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Abstract 

The interest in the analysis of plane frames is understandable, 

because of the many uses of such configurations in the design of buildings, 

bridges and offshore structures. Many linear buckling analyses of rigid-

jointed, unbraced plane frames have been reported in the open literature. 

For a historical sketch and review on the subject, the reader is referred 

to Bleich's text (Ref. 1) and Ref. 2. On the other hand, the nonlinear 



analyses reported in the open literature are very few and of limited 

applicability, because of simplifying assumptions and load characteris-

tics, such as no load eccentricity, use of extreme boundary conditions 

(either simply supported or clamped) and others (Refs. 3 and 4). 

A nonlinear solution methodology has been developed for the complete 

analysis of plane frames (prebuckling and postbuckling). The method 

is based on nonlinear kinematic relations and linear constitutive equa-

tions. This methodology is fully described and demonstrated in the 

attached publications. 

Moreover, from the studies it is concluded that 

(1) Two-bar frames are, in general, subject to limit point instability 

under static application of the applied load. Also, there is a critical 

condition under sudden application of the load (dynamic buckling, see the 

second paper in the list of publications). 

(2) Portal frames exhibit postbuckling strength (stable postbuckling 

branch) and thus they are insensitive to either initial geometric imperfec-

tions or initial load eccentricities. Moreover, these configurations do 

not buckle under sudden application of the load. 
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DYNAMIC BUCKLING OF SIMPLE FRAMES 

UNDER A STEP-LOAD 

George J. Simitses , Anthony N. Kounadis , and Jagannath Giri
**  

INTRODUCTION 

Since most toads on structural systems induce dynamic effects, an 

effort has been exerted, in the past twenty-five years, to answer some of 

the problems associated with stability under dynamic conditions. These 

efforts have been on specific problems; and no unifying concept has been 

developed to the point that, criteria for stability, estimates of critical 

conditions, and the response phenomena under dynamic load themselves are 

clearly understood by the practicing engineer. 

One particular class of problems that has received wide attention is 

the stability of shallow arches and shallow spherical caps under impulsive 

loads and suddenly applied constant loads of infinite duration. The former 

studies started with the early work of Hoff and Bruce [7] and the latter 

with Budiansky and Roth [2]. In the case of shallow arches, the initial 

work of Hoff and Bruce [7] relates dynamic critical conditions with charac-

teristic of the total potential surface. This idea was extended indepen-

dently by Hsu and his collaborators [8-12] and by Simitses [15,16,18]. Most 

of the investigations that followed, on the shallow arch, are listed in [5]. 

In the case of spherical caps, Budiansky and Roth [2] defined the load to 
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Atlanta, Georgia. 
Assoc. Prof. School of Civil Engineering, Nat'l Technical U. of Athens 
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be critical, when the transient response increases suddenly with very 

little increase in the magnitude of the load. This concept was adopted 

by numerous investigators (for a review see [16] and [I]) in the subse-

quent years, because it is tractable to computer solutions. This same 

concept was employed by Budiansky and Hutchinson [3] in estimating the 

critical load (suddenly applied) for systems that are imperfection sensi 

tive. Through this criterion they related the dynamic critical load to 

the static one (in an approximate sense). The concept was improved and 

generalized in a subsequent paper by Budiansky [4] in attempting to pre- 

dict critical conditions for imperfection sensitive structures under time-

dependent loads. independently, Thompson [19] outlined an enery based 

procedure for estimating a critical suddenly applied load on imperfection 

sensitive structures. Finally, Lo and Masur [14] present a finite element 

discretization solution to the dynamic buckling of shallow arches by em-

ploying a criterion similar to that of Budiansky and Roth. 

The present note presents critical conditions for three simple two-

bar frames, loaded eccentrically and suddenly by a constant load of infi-

nite duration. The criterion used is similar to that of [7,15] and the 

critical load corresponds to a lower bound. The complete static stability 

analysis for all three models is available in [13,17] and experimental 

evidence has been reported [19] for one of them (model A). The three 

models are shown in Fig. 1. The symbols used are the same as in [13,17]. 



NUMERICAL RESULTS AND DISCUSSION 

On the basis of the criterion established, critical loads are computed 

for all three frames and for a large practical range of load eccentricities 

(-0.01 s e s 0.01) and of slenderness ratios (X 	40, 80, •). The results 

are presented graphically in Figs. 2-4, and discussed separately for e 

frame (Model). 

kiodel A:  The results for this model are presented graphically on rig. 

2. It is observed that, as in the static case, there is a small positive 

eccentricity, e
cr' such that for e s e cr  there is dynamic instability, while 

for e > e 	there is not. This e 	is X-dependent and identical to the cot.- 
cr 	 cr 

responding static case. For all h-values considered, except X -4 co, the 

- 	- 
difference between 5 2 

r 	c 
and 0

2 
r 

is the largest at e .., e 
Cr 
 and it dimin- 

c 
D 	st _ 

ishes as e increases negatively. On the contrary, for X -4 • this effect 

- 	- 
is reversed and more specifically, the difference is close to zero at e 	e 

cr 

and it increases as e increases negatively. In addition, eccentricity has a 

destabilizing effect regardless of the value of the slenderness ratio. This 

effect is less pronounced for the static case. 

Finally, dynamic instability takes place with a trajectory corresponding 

to a positive joint rotation T. Because of this, of course, the compressive 

force in the vertical bar, k l , is higher than the applied load, 0
2
, at thc 

instant of dynamic snap-through. 

Note that the experimental results of Thompson (X ... 1275) agree very 

well with the X — 0-,  theoretical prediction. The largest discrepancy between 

theory and experiment is approximately 1.57. 



• 

Model B:  This is the only model, which exhibits bifurcational 

buckling (through an unstable branch) under static application of the 

load. The results are presented graphically in Fig. 3. 

It is seen irom Fig. 3 that the effect of slenderness on the 

dynamic critical load is appreciable while its effect on the static 

critical load [177i (limit point load) is negligible. 	In addition, for 

all X, except X — a, the difference between the static and dynamic critical 

loads is the largest at e = 0 ,end decreases as lel increases. Furthermcre, 

at e a 0 and for a given X, except X 	co, there are two dynamic critical 

loads, one corresponding to a negative rotation y trajectory (the lower) 

and one corresponding to a positive y trajectory (the upper). Definitely 

the system for e = 0, buckles in the mode associated with the lower load 

and it should be designed for this lower dynamic critical load. But the 

results indicate that a small positive eccentricity, in this case, has a 

stabilizing effect, because it forces the system to dynamically - buckle 

through a positive rotation y trajectory and therefore it can carry a 

higher load. in general, though, eccentricity has a destabilizing effect. 

This means that as lel increases the dynamic critical load decreases. 

Model C; The results for this model are presented graphically in Fig. 

4. The observations for this model are very similar to those corresponding 

to model A. 

CONCLUSIONS 

Among the most important conclusions of this investigation, one may 

list the following. 

I. In general, for frames which under static conditions exhibit 

limit point instdbility, there is a positive critical eccentricity, e
cr' 

such that a system with e 	e 	buckles dynamically, while with e > e 
Cr 	 Cr 

there is no instability. This observation is also true for static loading. 



2. For all three frames, increase in ICI resulted into a decrease 

in the dynamic critical load. 

3. The effect of slenderness ratio upon the dynamic critical load 

is appreciable, even in the case (Model B) in which this effect was negli-

gible for the corresponding static loading. 

4. The correlation between theory and experimental results (limited 

in availability) is excellent. The discrepancy is smaller than 1.57. 
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NONLINEAR ANALYSIS OF ELAS1ICALLY RESTRAINED 

AND ECCENTRICALLY LOADED POR'T'AL FRAMES 

1 	 2 	 3 
By George J. Simitses, Jagannath Ciri , and Anthony N. Kounadis 

INTRODUCTION 

Buckling of a portal frame, which is loaded eccentrically and 

restlained at the br;so against rotation, is considered 

herein. A kinemJtically nonlinear analysis is performed, with the 

primary goal being the asses'atienr of the effect of load eccentricity 

and amount of rotational restraint on the response characteristics of 

the frame (incluJing the possibility of buckling). 

The interest in plane frame analysis is understandable, because 

of the many uses of this configuration in the design of buildings, 

bridges, and offshore structute::. Many linear buckling analyses of 

rigid - jointed p!,,;ie Frameworks have been topw- ted in the open litera-

ture. For a htr.tte - ical sketch and review on the subject, the reader 

is referred to ri•ich's (1) text and to Ref. 5. On the other hand, 

the nonlinear analyses available in the open literature are very few 

and of limited applicability because of simplifying assumptions and 

load characteriltic.i, such as no load eccentricity, extreme boundary 

conditions (either simply supported or clamped) and others. (2,3) 

There- are two impertant considerations in the present investiga-

tion: (a) to dcr.‘oo,:fcate the applicability of the developed kinemati-

cally nonline,:f .1.- Iys is to both the post:buckling range for the perfectly 

Professor, Si1-11 c):: Engineering Science and Mechanics; Georgia Institute 

2
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3A ssociate Peof,..er, School of Civil Engineering; National Technical 
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loaded configuration (no load eccentricity) as well as to the entire 

response range of the eccentrically loaded configurations. In the 

latter case, the possibility of the existence of limit point. insta-

bility is considered; (h) to establish whether or not eccentrically 

loaded portal frillvs arc sensitive or insensitive to imperfections 

(load eccentriciriest. 	In additim, the effects of rotational re- 

straint (0 5 e 	and bar slenderness ratio are assessed. 

The analysi.s i. hased on nonlinear kinematic relations (moderate 

rotations) and linearly elastic material behavior. Finally the effect 

of transverse shear on deformations is neglected. 

MATHEMATICAL 1 P,NYLATION 

Consider the pert a frame shown on r'ig. 1. Filch bar is of length 

/
lc' 

constant cress-sectional. area Ate , constant cross-sectional second 

moment of aces , and has displacement components u
k 

(in-plane) and 

w k  (transverse) k 	1,2,3. The sign cool/ration used is given on 

Ihe figure. Inc Hads
i 
are eccentrically applied (eccentricity e

i 
is 

shown in the ponitiv sense) and the supports of the portal frame are 

r,tationally restrained, e. Note that 2 1 	L2  and the eccentricity, e i , 

is small (e./e 
1 	1 

The equitihrit r t -yultiong are given by 

(Eik ) 	in, 	4 	) 
k 	'x 2 k 

w. 	_ 
V 
• 

, 
	

k 0 

- I,?,3; and °
k 

is positive in tension 

() 

(1) 



The associated loundary and o int Condit ions are : 

Boundaries 1 and  2 

	

u k  (0) = 0 	k = 1,2 

	

(0) = 0 
	

(2) 

0:T) w
k 
 (0) - Ew (0) 

k 
'xx 	

k . x  

Joint 3 

u 1  (t) = -w3 (/ 3 ); u3 (; 3 ) = 	 w i (A 1 ) 	= w
3
); 

e 1 Q 1  - (EI) 1 w 1 (i 1 ) - (EI).w (t.i ) 	= 0 
ax 	 NX 

-P 1  - Q 1 	P 3  w3  (/ 3  ) - (ET) 3w3 (2 3
) = 0 

x 
 

'xxx 

-P 3  -P 1 w11  ) + (El) 1
w

1 	
(i 1  ) = 0 , 

X 	 ' xxx 

Joint. 4  

L13  (0) = id2  (1,2 ) 	u2 (1 2 ) = 	w3  (0) 	(2 2 ) 	. 	(0); 

e 2 Q2  + (EI) 3 w3  (0) - (EI) 2 w7 (A 2 ) = 0 
'xx 	 -I xx 

- P 2 - Q 2 - P 3 w3t0 ) + t r o j w (0) 

x<x 

-P 3 -I- P 2 w2 (11 ) 	(") 2 w2 (12 
	0 

'xxx 

(3)  

(4)  
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BefOre proceeding with the solution, the following nondimen- 

sionalization is inroduced. 

(EI)
k 2 k K t k  - 	 r 	- 	X 	; 

(EI) 	' 	k 	A 	'
k 1 

2 
wk 	

1
k 	 2 	 P

k
A
k2 k V 	- -- • 	p 	= -.....-: 	_Y 	. k = ± k 	A

k  ' 
	k 	A

k 
' 	k 	P 	' 	K 	(EI)

k 

(+ for tension, Pk  positive; - for compression, P k  negative) 

2 

	

k - 1,2,3.; Q. = 
Q i ^ l 
	

e = 
ei
--  • 

(EI)1.  ' 	i 	' 

02, i /(m) 1 .  

Moreover, it is observed that the horizontal bar, bar 3, can be 

either in tensioli or in compression, while the vertical bars, bars 1 

and 2, are always in compression. Thus, the governing equations and 

some of the joint conditions are different, depending on the sense of 

the axial force in bar 3. 

The governitm equations (equilibrium equations), Eqs (1) and the 

associated boundary and joint conditions are given below in nondimen -

sionalized form. 

In-plane equilibrium 

	

I 2 	2 	2 
= -k k A k  , 	k 	1,2. 

k 
'X 

(compression) 

	

1 2 	2 	(tension) 

	

+ -w 	= ky?..1  
2 3, 

X 

i = 1,2.; 

1 1 4 -W 
3 X 	2 3 'X 

(6) 



Transverse equilibrium 

2 
w
k, 	

+ 
kkWk, 
	=0 

XXXX 	XX 

k = 1,2 

+ k 3 

	

W , 
	

= 0 (compression) 
3 

	

XXXX 	XX 

	

- k2
3 ,
W
3 	

= 0 (tension) 

	

' XXXX 	XX 

Boundaries 1 and 2 

Uk (0) = 0 	
Wk

(0) = 0 	W 	(0) 
k
'XX 

Joint 3 

	

U 1 (1) = -W
3 
	; (1) • 	U3 (I) = 141(1) 	W1,

X (1) = W3
X 
 (1) 	(9) 

	

e 1 Q 1 - W I (1)  - 	Wq  (1) = 0 
' xx 	''3 /  -' XXX 

k1 - 
	(r3\' r 2 	 (1) 1 	Qi  - 	Lk3  W3  (1) -+ 	- 0 

3 4 	 'X 	XXX 

7  2 
\--7) 	1 14  1 , 1 ) 	W 1, 

	
) = 0 

4 3 	 X 	XXX 
(compression) 	(10) 

r. - _ 	 ( 3\  e 1  Q 1  - W
1 	

— (11- 	W
3, 

 (1) = 0 
, 	•  
XX 	3 	XXX 

2 - 6 	(II) 1 -k 2w (1) + w 3, (1)] 	0 
1 	2/ I_ 	3 3, 

( 17 3' 	I 	2 
- 	

, 3  + k 	(1) 	WI,  (1) ' 	0 (tension) 
X 	XXX-  

(0) 

(7) 

(8)  

XXX }.L 3  

8( 



Joint 4 

	

U
2

(1) 	-W 3  (0) ; 	lf (0) = W 1 (1) ; 	W
2,

(1) 	W (0) 
X 	

3
'X 

,r„ 
W
2  ( 1 ) 	° (0 ) - C1,- /- 	, 

	

e 	 / W 
3, 	2 	XX 

2 ..- 	4L 3 	xx 

(12) 

(, r  

- Q2 	

r3 

 
INT (0) + W (0) = 0 

X 	
3,

XXX- 

	

( r 3 , 	2 	(r 	 7 
2\  r  2  
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The solution to the differential equatioas, Eqs. (7), is characterized 

by 

Wk  (X) 	Ak  sin kk X + 	cos k kX + Ak3X + - _t4 	 (15) 

(for k = 1,2 and 3 when bar 3 is in compression) and 



	

1,1
3
(X) - A

31
sinh k 3X + A

32cosh k 3X 4 A33X + A 34 
	 (16) 

(when bar .3 iJ in tension) 

	

The solut-  ivn for 	
k 
(X) 	is obtained from Fqs (6) 

  r
X 

W ') = 	 - 	 clY 
x 

	

Cr }:  (X - 	ke - 
	

2, 
 ) X - 2 
	k 

0 	,Y 

from which 

U
k (1) k 0 

A 2  (kk  + sin kk  cos k k ) 

\ 	1 2 - 	; Ak2  \ kk  - sin k k  cos k k) - 	Ak3
2  

-;---) A. 	A, 
4 	k 	K2 

- cos 2kk) 	K1 k3sin k 

+ A
i.) l 	

- t.ns k
k/ 

; 	k = 1,2,3. . 	k 

(for compres::i on  

and 

' 	1 	, 
1J,(X) = U

30 	\ 	

X 
-I 	--7,) X - 

2 j 	W 3
2  

dY  
X:" 	 0 	,Y 

(17)  

(18) 

(19) 



from which 

	

k
2 	

. 

	

3 	k t 3\ 2 t 
U
3 
 (1) 	1130 + 

X
2 	4 ) - 	A31  k + sinh k 3 cosh k 3

) \  

3 

2 	 • 	1 	2 

	

s —v , A32 	03 	sinh k 3  cosh k
3) 

- i A33 

.k 

\. 4 
--3 ) A3 A

32  '
` 1 - cosh 2k

3/ 
 , - A, A

33 
sinh k 3  

(20) 

4 A
32A3 . 

	 1 - cosh k3) • 

(for ten:; ion) 

	

Note that fur a frame of given structural !,eometry, 	Xk , 

	

- 	 - 	 - 

(E1) 1' P k' T 	and of given loading condition e l  , e 2 , Q„ Q2 

the response is characterized by the expression of equations (15),(16), 

(17) and (19) for both tension or compression in the horizontal bar, 

provided that the :appropriate constants are evaluated. 	These constants 

are: 	Uko  (k - 1,2,3), kk  (k = 1.2,3), Aki 	k = 1,2,3) and (i 	1,2,3,4). 

The total nuwher 	these constnris is 18. These constants are evaluated 

by using the fo[lowiui; 18 baundnry and joint conditions: three boundary 

conditions for (',1:11 or the two boundalies, Eqs. 8; six joint 3 conditions, 

Eqs. (9) and (10) for compression in bar 3 or Eqs. (9) and (11) for tension 

in bar 3; and six oint 4 conditions, Eqs. (12) and (13) for compression in 

bar 3, or Eqs. (12) and (14) for tension in bar 3. 



SOLUTION 

Regardles:. 01 whether the axial for•-e developed in bar 3 is tensile 

or compressive, the solution procedure is the same. Substitution of the 

expressions for W
k
(X) 	and 	U

k
(X) 
	

into the boundary and joint 

conditions yield a system of 18 nonlinear equations in 18 constants 

(U, 	, k. , and A. 	k = 1,2,3, and i = .1,2,3,4). 

	

, c) 	tt 	ki 

Out of the 18 tt ,.)nlinear equations, 15 are linear in 	
A i 	

and U
ko 

Those equations are then used to express 	U
ko 	

and 
	

Alei 
	as functions 

- (nonlinear) of the structural geometry ‘L k' Xk' rk , loading e l ,  e2, Q 	Q2 

and k
k 
	(a:;iat force parameter:; in the throe bars). The remaining 

three equations co.;Trise a s.ysrem of three highly nonlinear equations in 

lc (k 
	1,2,3). 

The above stp7 are not :liown herein for the sake of brevity. Only 

the three not 	-quations. fur each of the cases of tension lr 

pression in 	lt.:1 - i;:ontal bar arc shown because they aie used directly 

in the solution acuemc. ancsc egtnitions ore: 

(a) Compression  in har 3  

0 
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The solution to the three nonlinear equations, either Eqs. (21), 

(22) and (23) or Eqs. (21\,(24) and (25), is accomplished as follows: 

(a) first through the use of Eq. (21) one of the unknowns is eliminated, 

say k i  , and thus the system is reduced to two nonlinear equations in 

two unknowns, 	and k 3  ; • (b) next, the two equations are identified 

as 

= 0 

= 1,2; 	k = 1,2,3; 	and 	j = 1,2. 

(c) a new function, F, is obtained through 

2 	2 
F 	f

1 
+ 1

2 

(d) then, it is recognized that the solution (k 2 ,k 3 ) 	to the non- 

linear equations, Eqs. (26), for a given geometry and loading (X lc e j ,Q i , 

is the minimum of F in the space of k
2 

& k
3 

. Note that this rk"L k i)  

minimum is zero; (c this minimum is obtained by employing the simplex 

method of Nelder and Mead ( 4 ). To this end, a computer program is 

written and the results (equilibrium positions) are presented as plots 

of load versus some characteristic displacement. In the current study the 

joint 3 rotation is used. 

(26) 

(27) 



RESULTS AND DISCO ;S 

Numerical solutions are generated by employing the Georgia Tech 

high - speed digital computer CDC-Cyber 70, Model 74-28. Results are 

obtained for a square portal frame with equal bending stiffness (r4 
	Plc 

The effects of slenderness ratio , 

Xk 

of rotational restraint, B, 

and of load eccentricity, - 
, 

r. 	are studied for Q 1 	4  0. 

X
k 

= 60,90,120,1000 

e 2  - 0.001, 0.01, 0.03, 0.05 

= 0, 0.1, 1.0, 10, 100, 1000 

Note that 
	0 corresponds to the simply supported portal 

frame, while 
	B 	= 1000 approximates well the clamped portal frame 

( 	co 	)• 

Results are also generated for e i  = 0 for one particular geometry 

( S 	0  and X k 	= 1000). 

The results are presented in both tabular and graphical forms. All 

of the generated data are not presented herein iu order to save space. 

What is presented though serves to support the conclusions drawn from 

this investigation. 



In Figs. 2 through 5 the effect of load eccentricity is shown 

for 	X k  =' 1100 (very slender portal frame) and various amounts of 

rotational restraint. These plots of load 
	

versus joint 3 

rotation, 0l  , clearly show that sway - buckling of the corresponding 

perfect configuration ( 	-.. 0 ) is not characterized by unstable 

equilibrium position as suggested in Ref. 1 (p. 227) and that these 

frames possess postbuckling strength. As a matter of fact this impor-

tant conclusion is supported by the fact that such frames are ex-

tensively used is civil engineering structures. If they did not 

possess postbuckling; strength, they would be imperfection - sensitive 

and failures would occur at loads smaller than the linear theory bi-

furcation load. This result could be expected, if one reasons that 

a portal frame (for all 	5 ) must behave in a manner similar to a 

cantilever column, a configuration which is imperfection insensitive. 

Another observation is that the postbuckling equilibrium positiOns.  (see 

Fig. 2) for 	t, - 0 are characterized by compression in the horizontal 

bar. On the cohrrarv, when a load eccentricity is introduced (one-sided),the 

equilibrium positions are characterized by tension in the horizontal 

bar. It is also oHierved, that the curves corresponding to eccentric 

loading seem to Approach a horizontal asympotote corresponding to the 

bifurcation load (of the perfect configuration) rather than approaching 

the postbuckling 	= 0 curve. Finally, the generated data are con- 

fined to load and responses which comply with the limitation of the 

kinematic relations used (moderate rotations; 4; s  0.2 	so that y < < 1 ). 

It is seen from Figs. 3 - 5, that the response of the framefor 	# 0 	is 



similar to that corresponding to 	= 0, hut more load can be carried 

as the amount of rotational restraint increases. Fig. 6 shows a plot 

of Q
cr 	

(for 	e i  = 0) versus 	f; 	, for X
k 	

= 1000. As ex- 

2ected the two end values ( 	-4 0 and 	$ 	) correspond to the 

critical values obtained from a linear stability analysis ( 	= 1.82 
cr 

and 7.344 respectively; see Ref. 6). When the sign of the eccentricity 

is taken to be negative, the response is exactly the •ame, except that 

the frame bends in the opposite direction (data not shown herein) 

Table 1 shows the results corresponding to the postbuckling curve 

of the perfect configuration (see Fig. 1). For different values of 

the load Q , this table shows the corresponding values of the compressive 

loads in the three bars ( k l , k 2, k
3
) and the rotations at joints 3 and 4 

( 	4)1 
	andY-2 	respectively). Note that as the applied load increases 

bar 2 carries more and more of the load. Note also that the roles-of bars I 

and 2 can be interchanged provided that the roles of of:4) 1  and cp 2  are also 

interchanged accompanied by a sign change, when both eccentricities are negative. 

Table 2 depicts the effect of slenderness ratio X
k 
	on the frame 

response for various eccentricities and S j 0 . [t is clearly seen from 

this table that this effect is negligibly small. This is true also for 

all 	f; -values. Therefore the curve of Fig. 6. holds for all slender- 

ness ratios. 

CO:4;LUSTONS  

Among the most important conclusions one may list the following: 

1. Elastically restrained (against rotation) rigid-jointed portal 

frames are not sensitive to load eccentricities, when loaded transversely 

by concentrated loads at of oear the rigid joints. 



Table 1. Postbuckling Equilibrium Positions 

(t.
1 
 = 0, X

k 
= 1,000; 0 = 0) 

     

   

k
2 

 

  

   

   

	

1.830 	1.33246 	1.37279 	0.000345 	-0.00524046 	-0.00377101 

	

1.831 	1.33165 	1.37430 	0.000344 	-0.00558369 	-0.00394151 

	

1.832 	1.33092 	1.37574 	0.000342 	-0.00590593 	-0.00409505 

	

1.835 	1.32902 	1.37975 	0.000334 	-0.00680231 	-0.00449089 

	

1.860 	1.31996 	1.40631 	0.000303 	-0.0126896 	-0.00617815 

	

1.890 	1.31510 	1.43196 	0.000340 	-0.0182481 	-0.00670515 

	

1.940 	1.31197 	1.46926 	0.000360 	-0.0260824 	-0.00620550 

	

2.200 	1.3i983 	1.63035 	0.000342 	-0.0566774 	+0.00608078 

)3 



0.4 

0.3 

1.0 

1.2 

1.4 

1.6 

1.7 

Table 2. Effect of Slenderness Ratio, X ic. 

 (Simply Supported Frame, ; = 0) 

li31 1 X 10` 

X 	= 40 	 X. 	.. 	120 
1 	

X 	= 	1,000 

e 	= 	.001 e 	= 	.01 e 	= 	.03 e 	= 	.05 I  e = 	.001 e 	= 	.01 e 	= 	.03 e 	= 	.05 e 	- 	.001 e 	= 	.01 	4 	e 	= 	.03 e = 

..':0= C.35 0.105 ,J.176 0.003 0.035 3. 1(Y+ 0.173 n.003 0.035 0.10:. 0.1 

0.007 0.073 0.220 0.367 0.007 0.072 0.217 0.362 0.007 0.072 0.217 0. 

0.012 0.116 0.349 0.582 0.011 0.115 0.344 0.573 0.011 0.114 0.343 0.: 

0.017 0.157 0.500 0.332 0.016 0.165 0..92 0.819 0.015 0.164 G.491 0.1 

0.023 0.230 0.688 1.144 0.022 0.225 0.675 1.124 0.022 0.025 0.674 1.1 

0.032 0.317 0.950 1.560 0.031 0.310 0.925 1.543 0.031 0.310 0.926 1. ∎  

0.046 0.463 1.382 2.291 0,045 0.452 1.347 2.233 0.045 0.450 1.343 2.: 

0.084 0.834 2.46R 4.066 0.080 0.801 2.371 3.904 0.080 0.797 2.359 3.1 

0.142 1.466 4.328 7.230 0.138 1.372 4.150 6.702 0.138 1.361 4.009 E,.1 



2. As expes:ted, the greater the amount of rotational restraint the 

greater the buckling load (sway buckling) for the perfect configuration. 

3. The effect of slenderness ratio (same for all three bars in this 

study) is negligibly small. 

4. When tie eccentricities are one-sided (both positive or both 

negative) the horizontal bar is in tension. When there is no eccentricity 

the postbuckling curve is characterized by compression in the horizontal 

bar. 
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Kev Words: Nonlinear Stability Analysis, Buckling of Frames; Eccentrically 

Loaded Frames; Portal Frames; Rotationally Restrained Frames; Sway-buckling. 

Abstract: The problem of sway-buckling of an unbraced, rigid -jointed, 

eccentrically loaded and elastically restrained portal frame is considered. 

The analysis is based on nonlinear kinematic relations (moderate rotations) 

and on linearly elastic material behavior. The effects of load eccentricity, 

amount of rotational restraint and bar slenderness ratios on the response 

charaCteristics of the frame are assessed. Among the most important con-

clusions of the investigation one may list (a) Portal frames are insensitive 

to load eccentricities (stable postbuckling branching) (b) the effect of 

slenderness ratio is negligibly small and (c) the larger the rotational 

restraint, the greater the buckling load (for the perfect configuration - 

zero load eccentricity). 



NONLINEAR ANALYSIS OF PORTAL FRAMES
+ 

By George J. Simitses
1
, Jagannath Giri

2
, and Anthony N. Kounadis 3 

INTRODUCTION  

A kinematically nonlinear analysis of an unbraced portal frame, which 

is elastically restrained at the base against rotation and loaded through 

eccentric concentrated and/or uniformly distributed loads, is presented. 

Through this analysis, it is intended to assess the effect of load eccen-

tricity, member slenderness ratio and amount of rotational restraint on the 

frame behavior. It is well known that, when portal frames are loaded as 

stated above, they deform in a symmetric mode and then at some level of the 

load a bifurecation (smooth buckling) occurs into a sway-buckling mode. 

Many analyses have been reported in the open literature (see Refs 1, 3 and 

6 for a comprehensive historical sketch) which predict the bifurcation load, 

but through the present analysis the complete postbuckling behavior is ob-

tained. This enhances our understanding of frame behavior with regard to 

the questions of imperfection sensitivity. Moreover, the present analysis 

and solution methodology are general so that one can easily study the ef-

fects of nonuniform geometry including variable frame bar lengths, exten-

sional and flexunal stiffnesses. 

MATHEMATICAL FORMULATION  

Consider the frame shown on Fig. 1. Each bar is of length tk , cross-

sectional area A
k
, and cross-sectional second moment of area I k . The in- 
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Figure 1 Geometry and Sign Convention 



plane and transverse displacement components are denoted by u
k 

and w
k' 

and 

the sign convention is shown on the figure. The for-ling system consists 

of a uniformly distributed load q 3  and two concentrated loads Q 1  and Q2 

 applied eccentrically as shown. The eccentricities, e
i' 

are shown in the 

positive direction on Fig. 1. The rotational restraints at the supports 

are denoted by 13 1  and 13 2  and the joints by 1, 2, 3 and 4. The material 

behavior is assumed to be linearly elastic. 

First, the following nondimensionalized parameters are introduced 

rk  = OEI\( /(EI) 1 ; pk  = ik // 1 ; X = x/ik l 

Uk  = uk /pk ; Wk -  wk /Ak ; pk  = Ik /Ak ; X k  = I k/Pk ; 

2 
k
k 

= - (Pk 
k  2
)/(EL)

k 
 (+ for tension; P

k 
positive; - for compression, 	(1) 

P
k 

negative; P
k 

torce in the bar; Qi=  (Q..e )/(EI) 1  ; 1  

. = e.// 1 , Ti  = i 2 1 
 /(EI) 	i = 1,2.; q k 

 = q
k  tk

/(EI)
k 

(Note q
1 

= q
? 
 = 0). 

Equilibrium Equations  

Considering the possibility that bar "3" can be either in tension or 

in compression, while bars "I" and "2" are always in compression, the equili-

brium equations and the associated boundary and joint conditions are given by 

In-Plane Equilibrium  

1 2 
+ 2 
— W 	

k k,X = -k
2 /X k , k = 1, 2, 3 (compression) u

k,X 	 k  

(2) 

U
3 ,X + 1/2 W

2
3,X = k

2
3 /X

2 
(tension) 



Transverse Equilibrium 

2 
kk Wk, XX m : 

k = 1,2,3. Compression) w
k,XXXX 

2 
W
3, XXXX 	k3 W3, XX = q 3 (Tension 

Boundary Conditions  

1. U 1 (0) = 0 ;  w (o) = 0; w 0 ) - 	w 	(0) = o 
' 	 1 XX 	1 1,X 

2. U
2
(0) = 0; W

2
(0) = 0; W (0) -W

2,X
(0)=0 

2 XX 

Joint Conditions  

Joint 3. U 1 (1) + W3
(1) = 0; W 1 (1) -U

3
(1) = 0; W1,x(1)  - W3,x(1) 	0 

W 1,XX (I) 	(r3143) W
3 (1) = 0 

k21 - Ti t  - (r 3/423  tk W3 A1) + W3, (1) I = 0 

+ ( r 3 	k2
3 
 + 

[k21,X 
 (1) + W

1,X (XX 
1 ) 	= 0 

- — 	1 2 ' 
11 3 

1 + : compression 
\- : 	tension 

Joint 4. U
2
(1) + W3 (0) = 0; W 2

(I) - U
3
(0) = 0; W

2,X 
(1)-w3,X (0)=0 

r 

e22 1) w 3 (,1)01 	( 2 ^ W 2,XX (1)  = 0 

(3) 

(4) 

(5) 

(6) 

(7) 



W 3 (X) = A31  sink k 3  X + A32 
cosh k

3
X + A

33 X+ A34 - 	2 
2k

3 

3
*
X
2 

\ r 
(0) + 	0) 

	

(r2 2 	
(47)  Lt 	

J' ( j = 0 
XXX 

	

k2 	2 	
P3 

+ ( 1 
 4
3'\ 	2 	( 1. 2 	2 

	

k 3 	k2 W2,X(1) 	W2, (1)  ' 	2 
= 0 

The solution to the equilibrium equations, Eq. (2), is characterized by 

bar in compression 
* 2 

clkX  Wk  (X) 
A kl sin  kk x + A k2cos 1ck X + Aux + A 

-- k4+   2kk  

2 

k2
1 w2

,Xdx Uk (X).- U ko 	 2 0  k 
X k 

k=1,2,3 

bar in tension (only bar "3") 

2 
k
3 

U
3 

(x) = U
30  + Tz X - 2-

1 
J
.X 

WkocdX 
3 	0 

(8) 

(9) 

Note that when bar "3" is in compression Eqs. (8) characterize the solution 

(for k = 1,2,3), while when bar "3" is in tension the solution is character-

ized by Eqs. (8) for k = 1,2 and Eqs. (9). Furthermore note that the solu-

tion contains 18 constants, which for every load level and for a specified 

geometry must be obtained from the 18 boundary and joint conditions, Eqs. 

(4) - (7). These 18 constants are: U
1(0 

(k=1,2,3), k
k
(k = 1,2,3) and A

ki 

(k= 1,2,3 and i = 1,2,3,4). Moreover, if one is interested in finding all 

equilibrium positions, for a wide range of load values, we must solve the 

resulting inhomogeneous nonlinear system of 18 equations in 18 constants, 

and then plot these positions in a load-deflection curve. In so doing, 

0. 



it is found that the constants U
ko 

and A
ki 

(fifteen) appear in a linear 

sense and then can be eliminated, thus leaving three nonlinear equations 

in kk . (The details are not shown herein for the sake of saving space). 

Then, one must solve these nonlinear equations in order to completely char-

acterize the response of the frame (the procedure is outlined in a later 

section). 

From an academic point of view, by following the above procedure one 

should be able to start with low value for the applied loads and obtain the 

primary response, then at a point of bifurcation, he should be able to solve 

for both the primary response as well as the branched path. Thus he should 

be able to obtain the buckling load (bifurcation load) as well as the post-

buckling behavior. Unfortunately, because of the nonlinearity of the res-

ponse this procedure is difficult to implement, unless one can establish the 

bifurcation point. For this reason one must derive the associated, buckling 

equations, and incorporate their solution into the overall solution scheme. 

Buckling Equations  

The buckling equations and the associated boundary and joint condi-

tions are obtained from Eqs. (2) - (7) by replacing Wk  and Uk  by Wk  

and U k + Uk  where W
kc 

and
k 

characterize displacement components on the pri- 

mary equilibrium path, and W k 
and U

k 
characterize kinematically admissible 

displacement components (buckling modes from the primary path). 

Buckling Equations 

= C; 111‹, x 	k0( 	k/x 2 

Wk, XXXX — T Wk,XX k,XX = ak Wk,XX 

( 10) 

• 	U. 



where 	is the axial force parameter in the bar for primary path equilibrium 

positions; the positive sign is used when there is compression in the 

bars (primary path), and the negative when there is tension a k  

2 
Ik)/(EI) k  and it can be either positive or negative regardless of 

whether the bar is in tension or compression in the primary path, and 

2 	2 -- 
kk = kk + 

a lc; negative sign used when the primary path axial force in 

the bar is compressive and the positive sign when it is tensile; since 

this affects only bar "3" one can write 

2 2 - k
k 

 k
k 

- o
k 

k = 1,2 and 

2 
- k

3
2  = k

3 
- o 3 	

compr. in bar "3' (primary path) 

2 - 2 - 
k3 = k 3 

+ a 3 	tension in bar "3" (primary path) 

Boundary Conditions 

171 (0) = W 1  (o) =V.7 1,  (0) - 	 = 0 
XX 	X 

L^f 2 (0) =
2 

(0) =
2 '

0 - p 2  w (o) = o 
xx 	x 

Joint Conditions 

Joint 3:U 1 (1) +  W3 (1) = '177
3
(1) - 1 (1) ='

,a
1,
(1)4

3,
(1) = 0 

X 	X 

r l  
14, (1) + 	)1'4, (1) =0 
''XX 	-",3 	' , XX 

,r 	2  
-o

J. 
 - 	L+Tc 	-c; igi, ()1(  + 	)00 

2 	- 3 3,
( 
 x 	

+ 0 
3 

'x 
+ 14 1 	(1)=0 

'XXX 

1.  

2. (12) 

(13) 

Kr
„ 

 

-2' :75 	k W (1) 
2 	311 - 11 

'X 

	

Cr' W 	(1) 

3 



	

+ : 	Compression 

tension in 

Joint 4: 	i 2
(1) + V4

3
(0) 

— 

	

/
r
3 	W 	(0) 

3 ' 

	

`,/
3 	

/ 	XX 

/ r 3 ) 
( --i) G 2 

	

I-L 2 	3 

in bar "3" (primary path) 

bar "3" (primary path) 

	

= 1.1
3
(0) 	- W2 (1) 	=(1) 	- 

	

2, x 	3, 

- ( r 2)442 	(1) 	= 0 
\4 3 , 	' XX 

[
+k 

 -2— 
W 
 (0) 	(0) 	4  

	

T6--• 

3 , 	u, - 3 	3,X 	3 3 px 

t;  

(0) = 

0  

0 

(14) 

t r 3  
2 

k2 	a 2W2 (1) +W 2  (1) 	=0 
Ps 	P'2 	 X 	'XXX 

+ 	compression in bar "3" (primary path). 

tension in bar "3" (primary path). 

The expressions for the solution to the Buckling equations, Eqs. (10), 

for each bar and each case of tension or compression is characterized by 

bars "1" and "2" (in compression) 
_ 	 „„ 

Wk (X) = A
kl 

sin kkX + A_ 
2
cos kkX + Ak3X + Ak4  

k 

— 

+ a k  x (A 
k2 

 sin 1 	
- kl 

c. x - 	coS kk X ) 	 (15) 

2Ek  

X 

riT (x) = U +cr x 	r 	k 	dx; k = 1,2 k0 k 	0  W
k 
	'X 

X k 2 

bar "3" (in compression) 



(X ) 
	

3 1 
Sin k 3X + A32  cos k3  x + A33  X 

32 sin k
3 X - A cos i x + q3X  

	

31 	3 

k
3 

X 
U (x) = U 30 + -5 3X  - S 	dX . 3 	

Xi 	0 
3
'X 

3
'X 

bar "3" (in tension) 

W3  (X) = A31  sin h k3  X + A32  cos h i3  X +133  X 4-1
34 

+ (33X (A
32 

sinlik
3 
 K + A

31 
cosh i

3 X + (1 3)C  
2k 3 	

_3 
k
3 

— 	 ?I' 3X 	X  
U
3 
X = U30  + ;1 3 	dX • 

	

3 	0 	'X 'X 

where k
k 

denotes the axial force parameter at the primary path (solution to 

equilibrium equations) and Aid  and Ak2  are the constants of the primary path 

solution to the equilibrium equations. 

Note that the solution to the buckling equations contains 18 constants 

Uko' G  k , Aki ; k  = 1, 2, 
3 and i = 1, 2, 3, 4). Moreover, the boundary and 

joint conditions result into a system of 18 linear homogeneous algebraic equa-

tions in the 18 constants. For a nontrivial solution to exist, the determinant 

of the coefficients must vanish. The vanishing of the determinant yields the 

critical load condition (characteristic equation). The derivation of and the 

determinant are not shown herein for the sake of brevity. 

SOLUTION  

Regardless of whether the axial force in bar "3" is tensile or compressive, 

+ o X 
21Z3 

(16) 



the solution procedure is the same. This procetilre consists of the folloy 

steps: 

(1) Substitution of the expression for W k  and Uk  into the boundaI 

joint conditions yields a system of 18 nonlinear equations 

constants (Uko , kk , and Aki ; k = 1, 2, 3, and i = 1, 2, 3, 4). 

(2) Since 15 of these equations are linear in U ko , and ski , 

of these constants yields a system of three nonlinear equations 1r 

kk  as well as in the structural geometry, 4 k , X k , rk , 	and in the 

loading parameters, e l,  e2, Q
1 , Q2 , and q . 

(3) One of the three nonlinear equations contains only k 2' 2 k
2

' 
 the load- 

l 

ing parameters, and the geometric parameters. This equation is then 

used to eliminate one of the k's, thus leaving only two nonlinear 

equations to solve for the response, say 

* 
f (k k X ,r ,4 ,6 e.,Q ,q ) = 0 
i 2' 3' 	k k j' 	j 

(18) 

k= 1,2,3; j = 1,2; and i = 1,2. 

(4) For every level of the load parameters, Eqs. (18) are solved by find- • 

ing k
2 

and k
3 
values for which 

F = f
2 
+ f

2 
1 	2 

is a minimum in the space of k 1 , k 2 . Note that this minimum is z,:ro. 

The simplex method of Nelder and Mead (5) is employed in obtaining 

the minimum value of F and the minimizing values of k2  and k3 . 

(5) At each load level, use of the eliminating equations yields the cor-

responding values for k 1 , Uko  and Aki . Thus the complete equilibrium 

response is obtained. 

( 1 9) 



(6) Evaluation of the determinant at each load level establishes the 

position of the bifurcation point (determinant equal to zero). 

(7) Once the bifurcation point is established application of steps 3) -5), 

with slightly lower or higher values for the applied loading, pro-

vides a point on the bifurcation branch (postbuckling equilibrium). 

Then through small changes in the applied loading the remaining 

postbuckling equilibrium points are obtained. 

(8) The complete behavior then is presented as a plot of load para-

meter versus some characteristic displacement. In the present 

work the joint rotations are used for this purpose. 

Note that for some load cases, such as eccentric concentrated loads on 

the same side (both eccentricities the same) there is no bifurcational 

buckling. In those cases equilibrium behavior is established through 

steps I) through 5) plus 8). 

RESULTS AND DISCUSSION  

Numerical solutions are generated for a square portal frame with equal 

bending stiffnesses and slenderness ratios (r k  = µ = 1; X, = X 2  X 3  = X), 

by employing the Georgia Tech high-speed digital computer CDC-Cyber 70, 

Model 74-28. 

The primary reason for the chosen examples is to enhance our understand-

ing of frame behavior and to assess the effect of certain geometric parameters 

such as slenderness ratio, X, amount of rotational restraint 03 1 
= IT) 2 = 

and load eccentricity (e.). 

The results are presented and discussed separately according to the load 

cases and amount of rotational restraint. 
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A) Rotationally Restrained and Symmetrically Loaded Frame Through 

Eccentric Concentrated Loads. 

In this case results are generated for the following parameters. 

-e = e2  = e = 0.001, 0.005, 0.010, 0.03, 0.05, 0.07, 0.10. 

:4 1  - 	= 	= 0, 1, 5, 10, 100, 1000. 

r. = 40, 80, 120, 1000 

The results are presented, in part, graphically on Figs. 2, 3, 4 and 5 

for this example. The conclusions though are based on all generated data. 

For all combinations of rotational restraint, 8, and eccentricity e, it 

is observed that the effect of slenderness ratio, X, is insignificant. This 

means that the nondimensionalized results are not affected by variations in 

X-values. Because of this, data are presented only for X = 1000 (extremely 

slender bars), but the results are applicable to all other values for X. 

Figure 2 shows plots of Q versus joint "3" rotation, cp i  [y i  = 

for 8 = 0, 5, and 1,000, and e = 0.01. The case of 8 = 0 corresponds to the 

simply supported case, while the case of 	= 1,000 approximates well the 

clamped case. These plots represent equilibrium positions on the primary path 

as well as the post Buckling brandA (sway-buckling mode). The solid curve 

characterizes compression in the horizontal bar (bar "3"), while the dashed 

line curve characterizes tension in the horizontal bar. Moreover, it is seen 

from this figure that postbuckling behavior suggests that frames are imperfec-

tion insensitive, and their postbuckling behavior is similar to that of a can-

tilever column. Therefore, the sway-buckling load (bifurcation point) is a 

measure of the load carrying capacity for a symmetrically loaded unbraced por-

tal frame. Similar curves are obtained for the various eccentricities, but 

are not shown herein, for the sake of saving space. 



Figure 3 Effect of Rotational Restraint on Critical Load 

(-e l  = e 2  = 0.01; X k  = 1,000; r k  = 1; µ k  = 1) 
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Eccentrically Loaded Supply Supported Frame with Unequal 

Eccentricities. 

In this case results are generated for the case of two equal 

magnitude (Q
1 
= Q

2
) concentrated loads being applied at 

= -0.015, e 2  = 0.005), (e l  = -0.020, e 2  = 0), and 

(e l  = -0.025, e 2  =-0.005). This is done to find the effect of 

moving both eccentric loads to the right by the same amount, 

starting from the symmetric load case of e
1 
= -e

2 
= -0.010. The 

results are plotted on Fig. 6 as Q versus y i . As expected, there 

is no problem of buckling, but the response is such, that the 

frame cannot carry a load higher than Q cr  for e, = e
2 
 = -0.010. 

In all three cases of eccentricities considered as the load is 

increased quasi-statically from zero, the response is characterized 

by compression in the horizontal member. As the load approaches 

the bifurcation load for the symmetric loading (e
1 
= -e

2 
= -0.010) 

the response is characterized by tension in the horizontal bar and 

the curves seem to approach a horizontal asymtote Q = bifurcation 

rather than the postbuckling curve. 

Simply supported Frame Loaded by a Uniformly Distributed Load and 

Two Eccentrically Applied Concentrated Loads. 

For this particular example only one eccentricity set is 

used, e = e
2 
= - 0.010, and X = 1,000. Because both eccentricities 

are of the same sign, there is no buckling problem. The total 

transverse load is denoted by 2Q' 

where 

2Q' = 2Q + q* 
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Furthermore q is expressed as a multiple of Q or q = AQ. Thus, 

Q 1  = (1 + 

Different values of A are used, in an effort to cover the 

entire range of combined loads from virtually only concentrated 

to the case of only distributed. The A - value used are 

A - 0, 0.5, 2, 5, and 40 

The results are presented graphically on Fig. 7, as plots 

of Q 1  versus cp 1 . It is clear from this plot that, all five curves 

tend to approach asymptotically horizontal lines characterized 

by different but close values for Q'. The higher the value of 

the concentrated load - smaller A - the higher the level of the 

asymptote. Note also that, when q is zero (A = 0) the response 

of the frame is characterized by tension in the horizontal bar. 

On the contrary, as q increases the horizontal bar is in compres-

sion. Finally, when the greatest contribution is provided by 

the distributed load, (A = 40) the value of the assymptote is 

Q 1  = 1.754, which agrees well with the value of 1.787 given by 

Le-Wu Lu (4). 

CONCLUSIONS 

It is important to continuously be aware of the fact that conclusions are 

based on the generated data, and therefore they should not be generalized or 

considered to be applicable to all other situations. 

On the basis of the analysis performed and data generated one may list 

the following as important conclusions. 

1) A methodology has been developed and demonstrated for analyzing 

completely an unbraced, rigid-jointed, portal frame subjected to 

L 



eccentric concentrated loads (near the joints) as well as uniformly 

distributed loads. The method is based on linearly elastic behavior 

and nonlinear kinematic relations, and provides a complete picture 

of the frame response including postbuckling behavior. 

2) The effect of slenderness ratio, A k , of the bars on the nondimension-

alized response characteristics (including critical loads) is insig-

nificant. 

3) Increase in the amount of rotational restraint p , has a stabilizing 

effect (the larger the f, the larger the sway-buckling critical load). 

on the frame. 

4) The postbuckling response is stable (similar to that of a cantilever 

column) and it suggests that the configuration is insensitive to 

initial imperfections. This is demonstrated for imperfections of the 

load eccentricity type. 

5) The horizontal bar can be either in tension or in compression depend-

ing on the type of loading (including eccentricities) as well as on 

the level of the loading. 

6) For symmetrically loaded frames, as the load moves towards the center-

line of the frame its critical value for sway-buckling decreases. The 

amount of decrease is very small though. It is also suggested, from 

the present results that when the concentrated loads are replaced by 

a statically equivalent distributed load the critical value is slightly 

smaller (than (5 crwith zero eccentricity). 

7) For rotationally restrained frame, as the amount of rotational restraint 

is increased the postbuckling branch becomes flatter (see Fig. 2.). 
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ABSTRACT: A kinematically nonlinear analysis of unbraced, rigid-jointed, 

portal frames, rotationally restrained at the base and subjected to eccen-

tric concentrated and/or uniformly distributed loads, is presented. Through 

this analysis the complete behavior, including the primary path, and post-

buckling path (whenever it exists), is evaluated. Moreover, through parame-

tric studies, the effects of bar slenderness ratio, load eccentricity, and 

amount of rotational restraint are assessed. Through this method it is al-

so possible to assess the effect of member lengths and member bending stiff-

nesses. 

Key words: stability of frames; unbraced frames; sway-buckling of frames; 

postbuckling analysis; bifurcational buckling; portal frames; rotationally 

restrained frames. 
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Abstract  

The problem of nonlinear analysis, including sway -buckling of unbraced, 

rigid-jointed, and elastically restraint (against rotation) portal frames is 

considered. The analysis is based on linearly elastic material behavior and 

nonlinear kinematic relations. The analysis considers uniformly distributed 

loads, eccentric concentrated loads in the transverse direction, as well as 

horizontal concentrated loads. Results are presented for the uniformly distri-

buted transverse loading and variable geometry for the three bars. The effects 

of amount of rotational restraint and bar slenderness ratio are fully assessed. 

The variable geometry includes symmetric and nonsymmetric constructions. Among 

the most important conclusions of the investigation, one may list the following: 

(a) symmetric portal frames, loaded symmetrically buckle through a stable 

bifurcation (sway-buckling) from a bent symmetric equilibrium configuration 

(b) nonsymmetric portal frames are not subject to instability; their response 

is similar to that of imperfect colums, and (c) the effect of the bar 

slenderness ratio on the nondimensionalized response parameters is negligibly 

small. 

I. INTRODUCTION 

Buckling of portal frames is of considerable interest to the practicing 

engineer, and numerous investigations on the problem have been reported in the 

Professor of Engineering Science ald liechanics 
++ Research Engineer; School of Engineering Science and Mechanics 



open literature. For a fairly complete bibliography, the reader is referred 

to Refs. 1 and 2. 	In most analyses presented, the emphasis is on finding 

the bifurcation load. Mere are virtually no postbuckling analyses and very 

few dealing with nonun iform  geometry. The problem considered herein deals with 

the nonlinear response of a portal frame of nonuniform geometry (variable bar 

lengths and st iffnesses constrained by elastic rotational springs at the base 

and loaded transversely by a uniformly distributed load and eccentric concen-

trated loads and, horizontally,  by a concentrated load. The analyst. is based 

on nonlinear kinematic relations and linearly elastic material behavior. The 

emphasis in the presented work is to outline the methodology for this non-

linear behavior and to assess the effect of various geometric parameters (stru-

ctural geometry) on the response characteristics of the frame. Finally, the 

compl,ste set of the nonlinear governing equations is presented and these may 

be employed by any interested person to deal with the geometry of his choice. 

II. 	 IC A I. 1'010411.AT TON 

Consider the frame shown on Fig. 1. Each har is of length, Lk , cross-

sectional area , A k , and cross - sectional second moment of area
, 

I
k

. The sign 

convention associated with the bar in - plane and normal displacement components 

u
k 

and w
k' 

is given on Fig. 1. At the base, the frame is supported against 

translation and constrained by elastic (linear) rotational springs. The loading 

system consists of a uniformly distributed load on bar 3, q 3 , eccentric concen-

trated loads Q i , ithe eccentricity is positive in the positive direction of the 

coordinate system) and a horizontal concentrated load F 1 . 

First, the following nondimensionalized parameters are introduced. 
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II --1 Equilibrium Equation  

The equilibrium equations for each bar are given below (note that it is 

possible for bar 3 to be in tension, therefore equations for both possibilities 

art given). They are obtained by employing the principle of the stationary 

value of the total potential (see Ref. 2). 
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Regardless of of tension or compression in bar 3, the solution to the 

equilibrium equations contain 18 constants (Uko , Aki , kk , k 	1, 2, 3 and 

i 	1, 2, 3, 4). these constants are evaluated from the six boundary condition, 

Eqs. (4), and the twelve joint conditions, Eqs. (5) and (6). Elimination of 

(6)  

(7)  

(8)  



all constants that appear in a linear manner (U ko and A ki) yield a system 

of three nonlinear equations in kk . These are next given for the cases of 

compression and tension in bar 3. From one of them k 1 can be expressed in 

terms of k2  and thus the governing equations become two. 
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for this case, are: 
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Buckling  Equations  

The buckling equations and the associated boundary conditions can be 

obtained by the Trefftz criterion (see Ref. 3). Equivalently, they are 

.t obtained from fAs. (2) - (6) by replacing W k  and 	by Wk.+ Wk and il k  + k  

respectively. The parameters W k 
and 0

k characterize displacement components 

At/ 

on the primary equilibrium path, while W k  and Uk  characterize kinematically 

admissible displacement components (buckling modes from the primary path). 

Again here, the di:Ainction between the c'scs of compression or tension on 

bar 3, at the Instant of buckling, must he made. These equations are; 
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where + 	compression in bar 3 (on the primary path), 

tension in bar 3 (on the primary path), 

a • im (1)kk)/(E1) k 
and it can be either positive or negative 

Pk 
is the additional axial force in the kth bar corresponding to the 

kinematically admissible displacements U k 
 and Wk, and 
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(tension in bar 3). 

The solution to the buckling equations is given by 

(a) bars 1 and 2 (k = 1, 2) 
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..(c) bar 3 in tension 
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► tote that iCk  denotes the axial force parameter at the primary equilibrium 

path at the instant of buckling, and Am  and Ak2  are the values of the constant 

to the solution of the equilibrium equations, Eqs. (7) and (8), on the primary 

path at buckling. 

There are 18 constants in the solution to the buckling equations, Uko . 

Aki , and a k  (k = 1, 2, 3, and i = 1, 2, 3, 4). The number of boundary and 

joint conditions is also 18. Moreover, when the solutions, Eqs. (23) and (24) 

or Eqs. (23) and (25), are substituted into the boundary and joint conditions, 

a system of 18 linear homogeneous algebraic equations in the 18 constants is 

obtained (actually 16 because two constants arc zero; U
10 
 a U

20  a 0). For a 

nontrivial solution to exist, the determinant of the coefficients must vanish. 

This yields the characteristic equation. The solution of the characteristic 

equation leads to the critical load condition. 

Instead of defining the elements of the 16 x 16 determinant, the 16 linear 

homogeneous equations are presented, which lead to the construction of the deter 

(24) 
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When the upper term (in parenthesis) is used, the equation corresponds 

to compression in bar 3, and the lower to tension. Clearly, then, if either 

a bifurcation point or a limit point exists, the critical condition and the 

corresponding system response can he obtained from the simultaneous solution 

of the determinant (characteristic equation) and Eqs. (9) and (10) or Eqs. 

(14) and (15), for a given load condition. For example, if Q
i

• 

 ∎  f
i 

■ 0 then 

the solution yichk q
3

,  k
2 

and k 3. Once these quantities are known, one 
C r 

can solve for all the remainin g; constants. Moreover, if one is interested in 



the shape of the buckling mode, 15 of the 16 dependent equations, Eqs. (26)-(41' 

can be used to solve for all buckling mode constants in terms of one of them. 

On the contrary, if there is 	no possibility of instability, the stable 

response can be obtained from either Eqs. (9) And (10) or Eqs. (14) and (15) 

• 
for any level of the applied load. The key, though, to obtaining a solution, 

for either case, itc the capability of solving n system of two or three non-

linear equations. 

III. SOLUTION 

Regardless of the case, the solution to the system of nonlinear equations 

is obtained as follows: Let the three (at most) equations be denoted by 

k3 , A, reom.) - 0 

91. 

	 k 3 , A, geom.) ■ 0 
	

(42) 

1
(k

2' 
IC
11 

A, geom.) = 0 

where A is some load parameter (for the c;Ise of () i. 	p i  - 0, A ∎  

Then, construct a new function, F, defined by 

3 
 F ■ E f i
2  
 (43) 

.1 ■ 1 

If a solution exi.;1, for Eqs. (42), then it corresponds to the minimum of F 

in the space of k
2' 
 k

3 
and A 

cr 
 . The minimizing values for F, which also re- 

present the solution to Eqs. (42), yield E min.  = O. The simplex method of 

Nelder and Mead (102f. 4) is employed in obtaining the minimum value of F 

and the minimizilo; values of k,, k
3 

and A 
Cr

. Because of the nonlinear 

character of Eqs. (42), it is not unusual to have more than one solution for 

the system. The •:elution, then obtained by the simplex method depends upon 

the starting point in the minimization procedure, and therefore, one is 



never certain of the correctness of his solution. Because of this difficulty 

the following procedure is employed: 

(1) Assign a small value for the load parameter and solve the equilibrium 

equations for k 2  and k 3 , through the simplex method. 

(2) Use the expression for the constants and solve for the complete 

response of the system for this load value. 

(3) Choose some characteristic displacement, and obtain its value. 

The one chosen in this investigation is the rotation at joint 3, tdP 

(44) 

(4) Increase the load and repeat steps (1) through (3). Use as initial 

values in the simplex method the values of ic
2 

and k
3 
exactly or near the 

solution obtained for the previous load value. 

(5) At each step check the value of the determinant. If there is a sign 

change, then there is a bifurcation load between the two loads at which the 

sign change tock 

(6) By adjusting the load increments (load steps) find the value of A . 
cr 

(7) Use the same equilibrium equations and obtain, as in steps (1 ) 

through (3), a point on the postbuckling branch. 

(8) If the postbuckling point corresponds to a load level higher than 

A 
cr 

(this is the case in the present investigation), then by small increments 

in A obtain the remaining postbuckling curve. 

:hus, the complete response of the system is known (primary path as well as 

postbuckling p:Ithl. Note that in steps (I) through (8) both sets of equations 

are checked (compression and tension in bar 3). It just happens that in the 

generated data, bar 3 is always in compression. One should not expect this 

to be always true. 



IV. RESULTS' AND DISCUSSION 

Numerical solutions are generated for a frame acted on by a uniformly 

distributed load applied transvccsly on bar 3, and of various geometric 

parsleters. F-'ch case is described and discussed separately. 

The Georgia Tech high speed digital computer CDC-Cyber 70, Model 

74-28, is employed for data generation. 

The first geometry consists of a square frame of uniform geometry and 

equal amounts of rotational restraint (r k  = 1L k  .• 1, X ic 	X, 5 1 	52  . 5). 

The results are presented graphically on Figs. 2 and 3. On Fig. 2 the 

response of the frame is shown as plots of q versus "joint 3" rotation, 

for three values of 	Both the primary path as well as the frame post- 

buckling behavior are shown. Note that 	o corresponds to simple 

supports, while t3 ■ 1000 is a good approximation for the clamped support 

case- The bar slenderness ratio values used are, 40, 80, 120, and 1000. 
• 

The results reveal that the effect of bar slenderness ratio,A, on the 

nondimensionalized response characteristics is negligibly small. Thus, the 

data shown on Fig. 2, is applicable to all 	as long as the material 

behavior is linearly elastic. On rig. 1 , the bifurcation load (sway-buck-

ling load) is plotted versus the amount of rotational restraint. 

The second case consists of a symmetric simply supported portal frame 

(r
2 	

W.2 
.., 1) aia which the length, as well as, the flexural stiffness of the 

horizontal bar are varied (i 3  = 0.5, 1.0, 1.'"), 2.0, 2.5, 3.0; and r 3  = 0.5, 

1.0, 2.0, 3.0, 10.0, 100.0). The slenderness ratio of the three hors is assumed 

to be the same. Since r
3 

and
3 
 arc varied, this assumption requires varLa- 

tion in the bar 3 cross-sectional area. In this case, also, it is found that 

the effect of slenderness ratio (X k  - X = 40, 80, 120, 1,000) .  is negligibly 

small. The resi 	Are presented in ta.m. - ar form on Table I. This table 
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shows the valuer; of q 
cr 
 (bifurcation:11 load) for various combinations of 

r 3 , 113. Th ,a corresponding values of k 2  and k 3  arc shown in parenthesis. 

Note that r
3
= 100 corresponds to the case when' the horizontal bar is 

extremely stiff. In this case the load q cr  can be thought of as applied  

at the joints (P i  = P 2  = q /12) and the result should be the same as the 

one reported in Ref. 3. Indeed this is the case. The postbuckling behavior 

for these fram e s, not shown herein, is similar to that characterized by the 

data of Fig. 2. 

TABLE 1. BIFURCATION LOADS FOR A SYMMETRIC SIMPLY-SUPPORTED FRAME 
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Fig. 4. Effect of Variable Vertical Bar Lengths on the Frame Response 
Characteristics (r
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Note that, in this case, as expected, the load carrying capacity of the 

frame decreases with increasing length of the loaded bar (for the same 

flexural stiffness). Similarly, for a constant length of the loaded be 

the-load carrying capacity of the frame increases with increasing flexu 

stiffness. 

The last two cases considered, deal individually, with the effect 

nonuniformity. In one case all geometric parameters are the same (r k 

 1, p3  =, I, X k = ),) except that p varies 1.05, 1.10, 1.20). This mea 

that the length of bar 2 is longer than that of bar 1. In the second c 

all geometric parameters are the same, except that the flexural stiffne 

of bar 2 is smaller than that of bar 1. The results for these cases ar 

presented graphically in Figs. 4 and 5. In both of these cases the fol 

obser,vations arc made. The effect of slenderness ratio is negligibly 

The response is characterized by stable bent equilibrium positions and 

curves approach asymptotically the corresponding perfect and uniform go , 

 curve. There is always compression in the horizontal bar. Note also t 

the curves corresponding to r 2  = 0.95, 0.90, 0.80 are very similar to tl 

corresponding to p 2  = 1.05, 1.10, 1.20. This is reasonable because an 

crease in length £ 1  ors decrease in flexural stiffness ( Et)
2 
yield a mo 

flexible member. Values of r
2 
> 1 and correpondingly p

2 
<- 1 are not c 

sidered because the response characteristics would be similar to the on 

obtained except that the role of bar 1 and 2 would he interchanged. 

V. CONCLUS1CNS  

On the basis of the analysis and the generated data one may list t 

following as important conclusions: 



(1) A methodology has been developed and demonstrated for finding 

the complete reL.,pon,e (including posthuckling, if it exists) of an unbraced, 

rigid-jointed, elastic portal frame subjected to transverse loads. 

- (2) The effect of bar slenderness ratio on the nondimensionalized 

response characteristics is negligibly small. 

(3) Portal frames exhibit stable posthttekling behavior, and thus 

cannot be expected to be sensitive to imperfections.ff variation in bar 2 

length and flexural stiffness are thought of as geometric imperfections - 

this point is well proven. As a matter of fact, in many respects, the frame 

response is similar to that of an axially-loaded cantilever column. 

(4) Increase in the amount of rotational restraint,8, increases the 

bifurcation load. 
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