
Robot Calligraphy using Pseudospectral Optimal
Control and a Simulated Brush Model

Jiaqi Chen
advised by Frank Dellaert

December 12, 2019

1

Abstract

Chinese calligraphy is unique and has great artistic value but is difficult to
master. In this paper, we make robots write calligraphy. Learning methods could
teach robots to write, but may not be able to generalize to new characters. As such,
we formulate the calligraphy writing problem as a trajectory optimization problem,
and propose a new virtual brush model for simulating the dynamic writing process.
Our optimization approach is taken from pseudospectral optimal control, where the
proposed dynamic virtual brush model plays a key role in formulating the objective
function to be optimized. We also propose a stroke-level optimization to achieve
better performance compared to the character-level optimization proposed in pre-
vious work. Our methodology shows good performance in drawing aesthetically
pleasing characters.

2

Contents
1 Introduction 4

2 Related Work and Literature Review 5
2.1 Calligraphy robots using learning-based methods 5
2.2 Virtual brush models . 5
2.3 Stroke extraction . 6
2.4 Optimization methods . 6

3 Progress and Evolution of Project 6

4 Methodology 8
4.1 Dataset of Chinese characters . 8
4.2 Optimization based on a simple virtual brush 9

4.2.1 Simple virtual brush model 9
4.2.2 Simple virtual brush initial stroke trajectory generation 9
4.2.3 Optimization for stroke trajectories using simple virtual brush 10

4.3 Optimization based on a dynamic virtual brush 11
4.3.1 Dynamic virtual brush model parameterization 11
4.3.2 Dynamic virtual brush parameter updating 12

4.4 Similarities with the simple virtual brush 13
4.5 Optimization for stroke trajectories using a dynamic virtual brush . . 13

5 Results 13

6 Conclusion and Future Work 14

3

1 Introduction
Chinese calligraphy is an art form that takes humans years of practice to master. Chi-
nese characters are complex and a calligraphic brush is difficult to manipulate properly.
In this paper we aim to make a robot write Chinese characters by using a simulated
brush model and pseudospectral optimal control methods to optimize for a trajectory
(more about pseudospectral optimal control in later sections).

Most research on making actual robots create art adopts either a learning-based or
a trajectory optimization-based approach. The former often comes down to teaching
by demonstration [1, 2], or self-correction [3]. By using learning methods, one can
skip the difficulty of modeling the behavior of a real calligraphy brush. However,
learning methods also have a large training cost and may not generalize well to unseen
characters. On the other hand, trajectory optimization-based methods do not face these
problems. In this research, we simulate the writing behavior of an actual brush, and
then search for an optimal trajectory for the robot to execute [4, 5]). However, most
simulated brush models [5, 6] do not account for the complex ways a brush deforms
during the writing process. Being able to capture this complexity has an important
influence on the final performance.

We propose a trajectory optimization-based method based on principles from pseu-
dospectral optimal control [7,8], and also introduce a new dynamic virtual brush model
to achieve fully automatic writing of Chinese characters. Pseudospectral methods are
generally used for optimizing continuous trajectories and controls, but we assume the
control is realized by the low-level inverse kinematics solvers on the robot. This es-
sentially means that the robot will handle the specific motor control calculations while
we only have to feed a trajectory of coordinates, (x, y, z) to execute. Different from
previous work which optimizes the trajectory for the whole character at once [4, 5],
we decompose the character into strokes and perform stroke-based optimization. Full
character-based optimization can be computationally expensive and get stuck in local
minima. We extract strokes and create initial trajectory estimates by leveraging the
properties of vector-based character databases. The proposed virtual brush concen-
trates on the dynamic mechanisms of an actual calligraphic brush but has a simpler
structure compared to previous work [9, 10]. As a baseline, we compare with a virtual
brush model similar to Kwok et al. [4].

The primary contributions of this paper are:

1. We use pseudospectral methods to search for optimal writing trajectories to apply
to calligraphy robots. Pseudospectral methods have natural modeling abilities for
continuous trajectory optimization.

2. We design a new virtual brush model. Such a model is also able to simulate
the real brush dynamics with higher accuracy, which leads to better optimized
trajectories.

3. We exploit vector-based character libraries for easy stroke extraction and initial-
ization for the stroke-level trajectory optimization.

4

2 Related Work and Literature Review
This section concentrates on calligraphy robots, even though there are many other art
forms that incorporate robotics [11, 12, 13], such as sculpture [14], graffiti [15], etc.
Most algorithms on calligraphy robots using a brush pen can be categorized as learning-
based methods or trajectory optimization-based methods.

2.1 Calligraphy robots using learning-based methods
Many learning-based algorithms have been used for calligraphy robots in recent years.
Sun et al. [1,16] propose to learn from demonstration. They invite calligraphers to write
characters while holding the robot arm and record the robot joint positions to establish
a mapping model for robot control. Mueller et al. [3] propose an iterative learning
method by trial-and-learn. A camera is used to take pictures of what the robot writes
down and then the stroke trajectories are optimized toward minimizing the difference
between written pictures and reference images.

Some more advanced learning algorithms such as RNN [17], generative adversarial
networks [18], deep reinforcement learning [19], local and global learning models [2],
are also explored. These methods usually require many iterations of training to achieve
good performance, which is inconvenient. Generalizing to new, not learned, and com-
plicated characters is difficult.

2.2 Virtual brush models
Virtual brush models are mainly used in trajectory optimization-based algorithms. We
can divide virtual brush models into two categories: physics-based models and data-
driven models. With the help of this virtual brush, we are able to optimize for a trajec-
tory for robots to execute.

Physics-based virtual brush models strive to simulate the physical dynamics of a
real brush from experimental observation [20] or physical laws [10]. Strassmann [21]
proposes an initial design featuring four basic parameters of a hairy brush. Wong et
al. [22] propose to use a cone to represent the bundle of the brush and use the cross-
section of the cone, an ellipse, to represent the footprint. Xu et al. [9] propose a virtual
brush model with much detail and complex mechanisms obtained from approximations
and assumptions. However, obtaining and fitting good parameters to complicated vir-
tual brush models mentioned above is difficult. As such, we propose a virtual brush
that is very similar to Xu’s model, but it has an easy structure to fit and implement, and
even makes real-time trajectory optimization possible.

Data-driven virtual brush models are created from measuring and recording actual
brush footprints. Kwok et al. propose a very simple virtual brush which draws droplet
shapes with its size proportional to the writing height [4]. In their later work [6], they
use a camera placed below the writing plane to collect footprints during the writing
process. Lam et al. [5] define their writing mark as a polygon connected by eight points
and fit their position parameters with the collected footprints. Considering the big
calculation cost, Baxter et al. [23] build a deformation table and makes the calculation
process much faster with complicated simulation effect.

5

2.3 Stroke extraction
Stroke extraction involves separating a character into its comprising strokes, and is
difficult to do with good accuracy when analyzing just pixels of an image. We measure
the “goodness” of stroke extraction by manually comparing images of extracted strokes
to images of the correct strokes. There are three main categories of stroke extraction
methods: skeleton-based [24, 25], region-based [26], and contour-based [27, 28, 29].
Most of these methods are complicated and cannot promise good accuracy between
the extracted stroke and actual stroke. As such, we propose to use vector-based images
as our character dataset, which, in contrast, provides a quick and accurate way to extract
strokes.

2.4 Optimization methods
As mentioned above, Kwok et al. [4,6] propose to use Bezier curves (parametric curves
that represent polynomials in a different way) to represent stroke trajectories and find
the optimized trajectory by minimizing differences between simulated images and de-
sired character images. But their algorithms have not yet been applied to actual robots.
Furthermore, their algorithms perform character-level optimization, which is compu-
tationally expensive and cannot handle complicated characters without needing human
intervention. Lam et al. [5] propose to minimize the width difference of the strokes
between reference images and a simulated image written by the virtual brush as it
moves along the middle axis of each stroke. However, their method is sensitive to small
variations in stroke images, and so the results suffer from a loss of smoothness. The
optimization method in Kwok’s work is similar to our system, and so the differences
should be clarified. First, their virtual brush is not able to predict the dynamic behavior
of physical calligraphy brushes accurately while our dynamic virtual brush can. As
such, their virtual brush could not guide the robots to write things in the correct posi-
tion because they do not know what happens given one control command. You can see
our brush’s dynamic behavior as the ”Inner State Sequence” in Fig. 3, where the virtual
brush parameters get updated because the brush state changes due to deformations dur-
ing the writing process. Second, their optimization method is inefficient and requires
manual initialization, while ours is more efficient, performs better with complicated
characters, optimizes at a stroke-level, and has an easier initialization. Third, using a
genetic algorithm means a large calculation cost. Our optimization is computationally
efficient and could potentially be used in a closed-loop control system for real-time
optimization. Lastly, Kwok et al. only mention trying their system on actual robots as
future work.

3 Progress and Evolution of Project
In the beginning of this project, after doing the literature review and understanding cur-
rent existing work on robot calligraphy, we looked into datasets of Chinese characters.
After searching for a while, we found that instead of just using JPG images, we could
leverage stroke specific information about each character if we used SVG files. There

6

were existing databases online, such as MakeMeAHanzi, that could offer these SVG
files. We first learned how to decompose each SVG into its respective Bezier Curves
and then use those curves to draw a ‘skeleton’ of the desired Chinese character.

Figure 1: SVG images of characters YI, SHI, ER, NIAO, meaning ‘one’, ‘stone’, ‘two’,
‘bird’, with each stroke separated out as well as transformed into coordinate points that
are easier for the robot to execute.

Because the ‘skeleton’ of each Chinese character was represented by Bezier Curves,
we could then move onto making the robot execute a path that follows these curves. We
started by attaching a marker to the robot’s end effector and then calculating the exact
control points that we want to robot to move along in order for it to write a specific
character. Preliminary results of this are shown here.

Figure 2: From left to right, original character drawn by robot, original with added
contrast, robot drawing with marker

After we were able to make the robot execute a trajectory, we moved on to imple-
menting a virtual brush that could simulate a real Chinese calligraphy brush. This was
the next step because in order for us to optimize for a good trajectory for the robot
to execute, we must first find a good formalization of the parameters we want to opti-
mize. Having a virtual brush also means that we can simulate a robot writing Chinese
calligraphy using ROS and Gazebo. As such, we aimed to implement a virtual brush
modeled after the one by Xu et al. [20]. However, this brush was much too complex to
build from scratch. Therefore we decided to started with a simple virtual brush, which
captures the essence of a writing tool by having an x and y variable to represent its
location above paper, and a z variable to represent its height above paper.

From the simple brush, we were able to evolve the virtual brush into a more dy-
namic virtual brush that captured more parameters of a real brush such as the length
and width of contact of the brush tip with paper, the orientation of the brush tip, as

7

https://github.com/skishore/makemeahanzi

well as the direction of the brush movement. By using both the simple and dynamic
virtual brush, we show that having a virtual brush that simulates a real brush as closely
as possible would make the optimized trajectory much better. We also incorporated the
use of Factor Graphs at this point by representing our Chinese character trajectory with
Chebyshev polynomials (pseudospectral methods), making optimization possible.

4 Methodology
This following section details the methodology of our calligraphy robot. First we de-
scribe the vector-based image dataset of Chinese characters we are using, then the two
virtual brushes that are used during trajectory optimization, and finally the optimization
methodology itself.

Unicode

Dynamic

Model

Inner State

Sequence

Rendering

Model

Dataset Virtual

Brush

Jacobian

Matrix

Virtual Brush

Numerical

Derivative

Levenberg-marquardt Optimizer

Picture Difference

Sample

Figure 3: Flowchart of the Methodology

4.1 Dataset of Chinese characters
Vector-based images are a way to store images such that the details of the image are
generated by mathematical formulations of curves. You can think of these mathemat-
ical formulations as describing different line segments for each stroke. As such, for a
Chinese character, we can extract the parameterized lines that represent each stroke,
instead of just looking at raw pixel data. This will be helpful later on because we want
to optimize our trajectory stroke-by-stroke.

For this paper, we choose a Scalable Vector Graphics (SVG) dataset from Make-
MeAHanzi. SVG files are the World Wide Web Consortium (W3C) standard for vector-
based images, and are widely adopted by web browser applications. SVG files use
Bezier curves to represent an image. As mentioned before, Bezier curves are parame-
terized and continuous curves defined by a set of control points. We can think of them
as a different way to represent polynomials, where the line is “anchored” by the control

8

https://github.com/skishore/makemeahanzi
https://github.com/skishore/makemeahanzi

points. The dataset has a collection of SVG files, each depicting a different Chinese
character with separable strokes.

4.2 Optimization based on a simple virtual brush
As described before, we use two virtual brushes for optimization, one of which is
the simple virtual brush. The two brushes are used for comparison. Given a control
trajectory defined by a set of coordinates x, y, z, the simple brush essentially draws a
circle of radius ẑ where ẑ is dependent on the height of the brush from the paper.

4.2.1 Simple virtual brush model

Before we get into too much detail, it is worth mentioning that x, y, z represents the
control command given to the robot whereas x̂, ŷ, ẑ represents the control command
given to the virtual brush, where ẑ is actually the radius of the circle drawn and the
coordinates are in the reference frame of an image.

Our simple virtual brush is similar to the one in [4] except that our brush draws
a circle while their brush draw a droplet shaped mark. Given a control sequence of
xi, yi, zi, where i denotes the ith control command, the simple virtual brush draws a
circle with a radius ẑ at the location xi, yi of the image.

The circle that we draw is not a solid circle, but instead has a radial distribution
from the center that resembles a Sigmoid function:

r =

√
(x̂i −m)2 + (ŷi − n)2

ẑi
(1)

pm,n = 255
1

1 + e−10r
(2)

where r is the ratio of the distance between the coordinates m,n of the image frame
and the center of the current circle, and the radius of the circle ẑ that should be drawn.
Therefore the pm,n, the pixel value at coordinatesm,n of the image is a scaled Sigmoid
of r.

A key feature of our virtual brush is that it creates images that are differentiable.
This means that instead of drawing image matrices where pixels are represented by
integer values between [0, 255], our image pixels are represented by floats, or decimal
point numbers, defined by a Sigmoid function, refer to (2).

The motivation behind a continuous function describing our pixel values is because
our optimization method will eventually be performing gradient descent on our pixel
values, meaning they have to be differentiable.

4.2.2 Simple virtual brush initial stroke trajectory generation

As mentioned before, we use control points x, y, z to represent the robot trajectories,
but for optimization, we use x̂, ŷ, ẑ so as to not confuse the real world trajectory
and simulation trajectory. These x̂, ŷ, ẑ are initialized as Chebyshev-Gauss-Lobotto

9

points that we sample from the Bezier curve representations of the vector-based im-
ages. Chebyshev-Gauss-Lobotto points [30], also known as Chebyshev nodes [31], are
a way of selecting a set of points from a curve, but instead of selecting points uniformly,
we sample more densely at the beginning and end of the curve.

Having a good initial estimation has a big influence on the performance of our
trajectory-optimization algorithm, because it lessens the work that the optimization
algorithm has to do to get to an ideal solution. We initialize our trajectory by using the
“skeleton” of the character extracted from our vector-based images. This is because the
skeleton already offers the general shape, direction, and substructures of each character,
and we just want to fine-tune and perfect this trajectory.

Fig. 4 shows an example of the Chinese character ‘bird’ with the path, x̂i, ŷi that
we use for initialization show in the middle of each stroke.

Going more into detail about Chebyshev-Gauss-Lobatto (CGL) points [30], they
represent roots of the Chebyshev polynomials of the first kind. Sampling based on
these points rather than sampling uniformly, we can avoid numerical instability or wild
behaviors in the resulting trajectories [32]. Using CGL points also minimizes the os-
cillations of the fitted curve, which is important because with oscillations, small per-
turbations or errors in the beginning of optimization will be magnified as optimization
continues.

Figure 4: An example character of ‘Bird’ in the dataset, the ‘skeleton’ is shown in the
middle of each stroke

4.2.3 Optimization for stroke trajectories using simple virtual brush

Using the simple virtual brush, we optimize the stroke trajectory by minimizing the
pixel differences between the image drawn by the virtual brush and the desired image.

min
X

C = {‖V (X)− Ii‖} (3)

10

X = [x0, ..., xN ; y0, ..., yN ; s(z0, ..., zN)] (4)

This objective function is described as finding the set of control pointsX that mini-
mizes the L2-norm between the image drawn by the virtual brush V (X) and the desired
image Ii. Values of V (X) and Id are an image matrix represented by a matrix of pix-
els. The points in X represent the CGL points mentioned earlier. The points zi are
also multiplied by a scale s that converts the values of zi to the same magnitude as xi
and yi, for ease of optimization. The subscript i in this case represents the ith control
command.

We solve this objective function with the Levenberg-Marquardt (LM) algorithm
which is a combination of the Gauss-Newton algorithm and gradient descent:

Xi+1 = Xi + δ

[JTJ+ λdiag(JTJ)]δ = JT [V (Xi)− Ii]

where δ is the update of X at each iteration. The Jacobian matrix J is the numerical
derivative of V (Xi). By controlling the damping factor λ, the LM algorithm appears
more similar to gradient descent when we are far from an optimal value and more
like Gauss-Newton, which updates X more precisely when we are close to an optimal
solution.

4.3 Optimization based on a dynamic virtual brush
In addition to a simple virtual brush, we also propose a new dynamic virtual brush that
has higher accuracy and performance. The basic concept of using this brush to perform
optimizations is the same, but the brush is parameterized differently to provide a more
accurate simulation of a real calligraphy brush.

4.3.1 Dynamic virtual brush model parameterization

The dynamic virtual brush uses four state parameters to describe the writing mark that
it will leave on paper: width w, drag d, offset o, and orientation α, as shown by Fig.
5. Width w describes the width of the writing mark, drag d describes the length of the
writing mark, offset o describes the distance from the writing mark to the center of the
brush handle, and orientation α describes the the orientation of the writing mark. An
orientation α of 0 means that the mark is pointing towards the right. These parameters
all depend on the height of the virtual brush ẑ. The curve that we use to draw the mark
is a quadratic curve defined by drag d and width w. We also do not allow the brush
hairs to “split” during writing, as it sometimes do when the brush is pressed too hard
on paper. We do not account for this feature at it is unconventional for brush hairs to
split during the calligraphy process. When splits do happen during the writing process,
we reshape the brush by dipping it in ink, and rewrite the character.

11

Figure 5: Dynamic virtual brush model and its main components: width, drag, offset,
and orientation

4.3.2 Dynamic virtual brush parameter updating

During the writing process, according to the control trajectory (x, y, z), the virtual
brush updates its state parameters. This is because in real calligraphy, the virtual brush
gets deformed after writing a stroke and we account for this as a part of our model.

Parameter updating process. The parameters depend on the change in brush
height z. The relation between z and the each parameter is found through experimen-
tation and measurement. We use a brush to draw many brush footprints/marks and then
measure the width, drag, and offset as well as record the brush height z. Then we fit
a linear relationship to each of the parameters. Fig. 6 shows an example of how we
fit the drag d with respect to brush height z. The influence of writing speed is ignored
based on experiments in Kwok’s work [33], because it does not significantly change
the resulting character, assuming that the brush writes at a reasonable speed.

Figure 6: Actual measurement (blue) and linear fitting result (red) between drag and z

12

Parameters are updated gradually and smoothly with inertia. In the actual
writing process, most strokes are written continuously and smoothly. Therefore, inertia
is introduced to the virtual brush to create such an effect. For example, given two
adjacent control commands (xi, yi, zi) and (xi+1, yi+1, zi+1), we update the width
parameter by adding a ratio of the previous width to the newly calculated width:

wi+1 = wi(kinertia) +Width(ẑi)(1− kinertia)

where wi is the width parameter of the ith point in one stroke, and Width(ẑi) calcu-
lates a new width given control command ẑi. It is observed that the position of the
tip of the brush seldom changes shortly after the brush is pushed against the paper. In
other words, the points at the beginning of the stroke have a bigger inertia ratio than
those in the middle of one stroke, and so we design two inertia ratios to describe such
an effect.

Updating the orientation parameter.
The orientation parameter is updated differently as it depends on the orientation

of the brush at the end of a previous stroke. From the control commands, we know
that the orientation of the brush will tend towards the opposite of the movement of the
brush. However, at the end of a stroke, the brush tip will stay deformed and be oriented
the same way until the next stroke begins. Therefore, the beginning orientation of a
new stroke is the ending orientation of the previous. The orientation of the first stroke
is determined by the direction of the trajectory coordinates x, y.

4.4 Similarities with the simple virtual brush
We represent the strokes in the same way as the simple virtual brush. The initial stroke
trajectory generation is also the same.

4.5 Optimization for stroke trajectories using a dynamic virtual
brush

Because the orientation parameter of one stroke is dependent on the orientation of the
last stroke, we optimize each stroke trajectory in order. This is different in the simple
virtual brush where we can optimize the strokes in parallel.

The new objective function is the same as the simple virtual brush except that it
includes an orientation parameter.

min
X
{‖V (X)− Ii‖;αi−1}

where all the variables are the same as the cost function for the simple virtual brush,
except we also include αi which is the orientation parameter.

5 Results
The dynamic virtual brush model yields better written results than the simple virtual
brush model, although the latter can produce very high-quality simulated images. Fig.

13

(a) (b)

(c) (d)

Figure 7: Character ‘messy’, pronounced ‘luan’ (a) Initial trajectory; (b) Trajectory
after optimization with simple virtual brush; (c) Written result following simple brush
optimization; (d) Written result following dynamic brush optimization

7 shows a comparison between the dynamic and the simple virtual brush model. In
panel (b), the simulated image produced by the simple model shows a discernible char-
acter. However, because the deformation of the real brush is not modeled, the results
on the real robot are of lower quality.

Hence, although minimizing cost between the simulation images and the original
character images is used as the objective function, generating too small of a simulation
error will lead to over-fitting, and this is true for both models. In other words, the
capacity of the virtual brush model to model the actual brush sets the performance
limit of the project, and using optimization methods to surpass the limit may lead to
bad results. From our experience, an average pixel error between 8% and 16% of all
pixels is usually enough to generate good written results.

Another possible cause of over-fitting is the degree of the polynomial parameteri-
zation used to represent the character strokes. Currently we choose a degree for every
character once the simulation error of Eq. 3 falls into the range [8%− 16%]. But such
a method does not promise to find the global optimum, but could provide a more prac-
tical and robust solution for the robot to execute. In the future, we can tune the degree
of our Chebyshev polynomials to better fit each stroke.

In Fig. 8, we present the results of our approach, including photographs of char-
acters that have been drawn by a Fetch robot in our lab. We show results for four
different Chinese characters. Both the simulation and written images before and after
optimization are shown for easy comparison.

6 Conclusion and Future Work
All in all, we have shown that it is possible to use pseudospectral methods to get a
robot to write Chinese characters. Our results are good in that they show real physical
writing, as opposed to just simulations.

From the figure we can see that the optimization achieves good performance for

14

Figure 8: The optimization of different characters (From top down, ‘kong’, ‘luan’, ‘si’,
‘wo’ meaning ‘empty’, ‘messy’, ‘think’, ‘me’). (a) The original character pictures from
the dataset; (b) Initial trajectory estimation; (c) The trajectory obtained from optimiza-
tion; (d) Simulated image drawn by the virtual brush using the initial trajectory; (e)
Simulated image drawn by the virtual brush using an optimized trajectory; (f) Written
image following initial trajectories; (g) Written image following the optimized trajec-
tories

simulated images. However, because of a “sim2real” gap in the virtual brush model,
the proposed method still has a ways to go in terms of approaching the smoothness and
definition of detail displayed in the reference images.

One immediate future improvement is the potential use of a different virtual brush,
specifically one described in [10]. This brush could help us close the “sim2real” gap as
it better captures the dynamics behind the brush by using a physics as an inspiration.
Other improvements include using some sort of visual feedback system to allow the
robot to self correct during the writing process. Another area for future work is in the
actual mechanics and motion planning of the robot itself. Instead of giving the robot
control points to execute, we could potentially give it joint angles in order to make
the writing smoother. Lastly, we can also use style transfer to incorporate stylistic
modifications to the calligraphy characters such that the robot can write with a more
artistic style.

15

References
[1] Y. Sun, H. Qian, and Y. Xu, “Robot learns chinese calligraphy from demonstra-

tions,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 4408–4413, 2014.

[2] A. Kotani and S. Tellex, “Teaching robots to draw,” 2019 International Confer-
ence on Robotics and Automation (ICRA), pp. 4797–4803, 2019.

[3] S. Mueller, N. Huebel, M. Waibel, and R. D’Andrea, “Robotic calligraphy —
learning how to write single strokes of chinese and japanese characters,” 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1734–
1739, 2013.

[4] K.-W. Kwok, S. M. Wong, K. W. Lo, and Y. Yam, “Genetic algorithm-based
brush stroke generation for replication of chinese calligraphic character,” 2006
IEEE International Conference on Evolutionary Computation, pp. 1057–1064,
2006.

[5] J. H. M. Lam and Y. Yam, “Stroke trajectory generation experiment for a robotic
chinese calligrapher using a geometric brush footprint model,” 2009 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 2315–2320, 2009.

[6] K.-W. Kwok, K. W. Lo, S. M. Wong, and Y. Yam, “Evolutionary replication
of calligraphic characters by a robot drawing platform using experimentally ac-
quired brush footprint,” 2006 IEEE International Conference on Automation Sci-
ence and Engineering, pp. 466–471, 2006.

[7] G. N. Elnagar and M. A. Kazemi, “Pseudospectral chebyshev optimal control
of constrained nonlinear dynamical systems,” Computational Optimization and
Applications, vol. 11, pp. 195–217, 1998.

[8] F. Fahroo and I. Ross, “Direct trajectory optimization by a chebyshev pseudospec-
tral method,” Proceedings of the 2000 American Control Conference. ACC (IEEE
Cat. No.00CH36334), vol. 6, pp. 3860–3864 vol.6, 2000.

[9] S. Xu, F. C. M. Lau, and Y. Pan, “A computational approach to digital chinese
painting and calligraphy,” in A Computational Approach to Digital Chinese Paint-
ing and Calligraphy, 2009.

[10] N. S.-H. Chu and C.-L. Tai, “Real-time painting with an expressive virtual chinese
brush,” IEEE Computer Graphics and Applications, vol. 24, pp. 76–85, 2004.

[11] S. Kudoh and K. Ogawara, “Painter robot : Manipulation of paintbrush by force
and visual feedback,” in Painter Robot : Manipulation of Paintbrush by Force
and Visual Feedback, 2007.

[12] Y. Lu, J. H. M. Lam, and Y. Yam, “Preliminary study on vision-based pen-and-ink
drawing by a robotic manipulator,” 2009 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, pp. 578–583, 2009.

16

[13] L. Scalera, S. Seriani, A. Gasparetto, and P. Gallina, “Watercolour robotic paint-
ing: a novel automatic system for artistic rendering,” Journal of Intelligent and
Robotic Systems, pp. 1–16, 2018.

[14] X. Niu, J. Liu, L. Sun, Z. Liu, and X. Chen, “Robot 3d sculpturing based on ex-
tracted nurbs,” 2007 IEEE International Conference on Robotics and Biomimetics
(ROBIO), pp. 1936–1941, 2007.

[15] Y. Jun, G. Jang, B.-K. Cho, J. Trubatch, I. Kim, S.-D. Seo, and P. Y. Oh, “A hu-
manoid doing an artistic work - graffiti on the wall,” 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1538–1543, 2016.

[16] Y. Sun and Y. Xu, “A calligraphy robot — callibot: Design, analysis and ap-
plications,” 2013 IEEE International Conference on Robotics and Biomimetics
(ROBIO), pp. 185–190, 2013.

[17] K. Sasaki, K. Noda, and T. Ogata, “Visual motor integration of robot’s draw-
ing behavior using recurrent neural network,” Robotics and Autonomous Systems,
vol. 86, pp. 184–195, 2016.

[18] F. Chao, J. Lv, D. Zhou, L. Yang, C.-M. Lin, C. Shang, and C. Zhou, “Gener-
ative adversarial nets in robotic chinese calligraphy,” 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1104–1110, 2018.

[19] R. Wu, W. Fang, F. Chao, X. Gao, C. Zhou, L. Yang, C.-M. Lin, and C. Shang,
“Towards deep reinforcement learning based chinese calligraphy robot,” 2018
IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 507–
512, 2018.

[20] S. Xu, M. Tang, F. C.-M. Lau, and Y. Pan, “A solid model based virtual hairy
brush,” Comput. Graph. Forum, vol. 21, pp. 299–308, 2002.

[21] S. Strassmann, “Hairy brushes,” in SIGGRAPH, 1986.

[22] H. T. F. Wong and H. H.-S. Ip, “Virtual brush: a model-based synthesis of chinese
calligraphy,” Computers and Graphics, vol. 24, pp. 99–113, 2000.

[23]

[24] C.-L. Liu, I.-J. Kim, and J. H. Kim, “Model-based stroke extraction and match-
ing for handwritten chinese character recognition,” Pattern Recognition, vol. 34,
pp. 2339–2352, 2001.

[25] J. Zeng, W. Feng, L. Xie, and Z.-Q. Liu, “Cascade markov random fields for
stroke extraction of chinese characters,” Inf. Sci., vol. 180, pp. 301–311, 2010.

[26] R. Cao and C. L. Tan, “A model of stroke extraction from chinese character im-
ages,” Proceedings 15th International Conference on Pattern Recognition. ICPR-
2000, vol. 4, pp. 368–371 vol.4, 2000.

17

[27] C. Lee and B. Wu, “A chinese-character-stroke-extraction algorithm based on
contour information,” Pattern Recognition, vol. 31, pp. 651–663, 1998.

[28] Y. Sun, H. Qian, and Y. Xu, “A geometric approach to stroke extraction for the
chinese calligraphy robot,” 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3207–3212, 2014.

[29] F. Chao, Y. Huang, C.-M. Lin, L. Yang, H. Hu, and C. Zhou, “Use of auto-
matic chinese character decomposition and human gestures for chinese calligra-
phy robots,” IEEE Transactions on Human-Machine Systems, vol. 49, pp. 47–58,
2019.

[30] P. T. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch estimation
using temporal basis functions,” 2012 IEEE International Conference on Robotics
and Automation, pp. 2088–2095, 2012.

[31] L. N. Trefethen., “Approximation theory and approximation practice,” in Approx-
imation theory and approximation practice, 2013.

[32] J.-P. Berrut and L. N. Trefethen, “Barycentric lagrange interpolation,” SIAM Re-
view, vol. 46, pp. 501–517, 2004.

[33] K. W. Lo, K.-W. Kwok, S. M. Wong, and Y. Yam, “Brush footprint acquisi-
tion and preliminary analysis for chinese calligraphy using a robot drawing plat-
form,” 2006 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 5183–5188, 2006.

18

	Introduction
	Related Work and Literature Review
	Calligraphy robots using learning-based methods
	Virtual brush models
	Stroke extraction
	Optimization methods

	Progress and Evolution of Project
	Methodology
	Dataset of Chinese characters
	Optimization based on a simple virtual brush
	Simple virtual brush model
	Simple virtual brush initial stroke trajectory generation
	Optimization for stroke trajectories using simple virtual brush

	Optimization based on a dynamic virtual brush
	Dynamic virtual brush model parameterization
	Dynamic virtual brush parameter updating

	Similarities with the simple virtual brush
	Optimization for stroke trajectories using a dynamic virtual brush

	Results
	Conclusion and Future Work

