibiψ
∗
i (xi(t) − xdi

)wi(x, t) ≤ 0, if ψi(t) = 0 and (xi(t) − xdi
)w(x(t), t) ≥ 0,

0, otherwise.
(4.39)

Hence, for all t > T and for t ≤ T such that w(x(t), t) >> 0,

V̇ (x(t), K(t), φ(t),Ψ(t)) ≤ −(x(t) − xe)
TR(x(t) − xe) ≤ 0. (4.40)

Next, consider the case where for t ∈ [0, T ] and i ∈ {1, . . . , m}, wi(x(t), t) < 0. If

ûi(t) ≥ 0, t ∈ [0, T ], then (4.37)–(4.39) hold, and hence, (4.40) holds. Alternatively, if

ûi(t) < 0, t ∈ [0, T ], then, since wi(x(t), t) < 0, xi(t)− xd(t) ≥ 0 does not necessarily

hold, and hence, (4.35) and (4.36) do not necessarily hold. Now, note that if ûi(t) < 0,

t ∈ [0, T ], then ui(t) = 0, and hence, the disturbed system (4.33) is uncontrolled.
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Furthermore, if ûi(t) < 0, t ∈ [0, T ], then kui
(t) = 0, φui

(t) = 0, and ψui
(t) = 0, and

hence, the Lyapunov derivative (4.34) along the trajectories of the closed-loop system

(4.11), (4.25)–(4.29) can be nonnegative over the finite-time interval [0, T ]. Since A is

Hurwitz and the continuous bounded disturbance signal can take nonnegative values

over the time interval [0, T ], the trajectory of the system (4.11) remains bounded

on the time interval [0, T ]. Furthermore, since for all t ≥ T (4.40) holds, it follows

that there exists an increasing unbounded sequence {tn}∞n=0, with t0 = 0, such that

0 < tn+1 − tn ≤ T̂ , T̂ > 0, n = 0, 1, . . . , and V (x̃(tn+1)) − V (x̃(tn)) ≤ 0, where

x̃ = [xT, vecT(K), φT, vecT(Ψ)] and vec(·) denotes the column stacking operator. In

addition, for all t ≥ 0, V (x̃(t)) satisfies α(‖x̃(t)‖) ≤ V (x̃(t)) ≤ β(‖x̃(t)‖), where α(·)

and β(·) are class K functions defined on [0, ǫ) for all ǫ > 0. Hence, by Theorem 1

of [2], the solution (x(t), K(t), φ(t),Ψ(t)) ≡ (xe, Kg, ue,Ψ
∗) of the closed-loop system

given by (4.11) and (4.25)–(4.29) is Lyapunov stable. Moreover, since R is positive

definite, it follows from Theorem 1 of [2] using similar arguments as in Theorem 2.2

of [23] that x(t) → xe as t→ ∞. Finally, u(t) ≥≥ 0, t ≥ 0, is a restatement of (4.25).

The nonnegativity of x(t), t ≥ 0, trivially follows from the fact that A is essentially

nonnegative, the control input is nonnegative, and disturbance signal is such that

nonnegativity is preserved.

Example 4.1. As an illustrative numerical example for the proposed disturbance

rejection adaptive controller given by Theorem 4.2, consider the uncertain compart-

mental dynamical system given by (4.11) with

A =

[
−1 1

1 −1

]
, B =

[
1 0
0 0.4

]
, Ψ∗ =

[
0.1 0

0 0.2

]
,

and initial condition x0 = [0.5, 0.75]T. Here, the disturbance vector is given by

w(x(t), t) = [sin(x1(t)ω1t), 1 − cos(x2(t)ω2t)]
T, where ω1 = 1 rad/sec and ω2 = 5

rad/sec, and xe = [1, 1]T. For the given A, B, and xe, ue satisfying (4.4) is ue = [0, 0]T.
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Here, we consider the control law given by (4.12)–(4.16) with q1 = q2 = 3, k1(0) =

k2(0) = 0, q̂1 = q̂2 = 1, φ1(0) = φ2(0) = 0.01, γ1 = γ2 = 7, and ψ1(0) = ψ2(0) = 0.01.

Figure 4.1 shows the controlled system trajectories for the cases where Ψ(t), t ≥ 0,

is given by (4.16) and Ψ(t) ≡ 0, t ≥ 0. Figure 4.2 shows the control input and

disturbance signal time histories.
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Figure 4.1: System trajectories with and without (Ψ(t) ≡ 0) disturbance rejection
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Figure 4.2: Control input and disturbance signal
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4.5. Adaptive Control for Linear Compartmental Dynamical

Systems with L2 Disturbances

In this section, we consider the problem for characterizing disturbance rejection

control laws for linear compartmental dynamical systems with L2 exogenous dis-

turbances. Specifically, we consider the controlled system (4.6) with disturbance

d(x(t), t) given by (4.10) so that

ẋ(t) = Ax(t) +Bu(t) + J(x(t))w(t), x(0) = x0, t ≥ 0. (4.41)

Define the set S(xe) , {y ∈ R
n : y = x − xe, x ∈ R

n

+}. Next, we partition the

nonnegative orthant R
n

+ into 2n non-intersecting open orthants S1(xe), . . . , S2n(xe),

where Sq(xe) ⊂ S(xe), q = 1, . . . , 2n, such that in each of the orthants Sq(xe), every

ith component of any vector y ∈ Sq(xe) is either strictly positive or strictly negative.

Furthermore, define

S0(xe) , {y ∈ S(xe) : there exists i ∈ {1, . . . , n} : yi = 0}. (4.42)

Clearly, S(xe) = S0(xe) ∪ S1(xe) ∪ · · · ∪ S2n(xe) and for all i, j = 1, . . . , 2n, i 6=

j, Sj(xe) ∩ Si(xe) = ∅ and S0(xe) ∩ Si(xe) = ∅ .

Next, define the function Vs : S(xe) → R+ by Vs(y) = ‖y‖1, where ‖·‖1 denotes the

absolute sum norm. Note that Vs(·) is continuous everywhere in S(xe) and Vs(y) = 0

if and only if y = 0, and Vs(y) > 0 for all y 6= 0. Furthermore, note that for

every y ∈ Sq(xe), q = 1, . . . , 2n, Vs(·) is continuously differentiable, whereas for every

y ∈ S0(xe), Vs(·) is continuous, but not continuously differentiable.

Theorem 4.5. Consider the linear uncertain dynamical system given by (4.41)

where A is compartmental and eTA << 0, B is nonnegative and given by (4.7),

J : R
n

+ → R
n×d is continuous and bounded on R

n

+, and w(·) ∈ L2. Then the adaptive
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control law u(t) = [u1(t), . . . , um(t)]T, with ui(t), t ≥ 0, i = 1, . . . , m, satisfying

u̇i(t) =






0, if yi(t) = xi(t) − xdi
≥ 0 and ui(t) = 0,

−1
2
, if yi(t) ≥ 0 and ui(t) 6= 0,

1
2
, otherwise.

(4.43)

ui(0) ≥ 0, t ≥ 0, i = 1, . . . , m,

guarantees that the solution (x(t), u(t)) ≡ (xe, ue) of the undisturbed (J(x(t))w(t) ≡

0) closed-loop system (4.41) and (4.43) is Lyapunov stable, and x(t) → xe as t→ ∞

for all x0 ∈ R
n

+. Moreover, the solution x(t), t ≥ 0, to the disturbed closed-loop

system (4.41) and (4.43) satisfies the non-expansivity constraint

n∑

j=1

|γj|
∫ t

0

|yj(σ)|dσ ≤ α
√
n

β

∫ t

0

wT(σ)w(σ)dσ + V (x0, u(0)), (4.44)

where

V (x, u) = Vs(x− xe) + (u− ue)
TΓ−1(u− ue), (4.45)

γj =
∑n

i=1 pqi
A(i,j) and pqi

± 1, j = 1, . . . , n, Γ−1 = diag[ b1, . . . , bm ] is positive

definite, y(t) , x(t) − xe, and α, β > 0 are as defined in Section 4.3. Furthermore,

u(t) ≥≥ 0, t ≥ 0, and x(t) ≥≥ 0 for all x0 ∈ R
n

+ and t ≥ 0.

Proof. First, note that even though the update law given by (4.43) is not con-

tinuous, the adaptive control ui(t), t ≥ 0, i = 1, . . . , m, is continuous. Hence, for

each i ∈ {1, . . . , m}, a function ui : Iui(0) → R is a solution to (4.43) on the interval

Iui(0) ⊆ R with initial condition ui(0) if ui(·) is continuous and ui(t) satisfies (4.43)

for all t ∈ Iui(0). Next, note that the system dynamics (4.41) can be rewritten as

ẋ(t) = A(x(t) − xe) +B(u(t) − ue) + J(x(t))w(t), x(0) = x0, t ≥ 0. (4.46)

Consider the Lyapunov function candidate for the closed-loop system (4.46) and (4.43)

given by (4.45) and note that V (x, u) ≥ 0 for all x and u, and V (x, u) = 0 if and only
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if x = xe and u = ue. Equation (4.45) can be written as

V (x, u) = Vs(y) + (u− ue)
TΓ−1(u− ue). (4.47)

Now, suppose that at some time t ∈ [0,∞), y(t) = x(t) − xe 6∈ S0(xe). In this

case, there exists an index q ∈ {1, . . . , 2n} such that y(t) ∈ Sq(xe), and hence,

(4.47) is continuously differentiable for every y ∈ Sq(xe). Next, for every set Sq(xe)

we associate a single vector pq consisting of the components ±1 defined as pq ,

sgn(y), y ∈ Sq(xe), where the sgn(·) operator is taken componentwise and is defined

as sgn(µ) ,
µ
|µ| , µ 6= 0, and sgn(0) , 0.

Now, rewriting (4.47) as V (x, u) = pT
q y + (u− ue)

TΓ−1(u− ue), the derivative of

V (x, u) along the trajectories of closed-loop system (4.46) and (4.43) is given by

V̇ (x(t), u(t)) = pT
q Ay(t) + pT

q B(u(t) − ue) + pT
q J(y(t) + xe)w(t) + 2(u− ue)

TΓ−1u̇(t)

= pT
q Ay(t) + pT

q J(y(t) + xe)w(t) +
m∑

i=1

bi(ui(t) − uei
)(pqi

+ 2u̇i(t)).(4.48)

Note that pT
q Ay can be written as pT

q Ay = γ1y1 + . . . γnyn, where γj ,
∑n

i=1 pqi
A(i,j)

and pq are elementary vectors consisting of the components ±1. If yj > 0, then pqj
= 1

and, since eTA << 0, it follows that γj < 0, and hence, γjyj < 0. Alternatively, if

yj < 0, then using identical arguments pqj
= −1 and γj > 0, which yields γjyj < 0.

Thus, γjyj = −|γj||yj|, and hence,

pT
q Ay(t) ≤

n∑

j=1

−|γj||yj(t)|, t ≥ 0. (4.49)

Furthermore, note that

pT
q J(y(t) + xe)w(t) ≤ α

√
n

β
wT(t)w(t), t ≥ 0. (4.50)

Next, for each i ∈ {1, . . . , m} and u̇i(t), t ≥ 0, given by (4.43), the last term of

(4.48) gives:
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(i) If yi > 0 or, equivalently, pqi
= 1, and ui(t) = 0, t ≥ 0, then u̇i(t) = 0, t ≥ 0, and

bi(ui(t) − uei
)(pqi

+ 2u̇i(t)) = −biuei
≤ 0, t ≥ 0.

(ii) If yi > 0 and ui(t) 6= 0, t ≥ 0, then u̇i(t) = −1
2
, t ≥ 0, and

bi(ui(t) − uei
)(pqi

+ 2u̇i(t)) = 0, t ≥ 0.

(iii) If yi < 0, or, equivalently, pqi
= −1, then u̇i(t) = 1

2
, t ≥ 0, and

bi(ui(t) − uei
)(pqi

+ 2u̇i(t)) = 0, t ≥ 0.

Hence,
m∑

i=1

bi(ui(t) − uei
)(pqi

+ 2u̇i(t)) ≤ 0, t ≥ 0.

Now, using (4.49) and (4.50), it follows that

V̇ (x, u) ≤
n∑

j=1

−|γj||yj| +
α
√
n

β
wTw, t ≥ 0. (4.51)

Since Sq(xe) is open, it follows from continuity of the system trajectories that

there exists a time interval [t, T ), T > t, such that y(σ) = x(σ) − xe ∈ Sq(xe) for all

σ ∈ [t, T ). Integrating (4.51) over σ ∈ [t, T ) yields

V (x(T ), u(T )) ≤ α
√
n

β

∫ T

t

wT(σ)w(σ)dσ −
n∑

j=1

|γj|
∫ T

t

|yj(σ)|dσ + V (x(t), u(t)).

Noting that V (x(T ), u(T )) ≥ 0 for all possible x(T ) and u(T ) it follows that

n∑

j=1

|γj|
∫ T

t

|yj(σ)|dσ ≤ α
√
n

β

∫ T

t

wT(σ)w(σ)dσ + V (x(t), u(t)), (4.52)

where w(·) ∈ L2. Now, since |γi| > 0, the nonnegative expression on the left-hand

side of the inequality (4.52) is zero only if yi = 0 for all i = 1, . . . , n.

Next, suppose that on an arbitrary time interval [t, T ), T > 0, y(σ) ∈ S0(xe) for all

σ ∈ [t, T ), y(σ) 6= 0, and all yi(σ) remain either strictly positive, strictly negative, or
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zero. In this case, there exists a set of indices I = {i1, . . . , ik} such that for all j ∈ I,

yj(σ) ≡ 0. Now, it follows from (4.43) that uj(t), j ∈ {1, . . . , m}∩I, remains bounded

since it either remains constant, or decreases and is always nonnegative. Since for

all j ∈ I and σ ∈ [t, T ), xj(σ) ≡ xej
, it follows that ẋj(σ) ≡ 0. Now, to examine

the stability of the closed-loop system (4.41) and (4.43), we can consider a reduced

dynamical system obtained from (4.46) by deleting the equations corresponding to ẋj,

j ∈ I, since these states are constant, and hence, do not affect the non-expansivity

constraint (4.52).

To see this, consider a Lyapunov function candidate having the same form as (4.45)

with the states xj and control inputs uj, where j ∈ I, deleted. Specifically, consider

the reduced vectors yr and ur with components yi and uj, respectively, where i ∈

{1, . . . , n}\I and j ∈ {1, . . . , m}\I. In this case, the Lyapunov function candidate

is given by

V (yr, ur) = Vs(yr) + (ur − uer)
TΓ−1

r (ur − uer), (4.53)

where Γ−1
r = diag[ bj1 , . . . , bjk

] and j1, j2, . . . , jk ∈ {1, . . . , m}\I. Next, repeating

the analysis above, it can be shown that

∑

j∈{1, 2, ..., n}\I
|γj|

∫ T

t

|yj(σ)|dσ ≤ α
√
n

β

∫ T

t

∑

j∈{1, 2, ..., n}\I
w2

j (σ)dσ + V (yr(t), ur(t)).

(4.54)

Now, adding
∑

j∈I |γj|
∫ T

t
|yj(σ)|dσ = 0 to the left-hand side of the inequality (4.54),

and the nonnegative term α
√

n
β

∫ T

t

∑
j∈I w

2
j (σ)dσ to the right-hand side of the inequal-

ity (4.54), inequality (4.54) still holds and has the same form as inequality (4.52).

Hence, inequality (4.52) holds on the time interval [0, t) for all t > 0, that is,

n∑

j=1

|γj|
∫ t

0

|yj(σ)|dσ ≤ α
√
n

β

∫ t

0

wT(σ)w(σ)dσ + V (x0, u(0)), (4.55)

where w(·) ∈ L2. Now, it follows from (4.51) that the solution (x(t), u(t)) ≡ (xe, ue) of

the undisturbed (J(x(t))w(t) ≡ 0) closed-loop system (4.41) and (4.43) is Lyapunov
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stable. Furthermore, by Theorem 4.4 of [80], y(t) = x(t) − xe → 0 as t → ∞ for all

x0 ∈ R
n

+.

Finally, note that, since, by assumption, J(x)w(t) ≥≥ 0, x ∈ ∂R
n

+ and t ≥ 0, and

the control inputs ui(t), t ≥ 0, defined by (4.43) are nonnegative, u(t) ≥≥ 0, t ≥ 0,

and hence, the trajectory of the system (4.41) remains in the nonnegative orthant.

This completes the proof.

Remark 4.4. It is important to note that the adaptive feedback control law,

u(t), t ≥ 0, characterized by (4.43) is continuous, but not continuously differentiable.

Namely, even though for each i ∈ {1, . . . , m}, u̇i(·) is continuous on R
n

+ \ S(xe) and

discontinuous on S(xe), ui(·) is continuous on R
n

+. Hence, the closed-loop system

(4.46) generates a continuous closed-loop vector field.

Next, we present a different control law for the disturbance rejection problem

considered in this section. The following assumption is needed for the next result

Assumption 4.2. Consider the controlled system (4.41) and let ‖·‖ : R
n×d → R.

Assume J(x), x ∈ R
n

+ in (4.41) is such that ‖J(x)‖ ≤ α, x ∈ R
n

+, where α < λmin(R)
‖P‖

and P and R satisfy (4.2).

Theorem 4.6. Consider the linear uncertain dynamical system given by (4.41)

where A is Hurwitz and compartmental, B is nonnegative and given by (4.7), J :

R
n → R

n×d is continuous and bounded on R
n
, and w(·) ∈ L2. Suppose Assumption

4.2 holds. Then the control law u(t) = [u1(t), . . . , um(t)]T, with ui(t), t ≥ 0, i =

1, . . . , m, satisfying

u̇i(t) =






0, if ui(t) = 0 and yi(t) , xi(t) − xdi
≥ 0,

−γiyi(t), otherwise,
(4.56)

ui(0) ≥ 0, γi > 0, t ≥ 0, i = 1, . . . , m,
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guarantees that the solution (x(t), u(t)) ≡ (xe, ue) of the undisturbed (J(x(t))w(t) ≡

0) closed-loop system (4.41) and (4.56) is Lyapunov stable and xi(t) → xdi
, i =

1, . . . , m, as t → ∞ for all x0 ∈ R
n

+. Moreover, the solution x(t), t ≥ 0, to the

disturbed closed-loop system (4.41) and (4.56) satisfies the non-expansivity constraint

γ

∫ t

0

(x(σ) − xe)
T(x(σ) − xe)dσ ≤ 1

2

∫ t

0

wT(σ)w(σ)dσ + C, γ > 0, C ≥ 0, t ≥ 0.

(4.57)

Furthermore, u(t) ≥≥ 0, t ≥ 0, and x(t) ≥≥ 0 for all x0 ∈ R
n

+ and t ≥ 0.

Proof. Since A is Hurwitz it follows from Theorem 4.1 that there exist a positive

diagonal matrix P and a positive-definite matrix R ∈ R
n×n satisfying (4.2). Now,

consider the Lyapunov function candidate

V (x, u) = (x− xe)
TP (x− xe) + (u− ue)

TΓ−1(u− ue), (4.58)

where Γ−1 = diag
[

b1
γ1
, . . . , bm

γm

]
. Note that V (x, u) is nonnegative for all x and u,

and V (x, u) = 0 if and only if x = xe and u = ue. The Lyapunov derivative along the

trajectories of the closed-loop system (4.41) and (4.56) is given by

V̇ (x(t), u(t)) = 2(x(t) − xe)
TPA(x(t) − xe) + 2(x(t) − xe)

TPB(u(t) − ue)

+2(x(t) − xe)
TPJ(x(t))w(t)) + 2(u(t) − ue)

TΓ−1u̇(t)

= −(x(t) − xe)
TR(x(t) − xe) + 2(x(t) − xe)

TPJ(x(t))w(t)

+2
m∑

j=1

pibi(ui(t) − ue)

(
yi(t) +

1

γi

u̇i(t)

)
, t ≥ 0. (4.59)

Now, for each i ∈ {1, . . . , m} and for the two cases given in (4.56) the last term

on the right-hand side of (4.59) gives:

(i) If ui(t) = 0 and yi(t) ≥ 0, t ≥ 0, then u̇i(t) = 0, t ≥ 0, and hence,

pibi(ui(t) − ue)

(
yi(t) +

1

γi

u̇i(t)

)
= −pibiueyi(t) ≤ 0, t ≥ 0.
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(ii) Otherwise, u̇i(t) = −γiyi(t), and hence,

pibi(ui(t) − ue)

(
yi(t) +

1

γi

u̇i(t)

)
= 0, t ≥ 0.

Thus, it follows that

V̇ (x(t), u(t)) ≤ −(x(t) − xe)
TR(x(t) − xe) + 2(x(t) − xe)

TPJ(x(t))w(t)

≤ −(x(t) − xe)
TR(x(t) − xe) + α‖P‖‖x(t) − xe‖2 +

1

2
‖w(t)‖2

≤ (−λmin(R) + α‖P‖)‖x(t) − xe‖2 +
1

2
wT(t)w(t)

≤ −γ‖x(t) − xe‖2 +
1

2
wT(t)w(t), t ≥ 0,

where, by Assumption 4.2, γ , λmin(R) − α‖P‖ > 0. Hence,

V̇ (x(t), u(t)) ≤ −γ‖x(t) − xe‖2 + wT(t)w(t), t ≥ 0. (4.60)

Integrating (4.60) over the time interval [0, t), t ≥ 0, yields

V (x(t), u(t)) ≤ 1

2

∫ t

0

wT(σ)w(σ)dσ − γ

∫ t

0

(x(σ) − xe)
T(x(σ) − xe)dσ + V (x0, u(0)).

Noting that V (x(t), u(t)) ≥ 0 for all possible x(t) and u(t) it follows that

γ

∫ t

0

(x(σ) − xe)
T(x(σ) − xe)dσ ≤ 1

2

∫ t

0

wT(σ)w(σ)dσ + V (x0, u(0)), γ > 0,

(4.61)

where w(·) ∈ L2.

Finally, it follows from (4.60) that the solution (x(t), u(t)) ≡ (xe, ue) of the undis-

turbed (J(x(t))w(t) ≡ 0) closed-loop system (4.41) and (4.56) is Lyapunov stable.

Furthermore, by Theorem 4.4 of [80], x(t) − xe → 0 as t→ ∞ for all x0 ∈ R
n

+. Now,

the nonnegativity of the dynamical system (4.41) follows trivially by noting that con-

trol input u(t) defined by (4.56) is nonnegative and J(x)w(t) ≥≥ 0 for all x ∈ ∂R
n

+

and t ≥ 0.
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Example 4.2. In this example, we consider the adaptive controller given by

(4.43). Specifically, consider the dynamical system given by (4.41) with

A =




−1.5 2.0 1.5

0.5 −3 0.9
0.75 0.5 −2.5



 , B =




0.5 0 0

0 0.33 0
0 0 0.2



 ,

J(x) =




0.001 0.02 0.003
0.012 0.001 0.032
0.022 0.003 0.007



 , (4.62)

and initial condition x0 = [0.5, 2, 3]T. Here, the disturbance vector is given by

w(x(t), t) = [e−λ1t sin(x1(t)ω1t), e−λ2t(1+cos(ω2t)]
T), e−λ3t(1+sin(ω3t))]

T, where

ω1 = 1 rad/sec, ω2 = 2 rad/sec, ω3 = 3 rad/sec, λ1 = 0.01, λ2 = 0.02, and λ3 = 0.03.

The desired set-point is xe = [2.5, 1, 1]T. For the given A, B, and xe, ue satisfying

(4.4) is ue = [0.5, 2.55, 0.625]T. Here, we consider the control law given by (4.43)

with u1(0) = u2(0) = u3(0) = 0. The controlled and uncontrolled system trajectories

are shown in Figure 4.3. The control input and disturbance signal are shown in

Figure 4.4. Note that the proposed controller achieves disturbance rejection and the

trajectory of the system converges to the desired set-point.
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Figure 4.3: System trajectories with and without disturbance rejection
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Figure 4.4: Control input and disturbance signal

Example 4.3. In this example, we consider the adaptive controller given by

(4.56). Specifically, consider the dynamical system (4.41) with the same parameters

and disturbance signal as in Example 4.2, and A given by

A =




−1.5 2.0 1.5

0.5 −3 1
0.75 0.5 −2.5



 .

For the given A, B, and xe = [2.5, 1, 1]T, ue satisfying (4.4) is ue = [0.5, 2.25, 0.625]T.

Here, we consider the controller given by (4.56) with γ1 = γ2 = γ3 = 2 and u1(0) =

u2(0) = u3(0) = 0.01. Figure 4.5 shows the controlled and uncontrolled system

trajectories and Figure 4.6 shows the control input and disturbance versus time. Since

the disturbance signal is an L2 signal and A is Hurwitz, the states of the uncontrolled

system (u(t) ≡ 0) converge to zero. Alternatively, the controlled system with the

adaptive disturbance rejection controller given by (4.56) guarantees that the system

trajectories converge to the desired set-point.
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Figure 4.6: Control input and disturbance signal

4.6. Adaptive Control for Automated Anesthesia with Hem-

orrhage and Hemodilution Effects

Almost all anesthetics are myocardial depressants, that is, they decrease the con-

tractility of the heart and lower cardiac output (i.e., the volume of blood pumped by

the heart per unit time). Decreased cardiac output can decrease the rate of transfer
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of drug from the intravascular volume to peripheral tissues, resulting in an increase

in plasma concentration. This can lead to overdosing which, at the very least, can

delay recovery from anesthesia and, in the worst case, can result in respiratory and

cardiovascular collapse. Alternatively, underdosing can cause psychological trauma

from awareness and pain during surgery.

Control of drug effect is clinically important since overdosing or underdosing incur

risk for the patient. To illustrate the adaptive disturbance rejection control frame-

work developed in Section 4.4 of this presentation for general anesthesia we consider a

hypothetical model for the intravenous anesthetic propofol. The pharmacokinetics of

propofol are described by the three-compartment model [53,96] shown in Figure 4.7,

where x1 denotes the mass of drug in the central compartment, which is the site of

drug administration and is identified with tissues whose drug concentration equili-

brates, within the assumptions of the model, instantaneously with the site of drug

administration. This implies tissues with high ratios of blood flow to tissue mass,

such as those found in the myocardium, brain, etc., although compartment models

do not strictly equate the compartment with any specific organ. The remainder of the

drug in the body is assumed to reside in two peripheral compartments, corresponding

to tissues with progressively slower drug equilibration with the site of administration.

The masses in these compartments are denoted by x2 and x3, respectively. These

compartments receive less than 20% of the cardiac output. It should be noted that

pharmacokinetic compartmental models may utilize any number of compartments

and the decision about model complexity depends largely on the resolution of con-

centration measurements as a function of time. The three-compartment model shown

in Figure 4.7 has been found to be effective for describing the disposition of propofol

after intravenous injection [96].
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Figure 4.7: Three-compartment mammillary model for disposition of propofol

A mass balance for the whole compartmental system yields

ẋ1(t) = −(a11 + a21 + a31)x1(t) + a12x2(t) + a13x3(t) + u(t) + d(x(t), t),

x1(0) = x10, t ≥ 0, (4.63)

ẋ2(t) = a21x1(t) − a12x2(t), x2(0) = x20, (4.64)

ẋ3(t) = a31x1(t) − a13x3(t), x3(0) = x30, (4.65)

where x1(t), x2(t), x3(t), t ≥ 0, are the masses in grams of propofol in the central

compartment and compartments 2 and 3, respectively, u(t), t ≥ 0, is the infusion

rate in grams/min of the anesthetic drug propofol into the central compartment,

d(x(t), t) is an exogenuous disturbance signal in grams/min which has been included

to model the effect of hemorrhage on the dynamics of the mass of propofol in the

central compartment, aij > 0, i 6= j, i, j = 1, 2, 3, are the rate constants in min−1 for

drug transfer between compartments, and a11 > 0 is the rate constant in min−1 of

drug metabolism and elimination (metabolism typically occurs in the liver) from the

central compartment.

Even though the transfer and loss coefficients are positive, they are uncertain

due to patient gender, weight, pre-existing disease, age, and concomitant medication.

Hence, adaptive control for propofol set-point regulation can significantly improve

the outcome for drug administration over manual (open-loop) control. It has been

reported in [142] that a 2.5–6 µg/ml blood concentration level of propofol is required
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during the maintenance stage in general anesthesia depending on patient fitness and

extent of surgical stimulation. Hence, continuous infusion control is required for main-

taining this desired level of anesthesia. Here, we assume that the transfer and loss

coefficients a11, a12, a21, a13, and a31 are unknown and our objective is to regulate

the propofol concentration level of the central compartment to the desired level of

3.4 µg/ml in the face of system uncertainty and system disturbances due to hemor-

rhage.

Next, note that (4.63)–(4.65) can be written in state space form (4.6) with x =

[x1, x2, x3]
T,

A =




−(a11 + a21 + a31) a12 a13

a21 −a12 0
a31 0 −a13



 , B =




1
0
0



 , d(x, t) =




−ψ∗w(x, t)

0
0



 ,

where ψ∗ is an unknown positive constant and the function w(x, t) represents blood

loss due to hemorrhage. A model for the effect of hemorrhage on the dynamics of

the mass of propofol in the central compartment is developed below. Even though

propofol concentration levels in the blood plasma will lead to the desired depth of

anesthesia, they cannot be measured in real-time during surgery. Furthermore, we

are more interested in drug effect (depth of hypnosis) rather than drug concentration.

Hence, we consider a realistic model involving pharmacokinetics (drug concentration

as a function of time) and pharmacodynamics (drug effect as a function of concentra-

tion) for control of anesthesia. Specifically, we use an electroencephalogram (EEG)

signal as a measure of the hypnotic effect of propofol on the brain [123]. Since

electroencephalography provides real-time monitoring of the central nervous system

activity, it can be used to quantify levels of consciousness and hence is amenable

for feedback (closed-loop) control in general anesthesia. Furthermore, we use the

Bispectral Index (BIS), an EEG indicator, as a measure of hypnotic effect [99]. This

index quantifies the nonlinear relationships between the component frequencies in the
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electroencephalogram, as well as analyzing their phase and amplitude.

The BIS signal is related to drug concentration by the empirical relationship

BIS(ceff) = BIS0

(
1 − cγeff

cγeff + ECγ
50

)
, (4.66)

where BIS0 denotes the base line (awake state) value and, by convention, is typically

assigned a value of 100, ceff is the propofol concentration in grams/liter in the effect

site compartment (brain), EC50 is the concentration at half maximal effect and repre-

sents the patient’s sensitivity to the drug, and γ determines the degree of nonlinearity

in (4.66). Here, the effect-site compartment is introduced to account for finite equili-

bration time between the central compartment concentration and the central nervous

system concentration [115].

The effect-site compartment concentration is related to the concentration in the

central compartment by the first-order model [115]

ċeff(t) = aeff(x1(t)/Vc − ceff(t)), ceff(0) = x1(0)/Vc, t ≥ 0, (4.67)

where aeff in min−1 is an unknown positive time constant and Vc is the volume in liters

of the central compartment. As noted in [94], Vc can be approximately calculated by

Vc = (0.159 l/kg)(M kg), where M is the mass in kilograms of the patient, and aeff is

obtained as aeff = 0.693/2.2 min = 0.3150 min−1, where 2.2 min is the half-time ke0

value reported in [130]. In reality, the effect-site compartment equilibrates with the

central compartment in a matter of a few minutes. However, in the case of significant

blood loss, this equilibration can be slowed down. The parameters aeff , EC50 and γ

are determined by data fitting and vary from patient to patient. BIS index values of 0

and 100 correspond, respectively, to an isoelectric EEG signal (no cerebral electrical

activity) and an EEG signal of a fully conscious patient; the range between 40 and

60 indicates a moderate hypnotic state [39].
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In the following numerical simulation we set EC50 = 3.4 µg/ml, γ = 3, and

BIS0 = 100, so that the BIS signal is shown in Figure 4.8. The values for the

pharmacodynamic parameters (EC50, γ) are within the typical range of those observed

for ligand-receptor binding [33,78]. The target (desired) BIS value, BIStarget, is set at

50. In this case, the linearized BIS function about the target BIS value is given by

BIS(ceff) ≃ BIS(EC50) − BIS0 · ECγ
50 ·

γcγ−1
eff

(cγeff + ECγ
50)

2

∣∣∣∣
ceff=EC50

· (ceff − EC50)

= bBIS + kBIS · ceff , (4.68)

where bBIS = 125 and kBIS = −22.06 ml/µg.
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Figure 4.8: BIS index versus effect site concentration

During surgery hemorrhage and hemodilution (i.e., increase in fluid content of

blood resulting in reduced concentration of red blood cells in the blood) often take

place which can affect the concentration of a drug in the blood, and hence, the level

of patient sedation [79]. Hence, it is of paramount importance that the adaptive

controller is able to compensate for the effects of hemorrhage and hemodilution.

In particular, during hemorrhage when perfusion pressure falls, perfusion of certain

regions (e.g., brain and heart) takes precedence over perfusion of other regions, and

blood flow to these other regions is significantly slowed down. Such an effect can

be modeled by decreasing the transfer coefficients between compartments, as well as
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adding an exogenous disturbance to the baseline pharmacokinetic system to account

for the effect of hemorrhage on the dynamics of the mass of propofol in the central

compartment. The system equations (4.63)–(4.65) then take the form of (4.6).

To develop a disturbance model for hemorrhage and hemodilution on the dynam-

ics of the mass of propofol, we assume that the bleeding is arterial and the size of

the holes in the bleeding vessels remain constant during the period of hemorrhaging.

Assuming that blood loss occurs only through the central compartment, we model the

disturbance signal (4.8) as d(x(t), t) = [βc(t)BL(x1(t), t), 0, 0]T, where β is a dimen-

sionless unknown positive constant coefficient, c(t) = x1(t)/Vc(t) is the concentration

of propofol in the central compartment in grams/liter, and BL(x1(t), t) is the rate of

blood loss in liters/min.

Using [77], we model blood loss rate as

BL(x1(t), t) =
BL0

MAP0

σ(t)MAP (x1(t), t), t ≥ 0, (4.69)

where BL0 is the initial rate of blood loss, MAP0 is the initial mean arterial pressure,

MAP (x1(t), t) is the mean arterial pressure at time t ≥ 0, and σ : [0, ∞) → {0, 1}

is a piecewise switching function describing a particular hemorrhage scenario, includ-

ing hemorrhage start and stop times. Note that the blood pressure is a function

of propofol mass in the central compartment. Using the linear approximation of

the BIS index given by (4.68), the disturbance signal can be rewritten in the form

d(x(t), t) = [ψ∗w(x(t), t), 0, 0]T, where ψ∗ = βBL0

kBIS
is an unknown parameter and

w(x(t), t) = σ(t)MAP (x1(t),t)
MAP0

(BIS(t) − bBIS). In the numerical simulation the dimen-

sionless parameter β is set to 8.25, BL0 is 0.216 liter/min, and MAP0 = 80 mm

Hg.

In order to proceed we need to develop a model for the relationships between

blood pressure, blood volume, and propofol concentration. By definition (of vascular
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resistance), mean arterial blood pressure is given by [6]

MAP (x1(t), t) = CO(x1(t), t) × SV R(x1(t), t) + CV P (t), t ≥ 0, (4.70)

where CO(x1(t), t) is cardiac output (the volume of blood the heart pumps per

minute), SV R(x1(t), t) is systemic vascular resistance (an index of arteriolar com-

pliance or constriction throughout the body), and CV P (t) is central venous pressure

(the venous pressure of the right atrium of the heart). Since CV P (·) is usually an

order of magnitude less than mean arterial pressure, (4.70) can be approximated as

MAP (x1(t), t) = CO(x1(t), t) × SV R(x1(t), t), t ≥ 0. (4.71)

Since cardiac output is equal to the product of heart rate HR and stroke volume SV

(the volume of blood pumped per heart beat) it follows that

MAP (x1(t), t) = HR(x1(t), t) × SV (x1(t), t) × SV R(x1(t), t), t ≥ 0. (4.72)

If the contractile strength of the heart were to remain constant during hemorrhage,

to a first order approximation, stroke volume can be modeled as

SV (x1(t), t) = (SV0 ×BV (t))/BV0, t ≥ 0, (4.73)

where SV0 is the baseline stroke volume, BV (t) is the blood volume during hemor-

rhage, and BV0 is the baseline blood volume.

Using (4.72) and (4.73) it follows that mean arterial pressure is proportional to

blood volume. However, there are physiological compensatory mechanisms that act

to maintain blood pressure in the face of hemorrhage. The autonomic nervous system

responds to blood loss with an increase in sympathetic nervous tone leading to an

increase in both heart rate and systematic vascular resistance, and also the contractile

strength of the heart. In otherwise healthy conscious individuals, these mechanisms

are so effective that blood pressure can be maintained even after significant blood loss.
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However, in the anesthetized individual, the situation is more complex as anesthetic

agents, including propofol, blunt these compensatory mechanisms. Thus, for our sim-

ulation we must consider the relationship between blood loss and blood pressure to

be a spectrum with two extremes; namely, ranging from completely effective com-

pensatory mechanisms with the blood pressure maintained at baseline levels despite

blood loss, to completely blunted compensatory mechanisms in which blood pressure

is proportional to the blood volume. To our knowledge, this relationship has never

undergone mathematical modeling.

Given its nearly ubiquitous value for modeling biological phenomena, we believe

that using a modified Hill equation is a plausible approach for modeling the relation-

ship between blood pressure, blood volume, and propofol concentration. Specifically,

for our simulations we assume that

MAP (x1(t), t) = MAP0 −
[
MAP0 −

MAP0

BV0

BV (t)

]
× cα(t)

cα(t) + Cα
50

, t ≥ 0, (4.74)

where c(t) is propofol concentration in the central compartment, C50 is an empirical

constant which defines the midpoint of the relationship between propofol concen-

tration and the blunting of compensatory mechanisms for the maintenance of blood

pressure, and α is an empirical constant that describes the steepness of this relation-

ship. Note that if C50 is zero, compensatory mechanisms are totally ineffective and

mean arterial pressure is proportional to blood volume, while if C50 is large, blood

pressure is largely maintained despite hemorrhage. We emphasize that this is a hypo-

thetical relationship which we postulate in order to proceed with simulations. While

the relationship is hypothetical, it is biologically plausible and by appropriate choices

of the empirical constants C50 and α, the spectrum of relationship between blood pres-

sure, blood loss, and propofol concentration may be explored. In order to account

for the two extremes between blood pressure being proportional to blood volume and

blood pressure maintained at baseline levels despite blood loss, we have performed
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simulations using multiple values of C50 and α with C50 ranging from 0.5 to 10 in

increments of 0.1 and α ranging from 2 to 8 in increments of 0.5. Our numerical study

showed imperceptible differences indicating that the proposed disturbance rejection

algorithm is very robust. In the simulation shown below we set C50 = 2µg/ml and

α = 3. Finally, we note that in actual surgery the mean arterial pressure is measured

and does not need to be modeled.

The dynamic behavior of the blood volume components involving the red blood

cell volume y1(t) and the plasma volume y2(t) can be described by [77]

ẏ1(t) = r(t) − y1(t)BL(x1(t), t)/BV (t), y1(0) = y10, t ≥ 0 (4.75)

ẏ2(t) = CL(t) + CR(t) + TRANS(t) − y2(t)BL(x1(t), t)/BV (t), y2(0) = y20,

(4.76)

where r(t) is the packed red blood cell infusion rate, CL(t) is the colloid infusion

rate, CR(t) is the crystalloid infusion rate, and TRANS(t) represents the effect

of the Starling’s transcapillary refill [77], BL(x1(t), t) is the rate of blood loss in

liters/min, and BV (t) is the blood volume in the central compartment, which can be

approximated by

BV (t) = y1(t) + y2(t), t ≥ 0. (4.77)

For our simulation we assume that the initial blood volume BV0 is 5 liters. The

initial red blood cell volume y10 is assumed to be 45% of BV0 and the initial plasma

volume y20 is 55% of BV0. The time histories of the blood loss rate, as well as the red

blood cell and crystalloid infusion rates, and the Starling’s transcapillary refill rate

are shown in Figure 4.9. In the simulation we assume that the colloid infusion rate

is zero. For the chosen parameters, the dynamics of blood volume BV (t), as well as

hematocrit, that is, the proportion of red blood cell volume to the total blood volume,

and mean arterial pressure MAP (x1(t), t) are shown in Figure 4.10.
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During actual surgery neither the mass of propofol x1(t) nor the concentration of

propofol c(t) in the central compartment can be measured in real time. Moreover,

due to hemorrhage and hemodilution, the blood volume, and hence, the volume of the

central compartment are not constant. As a result, the desired mass xd of propofol in

the central compartment is not a fixed set-point but rather a bounded unknown func-

tion of time. This makes the automated anesthesia control problem with hemorrhage

and hemodilution effects more challenging than the automated anesthesia problem

without modeling these effects [53]. However, using the BIS signal it is possible to

achieve the desired level of hypnotic state. In particular, using the linearized BIS

given by (4.68), and assuming that the concentrations of propofol in the effect site

and central compartment are equal, it follows that

BIS(ceff) − BIStarget ≃ kBIS(c(t) − ctarget) =
kBIS

Vc(t)
(x1(t) − xd1(t)), (4.78)

where the volume of the central compartment Vc(t) and the desired level of mass

of propofol in the central compartment xd1(t) are bounded. Hence, the difference

between the BIS index and target value of BIS index is approximately equal to the

difference between the mass of propofol in the central compartment and its desired

level multiplied by the bounded time-varying negative gain kBIS

Vc(t)
.

In light of the above discussion we use the controller architecture of Theorem 4.4

with i = 1, x1(t) − xd1 = BIStarget − BIS(ceff(t)), q1 = q, q̂1 = qBIS1 , γ1 = qBIS2 ,

where q = 2.0 × 10−8 g/min2, q̂BIS1 = 1.0 × 10−5 g/min2, q̂BIS2 = 4.0 × 10−3 g/min2,

k(0) = 0, φ(0) = 0.01 g/min−1, and ψ(0) = 0, for maintaining a desired constant

level of depth of anesthesia while accounting for hemorrhage and hemodilution. It is

important to note that during actual surgery the BIS signal is obtained directly from

the EEG and not (4.66). Furthermore, since our adaptive controller only requires the

error signal BIS(t) − BIStarget over the linearized range of (4.66), we do not require

knowledge of the slope of the linearized equation (4.68), nor do we require knowledge
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of the parameters γ and EC50.

To numerically illustrate the efficacy of the proposed adaptive control law, we use

the average set of pharmacokinetic parameters given in [42] for 29 patients. Specif-

ically, we assume M = 70 kg, a11 = 0.152 min−1, a21 = 0.207 min−1, a12 = 0.092

min−1, a31 = 0.040 min−1, and a13 = 0.0048 min−1 [42]. Figures 4.11 and 4.12 show

the central compartment and effect-site concentrations versus time, and the control,

disturbance, and BIS signal versus time. Note that the effect site compartment equili-

brates with the central compartment in a matter of several minutes. In addition, note

that when the adaptive controller does not account for hemorrhage and hemodilution

the BIS index drops dangerously low into the low 20’s increasing the possibility of

patient respiratory and cardiovascular collapse.
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Figure 4.9: Blood loss rate, infusion rates and transcapillary refill rate versus time
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Chapter 5

Neuroadaptive Output Feedback Control for

Automated Anesthesia with Noisy EEG

Measurements

5.1. Introduction

The dosing of most drugs is a process of empirical administration of a low dose

with observation of the biological effect and subsequent adjustment of the dose in

the hopes of achieving the desired effect. This is true of anesthetic drugs, just as

it is of chronically administered medications (for example, anti-hypertensive agents).

In the acute environment of the operating room and intensive care unit (ICU), this

can result in inefficient, and possibly even dangerous, titration of drug to the desired

effect. There has been a long interest in use of the electroencephalograph (EEG) as

an objective, quantitative measure of consciousness that could be used as a perfor-

mance variable for closed-loop control of anesthesia [110]. Ever since the pioneering

work of Bickford [16], it has been known that the EEG changes with the induc-

tion of anesthesia. Processed electroencephalogram algorithms have been extensively

investigated as monitors of the level of consciousness in patients requiring surgical

anesthesia [11, 16, 118, 119, 122]. However, the EEG is a complex of multiple time

series and in earlier work it was difficult to identify one single aspect of the EEG

signal that correlated with the clinical signs of anesthesia.
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Subsequent to this early research there has been substantial progress in the de-

velopment of processed EEG monitors that analyze the raw data to extract a single

measure of the depth of anesthesia. The best known of these monitors is the bispec-

tral or BIS monitor, which calculates a single composite EEG measure that is well

correlated with the depth of anesthesia [41, 110, 120]. The BIS signal ranges from 0

(no cerebral electrical activity) to 100 (the normal awake state). Available evidence

indicates that a BIS signal less than 55 is associated with lack of consciousness. While

BIS monitoring has proven useful in the operating room environment, there have been

inconsistencies reported and attempts to extend BIS monitoring for the evaluation of

sedation outside of the operating room have been unsuccessful [107]. One of the key

reasons for this is due to the fact that the signal-averaging algorithm within the BIS

monitor ignores signal noise, and when there is excessive noise, the BIS monitor does

not generate a signal.

It is widely appreciated that BIS monitoring, or for that matter, any EEG mon-

itoring, can be fraught with error because of the potential for outside interference

to produce an unfavorable signal-to-noise ratio yielding spurious results. Nonphysi-

ologic artifactual signals may be generated from sources external to the patient that

include lights, electric cautery devices, ventilators, pacemakers, patient warming sys-

tems, and electrical noise related to the many different kinds of monitors normally

found in an operating room or ICU. Physiologic movements such as eye movements,

myogenic activity, perspiration, and ventilation can produce artifactual increases in

the BIS score. In particular, it is apparent that electromyographic (EMG) activity

can spuriously increase the BIS score [75]. The co-administration of neuromuscular

blockade eliminates artifacts from muscle movement, which can be superimposed on

the BIS score; and this undoubtedly contributes to the widespread use and value of

the BIS device during surgery. However, to extend this technology outside of the
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operating room, or for that matter, to nonparalyzed patients in the operating room,

further refinements are needed. In addition, if the BIS signal is to be used to quantify

levels of consciousness for feedback control in general anesthesia, then the observation

noise needs to be accounted for in the control system design process.

The challenge to the use of the BIS signal for closed-loop control of anesthesia is

that the relationships between drug dose and tissue concentration (pharmacokinet-

ics) and between tissue concentration and physiological effect (pharmacodynamics) is

highly variable between individuals. In addition, observation noise in the BIS signal

results in feedback measurement signals with high signal-to-noise ratios that need to

be accounted for in the control algorithm. Adaptive feedback controllers seem partic-

ularly promising given this interpatient variability as well as BIS signal variation due

to noise. In previous work, we have used nonnegative and compartmental dynamical

systems theory to develop adaptive and neuroadaptive controllers for controlling the

depth of anesthesia [46,53,54].

One of our initial efforts was the development of a direct adaptive control frame-

work for uncertain nonlinear nonnegative and compartmental systems with nonnega-

tive control inputs [53,54]. This framework is Lyapunov-based and guarantees partial

asymptotic set-point regulation, that is, asymptotic setpoint stability with respect to

part of the closed-loop system states associated with the physiological state vari-

ables. In addition, the adaptive controllers, which are constructed without requiring

knowledge of the pharmacokinetic and pharmacodynamic parameters, provide a non-

negative control input for stabilization with respect to a given setpoint in the non-

negative orthant. Subsequently, we also developed a neuroadaptive output feedback

control framework for uncertain nonlinear nonnegative and compartmental systems

with nonnegative control inputs [46,59]. This framework is also Lyapunov-based and

guarantees ultimate boundedness of the error signals corresponding to the physical
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system states in the face of interpatient pharmacokinetic and pharmacodynamic vari-

ability.

In a recent paper [8] the authors presented numerical and clinical results that com-

pares and contrasts our adaptive control algorithm with our neural network adaptive

control algorithm for controlling the depth of anesthesia in the operating theater

during surgery. Specifically eleven clinical trials were performed with our adaptive

control algorithm [54] and seven clinical trials were performed with our neural net-

work algorithm [46] at the Northeast Georgia Medical Center in Gainesville, Georgia.

The proposed automated anesthesia controllers demonstrated excellent regulation of

unconsciousness and allowed for a safe and effective administration of the anesthetic

agent propofol. However, the adaptive and neuroadaptive controllers presented in [8]

did not account for measurement noise in the EEG signal. Clinical testing has clearly

demonstrated the need for developing adaptive and neuroadaptive controllers that

can address system measurement noise [8].

In this chapter, we extend the neuroadaptive controller framework developed

in [46, 59] to address measurement noise in the BIS signal. Specifically, we de-

velop an output feedback neural network adaptive controller that operates over a

tapped delay line (TDL) of available input and filtered output measurements. The

neuroadaptive laws for the neural network weights are constructed using a linear

observer for the nominal normal form error system dynamics. The proposed frame-

work is Lyapunov-based and guarantees ultimate boundness of the error signals. In

addition, the nonnegative neuroadaptive controller guarantees that the physiologi-

cal system states remain in the nonnegative orthant of the state space. Finally, we

present numerical and clinical results for controlling the depth of anesthesia in the

operating theater during surgery. The proposed automated anesthesia neuroadaptive

controller demonstrates excellent regulation of unconsciousness and allows for a safe
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and effective administration of the anesthetic agent propofol in the face of noisy EEG

measurements.

5.2. Notation and Mathematical Preliminaries

In this section, we introduce notation, several definitions, and some key results

concerning nonlinear nonnegative dynamical systems [13, 47] that are necessary for

developing the main results of this chapter. The following definition introduces the

notion of essentially nonnegative and compartmental vector fields [47].

Definition 5.1. Let f = [f1, · · · , fn]T : D ⊆ R
n

+ → R
n. Then f is essentially

nonnegative if fi(x) ≥ 0, for all i = 1, . . . , n, and x ∈ R
n

+ such that xi = 0, where xi

denotes the ith component of x. f is compartmental if f is essentially nonnegative

and eTf(x) ≤ 0, x ∈ R
n

+.

Note that if f(x) = Ax, where A ∈ R
n×n, then f is essentially nonnegative if and

only if A is essentially nonnegative, that is, A(i,j) ≥ 0, i, j = 1, ..., n, i 6= j, where

A(i,j) denotes the (i, j)th entry of A.

In this chapter, we consider controlled nonlinear dynamical systems of the form

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (5.1)

where x(t) ∈ R
n, t ≥ 0, u(t) ∈ R

m, t ≥ 0, f : R
n → R

n is locally Lipschitz continuous

and satisfies f(0) = 0, G : R
n → R

n×m is continuous, and u : [0,∞) → R
m is

piecewise continuous.

The following definition and proposition are needed for the main results of this

chapter.

Definition 5.2. The nonlinear dynamical system given by (5.1) is nonnegative
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if for every x(0) ∈ R
n

+ and u(t) ≥≥ 0, t ≥ 0, the solution x(t), t ≥ 0, to (5.1) is

nonnegative.

Proposition 5.1 [47]. The nonlinear dynamical system given by (5.1) is non-

negative if f : R
n → R

n is essentially nonnegative and G(x) ≥≥ 0, x ∈ R
n

+.

It follows from Proposition 5.1 that if f(·) is essentially nonnegative, then a non-

negative input signal G(x(t))u(t), t ≥ 0, is sufficient to guarantee the nonnegativity

of the state of (5.1).

5.3. Neuroadaptive Output Feedback Control for Nonlinear

Nonnegative Uncertain Systems

In this section, we consider the problem of characterizing neuroadaptive dynamic

output feedback control laws for nonlinear nonnegative and compartmental uncer-

tain dynamical systems to achieve set-point regulation in the nonnegative orthant.

Specifically, consider the controlled square (i.e., the number of inputs is equal to the

number of outputs) nonlinear uncertain dynamical system G given by

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0, t ≥ 0, (5.2)

y(t) = h(x(t)), (5.3)

yn(t) = y(t) + n(t), (5.4)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control input,

y(t) ∈ R
m, t ≥ 0, is the system output, yn(t) ∈ R

m, t ≥ 0, is the noisy system

output, n(t) ∈ R
m, t ≥ 0, is a noise signal such that ‖n(t)‖ ≤ n∗ < ∞ for all

t ≥ 0, f : R
n → R

n is essentially nonnegative but otherwise unknown, G : R
n →

R
n×m is an unknown nonnegative input matrix function, and h : R

n → R
m is a

nonnegative output function. We assume that f(·), G(·), and h(·) are smooth (at
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least Cn mappings) and the control input u(·) in (5.2) is restricted to the class of

admissible controls consisting of measurable functions such that u(t) ∈ R
m, t ≥ 0.

Furthermore, we assume that the distribution spanned by the vector fields composed

by the column vectors of G(x), x ∈ R
n, has a constant dimension and is involutive in

a neighborhood of the equilibrium point of (5.2).

As discussed in Section 5.1, control (source) inputs of drug delivery systems for

physiological and pharmacological processes are usually constrained to be nonnegative

as are the system states. Hence, in this chapter we develop neuroadaptive dynamic

output feedback control laws for nonnegative systems with nonnegative control inputs.

Specifically, for a given desired set point yd ∈ R
m

+ and for a given ε > 0, our aim is to

design a nonnegative control input u(t), t ≥ 0, predicated on the system measurement

yn(t), t ≥ 0, such that ‖y(t)−yd‖ < ε for all t ≥ T , where T ∈ [0,∞), and x(t) ≥≥ 0,

t ≥ 0, for all x0 ∈ R
n

+.

In this chapter, we assume that for the nonlinear dynamical system (5.2) and (5.3),

the conditions for the existence of a globally defined diffeomorphism transforming

(5.2) and (5.3) into a normal form [18, 67] are satisfied. Specifically, we assume that

there exist a global diffeomorphism T : R
n → R

n and Cn functions fξ : R
r ×R

n−r →

R
r and fz : R

r×R
n−r → R

n−r such that, in the coordinates
[
ξT, zT

]T
, T (x), where

ξ , [y1, ẏ1, · · · , y(r1−2)
1 , · · · , ym, ẏm, · · · , y(rm−2)

m ; y
(r1−1)
1 , · · · , y(rm−1)

m ] ∈ R
r, y

(ri)
i denotes

the rith derivative of yi, ri denotes the relative degree of G with respect to the output

yi, z ∈ R
n−r, and r , r1 + · · · + rm is the (vector) relative degree of G, the nonlinear

dynamical system G given by (5.2)–(5.4) is equivalent to

ξ̇(t) = fξ(ξ(t), z(t)) +Gξ(ξ(t), z(t))u(t), ξ(0) = ξ0, t ≥ 0, (5.5)

ż(t) = fz(ξ(t), z(t)), z(0) = z0, (5.6)

y(t) = Cξ(t), (5.7)

119



yn(t) = Cξ(t) + n(t), (5.8)

where ξ(t) ∈ R
r, t ≥ 0, z(t) ∈ R

n−r, t ≥ 0,

fξ(ξ, z) = Aξ + f̃u(ξ, z), Gξ(ξ, z) =

[
0(r−m)×m

Ĝ(x̃)

]
, (5.9)

A =

[
A0

Â

]
, f̃u(ξ, z) =

[
0(r−m)×1

fu(x̃)

]
, (5.10)

x̃ , [ξT, zT]T, A0 ∈ R
(r−m)×r is a known matrix of zeros and ones capturing the

multivariable observable canonical form representation [24], Â ∈ R
m×r is such that

A is asymptotically stable, fu : R
n → R

m is an unknown function, C ∈ R
m×r is a

known matrix of zeros and ones capturing the system output, and Ĝ : R
n → R

m×m

is an unknown matrix function such that det Ĝ(x̃) 6= 0, x̃ ∈ R
n. Furthermore, we

assume that for a given yd ∈ R
m

+ there exist ze ∈ R
n−r and ue ∈ R

m

+ such that

xe , T −1(x̃e) ≥≥ 0 and

0 = fξ(ξe, ze) +Gξ(ξe, ze)ue, (5.11)

0 = fz(ξe, ze), (5.12)

where x̃e , [ξT
e , z

T
e ]T and ξe is given with yi = ydi, i = 1, . . . ,m, and ẏi = · · · =

y
(ri−1)
i = 0, i = 1, . . . ,m. As we see in Section 5.4, the aforementioned assumptions

are automatically satisfied for our clinical compartmental model.

To ensure that for a bounded state ξ(t), t ≥ 0, the dynamics given by (5.6) are

bounded, we assume that (5.6) is input-to-state stable at z(t) ≡ ze with ξ(t) − ξe

viewed as the input; that is, there exist a class KL function η(·, ·) and a class K

function γ(·) such that

‖z(t) − ze‖ ≤ η(‖z0 − ze‖, t) + γ

(
sup

0≤τ≤t
‖ξ(τ) − ξe‖

)
, (5.13)

where ‖ · ‖ denotes the Euclidean vector norm. Unless otherwise stated, henceforth

we use ‖ · ‖ to denote the Euclidean vector norm. Note that (ξe, ze) ∈ R
r × R

n−r is
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an equilibrium point of (5.5) and (5.6) if and only if there exists ue ∈ R
m

+ such that

(5.11) and (5.12) hold.

Finally, we assume that the functions fu(T (x)) − fu(T (xe)) − Ĝ(T (xe))ue and

Ĝ(T (x))−B̂, where B̂ ∈ R
m×m, can be approximated over a compact set Dc ⊂ R

n

+ by

a linear in the parameters neural network up to a desired accuracy. In this case, there

exist ε1 : R
n → R

m and ε2 : R
n → R

m×m such that ‖ε1(x)‖ < ε∗1 and ‖ε2(x)‖F < ε∗2,

x ∈ Dc, where ε∗1 > 0 and ε∗2 > 0, and

fu(T (x)) − fu(T (xe)) − Ĝ(T (xe))ue = WT
1 σ̂1(x) + ε1(x), (5.14)

Ĝ(T (x)) − B̂ = WT
2 [Im ⊗ σ̂2(x)] + ε2(x), (5.15)

where x ∈ Dc, W1 ∈ R
s1×m andW2 ∈ R

ms2×m are optimal unknown (constant) weights

that minimize the approximation errors over Dc, σ̂1 : R
n → R

s1 and σ̂2 : R
n → R

s2 are

basis functions such that each component of σ̂1(·) and σ̂2(·) takes values between 0 and

1, and ε1(·) and ε2(·) are the modeling errors, and “⊗” denotes Kronecker product.

Note that s1 + s2 denotes the total number of basis functions or, equivalently, the

number of nodes of the neural network.

Since fu(·) and Ĝ(·) are continuous, we can choose σ̂1(·) and σ̂2(·) from a linear

space X of continuous functions that forms an algebra and separates points in Dc.

In this case, it follows from the Stone-Weierstrass theorem [111, p. 212] that X is

a dense subset of the set of continuous functions on Dc. Now, as is the case in the

standard neuroadaptive control literature [92], we can construct the signal uad =

F (Ŵ1, Ŵ2, σ̂1(x), σ̂2(x)), where F : R
s1×m ×R

ms2×m ×R
s1 ×R

s2 → R
m, involving the

estimates of the optimal weights and basis functions as our adaptive control signal. It

is important to note here that we assume that we know both the structure and the size

of the approximator. This is a standard assumption in the neural network adaptive

control literature. In online neural network training, the size and the structure of
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the optimal approximator are not known and are often chosen by the rule that the

larger the size of the neural network and the richer the distribution class of the

basis functions over a compact domain, the tighter the resulting approximation error

bounds ε∗1 and ε∗2. This goes back to the Stone-Weierstrass theorem which only

provides an existence result without any constructive guidelines.

Since the actual measurement yn(t), t ≥ 0, is noisy with n(t), t ≥ 0, representing

a high-frequency noise signal, we use a filtered version of yn(t), t ≥ 0, in the control

input u(t), t ≥ 0. Specifically, we design an asymptotically stable low-pass filter of

the form

ẋf(t) = Afxf(t) +Bfyn(t), xf(0) = xf0 , t ≥ 0, (5.16)

yf(t) = Cfxf(t), (5.17)

where Af ∈ R
nf×nf is Hurwitz and Bf ∈ R

nf×m and Cf ∈ R
m×nf are such that

limω→∞ |G(i,j)(ω)| = 0, i, j = 1, . . . , m, where G(i,j)(s) denotes the (i, j)th entry

of the transfer function G(s) , Cf(sInf
− Af)

−1Bf . Here, we choose the matrices Af ,

Bf , and Cf such that CfA
−1
f Bf = −Im. In this case, for every yd ∈ R

m

+ , there exists

xfe ∈ R
nf such that

0 = Afxfe +Bfyd, (5.18)

yd = Cfxfe . (5.19)

Note that since Af is Hurwitz there exist positive-definite matrices P̂ ∈ R
nf×nf and

R̂ ∈ R
nf×nf such that

0 = AT
f P̂ + P̂Af + R̂. (5.20)

In order to develop an output feedback neural network, we use the recent approach

developed in [87] for reconstructing the system states via the system delayed inputs

and filtered outputs. Specifically, we use a memory unit as a particular form of
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a tapped delay line that takes a scalar time series input and provides an (2mn −

r)-dimensional vector output consisting of the present values of the system filtered

outputs and system inputs, and their 2(n− 1)m− r delayed values given by

ζ(t) , [yf1(t), yf1(t− d), . . . , yf1(t− (n− 1)d), . . . , yfm(t), yfm(t− d), . . . ,

yfm(t− (n− 1)d);u1(t), u1(t− d), . . . , u1(t− (n− r1 − 1)d), . . . ,

um(t), um(t− d), . . . , um(t− (n− rm − 1)d)]T, t ≥ 0, (5.21)

where d > 0.

For the statement of our main result, define the projection operator Proj(W̃ , Y )

given by

Proj(W̃ , Y ) ,






Y, if µ(W̃ ) < 0,

Y, if µ(W̃ ) ≥ 0 and µ′(W̃ )Y ≤ 0,

Y − µ′T (W̃ )µ′(W̃ )Y

µ′(W̃ )µ′T (W̃ )
µ(W̃ ), otherwise,

where W̃ ∈ R
s×m, Y ∈ R

n×m, µ(W̃ ) ,
tr W̃TW̃−w̃2

max

ε
W̃

, w̃max ∈ R is the norm bound

imposed on W̃ , and εW̃ > 0. Note that for a given matrix W̃ ∈ R
s×m and Y ∈ R

n×m,

it follows that

tr[(W̃ −W )T(Proj(W̃ , Y ) − Y )]

=
n∑

i=1

[coli(W̃ −W )]T[Proj(coli(W̃ ), coli(Y )) − coli(Y )]

≤ 0, (5.22)

where coli(X) denotes the ith column of the matrix X.

Assumption 5.1. For a given yd ∈ R
m

+ assume there exist nonnegative vectors

xe ∈ R
n

+ and ue ∈ R
m

+ such that

0 = f(xe) +G(xe)ue, (5.23)

yd = h(xe). (5.24)
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Furthermore, assume that the equilibrium point xe of (5.2) is globally asymptotically

stable and nonnegative with u(t) ≡ ue. Finally, assume that there exists a global

diffeomorphism T : R
n → R

n such that G can be transformed into the normal form

given by (5.5) and (5.6), and (5.6) is input-to-state stable at ze with ξ(t)− ξe viewed

as the input.

Consider the neuroadaptive output feedback control law given by

u(t) =

{
û(t), if û(t) ≥≥ 0,
0, otherwise,

(5.25)

where

û(t) = −
(
B̂ + ŴT

2 (t)[Im ⊗ σ2(ζ(t))]
)−1

ŴT
1 (t)σ1(ζ(t)), (5.26)

B̂ ∈ R
m×m is nonsingular, ζ(t), t ≥ 0, is given by (5.21), σ1 : R

n → R
s1 and

σ2 : R
n → R

s2 are basis functions such that each component of σ1(·) and σ2(·) takes

values between 0 and 1, Ŵ1(t) ∈ R
s1×m, t ≥ 0, and Ŵ2(t) ∈ R

ms2×m, t ≥ 0. Here, the

update laws satisfy

˙̂
W1(t) = Q1Proj[Ŵ1(t),−σ1(ζ(t))ξ

T
c (t)P̃B0], Ŵ1(0) = Ŵ10, t ≥ 0, (5.27)

˙̂
W2(t) = Q2Proj[Ŵ2(t),−[Im ⊗ σ2(ζ(t))]u(t)ξ

T
c (t)P̃B0], Ŵ2(0) = Ŵ20, (5.28)

where Q1 ∈ R
s1×s1 and Q2 ∈ R

ms2×ms2 are positive definite matrices, P̃ ∈ R
r×r is a

positive-definite solution of the Lyapunov equation

0 = (A− LC)TP̃ + P̃ (A− LC) + R̃, (5.29)

where R̃ > 0, and ξc(t), t ≥ 0, is the solution to the estimator dynamics

ξ̇c(t) = Aξc(t) + L(yf(t) − yc(t) − yd), ξc(0) = ξc0, t ≥ 0, (5.30)

yc(t) = Cξc(t), (5.31)

where ξc(t) ∈ R
r, t ≥ 0, A ∈ R

r×r is given by (5.10), L ∈ R
r×m is such that

A − LC is Hurwitz, yf(t), t ≥ 0, is the output of the filter (5.16) and (5.17), and
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B0 , [0m×(r−m), Im]T. For the statement of the next result recall the definition of

ultimate boundedness given in [48, p. 241].

Theorem 5.1. Consider the nonlinear uncertain dynamical system G given by

(5.2) and (5.3) with u(t), t ≥ 0, given by (5.25). Assume Assumption 5.1 holds,

λmin(RP
−1) > 1, λmin(R̃P̃

−1) > 1, and λmin(R̂) > ‖P̂BfCP
−1/2‖, where P̂ ∈ R

nf×nf ,

P̃ ∈ R
r×r, and P ∈ R

r×r are the positive-definite solutions of the Lyapunov equations

(5.20), (5.29), and

0 = ATP + PA+R, (5.32)

where R > 0. Then there exists a compact positively invariant set Dα ⊂ R
n × R

r ×

R
s1×m × R

ms2×m × R
nf such that (xe, 0,W1,W2, xfe) ∈ Dα, where W1 ∈ R

s1×m and

W2 ∈ R
ms2×m, and the solution (x(t), ξc(t), Ŵ1(t), Ŵ2(t), xf(t)), t ≥ 0, of the closed-

loop system given by (5.2), (5.16), (5.17), (5.25), (5.27), (5.28), (5.30), and (5.31)

is ultimately bounded for all (x(0), ξc(0), Ŵ1(0), Ŵ2(0), xf(0)) ∈ Dα with ultimate

bound ‖y(t) − yd‖2 < ε, t ≥ T , where

ε >
[
(ν

1
2 (λmin(RP

−1) − 1)−
1
2 + α1)

2 + (ν
1
2λ

− 1
2

min(R̃P̃
−1) + α2)

2

+(ν
1
2 (λmin(R̂) − ‖P̂BfCP

−1/2‖)− 1
2 + α3)

2 + λmax(Q
−1
1 )ŵ2

1max

+λmax(Q
−1
2 )ŵ2

2max

] 1
2
, (5.33)

ν , (λmin(RP
−1) − 1)α2

1 + λmin(R̃P̃
−1)α2

2 +
(
λmin(R̂) − ‖P̂BfCP

−1/2‖
)
α2

3,

+
(
λmin(R̂) − ‖P̂BfCP

−1/2‖
)
α2

3, (5.34)

α1 ,

(
‖P−1/2(P + P̃ )B0‖[

√
s1ŵ1max +

√
ms2ŵ2maxu

∗] + (2
√
s1ŵ1max

+
√
ms2ŵ2maxu

∗ + ε∗1 + ε∗2u
∗)‖P 1/2B0‖

)
(λmin(RP

−1) − 1)−1, (5.35)

α2 , λ−1
min(R̃P̃

−1)
[
2
√
s1ŵ1max +

√
ms2ŵ2maxu

∗ + (ε∗1 + ε∗2u
∗)

]
‖P̃ 1/2B0‖, (5.36)

α3 , n∗‖P̂Bf‖
(
λmin(R̂) − ‖P̂BfCP

−1/2‖
)−1

, (5.37)

u∗ , supt≥0 ‖u(t)‖, ŵimax, i = 1, 2, are norm bounds imposed on Ŵi, and P̃ ∈ R
r×r is

125



the positive-definite solution of the Lyapunov equations (5.29). Furthermore, u(t) ≥≥

0, t ≥ 0, and x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+.

Proof. First, define

Ŵ1u(t) ,

{
Ŵ1(t), if û(t) ≥≥ 0,

0, otherwise.
(5.38)

Next, defining eξ(t) , ξ(t) − ξe, ez(t) , z(t) − ze, ξ̃(t) , ξc(t) − eξ(t), and x̃f(t) ,

xf(t) − xfe , and using (5.5)–(5.12), (5.14), (5.15), and (5.25) it follows from (5.5),

(5.6), (5.30), and (5.16)–(5.19) that

ėξ(t) = Aeξ(t) + Aξe + f̃u(ξ(t), z(t)) +Gξ(ξ(t), z(t))u(t)

= Aeξ(t) +B0[fu(T (x(t))) − fu(T (xe)) − Ĝ(T (xe))ue] +B0Ĝ(T (x(t)))u(t)

+B0

(
B̂ + ŴT

2 (t)[Im ⊗ σ2(ζ(t))]
)

·
(
−u(t) −

(
B̂ + ŴT

2 (t)[Im ⊗ σ2(ζ(t))]
)−1

ŴT
1u(t)σ1(ζ(t))

)

= Aeξ(t) +B0[W
T
1 σ̂1(x(t)) + ε1(x(t))] +B0

(
WT

2 [Im ⊗ σ̂2(x(t))] + ε2(x(t))
)
u(t)

−B0Ŵ
T
2 (t)[Im ⊗ σ2(ζ(t))]u(t) −B0Ŵ

T
1u(t)σ1(ζ(t))

= Aeξ(t) +B0[W
T
1 σ̂1(x(t)) −WT

1 σ1(ζ(t)) +WT
1 σ1(ζ(t)) + ε1(x(t))]

+B0

(
WT

2 [Im ⊗ σ̂2(x(t))] −WT
2 [Im ⊗ σ2(ζ(t))] +WT

2 [Im ⊗ σ2(ζ(t))]

+ε2(x(t)))u(t) −B0Ŵ
T
2 (t)[Im ⊗ σ2(ζ(t))]u(t) −B0Ŵ

T
1u(t)σ1(ζ(t))

= Aeξ(t) −B0W̃
T
1 (t)σ1(ζ(t)) −B0W̃

T
2 (t)[Im ⊗ σ2(ζ(t))]u(t)

+B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t)) +B0ε1(x(t)) +B0ε2(x(t))u(t)

+B0W
T
1 [σ̂1(x(t)) − σ1(ζ(t))] +B0W

T
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t),

eξ(0) = ξ0 − ξe, t ≥ 0, (5.39)

ėz(t) = f̃z(eξ(t), ez(t)), ez(0) = z0 − ze, (5.40)

and

˙̃ξ(t) = ξ̇c(t) − ėξ(t)
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= Ãξ̃(t) +B0W̃
T
1 (t)σ1(ζ(t)) +B0W̃

T
2 (t)[Im ⊗ σ2(ζ(t))]u(t)

−B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t)) −B0ε1(x(t)) +B0ε2(x(t))u(t)

−B0W
T
1 [σ̂1(x(t)) − σ1(ζ(t))] −B0W

T
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

+LCf x̃f(t) − LCeξ(t), ξ̃(0) = ξc0 − ξ0 + ξe, (5.41)

where Ã , A−LC, f̃z(eξ, ez) , fz(eξ +xe, ez + ze), W̃i(t) , Ŵi(t)−Wi, i = 1, 2, and

σ̂1 : R
n → R

s1 and σ̂2 : R
n → R

s2 are such that each component of σ̂1(·) and σ̂2(·)

takes values between 0 and 1.

To show ultimate boundedness of the closed-loop system (5.27), (5.28), (5.39)–

(5.41), consider the Lyapunov-like function

V (eξ, ez, ξ̃, W̃1, W̃2, x̃f)=e
T
ξ Peξ + ξ̃TP̃ ξ̃ + tr W̃1Q

−1
1 W̃T

1 + tr W̃2Q
−1
2 W̃T

2 + x̃T
f P̂ x̃f ,

(5.42)

where P > 0, P̃ > 0, and P̂ satisfy (5.29), (5.32), and (5.20) respectively. Note that

(5.42) satisfies α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖) with x1 = [eTξ , ξ̃
T, (vec Ŵ1)

T, (vec Ŵ2)
T,

x̃T
f ]T, x2 = ez, α(‖x1‖) = β(‖x1‖) = ‖x1‖2, where ‖x1‖2 , eTξ Peξ + ξ̃TP̃ ξ̃ +

tr W̃1Q
−1
1 W̃T

1 + tr W̃2Q
−1
2 W̃T

2 + x̃T
f P̂ x̃f and vec(·) denotes the column stacking op-

erator. Furthermore, α(·) and β(·) are class K∞ functions. Using (5.18), (5.19) and

(5.4), the filter dynamics given by (5.16) and (5.17) can be rewritten as

˙̃xf(t) = Af x̃f(t) +Bf(y(t) + n(t) − yd), x̃f(0) = xf0 − xfe , t ≥ 0, (5.43)

yf(t) = Cf x̃f(t) + yd, (5.44)

Now, letting eξ(t), ξc(t), and x̃f(t), t ≥ 0, denote the solution to (5.39), (5.30), and

(5.43), respectively, and using (5.14), (5.15), (5.22), (5.27), and (5.28), it follows that

the time derivative of V (eξ, ez, ξ̃, W̃1, W̃2, x̃f) along the closed-loop system trajectories

is given by

V̇ (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t), x̃f(t))
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= 2eTξ (t)P
[
Aeξ(t) −B0W̃

T
1 (t)σ1(ζ(t)) −B0W̃

T
2 (t)[Im ⊗ σ2(ζ(t))]u(t)

+B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t)) +B0ε1(x(t)) +B0ε2(x(t))u(t)

+B0W
T
1 [σ̂1(x(t)) − σ1(ζ(t))] +B0W

T
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

]

+2ξ̃T(t)P̃
[
Ãξ̃(t) +B0W̃

T
1 (t)σ1(ζ(t)) +B0W̃

T
2 (t)[Im ⊗ σ2(ζ(t))]u(t)

−B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t)) −B0ε1(x(t)) +B0ε2(x(t))u(t)

−B0W
T
1 [σ̂1(x(t)) − σ1(ζ(t))] −B0W

T
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

]

+2tr W̃T
1 (t)Q−1

1
˙̂
W1(t) + 2tr W̃T

2 (t)Q−1
2

˙̂
W2(t) + 2x̃T

f (t)P̂
[
Af x̃f(t) +Bf(y(t)

+n(t) − yd)
]

= −eTξ (t)Reξ(t) − ξ̃T(t)R̃ξ̃(t) − x̃T
f (t)R̂x̃f(t) − 2eTξ (t)PB0W̃

T
1 (t)σ1(ζ(t))

−2eTξ (t)PB0W̃
T
2 (t)[Im ⊗ σ2(ζ(t))]u(t) + 2eTξ (t)PB0(Ŵ1(t) − Ŵ1u(t))

Tσ1(ζ(t))

+2eTξ (t)PB0(ε1(x(t)) + ε2(x(t))u(t))

+2eTξ (t)PB0

(
WT

1 [σ̂1(x(t)) − σ1(ζ(t))] +WT
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

)

+2ξ̃T(t)P̃B0W̃
T
1 (t)σ1(ζ(t)) + 2ξ̃T(t)P̃B0W̃

T
2 (t)[Im ⊗ σ2(ζ(t))]u(t)

−2ξ̃T(t)P̃B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t)) − 2ξ̃T(t)P̃B0(ε1(x(t)) + ε2(x(t))u(t))

−2ξ̃T(t)P̃B0

(
WT

1 [σ̂1(x(t)) − σ1(ζ(t))] +WT
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

)

+2tr W̃T
1 (t)Proj(Ŵ1(t),−σ1(ζ(t))ξ

T
c (t)P̃B0)

+2tr W̃T
2 (t)Proj(Ŵ2(t),−[Im ⊗ σ2(ζ(t))]u(t)ξ

T
c (t)P̃B0) + 2x̃T

f P̂BfCeξ(t)

+2x̃T
f P̂Bfn(t)

≤ −(λmin(RP
−1) − 1)‖P 1/2eξ(t)‖2 − λmin(R̃P̃

−1)‖P̃ 1/2ξ̃(t)‖2

−2eTξ (t)(P + P̃ )B0W̃
T
1 (t)σ1(ζ(t)) − 2eTξ (t)(P + P̃ )B0W̃

T
2 (t)[Im ⊗ σ2(ζ(t))]u(t)

+2eTξ (t)PB0(ε1(x(t)) + ε2(x(t))u(t)) −
(
λmin(R̂) − ‖P̂BfCP

−1/2‖
)
‖x̃f(t)‖2

+2eTξ (t)PB0

(
WT

1 [σ̂1(x(t)) − σ1(ζ(t))] +WT
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

)

−2ξ̃T(t)P̃B0(ε1(x(t)) + ε2(x(t))u(t)) + 2‖x̃f(t)‖‖P̂Bf‖n∗

−2ξ̃T(t)P̃B0

(
WT

1 [σ̂1(x(t)) − σ1(ζ(t))] +WT
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

)
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+2(eTξ (t)P − ξ̃T(t)P̃ )B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t))

+2tr W̃T
1 (t)

[
Proj(Ŵ1(t),−σ1(ζ(t))ξ

T
c (t)P̃B0) + σ1(ζ(t))ξ

T
c (t)P̃B0

]

+2tr W̃T
2 (t)

[
Proj(Ŵ2(t),−[Im ⊗ σ2(ζ(t))]u(t)ξ

T
c (t)P̃B0)

+[Im ⊗ σ2(ζ(t))]u(t)ξ
T
c (t)P̃B0

]

≤ −(λmin(RP
−1) − 1)‖P 1/2eξ(t)‖2 − λmin(R̃P̃

−1)‖P̃ 1/2ξ̃(t)‖2

−2eTξ (t)(P + P̃ )B0W̃
T
1 (t)σ1(ζ(t)) − 2eTξ (t)(P + P̃ )B0W̃

T
2 (t)[Im ⊗ σ2(ζ(t))]u(t)

+2eTξ (t)PB0(ε1(x(t)) + ε2(x(t))u(t)) −
(
λmin(R̂) − ‖P̂BfCP

−1/2‖
)
‖x̃f(t)‖2

+2eTξ (t)PB0

(
WT

1 [σ̂1(x(t)) − σ1(ζ(t))] +WT
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

)

−2ξ̃T(t)P̃B0(ε1(x(t)) + ε2(x(t))u(t)) + 2‖x̃f(t)‖‖P̂Bf‖n∗

−2ξ̃T(t)P̃B0

(
WT

1 [σ̂1(x(t)) − σ1(ζ(t))] +WT
2 [Im ⊗ (σ̂2(x(t)) − σ2(ζ(t)))]u(t)

)

+2(eTξ (t)P − ξ̃T(t)P̃ )B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t)). (5.45)

For the two cases given in (5.38), the last term on the right-hand side of (5.45) gives:

i) If û(t) ≥≥ 0, t ≥ 0, then Ŵ1u(t) = Ŵ1(t), and hence,

2(eTξ (t)P − ξ̃T(t)P̃ )B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t)) = 0.

ii) Otherwise, Ŵ1u(t) = 0, and hence, for t ≥ 0,

2(eTξ (t)P − ξ̃T(t)P̃ )B0(Ŵ1(t) − Ŵ1u(t))
Tσ1(ζ(t))

= 2(eTξ (t)P − ξ̃T(t)P̃ )B0Ŵ
T
1 (t)σ1(ζ(t))

≤ 2
√
s1ŵ1max‖P 1/2B0‖‖P 1/2eξ(t)‖ + 2

√
s1ŵ1max‖P̃ 1/2B0‖‖P̃ 1/2ξ̃(t)‖.

Hence, it follows from (5.45) that in either case

V̇ (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t), x̃f(t))

≤ −(λmin(RP
−1) − 1)‖P 1/2eξ(t)‖2 − λmin(R̃P̃

−1)‖P̃ 1/2ξ̃(t)‖2
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+2
√
s1ŵ1max‖P−1/2(P + P̃ )B0‖‖P 1/2eξ(t)‖ −

(
λmin(R̂) − ‖P̂BfCP

−1/2‖
)
‖x̃f(t)‖2

+2
√
ms2ŵ2maxu

∗‖P−1/2(P + P̃ )B0‖‖P 1/2eξ(t)‖

+2(ε∗1 + ε∗2u
∗)‖P 1/2B0‖‖P 1/2eξ(t)‖ + 2‖x̃f(t)‖‖P̂Bf‖n∗

+2(
√
s1ŵ1max +

√
ms2ŵ2maxu

∗)‖P 1/2B0‖‖P 1/2eξ(t)‖

+2(
√
s1ŵ1max +

√
ms2ŵ2maxu

∗)‖P̃ 1/2B0‖‖P̃ 1/2ξ̃(t)‖

+2(ε∗1 + ε∗2u
∗)‖P̃ 1/2B0‖‖P̃ 1/2ξ̃(t)‖ + 2

√
s1ŵ1max‖P 1/2B0‖‖P 1/2eξ(t)‖

+2
√
s1ŵ1max‖P̃ 1/2B0‖‖P̃ 1/2ξ̃(t)‖

= −(λmin(RP
−1) − 1)(‖P 1/2eξ(t)‖ − α1)

2 − λmin(R̃P̃
−1)(‖P̃ 1/2ξ̃(t)‖ − α2)

2

−
(
λmin(R̂) − ‖P̂BfCP

−1/2‖
)

(‖x̃f(t)‖ − α3)
2 + ν, (5.46)

where ν, α1, α2, and α3 are given by (5.34), (5.35), (5.36), and (5.37), respectively.

Now, for

‖P 1/2eξ‖ ≥ αeξ
,

√
ν

λmin(RP−1) − 1
+ α1, (5.47)

or

‖P̃ 1/2ξ̃‖ ≥ αξ̃ ,

√
ν

λmin(R̃P̃−1)
+ α2, (5.48)

or

‖x̃f‖ ≥ αx̃f
,

√
ν

λmin(R̂) − ‖P̂BfCP−1/2‖
+ α3, (5.49)

it follows that V̇ (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t), x̃f(t)) ≤ 0 for all t ≥ 0, that is,

V̇ (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t), x̃f(t)) ≤ 0 for all (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t), x̃f(t))

∈ D̃e\D̃r and t ≥ 0, where

D̃e ,

{
(eξ, ez, ξ̃, W̃1, W̃2, x̃f) ∈ R

m × R
n−m × R

r × R
s1×m × R

ms2×m × R
nf : x ∈ Dc

}
,

(5.50)

D̃r ,

{
(eξ, ez, ξ̃, W̃1, W̃2, x̃f) ∈ R

m × R
n−m × R

r × R
s1×m × R

ms2×m × R
nf

: ‖P 1/2eξ‖ ≤ αeξ
, ‖P̃ 1/2ξ̃‖ ≤ αξ̃, ‖xf‖ ≤ αx̃f

}
. (5.51)
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Next, define

D̃α ,

{
(eξ, ez, ξ̃, W̃1, W̃2, x̃f) ∈ R

m × R
n−m × R

r × R
s1×m × R

ms2×m × R
nf

: V (eξ, ez, ξ̃, W̃1, W̃2, x̃f) ≤ α
}
, (5.52)

where α is the maximum value such that D̃α ⊆ D̃e, and define

D̃η ,

{
(eξ, ez, ξ̃, W̃1, W̃2, x̃f) ∈ R

m × R
n−m × R

r × R
s1×m × R

ms2×m × R
nf

: V (eξ, ez, ξ̃, W̃1, W̃2, x̃f) ≤ η
}
, (5.53)

where

η > β(µ) = µ = α2
eξ

+ α2
ξ̃
+ α2

x̃f
+ λmax(Q

−1
1 )ŵ2

1max + λmax(Q
−1
2 )ŵ2

2max. (5.54)

To show ultimate boundedness of the closed-loop system (5.27), (5.28), and (5.39)–

(5.41) assume3 that D̃η ⊂ D̃α. Now, since V̇ (eξ, ez, ξ̃, W̃1, W̃2, x̃f) ≤ 0 for all (eξ, ez, ξ̃,

W̃1, W̃2, x̃f) ∈ D̃e\D̃r and D̃r ⊂ D̃α, it follows that D̃α is positively invariant. Hence,

if (eξ(0), ez(0), ξ̃(0), W̃1(0), W̃2(0), x̃f(0)) ∈ D̃α, then it follows from Theorem 4.14

of [48] that the solution (eξ(t), ez(t), ξ̃(t), Ŵ1(t), Ŵ2(t)), t ≥ 0, to (5.27), (5.28),

(5.39)–(5.41) is ultimately bounded with respect to (eξ, ξ̃, W̃1, W̃2, x̃f) uniformly in

ez(0) with ultimate bound given by ε = α−1(η) =
√
η, which yields (5.33). In

addition, since (5.40) is input-to-state stable with eξ viewed as the input, it follows

from Proposition 4.4 of [48] that the solution ez(t), t ≥ 0, to (5.40) is also ultimately

bounded.

Next, it follows from Theorem 1 of [128] that there exist a continuously differ-

entiable, radially unbounded, positive-definite function Vz : R
nz → R and class K

functions γ1(·) and γ2(·) such that

V ′
z (ez)f̃z(eξ, ez) ≤ −γ1(‖ez‖), ‖ez‖ ≥ γ2(‖eξ‖). (5.55)

3This assumption ensures that in the error space D̃e there exists at least one Lyapunov level set
D̃η ⊂ D̃α. Equivalently, imposing bounds on the adaptation gains ensures D̃η ⊂ D̃α [61]. In the
case where the neural network approximation holds in R

n with delayed values, this assumption is
automatically satisfied.

131



Since the upper bound for ‖eξ‖2 is given by η, it follows that the set given by

Dz ,

{
z ∈ R

n−r : Vz(z − ze) ≤ max
‖z−ze‖=γ2(

√
η)
Vz(z − ze)

}
(5.56)

is also positively invariant. Now, since D̃α and Dz are positively invariant, it follows

that

Dα ,

{
(x, ξ̃, W̃1, W̃2, x̃f) ∈ R

n × R
r × R

s1×m × R
ms2×m × R

nf

: V (ξ − yd, z − ez, ξ̃, Ŵ1 −W1, Ŵ2 −W2, xf − xfe) ≤ α
}

(5.57)

is also positively invariant. In addition, since (5.27), (5.28), (5.39)–(5.41), and (5.43)

is ultimately bounded with respect to (eξ, ξ̃, W̃1, W̃2, x̃f) and (5.40) is input-to-state

stable with eξ viewed as the input, it follows from Proposition 4.4 of [48] that

the solution (eξ(t), ez(t), ξ̃(t), W̃1(t), W̃2(t), x̃f(t)), t ≥ 0, of the closed-loop system

(5.27), (5.28), (5.39)–(5.41), and (5.43) is ultimately bounded for all (eξ(0), ez(0), ξ̃(0),

W̃1(0), W̃2(0), x̃f(0)) ∈ D̃α.

Finally, u(t) ≥≥ 0, t ≥ 0, is a restatement of (5.25). Now, since G(x(t)) ≥≥ 0,

t ≥ 0, and u(t) ≥≥ 0, t ≥ 0, it follows from Proposition 5.1 that x(t) ≥≥ 0, t ≥ 0,

for all x0 ∈ R
n

+.

Remark 5.1. If in Theorem 5.1 λmin(RP
−1) > 1 is not satisfied for a given A,

we can modify (5.9) as fξ(ξ, z) = Āξ + f̄u(ξ, z), where f̄u(ξ, z) = f̃u(ξ, z) + (A− Ā)ξ

and Ā is such that λmin(R̄P̄
−1) > 1, where

0 = ĀTP̄ + P̄ Ā+ R̄.

For example, with Ā = −αIn, where α > 1
2
, λmin(R̄P̄

−1) > 1 is guaranteed. In this

case, Theorem 5.1 holds with A replaced by Ā. In addition, by properly choosing L we

can ensure that λmin(R̃P̃
−1) > 1. Finally, choosing Bf small enough and independent

of R̂, P̂ , C, and P , λmin(R̂) > ‖P̂BfCP
− 1

2‖ can also be guaranteed.
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Remark 5.2. The domain of attraction Dα in Theorem 5.1 is given by (5.57)

and is characterized by the Lyapunov-like function (5.42) that guarantees ultimate

boundedness for the closed-loop system.

A block diagram showing the neuroadaptive control architecture given in Theo-

rem 5.1 is shown in Figure 5.1. It is important to note that the existence of a global

neural network approximator for an uncertain nonlinear map using the system filtered

outputs and inputs, and its delayed values cannot in general be established. In the

proof of Theorem 5.1, as is common in the neural network literature, we assume that

for a given arbitrarily large compact set Dc ⊂ R
n, there exists an approximator for

the unknown nonlinear map up to a desired accuracy. This assumption ensures that

in the error space D̃e, there exists at least one Lyapunov level set such that the set

inclusions invoked in the proof of Theorem 5.1 are satisfied. In the case where fu(·)

and Ĝ(·) are continuous on R
n, it follows from the Stone-Weierstrass theorem that

fu(·) and Ĝ(·) can be approximated over an arbitrarily large compact set Dc in the

sense of (5.14) and (5.15). Finally, we note that since the norm of Ŵ2(t) is bounded

it is always possible to choose B̂ so that (B̂ + ŴT
2 (t)[Im ⊗ σ2(ζ(t))])

−1 exists and is

bounded for all t ≥ 0 so that there exists u∗ > 0 such that u∗ ≥ ‖u(t)‖, t ≥ 0. This

follows from the fact that for any two square matrices A and B, det(A + B) 6= 0 if

and only if there exists α > 0 such that σmin(A) > α and σmax(B) ≤ α, where σmin(·)

and σmax(·) denote the minimum and maximum singular value, respectively.

Implementing the neuroadaptive controller (5.26) requires a fixed-point iteration

at each integration step, that is, the controller contains an algebraic constraint on u.

For each choice of σ1(·) and σ2(·) this equation must be examined for solvability in

terms of u. It is more practical to avoid this iteration by using one-step delayed values

of u in calculating û. Implementations using both approaches result in imperceptible

differences in our numerical studies.
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Figure 5.1: Block diagram of the closed-loop system.

In Theorem 5.1 we assumed that the equilibrium point xe of (5.2) is globally

asymptotically stable with u(t) ≡ ue. In general, however, unlike linear nonnegative

systems with asymptotically stable plant dynamics, a given set point xe ∈ R
n
+ for the

nonlinear nonnegative dynamical system (5.2) may not be asymptotically stablizable

with a constant control u(t) ≡ ue ∈ R
m

+ . However, if f(x) is homogeneous, coopera-

tive, that is, the Jacobian matrix ∂f(x)
∂x

is essentially nonnegative for all x ∈ R
n

+, the

Jacobian matrix ∂f(x)
∂x

is irreducible for all x ∈ R
n

+ [13], and the zero solution x(t) ≡ 0

of the undisturbed (u(t) ≡ 0) system (5.2) is globally asymptotically stable, then

the set point xe ∈ R
n
+ satisfying (5.11) and (5.12) is a unique equilibrium point with

u(t) ≡ ue and is also asymptotically stable for all x0 ∈ R
n

+ [29,30]. This implies that

the solution x(t) ≡ xe to (5.2) with u(t) ≡ ue is asymptotically stable for all x0 ∈ R
n

+.

5.4. Neuroadaptive Output Feedback Control for General

Anesthesia

Almost all anesthetics are myocardial depressants, that is, they decrease the con-

tractility of the heart and lower cardiac output (i.e., the volume of blood pumped
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by the heart per unit time). As a consequence, decreased cardiac output slows down

redistribution kinetics, that is, the transfer of blood from the central compartment

(heart, brain, kidney, and liver) to the peripheral compartments (muscle and fat).

In addition, decreased cardiac output could increase drug concentrations in the cen-

tral compartment, causing even more myocardial depression and further decrease in

cardiac output. This instability can lead to overdosing that, at the very least, can

delay recovery from anesthesia and, in the worst case, can result in respiratory and

cardiovascular collapse. Alternatively, underdosing can result in patients psychologi-

cally traumatized by pain and awareness during surgery. Thus, control of drug effect

is clinically important since overdosing or underdosing incur risk for the patient.

To illustrate the application of the neuroadaptive control framework presented in

Section 5.3 for general anesthesia we develop a model for the intravenous anesthetic

propofol. The pharmacokinetics of propofol are described by the three compartment

model [54, 96] shown in Figure 5.2, where x1 denotes the mass of drug in the central

compartment, which is the site for drug administration and is generally thought to

be comprised of the intravascular blood volume (blood within arteries and veins) as

well as highly perfused organs (organs with high ratios of blood flow to weight) such

as the heart, brain, kidney, and liver. These organs receive a large fraction of the

cardiac output. The remainder of the drug in the body is assumed to reside in two

peripheral compartments, one identified with muscle and one with fat; the masses

in these compartments are denoted by x2 and x3, respectively. These compartments

receive less than 20% of the cardiac output.

A mass balance of the three-state compartmental model yields

ẋ1(t) = −[a11(c(t)) + a21(c(t)) + a31(c(t))]x1(t) + a12(c(t))x2(t)

+a13(c(t))x3(t) + u(t), x1(0) = x10, t ≥ 0, (5.58)
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Figure 5.2: Pharmacokinetic model for drug distribution during anesthesia.

ẋ2(t) = a21(c(t))x1(t) − a12(c(t))x2(t), x2(0) = x20, (5.59)

ẋ3(t) = a31(c(t))x1(t) − a13(c(t))x3(t), x3(0) = x30, (5.60)

where c(t) = x1(t)/Vc, Vc is the volume of the central compartment (about 15 l for

a 70 kg patient), aij(c), i 6= j, is the rate of transfer of drug from the jth compart-

ment to the ith compartment, a11(c) is the rate of drug metabolism and elimination

(metabolism typically occurs in the liver), and u(t), t ≥ 0, is the infusion rate of

the anesthetic drug propofol into the central compartment. The transfer coefficients

are assumed to be functions of the drug concentration c since it is well known that

the pharmacokinetics of propofol are influenced by cardiac output [134] and, in turn,

cardiac output is influenced by propofol plasma concentrations, both due to venodila-

tion (pooling of blood in dilated vains) [101] and myocardial depression [68]. Finally,

it is important to note that the compartmental model (5.58)–(5.60) is already in

the normal form basis (5.5)–(5.7), and hence, there is no need to construct a global

diffeomorphism to transform (5.58)–(5.60) into the form of (5.5)–(5.7).

Experimental data indicate that the transfer coefficients aij(·) are nonincreasing

functions of the propofol concentration [68, 101]. The most widely used empirical

models for pharmacodynamic concentration-effect relationships are modifications of

the Hill equation [60]. Applying this almost ubiquitous empirical model to the rela-
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tionship between transfer coefficients implies that

aij(c) = AijQij(c), Qij(c) = Q0C
αij

50,ij/(C
αij

50,ij + cαij),

where, for i, j ∈ {1, 2, 3}, i 6= j, C50,ij is the drug concentration associated with

a 50% decrease in the transfer coefficient, αij is a parameter that determines the

steepness of the concentration-effect relationship, and Aij are positive constants. Note

that both pharmacokinetic parameters are functions of i and j, that is, there are

distinct Hill equations for each transfer coefficient. Furthermore, since for many

drugs the rate of metabolism a11(c) is proportional to the rate of transport of drug

to the liver we assume that a11(c) is also proportional to the cardiac output so that

a11(c) = A11Q11(c).

To illustrate the neuroadaptive control of propofol, we assume that C50,ij and αij

are independent of i and j. Also, since decreases in cardiac output are observed at

clinically-utilized propofol concentrations we arbitrarily assign C50 a value of 4 µg/ml

since this value is in the mid-range of clinically utilized values. We also assign α a value

of 3 [78]. This value is within the typical range of those observed for ligand-receptor

binding (see the discussion in [33]). The nonnegative transfer and loss coefficients

A12, A21, A13, A31, and A11, and the parameters α > 1, C50 > 0, and Q0 > 0, are

uncertain due to patient gender, weight, pre-existing disease, age, and concomitant

medication. Hence, the need for adaptive control to regulate intravenous anesthetics

during surgery is essential.

Even though propofol concentration levels in the blood plasma will lead to the

desired depth of anesthesia, they cannot be measured in real-time during surgery. Fur-

thermore, we are more interested in drug effect (depth of hypnosis) rather than drug

concentration. Hence, we consider a model involving pharmacokinetics (drug concen-

tration as a function of time) and pharmacodynamics (drug effect as a function of
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concentration) for controlling consciousness. Specifically, we use an electroencephalo-

gram (EEG) signal as a measure of hypnotic drug effect of anesthetic compounds on

the brain [41,99,123]. Since electroencephalography provides real-time monitoring of

the central nervous system activity, it can be used to quantify levels of consciousness,

and hence, is amenable for feedback control in general anesthesia.

As discussed in the introduction, the Bispectral Index (BIS), an EEG indicator,

has been proposed as a measure of hypnotic effect. This index quantifies the non-

linear relationships between the component frequencies in the electroencephalogram,

as well as analyzing their phase and amplitude. The BIS signal is related to drug

concentration by the empirical relationship

BISn(ceff(t)) = BIS0

(
1 − cγeff(t)

cγeff(t) + ECγ
50

)
+ n(t), (5.61)

where BIS0 denotes the baseline (awake state) value and, by convention, is typically

assigned a value of 100, ceff is the propofol concentration in µg/ml in the effect-site

compartment (brain), EC50 is the concentration at half maximal effect and represents

the patient’s sensitivity to the drug, γ determines the degree of nonlinearity in (5.61),

and n is a high-frequency observation noise signal. Here, the effect-site compartment

is introduced to account for finite equilibration time between the central compartment

concentration and the central nervous system concentration [115].

The effect-site compartment concentration is related to the concentration in the

central compartment by the first-order model ([115])

ċeff(t) = aeff(c(t) − ceff(t)), ceff(0) = c(0), t ≥ 0, (5.62)

where aeff in min−1 is an unknown positive time constant. In reality, the effect-site

compartment equilibrates with the central compartment in a matter of a few minutes.

The parameters aeff , EC50, and γ are determined by data fitting and vary from patient

to patient. BIS index values of 0 and 100 correspond, respectively, to an isoelectric
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Figure 5.3: Combined pharmacokinetic/pharmacodynamic control model.

EEG signal (no cerebral electrical activity) and an EEG signal of a fully conscious

patient; the range between 40 and 60 indicates a moderate hypnotic state [123].

Figure 5.3 shows the combined pharmacokinetic/pharmacodynamic control model

for the distribution of propofol.

For set-point regulation define e(t) , x(t) − xe, where xe ∈ R
4
+ is the set point

satisfying the equilibrium condition for (5.58)–(5.60) and (5.62) with x1(t) ≡ xe1,

x2(t) ≡ xe2, x3(t) ≡ xe3, x4(t) = ceff(t) ≡ EC50, and u(t) ≡ ue, so that fe(e) =

[fe1(e), fe2(e), fe3(e), fe4(e)]
T is given by

fe1(e) = −[ae(c) + a21(c) + a31(c)](e1 + xe1) + a12(c)(e2 + xe2) + a13(c)(e3 + xe3)

−[ae(ce) + a21(ce) + a31(ce)]xe1 + a12(ce)xe2 + a13(ce)xe3,

fe2(e) = a21(c)(e1 + xe1) − a12(c)(e2 + xe2) − [a21(ce)xe1 − a12(ce)xe2],

139



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Effect site concentration [µg/ml]

B
IS

 In
de

x 
[s

co
re

]
Target BIS

EC
50

 = 5.6 [µg/ml]

Figure 5.4: BIS Index versus effect site concentration.

fe3(e) = a31(c)(e1 + xe1) − a13(c)(e3 + xe3) − [a31(ce)xe1 − a13(ce)xe3],

fe4(e) = aeff(c− (e4 + EC50)) − aeff(ee − EC50),

where ce , xe1/Vc. The existence of this equilibrium point follows from the fact

that the Jacobian of (5.58)–(5.60) and (5.62) is essentially nonnegative and every

solution of (5.58)–(5.60) and (5.62) is bounded [70]. Next, linearizing fe(e) about 0

and computing the eigenvalues of the resulting Jacobian matrix, it can be shown that

xe is asymptotically stable. Hence, Assumption 5.1 is satisfied for our clinical model.

In the following simulation involving the infusion of the anesthetic drug propofol

we set EC50 = 5.6 µg/ml, γ = 2.39, and BIS0 = 100, so that the BIS signal is shown

in Figure 5.4. The target (desired) BIS value, BIStarget, is set at 50. Here, we use the

neuroadaptive output feedback controller

u(t) = max{0, û(t)}, (5.63)
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where

û(t) = − ŴT
1 (t)σ1(ζ(t))

b̂+ ŴT
2 (t)σ2(ζ(t))

,

ζ(t) = [BISf(t− d),BISf(t− 2d), u(t− d), u(t− 2d)]T,

b̂ > 0, d > 0, with update laws

˙̂
W1(t) = QBIS1Proj[Ŵ1(t),−σ1(ζ(t))ξ

T
c (t)P̃B0], Ŵ1(0) = Ŵ10, t ≥ 0,

˙̂
W2(t) = QBIS2Proj[Ŵ2(t),−σ2(ζ(t))u(t)ξ

T
c (t)P̃B0], Ŵ2(0) = Ŵ20,

where QBIS1 and QBIS2 are positive constants and ξc(t) ∈ R
2, t ≥ 0, is the solution to

the estimator dynamics

ξ̇c(t) = Aξc(t) + L(BISf(t) − yc(t) − BIStarget), ξc(0) = ξc0, t ≥ 0, (5.64)

yc(t) = Cξc(t), (5.65)

where A ∈ R
2×2, L ∈ R

2×1, C = [1, 0]T, and BISf(t) is output of the second-order,

low-pass asymptotically stable filter

ẋf(t) = Afxf(t) +BfBISn(t), xf(0) = [BISf(0), 0]T , t ≥ 0, (5.66)

BISf(t) = Cfxf(t), (5.67)

where Af =

[
0 1

−ω2
n −2ζωn

]
, Bf = [0, ω2

n]T, Cf = [1, 0]T, ωn = 5 rad/sec, ζ = 0.7,

and BISf(0) = 100. Here, we model n(t) as a noise signal generated by a SIMULINK

band-limited white noise block with a noise power parameter of 0.0001 amplified

100 times. Now, it follows from Theorem 5.1 that there exist positive constants ε

and T such that |BIS(t) − BIStarget| ≤ ε, t ≥ T , where BIS(t) is given by (5.61)

with n(t) ≡ 0, for all nonnegative values of the pharmacokinetic transfer and loss

coefficients A12, A21, A13, A31, A11 as well as all nonnegative coefficients α, C50, and

Q0. A flowchart for the neuroadaptive control algorithm is shown in Figure 5.5.
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For our simulation, we assume Vc = (0.228 l/kg)(M kg), where M = 70 kg is

the mass of the patient, A21Q0 = 0.112 min−1, A12Q0 = 0.055 min−1, A31Q0 =

0.0419 min−1, A13Q0 = 0.0033 min−1, AeQ0 = 0.119 min−1, aeff = 3.4657 min−1,

α = 3, and C50 = 4 µg/ml [78, 96]. Note that the parameter values for α and C50

probably exaggerate the effect of propofol on cardiac output. They have been selected

to accentuate nonlinearity but they are not biologically unrealistic. Furthermore,

to illustrate the proposed neuroadaptive controller we switch the pharmacodynamic

parameters EC50 and γ, respectively, from 5.6 µg/ml and 2.39 to 7.2 µg/ml and

3.39 at t = 15 min and back to 5.6 µg/ml and 2.39 at t = 30 min. Here, we

consider noncardiac surgery since cardiac surgery often utilizes hypothermia which

itself changes the BIS signal.

With A =

[
0 1

−1 −1

]
, L = [0, 1]T, b̂ = 1, QBIS1 = 2.0 × 10−4 g/min2, QBIS2 =

4.0 × 10−4 g/min2, d = 0.005, and initial conditions x1(0) = x2(0) = x3(0) = 0 g,

ceff(0) = 0 g/ml, ξc(0) = [0, 0]T, Ŵ1(0) = 1 × 10−3[−312×1, 112×1]
T, Ŵ2(0) = 024×1,

Figure 5.6 shows the masses of propofol in the three compartments versus time. Fig-

ure 5.7 shows the concentrations in the central and effect-site compartments versus

time. Note that the effect-site compartment equilibrates with the central compart-

ment in a matter of a few minutes. Figure 5.8 shows the noisy, actual, and filtered

controlled BIS signals versus time. Finally, Figure 5.9 shows the control signal (propo-

fol infusion rate) versus time predicated on the actual and filtered BIS signal.

For our simulation we used

σ1(ζ(t)) = σ2(ζ(t)) =

[
1

1 + e−ak1(BISf (t−d)−BIStarget)
, · · · , 1

1 + e−ak6(BISf(t−d)−BIStarget)
,

1

1 + e−ak1(BISf (t−2d)−BIStarget)
, · · · , 1

1 + e−ak6(BISf (t−2d)−BIStarget)
,

1

1 + e−ak1(u(t−d)−u0)
, · · · , 1

1 + e−ak6(u(t−d)−u0)
,

1

1 + e−ak1(u(t−2d)−u0)
, · · · , 1

1 + e−ak6(u(t−2d)−u0)

]T

,
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where s1 = s2 = 24, a = 0.1, k1 = 1, k2 = 2, k3 = 6, k4 = 24, k5 = 120, k6 = 720,

and u0 = 15 mg/min. Even though we did not calculate the analytical bounds given

by (5.33) due to the fact that one has to solve an optimization problem with respect

to (5.14) and (5.15) to obtain ε∗i and w∗
imax, i = 1, 2, the closed-loop BIS signal re-

sponse shown in Figure 5.8 is clearly acceptable. Furthermore, the basis functions

for σi(ζ), i = 1, 2, are chosen to cover the domain of interest of our pharmacoki-

netic/pharmacodynamic problem since we know that the BIS index varies from 0 to

100. Hence, the basis functions are distributed over that domain. The number of

basis functions, however, is based on trial and error. This goes back to the Stone-

Weierstrass theorem which only provides an existence result without any constructive

guidelines. Finally, we note that simulations using a larger number of neurons resulted

in imperceptible differences in the closed-loop system performance.

The neuroadaptive control algorithm (5.63)–(5.65) does not require knowledge

of the pharmacokinetic and pharmacodynamic parameters, in contrast to previous

algorithms for closed-loop control of anesthesia [117,131]. However, the neuroadaptive

controller (5.63)–(5.65) does not account for time delays due to the proprietary signal-

averaging algorithm within the BIS monitor. Given the clinical observation that there

is often a substantial delay between observed changes in patient status and a change

in the BIS signal, other measures of depth of anesthesia may be needed [147].

5.5. Clinical Evaluation Trials

We have performed fifteen clinical trials with the neuroadaptive controller (5.63)–

(5.65) at the Northeast Georgia Medical Center in Gainesville, Georgia [56]. In initial

clinical testing, we implemented (5.63)–(5.65) using a Dell Latitude C610 laptop

computer with a Pentium (R) III processor running under Windows XP, an Aspect A

2000 BIS monitor (rev 3.23), and a Harvard PHD 2000 programmable research pump.
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The BIS monitor sends a data stream, which is updated every 5 sec. This data stream

contains the BIS signal as well as other parameters such as date, time, signal quality

indicator, raw EEG information, and electromyographic data. The data are sent to

the serial port of the laptop computer.

The infusion rate u(t) for the controller is calculated by employing a forward

Euler method to update the neural network weights Ŵ1(t) and Ŵ2(t) every 0.5 sec,

using the BIS signal. The infusion rate is communicated to the infusion pump using

a 9600 bpm, 8 data bits, 2 stop bits, and zero parity protocol with the aid of a

USB-serial port adaptor. An updated infusion rate is sent to the pump every 1

sec. Pharmacokinetic simulations predict that a pump update every 5 sec or less is

adequate in the context of the algorithm under evaluation. An update interval of 1

sec was selected in anticipation that future algorithms might benefit from the faster

update rate. In order to filter the noisy BIS signal we used a second-order, low-pass

filter with natural frequency ωn = 0.01 rad/sec and damping ratio ζ = 0.707.

The neuroadaptive control algorithm was programmed in Java, an object-oriented

programming language chosen for its multi-platform portability tools for rapid pro-

totyping. The program is organized into 5 modules, namely, bisloader, bislogger,

controller, pumplogger, and pumploader. Bisloader and bislogger handle communica-

tion between the BIS monitor and the computer, while pumploader and pumplogger

manage the Harvard pump apparatus. The module bisloader finds the serial port that

receives the BIS signal by using the Java class CommPort Identifier, and then invokes

bislogger. Bislogger uses the Java class SerialPort EventListener to read the signal,

and uses the class StringTokenizer to parse the BIS signal from the input stream. The

infusion rate is calculated by the controller module. Finally, pumploader opens the

serial port communicating to the pump and establishes the communication protocol,

while pumplogger delivers the infusion rate to the pump.
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The protocol for clinical evaluation of the system was approved by the Institu-

tional Review Board of Northeast Georgia Medical Center. Patients are enrolled after

giving informed consent. Our protocol excludes patients requiring emergency surgery,

pediatric patients, hemodynamically unstable patients, and patients for whom we an-

ticipate difficult airway management. Otherwise, all elective surgical patients who

can provide informed consent are candidates. Pre-operative management, including

administration of anti-anxiolytic drugs, is left to the discretion of the attending anes-

thesiologist. Propofol is delivered using the BIS-computer-pump system with a target

value of 50. In addition to propofol, all patients receive infusions of either sufentanil

or fentanyl with loading doses of 0.25 µg/ml or 2 µg/ml and continuous infusions

of 0.25 (µg/ml)/hr or 2 (µg/ml)/hr, respectively, to provide analgesia. To ensure

patient safety, an independent anesthesia provider observes the progress of the study

and can terminate the study if it appears that the patient’s safety is being jeopardized

by either overdosing or underdosing of propofol.

5.6. Results and Discussion

Patient demographics (for 10 patients) are presented in Table 5.1. The median

BIS value after induction was 43. Four of the ten patients required phenylephrine to

treat hypotension during induction (average dose 1075 µg with a standard deviation of

809.8 µg). The actual and filtered BIS signals versus time and control signal (propofol

infusion rate) versus time for 10 patients are shown in Figures 5.10–5.12. The effect

of using the actual (i.e., noisy) versus filtered BIS signal to generate the control signal

is illustrated in Figures 5.13–5.16. In particular, Figure 5.14 shows the control signal

predicated on the filtered BIS signal shown in Figure 5.13, whereas Figure 5.16 shows

control signal predicated on the actual (i.e., noisy) BIS signal shown in Figure 5.15.

Several performance measures of the control algorithm such as median BIS, bias (the
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Table 5.1: Demographics of Neuroadaptive Control Algorithm
Age 59.0 years (18.0)

Weight 91.8 kg (23.3)
Gender 8 M / 2 F

Procedure 8 CABG †, 1 Thoracoscopy, 1 AVR ‡

∗ All values are mean with standard deviation in parentheses.
† CABG is Coronary Artery Bypass Grafting.
‡ AVR is Aortic Valve Replacement.

median of measured BIS minus target, normalized to the target), the median absolute

value of the performance error (MAPE) (with performance error defined as measured

BIS minus the target, normalized to the target) are summarized in Table 5.2. We

observed that with induction all patients had some “overshoot” of the target BIS of

50, that is, a BIS value less than 50. In Table 5.3 we present, overshoot, and outside

time (the percentage of study time that the individual patients had BIS values outside

of the 35-60 range).

As noted in the introduction and [8], several other systems for closed-loop control

of intravenous anesthesia have been previously described. The most direct comparison

is to the results of Struys et al. [131]. The median absolute performance error of

their controller was 7.7% in comparison to our 17.7%. The fraction of time that

patients in the Struys et al. study were outside a BIS range of 35-60 was 11%

compared to our 20.5%. Based on these measures, one would surmise that the clinical

performance of the controller described by Struys et al. is superior. However, there

are several factors that make direct comparisons tenuous. First, study designs were

quite different. Struys et al. supplemented propofol with a continuous infusion of

remifentanil while we used a bolus then continuous infusion of sufentanil. The rapid

kinetics of remifentanil in comparison to sufentanil implies that opioid levels were

more constant over time in the Struys et al. study than in ours. A constant opioid

concentration could be expected to more effectively blunt arousal responses in the

BIS with surgical stimulation. And, as noted by Glass and Rampil in the editorial

146



accompanying the publication by Struys et al.; the remifentanil dose used by Struys

et al. is sufficient to blunt responses to surgical stimulation and reduce the propofol

concentration to that needed to prevent consciousness [43].

Another key difference in study protocols is that Struys et al. initiated propofol

administration with open-loop control and did not “close” the loop until the BIS

reached 50. The controllers evaluated in this study were used for the induction as

well as the maintenance of anesthesia. Finally, we note that model-based controllers

may be expected to perform better than model-independent controllers as long as

the model is correct. The three compartment mammillary pharmacokinetic model

and the modified Hill equation pharmacodynamic model are well established and

they could be expected to facilitate closed-loop control in the “average” patient who

conforms to the models. However, model-based controllers could fail in patients who

do not conform to the model and the studies done of closed-loop anesthesia to date

do not have sufficient numbers to evaluate failure due to model nonconformance.

Furthermore, we know that the three compartment mammilary model is not accurate

when the propofol concentration is increased acutely, as occurs during induction and

when surgical arousal is not blunted by opioids. Thus, we believe that comparison of

controllers will not be definitive until larger numbers of patients are studied, so that

one might encounter outlier patients, and with more demanding anesthetic/surgical

conditions requiring wider ranges of anesthetic concentrations.
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Table 5.2: BIS, Bias and MAPE of Neuroadaptive Control Algorithm
No median BIS Bias(%) MAPE(%)
1 41.2 -17.6 20.1
2 41.2 -17.6 18.8
3 42.2 -15.8 17.4
4 46.5 -7.1 12.4
5 46.0 -8.0 20.4
6 42.7 -14.6 17.2
7 47.2 -5.5 8.1
8 41.1 -17.8 22.3
9 41.9 -16.3 17.0
10 39.5 -21.1 23.1

Table 5.3: Overshoot, Outside Time of Neuroadaptive Control Algorithm
No Overshoot Outside Time (%)
1 23.3 27.7
2 22.8 23.0
3 24.7 15.2
4 31.8 18.0
5 30.6 42.2
6 32.6 14.6
7 27.1 12.9
8 19.8 37.8
9 23.7 13.4
10 24.9 36.3
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1
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, · · · , 1

1+e−ak6(BISf (t−d)−BIStarget)
,

1

1+e−ak1(BISf (t−2d)−BIStarget)
, · · · , 1

1+e−ak6(BISf (t−2d)−BIStarget)
,

1
1+e−ak1(u(t−d)−u0) , · · · , 1

1+e−ak6(u(t−d)−u0) ,

1
1+e−ak1(u(t−2d)−u0) , · · · , 1

1+e−ak6(u(t−2d)−u0)

]T

˙̂
W1(t) = QBIS1Proj[Ŵ1(t),−σ(ζ(t))ξT

c (t)P̃B0]

˙̂
W2(t) = QBIS2Proj[Ŵ2(t),−σ(ζ(t))u(t)ξT

c (t)P̃B0]

ξ̇c(t) = Aξc(t) + L(BISf(t) − yc(t) − BIStarget)

yc(t) = Cξc(t)

u(t) = max
{

0,− ŴT
1 (t)σ(ζ(t))

b̂+ŴT
2 (t)σ(ζ(t))

}

Figure 5.5: Flowchart for the neuroadaptive control algorithm.
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Figure 5.6: Compartmental masses versus time.
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Figure 5.7: Concentrations in central and effect site compartments versus time.
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Figure 5.8: BIS signal versus time.
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Figure 5.9: Control signal (infusion rate) versus time.
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Figure 5.10: Controlled BIS signal versus time for 10 patients.
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Figure 5.11: Filtered BIS signal versus time for 10 patients.
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Figure 5.12: Infusion rate versus time for 10 patients.
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Figure 5.13: Representative measured and filtered BIS signal versus time.
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Figure 5.14: Representative infusion rate predicated on filtered BIS signal versus
time.
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Figure 5.15: Representative measured (noisy) BIS signal versus time.
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Chapter 6

Neuroadaptive Output Feedback Control for

Nonlinear Nonnegative Dynamical Systems with

Actuator Amplitude and Integral Constraints

6.1. Introduction

Actuator nonlinearities arise frequently in practice and can severely degrade closed-

loop system performance, and in some cases drive the system to instability, if not

accounted for in the control design process. These effects are even more pronounced

for adaptive controllers which continue to adapt when the feedback loop has been

severed due to the presence of actuator saturation causing unstable controller modes

to drift, which in turn leads to severe windup effects and unacceptable transients

after saturation. Direct adaptive controllers for adaptive tracking of multivariable

nonlinear uncertain dynamical systems with amplitude saturation constraints have

been developed in the literature [1, 37,76,86,88,106,116,146].

The presence of control rate saturation may further exacerbate the problem of

control amplitude saturation. To address amplitude and rate saturation constraints

the authors in [90] construct a reference system (governor or supervisor) to address

tracking and regulation in the face of actuator constraints by deriving adaptive update

laws that guarantee that the error system dynamics are asymptotically stable and

the adaptive controller gains are Lyapunov stable. In the case where the actuator
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amplitude and rate are limited, the adaptive control signal to the reference system

is modified to effectively robustify the error dynamics to the saturation constraints,

and hence, guaranteeing asymptotic stability of the error states.

Even though adaptive and neuroadaptive controllers for drug delivery systems

have been developed in the literature [7,46,53,54,57], adaptive control for drug dos-

ing with actuator saturation effects is rather limited [62]. An implicit assumption

inherent in most adaptive control frameworks for clinical pharmacology is that the

adaptive control law is implemented without any regard to actuator constraints. Of

course, any electromechanical control actuation device (e.g., infusion pump) is sub-

ject to amplitude and/or rate constraints leading to saturation nonlinearities enforcing

limitations on control amplitudes and control rates. More importantly, in physiolog-

ical applications, drug infusion rates can vary from patient to patient, and, to avoid

overdosing, it is vital that the infusion rate does not exceed patient-specific threshold

values. As a consequence, actuator constraints (e.g., infusion pump rate constraints)

need to be accounted for in drug delivery systems.

One of the main drawbacks in developing active drug delivery systems is the lack

of accurate mathematical models for characterizing the dynamic behavior of drugs on

physiological variables. The distribution of drugs in the body depends on transport

and metabolic processes, many of which are poorly understood. However, nonnegative

and compartmental systems are essential in capturing the behavior of a wide range of

dynamical systems involving dynamical models based on conservation laws involving

dynamic states whose values are nonnegative [47, 49], and their use in the specific

field of pharmacokinetics is essential in developing models for closed-loop control

for drug administration [49]. In this chapter, we develop a neuroadaptive control

framework for nonnegative dynamical systems with actuator amplitude and control

integral constraints. Specifically, building on the work of [37, 46, 116] we develop
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an output feedback neural network controller with input constraints that operates

over a tapped delay line (TDL) of available input and output measurements. The

neuroadaptive laws for the neural network weights are constructed using a linear

observer for the nominal normal form system error dynamics.

The proposed approach is applicable to a specific class of nonlinear nonnegative

dynamical systems with control amplitude saturation constraints as well as control

integral constraints over a given time interval. It is important to note here that our

framework does not account for actuator rate constraints. However, since control

inputs for drug delivery systems involve drug infusion rates, an actuator amplitude

constraint captures a constraint on the drug delivery infusion rate. In addition, since

in pharmacological applications involving active drug administration control inputs as

well as the system states need to be nonnegative, the proposed neuroadaptive output

feedback controller also guarantees that the control signal as well as the physical sys-

tem states remain nonnegative. Using an electroencephalogram (EEG) measurement

as an objective, quantitative measure of consciousness, the proposed framework is

used to control the infusion of an anesthetic drug for maintaining a desired constant

level of depth of anesthesia during surgery in the face of infusion rate constraints and

an integral drug dosing constraint over a specified time interval.

6.2. Neuroadaptive Output Feedback Control with Actuator

Constraints

In this section, we consider the problem of characterizing neuroadaptive dynamic

output feedback control laws for nonlinear uncertain dynamical systems with actu-

ator amplitude constraints to achieve reference model output tracking. Specifically,

consider the controlled nonlinear uncertain dynamical system G in normal form [67]
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given by

ẋ(t) = A0x(t) +BΛ [h(u(t)) + f(x(t), z(t), û(t))] , x(0) = x0, t ≥ 0, (6.1)

ż(t) = fz(x(t), z(t)), z(0) = z0, (6.2)

y(t) = Cx(t) +WT
y σy(ŷ(t), û(t)), (6.3)

where x(t) ∈ R
r, t ≥ 0, and z(t) ∈ R

n−r, t ≥ 0, are the state vectors, u(t) ∈ R
m,

t ≥ 0, is the control input, y(t) ∈ R
m, t ≥ 0, is the system output, û(t) , [u(t −

τu), u(t − 2τu), . . . , u(t − pτu)] is a vector of p-delayed values of the control input

with p ≥ 1 and τu > 0 given, ŷ(t) , [ y(t− τy), y(t− 2τy), . . . , y(t− qτy)] is a vector

of q-delayed values of the system output with q ≥ 1 and τy > 0 given, A0 ∈ R
r×r is a

known Hurwitz and essentially nonnegative matrix, B ∈ R
r×m is a known nonnegative

input matrix, Λ ∈ R
m×m is an unknown nonnegative and positive-definite matrix,

h(u(t)) = [h1(u1(t), . . . , hm(um(t))]T is the constrained control input given by

hi(ui) ,






0, if ui ≤ 0,

u∗i , if ui ≥ u∗i ,

ui, otherwise,

i = 1, . . . , m, (6.4)

where u∗i > 0, i = 1, . . . , m, are given constants, f : R
r × R

n−r × R
mp → R

m is

Lipschitz continuous, bounded, and essentially nonnegative with respect to x for all

z ∈ R
n−r and û ∈ R

mp but otherwise unknown (that is, f(·, ·) is such that fi(x, û) ≥ 0

if xi = 0, i = 1, . . . , n, for all z ∈ R
n−r and û ∈ R

mp), fz : R
r × R

n−r → R
n−r is

such that (6.2) is input-to-state stable for all z ∈ R
n−r with x(t) viewed as the

input, C ∈ R
m×r is a known output matrix, Wy ∈ R

l×m is an unknown matrix, and

σy : R
mq × R

mp → R
l is a known Lipschitz continuous function that is bounded on

R
mq × R

mp.

In order to achieve output tracking, we construct a reference nonnegative dynam-

157



ical system Gref given by

ẋref(t) = Arefxref(t) +Brefr(t), xref(0) = xref0 , t ≥ 0, (6.5)

yref(t) = Cxref(t), (6.6)

where xref(t) ∈ R
r, t ≥ 0, is the reference state vector, r(t) ∈ R

d, t ≥ 0, is a

bounded piecewise continuous nonnegative reference input, Aref ∈ R
r×r is a Hurwitz

and essentially nonnegative matrix, and Bref ∈ R
r×d is a nonnegative matrix.

As discussed in the Introduction, control (source) inputs of drug delivery sys-

tems for physiological and pharmacological processes are usually constrained to be

nonnegative as are the system states. Hence, in this chapter we develop neuroadap-

tive dynamic output feedback control laws for nonnegative systems with nonnegative

control inputs. In addition, to account for infusion rate constraints we develop neu-

roadaptive control laws with actuator constraints. Specifically, for the reference model

output tracking problem our goal is to design a nonnegative control input u(t), t ≥ 0,

predicated on the system measurement y(t), t ≥ 0, such that ‖y(t) − yref(t)‖ < γ for

all t ≥ T , where ‖ · ‖ denotes the Euclidean vector norm on R
m, γ > 0 is sufficiently

small, and T ∈ [0,∞), x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+, and the control input

u(·) in (6.1) is restricted to the class of admissible controls consisting of measurable

functions u(t) = [u1(t), . . . , um(t)]T, t ≥ 0, such that (6.4) holds and

ηi(t) ,

∫ t

t−τs

hi(ui(s))ds ≤ η∗i , i = 1, . . . , m, t ≥ 0, (6.7)

where τs > 0 and η∗i > 0, i = 1, . . . , m, are given constants, and ui(t) ≡ 0 for all

t ∈ [−τs, 0] and i = 1, . . . , m. Note that ηi(t), i = 1, . . . , m, t ≥ 0, given by (6.7)

satisfies

η̇i(t) = hi(ui(t)) − hi(ui(t− τs)), ηi(0) = 0, t ≥ 0. (6.8)

Here, we assume that the function f(x, z, û) can be approximated over a compact

set Dx ×Dz ×Dû by a linear in parameters neural network up to a desired accuracy.
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In this case, there exists ε̂ : R
r × R

n−r × R
mp → R

m such that ‖ε̂(x, z, û)‖ < ε̂∗ for

all (x, z, û) ∈ Dx ×Dz ×Dû, where ε̂∗ > 0, and

f(x, z, û) = WT
f σ̂(x, z, û) + ε̂(x, z, û), (x, z, û) ∈ Dx ×Dz ×Dû, (6.9)

where Wf ∈ R
s×m is an optimal unknown (constant) weight that minimizes the ap-

proximation error over Dx ×Dz ×Dû, σ̂ : R
r × R

n−r × R
mp → R

s is a vector of basis

functions such that each component of σ̂(·, ·, ·) takes values between 0 and 1, and

ε̂(·, ·, ·) is the modeling error. Note that s denotes the total number of basis functions

or, equivalently, the number of nodes of the neural network.

Since f(·, ·, ·) is continuous on R
r × R

n−r × R
mp we can choose σ̂(·, ·, ·) from a

linear space X of continuous functions that forms an algebra and separates points in

Dx×Dz×Dû. In this case, it follows from the Stone-Weierstrass theorem [111, p. 212]

that X is a dense subset of the set of continuous functions on Dx × Dz × Dû. Now,

as is the case in the standard neuroadaptive control literature [92], we can construct

a signal involving the estimates of the optimal weights and basis functions as our

adaptive control signal. It is important to note here that we assume that we know

the structure and the size of the approximator. This is a standard assumption in

the neural network adaptive control literature. In online neural network training,

the size and the structure of the optimal approximator are not known and are often

chosen by the rule that the larger the size of the neural network and the richer

the distribution class of the basis functions over a compact domain, the tighter the

resulting approximation error bound ε̂(·, ·, ·). This goes back to the Stone-Weierstrass

theorem which only provides an existence result without any constructive guidelines.

In order to develop an output feedback neuroadaptive controller, we use the ap-

proach developed in [87] for reconstructing the system states via the system delayed

inputs and outputs. Specifically, we use a memory unit as a particular form of
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a tapped delay line (TDL) that takes a scalar time series input and provides an

(2mn − r)-dimensional vector output consisting of the present values of the system

outputs and system inputs, and their 2(n− 1)m− r delayed values given by

ζ(t) , [y1(t), y1(t− d), . . . , y1(t− (n− 1)d), . . . , ym(t), ym(t− d), . . . ,

ym(t− (n− 1)d);u1(t), u1(t− d), . . . , u1(t− (n− r1 − 1)d), . . . , um(t),

um(t− d), . . . , um(t− (n− rm − 1)d)]T, t ≥ 0, (6.10)

where ri denotes the relative degree of G with respect to the output yi, i = 1, . . . ,m.

The following matching conditions are needed for the main result of this chapter.

Assumption 6.1. There exist Ky ∈ R
m×m and Kr ∈ R

m×d such that A0 +

BKyC = Aref and BKr = Bref .

Assumption 6.1 involves standard matching conditions for model reference adap-

tive control appearing in the literature; see, for example, Chapter 5 in [132].

Using the parameterization Λ = Λ̂ + ∆Λ, where ∆Λ ∈ R
m×m is an unknown

symmetric matrix, the dynamics in (6.1) can be rewritten as

ẋ(t) = A0x(t) +BΛ̂h(u(t)) +B [∆Λh(u(t)) + Λf(x(t), z(t), û(t))] , x(0) = x0, t ≥ 0.

(6.11)

Define W ,
[
WT

1 ,W
T
2

]T ∈ R
(s+m)×m, where W1 , WfΛ and W2 , ∆ΛT. Using (6.9),

(6.11) can be rewritten as

ẋ(t) = A0x(t) +BΛ̂u(t) +BWTσ(ζ(t), h(u(t))) +BΛ̂∆h(t) +BΛε̂(x(t), z(t), û(t)),

+BWT
1 [σ̂(x(t), z(t), û(t)) − σζ(ζ(t))] , x(0) = x0, t ≥ 0, (6.12)

where

σ(ζ(t), h(u(t))) ,
[
σT

ζ (ζ(t)), hT(u(t))
]T
, t ≥ 0, (6.13)
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σζ : R
2mn−r → R

s is a vector of basis functions such that each component of σζ(·)

takes values between 0 and 1, and ∆h(u(t)) , h(u(t)) − u(t), t ≥ 0.

Next, consider a sequence of positive numbers {ρi}∞i=1 such that limi→∞ ρi = 0

and define the time-dependent set Ωt,i and saturation impact times τ ∗i (t) by

Ωt,i , {τ ≥ 0 : ηi(τ) = η∗i and there exists N > 0 such that, for all i ≥ N,

ηi(τ − ρi) < η∗i } , t ≥ 0, i = 1, . . . , m, (6.14)

τ ∗i (t) ,






θi + max {τ : τ ∈ Ωt,i} , if Ωt,i 6= ∅,

0, otherwise,
t ≥ 0, i = 1, . . . , m, (6.15)

where θi > 0, i = 1, . . . , m, are design parameters.

Now, consider the control input u(t), t ≥ 0, given by

u(t) = Φ(η(t))ψ(t), t ≥ 0, (6.16)

where Φ(η(t)) , diag [φ1(η1(t)), . . . , φm(ηm(t))], t ≥ 0,

φi(ηi(t)) ,






1, if 0 ≤ ηi(t) ≤ η∗i − δi and t ≥ τ ∗i (t),

1
δi

(η∗i − ηi(t)), if η∗i − δi ≤ ηi(t) ≤ η∗i and t ≥ τ ∗i (t),

0, otherwise,

(6.17)

t ≥ 0, i = 1, . . . , m,

0 < δi < η∗i , i = 1, . . . , m, are design constant parameters (chosen to be sufficiently

small), and ψ(t) ∈ R
m, t ≥ 0, is given by

ψ(t) = ψn(t) − ψad(t), t ≥ 0, (6.18)

where

ψn(t) = Λ̂−1[Kyy(t) +Krr(t)], t ≥ 0, (6.19)

ψad(t) = Λ̂−1
[
ŴT(t)σ(ζ(t), h(u(t))) +KyŴ

T
y (t)σy(ŷ(t), û(t))

]
, t ≥ 0, (6.20)
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Figure 6.1: Visualization of the effect of φi(ηi(t)) for a given function ηi(t).

and Ŵ (t) ∈ R
(s+m)×m, t ≥ 0, and Ŵy(t) ∈ R

l×m, t ≥ 0, are update weights. Note that,

for all t ≥ 0 and i = 1, . . . , m, 0 ≤ φi(ηi(t)) ≤ 1. Furthermore, if ηi(t̂) = η∗i for every

t̂ ≥ 0, then hi(ui(t̂)) = 0. Now, it follows from (6.8) that η̇(t̂) = −hi(ui(t̂− τs)) ≤ 0,

t̂ ≥ 0, and hence, ηi(t̂) is upper bounded by η∗i . Thus, the integral constraint (6.7) is

satisfied. Figure 6.1 shows the interplay between ηi(t) and φi(ηi(t)), i = 1, . . . , m.

Remark 6.1. The choice of φi(ηi), i = 1, . . . , m, is not limited to the piecewise

linear continuous function given by (6.17). In particular, on the interval η∗i −δi ≤ ηi ≤

η∗i , φi(ηi) can be chosen as any decreasing continuous function such that φi(η
∗
i −δi) = 1

and φi(η
∗
i ) = 0.

Defining the tracking error state e(t) , x(t) − xref(t), t ≥ 0, and using (6.16),

(6.18)–(6.20), and Assumption 6.1, the error dynamics are given by

ė(t) = Arefe(t) +BW̃T(t)σ(ζ(t), h(u(t))) +BKyW̃
T
y (t)σy(ŷ(t), û(t)) +BΛ̂∆h(u(t))

+ε(t), e(0) = x0 − xref0 , t ≥ 0, (6.21)
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where

ε(t) , BΛ̂(Φ(t) − Im)ψ(t) +BWT
1 [σ̂(x(t), z(t), û(t)) − σζ(ζ(t))]

+BΛε̂(x(t), z(t), û(t)), t ≥ 0, (6.22)

W̃ (t) , W − Ŵ (t), t ≥ 0, and W̃y(t) , Wy − Ŵy(t), t ≥ 0.

Next, to account for the effects of saturation on the error state e(t), t ≥ 0, consider

the dynamical system given by

ės(t) = Arefes(t) +BΛ̂∆h(u(t)), es(0) = es0, t ≥ 0, (6.23)

ys(t) = Ces(t), (6.24)

where es(t) ∈ R
r, t ≥ 0, and define the augmented error state ẽ(t) , e(t) − es(t),

t ≥ 0. Now, it follows from (6.21) and (6.23) that

˙̃e(t) = Aref ẽ(t) +B
[
W̃T(t)σ(ζ(t), h(u(t))) +KyW̃

T
y (t)σy(ŷ(t), û(t))

]
+ ε(t),

ẽ(0) = 0, t ≥ 0. (6.25)

Consider the update laws given by

˙̂
W (t) = ΓW Proj[Ŵ (t), σ(ζ(t), h(u(t)))ξT

c (t)PB], Ŵ (0) = Ŵ0, t ≥ 0, (6.26)

˙̂
Wy(t) = ΓyProj[Ŵy(t), σy(ŷ(t), û(t))ξ

T
c (t)(PBKy + P̃L)], Ŵy(0) = Ŵy0, (6.27)

where ΓW ∈ R
(s+m)×(s+m) and Γy ∈ R

l×l are positive definite matrices, P ∈ R
r×r is a

positive-definite solution of the Lyapunov equation

0 = AT
refP + PAref +R, (6.28)

where R > 0, and P̃ ∈ R
nξ×nξ is a positive-definite solution of the Lyapunov equation

0 = (Â− LĈ)TP̃ + P̃ (Â− LĈ) + R̃, (6.29)
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where R̃ > 0, Â ∈ R
nξ×nξ is Hurwitz, L ∈ R

nξ×m, Ĉ ∈ R
m×nξ , and ξc(t) ∈ R

nξ , t ≥ 0,

is the solution to the estimator dynamics

ξ̇c(t) = Âξc(t) + L [y(t) − yref(t) − yc(t) − ys(t)] , ξc(0) = ξc0, t ≥ 0, (6.30)

yc(t) = Ĉξc(t) + ŴT
y (t)σy(ŷ(t), û(t)). (6.31)

Note that since h(u) is bounded for all u ∈ R
m and f(x, z, û) is bounded for all

(x, z, û) ∈ R
r × R

n−r × R
mp, it follows that x(t), t ≥ 0, is bounded for all t ≥ 0,

and hence, ψn(t) is bounded for all t ≥ 0. Now, since the projection operator used

in the update laws (6.26) and (6.27) guarantees the boundness of the update weights

Ŵ (t), t ≥ 0, and Ŵy(t), t ≥ 0, it follows that there exist u∗ > 0 and δ∗ > 0 such that

‖u(t)‖ ≤ u∗ and ‖∆h(u(t))‖ ≤ δ∗ for all t ≥ 0. Furthermore, note that there exists

ε∗ > 0 such that ‖ε(t)‖ ≤ ε∗ for all t ≥ 0 such that (x(t), z(t), û(t)) ∈ Dx ×Dz ×Dû.

Finally, there exist α1 > 0 and α2 > 0 such that ‖W̃T(t)σ(ζ(t), h(u(t)))‖ ≤ α1 and

‖W̃T
y (t)σy(ŷ(t), û(t))‖ ≤ α2 for all t ≥ 0.

For the statement of the main result of this chapter, let ‖ · ‖′ : R
r×r → R be the

matrix norm equi-induced by the vector norm ‖·‖′′ : R
r → R, let ‖·‖′′′ : R

r×m → R be

the matrix norm induced by the vector norms ‖ · ‖′′ : R
r → R and ‖ · ‖′′′′ : R

m → R,

and let ‖ · ‖∗ : R
nξ×nξ → R be the matrix norm equi-induced by the vector norm

‖ · ‖∗∗ : R
nξ → R.

Theorem 6.1. Consider the nonlinear uncertain dynamical system G given by

(6.1)–(6.3) with u(t), t ≥ 0, given by (6.16)–(6.20) and reference model Gref given

by (6.5) and (6.6) with tracking error dynamics given by (6.21). Assume Assump-

tion 6.1 holds, λmin(R) > 1, and λmin(R̃) > ‖P̃LĈ‖∗2. Then there exists a com-

pact positively invariant set Dα ⊂ R
r × R

r × R
nξ × R

(s+m)×m × R
l×m such that

(0, 0, 0,W,Wy) ∈ Dα, where W ∈ R
(s+m)×m and Wy ∈ R

l×m, and the solution

(e(t), es(t), ξc(t), Ŵ (t), Ŵy(t)), t ≥ 0, of the closed-loop system given by (6.1)–(6.3),
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(6.16), (6.23), (6.24), (6.26), (6.27), (6.30) and (6.31) is ultimately bounded for all

(e(0), es(0), ξc(0), Ŵ (0), Ŵy(0)) ∈ Dα with ultimate bound ‖y(t)−yref(t)‖ < γ, t ≥ T ,

where

γ >
( [

(λmin(R) − 1)−
1
2
√
ν + αe

]2

+
[
(λmin(R̃) − ‖P̃LĈ‖∗2)− 1

2
√
ν + αξ

]2

+λmax(Γ
−1
W )ŵ2

max + λmax(Γ
−1
y )ŵ2

ymax

) 1
2
, (6.32)

ν , (λmin(R) − 1)α2
e + (λmin(R̃) − ‖P̃LĈ‖∗2)α2

ξ , (6.33)

αe ,
1

λmin(R) − 1

(
‖P‖′ε∗ + ‖PB‖′′′α1 + ‖PBKy‖′′′α2

)
, (6.34)

αξ ,
1

λmin(R̃) − ‖P̃LĈ‖∗2
(
‖PB‖′′′α1 + ‖PBKy‖′′′α2

)
, (6.35)

and ŵmax and ŵymax are norm bounds imposed on Ŵ and Ŵy, respectively. Further-

more, u(t) satisfies (6.7) for all t ≥ 0, h(u(t)) ≥≥ 0, t ≥ 0, and x(t) ≥≥ 0, t ≥ 0, for

all x0 ∈ R
r

+.

Proof. Ultimate boundness of the closed-loop system follows by considering the

Lyapunov-like function candidate

V (ẽ, ξc, W̃ , W̃y) = ẽTP ẽ+ ξT
c P̃ ξc + tr W̃TΓ−1

W W̃ + tr W̃T
y Γ−1

y W̃y, (6.36)

where P > 0 and P̃ > 0 satisfy, respectively, (6.28) and (6.29). Note that (6.36) sat-

isfies α(‖z‖) ≤ V (z) ≤ β(‖z‖) with z = [ẽT, ξT
c , (vec W̃ )T, (vec W̃y)

T]T and α(‖z‖) =

β(‖z‖) = ‖z‖2, where ‖z‖2 , ẽTP ẽ+ ξT
c P̃ ξc + tr W̃TΓ−1

W W̃ + tr W̃T
y Γ−1

y W̃y and vec(·)

denotes the column stacking operator. Furthermore, note that α(·) is a class K∞

function. Now, using (6.26)–(6.27), and after considerable, albeit standard, algebraic

manipulations, the time derivative of V (ẽ, ξc, W̃ , W̃y) along the closed-loop system

trajectories satisfies

V̇ (ẽ(t), ξc(t), W̃ (t), W̃y(t)) ≤ −
(
λmin(RP

−1) − 1
)
(‖ẽ(t)‖ − αe)

2 + ν

−
(
λmin(R̃) − ‖P̃LĈ‖∗2

)
(‖ξc(t)‖ − αξ)

2 , t ≥ 0. (6.37)
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Now, for

‖ẽ‖ ≥ αẽ ,

√
ν

λmin(RP−1) − 1
+ αe, (6.38)

or

‖ξc‖ ≥ αξc ,

√
ν

λmin(R̃) − ‖P̃LĈ‖∗2
+ αξ, (6.39)

it follows that V̇ (ẽ(t), ξc(t), W̃ (t), W̃y(t) ≤ 0 for all t ≥ 0, that is, V̇ (ẽ(t), ξc(t), W̃ (t),

W̃y(t) ≤ 0 for all (ẽ(t), ξc(t), W̃ (t), W̃y(t) ∈ D̃e\D̃r and t ≥ 0, where

D̃e ,

{
(ẽ, ξc, W̃ , W̃y) ∈ R

r × R
nξ × R

(s+m)×m × R
l×m : (x, z, û) ∈ Dx ×Dz ×Dû

}
,

(6.40)

D̃r ,

{
(ẽ, ξc, W̃ , W̃y) ∈ R

r × R
nξ × R

(s+m)×m × R
l×m : ‖ẽ‖ ≤ αẽ, ‖ξc‖ ≤ αξc ,

}
.

(6.41)

Next, define

D̃α ,

{
(ẽ, ξc, W̃ , W̃y) ∈ R

r × R
nξ × R

(s+m)×m × R
l×m : V (ẽ, ξc, W̃ , W̃y) ≤ α

}
,

(6.42)

where α is the maximum value such that D̃α ⊆ D̃e, and define

D̃η ,

{
(ẽ, ξc, W̃ , W̃y) ∈ R

r × R
nξ × R

(s+m)×m × R
l×m : V (ẽ, ξc, W̃ , W̃y) ≤ η

}
,

(6.43)

where

η > β(µ) = µ = α2
ẽ + α2

ξc + λmax(Γ
−1
W )ŵ2

max + λmax(Γ
−1
y )ŵ2

ymax. (6.44)

To show ultimate boundedness of the closed-loop system (6.1)–(6.3), (6.16), (6.23)–

(6.27), (6.30) and (6.31) assume that D̃η ⊂ D̃α. Now, since V̇ (ẽ, ξc, W̃ , W̃y) ≤ 0 for all
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(ẽ, ξc, W̃ , W̃y) ∈ D̃e\D̃r and D̃r ⊂ D̃α, it follows that D̃α is positively invariant. Hence,

if (ẽ(0), ξc(0), W̃ (0), W̃y(0)) ∈ D̃α, then it follows from Theorem 4.14 of [48] that the

solution (ẽ(t), ξc(t), W̃ (t), W̃y(t)), t ≥ 0, to (6.25), (6.26), (6.27), (6.30) and (6.31) is

ultimately bounded with respect to (ẽ(t), ξc(t), W̃ (t), W̃y(t)) uniformly in z(0) with

ultimate bound given by γ = α−1(η) =
√
η, which yields (6.32). In addition, since

(6.2) is input-to-state stable with x(t) viewed as the input, it follows from Proposition

4.4 of [48] that the solution z(t), t ≥ 0, to (6.2) is also ultimately bounded.

The nonnegativity of h(u(t)), t ≥ 0, is immediate from (6.4). The fact that u(t),

t ≥ 0, satisfies (6.7) follows from (6.16), (6.17), and the fact that h(u) ≥≥ 0 for all

u ∈ R
m. Since A0 is essentially nonnegative, BΛ ≥≥ 0, h(u(t)) ≥≥ 0, t ≥ 0, and

f(x, z, û) is essentially nonnegative with respect to x for all z ∈ R
n−r and û ∈ R

mp,

it follows from (6.1) and Proposition 5.1 that x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
r

+. This

completes the proof.

A block diagram showing the neuroadaptive control architecture given in Theo-

rem 6.1 is shown in Figure 6.2.

Remark 6.2. To apply Theorem 6.1 to the set-point regulation problem, let xe ∈

R
r

+ and r(t) ≡ r∗ be such that 0 = Arefxe + Brefr
∗ and yref(t) ≡ yd = Cxe, where

yd ∈ R
m

+ is a given desired set-point. In this case, the control signal u(t) is given by

(6.16) and (6.18) with ψn(t) ≡ 0.

Example 6.1. To illustrate the performance of the controller given by (6.16),

we consider the dynamical system given by (6.1), with A0 =

[
−1 2
0.5 −3

]
, B = I2,

Λ = I2, x0 = [0.1, 0.05]T, f(x, z, û) = WTσ(x), where W = diag[0.2, 0.3], σ(x) =

[1−sin(ω1(x1 +x2)), 1−cos(ω2(x1 +x2))]
T, where ω1 = 3 rad/sec and ω2 = 5 rad/sec,

and with output given by (6.3), where C = I2 and Wy ≡ 0. The reference model
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Figure 6.2: Block diagram of the closed-loop system.
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Figure 6.3: Error signals and saturated input signals versus time.

is given by (6.5) and (6.6), where Aref = A0, Bref = B, r(t) = [0.1, 0.15]T, and

xref0 = [0.3, 0.1]T. For our simulation we let u∗1 = 0.12, u∗2 = 0.14, η∗1 = 0.13,

η∗2 = 0.12, ΓW = I2, and Ŵ0 = 02×2.

Figures 6.3 and 6.4 show the system error signals, saturated input signals, and

system states versus time with and without adaptation. Figures 6.5 and 6.6 show the

control input signals and integrated input signals versus time. As can be seen from
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the figures, in the absence of adaptation the system errors, system states, and control

signals are oscillatory with large amplitudes, whereas the closed-loop system errors,

states, and control signals with the adaptive controller given by Theorem 6.1 show a

satisfactory response.
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Figure 6.4: System states versus time.
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Figure 6.6: η versus time.

6.3. Neuroadaptive Output Feedback Control for General

Anesthesia with Drug Infusion Constraints

To illustrate the application of the neuroadaptive control framework presented in

Section 6.2 for general anesthesia, we consider the intravenous anesthetic propofol

model developed in Section 5.4. The pharmacokinetics of propofol are described by

the three compartment model shown in Figure 6.7, where x1 denotes the mass of drug

in the central compartment. The remainder of the drug in the body is assumed to

reside in two peripheral compartments, one identified with muscle and one with fat;

the masses in these compartments are denoted by x2 and x3, respectively.

A mass balance of the three-state compartmental model yields

ẋ1(t) = −[a11(c(t)) + a21(c(t)) + a31(c(t))]x1(t) + a12(c(t))x2(t)

+a13(c(t))x3(t) + h(u(t)), x1(0) = x10, t ≥ 0, (6.45)

ẋ2(t) = a21(c(t))x1(t) − a12(c(t))x2(t), x2(0) = x20, (6.46)

ẋ3(t) = a31(c(t))x1(t) − a13(c(t))x3(t), x3(0) = x30, (6.47)

where c(t) = x1(t)/Vc, Vc is the volume of the central compartment (about 15 l for
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Figure 6.7: Pharmacokinetic model for drug distribution during anesthesia.

a 70 kg patient), aij(c), i 6= j, is the rate of transfer of drug from the jth compart-

ment to the ith compartment, a11(c) is the rate of drug metabolism and elimination

(metabolism typically occurs in the liver), and h(u(t)), t ≥ 0, is the constrained infu-

sion rate of the anesthetic drug propofol into the central compartment. The transfer

coefficients are assumed to be functions of the drug concentration c since it is well

known that the pharmacokinetics of propofol are influenced by cardiac output [134]

and, in turn, cardiac output is influenced by propofol plasma concentrations, both

due to venodilation (pooling of blood in dilated veins) [101] and myocardial depres-

sion [68]. Finally, note that the compartmental model (6.45)–(6.47) is already in the

normal form basis (6.1) and (6.2) with n = r.

To consider drug effect rather than drug concentration, we use a BIS measurement

predicated on an effect-site compartment as in Section 5.4. In the following numerical

simulation we consider a set-point regulation problem with a desired level of hypnosis

corresponding to BISTarget = 50. In the following simulation involving the infusion of

the anesthetic drug propofol we set EC50 = 5.6 µg/ml, γ = 2.39, and BIS0 = 100, so

that the BIS signal is shown in Figure 6.8. Here, we use the neuroadaptive output

feedback controller

u(t) = φ(η(t))ψ(t), (6.48)

171



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Effect site concentration [µg/ml]

B
IS

 In
de

x 
[s

co
re

]

Target BIS

EC
50

 = 5.6 [µg/ml]
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where

φ(η(t)) =






1, if 0 ≤ η(t) ≤ η∗ − δ and t ≥ τ ∗(t),

1
δ
(η∗ − η(t)), if η∗ − δ ≤ η(t) ≤ η∗ and t ≥ τ ∗(t),

0, otherwise,

t ≥ 0, (6.49)

η(t) =

∫ t

t−τs

h(u(s))ds ≤ η∗, t ≥ 0, (6.50)

h(u(t)) =






0, if u(t) ≤ 0,

u∗, if u(t) ≥ u∗,

u(t), otherwise,

t ≥ 0, (6.51)

δ = 0.005, η∗ = 0.15 g, τs = 10 sec, θ = 5 sec, and u∗ = 0.32 g/min. Note that (6.51)

guarantees an infusion rate constraint of 0.32 g/min, whereas (6.50) ensures a drug

dosing constraint of 0.15 g over a period of 10 seconds.

Next, let

ψ(t) = ψn(t) − ψad(t), (6.52)

where ψn(t) ≡ 0 and ψad(t) = ŴT(t)σ(ζ(t)), t ≥ 0, where

ζ(t) = [BISf(t− d),BISf(t− 2d), h(u(t− d)), h(u(t− 2d))]T, (6.53)
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d > 0, and

˙̂
W (t) = QBISProj[Ŵ1(t), σ(ζ(t))ξT

c (t)PB], Ŵ (0) = Ŵ0, t ≥ 0, (6.54)

where QBIS is a positive constant and ξc(t) ∈ R
2, t ≥ 0, is the solution to the estimator

dynamics

ξ̇c(t) = Âξc(t) + L(BIS(t) − BISTarget − yc(t) − ys(t)), ξc(0) = ξc0, t ≥ 0, (6.55)

yc(t) = Ĉξc(t), (6.56)

where Â ∈ R
2×2, L ∈ R

2×1, Ĉ ∈ R
1×2, and ys(t), t ≥ 0, is the output of the dynamical

system

ės(t) = A0es(t) +B∆h(u(t)), es(0) = es0, t ≥ 0, (6.57)

ys(t) = Ces(t). (6.58)

Here, we assume that Wy = 0 so that Ŵ (t) ≡ 0. Now, it follows from Theorem 6.1

that there exist positive constants γ and T such that |BIS(t) − BIStarget| ≤ γ, t ≥ T ,

where BIS(t) is given by (5.61), for all nonnegative values of the pharmacokinetic

transfer and loss coefficients A12, A21, A13, A31, A11 as well as all nonnegative coeffi-

cients α, C50, and Q0.

For our simulation we assume Vc = (0.228 l/kg)(M kg), where M = 70 kg is

the mass of the patient, A21Q0 = 0.112 min−1, A12Q0 = 0.055 min−1, A31Q0 =

0.0419 min−1, A13Q0 = 0.0033 min−1, AeQ0 = 0.119 min−1, aeff = 3.4657 min−1,

α = 3, and C50 = 4 µg/ml [78, 96]. Note that the parameter values for α and C50

probably exaggerate the effect of propofol on cardiac output. They have been selected

to accentuate nonlinearity but they are not biologically unrealistic. Furthermore, to

illustrate the efficacy of the proposed neuroadaptive controller we switch the pharma-

codynamic parameters EC50 and γ, respectively, from 5.6 µg/ml and 2.39 to 7.2 µg/ml

and 3.39 at t = 15 min and back to 5.6 µg/ml and 2.39 at t = 30 min. Here, we
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consider noncardiac surgery since cardiac surgery often utilizes hypothermia which

itself changes the BIS signal.

With

A0 =




−0.2729 0.0550 0.0033

0.1120 −0.0550 0
0.0419 0 −0.0033



 , B =




1
0
0



 , C = [1, 0, 0]T,

Â =

[
0 1

−1 −1

]
, L = [0, 1]T, Ĉ = [1, 0], QBIS = 2.0 × 10−4 g/min2, d = 0.005,

and initial conditions x1(0) = x2(0) = x3(0) = 0 g, ceff(0) = 0 g/ml, ξc(0) = [0, 0]T,

es0 = [0, 0, 0]T, and Ŵ (0) = 1 × 10−3[−312×1, 112×1]
T, Figure 6.9 shows the masses

of propofol in the three compartments versus time, and the concentrations in the

central and effect-site compartments versus time. Note that the effect-site compart-

ment equilibrates with the central compartment in a matter of several minutes. Fig-

ure 6.10 shows the BIS signal versus time and the amount of propofol delivered over

a 10-second window versus time, and the constrained h(u(t)) and unconstrained u(t)

propofol infusion rate versus time. Note that during the controller operation η(t) is

far below the clinical critical value η∗.

For our simulation we used

σ(ζ(t)) =

[
1

1 + e−ak1(BISf (t−d)−BIStarget)
, · · · , 1

1 + e−ak6(BISf(t−d)−BIStarget)
,

1

1 + e−ak1(BISf (t−2d)−BIStarget)
, · · · , 1

1 + e−ak6(BISf (t−2d)−BIStarget)
,

1

1 + e−ak1(u(t−d)−u0)
, · · · , 1

1 + e−ak6(u(t−d)−u0)
,

1

1 + e−ak1(u(t−2d)−u0)
, · · · , 1

1 + e−ak6(u(t−2d)−u0)

]T

, (6.59)

where s = 24, a = 0.1, k1 = 1, k2 = 2, k3 = 6, k4 = 24, k5 = 120, k6 = 720, and

u0 = 15 mg/min. Even though we did not calculate the analytical bounds given by

(6.32) due to the fact that one has to solve an optimization problem with respect to

(6.34) and (6.35) to obtain αe and αξ, the closed-loop BIS signal response shown in
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Figure 6.10 is clearly acceptable. Furthermore, the basis function for σ(ζ) is chosen to

cover the domain of interest of our pharmacokinetic/pharmacodynamic problem since

we know that the BIS index varies from 0 to 100. Hence, the basis functions are dis-

tributed over that domain. The number of basis functions, however, is based on trial

and error. As noted in Section 6.2, this goes back to the Stone-Weierstrass theorem

which only provides an existence result without any constructive guidelines. Finally,

we note that simulations using a larger number of neurons resulted in imperceptible

differences in the closed-loop system performance.
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Figure 6.9: Compartmental masses, and concentrations in the central and effect site
compartments versus time.
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Figure 6.10: BIS signal, η, infusion rate h(u(t)), and control signal u(t) versus time.
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Chapter 7

Pressure- and Work-Limited Neuroadaptive

Control for Mechanical Ventilation of Critical Care

Patients

7.1. Introduction

The lungs are particularly vulnerable to acute, critical illness. Respiratory failure

can result not only from primary lung pathology, such as pneumonia, but also as a sec-

ondary consequence of heart failure or inflammatory illness, such as sepsis or trauma.

When this occurs it is essential to support patients while the fundamental disease

process is addressed. For example, a patient with pneumonia may require mechanical

ventilation while the pneumonia is being treated with antibiotics that will eventually

effectively “cure” the disease. Since the lungs are vulnerable to critical illness, and

respiratory failure is common, support of patients with mechanical ventilation is very

common in the intensive care unit.

The goal of mechanical ventilation is to ensure adequate ventilation, which in-

volves a magnitude of gas exchange that leads to the desired blood level of carbon

dioxide, and adequate oxygenation, which involves a blood concentration of oxygen

that will ensure organ function. Achieving these goals is complicated by the fact that

mechanical ventilation can actually cause acute lung injury, either by inflating the

lungs to excessive volumes or by using excessive pressures to inflate the lungs. The
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challenge to mechanical ventilation is to produce the desired blood levels of carbon

dioxide and oxygen without causing further acute lung injury.

The earliest primary modes of ventilation can be classified, approximately, as

volume-controlled or pressure-controlled [133]. In volume-controlled ventilation, the

lungs are inflated (by the mechanical ventilator) to a specified volume and then al-

lowed to passively deflate to the baseline volume. The mechanical ventilator con-

trols the volume of each breath and the number of breaths per minute. In pressure-

controlled ventilation, the lungs are inflated to a given peak pressure. The ventilator

controls this peak pressure as well as the number of breaths per minute.

The primary determinant of the level of carbon dioxide in the blood is minute ven-

tilation, which is defined as the tidal volume (the volume of each breath) multiplied

by the number of breaths per minute [97, 141]. With volume-controlled ventilation

both tidal volume and the number of breaths are determined by the machine (the

ventilator) and typically the tidal volumes and breaths per minute are selected by the

clinician caring for the patient. In pressure-controlled ventilation, the tidal volume is

not directly controlled. The ventilator determines the pressure that inflates the lungs

and the tidal volume is proportional to this driving pressure and the compliance, or

“stiffness,” of the lungs. Consequently, the minute ventilation is not directly con-

trolled by the ventilator and any change in lung compliance (such as improvement or

deterioration in the underlying lung pathology) can result in changes in tidal volume,

minute ventilation, and ultimately the blood concentration of carbon dioxide.

The concentration of oxygen in the blood is determined by the underlying lung

pathology, the concentration of oxygen in the gas delivered by the mechanical ven-

tilator, and also by the pressure that is used to inflate the lungs. In very general

terms, oxygenation can be improved by higher mean pressures in the lungs, although

higher peak pressures during the inflation-deflation cycle are associated with lung
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injury [10,81].

With the increasing availability of micro-chip technology, it has been possible

to design mechanical ventilators that have control algorithms that are more sophis-

ticated than simple volume or pressure control. Examples are proportional-assist

ventilation [144, 145], adaptive support ventilation [85], and neurally adjusted venti-

lation [125]. The common theme in modern ventilation control algorithms is the use

of pressure-limited ventilation while also guaranteeing adequate minute ventilation.

One of the challenges in the design of efficient control algorithms is that the funda-

mental physiological variables defining lung function, the resistance to gas flow and

the compliance of the lung units, are not constant but rather vary with lung volume.

This is particularly true for compliance, strictly defined as dV
dP

, where V is the lung

unit volume and P is the pressure driving inflation. More simply, lung volume is a

nonlinear function of driving pressure.

In this chapter, we apply the adaptive control architecture of Chapter 6 to control

lung volume and minute ventilation with input pressure constraints that also accounts

for spontaneous breathing by the patient. Specifically, we develop a pressure- and

work-limited neuroadaptive controller for mechanical ventilation based on a nonlinear

multi-compartmental lung model. The control framework does not rely on any aver-

aged data and is designed to automatically adjust the input pressure to the patient’s

physiological characteristics capturing lung resistance and compliance modeling un-

certainty. Moreover, the controller accounts for input pressure constraints as well as

work of breathing constraints. Finally, the effect of spontaneous breathing is incor-

porated within the lung model and the control framework.
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7.2. Neuroadaptive Output Feedback Control with Actuator

Constraints

In this section, we consider the problem of characterizing neuroadaptive dynamic

output feedback control laws for nonlinear uncertain dynamical systems with actuator

amplitude constraints to achieve reference model output tracking. While our frame-

work here is very similar to the framework developed in Chapter 6 and is applicable

to general nonnegative and compartmental dynamical systems [49] with actuator am-

plitude constraints, the main focus of this chapter is the application of this framework

to pressure-limited control of mechanical ventilation.

Consider the controlled nonlinear uncertain dynamical system G given by

ẋ(t) = A0x(t) +BΛf(x(t), h(u(t)), θ(t)) +BΛh(u(t)), x(0) = x0, t ≥ 0, (7.1)

y(t) = Cx(t), (7.2)

where x(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

m, t ≥ 0, is the control

input, y(t) ∈ R
m, t ≥ 0, is the system output, A0 ∈ R

n×n is a known Hur-

witz and essentially nonnegative matrix, B ∈ R
r×m is a known nonnegative in-

put matrix, Λ ∈ R
m×m is an unknown nonnegative and positive-definite matrix,

h(u(t)) = [h1(u1(t), . . . , hm(um(t))]T is the constrained control input given by (6.4)

where θ : R → Dθ is a known bounded continuous function, where Dθ ⊂ R is a

compact set, f : R
n × R

m × Dθ → R
m is Lipschitz continuous and essentially non-

negative for all u ∈ R
m and θ ∈ Dθ but otherwise unknown (that is, f(·, ·, ·) is such

that fi(x, h(u), θ) ≥ 0 if xi = 0, i = 1, . . . , n, for all u ∈ R
m and θ ∈ Dθ), and

C ∈ R
m×n is a known output matrix. For the mechanical ventilation problem, the

control input u(t), t ≥ 0, represents the pressure input to the ventilator and the con-

trol input constraint (6.4) captures pressure amplitude limitations. Furthermore, as

we see in Section 7.4, the function θ(t), t ≥ 0, is introduced to account for a contin-
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uous transition of the respiratory parameters (e.g., lung resistance and compliance)

from inspiration to expiration.

In this Chapter, in order to achieve output tracking, we use a reference nonnegative

dynamical system Gref of the form given by (6.5) and (6.6). Control (source) inputs

for mechanical ventilation involving pressure control are usually constrained to be

nonnegative as are the system states, which typically correspond to compartmental

volumes. Hence, in this chapter we develop neuroadaptive dynamic output feedback

control laws for nonnegative systems with nonnegative control inputs. Specifically,

for the reference model output tracking problem our goal is to design a nonnegative

control input u(t), t ≥ 0, predicated on the system measurement y(t), t ≥ 0, such

that ‖y(t)− yref(t)‖ < γ for all t ≥ T , where ‖ · ‖ denotes the Euclidean vector norm

on R
m, γ > 0 is sufficiently small, and T ∈ [0,∞), x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R

n

+,

and the control input u(·) in (7.1) is restricted to the class of admissible controls

consisting of measurable functions u(t) = [u1(t), . . . , um(t)]T, t ≥ 0, such that (6.4)

and (6.7) hold. For the mechanical ventilation problem, the pressure control integral

constraint (6.7) enforces an upper bound on the amount of work performed by the

ventilator.

Here, we assume that the function f(x, h(u), θ) can be approximated over a com-

pact set Dx ×Du ×Dθ by a linear in parameters neural network up to a desired accu-

racy. In this case, there exists ε̂ : R
n ×R

m ×Dθ → R
m such that ‖ε̂(x, h(u), θ)‖ < ε̂∗

for all (x, h(u), θ) ∈ Dx ×Du ×Dθ, where ε̂∗ > 0, and

f(x, h(u), θ) = WT
f σ̂(x, u, θ) + ε̂(x, u, θ), (x, u, θ) ∈ Dx ×Du ×Dθ, (7.3)

where Wf ∈ R
s×m is an optimal unknown (constant) weight that minimizes the ap-

proximation error over Dx × Du × Dθ, σ̂ : R
n × R

m × Dθ → R
s is a vector of basis

functions such that each component of σ̂(·, ·, ·) takes values between 0 and 1, and
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ε̂(·, ·, ·) is the modeling error. Note that s denotes the total number of basis functions

or, equivalently, the number of nodes of the neural network.

In order to develop an output feedback neuroadaptive controller, we use the ap-

proach developed in [87] for reconstructing the system states via the system delayed

inputs and outputs. Specifically, we use a memory unit as a particular form of

a tapped delay line (TDL) that takes a scalar time series input and provides an

(2mn − r)-dimensional vector output consisting of the present values of the system

outputs and system inputs, and their 2(n− 1)m− r delayed values given by

κ(t) , [y1(t), y1(t− d), . . . , y1(t− (n− 1)d), . . . , ym(t), ym(t− d), . . . ,

ym(t− (n− 1)d);u1(t), u1(t− d), . . . , u1(t− (n− r1 − 1)d), . . . , um(t),

um(t− d), . . . , um(t− (n− rm − 1)d)]T, t ≥ 0, (7.4)

where ri denotes the relative degree of G with respect to the output yi, i = 1, . . . ,m,

and r , r1 + · · · + rm denotes the (vector) relative degree of G.

The following matching conditions are needed for the main result of this chapter.

Assumption 7.1. There exist Ky ∈ R
m×m and Kr ∈ R

m×d such that A0 +

BKyC = Aref and BKr = Bref .

Assumption 7.1 involves standard matching conditions for model reference adap-

tive control appearing in the literature; see, for example, Chapter 5 in [132].

Using the parameterization Λ = Λ̂ + ∆Λ, where ∆Λ ∈ R
m×m is an unknown

symmetric matrix, the dynamics in (7.1) can be rewritten as

ẋ(t) = A0x(t) +BΛ̂h(u(t)) +B [∆Λh(u(t)) + Λf(x(t), h(u(t)), θ(t))] ,

x(0) = x0, t ≥ 0. (7.5)
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Define W ,
[
WT

1 ,W
T
2

]T ∈ R
(s+m)×m, where W1 , WfΛ and W2 , ∆ΛT, and

ζ(t) ,
[
κT(t), θ(t)

]T
, t ≥ 0. Using (7.3), (7.5) can be rewritten as

ẋ(t) = A0x(t) +BΛ̂u(t) +BWTσ(ζ(t), h(u(t))) +BΛε̂(x(t), u(t), θ(t)),

+BΛ̂∆h(t) +BWT
1 [σ̂(x(t), u(t), θ(t)) − σζ(ζ(t))] , x(0) = x0, t ≥ 0,

(7.6)

where

σ(ζ(t), h(u(t))) ,
[
σT

ζ (ζ(t)), hT(u(t))
]T
, (7.7)

σζ : R
2mn−r+1 → R

s is a vector of basis functions such that each component of σζ(·)

takes values between 0 and 1, and ∆h(u(t)) , h(u(t)) − u(t), t ≥ 0.

Next, we develop a control architecture similar to the one developed in Chapter 6.

Specifically, consider the control input u(t), t ≥ 0, given by

u(t) = Φ(η(t))ψ(t), t ≥ 0, (7.8)

where Φ(η(t)) , diag [φ1(η1(t)), . . . , φm(ηm(t))], t ≥ 0, and φi are defined as in (6.17),

and and ψ(t) ∈ R
m, t ≥ 0, is given by

ψ(t) = ψn(t) − ψad(t), t ≥ 0, (7.9)

where

ψn(t) = Λ̂−1[Kyy(t) +Krr(t)], t ≥ 0, (7.10)

ψad(t) = Λ̂−1ŴT(t)σ(ζ(t), h(u(t))), t ≥ 0, (7.11)

and Ŵ (t) ∈ R
(s+m)×m, t ≥ 0, is an update weight.

After going through analogous steps as in Chapter 6 we arrive at the main result

of this section. Consider the update law given by

˙̂
W (t) = ΓW Proj[Ŵ (t), σ(ζ(t), h(u(t)))ξT

c (t)PB], Ŵ (0) = Ŵ0, t ≥ 0, (7.12)

182



where ΓW ∈ R
(s+m)×(s+m) is a positive definite matrix, P ∈ R

n×n is a positive-definite

solution of the Lyapunov equation

0 = AT
refP + PAref +R, (7.13)

where R > 0, and P̃ ∈ R
nξ×nξ is a positive-definite solution of the Lyapunov equation

0 = (Â− LĈ)TP̃ + P̃ (Â− LĈ) + R̃, (7.14)

where R̃ > 0, Â ∈ R
nξ×nξ is Hurwitz, L ∈ R

nξ×m, Ĉ ∈ R
m×nξ , and ξc(t) ∈ R

nξ , t ≥ 0,

is the solution to the estimator dynamics

ξ̇c(t) = Âξc(t) + L [y(t) − yref(t) − yc(t) − ys(t)] , ξc(0) = ξc0, t ≥ 0, (7.15)

yc(t) = Ĉξc(t). (7.16)

Now, since the projection operator used in the update law (7.12) guarantees the

boundness of the update weight Ŵ (t), t ≥ 0, it follows that there exist u∗ > 0 and

δ∗ > 0 such that ‖u(t)‖ ≤ u∗ and ‖∆h(u(t))‖ ≤ δ∗ for all t ≥ 0. Furthermore, note

that there exists ε∗ > 0 such that ‖ε(t)‖ ≤ ε∗ for all t ≥ 0 such that (x(t), u(t), θ(t)) ∈

Dx × Du × Dθ. Finally, there exists α1 > 0 such that ‖W̃T(t)σ(ζ(t), h(u(t)))‖ ≤ α1

for all t ≥ 0.

For the statement of the main result of this section, let ‖ · ‖′ : R
n×n → R be the

matrix norm equi-induced by the vector norm ‖·‖′′ : R
n → R, let ‖·‖′′′ : R

n×m → R be

the matrix norm induced by the vector norms ‖ · ‖′′ : R
n → R and ‖ · ‖′′′′ : R

m → R,

and let ‖ · ‖∗ : R
nξ×nξ → R be the matrix norm equi-induced by the vector norm

‖ · ‖∗∗ : R
nξ → R. Furthermore, recall the definition of ultimate boundness of a state

trajectory given in [48, p. 241].

Theorem 7.1. Consider the nonlinear uncertain dynamical system G given by

(7.1) and (7.2) with u(t), t ≥ 0, given by (7.8)–(7.11) and reference model Gref given
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by (6.5) and (6.6). Assume Assumption 7.1 holds, λmin(R) > 1, and λmin(R̃) >

‖P̃LĈ‖∗2. Then there exists a compact positively invariant set Dα ⊂ R
n × R

n ×

R
nξ × R

(s+m)×m such that (0, 0, 0,W ) ∈ Dα, where W ∈ R
(s+m)×m, and the solution

(e(t), es(t), ξc(t), Ŵ (t)), t ≥ 0, of the closed-loop system given by (7.1), (7.2), (7.8),

(7.12), (7.15), and (7.16) is ultimately bounded for all (e(0), es(0), ξc(0), Ŵ (0)) ∈ Dα

with ultimate bound ‖y(t) − yref(t)‖ < γ, t ≥ T , where

γ >
( [

(λmin(R) − 1)−
1
2
√
ν + αe

]2

+
[
(λmin(R̃) − ‖P̃LĈ‖∗2)− 1

2
√
ν + αξ

]2

+λmax(Γ
−1
W )ŵ2

max

) 1
2
, (7.17)

ν , (λmin(R) − 1)α2
e + (λmin(R̃) − ‖P̃LĈ‖∗2)α2

ξ , (7.18)

αe ,
1

λmin(R) − 1

(
‖P‖′ε∗ + ‖PB‖′′′α1

)
, (7.19)

αξ ,
1

λmin(R̃) − ‖P̃LĈ‖∗2
‖PB‖′′′α1, (7.20)

and ŵmax is a norm bound imposed on Ŵ . Furthermore, u(t) satisfies (6.7) for all

t ≥ 0, h(u(t)) ≥≥ 0, t ≥ 0, and x(t) ≥≥ 0, t ≥ 0, for all x0 ∈ R
n

+.

Proof. This is a restatement of Theorem 6.1 with the additional parameter θ(t),

t ≥ 0, introduced in the nonlinear uncertain dynamics (7.1).

7.3. Nonlinear Multi-Compartment Model for a Pressure-

Limited Respirator

In this section, we extend the linear multi-compartment lung model of [22] to de-

velop a nonlinear model for the dynamic behavior of a multi-compartment respiratory

system in response to an arbitrary applied inspiratory pressure. Here, we assume that

the bronchial tree has a dichotomy architecture [140]; that is, in every generation each

airway unit branches in two airway units of the subsequent generation. In addition,

we assume that lung compliance is a nonlinear function of lung volume. First, for
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simplicity of exposition, we consider a single-compartment lung model as shown in

Figure 7.1. In this model, the lungs are represented as a single lung unit with nonlin-

' $

� �
c(x)

R

papp

Figure 7.1: Single-compartment lung model.

ear compliance c(x) connected to a pressure source by an airway unit with resistance

(to air flow) of R. At time t = 0, an arbitrary pressure pin(t) is applied to the opening

of the parent airway, where pin(t) is determined by the mechanical ventilator. This

pressure is applied to the airway opening over the time interval 0 ≤ t ≤ Tin, which

is the inspiratory part of the breathing cycle. At time t = Tin, the applied airway

pressure is released and expiration takes place passively, that is, the external pressure

is only the atmospheric pressure pex(t) during the time interval Tin ≤ t ≤ Tin + Tex,

where Tex is the duration of expiration.

The state equation for inspiration (inflation of lung) is given by

Rinẋ(t) +
1

cin(x)
x(t) = pin(t), x(0) = xin

0 , 0 ≤ t ≤ Tin, (7.21)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rin ∈ R is the resistance to air flow

during the inspiration period, cin : R → R+ is a nonlinear function defining the lung

compliance at inspiration, xin
0 ∈ R+ is the lung volume at the start of the inspiration

and serves as the system initial condition. Equation (7.21) is simply a pressure

balance equation where the total pressure pin(t), t ≥ 0, applied to the compartment

is proportional to the volume of the compartment via the compliance and the rate of
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change of the compartmental volume via the resistance. We assume that expiration

is passive (due to elastic stretch of lung unit). During the expiration process, the

state equation is given by

Rexẋ(t) +
1

cex(x)
x(t) = pex(t), x(Tin) = xex

0 , Tin ≤ t ≤ Tin + Tex, (7.22)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rex ∈ R is the resistance to air flow

during the expiration period, cex : R → R+ is a nonlinear function defining the lung

compliance at expiration, and xex
0 ∈ R+ is the lung volume at the start of expiration.

Next, we develop the state equations for inspiration and expiration for a 2n-

compartment model, where n ≥ 0. In this model, the lungs are represented as 2n

lung units which are connected to the pressure source by n generations of airway

units, where each airway is divided into two airways of the subsequent generation

leading to 2n compartments (see Figure 7.2 for a four-compartment model).

Let xi, i = 1, 2, . . . , 2n, denote the lung volume in the i-th compartment, cini (xi), i =

1, 2, . . . , 2n, denote the compliance of each compartment as a nonlinear function of the

volume of i-th compartment, and let Rin
j,i (resp., Rex

j,i), i = 1, 2, . . . , 2j, j = 0, . . . , n,

denote the resistance (to air flow) of the i-th airway in the j-th generation during the

inspiration (resp., expiration) period with Rin
01 (resp., Rex

01) denoting the inspiration

(resp., expiration) of the parent (i.e., 0-th generation) airway. As in the single-

compartment model we assume that a pressure of pin(t), t ≥ 0, is applied during

inspiration. Now, the state equations for inspiration are given by

Rin
n,iẋi(t) +

1

cini (xi(t))
xi(t) +

n−1∑

j=0

Rin
j,kj

kj2
n−j∑

l=(kj−1)2n−j+1

ẋl(t) = pin(t),

xi(0) = xin
i0, 0 ≤ t ≤ Tin, i = 1, 2, . . . , 2n, (7.23)

where cini (xi), i = 1, 2, . . . , 2n, are nonlinear functions of xi, i = 1, 2, . . . , 2n, given by
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Figure 7.2: Four-compartment lung model.

([28])

cini (xi) ,






ain
i1

+ bini1xi, if 0 ≤ xi ≤ xin
i1
,

ain
i2
, if xin

i1
≤ xi ≤ xin

i2
,

ain
i3

+ bini3xi, if xin
i2
≤ xi ≤ VT,

i = 1, . . . , 2n, (7.24)

where ain
ij
, j = 1, 2, 3, and binij , j = 1, 3, are unknown parameters with bini1 > 0 and

bini3 < 0, xin
ij
, j = 1, 2, are unknown volume ranges wherein the compliance is constant,

VT denotes tidal volume, and

kj = ⌊kj+1 − 1

2
⌋ + 1, j = 0, . . . , n− 1, kn = i, (7.25)

where ⌊q⌋ denotes the floor function which gives the largest integer less than or equal

to the positive number q. Figure 7.3 shows a typical piecewise linear compliance

function for inspiration. A similar compliance representation holds for expiration.

To further elucidate the inspiration state equation for a 2n-compartment model,

consider the four-compartment model shown in Figure 7.2 corresponding to a two

generation lung model. Let xi, i = 1, 2, 3, 4, denote the compartmental volumes.

Now, the pressure 1
cini (xi(t))

xi(t) due to the compliance in i-th compartment will be

equal to the difference between the external pressure applied and the resistance to
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Figure 7.3: Typical inspiration and expiration compliance functions as function of
compartmental volumes.

air flow at every airway in the path leading from the pressure source to the i-th

compartment. In particular, for i = 3 (see Figure 7.2),

1

cin3 (x3(t))
x3(t) = pin(t)−Rin

0,1[ẋ1(t)+ẋ2(t)+ẋ3(t)+ẋ4(t)]−Rin
1,2[ẋ3(t)+ẋ4(t)]−Rin

2,3ẋ3(t),

or, equivalently,

Rin
2,3ẋ3(t)+R

in
1,2[ẋ3(t)+ẋ4(t)]+R

in
0,1[ẋ1(t)+ẋ2(t)+ẋ3(t)+ẋ4(t)]+

1

cin3 (x3(t))
x3(t) = pin(t).

Next, we consider the state equation for the expiration process. As in the single-

compartment model we assume that the expiration process is passive and the external

pressure applied is pex(t), t ≥ 0. Following an identical procedure as in the inspiration

case, we obtain the state equation for expiration as

Rex
n,iẋi(t) +

n−1∑

j=0

Rex
j,kj

kj2
n−j∑

l=(kj−1)2n−j+1

ẋl(t) +
1

cexi (xi(t))
xi(t) = pex(t),

xi(Tin) = xex
i0
, Tin ≤ t ≤ Tex + Tin, i = 1, 2, . . . , 2n, (7.26)
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where

cexi (xi) ,






aex
i1

+ bexi1 xi, if 0 ≤ xi ≤ xex
i1
,

aex
i2
, if xex

i1
≤ xi ≤ xex

i2
,

aex
i3

+ bexi3 xi, if xex
i2

≤ xi ≤ VT,

i = 1, . . . , 2n, (7.27)

aex
ij

, j = 1, 2, 3, and bexij , j = 1, 3, are unknown parameters with bexi1 > 0 and bexi3 < 0,

xex
ij

, j = 1, 2, are unknown volume ranges wherein the compliance is constant, and kj

is given by (7.25).

7.4. Neuroadaptive Control for Pressure- and Work-Limited

Mechanical Ventilation

In this section, we illustrate the efficacy of the neuroadaptive control framework

of Section 7.2 on the nonlinear multi-compartmental lung model developed in Sec-

tion 7.3. First, however, we rewrite the state equations (7.23) and (7.26) for inspi-

ration and expiration, respectively, in the form of (7.1). Specifically, define the state

vector x , [x1, x2, . . . , x2n ]T, where xi denotes the lung volume of the i-th compart-

ment. Now, the state equation (7.23) for inspiration can be rewritten as

Rinẋ(t) + Cin(x(t))x(t) = pin(t)e, x(0) = xin
0 , 0 ≤ t ≤ Tin, (7.28)

where e , [1, . . . , 1]T denotes the ones vector of order 2n, Cin(x) is a diagonal matrix

function given by

Cin(x) , diag

[
1

cin1 (x1)
, · · · , 1

cin2n(x2n)

]
, (7.29)

and

Rin ,

n∑

j=0

2j∑

k=1

Rin
j,k Zj,k Z

T
j,k, (7.30)

where Zj,k ∈ R
2n

is such that the l-th element of Zj,k is 1 for all l = (k − 1)2n−j +

1, (k − 1)2n−j + 2, . . . , k2n−j, k = 1, . . . , 2j, j = 0, 1, . . . , n, and zero elsewhere.
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Similarly, the state equation (7.26) for expiration can be rewritten as

Rexẋ(t) + Cex(x(t))x(t) = pex(t)e, x(Tin) = xex
0 , Tin ≤ t ≤ Tex + Tin, (7.31)

where

Cex(x) , diag

[
1

cex1 (x1)
, · · · , 1

cex2n(x2n)

]
, (7.32)

and

Rex ,

n∑

j=0

2j∑

k=1

Rex
j,k Zj,k Z

T
j,k. (7.33)

Now, since, by Proposition 4.1 of [22], Rin and Rex are invertible, it follows that (7.28)

and (7.31) can be equivalently written as

ẋ(t) = Ain(x(t))x(t) +Binpin(t), x(0) = xin
0 , 0 ≤ t ≤ Tin, (7.34)

ẋ(t) = Aex(x(t))x(t) +Bexpex(t), x(Tin) = xex
0 , Tin ≤ t ≤ Tex + Tin, (7.35)

where Ain(x) , −R−1
in Cin(x), Bin , R−1

in e, Aex(x) , −R−1
ex Cex(x), and Bex , R−1

ex e.

To account for a continuous transition of the lung resistance and compliance pa-

rameters between the inspiration and expiration phase, consider the bounded contin-

uous periodic function θ(t) ∈ R, t ≥ 0, given by

θ(t) ,






1, if 0 ≤ t ≤ Tin − εin,

1
εin

(Tin − t), if Tin − εin ≤ t ≤ Tin,

0, if Tin ≤ t ≤ Tin + Tex − εex,

1
εex

(t+ εex − Tin − Tex), if Tin + Tex − εex ≤ t ≤ Tin + Tex,

(7.36)

where εin > 0 and εex > 0 are sufficiently small constants representing the transition

times form inspiration to expiration and vice versa, respectively, and θ(t) = θ(t +

Tin + Tex) for all t ≥ 0. Now, (7.34) and (7.35) can be written as

ẋ(t) = [θ(t)Ain(x(t)) + (1 − θ(t))Aex(x(t))]x(t) + [θ(t)Bin + (1 − θ(t))Bex]h(u(t))

+Pmusc(e
Tx(t)) + Pex, x(0) = xin(0), t ≥ 0, (7.37)
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where u(t) , pk(t), k ∈ {in, ex}, t ≥ 0, h(u(t)), t ≥ 0, is a saturation constraint on

the applied airway pressure given by

h(u) ,






0, if u ≤ 0,

Pmax, if u ≥ Pmax,

u, otherwise,

(7.38)

Pex ∈ R
2n

denotes the end-expiratory pressure due to air remaining in the lung after

the completion of each breath [28], Pmax denotes the peak pressure of the ventilator,

and Pmusc(e
Tx(t)), t ≥ 0, introduced in (7.37) represents a nonnegative pressure term

due to the lung muscle activity of a patient and accounts for the effect of spontaneous

breathing of a patient in the lung model.

Here, we assume that Pmusc(e
Tx) is a nonlinear function given by

Pmusc(e
Tx) = WT

mσm(eTx), (7.39)

where Wm ∈ R
lm×2n ≥≥ 0 is an unknown matrix and σm(eTx) ∈ R

lm ≥≥ 0 is a known

function. Note that since, by Proposition 4.1 of [22] ,−R−1
in and −R−1

ex are essentially

nonnegative, Cin(x) and Cex(x) are diagonal, and θ(t) ≥ 0, t ≥ 0, it follows that

Ain(x) and Aex(x) in (7.37) are essentially nonnegative. Hence, since h(u(t)) ≥≥ 0,

t ≥ 0, Pmusc(e
Tx(t)) ≥≥ 0, t ≥ 0, and Pex ≥≥ 0, it follows from Proposition 5.1 that

x(t) ≥≥ 0, t ≥ 0, for all xin(0) ∈ R
2n

+ .

Next, we rewrite (7.37) in the form of (7.1) and (7.2) as

ẋ(t) = A0x(t) +B0h(u(t)) + f(x(t), h(u(t)), θ(t)), x(0) = xin(0), t ≥ 0, (7.40)

y(t) = Cx(t), (7.41)

where A0 = −R−1
av Cav, B0 = R−1

av e, and C = eT, and Rav and Cav are nominal

parameter matrices given by

Rav ,

n∑

j=0

2j∑

k=1

Rav
j,k Zj,k Z

T
j,k, Cav , diag

[
1

cav1
, · · · , 1

cav2n

]
, (7.42)
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where Rav
j,i, i = 1, 2, . . . , 2j, j = 0, . . . , n, denote the nominal resistance (to air flow)

of the i-th airway in the j-th generation, and cavi , i = 1, 2, . . . , 2n, denote the nominal

compliance of each compartment. Now, the nonlinear unknown function f(x, h(u), θ)

capturing resistance and compliance uncertainty in (7.40) during the inspiration and

expiration phases is given by

f(x, h(u), θ) = [θ(Ain(x) − A0) + (1 − θ)(Aex(x) − A0)]x+ Pmusc(e
Tx)

+ [θ(Bin −B0) + (1 − θ)(Bex −B0)]h(u) + Pex. (7.43)

Finally, to account for work limitation constraints by the mechanical ventilator over

an inspiration-expiration cycle, we assume that the constraint (6.7) holds and is given

by η(t) ,
∫ t

t−τl
h(u(s))ds ≤ η∗, t ≥ 0, τl > 0, where η∗ > 0.

Our goal here is to design a neuroadaptive controller satisfying the aforementioned

input constraints while guaranteeing output tracking of a clinically plausible reference

model. For the system given by (7.40) and (7.41), which is a special case of (7.1) and

(7.2), we consider an output tracking problem with a reference model of the form

given by (6.5) and (6.6), and design a neuroadaptive controller using Theorem 7.1.

For our simulation we consider a two-compartment lung model and use the val-

ues for lung resistance and compliance found in [28]. In particular, we set cav1 =

0.022 ℓ/cm H2O, cav2 = 0.03 ℓ/cm H2O, ain
i1

= 0.018 ℓ/cm H2O, bini1 = 0.0233, ain
i2

=

0.025 ℓ/cm H2O, ain
i3

= 0.024 ℓ/cm H2O, bini3 = −0.0067, xin
i1

= 0.3 ℓ, xin
i2

= 0.48 ℓ,

xin
i3

= 0.63 ℓ, i = 1, 2, aex
i1

= 0.02 ℓ/cm H2O, bexi1 = 0.078, aex
i2

= 0.038 ℓ/cm H2O,

aex
i3

= 0.1025 ℓ/cm H2O, bexi3 = −0.15, xex
i1

= 0.23 ℓ, xex
i2

= 0.43 ℓ, xex
i3

= 0.63 ℓ,

i = 1, 2, Rav
0,1 = 6.29 cm H2O/ℓ/sec, Rav

1,1 = 30.67 cm H2O/ℓ/sec, Rav
1,2 = 13 cm

H2O/ℓ/sec, Rin
0,1 = 6 cm H2O/ℓ/sec, Rin

1,1 = 25 cm H2O/ℓ/sec, Rin
1,2 = 10 cm

H2O/ℓ/sec, Rex
0,1 = 6 cm H2O/ℓ/sec, Rex

1,1 = 40 cm H2O/ℓ/sec, Rex
1,2 = 20 cm

H2O/ℓ/sec, Tin = 5 sec, Tex = 10 sec, εin = εex = 0.001 sec, Pex(t) = θ(t)P 1
ex +
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(1 − θ(t))P 2
ex, P

1
ex = [−0.1105, −0.3113]T cm H2O, P 2

ex = [−0.0894, −0.1964]T cm

H2O, Wm = [0.01, 0.03; 0.02, 0.01]T, and σm(y) = [1/(1 + e−0.2y), 1/(1 + e−0.3y)]
T
.

WithAref = A0, Bref = 0.6B, r(t) = 17θ(t)+5 cm H2O,Kr = 0.6, σ(ζ(t), h(u(t))) =
[
1/(1 + e−ay(t)), 1/(1 + e−ay(t−d)), 1/(1 + e−aP (t)), θ(t), σT

m(y)
]T

, t ≥ 0, a = 0.02, x0 =

xref0 = [0, 0]T, Ŵ0 = 06×2, ΓW = 100I6, peak pressure limit Pmax = 19 cm H2O,

and η∗ = 43 sec·cm H2O, Figures 7.4, 7.5, and 7.6 show the delivered air volume

V (t) = eTx(t) versus time, the constrained pressure P (t) = h(u(t)) versus time, and

the integrated constrained pressure over the time interval τl = 5 sec with and without

adaptation for the pressure-limited input h(u(t)), t ≥ 0. Figures 7.7 and 7.8 show the

delivered air volume versus time and the unconstrained pressure input u(t), t ≥ 0,

versus time with and without adaptation. Here, “with adaptation” refers to the con-

trol signal (7.8) with the adaptive signal ψad(t), t ≥ 0, given by (7.11), and “without

adaptation” refers to the control signal (7.8) with ψad(t) ≡ 0.

As can be seen from Figure 7.4, the delivered air volume significantly exceeds

the desired values in the absence of adaptation, whereas satisfactory tracking of the

desired air volume is achieved with adaptation. As discussed in the Introduction,

failure to adequately regulate the mode and parameters of ventilatory support can

result in failure to oxygenate, failure to achieve adequate lung expansion, or overex-

pansion of the lung resulting in lung tissue rupture. These problems oftentimes occur

when open-loop volume-control or pressure-control is employed, or when averaged

respiratory data is used to choose the parameters for a closed-loop ventilation control

algorithm. In contrast, the proposed neuroadaptive control algorithm avoids reliance

on average respiratory data and achieves system performance without excessive re-

liance on system model parameters.
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Figure 7.4: Delivered air volume V (t) = eTx(t) versus time with pressure-limited
input h(u(t)).
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Figure 7.5: Constrained pressure P (t) = h(u(t)) versus time.
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Figure 7.6: η(t) versus time.
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Figure 7.7: Delivered air volume V (t) = eTx(t) versus time with unconstrained
pressure input u(t).
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Chapter 8

Neural Network Hybrid Adaptive Control for

Nonlinear Uncertain Impulsive Dynamical Systems

8.1. Introduction

Modern complex engineering systems involve multiple modes of operation placing

stringent demands on controller design and implementation of increasing complexity.

Such systems typically possess a multiechelon hierarchical hybrid control architec-

ture characterized by continuous-time dynamics at the lower levels of the hierarchy

and discrete-time dynamics at the higher levels of the hierarchy (see [4, 51, 98] and

the numerous references therein). The lower-level units directly interact with the

dynamical system to be controlled while the higher-level units receive information

from the lower-level units as inputs and provide (possibly discrete) output commands

which serve to coordinate and reconcile the (sometimes competing) actions of the

lower-level units. The hierarchical controller organization reduces processor cost and

controller complexity by breaking up the processing task into relatively small pieces

and decomposing the fast and slow control functions. Typically, the higher-level units

perform logical checks that determine system mode operation, while the lower-level

units execute continuous-variable commands for a given system mode of operation.

The mathematical description of many of these systems can be characterized by im-

pulsive differential equations [9, 50,51,84,112].
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The purpose of feedback control is to achieve desirable system performance in the

face of system uncertainty. To this end, adaptive control along with robust control

theory have been developed to address the problem of system uncertainty in control-

system design. In contrast to fixed-gain robust controllers, which maintain specified

constants within the feedback control law to sustain robust performance, adaptive

controllers directly or indirectly adjust feedback gains to maintain closed-loop stabil-

ity and improve performance in the face of system uncertainties. Specifically, indirect

adaptive controllers utilize parameter update laws to identify unknown system param-

eters and adjust feedback gains to account for system variation, while direct adaptive

controllers directly adjust the controller gains in response to plant variations. The in-

herent nonlinearities and system uncertainties in hierarchical hybrid control systems

and the increasingly stringent performance requirements required for controlling such

modern complex embedded systems necessitates the development of hybrid adaptive

nonlinear control methodologies.

In a recent paper [55], a hybrid adaptive control framework for adaptive stabi-

lization of multivariable nonlinear uncertain impulsive dynamical systems was devel-

oped. In particular, a Lyapunov-based hybrid adaptive control framework was devel-

oped that guarantees partial asymptotic stability of the closed-loop system; that is,

asymptotic stability with respect to part of the closed-loop system states associated

with the hybrid plant dynamics. Furthermore, the remainder of the state associated

with the adaptive controller gains was shown to be Lyapunov stable. As is the case

in the continuous and discrete-time adaptive control literature [5, 45, 66, 83, 103], the

system errors in [55] are captured by a constant linearly parameterized uncertainty

model of a known structure but unknown variation. This uncertainty characterization

allows the system nonlinearities to be parameterized by a finite linear combination

of basis functions within a class of function approximators such as rational functions,
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spline functions, radial basis functions, sigmoidal functions, and wavelets. However,

this linear parametrization of basis functions cannot, in general, exactly capture the

unknown system nonlinearity.

Neural network-based adaptive control algorithms have been extensively devel-

oped in the literature, wherein Lyapunov-like functions are used to ensure that the

neural network controllers can guarantee ultimate boundedness of the closed-loop

system states rather than closed-loop asymptotic stability. Ultimate boundness en-

sures that the plant states converge to a neighborhood of the origin (see, for exam-

ple, [40,92,129] for continuous-time systems and [26,38,73] for discrete-time systems).

The reason why stability in the sense of Lyapunov is not guaranteed stems from the

fact that the uncertainties in the system dynamics cannot be perfectly captured by

neural networks using the universal function approximation property and the resid-

ual approximation error is characterized via a norm bound over a given compact

set. Ultimate boundedness guarantees, however, are often conservative since stan-

dard Lyapunov-like theorems that are typically used to show ultimate boundedness

of the closed-loop hybrid system states provide only sufficient conditions, while neural

network controllers may possibly achieve plant state convergence to an equilibrium

point.

In this chapter, we develop a neural hybrid adaptive control framework for a

class of nonlinear uncertain impulsive dynamical systems which ensures state conver-

gence to a Lyapunov stable equilibrium as well as boundedness of the neural network

weighting gains. Specifically, the proposed framework is Lyapunov-based and guaran-

tees partial asymptotic stability of the closed-loop hybrid system; that is, Lyapunov

stability of the overall closed-loop states and convergence of the plant state. The

neuroadaptive controllers are constructed without requiring explicit knowledge of the

hybrid system dynamics other than the fact that the plant dynamics are continuously
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differentiable and that the approximation error of the unknown system nonlinearities

lies in a small gain-type norm bounded conic sector over a compact set. Hence, the

overall neuroadaptive control framework captures the residual approximation error

inherent in linear parameterizations of system uncertainty via basis functions. Fur-

thermore, the proposed neuroadaptive control architecture is modular in the sense

that if a nominal linear design model is available, then the neuroadaptive controller

can be augmented to the nominal design to account for system nonlinearities and

system uncertainty.

Finally, we emphasize that we do not impose any linear growth condition on

the system resetting (discrete) dynamics. In the literature on classical (non-neural)

adaptive control theory for discrete-time systems, it is typically assumed that the

nonlinear system dynamics have the linear growth rate which is necessary in proving

Lyapunov stability rather than practical stability (ultimate boundedness). Our novel

characterization of the system uncertainties (i.e., the small gain-type bound on the

norm of the modeling error) allows us to prove asymptotic stability without requiring

a linear growth condition on the system dynamics.

8.2. Mathematical Preliminaries

In this section, we introduce notation, definitions, and some key results concerning

impulsive dynamical systems [9, 21, 50, 51, 84, 112]. Let R denote the set of real

numbers, R
n denote the set of n × 1 real column vectors, (·)T denote transpose,

(·)† denote the Moore-Penrose generalized inverse, Z+ denote the set of nonnegative

integers, N
n (resp., P

n) denote the set of n× n nonnegative (resp., positive) definite

matrices, and In denote the n × n identity matrix. Furthermore, we write tr(·) for

the trace operator, ln(·) for the natural log operator, λmin(M) (resp., λmax(M)) for

the minimum (resp., maximum) eigenvalue of the Hermitian matrix M , σmax(M) for
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the maximum singular value of the matrix M , V ′(x) for the Fréchet derivative of V

at x, and dist(p,M) for the smallest distance from a point p to any point in the set

M, that is, dist(p,M) , infx∈M ‖p− x‖.

In this section, we consider controlled state-dependent [51] impulsive dynamical

systems G of the form

ẋ(t) = fc(x(t)) +Gc(x(t))uc(t), x(0) = x0, x(t) 6∈ Zx, (8.1)

∆x(t) = fd(x(t)) +Gd(x(t))ud(t), x(t) ∈ Zx, (8.2)

where t ≥ 0, x(t) ∈ D ⊆ R
n, D is an open set with 0 ∈ D, ∆x(t) , x(t+) − x(t),

uc(t) ∈ Uc ⊆ R
mc , ud(tk) ∈ Ud ⊆ R

md , tk denotes the kth instant of time at which

x(t) intersects Zx for a particular trajectory x(t), fc : D → R
n is Lipschitz continuous

and satisfies fc(0) = 0, Gc : D → R
n×mc , fd : Zx → R

n is continuous, Gd : Zx →

R
n×md is such that rankGd(x) = md, x ∈ Zx, and Zx ⊂ D is the resetting set.

Here, we assume that uc(·) and ud(·) are restricted to the class of admissible inputs

consisting of measurable functions such that (uc(t), ud(tk)) ∈ Uc × Ud for all t ≥ 0

and k ∈ Z[0,t) , {k : 0 ≤ tk < t}, where the constrained set Uc × Ud is given with

(0, 0) ∈ Uc × Ud. We refer to the differential equation (8.1) as the continuous-time

dynamics, and we refer to the difference equation (8.2) as the resetting law.

The equations of motion for the closed-loop impulsive dynamical system (8.1) and

(8.2) with hybrid adaptive feedback controllers uc(·) and ud(·) has the form

˙̃x(t) = f̃c(x̃(t)), x̃(0) = x̃0, x̃(t) 6∈ Zx̃, (8.3)

∆x̃(t) = f̃d(x̃(t)), x̃(t) ∈ Zx̃, (8.4)

where t ≥ 0, x̃(t) ∈ D̃ ⊆ R
ñ, x̃(t) denotes the closed-loop state involving the system

state and the adaptive gains, f̃c : D̃ → R
ñ and f̃d : D̃ → R

ñ denote the closed-

loop continuous-time and resetting dynamics, respectively, with f̃c(x̃e) = 0, where
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x̃e ∈ D̃\Zx̃ denotes the closed-loop equilibrium point, and ñ denotes the dimension of

the closed-loop system state. A function x̃ : Ix̃0 → D̃ is a solution to the impulsive

system (8.3) and (8.4) on the interval Ix̃0 ⊆ R with initial condition x̃(0) = x̃0, where

Ix̃0 denotes the maximal interval of existence of a solution to (8.3) and (8.4), if x̃(·) is

left-continuous and x̃(t) satisfies (8.3) and (8.4) for all t ∈ Ix̃0 . For further discussion

on solutions to impulsive differential equations, see [9, 51, 84, 112]. For convenience,

we use the notation s(t, x̃0) to denote the solution x̃(t) of (8.3) and (8.4) at time t ≥ 0

with initial condition x̃(0) = x̃0.

In this section, we assume that Assumptions A1 and A2 established in [50, 51]

hold; that is, the resetting set is such that resetting removes x̃(tk) from the resetting

set and no trajectory can intersect the interior of Zx̃. Hence, as shown in [50, 51],

the resetting times are well defined and distinct. Since the resetting times are well

defined and distinct and since the solution to (8.3) exists and is unique it follows

that the solution of the impulsive dynamical system (8.3) and (8.4) also exists and is

unique over a forward time interval. However, it is important to note that the analysis

of impulsive dynamical systems can be quite involved. In particular, such systems

can exhibit Zenoness and beating as well as confluence, wherein solutions exhibit

infinitely many resettings in a finite time, encounter the same resetting surface a finite

or infinite number of times in zero time, and coincide after a certain point in time. In

this section we allow for the possibility of confluence and Zeno solutions; however, A2

precludes the possibility of beating. Furthermore, since not every bounded solution

of an impulsive dynamical system over a forward time interval can be extended to

infinity due to Zeno solutions, we assume that existence and uniqueness of solutions

are satisfied in forward time. For details see [51].

Next, we provide a key result from [21, 50, 51] involving an invariant set stability

theorem for hybrid dynamical systems. For the statement of this result the following
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key assumption is needed.

Assumption 8.1 [21, 50,51]. Let s(t, x̃0), t ≥ 0, denote the solution of (8.3) and

(8.4) with initial condition x̃0 ∈ D̃. Then for every x̃0 ∈ D̃, there exists a dense

subset Tx̃0 ⊆ [0,∞) such that [0,∞)\Tx̃0 is (finitely or infinitely) countable and for

every ǫ > 0 and t ∈ Tx̃0 , there exists δ(ǫ, x̃0, t) > 0 such that if ‖x̃0 − y‖ < δ(ǫ, x̃0, t),

y ∈ D̃, then ‖s(t, x̃0) − s(t, y)‖ < ǫ.

Assumption 8.1 is a generalization of the standard continuous dependence prop-

erty for dynamical systems with continuous flows to dynamical systems with left-

continuous flows. Specifically, by letting Tx̃0 = T x̃0 = [0,∞), where T x̃0 denotes the

closure of the set Tx̃0 , Assumption 8.1 specializes to the classical continuous depen-

dence of solutions of a given dynamical system with respect to the system’s initial

conditions x̃0 ∈ D̃ [135]. Since solutions of impulsive dynamical systems are not

continuous in time and solutions are not continuous functions of the system initial

conditions, Assumption 8.1 is needed to apply the hybrid invariance principle devel-

oped in [21, 50] to hybrid adaptive systems. Henceforth, we assume that the hybrid

adaptive feedback controllers uc(·) and ud(·) are such that closed-loop hybrid system

(8.3) and (8.4) satisfies Assumption 8.1. Necessary and sufficient conditions that

guarantee that the nonlinear impulsive dynamical system G̃ given by (8.1) and (8.2)

satisfies Assumption 8.1 are given in [21, 51]. A sufficient condition that guarantees

that the trajectories of the closed-loop nonlinear impulsive dynamical system (8.3)

and (8.4) satisfy Assumption 8.1 are Lipschitz continuity of f̃c(·) and the existence of

a continuously differentiable function X : D̃ → R such that the resetting set is given

by Zx̃ = {x̃ ∈ D̃ : X (x̃) = 0}, where X ′(x̃) 6= 0, x̃ ∈ Zx̃, and X ′(x̃)f̃c(x̃) 6= 0, x̃ ∈ Zx̃.

The last condition above ensures that the solution of the closed-loop hybrid system

is not tangent to the resetting set Zx̃ for all initial conditions x̃0 ∈ D̃. For further

discussion on Assumption 8.1, see [21,50,51].
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The following theorem proven in [21, 50] is needed to develop the main results of

this section.

Theorem 8.1 [21, 50]. Consider the nonlinear impulsive dynamical system G̃ given

by (8.3) and (8.4), assume D̃c ⊂ D̃ is a compact positively invariant set with respect

to (8.3) and (8.4), and assume that there exists a continuously differentiable function

V : D̃c → R such that

V ′(x̃)f̃c(x̃) ≤ 0, x̃ ∈ D̃c, x̃ 6∈ Zx̃, (8.5)

V (x̃+ f̃d(x̃)) ≤ V (x̃), x̃ ∈ D̃c, x̃ ∈ Zx̃. (8.6)

Let R , {x̃ ∈ D̃c : x̃ 6∈ Zx̃, V
′(x̃)f̃c(x̃) = 0} ∪ {x̃ ∈ D̃c : x̃ ∈ Zx̃, V (x̃ + f̃d(x̃)) =

V (x̃)} and let M denote the largest invariant set contained in R. If x̃0 ∈ D̃c, then

x̃(t) → M as t → ∞. Finally, if D̃ = R
ñ and V (x̃) → ∞ as ‖x̃‖ → ∞, then

x̃(t) → M as t→ ∞ for all x̃0 ∈ R
ñ.

8.3. Hybrid Adaptive Stabilization for Nonlinear Hybrid Dy-

namical Systems using Neural Networks

In this section, we consider the problem of neural hybrid adaptive stabilization

for nonlinear uncertain hybrid systems. Specifically, we consider the controlled state-

dependent impulsive dynamical system (8.1) and (8.2) with D = R
n, Uc = R

mc , and

Ud = R
md , where fc : R

n → R
n and fd : R

n → R
n are continuously differentiable and

satisfy fc(0) = 0 and fd(0) = 0, and Gc : R
n → R

n×mc and Gd : R
n → R

n×md .

In this section, we assume that fc(·) and fd(·) are unknown functions, and fc(·),

Gc(·), fd(·), and Gd(·) are given by

fc(x) = Acx+ ∆fc(x), Gc(x) = BcGcn(x), (8.7)

fd(x) = (Ad − In)x+ ∆fd(x), Gd(x) = BdGdn(x), (8.8)
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where Ac ∈ R
n×n, Ad ∈ R

n×n, Bc ∈ R
n×mc , and Bd ∈ R

n×md are known matrices,

Gcn : R
n → R

mc×mc and Gdn : R
n → R

md×md are known matrix functions such that

detGcn(x) 6= 0, x ∈ R
n, and detGdn(x) 6= 0, x ∈ R

n, and ∆fc : R
n → R

n and

∆fd : R
n → R

n are unknown functions belonging to the uncertainty sets Fc and Fd,

respectively, given by

Fc = {∆fc : R
n → R

n : ∆fc(0) = 0, ∆fc(x) = Bcδc(x), x ∈ R
n}, (8.9)

Fd = {∆fd : R
n → R

n : ∆fd(0) = 0, ∆fd(x) = Bdδd(x), x ∈ R
n}, (8.10)

where δc : R
n → R

mc and δd : R
n → R

md are uncertain continuously differentiable

functions such that δc(0) = 0 and δd(0) = 0. It is important to note that since δc(x)

and δd(x) are continuously differentiable and δc(0) = 0 and δd(0) = 0, it follows that

there exist continuous matrix functions ∆c : R
n → R

mc×n and ∆d : R
n → R

md×n

such that δc(x) = ∆c(x)x, x ∈ R
n, and δd(x) = ∆d(x)x, x ∈ R

n. Furthermore, we

assume that the continuous matrix functions ∆c(·) and ∆d(·) can be approximated

over a compact set Dc ⊂ R
n by a linear in the parameters neural network up to a

desired accuracy so that

coli(∆c(x)) = WT
ciσc(x) + εci(x), x ∈ Dc, i = 1, · · · , n, (8.11)

coli(∆d(x)) = WT
di
σd(x) + εdi(x), x ∈ Dc, i = 1, · · · , n, (8.12)

where coli(∆(·)) denotes the ith column of the matrix ∆(·), WT
ci ∈ R

mc×sc and WT
di
∈

R
md×sd , i = 1, · · · , n, are optimal unknown (constant) weights that minimize the

approximation error over Dc, εci : R
n → R

mc and εdi : R
n → R

md , i = 1, · · · , n,

are modeling errors such that σmax(Υc(x)) ≤ γ−1
c and σmax(Υd(x)) ≤ γ−1

d , x ∈ R
n,

where Υc(x) , [εc1(x), · · · , εcn(x)], Υd(x) , [εd1(x), · · · , εdn(x)], and γc, γd > 0, and

σc : R
n → R

sc and σd : R
n → R

sd are given basis functions such that each component

of σc(·) and σd(·) takes values between 0 and 1.
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ϕj(x)

x

Dc

|slope| = γ−1
j

Figure 8.1: Visualization of function ϕj(·), j = c, d

Next, defining

ϕc(x) , δc(x) −WT
c [x⊗ σc(x)], (8.13)

ϕd(x) , δd(x) −WT
d [x⊗ σd(x)], (8.14)

where WT
c , [WT

c1, · · · ,WT
cn] ∈ R

mc×nsc , WT
d , [WT

d1, · · · ,WT
dn] ∈ R

md×nsd , and ⊗

denotes Kronecker product, it follows from (8.11) and (8.12), and Cauchy-Schwarz

inequality that

ϕT
j (x)ϕj(x) = ‖∆j(x)x−WT

j (x⊗ σj(x))‖2

= ‖∆j(x)x− Σj(x)x‖2

= ‖Υj(x)x‖2

≤ γ−2
j xTx, x ∈ Dc, j = c, d, (8.15)

where ‖ · ‖ denotes the Euclidean norm on R
sc or R

sd and Σj(x) , [WT
j1σj(x), · · · ,

WT
jnσj(x)], j = c, d. This corresponds to a nonlinear small gain-type norm bounded

uncertainty characterization for ϕj(·), j = c, d (see Figure 8.1).

Theorem 8.2. Consider the nonlinear uncertain hybrid dynamical system G given

by (8.1) and (8.2) where fc(·), Gc(·), fd(·), and Gd(·) are given by (8.7) and (8.8),
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and ∆fc : R
n → R

n and ∆fd : R
n → R

n belong to the uncertainty sets Fc and

Fd, respectively. For given γc, γd > 0, assume there exists a positive-definite matrix

P ∈ R
n×n such that

0 = AT
csP + PAcs + γ−2

c PBcB
T
c P + In +Rc, (8.16)

P = AT
dPAd − AT

dPBd(B
T
d PBd)

−1BT
d PAd + (α+ β)In +Rd, (8.17)

where Acs , Ac +BcKc, Kc ∈ R
mc×n, Rc ∈ R

n×n and Rd ∈ R
n×n are positive definite,

α > 0, and β satisfies

β ≥ γ−2
d

(
λmax(B

T
d PBd) + a

1 + xTPx

c+ [x⊗ σd(x)]T[x⊗ σd(x)]

)
, x ∈ Zx, (8.18)

where

a = max{c, n/λmin(P )}λmax

(
BT

d PBd

(
Im + 1

αγ2
d
BT

d PBd

))
(8.19)

and c > 0. Finally, let Ads , Ad + BdKd, where Kd , −(BT
d PBd)

−1BT
d PAd, and let

Qc ∈ R
mc and Y ∈ R

sc be positive definite. Then the neural hybrid adaptive feedback

control law

uc(t) = G−1
cn (x(t))

[
Kcx(t) − ŴT

c (t)[x(t) ⊗ σc(x(t))]
]
, x(t) 6∈ Zx, (8.20)

ud(t) = G−1
dn (x(t))

[
Kdx(t) − ŴT

d (t)[x(t) ⊗ σd(x(t))]
]
, x(t) ∈ Zx, (8.21)

where ŴT
c (t) ∈ R

mc×nsc , t ≥ 0, ŴT
d (t) ∈ R

md×nsd , t ≥ 0, and σc : R
n → R

sc and

σd : R
n → R

sd are given basis functions, with update laws

˙̂
WT

c (t) = 1
1+x(t)TPx(t)

QcB
T
c Px(t)[x(t) ⊗ σc(x(t))]

TY, ŴT
c (0) = ŴT

c0, x(t) 6∈ Zx,

(8.22)

∆ŴT
c (t) = 0, x(t) ∈ Zx, (8.23)

˙̂
WT

d (t) = 0, ŴT
d (0) = ŴT

d0, x(t) 6∈ Zx, (8.24)

∆ŴT
d (t) = 1

c+[x(t)⊗σd(x(t))]T[x(t)⊗σd(x(t))]
B†

d[x(t
+) − Adsx(t)][x(t) ⊗ σd(x(t))]

T,

x(t) ∈ Zx, (8.25)
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where ∆ŴT
c (t) , ŴT

c (t+) − ŴT
c (t) and ∆ŴT

d (t) , ŴT
d (t+) − ŴT

d (t), guarantees

that there exists a positively invariant set Dα ⊂ R
n × R

mc×nsc × R
md×nsd such that

(0,WT
c ,W

T
d ) ∈ Dα, where WT

c ∈ R
mc×nsc and WT

d ∈ R
md×nsd , and the solution

(x(t), ŴT
c (t), ŴT

d (t)) ≡ (0,WT
c ,W

T
d ) of the closed-loop system given by (8.1), (8.2),

and (8.20)–(8.25) is Lyapunov stable and x(t) → 0 as t → ∞ for all ∆fc(·) ∈ Fc,

∆fd(·) ∈ Fd, and (x0, Ŵ
T
c0, Ŵ

T
d0) ∈ Dα.

Proof. First, note that

AT
dsPBdB

T
d PAds = (Ad +BdKd)

TPBdB
T
d P (Ad +BdKd)

= (Ad −Bd(B
T
d PBd)

−1BT
d PAd)

TPBdB
T
d P (Ad −Bd(B

T
d PBd)

−1BT
d

·PAd)

= 0, (8.26)

and hence, since AT
dsPBdB

T
d PAds is nonnegative definite, AT

dsPBd = 0. Furthermore,

note that

P = AT
dsPAds + (α+ β)In +Rd. (8.27)

Now, with uc(t), t ≥ 0, and ud(tk), k ∈ Z, given by (8.20) and (8.21), respectively,

it follows from (8.7) and (8.8) that the closed-loop hybrid system (8.1) and (8.2) is

given by

ẋ(t) = fc(x(t)) +Bc

[
Kcx(t) − ŴT

c (t)[x(t) ⊗ σc(x(t))]
]
, x(0) = x0, x(t) 6∈ Zx,

(8.28)

∆x(t) = fd(x(t)) +Bd

[
Kdx(t) − ŴT

d (t)[x(t) ⊗ σd(x(t))]
]
, x(t) ∈ Zx, (8.29)

or, equivalently, using (8.11) and (8.12),

ẋ(t) = Acsx(t) +Bc

[
ϕc(x(t)) − W̃T

c (t)[x(t) ⊗ σc(x(t))]
]
, x(0) = x0, x(t) 6∈ Zx,

(8.30)

∆x(t) = (Ads − In)x(t) +Bd

[
ϕd(x(t)) − W̃T

d (t)[x(t) ⊗ σd(x(t))]
]
, x(t) ∈ Zx, (8.31)
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where W̃T
c (t) , ŴT

c (t) − WT
c and W̃T

d (t) , ŴT
d (t) − WT

d . Furthermore, define

σ̃d(x) , x⊗ σd(x) and note that adding and subtracting WT
d to and from (8.25) and

using (8.31) it follows that

W̃T
d (t+) = W̃T

d (t) + 1
c+σ̃T

d (x(t))σ̃d(x(t))
B†

d

[
Bd[ϕd(x(t)) − W̃T

d (t)σ̃d(x(t))]
]

·[x(t) ⊗ σd(x(t))]
T

= W̃T
d (t) + 1

c+σ̃T
d (x(t))σ̃d(x(t))

[ϕd(x(t)) − W̃T
d (t)σ̃d(x(t))]σ̃

T
d (x(t)), x(t) ∈ Zx.

(8.32)

To show Lyapunov stability of the closed-loop hybrid system (8.22)–(8.24) and

(8.30)–(8.32), consider the Lyapunov function candidate

V (x, ŴT
c , Ŵ

T
d ) = ln(1 + xTPx) + trQ−1

c W̃T
c Y

−1W̃c + atr W̃dW̃
T
d . (8.33)

Note that V (0,WT
c ,W

T
d ) = 0 and, since P , Qc, and Y are positive definite and a > 0,

V (x, ŴT
c , Ŵ

T
d ) > 0 for all (x, ŴT

c , Ŵ
T
d ) 6= (0,WT

c ,W
T
d ). In addition, V (x, ŴT

c , Ŵ
T
d )

is radially unbounded. Now, letting x(t) denote the solution to (8.30) and using

(8.22) and (8.24), it follows that the Lyapunov derivative along the closed-loop system

trajectories over the time interval t ∈ (tk, tk+1], k ∈ Z+, is given by

V̇ (x(t), ŴT
c (t), ŴT

d (t))

= 2xT(t)P
1+xT(t)Px(t)

[
Acsx(t) +Bc

[
ϕc(x(t)) − W̃T

c (t)[x(t) ⊗ σc(x(t))]
]]

+ 2trQ−1
c W̃T

c (t)Y −1 ˙̂
W c(t)

≤ −xT(t)(Rc + γ−2PBcB
T
c P + In)x(t)

+ 2xT(t)PBc

[
ϕc(x(t)) − W̃T

c (t)[x(t) ⊗ σc(x(t))]
]

+ 2tr W̃T(t)
(
BT

c Px(t)[x(t) ⊗ σc(x(t))]
T
)T

= −xT(t)Rcx(t) − xT(t)(γ−2PBcB
T
c P + In)x(t)

+ 2xT(t)PBcϕc(x(t))
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≤ −xT(t)Rcx(t)

− [γ−1BT
c Px(t) − γϕc(x(t))]

T[γ−1BT
c Px(t) − γϕc(x(t))]

≤ −xT(t)Rcx(t)

≤ 0, tk < t ≤ tk+1. (8.34)

Next, using (8.23), (8.27), and (8.32), the Lyapunov difference along the closed-

loop system trajectories at the resetting times tk, k ∈ Z+, is given by

∆V (x(tk), Ŵ
T
c (tk), Ŵ

T
d (tk))

, V (x(t+k ), ŴT
c (t+k ), ŴT

d (t+k )) − V (x(tk), Ŵ
T
c (tk), Ŵ

T
d (tk))

= ln
(
1 +

[
Adsx(tk) +Bd[ϕd(x(tk)) − W̃T

d (tk)[x(tk) ⊗ σd(x(tk))]]
]

· P
[
Adsx(tk) +Bd[ϕd(x(tk)) − W̃T

d (tk)[x(tk) ⊗ σd(x(tk))]]
])

+ atr
(
W̃T

d (tk) + 1
c+σ̃T

d (x(tk))σ̃d(x(tk))

[
ϕd(x(tk)) − W̃T

d (tk)σ̃d(x(tk))
]
σ̃T

d (x(tk))
)T

·
(
W̃T

d (tk) + 1
c+σ̃T

d (x(tk))σ̃d(x(tk))

[
ϕd(x(tk)) − W̃T

d (tk)σ̃d(x(tk))
]
σ̃T

d (x(tk))
)

− ln(1 + xT(tk)Px(tk)) − atrW̃d(tk)W̃
T
d (tk)

= ln
(
1 +

[
xT(tk)A

T
dsPAdsx(tk) + 2xT(tk)A

T
dsPBdϕd(x(tk))

− 2xT(tk)A
T
dsPBdW̃

T
d (tk)σ̃d(x(tk)) + ϕT

d (x(tk))BdPBdϕd(x(tk))

− 2ϕT
d (x(tk))BdPBdW̃

T
d (tk)σ̃d(x(tk)) + σ̃T

d (x(tk))W̃d(tk)BdPBdW̃
T
d (tk)σ̃d(x(tk))

− xT(tk)Px(tk)
] [

1 + xT(tk)Px(tk)
]−1

)
+ atrW̃d(tk)W̃

T
d (tk)

+ 2a
c+σ̃T

d (x(tk))σ̃d(x(tk))
trWd(tk)

[
ϕd(x(tk)) − W̃T

d (tk)σ̃d(x(tk))
]
σ̃T

d (x(tk))

+ a
(c+σ̃T

d (x(tk))σ̃d(x(tk)))2
tr σ̃d(x(tk))

[
ϕT

d (x(tk)) − σ̃T
d (x(tk))W̃d(tk)

][
ϕd(x(tk))

− W̃T
d (tk)σ̃d(x(tk))

]
σ̃T

d (x(tk)) − atr W̃d(tk)W̃
T
d (tk)

≤
[
−xT(tk)((α+ β)In +Rd)x(tk) + ϕT

d (x(tk))B
T
d PBdϕd(x(tk))

− 2ϕT
d (x(tk))B

T
d PBdW̃

T
d (tk)σ̃d(x(tk))

+ σ̃T
d (x(tk))W̃d(tk)B

T
d PBdW̃

T
d (tk)σ̃d(x(tk))

] [
1 + xT(tk)Px(tk)

]−1
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+ 2a
c+σ̃T

d (x(tk))σ̃d(x(tk))
tr W̃d(tk)

[
ϕd(x(tk)) − W̃T

d (tk)σ̃d(x(tk))
]
σ̃T

d (x(tk))

+ a
c+σ̃T

d (x(tk))σ̃d(x(tk))
tr

[
ϕT

d (x(tk)) − σ̃T
d (x(tk))W̃d(tk)

][
ϕd(x(tk))

− W̃T
d (tk)σ̃d(x(tk))

]

≤
[
−xT(tk)((α+ β)In +Rd)x(tk) + ϕT

d (x(tk))B
T
d PBdϕd(x(tk))

− 2ϕT
d (x(tk))B

T
d PBdW̃

T
d (tk)σ̃d(x(tk))

+ σ̃T
d (x(tk))W̃d(tk)B

T
d PBdW̃

T
d (tk)σ̃d(x(tk))

] [
1 + xT(tk)Px(tk)

]−1

+ 2a
c+σ̃T

d (x(tk))σ̃d(x(tk))
tr W̃d(tk)

[
ϕd(x(tk)) − W̃T

d (tk)σ̃d(x(tk))
]
σ̃T

d (x(tk))

+ a
c+σ̃T

d (x(tk))σ̃d(x(tk))
tr

[
ϕT

d (x(tk)) − σ̃T
d (x(tk))W̃d(tk)

]

·
[
ϕd(x(tk)) − W̃T

d (tk)σ̃d(x(tk))
]
, (8.35)

where in (8.35) we used ln a− ln b = ln a
b

and ln(1 + d) ≤ d for a, b > 0, and d > −1,

respectively, and
σ̃T
d σ̃d

c+σ̃T
d σ̃d

< 1. Furthermore, note that σ̃T
d (x)σ̃d(x) ≤ nxTx.

Now, defining Θ , 1
αγ2

d
(BT

d PBd)
2, it follows from (8.35) that

∆V (x(tk), Ŵ
T
c (tk), Ŵ

T
d (tk))

≤
[
−xT(tk)Rdx(tk) − βxT(tk)x(tk) − α[xT(tk)x(tk) − γ2

dϕ
T
d (x(tk))ϕd(x(tk))]

−
[
ϕT

d (x(tk)), σ̃
T
d (x(tk))W̃d(tk)

] [
αγ2

dIn BT
d PBd

BT
d PBd Θ

] [
ϕd(x(tk))

W̃T
d (tk)σ̃d(x(tk))

]

+ σ̃T
d (x(tk))W̃d(tk)ΘW̃

T
d (tk)σ̃d(x(tk))

+ σ̃T
d (x(tk))W̃d(tk)B

T
d PBdW̃

T
d (tk)σ̃d(x(tk))

] [
1 + xT(tk)Px(tk)

]−1

− a
c+σ̃T

d (x(tk))σ̃d(x(tk))
σ̃T

d (x(tk))W̃d(tk)W̃
T
d (tk)σ̃d(x(tk))

+ a
c+σ̃T

d (x(tk))σ̃d(x(tk))
ϕT

d (x(tk))ϕd(x(tk))

≤ − xT(tk)Rdx(tk)

1 + xT(tk)Px(tk)

− σ̃T
d (x(tk))W̃d(tk)R̃d1(x(tk))W̃

T
d σ̃d(x(tk))

(c+ σ̃T
d (x(tk))σ̃d(x(tk)))(1 + xT(tk)Px(tk))

− ϕT
d (x(tk))R̃d2(x(tk))ϕd(x(tk))

(c+ σ̃T
d (x(tk))σ̃d(x(tk)))(1 + xT(tk)Px(tk))

, (8.36)
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where

R̃d1(x) , a(1 + xTPx)Im − (BT
d PBd + Θ)(c+ σ̃T

d (x)σ̃d(x))

≥ a(1 + xTPx)Im −BT
d PBd

(
Im + 1

αγ2
d
BT

d PBd

)
(c+ nxTx)

≥ 0, x ∈ Dc, (8.37)

and

R̃d2(x) , βγ2
d(c+ σ̃T

d (x)σ̃d(x))Im −BT
d PBd(c+ σ̃T

d (x)σ̃d(x)) − a(1 + xTPx)Im

≥ (c+ σ̃T
d (x)σ̃d(x))

(
βγ2

d − λmax(B
T
d PBd) − a

1 + xTPx

c+ σ̃T
d (x)σ̃d(x)

)
Im

≥ 0, x ∈ Dc. (8.38)

Hence, the Lyapunov difference given by (8.36) yields

∆V (x(tk), Ŵ
T
c (tk), Ŵ

T
d (tk)) ≤ − xT(tk)Rdx(tk)

1 + xT(tk)Px(tk)

− σ̃T
d (x(tk))W̃d(tk)R̃d(x(tk))W̃

T
d σ̃d(x(tk))

(c+ σ̃T
d (x(tk))σ̃d(x(tk)))(1 + xT(tk)Px(tk))

≤ − xT(tk)Rdx(tk)

1 + xT(tk)Px(tk)

≤ 0, k ∈ Z+. (8.39)

Next, let

D̃α ,

{
(x, W̃T

c , W̃
T
d ) ∈ R

n × R
mc×nsc × R

md×nsd : V (x, W̃T
c , W̃

T
d ) ≤ α

}
, (8.40)

where α is the maximum value such that D̃α ⊆ Dc × R
mc×nsc × R

md×nsd . Since

∆V (x(tk), Ŵ
T
c (tk), Ŵ

T
d (tk)) ≤ 0 for all (x(tk), Ŵ

T
c (tk), Ŵ

T
d (tk)) ∈ D̃α and k ∈ Z+,

it follows that D̃α is positively invariant. Next, since D̃α is positively invariant, it

follows that

Dα ,

{
(x, ŴT

c , Ŵ
T
d ) ∈ R

n × R
mc×nsc × R

md×nsd : (x, ŴT
c −WT

c , Ŵ
T
d −WT

d ) ∈ D̃α

}

(8.41)
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is also positively invariant. Now, it follows from Theorem 2.1 of [51] that (8.34) and

(8.39) imply that the solution (x(t), ŴT
c (t), ŴT

d (t)) ≡ (0,WT
c ,W

T
d ) to (8.22)–(8.24)

and (8.30)–(8.32) is Lyapunov stable. Furthermore, since Rc > 0 and W = Ø, it

follows from Theorem 8.1, with R = M = {(x, ŴT
c , Ŵ

T
d ) ∈ R

n × R
mc×sc × R

md×sd :

x = 0}, that x(t) → 0 as t→ ∞ for all x0 ∈ R
n.

Remark 8.1. Note that the conditions in Theorem 8.2 imply partial asymptotic

stability, that is, the solution (x(t), ŴT
c (t), ŴT

d (t)) ≡ (0,WT
c ,W

T
d ) of the overall

closed-loop system is Lyapunov stable and x(t) → 0 as t→ ∞. Hence, it follows from

(8.22) and (8.23) that
˙̂
WT

c (t) → 0 as t→ ∞. Furthermore, if x(t), t ≥ 0, intersects Zx

infinitely many times, then it follows from (8.24) and (8.25) that Ŵd(t
+
k )−Ŵd(tk) → 0

as k → ∞.

Remark 8.2. Since the Lyapunov function used in the proof of Theorem 8.2 is a

class K∞ function, in the case where the neural network approximation holds in R
n,

the control law (8.20) and (8.21) ensures global asymptotic stability with respect to

x. However, the existence of a global neural network approximator for an uncertain

nonlinear map cannot in general be established. Hence, as is common in the neural

network literature, for a given arbitrarily large compact set Dc ⊂ R
n, we assume

that there exists an approximator for the unknown nonlinear map up to a desired

accuracy (in the sense of (8.11) and (8.12)). In the case where ∆c(·) and ∆d(·)

are continuous on R
n, it follows from the Stone-Weierstrass theorem that ∆c(·) and

∆d(·) can be approximated over an arbitrarily large compact set Dc. In this case, our

neuroadaptive hybrid controller guarantees semiglobal partial asymptotic stability.

Remark 8.3. Note that the neuroadaptive hybrid controller (8.20) and (8.21)

can be constructed to guarantee partial asymptotic stability using standard linear H∞
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theory. Specifically, it follows from standard continuous-time H∞ theory [143] that

‖Gc(s)‖∞ < γc, where G(s) = Ec(sIn−Acs)
−1Bc and Ec is such that ET

c Ec = In +Rc,

if and only if there exists a positive-definite matrix P satisfying the bounded real

Riccati equation (8.16). It is important to note that γc > 0 and γd > 0, which

characterize the approximation error (8.13) and (8.14), respectively, over Dc, can be

made arbitrarily large provided that we take a large number of basis functions in

the parameterization of the uncertainty ∆c(·) and ∆d(·). In this case, noting that

1+xTPx
c+[x⊗σd(x)]T[x⊗σd(x)]

in (8.18) is a bounded positive function, it can be shown that there

always exist α and β such that the conditions (8.16)–(8.19) are satisfied.

It is important to note that the hybrid adaptive control law (8.20)–(8.25) does not

require explicit knowledge of the optimal weighting matrices Wc, Wd, and the positive

constants α and β. Theorem 8.2 simply requires the existence of Wc, Wd, α, and β

such that (8.16) and (8.17) hold. Furthermore, no specific structure on the nonlinear

dynamics fc(x) and fd(x) is required to apply Theorem 8.2 other than the assumption

that fc(x) and fd(x) are continuously differentiable and that the approximation error

of the uncertain system nonlinearities lie in a small gain-type norm bounded conic

sector. Finally, in the case where the pair (Ad, Bd) is in controllable canonical form

and Rd in (8.17) is diagonal, it follows that

Ads =

[
A0

0md×n

]
,

where A0 ∈ R
(n−md)×n is a known matrix of zeros and ones capturing the multivariable

controllable canonical form representation [24], and hence, the update law (8.25) is

simplified as

∆ŴT
d (t) = 1

c+[x(t)⊗σd(x(t))]T[x(t)⊗σd(x(t))]
B†

d∆x(t)[x(t) ⊗ σd(x(t))]
T, x(t) ∈ Zx,

(8.42)

since B†
dAds = 0.
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8.4. Illustrative Numerical Example

In this section, we present a numerical example to demonstrate the utility of the

proposed neural hybrid adaptive control framework for hybrid adaptive stabilization.

Specifically, consider the nonlinear uncertain controlled hybrid system given by (8.1)

and (8.2) with n = 2, x = [x1, x2]
T,

fc(x) =

[
x2

f̂c(x)

]
, Gc(x) =

[
0
bc

]
, fd(x) =

[ −x1 + x2

f̂d(x)

]
, Gd(x) =

[
0
bd

]
,

(8.43)

where f̂c : R
2 → R and f̂d : R

2 → R are unknown, continuously differentiable

functions. Furthermore, assume that the resetting set Zx is given by

Zx = {x ∈ R
2 : X (x) = 0, x2 > 0}. (8.44)

Here, we assume that fc(x) and fd(x) are unknown and can be written in the form

of (8.7) and (8.8) with

Ac = Ad =

[
0 1
0 0

]
,

∆fc(x) = [0, f̂c(x)]
T, ∆fd(x) = [0, f̂d(x)]

T, Bc = [0, bc]
T, Bd = [0, bd]

T, Gcn(x) =

Gdn(x) = 1. We assume that ∆fc(x) and ∆fd(x) are unknown and can be written as

∆fc(x) = Bcδc(x) and ∆fd(x) = Bdδd(x), where δc(x) = 1
bc
f̂c(x) and δd(x) = 1

bd
f̂d(x).

Next, let Kc = 1
bc

[kc1, kc2] and Kd = 1
bd

[kd1, kd2], where kc1, kc2, kd1, and kd2 are

arbitrary scalars, such that

Acs = Ac +BcKc =

[
0 1
kc1 kc2

]
,

Ads = Ad +BdKd =

[
0 1
kd1 kd2

]
.

Now, with the proper choice of kc1, kc2, kd1, and kd2, it follows from Theorem 8.2

that if there exists P > 0 satisfying (8.16) and (8.17), then the neural hybrid adaptive

feedback controller (8.20) and (8.21) guarantees x(t) → 0 as t→ ∞. Specifically, here
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we choose kc1 = −1, kc2 = −1, kd1 = −0.2, kd2 = −0.5, γc = 10, γd = 20, bc = 3,

bd = 1.4, c = 1, α = 1, σd(x) = [tanh(0.1x2), . . . , tanh(0.6x2)]
T, and

Rc =

[
2.6947 2.4323
2.4323 5.8019

]
, Rd =

[
8.0196 2.0334
2.0334 1.0569

]
, (8.45)

so that P satisfying (8.16) and (8.17) is given by

P =

[
10.0196 2.0334
2.0334 12.7523

]
.

With f̂c(x) = −a1x1 − a2(x
2
1 − a3)x2, f̂d(x) = −x2 − a4x

2
1 − a5

x3
2

1+x2
2
− a6x

3
2,

a1 = 1, a2 = 2, a3 = 1, a4 = −5, a5 = −2, a6 = 8, Y = 0.02I3, σc(x) =
[

1
1+e−λ1x1

, . . . , 1
1+e−3λ1x1

, 1
1+e−λ2x2

, . . . , 1
1+e−3λ2x2

]
, and initial conditions x(0) = [1, 1]T,

ŴT
c (0) = 01×6, and ŴT

d (0) = 01×6, Figure 8.2 shows the phase portraits of the un-

controlled and controlled hybrid system. Figure 8.3 shows the state trajectories and

the control signals versus time. Finally, Figure 8.4 shows the adaptive gain history

versus time.
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Figure 8.2: Phase portraits of uncontrolled and controlled hybrid system
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Figure 8.3: State trajectories and control signals versus time
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Chapter 9

Concluding Remarks and Recommendations for

Future Research

9.1. Conclusion

In this dissertation, we have developed a novel adaptive and neuroadaptive archi-

tecture for nonlinear uncertain dynamical systems. We primarily focused on mod-

ification of neural network based adaptive control methods since neural networks

have been extensively used for adaptive system identification as well as adaptive and

neuroadaptive control of highly uncertain systems. The goal of adaptive and neu-

roadaptive control is to achieve system performance without excessive reliance on

system models. To improve robustness and the speed of adaptation of adaptive and

neuroadaptive controllers several controller architectures have been proposed in the

literature. The proposed framework involves a novel controller architecture with ad-

ditional terms in the update laws that are constructed using a moving window of the

integrated system uncertainty. These terms can be used to identify the ideal sys-

tem weights of the neural network as well as effectively suppress system uncertainty.

Linear and nonlinear parameterizations of the system uncertainty are considered and

state and output feedback neuroadaptive controllers are developed. Furthermore, we

extend the developed framework to discrete-time dynamical systems. To illustrate

the efficacy of the proposed approach we applied our results to an aircraft model
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with wing rock dynamics, a spacecraft model with unknown moment of inertia, and

an unmanned combat aerial vehicle undergoing actuator failures, and compared our

results with standard neuroadaptive control methods.

Next, we addressed a neuroadaptive control problem for a specific class of nonlin-

ear uncertain systems of a specific structure and properties; namely, nonnegative and

compartmental dynamical systems. As discussed in the Introduction, nonnegative

and compartmental dynamical systems play a key role in understanding numerous

processes in biological and physiological sciences. These systems are derived from

mass and energy balance considerations and are comprised of homogeneous intercon-

nected microscopic subsystems or compartments which exchange variable quantities of

material via intercompartmental flow laws. Since biological and physiological systems

have numerous input, state, and output properties related to conservation, dissipa-

tion, and transport of mass and energy, nonnegative and compartmental systems are

remarkably effective in describing the phenomenological behavior of these dynamical

systems. The range of applications of nonnegative and compartmental systems is not

limited to biological and medical systems. We used the developed framework to au-

tomatically control anesthetic drug delivery to control the depth of anesthesia in the

face of system uncertainty, hemorrhage, hemodilution, and noisy EEG measurements.

Furthermore, a neuroadaptive output feedback control architecture for nonlinear

nonnegative dynamical systems with input amplitude and integral constraints was

developed. The proposed approach was used to control the infusion of the anesthetic

drug propofol for maintaining a desired constant level of depth of anesthesia for non-

cardiac surgery in the face of infusion rate constraints and a drug dosing constraint

over a specified period. In addition, we used the aforementioned neuroadaptive control

architecture to control lung volume and minute ventilation with input pressure con-

straints that also accounts for spontaneous breathing by the patient. Specifically, we
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develop a pressure- and work-limited neuroadaptive controller for mechanical ventila-

tion based on a nonlinear multi-compartmental lung model. The control framework

does not rely on any averaged data and is designed to automatically adjust the input

pressure to the patient’s physiological characteristics capturing lung resistance and

compliance modeling uncertainty. Moreover, the controller accounts for input pres-

sure constraints as well as work of breathing constraints. The effect of spontaneous

breathing is incorporated within the lung model and the control framework.

Finally, a neural network hybrid adaptive control framework for nonlinear un-

certain hybrid dynamical systems was developed. The proposed hybrid adaptive

control framework is Lyapunov-based and guarantees partial asymptotic stability of

the closed-loop hybrid system; that is, asymptotic stability with respect to part of

the closed-loop system states associated with the hybrid plant states. A numeri-

cal example is provided to demonstrate the efficacy of the proposed hybrid adaptive

stabilization approach.

9.2. Recommendations for Future Research

In future research, we propose to extend our neuroadaptive control schemes for

improving control system performance. High performance integrated control systems

satisfying multiple design criteria and real-world hardware constraints is imperative

in light of the increasingly complex nature of dynamical systems. In this regard,

we propose to merge our neuroadaptive control framework with intelligent control

methods using fast learning algorithms to further advance control system design for

clinical pharmacology.

Recently, several modification schemes for adaptive and neuroadaptive control

methods, including Q-modification developed in this dissertation, have been proposed
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in the literature. These schemes involve an augmentation of classical update laws

with different constraints imposed on the update weights. Such modifications are

intended to serve different purposes in the adaptive control algorithms, such as, for

example, fast learning of the uncertainty, maintaining desired gain and phase margins

of the closed-loop system, capturing of uncertainties with time-varying ideal weights,

etc. It is a problem of a significant theoretical and practical importance to consider

combinations of the existing modifications of the update laws and study the optimality

of the composite schemes. This is particularly necessary to achieve transient behavior

improvements for adaptive and neuroadaptive control schemes.

Another perspective topic related to neuroadaptive control is neural networks with

non-constant size and time-varying structure. Such neural networks have a potential

for more efficient and computationally low-cost schemes. In addition, neuroadaptive

control of stochastic systems is a fruitful area of research of substantial practical and

theoretical importance.

The complex highly uncertain and hostile environment of surgery places stringent

performance requirements for closed-loop set-point regulation of multiple physiolog-

ical variables. For example, during cardiac surgery, blood pressure control is vital

and is subject to numerous highly uncertain exogenous disturbances. Vasoactive and

cardioactive drugs are administered resulting in large disturbance oscillations to the

system (patient). The arterial line may be flushed and blood may be drawn, cor-

rupting sensor blood pressure measurements. Low anesthetic levels may cause the

patient to react to painful stimuli, thereby changing system (patient) response char-

acteristics. The flow rate of vasodilator drug infusion may fluctuate causing transient

changes in the infusion delay time. Hemorrhage, patient position changes, cooling

and warming of the patient, and changes in anesthesia levels will also effect system

(patient) response characteristics.
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In light of the complex and highly uncertain nature of system (patient) response

characteristics under surgery requiring controls, it is not surprising that reliable sys-

tem models for many high performance drug delivery systems are unavailable. In

the face of such high levels of system uncertainty, robust controllers may unnecessar-

ily sacrifice system performance whereas adaptive controllers are clearly appropriate

since they can tolerate far greater system uncertainty levels to improve system per-

formance. Hence, adaptive and neuroadaptive control schemes for addressing cardio-

vascular function and anesthesia can have a significant potential to further improve

the quality of medical care.

The EEG signal and its derivatives has been one of the main methods for quan-

tifying sedation. However, while the EEG measurement produces a reliable signal

in operating room, in the ICU, it has a number of drawbacks which can limit its

usefulness and reliability. In particular, in the ICU, the EEG signal can be severely

degraded by noise. While proper filtering of EEG signal helps to alleviate this prob-

lem, other features such as the dependance of the EEG signal on certain medical

conditions and medications limit its applicability for monitoring consciousness. In

this case, other measures are necessary which can give a much more accurate esti-

mate of patient sedation levels. In particular, a compound index incorporating the

BIS signal, the mean arterial pressure (MAP) values, motion activity measurements

using actigraphy, breathing/ventilation dyssynchrony, and digital imaging may offer

a far better measure for quantifying sedation. Such a technology has a tremendous

potential to improve and facilitate medical care, decrease health care cost, and reduce

work load for the medical staff. This can be a very fruitful area for further research.
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