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SUMMARY 

Water resource planning and management practices in the southeastern United 

States may be vulnerable to climate change.  This vulnerability has not been 

quantified, and decision makers, although generally concerned, are unable to 

appreciate the extent of the possible impact of climate change nor formulate and 

adopt mitigating management strategies.  Thus, this dissertation aims to fulfill this 

need by generating decision worthy data and information using an integrated 

climate change assessment framework. 

To begin this work, we develop a new joint variable spatial downscaling 

technique for statistically downscaling gridded climatic variables to generate 

high-resolution, gridded datasets for regional watershed modeling and assessment.  

The approach differs from previous statistical downscaling methods in that 

multiple climatic variables are downscaled simultaneously and consistently to 

produce realistic climate projections.  In the bias correction step, JVSD uses a 

differencing process to create stationary joint cumulative frequency statistics of 

the variables being downscaled.  The functional relationship between these 

statistics and those of the historical observation period is subsequently used to 

remove GCM bias.   The original variables are recovered through summation of 

bias corrected differenced sequences.  In the spatial disaggregation step, JVSD 

uses a historical analogue approach, with historical analogues identified 

simultaneously for all atmospheric fields and over all areas of the basin under 

study.   



 xxv

In the second component of the integrated assessment framework, we 

develop a data-driven, downward hydrological watershed model for transforming 

the climate variables obtained from the downscaling procedures to hydrological 

variables.  The watershed model includes several water balance elements with 

nonlinear storage-release functions.  The release functions and parameters are 

data driven and estimated using a recursive identification methodology suitable 

for multiple, inter-linked modeling components.  The model evolves from larger 

spatial/temporal scales down to smaller spatial/temporal scales with increasing 

model structure complexity.  For ungauged or poorly-gauged watersheds, we 

developed and applied regionalization hydrologic models based on stepwise 

regressions to relate the parameters of the hydrological models to observed 

watershed responses at specific scales.  

Finally, we present the climate change assessment results for six river 

basins in the southeastern United States.  The historical (baseline) assessment is 

based on climatic data for the period 1901 through 2009.  The future assessment 

consists of running the assessment models under all IPCC A1B and A2 climate 

scenarios for the period from 2000 through 2099.  The climate assessment 

includes temperature, precipitation, and potential evapotranspiration; the 

hydrology assessment includes primary hydrologic variables (i.e., soil moisture, 

evapotranspiration, and runoff) for each watershed. 
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CHAPTER 1 

INTRODUCTION 

Water resource planning and management practices in the southeastern United States 

may be vulnerable to climate change.  This vulnerability has not been quantified, and 

decision makers, although generally concerned, are unable to appreciate the extent of the 

possible impact of climate change nor formulate and adopt mitigating management 

strategies. This dissertation aims to fill this need by generating decision-worthy data and 

information using the integrated climate change assessment framework depicted on 

Figure 1.1. This framework includes three inter-linked components pertaining to climate, 

hydrology, and water resources, providing the technical basis for answering a range of 

questions.  

 The climate component establishes ways to downscale global circulation model 

(GCM) scenarios to finer (and more hydrologically relevant) spatial and temporal scales.  

The downscaling process is designed to generate data that (1) capture key climatic 

features including mean and variability trends, spatial and temporal correlations, and 

other interdependencies between atmospheric variables that drive hydrological processes; 

(2) are adequately characterized with respect to their uncertainty; and (3) are smooth 

across different temporal scales (e.g., annual, monthly, and daily).                 

 The hydrology component describes the watershed response to alternative 

atmospheric forcing by simulating all relevant hydrologic processes such as 

evapotranspiration, infiltration, soil moisture storage, and runoff, among others. The 

development of hydrologic models entails several issues including (1) whether to use the 

physical-based or conceptual models; (2) what hydrological processes to include; (3) how 

to identify and estimate model parameters in gauged and un-gauged watersheds; and (4) 

how to characterize the additional uncertainties that hydrologic models introduce into the 

assessment. 
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Figure 1.1: Integrated Modeling Framework (Source: Georgakakos et al., 2010). 

 The river and reservoir planning and management component aims to assess the 

water resources impacts of alternative hydrologic (and corresponding GCM) scenarios. 

Among others, such impacts pertain to water supply for domestic, industrial, and 

irrigation use; energy generation; navigation; and environmental and ecosystem 

preservation.  

 The assessment is carried out for the Apalachicola-Chattahoochee-Flint (ACF) 

and other southeast US river basins, and seeks to identify and assess effective mitigation 

strategies.  

 The research contributions of this study include (1) new methods for consistent 

temperature-precipitation downscaling; (2) guidelines for hydrologic watershed model 

identification and parameter calibration and regionalization;  and (3) hydrologic and 

water resources assessment results for the southeast US using integrated climate-

hydrology-water resources models.  
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 The dissertation includes seven chapters, including this introduction. Chapter 2 

reviews the existing literature on climate change scenarios, climate downscaling methods 

including dynamic and statistical approaches, watershed hydrologic modeling methods 

and their parameter estimation methods, and hydrological regionalization approaches. 

Chapter 2 also describes the historical climate, hydrology, and water uses for six major 

river basins studied in this dissertation: the Apalachicola-Chattahoochee-Flint (ACF); the 

Alabama-Coosa-Tallapoosa (ACT); the Oconee-Ocmulgee-Altamaha (OOA) basin; the 

Ochlocknee-Suwannee-Satilla-St. Marys (OSSS), the Savannah-Ogeechee (SO); and the 

Tennessee (TN).  

 Chapter 3 presents a new statistical method, named Joint Variable Spatial 

Downscaling (JVSD), for downscaling gridded climatic variables. It is developed to 

generate high resolution gridded datasets for regional watershed modeling and 

assessments. The proposed approach differs from previous statistical downscaling 

methods in that multiple climatic variables are downscaled simultaneously and 

consistently to produce realistic climate projections. 

 Chapter 4 describes a lumped conceptual watershed model developed for 

hydrologic impact assessment in this study. The watershed model includes several water 

balance elements with nonlinear storage-release functions at monthly and daily time 

resolution. The function forms and parameters of the model are data driven, and they are 

estimated using a recursive identification methodology suitable for multiple, inter-linked 

modeling components. The watershed models are calibrated and employed to 

characterize the hydrologic responses under the historical and future climate scenarios. 

 Chapter 5 discussed the methodology for developing hydrological 

regionalization relationships. The approach is applied to 53 Georgia catchments where 

long-term and monthly unimpaired flow observations are available. The catchment 

parameters are related to eleven soil characteristics extracted from the Soil Survey 
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Geographic (SSURGO) Database, and thirteen land use variables obtained from the 

Georgia Gap Analysis Project (University of Georgia).  

 Chapter 6 presents the climate changes assessment results for the six case study 

river basins. The historical (baseline) assessment is based on climatic data for the period 

1901 through 2009 (109 years).  The future assessment consists of running the 

assessment models under all A1B and A2 climate scenarios for the period from 2000 

through 2099 (100 years). The climate assessment includes the assessments of 

temperature, precipitation and potential evapotranspiration. The hydrology assessment 

includes the assessments of primary hydrologic variables (i.e., soil moisture, 

evapotranspiration, and runoff) for each watershed. The water resources assessment uses 

the Apalachicola-Chattahoochee-Flint Decision Support System (ACF DSS), developed 

at the Georgia Water Resources Institute (Georgakakos and Yao, 1999), to quantify the 

water use implications and potential mitigation measures. 

 Finally, conclusions and further research recommendations are presented in 

Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Climate Change Scenarios 

2.1.1 GHG Emission Scenarios 

The Intergovernmental Panel on Climate Change (IPCC) was set up jointly by the World 

Meteorological Organization and the United Nations Environment Program to promote 

the scientific understanding of climate change causes and impacts (IPCC, 2007). To date, 

IPCC has produced four assessment reports (in 1990, 1995, 2001 and 2007) which are 

referenced widely by scientists in a broad range of disciplines. 

 The IPCC reports are based on the results and findings of many climate research 

programs and experiments.  One such program is the World Climate Research Program 

(WCRP) Coupled Model Intercomparison Project Phase Three (CMIP3), carried out 

under the Program for Climate Model Diagnosis and Intercomparison (PCMDI; Meehl et 

al., 2007). This program produced an array of climate change computational experiments 

under past, projected, or idealized greenhouse gas (GHG) emission scenarios, three of 

which are used in this study.  

 The first experiment, 20CM3, represents the 20th century historical emission 

scenarios, and serves as a baseline case illustrating the way in which climate models 

simulate the historical climate. The 20CM3 experiments are baselines for the climate 

change studies. The other two experiments pertain to projected climate changes in the 

21st century and are a subset of the IPCC Special Report on Emission Scenarios (SRES; 

Nakicenovic and Swart, 2000). These experiments are the SRESA1B and SRESA2, 

respectively based on medium and high emission scenarios. The SRESA1B experiments 

are initialized with conditions from the 20CM3 experiments and they continue to run to 

2100 under the assumption that the GHG emission will peak at the mid-century and 
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decline thereafter. The SRESA2 experiments are also initialized with conditions from the 

20CM3 experiments and run to 2100 under the assumption that the GHG emission will 

continue to increase throughout the century. After 2100, they hold concentrations fixed 

and continue the simulation to 2200.  

2.1.2 Global Circulation Models 

Many researchers have demonstrated the physical science basis, impact, adaptation, and 

vulnerability of our changing climate and environment. Some have also addressed water 

resources impacts under climate changes (Lettenmaier and Rind, 1992; Stamm et al., 

1994; Conway, 1998; Wood et al., 2004; Maurer, 2007; Georgakakos et al., 2011; Zhang 

and Georgakakos, 2011b). All impact assessment studies are driven by general 

circulation model (GCM) scenarios.  

 General circulation models (GCMs) are scientific tools used to assess the future 

global climate response associated with various greenhouse gas emission scenarios (IPCC 

WGI, 2007). The GCMs represent (through a large system of partial differential 

equations) the coupled atmospheric and oceanic processes currently understood to govern 

the Earth’s climate. Climate scenarios are generated by the numerical integration of the 

underlying equations over space and time.  Table 2.1 lists 13 different GCMs, selected 

scenarios from which (corresponding to emission scenarios 20CM3, SRESA2, and 

SRESA1B) are utilized in this study. In this table, under atmospheric resolution, T is the 

horizontal resolution and L is the vertical resolution in numbers of vertical layers. 

Oceanic resolution is provided in degrees (T: horizontal resolution) and numbers of 

vertical layers (L: vertical resolution).   

 The purposes of developing GCMs are initially to obtain the future global climate 

responses forced with concentrations of greenhouse gases and other constituents derived 

from various emissions scenarios (IPCC WGI, 2007). In general, GCMs were designed to 

run on global scales at relatively low spatial resolutions (~100x100 km2 to ~250x250 
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km2).  However, the observational grids usually have much higher spatial resolution (ex., 

~12x12 km2). Therefore, before any regional climate change assessment by using GCMs, 

their outputs should be transformed from low spatial resolutions to high spatial 

resolutions. Such transformations can be performed by using climate downscaling 

techniques to be discussed in the next section. 

Table 2.1: Summary of GCMs Used in This Study (Source: Georgakakos et al., 2010).  
 

Model Contributor Atm. Resolution Ocean Resolution 

BCCR-BCM2.0, 
Norway 

Bjerknes Centre for Climate 
Research 

T63L31 1.5 x1.5o, L31 

CGCM3.1(T63), 
Canada 

Canadian Centre for Climate 
Modeling and Analysis 

T63L31 1.4ox0.9o, L29 

CNRM-CM3, France 
Centre National de 

Recherches Meteorologiques 
T63L45 2.0ox1.2o 

CSIRO-Mk3.5, 
Australia 

CSIRO, Australia T63L18 1.875ox0.84o 

ECHAM5/MPI-OM, 
Germany 

Max Planck Institute for 
Meteorology 

T63L31 1.5ox1.5o, L40 

GFDL-CM2.1, USA 
Geophysical Fluid Dynamics 

Laboratory, NOAA 
2.5ox2.5o 1ox1o 

GISS-AOM, USA 
NASA Goddard Institute for 

Space Studies 
4ox3o, 12L 4ox3o, L16 

MIROC3.2(hires), 
Japan 

CCSR/NIES/FRCGC, Japan T105L56 0.28ox0.19o, L47 

CCSM3, USA 
National Center for 

Atmospheric Research 
(NCAR), 

T85L26 1.125ox(0.27o -1.0o) 

PCM, USA 
NCAR, NSF, DOE, NASA, 

NOAA 
T42L26 1.125ox0.469o, L40 

UKMO-HadCM3, 
UK 

Hadley Centre for Climate 
Prediction and Research 

2.75ox2.75o 1.25ox1.25o 

MIUB ECHO-G, 
Germany/Korea 

Meteorological Institute of 
the University of Bonn 

T30L19 T42 

INM-CM3.0, Russia 
Institute for Numerical 

Mathematics 
N.A. N.A. 
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2.2 Climate Scenario Downscaling Methods 

GCM outputs are usually inadequate to capture the spatial variability at regional or local 

scales necessary for hydrological applications. Xu (1999) shows that predicting runoff 

directly from GCM outputs is over-simplified and ignores the lateral transfer of water 

between grid cells within the land phase. This conclusion is corroborated by the large 

uncertainties arising from using different models driven by the same scenarios (Tebaldi, 

2005; Mitchell and Hulme, 1999; Mujumdar and Ghosh, 2008).  The purpose of 

downscaling procedures to be discussed is to construct climate scenarios at more 

application-relevant spatial (and temporal) scales. 

 Existing downscaling techniques can be organized into two main categories, 

dynamic downscaling and statistical downscaling. Fowler and Blenkinsop (2007), Wilby 

and Wigley (1997), and Xu (1999) thoroughly reviewed most existing downscaling 

techniques of both types. 

2.2.1 Dynamic Downscaling Methods 

For dynamic downscaling, regional climate models (RCMs) are used to model the target 

region at finer scales bounded by larger GCM nodes (Miller et al., 1999; Xue et al., 

2007). A high-resolution RCM is nested in a low-resolution grid initialized by a GCM 

simulation. In each selected time period, the GCM provides lateral boundary conditions 

for the nested RCM, such as radiation forcing, pressure levels, air temperature, air 

humidity, aerosol forcing, soil conditions, and etc. The time-dependent boundary 

conditions are then assimilated into the RCM fields to drive the continuous simulation. 

The subscale climatic features are physically simulated to enhance the simulations of 

atmosphere and land surface dynamics, such as complex topographical features, land 

cover inhomogeneity, and spatial distributions of aerosol, among others. There are 

usually no feedback mechanisms from the nested RCM simulations, which imply that the 

GCM sub-GCM grid forcing is not included in the GCM simulations. 
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 The results of RCMs depend on the validity and skill of the overriding GCM. The 

systematic errors and biases in GCM outputs are passing down to RCMs and therefore 

any downscaled climatic variables inherit these errors and biases from global scale 

simulations. Typical GCM outputs have biases of temperature about 2-3 degrees and 

precipitation about 50%-60% (Mearns et al., 2003). Mearns et al. (2003) outlined the 

advantages and disadvantages of using RCMs and provided guidance on the use of their 

outputs. Generally, RCMs provide high resolution climatic fields spatially and globally 

consistent with GCM scenarios. However, these results inherit the biases of the driving 

global models and are computationally expensive. 

 The North American Regional Climate Change Assessment Program 

(NARCCAP) is among the most notable dynamic downscaling research efforts and 

provides valuable online datasets (http://www.narccap.ucar.edu/). This program 

investigates the uncertainties of regional scale projections of GCM outputs, and generates 

high resolution scenarios for regional climate impact assessments. Although NARCCAP 

provides a very important source of dynamically downscaled regional climatic scenarios, 

there are only a few simulations available up to date. These simulations correspond only 

to SRES A2 emissions scenario and are generated for selected time horizons (1971-2000; 

2041-2070) due to their heavy computational requirements. It takes approximately 36 

hours to complete a 30-day simulation using a RCM (e.g., MM5 or WRF) over an area of 

90,000 km2 with 30 x 30 km spatial resolution on a 2.1GHz dual core personal computer.  

Thus, the currently available results are not sufficient for comprehensive climate change 

impact assessments, but are used in this study to compare the skill of statistical versus 

dynamic downscaling methods.  Lastly, it is unclear whether the uncertainties 

surrounding dynamic downscaling methods are not comparable to those of the more 

computationally efficient statistical downscaling methods. 

 



10 
 

2.2.2 Statistical Downscaling Methods 

Statistical downscaling is based on relationships between low resolution GCM outputs 

and associated higher resolution observations over the same historical period. These 

statistical relationships are then used to infer the observations on finer grids at future 

times when only GCM outputs are available. Statistical downscaling does not depend on 

GCM boundary conditions and can be used to downscale climatic variables without the 

full set of climatic fields at the coarse level. Examples of statistical downscaling methods 

include changing factor methods (Beniston et al., 2003), regression methods (Huth, 

1999), weather typing schemes (Vrac, 2007), weather generators (Wilks and Wilby, 

1999), bias correction and spatial disaggregation (BCSD; Wood et al., 2004), constructed 

analogues (Hidalgo et al., 2008), and joint variable spatial downscaling (JVSD; Zhang 

and Georgakakos, 2011a).  

 Huth (1999) evaluated the performances of a number of statistical downscaling 

methods, e.g., canonical correlation analysis (CCA), singular value decomposition 

(SVD), and multiple regression models. For the regression model, Huth adopt a stepwise 

model selection process to select statistically significant predictors. He found that the 

temperature variables yield more accurate results than circulation variables and his results 

showed that the best predictor is the combination of 500 hecto Pascal (hPa) geo-potential 

heights and 850 hPa temperatures. He concluded that the global climate models always 

simulate different climate variables with different skills, thus in order to take the best 

advantage of the GCM outputs, the downscaling procedure should consider these 

variables jointly instead of treating them individually. 

 Vrac et al. (2007) proposed a stochastic weather typing approach to perform 

precipitation downscaling. They used the mix gamma and generalized Pareto (GP) 

distributions of precipitation to generate stochastic climatic sequences of small, medium 

and extreme precipitations. In their procedures, the climate variables (e.g., precipitation) 

are treated individually when downscaled. However, the regional or local precipitation 
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distributions can be distorted by other climatic variables (e.g., air temperature). For 

example, the shift of seasonal trends of temperature may infer that the seasonal 

precipitation also changes as well. Therefore, the joint distribution, rather than the 

marginal distribution, of important climatic variables is necessary to be investigated. 

 Wilks and Wilby (1999) discussed the weather generators and their applications 

in regional climate downscaling. The stochastic weather models are extended to 

accommodate the differences between local and area-averaged weather statistics, and 

they are validated using the observed inter-annual climatic variability as an analog for 

climate change. Their techniques also treat precipitation separately. 

 Wood et al. (2004) proposed a two-step statistical downscaling method to address 

bias correction and spatial disaggregation (BCSD). In the first step, GCM biases are 

adjusted through a quantile mapping technique individually for temperature and 

precipitation. The spatial disaggregation step translates adjusted GCM data on climate 

model resolutions to a basin-relevant resolution (observational resolution) by using 

interpolated spatial factors. The spatial interpolation method is a modified version of 

inverse-distance-squared interpolation developed by Shepard (1984). As will be seen, 

such interpolation tends to generate homogenous factor maps. 

 BCSD is a very efficient statistical downscaling technique for climate change 

assessments. One BCSD disadvantage, however, is that it generates more homogenous 

downscaled fields than the observed fields. This results from the use of cell-by-cell 

spatial interpolation factors, and marginal, not joint, variable distributions in the quantile 

mapping process.  Furthermore, while the temperature shift-removing procedure enables 

the bias-correction step without extrapolation, it also makes the assumption that future 

temperature distributions remain similar to those of the historical run. However, the 

extreme future temperature distributions (either high or low) are most likely to change 

outside the historical range.  
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 Li et al. (2010) recently proposed the equidistant cumulative distribution function 

matching (EDCDFm) method as an improvement to the cumulative distribution function 

matching (CDFm) method used as part of BCSD (bias correction step).  EDCDFm 

explicitly considers the changes between the baseline and future distributions.  It also fits 

the marginal CDF of precipitation and temperature with a mixed two-parameter gamma 

distribution and a four-parameter beta distribution respectively.  By performing a 

synthetic experiment at a continental scale (northern Eurasia), they conclude that 

EDCDFm is superior to the CDFm method in that it reduces the mean bias and RMSE for 

summer and winter, especially under changing variability.  Furthermore, EDCDFm is 

found to perform better than CDFm in correcting biases of extremes.  However, as the 

original CDFm, EDCDFm is based on the idea of downscaling climatic variables 

individually.  This method only concerns the bias correction step and presents no new 

spatial downscaling experiments or data.   

 Hidalgo et al. (2008) and Maurer et al. (2010) proposed and implemented the 

constructed analogues (CA) and the hybrid bias correction and constructed analogues 

(BCCA) techniques. The CA method essentially makes no bias corrections, but rather 

relates model-simulated variables to observed variables, using relationships established 

during historical periods when observations are available. These relationships are 

established through multiple regression analysis and are based on daily reanalysis data. 

Maurer and Hidalgo (2010) further investigated the application of a bias correction step 

before the CA process is performed and conclude that the BCCA method is consistently 

better than BCSD in simulating daily stream flows, especially for hydrologic extremes.  

The CA assumption is that the relationships between large-scale and downscaled fields 

derived based on historical reanalysis data will also be valid in future climates. 

 The primary advantage of the statistical downscaling techniques is that they are 

computationally efficient, and do not require the use of the full GCM climatic fields. 

Statistical downscaling techniques also bias correct the GCM outputs by comparing the 
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control (current climate) simulations with aggregated observations at GCM scales. Their 

disadvantage, however, is that some of their assumptions are only approximately valid.    

 The performance of downscaling methods varies across seasons, stations, and 

indices (Fowler and Blenkinsop, 2007). The accuracy of statistical downscaling methods 

has a geographical and seasonal component (Huth, 1999).  

 Overall, downscaled sequences must meet several criteria to be useful in regional 

water resources assessments: First, the downscaled sequences should be consistent with 

historical observations. Second, the downscaled sequences should capture climatic mean 

and variability trends. Third, spatial and temporal correlations and interdependencies 

between the atmospheric fields that largely drive hydrological processes should be 

represented. Lastly, to ensure that hydrological assessments at different temporal scales 

(e.g., annually, monthly, and daily) using the same downscaled products are consistent, 

the smoothness of these products across these time scales should be ensured. 

 

2.3 Watershed Hydrological Models 

Watershed models have been developed since the 1940s for applications ranging from 

streamflow forecasting (e.g., Thornwaite, 1948; Thornwaite and Mather, 1955; Alley, 

1985; Xu and Vandwiele, 1995; Georgakakos and Baumer, 1996; and Mohseni and 

Stefan, 1998), simulation of land hydrological processes (e.g., Liang et al., 1994; Arnold, 

2005; Vieux, 2001; Koren et al., 2004; and Carpenter and Georgakakos, 2004), and, most 

recently, climate change assessments (Lettenmaier and Rind, 1992; Stamm et al., 1994; 

Conway, 1998; Wood et al., 2004; and Maurer, 2007). 

 The simulation of the relevant processes of water flux over the delineated 

watershed area is the basis of almost all hydrologic models. These models can be 

generally distinguished as conceptual or physically based, depending on the way they 

represent the hydrological processes, such as rainfall, evapotranspiration, infiltration, 
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percolation, and runoff.  There are also other model types based on input-output 

relationships such as Unit Hydrograph methods, SCS curve number approach, transfer 

functions models, time series models (e.g., ARMA), multiple regression models, artificial 

neural networks (ANNs), and transfer functions methods. 

 Another categorization of hydrologic models is based on the processes that each 

model represents. Thus, hydrological models can be distinguished in (1) models that 

represent water fluxes only, and (2) models that represent both water and energy fluxes. 

Models in the former category, such as SAC-SMA model (Burnash et al., 1973), only 

include water balance components, and require less input data and parameters than the 

latter. An example of water-energy flux model is the Variable Infiltration Capacity (VIC) 

model developed by Liang et al. (1992; 1994). The VIC model is a macro-scale 

hydrologic model that solves the coupled water and energy balance equations at sub-daily 

time steps. It is a physically-based and distributed model requiring input data for 

precipitation, temperature, wind, soil, vegetation, Aledo, and other parameters.  

2.3.1 Physically-based Models 

Physically-based models generally represent hydrological systems by small scale hill-

slope drainage or channel storage elements. The physically-based models are used in 

many distributed hydrologic modeling systems such as SWAT (Neitsch et al., 2002), 

Mike 11 (Havno et al., 1995), tRIBS (Ivanov et al., 2004), VIC (Liang et al., 1994), 

TOPNET (Bandaragoda et al., 2004), HRCDHM (Carpenter and Georgakakos, 2003), 

HL_RMS (Koren et al., 2004), and etc. These models include models for rainfall-runoff 

vertical fluxes and channel routing.  

 For the rainfall-runoff and vertical flux component, Darcy-like or Richard-like 

equations are used in many cases to simulate the small scale hill-slope drainage (e.g., 

Bandaragoda et al., 2004, Stieglitz and Pan, 2006), and kinematic wave equations are 

used to simulate the surface flow (Vieux, 2001). In the coupled water-energy models, the 
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water and energy fluxes are considered simultaneously (e.g., Liang et al., 1994, Neitsch 

et al., 2002, Havno et al., 1995, Ivanov et al., 2004). The infiltration fluxes are also 

simulated by various dynamic equations such as Richard equations, Green-and-Ampt 

equations (Green and Ampt, 1911), Philip equations (Philip, 1957), Manley equations 

(Manley 1977), and others. The estimation of potential and actual evapotranspiration can 

be obtained either by temperature-based relationships or by radiation-based models, 

constrained by water/energy balance requirements. 

 The channel routing component is based on linear or nonlinear reservoir routing, 

Muskingum routing, Kinematic wave routing, Linearized St. Venant equations, and fully 

dynamic wave equations. The more complex routing models require more parameters for 

their successful calibration.  

 Physically based models depend on aggregating small scale physical models to 

represent large scale hydrologic processes. Such schemes generally result in a large 

number of model parameters and pose calibration challenges. Such difficulties can also 

be demonstrated by looking into the inherent equifinality problem when the model is 

matched to limited observations (Beven, 1996).  The parameter estimation and the issue 

of over-parameterization will be discussed in the Section 2.3.3. 

2.3.2 Conceptual Models 

Conceptual models comprise a number of lumped storage elements which involve a 

limited number of parameters and are relatively easier to calibrate. The basis of most 

conceptual models is the principle of water balance expressed at various temporal scales 

(e.g., hourly, daily, weekly, monthly, and yearly). Unlike physically based models, 

conceptual models do not attempt to simulate every aspect of the underlying hydrologic 

processes, but rather simulate the relevant aggregate response by using appropriately 

lumped functions and parameters.  These include precipitation partition to effective 
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precipitation and surface storage retention, soil moisture storage to multiple soil layers, 

storage-release response, percolation functions, evaportranspiration, and others. 

 One of the earliest studies on the conceptual hydrologic models is the Stanford 

watershed model developed by Crawford and Linsley (1966) at Stanford University, 

which later evolved into the hydrocomp simulation program (HSP). The Stanford model 

can be viewed as an explicit soil moisture accounting (SMA), and it has 35 parameters in 

total. Some of the parameters can be fixed according to physical conditions of the 

watershed or catchment. The SMA-type hydrologic models generate runoff based on 

storage elements and functions controlling the exchanges of water. Since the original 

Stanford model, a number of SMA-type models have been developed, some of which are 

still in use (Fleming, 1975; Singh, 1995). These include HSPF, SSARR,  HBV, UBC, 

VIC, Xiaanjiang, and other models. In the United States, the Stanford model was 

extended to the Sacramento (SAC) model jointly by the United States National Weather 

Service (NWS) and the California State Department of Water Resources (Burnash et al., 

1973). The SAC-SMA model has 16 parameters and is the basis of the operational NWS 

River Forecast System (Burnash, 1995).  The success of the SAC-SMA models is largely 

due to their simplicity, efficiency, and predictive accuracy relative to the physically-

based models. 

 Conceptual models have several parameters to fit rainfall-runoff data. It has been 

shown that increasing the number of parameters in a conceptual model can potentially 

increase model skill. However, there are also concerns of data over-fitting if the number 

of parameters becomes too large. Dawdy and O’Donnel (1965) tried to define a generic 

model structure with 16 parameters. Theirs was one of the early studies on the issue of 

model parsimony. Chapter 4 addresses this aspect in more detail using an inductive 

approach. 
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2.3.3 Parameter Estimation Methods 

Both physically-based and conceptual hydrologic models present parameter estimation 

challenges. Estimating model parameters has been the topic of many hydrological (Duan 

et al., 1994; Gupta and Sorooshian, 1998; Yapo et al., 1998; Duan et al., 2007; Wagener 

et al., 2009; and Apostolopoulos and Georgakakos, 1997).  

 Parameter calibration can be carried out using the deductive or the inductive 

approach. The deductive approach first assumes a certain model structure and then 

estimates the parameters through various optimization methods. The inductive approach 

does not assume any pre-defined model structure and parameters. Instead, it deciphers  

the model structure from the available data. The inductive approach begins with the 

consideration of first order model inter-relationships, functions, and parameters 

pertaining to the primary watershed hydrologic response. Additional model complexities 

are progressively introduced as necessary to represent more particular watershed response 

aspects. Deductive and inductive parameter estimation approaches are reviewed next in 

more detail.  

 Duan et al. (1994) proposed a population-evaluation based global optimization 

method known as the SCE-UA (shuffled complex evolution method developed at the 

University of Arizona) to calibrate the physically based and conceptual watershed models 

by using a single-objective function. It has shown to be an effective and efficient method 

in locating the global optimal model parameters. However, model calibration exercises 

have shown that a single-objective function is usually not sufficient to represent all model 

performance aspects.  

 Gupta and Sorooshian (1998) argued that parameter optimization schemes by 

using single-objective functions may not solve the model calibration problem fully. Their 

paper suggests that the inherent multi-objective nature of the hydrologic simulation 

require more powerful model calibration paradigms to evaluate multiple objectives and to 

explicitly recognize the role of model errors. 
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 Yapo et al. (1998) extended the SCE-UA method by using the Multi-Objective 

Complex Evolution (MOCOM-UA) technique to calibrate the Sacramento Soil Moisture 

Accounting model (SAC-SMA) for the Leaf River watershed. This technique introduces 

the Pareto ranking instead of the algorithm ranking in its sorting routine. It uses a rank-

based selection procedure to select the points closest to the Pareto set. The MOCOM-UA 

method was also applied to more complex physically based models. 

 Wagner et al. (2009) worked with distributed hydrological models and showed 

that it is important to use multiple evaluation metrics when assessing model predictions. 

They suggested a dynamic calibration process to take advantage of spatial parameter 

controls on model responses at different times. It was shown that even for a distributed 

model with so many parameters; there are no ‘best’ parameters that work for all times 

and under all scenarios.  

 Bae and Georgakakos (1992; 1994) developed a calibration procedure in which 

parameters are first manually initialized (Peck, 1976) and then optimized by an automatic 

downhill simplex optimization routine.  They applied their technique to a modified 

Sacramento type model for the Upper Des Moines River basin. Among the model 

parameters, the upper soil free water capacity, tension water capacities, exponent of the 

percolation function, and fraction of base flow lost to deep groundwater are identified as 

the most important parameters for continuous river flow simulation during long periods. 

 The parameter estimation challenges documented in the literature provide 

evidence that the assumed model parameters are not truly identifiable and always end up 

fitting data instead of representing real underlying physical processes. Identifying 

appropriate model parameters is the most difficult step in hydrologic model building.  For 

example, Wagener and Wheater (2006) explicitly explored the impact of model structure 

errors on the identification of parameters to be regionalized. They concluded that the 

uncertainty in the locally estimated model parameters is a function of their importance in 

representing the response of a given catchment. Parameters associated with major 
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hydrologic processes in a well structured conceptual model are called controlling 

parameters and regionalize easier than those representing secondary hydrologic 

processes.  

2.3.3 Nonlinear Storage-Release Relationships 

A core component of conceptual hydrologic models is the soil moisture storage release 

function. This function determines the flow contribution from soil layers, and it has linear 

or non-linear forms. Although linear storage-release forms (e.g., Wood, 1992) have been 

broadly used, there is increasing interest in developing nonlinear storage-release 

relationships (e.g., Amorocho, 1963, 1967; Wittenberg, 1999; Mishra et al., 2003; 

Brutsaert, 2005; and Botter, 2009).  The nonlinearity of storage-release relationships can 

be represented by quadratic and polynomial functions, exponential functions,  and power 

functions.  

 Amorocho (1963, 1967) investigated the nonlinear watershed response by using 

higher power function series on a laboratory catchment. It was shown that by 

incorporating nonlinear functions, the forms and magnitudes of flood events were better 

represented than those obtained from linear approximation functions such as the unit 

hydrograph. Amorocho’s nonlinear model was calibrated by a trial-and-error method and 

it was later improved by Helweg et al. (1982). Amorocho’s study was also followed by 

several discussions on the applicability of nonlinear time series on hydrologic prediction. 

 Wittenberg (1999) developed deterministic nonlinear reservoir algorithms 

extended for separation of base flow from daily river discharges of 14 stations in the 

upper Weser and Ilmenau basins in Germany. The nonlinear relationships are estimated 

from a numerical analysis of the flow recession curves with power function forms. This 

non-linear reservoir function is found to be a more realistic alternative to the linear 

reservoir function. By using an inverse nonlinear reservoir routing algorithm, Wittenberg 
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estimated the recharge flux from groundwater to the river system and used it to estimate 

the long term water balance changes. 

 The storage-release functions can also be analyzed by performing flow recession 

analysis. Horton (1941) was one of the earliest hydrologists who suggested the use of 

power laws for flow recession curves, followed by Brusaert and Niber (1977).  The 

recession analysis has been based on nonlinear reservoir models representing the 

subsurface flows (e.g., Brutsaert and Lopez, 1998; Lyon and Troch, 2007; Rupp and 

Woods, 2008). More recently, Kirchner (2009) working with two small watershed also 

showed that the storage-release function has a power function form. Gupta et al. (1996), 

Furey and Gupta (2005; 2007) also showed that peak-discharge and drainage area are 

related through a power law. Their conclusions are based on two empirical studies with 

the Goodwin Creek experimental watershed.  

 In addition to the storage-release function, the infiltration and percolation 

functions also play key roles in model performance. At small spatial scales, these 

functions can be fully characterized using, for example, the Green-and-Ampt (Green and 

Ampt, 1911) or the Richards equations (Richards, 1931).  At watershed scales, however, 

direct application of such approaches is inadequate.  

 In the Soil and Water Assessment Tool (SWAT) model developed by USDA, the 

percolation is calculated by the storage routing methodology with a parameter of the 

drainable volume of water and an exponential form of the function including two routing 

parameters: the time step and the travel time for percolation. The water percolates from 

the lowest layer to the vadose zone, which lies between the bottom of the soil column 

(modeled by hydrologic models) and the top of the aquifer. 

 In the Sacramento Soil Moisture Accounting (SAC-SMA) model, the percolation 

function has an exponential form with two parameters. The top and bottom storage layer 

drainage is expressed in linear form with one coefficient. The Variable Infiltration 

Capacity model developed by Liang et al. (1992, 1994) has a unique infiltration scheme 
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by using the variable infiltration curve in an exponential form with three parameters: 

maximal infiltration capacity, infiltration shape parameter, and the fraction of an area of 

infiltration deficiency. 

 In the previous studies, the watershed functions (linear or nonlinear) are based on 

the assumption that they have a particular form including certain hydrologic state 

variables (e.g., soil moisture, evaportranspiration, and effective precipitation) and 

parameters. However, few studies address the question whether such assumptions 

represent the real hydrologic processes.  

 Stochastic approaches have also been used in developing conceptual hydrologic 

models. Both linear stochastic models (e.g., Harms and Campbell 1967, Klemes 1978, 

Salas and Smith 1981) and nonlinear stochastic models (e.g., Kavvas 2003, Botter 2009) 

have been investigated. Most of the earlier studies focus on the stochastic nature of 

rainfall, runoff, lake volumes, and other hydrologic variables. More recent studies pay 

more attention on the stochastic nature of model structure and functional parameters. For 

example, the nonlinear stochastic approaches have investigated how different function 

forms and parameters contribute to model output uncertainty. Botter (2009) developed an 

analytical stochastic solution for runoff variability by using different nonlinear forms, 

including concave and convex power and hyperbolic forms. Botter also introduced 

probabilistic measures for the nonlinear storage-release function, so that runoff can be 

estimated in a stochastic framework. It is found that different stream flow distributions 

are directly related to nonlinear features of the storage-runoff relationship.  

2.3.4 Data-driven and Inductive Modeling Approach 

Most hydrologic modeling approaches preselect the model structure and parameters 

based on prior model calibration experience. Young (1993, 1998, 1999, and 2003) 

classified such models as hypothetic-deductive type, which implies that certain structural 

assumptions are made first, and then the associated parameters are estimated using 
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various methods. Alternatively, the inductive approach infers the functional model forms 

and associated parameters directly from data, the aim being to keep the model order and 

complexity minimal while achieving maximal statistical significance. In other words, the 

inductive modeling approach seeks to identify the simplest model structure supported by 

the data. 

 Yong and Beven (1994) discussed the data-based mechanistic approach in 

identifying the structure of IHACRES model. There is no need to fix the model structure 

beforehand, but instead, an analysis of the data itself suggests the appropriate structure 

forward. The model is identified by using statistical inference techniques on a a generic 

class of linear transfer function models whose parameters are allowed to change over 

time.  

 Bai et al. (2009) proposed a top-down strategy for model evaluation and selection 

under uncertainty. The watershed model structures with increasing complexity were 

applied to twelve watersheds with different characteristics in the US. Their model 

selection process is automated by combining the reliability and shape performance 

measures in a fuzzy rule system.  

 Another inductive modeling approach was recently proposed by Kirchner (2009) 

when studying two headwater catchments of the Severn and Wye rivers at Plynlimon, 

Wales. Each catchment is represented by a single storage element. The discharge from 

the single storage is determined by the storage alone and the storage-release function is 

estimated from an analysis of stream fluctuations. The catchment sensitivity to changes in 

storage is estimated by identifying times when the precipitation and evapotranspiration 

are relatively small. In cross validation, the Nash-Sutcliffe (N-S) efficiencies for the two 

watersheds were found to range from 0.82 to 0.94. This N-S efficiency range is 

compatible with a 4-parameter model.  

 Kirchner’s modeling scheme can be improved by adding extra components into 

the model structure (i.e., a second storage element) that would expand the applicability of 
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such models to larger spatial and temporal scales. Majone et al. (2010) applied the flow 

sensitivity analysis by using a two storage model, calibrated by particle swarm 

optimization (PSO) method for four small Alpine catchments in the northeastern part of 

Italy. Their model generated runoff by adding the discharges from both a non-linear 

storage (superficial layer) and a linear storage (underground layer).  They found that the 

model can reproduce the observed discharges better and more consistently. However, 

such extensions complicate the underlying function and parameter identification process.  

 Teuling et al. (2010) applied Kirchner’s daily conceptual model to a Swiss 

watershed (Rietholzbach). Instead of using multiple storage elements, Teuling splits the 

runoff function g(Q) to three regions and use a piecewise linear regression to fit the data 

points falling in these regions. They found that the stream flow recession at the daily time 

scale shows a marked seasonal cycle due to seasonal changes of evapotranspiration. They 

also concluded that better results can be obtained when the discharge sensitivity function 

is calibrated on a monthly time step to avoid the impact of diurnal cycles. However, the 

seasonal differences in the discharge sensitivity function are physically due to different 

response characteristics of varies surface/soil layers. For instance, the outflow from lower 

soil layer may response to the storage changes in a rate much slower than the upper soil 

layer and the surface layer. 

 This study uses a watershed model with two or three storages and storage-release 

and percolation functions derived based on an inductive approach. Model parameters are 

estimated using a recursive identification methodology suitable for multiple, inter-linked 

modeling components.  

 The thesis also introduces a new downward inductive modeling approach to 

identify model structures and parameters suitable for a certain scale. This approach starts 

from aggregate spatial and temporal scales and proceeds to introduce more detailed 

processes and relevant parameters as spatial and temporal resolution increases until no 

improvements of the modeling performance can be achieved. 



24 
 

 The new model is applied here to intermediate scale watersheds (102 to 104 square 

miles) at monthly time resolution. However, the modeling concept is applicable to finer 

spatial and temporal scales, with additional modeling elements used to represent 

hydrologic process that become important at finer scales. We have tested the model on 

several small experimental watersheds (10 to 102 square miles) in Tifton, Georgia (not 

shown in this Thesis). The calibrated watershed models are employed to characterize the 

hydrologic watershed response under the historical and future climate scenarios.  

 

2.4 Hydrologic Regionalization Models 

Hydrological measurements (e.g., catchment runoff) are often limited both temporally 

and spatially. Data deficiencies in ungauged and poor-gauged watersheds pose challenges 

in the calibration and verification of hydrologic models.  

 Hydrologic regionalization seeks to transfer information from one catchment to 

another (Bloschl and Sivapalan, 1995). Early attempts to create regionalization 

relationships focused on modeling hydrologic catchment behaviors in ungauged or poorly 

gauged areas. Regionalization is typically performed with watershed hydrologic models 

and works well with parsimonious models. This outcome is attributed to the parameter 

uncertainty inflation caused by the more complex models. The following two sections 

review the literature on regionalization methods and applications. 

2.4.1 Regionalization Methods 

Early hydrologic model regionalization studies simply use parameters derived from proxy 

catchments or neighboring catchments (e.g., Klemes, 1986, Mosley, 1981, Vandewiele 

and Elias, 1995). The assumption under this approach is that the nearby catchments 

should have same or similar hydrologic behavior. Guo et al. (2001) uses a linear 

interpolation method to spatially interpolate model parameters within a region. 
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Vandewiele and Elias (1995) use kriging interpolation instead. Such an assumption, 

however, is not true for many places where nearby catchments may have very different 

hydrologic features (Post et al., 1998).  

 Burn and Boorman (1993) applied a clustering method to estimate the 

hydrological parameters at ungauged catchments. They classify the catchments into 

groups according to their flow regime and assign each catchment to a group based on its 

physical characteristics. Finally, they use similarity relationships to transfer parameters 

from gauged to ungauged catchments. A similar approach is also tested by Huang et al. 

(2003) and Marechal and Holman (2005). 

 Koren et al. (2003) use soil properties to directly derive parameters in the 

Sacramento Soil Moisture Accounting (SAC-SMA) model. The soil texture data in 11 

soil layers are used to derive analytical relationships for the 11 parameters used by SAC-

SMA. However, the soil parameters used are from point measurements, while the SAC-

SMA model is a conceptual model representing aggregated watershed response. These 

scale differences create severe challenges for this approach. 

 The most commonly used regionalization approach is to relate model parameters 

with catchment characteristic in a statistical manner (e.g., Abdulla and Lettenmaier, 1997, 

Post et al., 1998, Sefton and Howarth, 1998, Seibert, 1999, Xie et al, 2006, Wagener and 

Wheater, 2006). Using the same hydrologic model, many catchments are calibrated to 

derive a set of parameters. The watershed descriptors for the same catchments are also 

obtained from different sources. The model parameter sets are then regressed on 

catchment descriptors. Different regression methods have been used for such purpose 

with reported to be successful while others are not encouraging. In recent studies, the 

uncertainties of the regionalization models have drawn considerable attentions (e.g., 

Kling and Gupta, 2009, Wagener and Wheater, 2006).  

 Kling and Gupta (2009) investigated how the sub-basin scale variability impacts 

the development of regionalization relationships. They found that the noise in the lumped 
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parameters diminishes the correlation with catchment properties and concluded that the 

degree of spatial variability of sub-catchment scale processes must be taken into account.  

 Wagener and Wheater (2006) explicitly explored the impact of model structure 

errors on the identification of parameters to be regionalized. They conclude that the 

uncertainty in the locally estimated model parameters is a function of their importance in 

representing the response of a given catchment. It can be expected that for a well 

structured conceptual model, the parameters representing the major hydrologic features 

(such as storage capacity and lag time) will be regionalized easier than those representing 

hidden or secondary hydrologic processes.  

 One recent study by Kokkonen et al. (2002) use a top-down approach to create 

regionalization models predicting daily flows. The factors controlling parameter 

variability are identified first and such information is used in smaller sub-regions. They 

concluded that the interrelationships between model parameters should be retained in the 

regionalization model instead of deriving quantitative relationships between parameters 

and catchment descriptors individually.   

2.4.2 Regionalization Applications 

Regionalization and the prediction of the response of ungauged catchments have been 

major objectives of the International Association of Hydrological Sciences known as 

Prediction in Ungauged Basins (PUB). Its applications range from filling missing stream 

flow data, estimating flooding or low flow frequencies of ungauged catchments, 

providing guidelines for civil infrastructures in ungauged basins, providing the scientific 

bases for ecosystem studies in ungauged areas, and several others.   

 Verification of catchment classification datasets is another application of 

regionalization models. Marechal and Holman (2005) developed the catchment resources 

and soil hydrology (CRASH) model and applied it to three catchments in England with 

parameterized values from the existing national hydrology of soil types (HOST) 
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classification. The model successfully simulates the daily flows in all three catchments. 

However, the relationships between HOST classes and the CRASH model are not fully 

regionalized models. It only verifies the classification of a specific watershed. In order to 

regionalize the parameters, a single set for each HOST class needs to be derived and 

verified. 

 There is also increasing interest in applying regionalization approaches to assess 

the impact of land use change on catchment hydrology (e.g., Heuvelmans et al., 2004, 

Hundecha and Bardossy, 2004, Brath et al., 2003). The regionalization models are 

developed first for historical periods when no significant land use changes are observed. 

They are then used to model the resulting runoff and other hydrologic variables for 

different land use scenarios generated in the model area.  

 Regionalization models are also useful to characterize the response of ungauged 

watersheds under future climate scenarios.  Furthermore, for places where both climate 

and land use changes impacts are to be assessed, parameter regionalization is a necessary 

component for integrated assessments. 

 

2.5 Climate of the Southeast US 

Southeast US includes the states of Alabama, Georgia, Florida, North Carolina, South 

Carolina and Tennessee. It has a warm, humid, and temperate climate, typical of the 

tropics and subtropics, with mild winters and hot summers. Most of the precipitation in 

winter months falls as cold rain from large cyclonic storm systems. During summer 

months, the climate is hot and humid with rain falling in heavy downpours from localized 

convective thunderstorms. 

2.5.1 Hydro-climatic Conditions  
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Georgia river basins experience all four seasons, with monthly mean temperature varying 

from 39oF (4oC) in the winter to 76oF (25oC) in the summer. The average annual 

precipitation over Georgia is 50 inches (1250 mm).  Spatially, annual precipitation varies 

from 45 inches (1100 mm) in central Georgia to approximately 75 inches (1900 mm) in 

the northeast corner of the state. Water in Georgia originates mainly as rainfall and 

occasionally as snow or sleet. Over the long term, approximately 70 percent of Georgia’s 

precipitation becomes evapotranspiration (ET), while the remaining 30 percent becomes 

runoff and stream flow. These percentages vary seasonally and by watershed location, 

with ET being higher during summer and at lower latitudes.  

 

Figure 2.1: Photos of upper Chattahoochee River (left) and upper Flint River (right). 

(Acquired from NWS website: http://www.georgiaencyclopedia.org on June 5, 2011)

 Surface water availability is a major concern in Georgia. Georgia’s geological 

conditions play a key role in shaping watershed surface features, including soil type, 

hydrology, and stream morphology. The rivers and streams emanating from the Blue 

Ridge Mountains of north Georgia (e.g., the upper Chattahoochee River as shown in 

Figure 2.1) are generally fast-flowing, cold, and clear. In the Piedmont (e.g., middle 

Chattahoochee and upper Flint Rivers as shown in Figure 2.1), rivers are slower because 

of the flatter, rolling topography. Rivers and streams below the fall line (e.g., 

Apalachicola and lower Chattahoochee and Flint Rivers) exhibit varying degrees of 
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aquifer interactions. Lime sinks, sinkholes, and springs are common in this part of the 

Georgia. 

 Groundwater is another critical water resource especially in southern Georgia, 

where agricultural irrigation relies heavily on groundwater pumping. The fall line runs 

across Georgia and the ACF river basin northeastward from Columbus to Augusta. It 

separates the Upper Coastal Plain sedimentary rocks to the south from the Piedmont 

crystalline rocks to the north. This leads to a clear separation of groundwater aquifer 

systems between the north and south parts of Georgia. 

The Valley and Ridge (Paleozoic Rock) Aquifers consist of limestone underlying 

the valleys. These aquifers are generally very productive. The Piedmont and Blue Ridge 

Aquifers are crystalline rock aquifers and they consist of bedrock overlain by 

unconsolidated material called regolith. Groundwater can be obtained from either regolith 

or fractures in the rock, with high yield. 

The Upper Floridian Aquifer, underline most of South Georgia, is confined by 

clay layers, and it is shallow and productive. In the lower Flint River basin in South 

Georgia, the aquifer is semi-confined, and it is primarily used for agricultural pumping. 

The Claiborne and Cretaceous Aquifers in South Georgia consist of sands and gravels 

deposited on ancient beaches and are not as productive as the Upper Floridian Aquifer.  

2.5.2 Precipitation 

The mechanisms of Georgia’s precipitation vary from season to season. Frontal 

storms are common during winter, spring, and fall, while convective storms dominate 

during summer. Hurricane-induced tropical storms are also common during the hurricane 

season from June to November. Strong El Niño years tend to be wetter than normal, 
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while La Niña years are drier. Overall, annual precipitation varies by as much as 40 

percent of the long term mean.  

Figure 2.2 shows the seasonal (DJF, MAM, JJA, and SON) precipitation 

climatology over Georgia and the ACF basin, based on historical data from 01/1950 to 

12/1999. The figures show that the northeastern ACF region (Blue Ridge) receives much 

more precipitation than the rest of the basin, except during summer and fall when 

southern Apalachicola in Florida is impacted by tropical cyclones and summer 

thunderstorms. The Blue Ridge Mountains have the most frequent snowfall in Georgia, 

although snowfall is less than other regions of the Appalachian Mountains. 

We also aggregated the precipitation field (climatology) into different basin areas 

in Georgia to derive the monthly precipitation climatology by sub-basin. All basins 

exhibit a similar monthly precipitation pattern with highs in March and July and lows in 

October. The July high and October low become more pronounced for watersheds in 

lower latitudes. The Buford watershed, extending in the Blue Ridge Mountains, receives 

the highest precipitation amounts in all months.  

2.5.3 Temperature 

Georgia’s temperature exhibits temporal and spatial variations due to regional 

geographic and climatic features. Figure 2.3 shows the ACF seasonal temperature 

climatology (DJF, MAM, JJA, and SON) based on the historical data from 01/1950 to 

12/1999.  Seasonal average temperature variations of 3 to 6 degrees are observed from 

north to south, with the northeastern region being colder due to its topography.  



31 
 

All sub-basins exhibit similar patterns.  The hottest months are July and August 

with temperatures varying from 22oC to 28oC, while the two coldest months are 

December and January with temperatures varying from 4oC to 10oC.  

 

 

Figure 2.2: Seasonal Precipitation Climatology of the Southeast US: DJF (top left), 

MAM (top right), JJA (bottom left), and SON (bottom right). 
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Figure 2.3: Seasonal Ground Air Temperature Climatology of the Southeast US: DJF 

(top left), MAM (top right), JJA (bottom left), and SON (bottom right). 
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2.6 Georgia River Basins 

2.6.1 Apalachicola-Chattahoochee-Flint (ACF) River Basin 

The Apalachicola-Chattahoochee-Flint (ACF) river system (Figure 2.4) is shared by 

three southeast states: Georgia, Alabama, and Florida. It begins from north Georgia and 

flows into the Gulf of Mexico, near Apalachicola, Florida. The total ACF drainage area is 

19,600 square miles. 

The Chattahoochee River originates in the Blue Ridge Mountains of the 

Appalachian Highlands in northeast Georgia, and flows southwesterly for 120 miles and 

then southerly along the Georgia - Alabama border for another 200 miles.  The 

Chattahoochee drainage basin is 8,770 square miles.  The Flint originates south of 

Atlanta and flows in a southerly direction toward the Coastal Plain where it joins the 

Chattahoochee River at Lake Seminole.  The Flint River drainage basin is 8,460 square 

miles. The releases from Lake Seminole enter the Apalachicola River which lies in the 

Coastal Plain over its entire length of 108 miles and flows south across northwest Florida 

to the Apalachicola Bay. The Apalachicola River drainage basin is 2,370 square miles.  

The Chattahoochee flows are highly regulated by a series of federal and private 

reservoirs. The federal reservoirs operate for multiple purposes, including flood control, 

water supplying, hydropower, navigation, water quality, recreation, and aquatic life 

protection, while the private reservoirs are power facilities. The Flint and Apalachicola 

Rivers are largely unregulated. 

 Based on the locations of major storage projects and the geography of the basin, 

this study distinguishes the sub-basins with the following outlets: (1) Buford dam, (2) 

Norcross, (3) Atlanta, (4) Whitesburg, (5) West Point dam, (6) Columbus, (7) W.F. 
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George dam, (8) Columbus, (9) Woodruff dam, (10) Montezuma, (11) Albany, (12) 

Milford, (13) Newton, (14) Iron City, and (15) Bainbridge. 

 

 

 

 

Figure 2.4: The Apalachicola-Chattahoochee-Flint (ACF) River System (Courtesy: 

Georgia Environmental Protection Division). 
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2.6.2 Alabama-Coosa-Tallapoosa (ACT) River Basin 

The Alabama-Coosa -Tallapoosa (ACT) river system (Figure 2.5) is shared by Georgia 

and Alabama. It begins from north Georgia and continues across the border into 

Alabama. The total ACF drainage area is 22,500 square miles. 

The Alabama River basin has its source in the Blue Ridge Mountains of northwest 

Georgia. The Tallapoosa River originates west of Atlanta, and flows westerly for about 

100 miles before it enters Alabama. The Tallapoosa drainage basin is 4,680 square miles, 

of which 720 square miles lie in Georgia and 3,690 square miles are in Alabama.  The 

Coosa river is formed by the convergence of the Etowash and Oostanaula rivers and 

flows into the Gulf of Mexico in southwest Alabama.  

The Tallapoosa and Coosa rivers are regulated by several federal and private 

projects. There are six major hydroelectric projects constructed by the Alabama Power 

Company (APC) on the Coosa and Tallapoosa Rivers and two US Army Corps of 

Engineers (USACE) projects, Allatoona and Carters, located above the APC Coosa 

projects.  There are several federal lock and dam facilities on the Alabama River 

including the Robert F. Henry, Millers Ferry, and Claiborne. The ACT rivers support 

threatened and endangered aquatic species as well as a significant for fishing industry in 

Alabama. 

 Based on the location of major storage projects and the basin geography, this 

study distinguishes the following ACT sub-basins: (1) Tilton, (2) Resaca, (3) Carters 

Lake, (4) Caters Reregulation Dam, (5) Pine Chapel, (6) Oostanaula, (7) Canton, (8) 

Alatoona Dam, (9) Kingston, (10) Etowah, and (11) Coosa. 
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Figure 2.5: Alabama, Coosa, and Tallapoosa (ACT) River Basin (Courtesy: Georgia 

Environmental Protection Division). 
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2.6.3 Oconee-Ocmulgee-Altamaha (OOA) River Basin 

The Oconee-Ocmulgee-Altamaha (OOA) river system (Figure 2.6) is located entirely 

within Georgia. A major continental divide occurring between the Ocmulgee and Flint 

rivers causes the Altamaha River basin to drain into the Atlantic Ocean. The total OOA 

drainage area is 14,260 square miles. 

The Oconee and Ocmulgee River begins from the foothills of the Appalachians 

meet the Altamaha River in the Upper Coastal Plain, and flows into the Atlantic Ocean. 

The Ocmulgee River basin is located in the Piedmont and Coastal Plain physiographic 

provinces of Central Georgia. The Oconee River basin is located just east of the 

Ocmulgee River basin and is formed by the confluence of the Middle and North Oconee 

rivers. Farther downstream of the confluence, the tributary joins the Altamaha River. The 

Altamaha River basin is the largest watershed in Georgia draining into the Atlantic 

Ocean. The Altamaha River is part of the large Floridian aquifer which becomes 

shallower near the fall line. In the lower Altamaha River basin, the majority of domestic 

water supply comes from groundwater. 

The Oconee River and Ocmulgee River are regulated by several hydropower 

reservoirs (Lake Jackson, Lake Oconee, and Lake Sinclair) operated by Georgia Power. 

The Altamaha River is unregulated, having no federal or private power storage reservoirs 

in its drainage basin.  

 This study distinguishes the following OOA sub-basins: (1) Jackson, (2) Macon, 

(3) Lumber City, (4) Athens, (5) Penfield, (6) Milledgeville, (7) Dublin, (8) Mount 

Vernon, (9) Baxley, (10) Reidsville, and (11) Doctortown. 
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Figure 2.6: Oconee-Ocmulgee-Altamaha (OOA) River Basin (Courtesy: Georgia 

Environmental Protection Division). 
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2.6.4 Savannah-Ogeechee (SO) River Basin 

The Savannah-Ogeechee (SO) river system (Figure 2.7) is shared by Georgia, South 

Carolina and a small portion of North Carolina. It is located in northern and eastern 

Georgia, originating in the Blue Ridge Mountains. The total SO drainage area is 10,580 

square miles. 

The Savannah River begins at Lake Hartwell, in Hart County, at the confluence of 

the Seneca and Tugaloo rivers and flows easterly toward Savannah into the Atlantic 

Ocean. Above the junction of the Seneca and Tugaloo rivers, the major headwater 

streams of the Seneca River are the Keowee River and the Twelve Mile Creek. The 

Ogeechee River begins in the southeastern edge of the Piedmont physiographic region 

and flows 245 miles in a southeasterly direction to the Atlantic Ocean. 

The SO is one of the most complex and highly-regulated basins in Georgia. The 

Savannah River upstream of Augusta is highly regulated by three large multipurpose 

USACE reservoirs (Hartwell, Richard B. Russell, and Thurmond), and a number of 

private reservoirs owned by Georgia Power and Duke Energy. The Corps New Savannah 

Bluff Lock and Dam and the South Carolina Electric and Gas Stevens Creek project are 

located downstream of Augusta, both of which are essentially run-of-river projects. 

 This study distinguishes the following SO sub-basins: (1) Lake Keowee, (2) 

Hartwell Reservoir, (3) Russell Reservoir, (4) Bell, (5) Thurmond Reservoir, (6) Augusta, 

(7) Millhaven, (8) Burtons Ferry, (9) Clyo, (10) Eden, (11) Claxton, (12) Kings Ferry, 

and (13) Savannah. 
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Figure 2.7: The Savannah-Ogeechee (SO) River System (Courtesy: Georgia 

Environmental Protection Division). 
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2.6.5 Ochlocknee-Suwannee-Satilla-St. Mary’s (OSSS) River Basin 

The Ochlocknee-Suwannee-Satilla-St. Mary’s (OSSS) river system (Figure 2.8) is 

located in southern Georgia across the border with Florida. The total OSSS drainage area 

is 10,450 square miles. 

The Ochlocknee River begins approximately 19 miles southeast of Albany; the 

Suwannee River begins approximately 9 miles south of Waycross; the Satilla River 

begins approximately 25 miles east of Tifton; and the St. Mary’s River begins 

approximately 14 miles east of Lake City. The Ochlochnee River and Suwannee Rivers 

flow into the Gulf of Mexico, and the Satilla River and St. Mary’s Rivers flow into the 

Atlantic Ocean. The OSSS basin is unregulated, having no federal or private power 

storage reservoirs. 

 This study distinguishes the following OSSS sub-basins: (1) Quincy, (2) Concord, 

(3) Thomasville, (4) Quitman, (5) Bemiss, (6) Alapaha, (7) Jennings, (8) Statenville, (9) 

Waycross, (10) Fargo, (11) Offerman, (12) Atkinson, (13) Gross, and (14) Macclenny. 

 

 

Figure 2.8: The Ochlocknee-Suwannee-Satilla-St. Mary’s (OSSS) River System 

(Courtesy: Georgia Environmental Protection Division). 



42 
 

2.6.6 Tennessee (TN) River Basin in Georgia 

The Tennessee (TN) river basin (Figure 2.9) in Georgia is located in north of Georgia 

across the border with North Carolina. The total TN drainage area is 2100 square miles. 

The Little Tennessee River begins in Georgia and drains north into North 

Carolina. The Toccoa-Nottley-Hiwassee begins in Georgia and drains northwest into 

Tennessee and North Carolina. The South Chickamauga-Lookout Creek basin begins in 

Georgia and Alabama and drains north into Tennessee. These three rivers are regulated 

by three reservoirs respectively for the purpose of flood control and hydropower. 

 This study distinguishes the following TN sub-basins: (1) New England, (2) 

Chickamauga, (3) Copperhill, (4) Blue Ridge Reservoir, (5) Nottely Dam, (6) Chatuge 

Dam, and (7) Little Tennessee. 

 

 

Figure 2.9: The Tennessee (TN) River System (Courtesy: Georgia Environmental 

Protection Division). 
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CHAPTER 3 

JOINT VARIABLE SPATIAL DOWNSCALING 

 

In this chapter, we develop a new statistical technique for downscaling gridded climatic 

variables, joint variable spatial downscaling (JVSD), to generate high resolution gridded 

datasets for regional watershed modeling and assessments. The proposed approach differs 

from previous statistical downscaling methods in that multiple climatic variables are 

downscaled simultaneously and consistently to produce realistic climate projections.  

 In the bias correction step, JVSD uses a differencing process to create stationary 

joint cumulative frequency statistics of the variables being downscaled.  The functional 

relationship between these statistics and those of the historical observation period is 

subsequently used to remove GCM bias. The original variables are recovered through 

summation of bias corrected differenced sequences.  

 In the spatial disaggregation step, JVSD uses a historical analogue approach, with 

historical analogues identified simultaneously for all atmospheric fields and over all areas 

of the basin under study. Analysis and comparisons are performed for 20th Century 

Climate in Coupled Models (20C3M), broadly available for most GCMs.  

 The results show that the proposed downscaling method is able to reproduce the 

sub-grid climatic features as well as their temporal/spatial variability in the historical 

periods. Comparisons are also performed for precipitation and temperature with other 

statistical and dynamic downscaling methods over the southeastern US and show that 

JVSD performs favorably. The downscaled sequences are used to assess the implications 

of GCM scenarios for the Southeast US river basins as part of a comprehensive climate 

change impact assessment. 
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3.1 JVSD Flowchart 

JVSD aims to produce high resolution gridded hydrological datasets suitable for regional 

watershed modeling and assessments. The method is applicable to multiple atmospheric 

fields, but it is presented here for precipitation and temperature, as these two variables 

represent the principle atmospheric forcing that drives watershed response. JVSD 

conceptually follows the general approach introduced by Wood et al., 2004 (Bias 

Correction and Spatial Downscaling—BCSD), with several new features.  

 First, instead of removing and replacing the variable long term trends before and 

after the bias correction step, JVSD uses a differencing process to create stationary time 

series and joint frequency distributions (for temperature and precipitation) between GCM 

control and future runs. Bias correction is then based on quantile-to-quantile mapping of 

these stationary frequency distributions.  The bias corrected sequences are recovered by 

inverting the differenced series.  

 For spatial disaggregation, JVSD also uses the historical analogue approach.  

However, historical analogues are identified simultaneously for all atmospheric fields 

being downscaled, and for all GCM cells that cover the assessment region. This feature 

ensures the temporal and spatial coherence of the downscaled climatic fields. Finally, a 

technique to expand the range of the historical analogues is implemented to handle future 

data values that fall outside the historical range.       

 Overall, downscaled sequences must meet several criteria to be useful in regional 

water resources assessments:  

• First, the downscaled sequences should be consistent with historical observations.  

• Second, the downscaled sequences should capture climatic mean and variability 

trends.   

• Third, spatial and temporal correlations and interdependencies between the 

atmospheric fields that largely drive hydrological processes should be 

represented.  
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• Lastly, to ensure that hydrological assessments at different temporal scales (e.g., 

annually, monthly, and daily) using the same downscaled products are consistent, 

the smoothness of these products across these time scales should be ensured. 

• These criteria formed the guiding principles for a new statistical downscaling 

method discussed next. 

 JVSD is implemented as shown in Figure 3.1 as a two step process: bias 

correction and spatial downscaling. 

 

Figure 3.1: Joint Variable Spatial Downscaling Method Flow Chart. 
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3.2 Bias Correction 

GCM outputs contain significant biases that must be corrected before any meaningful 

assessment can be carried out. Figure 3.2 compares the frequency distributions of GCM 

simulated (CGCM3.1, run1) temperature and precipitation versus observed values 

aggregated over the same ACF cells for the historical period 1950-1999.  Biases exist not 

only in the mean of these distributions but throughout the distributional range, and they 

are uneven at different quantiles. 

 
Figure 3.2: Typical Cumulative Frequency Curves of GCM Simulated and Observed 

Variables. 

The JVSD bias correction process is presented using the following notation:  

� TS1 and TS2: Monthly precipitation and temperature time series of GCM future runs 

on individual GCM grids:  

  )NF,1,2,(t     _GCM          :1 montht ⋯=PTS       

  )NF,1,2,(t     _GCM          :2 montht ⋯=TTS       

where, monthNF  is the length of the monthly time series. 
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� TS3 and TS4: Monthly precipitation and temperature time series of GCM control 

runs on individual GCM grids. GCM control runs correspond to a historical (control) 

time period, such as the entire 20th Century or some portion of it.  

  )NC,1,2,(t     _CON          :3 montht ⋯=PTS      

  )NC,1,2,(t     _CON          :4 montht ⋯=TTS      

where, monthNC  is the length of the monthly time series. 

� DTS5 and DTS6:  Daily observed precipitation and temperature time series on 

individual observational scale grids:  

  
)NO,1,2,(td     _OBS          :5 daytd ⋯=PDTS
      

  
)NO,1,2,(td     _OBS          :6 daytd ⋯=TDTS
      

where dayNO  is the length of the daily observed time series. 

3.2.1 Step 1: Historical Dataset Upscaling 

DTS5 and DTS6 are aggregated into two new monthly sequences TS5 and TS6 over the 

GCM spatial resolution grids.  The aggregation process can be represented as shown 

below:  

  ( ) )NC,1,2,(t     _OBS_OBS    :5 monthttd
d
Pt
t

⋯=∆= PPTS  (3.1a) 

          ( ) )NC,1,2,(t     _OBS_OBS    :6 monthttd
d
Pt
t

⋯=∆= TTTS   (3.1b) 

where  

dt is the number of days in month t;  

P is the number of observational cells falling into a GCM cell; 

d
P∆  is the upscaling operator in space and time.   



48 
 

The upscaling operator dP∆  first performs spatial upscaling over each GCM cell 

and then performs temporal upscaling to monthly time scales.   The spatial upscaling 

operator, ( )PiP AiTS ∈∆ ; , corresponding to a GCM cell P which includes AP 

observational cells, is defined by:  

  
( )

( )

P

TS

; PAi
i∑

∈=∈∆ PiP AiTS
        (3.2) 

Other spatial aggregation schemes such as spatial interpolation and kriging 

(Drignei, 2009) may also be used in this step.  The concept of spatial upscaling of 

observational fields is illustrated in Figure 3.3.  

 
 
 

Figure 3.3: Schematic of Spatial Upscaling, From Observational Scale Grids (OBS) to 

GCM Scale Grids (GCM); Also Shown are the Main Sub-basins of the ACF River Basin. 

The temporal upscaling operator, ( )tTStd∆ , for a month t with dt days is defined 

by:  

  
( )

t

d

1
i

t d

TS
t

∑
==∆ id TSt

         (3.3) 
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3.2.2 Step 2: Time Series Differencing  

Differencing aims to remove seasonalities and deterministic trends, and create stationary 

time series. Differencing can be applied at various lags and orders.  For example, a 12-

month differencing process applied to the monthly time series (TS1, TS2, TS3, TS4, TS5, 

and TS6) on each GCM cell can be expressed as shown below:  

  ( ) )NF,1,2,(t     _GCM_GCMS          :1 montht12t
'

⋯=∇= PPTS       

  ( ) )NF,1,2,(t     _GCM_GCMS          :2 montht12t
'

⋯=∇= TTTS       

  ( ) )NC,1,2,(t     _CON_CONS          :3 montht12t
'

⋯=∇= PPTS        

  ( ) )NC,1,2,(t     _CON_CONS          :4 montht12t
'

⋯=∇= TTTS         

  ( ) )NC,1,2,(t     _OBS_OBSS          :5 montht12t
'

⋯=∇= PPTS         

  ( ) )NC,1,2,(t     _OBS_OBSS          :6 montht12t
'

⋯=∇= TTTS          

where, the differencing operator D∇  with lag D is defined as  

  ( ) DtttD TSTSTS −−=∇          (3.4) 

For D = 12 months, the operator simply subtracts the series values one year apart. If 

trends persist, higher order differencing may also be used.  

The effect of 12-month differencing of GCM temperature and precipitation 

outputs is shown on Figure 3.4.  The top plots of this figure show contour lines of the 

joint empirical temperature-precipitation cumulative frequency curve of the control 

(CON) and future runs (from the Canadian GCM—CGCM3.1/ run1).  Future runs are 

divided into the first 50-year period (FUT1) from 2000 to 2049, and the second 50-year 

period (FUT2) from 2050 to 2099.   Thus, all sample sizes (i.e., CON, FUT1, and FUT2) 

are 50-year long. These plots support the following observations:  
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(1) The joint frequency distributions of temperature and precipitation are different 

in the control and future runs; and  

(2) The relationship of the joint frequency distributions (of control versus future 

data) is appreciably different in the first versus the second 50-year period, 

indicating that the joint frequency distribution is non-stationary.  

These differences and nonstationarities bias the results of all existing downscaling 

methods that are commonly based on quantile-to-quantile mapping of these or the 

associated marginal statistics. 

On the other hand, the bottom two plots of Figure 3.4 show the joint cumulative 

frequency distribution (of temperature and precipitation) after a 12-month differencing of 

the original sequences.  These plots clearly show that the differenced sequences exhibit 

very good correspondence between control and future runs, for both future periods.  

Thus, the joint statistics of the 12-month differenced series are stationary and can serve as 

pivotal quantities for the quantile-to-quantile bias correction process. This result and 

conclusion has been tested and shown to hold for all 13 GCMs available through IPCC. 

To detect the possible existence of higher order nonstationarities, higher order 

differencing and other lags were also tested, but they did not yield any significant 

improvements over 12-month, single differencing. 
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Figure 3.4:  Bi-variant Empirical Cumulative Frequency Curves for Original (Top) and 

Differenced (Bottom) Time Series of Temperature and Precipitation. 

3.2.3 Step 3: Joint Frequency Mapping  

In keeping with the previous discussion, the bias correction process consists of (1) 

creating a differenced series of future temperature and precipitation; (2) finding the joint 

frequency of the contemporaneous differenced data values; (3) considering that this joint 

frequency is the same in the future differenced series as it is in the control differenced 

series; and (4) mapping each joint frequency point of the GCM Control distribution to a 

corresponding point on the joint frequency distribution of the observed differenced series 

(OBS).  The last step is illustrated in Figure 3.5.  The schematic shows two 

corresponding pairs of GCM and OBS joint iso-probability curves, and the nearest 
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neighbor mapping of a GCM point to a point on the corresponding OBS iso-probability 

contour in probability space.  The nearest neighbor is the one which minimizes the 

Euclidean distance between the GCM point and all points on the OBS frequency contour.  

 

Figure 3.5: Joint Frequency Distribution Mapping in Probability Space. The mapping is 

that the two points have the same joint CDF values and the Euclidean distance of their 

marginal CDFs (�x� � y�) is minimum. 

The cumulative frequency distribution functions in the above procedure are 

developed empirically for the observational as well as the GCM data. These empirical 

distributions are used in the joint frequency mapping step directly.  No analytical 
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approximations are derived for this step, although a copula type procedure (Nelsen, 1999) 

could be employed.  Such an analytical approximation would be necessary if the ranges 

of these distributions are significantly different.  However, the frequency distributions are 

derived herein for the differenced data, and it turns out that the extreme values are fairly 

commensurate.  Thus, simple linear extrapolation is used occasionally to identify the bias 

corrected values.  

 
Figure 3.6: Comparison between Two CDF Mapping Approaches for the CSIRO-MK3.5 

GCM (Australia).  The Top Graph Compares the OBS versus the Mapped GCM Joint 
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CDFs for the Nearest Neighbor Approach in T-P Space (9 Iso-Probability Contours from 

0.1 to 0.9 in 0.1 Increments).  The Second Graph Displays the Same Results for the 

Nearest Neighbor Approach in Probability Space.                   

The mapping of a point on the GCM joint cumulative distribution function (CDF) 

onto a point of the OBS joint CDF (of differenced temperature and precipitation values) 

can be performed in several ways, two of which are examined below.  The mapping 

“goodness” criterion is how well the mapped GCM joint CDF corresponds to the OBS 

CDF.  The first mapping procedure ensures that the mapped points have the same GCM 

and OBS CDF values, and finds the “nearest neighbors” on the T-P space.  The second 

procedure is implemented as follows:  A (T,P) point on the GCM joint CDF is associated 

with a joint CDF value as well as two marginal CDF values, one for temperature and a 

second for precipitation.  The mapping is then carried out using the nearest neighbor 

concept in probability space.  More specifically, the two points are selected to have the 

same joint CDF value (on the GCM and OBS CDFs) and the shortest distance between 

their marginal CDF values (in a Euclidian measure sense). 

Figure 3.6 presents a comparison between the two approaches CSIRO-MK3.5 

GCM (Australia).  The top graph compares the OBS versus the mapped GCM joint CDFs 

for the first approach by displaying 9 iso-probability contour lines from 0.1 to 0.9 (in 0.1 

increments).  The second graph displays the same results for the second approach.  The 

figure shows that the second approach represents better the joint CDF than the first 

approach.  This finding is typical of all GCMs.  Thus, this study uses the nearest neighbor 

approach in probability space (second approach).    

3.2.4 Step 4: Time Series Reconstruction  
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The bias corrected monthly temperature and precipitation series for each GCM cell 

(denoted TS7 and TS8) are obtained by inverting the differencing operation on the bias 

corrected series:  

( ) ( ) )NF,1,2,(t    C  C  _C_C  :7 monthD-ttt
1

t ⋯=+=∇= − SP_SP_SPPTS D   (3.5a) 

( ) ( ) )NF,1,2,(t     C  C  _C_C   :8 monthD-ttt
1

t ⋯=+=∇= − ST_ST_STTTS D     (3.5b) 

 

3.3 Spatial Downscaling 

The JVSD spatial downscaling component is based on matching the bias-corrected 

temperature and precipitation patterns with similar observed patterns (historical 

analogues) over the assessment region (e.g., the ACF river basin). This process has the 

following distinguishing features compared to existing methods:  

(1) Pattern matching is performed simultaneously for temperature and precipitation 

fields;  

(2) Pattern matching is performed simultaneously for all GCM cells that cover the 

region of interest (e.g., the ACF river basin), thus maintaining the climatic 

coherence and plausibility of the temperature and precipitation fields; 

(3) Future temperature and precipitation fields that fall outside the historical range are 

accommodated by expanding the range of historical analogues as described in the 

following section.     

The spatial downscaling procedure is summarized below. 

3.3.1 Step 5: Data Range Adequacy Test  
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In this step, the monthly temperature and precipitation values of the relevant GCM cells 

are checked to determine if they fall within the historical observed range of the monthly 

values.  If they fall within the historical range, the downscaling process continues to Step 

7; otherwise, the process continues to Step 6. 

 

 

Figure 3.7: Data Range Expansion Example. 
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3.3.2 Step 6: Historical Analogue Range Expansion  

This step is invoked when the future GCM patterns fall outside the historical range, a 

case particularly relevant to a changing climate. To expand the historical analogue range, 

upscaling of the historical data in Step 4 is performed for periods smaller than a month, 

e.g., d = 15, 10, 5, or 1 days. Because these periods entail fewer days than those in a 

month, their averages are expected to exhibit higher (than monthly) variability and a 

wider data range. This process aims to identify the largest interval d which generates 

historical analogues containing the future T and P values.  The data range expansion is 

carried out for the calendar month to be downscaled.  However, if this is not sufficient, 

the data range is expanded to include 15 days from the previous and 15 days from the 

following months, expected to exhibit a similar climatic behavior. 

The process is illustrated in Figure 3.7.  In the top plot, the maximum  and 

minimum historical monthly precipitation averaged over 30, 10, 5, and 1 days are plotted 

in solid lines, and the corresponding standard deviations in dashed lines. In the bottom 

plot, the same quantities are plotted for the historical temperature. These plots show the 

data range expansion as the averaging interval decreases. 

3.3.3 Step 7: Historical Analogue Matching 

Next, the nearest point ( )ii TOBSPOBS _,_  in the historical sequences TS5 and TS6 to a 

particular point ( )ii TGCMPGCM _,_  in the future GCM sequences TS7 and TS8 is 

determined by minimizing the Euclidean distance:  

  
( ) ( )∑

∈

−+−=
Ai

iiii TGCMTOBSPGCMPOBS 222 ____R βα
     (3.6) 
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where A is the set of cells that cover the region (basin) of interest; α  and β are weighting 

coefficients if one wishes to emphasize matching one of the variable over the other; and i 

is the cell index on the GCM grid. 

Once the nearest historical analogue point is identified, the T-P values can be 

spatially downscaled based on the historical T-P values over the observational cells.  The 

downscaled temperature and precipitation sequences are denoted TS9 and TS10:  

)NF,1,2,(t     
_

_
log

DS_

_DS
  :

10

9
month
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t
⋯=
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where j is the cell index of the observational (high resolution) grid. 

3.3.4 Temporal Downscaling  

Daily (or other duration) temperature and precipitation sequences DTS9 and DTS10 can 

now be constructed by suitable temporal upscaling of the historical analogue fields.  If 

the nearest historical analogue was found from the monthly historical observed fields, 

then, the downscaled daily sequences are directly extracted from the corresponding 

month.  On the other hand, if the nearest historical analogue required expansion of the 

historical range (using the process outlined in Step 6), then, the downscaled daily 

sequences are constructed by assembling several nearest historical analogues the total 

duration of which equals one month.  In the assessments carried out for the ACF river 

basin, data range expansion was not necessary beyond the 15 day interval. 
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3.4 Results and Comparisons 

The geographic focus of the downscaling study in this chapter is the Apalachicola-

Chattahoochee-Flint (ACF) river basin located in the southeast US as shown in chapter 2. 

The ACF basin begins in north Georgia (mostly within a sub-tropic region) and flows 

into the Gulf of Mexico, near Apalachicola, Florida. It drains an area of about 19,600 

square miles. Based on its hydrological characteristics and the locations of major storage 

projects, the ACF basin comprises seven watersheds (sub-basins): (1) the Chattahoochee 

headwater reach extending up to and including Lake Lanier and Buford Dam; (2) the 

Chattahoochee reach from Lake Lanier up to and including West Point Lake and Dam; 

(3) the Middle Chattahoochee reach from West Point up to and including Lake Walter F. 

George and Dam; (4) the Lower Chattahoochee reach from Lake W.F. George up to and 

including Lake Seminole and Jim Woodruff Lock and Dam; (5) the Flint headwater reach 

up to Montezuma; (6) the Flint reach from Montezuma up to Albany; and (7) the Flint 

reach from Albany to Bainbridge. Table 1 lists the characteristics of all ACF sub-basins. 

More detailed descriptions of ACF basins can be found in a recent technical report 

(Georgakakos et al., 2010). 
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Figure 3.8: Spatial Resolutions of the Canadian GCM3.1 (blue) and Observational Data 

Sets (black) over the Southeast US. 

 In this section, JVSD is evaluated by comparison with observed historical data 

and other statistical and dynamic downscaling methods. 

 

Table 3.1: General Characteristics of the ACF Sub-basins. 

ACF Sub-
basins 

Latitude 
(Centroid) 

Longitude 
(Centroid) 

Area 
(km2) 

Mean 
Elevation 

(m) 

Min. 
Elevation 

(m) 

Max. 
Elevation 

(m) 

Buford 34o31’ -83o48’ 2694 454 320 1250 

West Point 33o40’ -84o44’ 5189 270 137 455 

George 32o20’ -85o01’ 4787 143 46 396 

Woodruff 31o13’ -84o58’ 2141 64 22 167 

Montezuma 32o55’ -84o24’ 4507 213 85 394 

Albany 32o01’ -84o11’ 2605 115 53 235 

Bainbridge 31o25’ -84o24’ 1875 72 23 173 
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3.4.1 Seasonal Comparison with Observed Data 

The climatology maps of precipitation and temperature in the southeast US (the region 

where the ACF basin is located).  The results presented here are from the Canadian model 

CGCM3.1, run1. Results from all other GCMs and scenarios can be found in the 

technical report by Georgakakos et al., 2010. Monthly precipitation and temperature data 

are aggregated by seasons (DJF, MAM, JJA, and SON) for three 50-year periods: (1) 

01/1950 to 12/1999 using both observation data as well as data from the CMIP pilot 

project called 20th Century Climate in Coupled Models (20CM3); (2) 01/2000 to 12/2049 

for the CGCM A1B scenario, and (3) 01/2050 to 12/2099 again for the CGCM A1B 

scenario. The first column is constructed from observed, high resolution data from the 1/8 

degree spatial resolution dataset (Maurer et al., 2002) for the period 1950-1999. The 

second column shows the JVSD results with input from the coarse resolution GCM data 

from the 20CM3 experiments (1950-1999). The third (2000-2049) and fourth columns 

(2050-2099) are also generated by JVSD with input from the A1B CGCM3.1 scenario 

runs.  

The important comparison in Figures 3.9 and 3.10 is between the first two 

columns (observations versus JVSD).  The figures show that JVSD results compare 

favorably with observed precipitation and temperature data in that they reproduce fairly 

well the seasonal spatial distributions and coherence. (In generating the JVSD results, the 

corresponding historical month being downscaled has, of course, been excluded from the 

historical analogue data set.) Furthermore, specifically for the CGCM A1B run shown, 

the results in columns 3 and 4 indicate:  
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(1) Temperature exhibits increasing trends over the southeast and the ACF basin 

for all seasons; Temperature increases are more significant in the 2050 – 2099 

time period. The most pronounced temperature increase appears to take place 

in spring and fall.  The A2 scenario results (not shown) are similar but 

temperature increases are even greater in the second half of the 21st century. 

This observation holds true for most GCM scenario results and will be 

quantified further in a later section.   

(2) Precipitation exhibits an increasing trend in winter and a mild declining trend 

in spring and summer.   

Similar analysis (not shown) has been carried out using the BCSD method. The 

BCSD datasets are obtained from the Program for Climate Model Diagnosis and Inter-

comparison website (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/). 

Generally, BCSD performs well, showing similar overall trends for seasonal temperature 

and precipitation as those of the observed data and JVSD. However, the following 

differences are noted between the two methods:  

(1) The BCSD precipitation fields exhibit less spatial variability and milder 

changes than those of JVSD.  The reasons for these differences are  that (i) the 

BCSD downscaled values for nearby cells are calculated based on the same 

upscaled information (through a variant of the inverse distance weight 

approach) and (ii) JVSD is based on historical analogues that have been 

observed over the entire region of interest, not separately for individual cells. 

(More quantitative comparisons of these differences are forthcoming later in 

this section.) 
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(2) BCSD predicts that the highest temperature increases will occur during spring 

and fall as does JVSD.  However, summer temperature increases (July and 

August) are higher under BCSD than under JVSD. 

Furthermore, the JVSD seasonal joint temperature and precipitation CDFs were 

compared with their observed counterparts (Maurer et al., 2002) for each of the seven 

ACF sub-basins over the historical period 01/1950 - 12/1999 (control period). The results 

(Figure 3.11) show that JVSD represents the joint relationships fairly well over the entire 

frequency range, with discrepancies appearing at the extreme value regions which are 

characterized only by a few data points.   

The performance of downscaling methods varies across seasons, stations, and 

indices (Fowler and Blenkinsop, 2007).  Many researchers have concluded that the 

accuracy of statistical downscaling methods has a geographical and seasonal component 

(Huth, 1999).  In addition, the GCM skill in simulating regional climate may vary for 

different locations and scales.  In general, GCMs are more likely to capture the large 

scale climate features, and the relationships between climate variables are likely to be 

better simulated in locations where the topographic features are not too different from 

those assumed in the GCMs.  

One of JVSD’s strengths is that it can represent the co-variability between 

temperature and precipitation.   In places and seasons where there is no significant 

dependence between these two variables, the JVSD and BCSD bias correction procedures 

are equivalent.  However, where such dependence exists, JVSD generates more 

representative downscaled fields.  To demonstrate this feature,  the joint distributions of 

temperature and precipitation for the observed as well as the BCSD and JVSD 
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downscaled data are compared for  Buford, Woodruff, and the entire ACF. Figure 3.12 

shows this comparison for Buford and the GFDL GCM.  This figure shows that in DJF 

and SON, both BCSD and JVSD represent the joint temperature-precipitation 

relationship comparably well, although BCSD exhibits some discrepancies in the joint 

distribution tails.  However, in MAM and JJA, JVSD performs clearly better. The 

underlying reason for these performance differences is illustrated on Figure 3.13 which 

depicts the monthly correlation coefficients between temperature and precipitation for 

four GCMs and the observations, BCSD downscaled data, and JVSD downscaled data 

(over the 1950-1999 historical period).  The figure shows that in DJF and SON 

correlations are negligible, while in MAM and JJA correlations are significant.  Thus, 

JVSD is more preferable than BCSD in places and seasons where temperature and 

precipitation exhibit strong co-variability. 

Next, the seasonal coefficient of variation (CV) for each ACF watershed is 

computed and compared for both the observational and downscaled datasets (from JVSD 

as well as BCSD). The seasonal watershed CV is the spatial mean of the seasonal 

coefficient of variation. The seasonal CV at a particular grid cell is defined as the ratio of 

the standard deviation of the cell seasonal values to the mean seasonal value. Then, the 

watershed CV is obtained as the spatial mean of all seasonal CVs over all watershed grid 

cells.  Table 3.2 shows that the JVSD watershed CVs are more representative of the 

historical CVs than those of BCSD, especially for watershed precipitation. It also shows 

that BCSD underestimates precipitation variability within each watershed.  

Lastly, the spatial inter-grid variability is compared for the same three datasets 

(i.e., the observations, JVSD, and BCSD). Several descriptive statistics exist to 
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characterize the spatial patterns of gridded data including the covariance matrix 

(measurement of spatial dispersion), mean correlation coefficient (measurement of spatial 

correlation), and Ripley's K and L functions (measurements of spatial homogeneity of 

point data). Here, this variability is compared using the distribution of the pair-wise 

correlation between any two grid points within a watershed (Gissila et al., 2004).  The 

temperature field (not shown) exhibits high grid point correlations (greater than 0.99), 

indicating that the monthly temperatures are highly homogeneous within each watershed.  

Both JVSD and BCSD reproduce this homogeneity. However, for reasons explained 

below in relation to precipitation, in geographic areas where the actual temperature field 

exhibits significant spatial heterogeneity, BCSD would tend to over-estimate the inter-

grid cross correlations.  

Box-plots of these pair-wise correlation coefficients across the ACF watersheds 

are shown in Figure 3.14.The historical correlation distributions vary between 0.75 and 

0.9.  The plots show that the JVSD distributions match very closely the historical 

statistics, while BCSD exhibits a significant bias toward homogeneity.  

Furthermore, Figure 3.15 compares the spatial precipitation correlation between 

observations, BCSD, and JVSD for four GCMs, various grid cell distances, and months.  

These are correlations of the actual values of a particular cell pair over the 1950 to 1999 

period and month of the year.  The graphs clearly show the BCSD spatial correlation 

bias.  For adjacent cells, the BCSD correlation is nearly 1.  Even for pairs at 15 to 20 cell 

distances apart, the spatial correlation continues to be more than 0.9 and exhibits no 

distinct monthly pattern.  In comparison, the spatial correlations of the observations and 

JVSD values have a clear monthly pattern and are consistent.  As already indicated, the 
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reason for this BCSD behavior is that the factors used to downscale nearby values are 

calculated based on upscaled information at the same GCM grid cells (using a general 

inverse distance weighting approach).  This process over-estimates the spatial correlation, 

because the inverse distance weights for nearby cells are very similar. 

While this distributional bias is not critical with respect to temperature, 

misrepresenting the spatial precipitation variability is more of a concern, especially if 

hydrologic assessments are based on distributed (or quasi-distributed) watershed models. 

The plots also show that the southern ACF watersheds (i.e., those that are situated below 

the geologic fall line that runs across Georgia) have larger inter-grid precipitation 

variability than the two northern watersheds (Buford and West Point).  A likely reason 

for this is that convective events dominate southern watershed precipitation over a longer 

season.     
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Figure 3.9: Spatial temperature distributions over the ACF basin and the southeast US. 

Monthly temperature fields are aggregated by season (DJF, MAM, JJA, and SON in rows 

1, 2, 3, and 4 respectively).  The columns depict observations for the period 01/1950 - 

12/1999 (Column 1); JVSD downscaled data using input from the 20CM3 experiment for 

the period 01/1950 - 12/1999 (Column 2); JVSD downscaled data using input from the 

CGCM3.1-run1 A1B Scenario for the period 01/2000-12/2049 (Column 3); and JVSD 

downscaled data using input from the CGCM3.1-run1A1B Scenario for the period 

01/2050-12/2099 (Column 4). 



68 
 

 
Figure 3.10: Spatial precipitation distributions over the ACF basin and the southeast US. 

Monthly precipitation fields are aggregated by season (DJF, MAM, JJA, and SON in 

rows 1, 2, 3, and 4 respectively).  The columns depict observations for the period 01/1950 

- 12/1999 (Column 1); JVSD downscaled data using input from the 20CM3 experiment 

for the period 01/1950 - 12/1999 (Column 2); JVSD downscaled data using input from 

the CGCM3.1-run1A1B Scenario for the period 01/2000-12/2049 (Column 3); and JVSD 

downscaled data using input from the CGCM3.1-run1 A1B Scenario for the period 

01/2050-12/2099 (Column 4). 
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Figure 3.11: An Example of Joint CDFs of Precipitation and Temperature for Each 

Season Corresponding to OBS and JVSD for ACF Watershed from CGCM3.1 Model. 

 
 

Figure 3.12: Joint CDF between Precipitation and Temperature for Buford Watershed 

from Observation, BCSD Downscaling (Left Panel), and JVSD (Right Panel). 
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Figure 3.13: Monthly Correlation Coefficients between Precipitation and Temperature 

for Buford; Observations (red), BCSD (blue), and JVSD (green). 

 
 

Figure 3.14: Box-plots of the pair-wise correlation coefficients across the ACF sub-

basins: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) Montezuma, (6)Albany, 

and (7) Bainbridge. 
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Figure 3.15: Spatial Correlation Comparison between Precipitation Observations (red), 

BCSD (blue), and JVSD (green) for four GCMs, Various Grid Cell Distances, and 

Months.  The Cell Pairs for the First Four Panels Are Selected from the Buford 

Watershed. The Cell Pairs in the Last Two Panels Include One Cell from the Buford 

Watershed and a Second Cell from the West Point Watershed. 
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Table 3.2: Watershed Coefficient of Variability (CV) in Seasonal Precipitation and 

Temperature for ACF Watersheds. 

Watershed Season 
  

Precipitation 
  

  
Temperature 

  

   OBS  JVSD BCSD OBS JVSD BCSD 

Buford DJF 0.447 0.439 0.358 0.514 0.506 0.511 
 MAM 0.510 0.502 0.379 0.191 0.202 0.188 
 JJA 0.561 0.572 0.388 0.090 0.088 0.087 
 SON 0.553 0.562 0.456 0.442 0.451 0.440 
West Point DJF 0.446 0.461 0.389 0.379 0.384 0.389 
 MAM 0.534 0.528 0.442 0.169 0.192 0.442 
 JJA 0.524 0.532 0.422 0.078 0.125 0.422 
 SON 0.612 0.606 0.544 0.358 0.372 0.544 
George DJF 0.455 0.450 0.411 0.298 0.312 0.411 
 MAM 0.552 0.562 0.464 0.153 0.167 0.464 
 JJA 0.556 0.567 0.438 0.064 0.119 0.438 
 SON 0.689 0.691 0.592 0.301 0.345 0.592 
Woodruff DJF 0.474 0.469 0.432 0.260 0.248 0.423 
 MAM 0.577 0.572 0.493 0.138 0.126 0.493 
 JJA 0.539 0.531 0.439 0.054 0.059 0.439 
 SON 0.692 0.679 0.616 0.267 0.265 0.616 
Montezuma DJF 0.461 0.452 0.396 0.329 0.327 0.329 
 MAM 0.526 0.518 0.442 0.159 0.156 0.158 
 JJA 0.569 0.542 0.425 0.073 0.072 0.071 
 SON 0.645 0.630 0.425 0.327 0.326 0.326 
Bainbridge DJF 0.486 0.466 0.561 0.274 0.271 0.268 
 MAM 0.553 0.543 0.422 0.142 0.139 0.141 
 JJA 0.547 0.521 0.467 0.059 0.058 0.056 
  SON 0.708 0.711 0.596 0.279 0.275 0.277 

 

3.4.2 Comparison with Dynamic Downscaling Methods 

In this section, JVSD and BCSD are compared with the dynamic downscaling methods 

used in the North American Regional Climate Change Assessment Program 

(NARCCAP).      

High resolution climate scenarios have been produced by NARCCAP using 

regional climate models (RCMs).  The RCMs are nested within coupled Atmospheric-

Ocean GCMs for the historical period 1971-2000 and for the future period 2041-2070 
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(NARCCAP, 2010).  Several RCM/GCM combinations have been run and some of the 

products are available through the ESG (Earth System Grid; 

http://www.earthsystemgrid.org/) data distribution center. In the comparison presented 

here, results from one typical RCM/GCM combination corresponding to the Canadian 

GCM3 run4 data (cccma_cgcm3_1 sresa2, Run 4) are selected.    

 

Figure 3.16: Comparison Process of JVSD with Dynamic Downscaling Methods from 

the NARCCAP Dataset (CRCM/CGCM3) for the Future Period 2041-2070. 

As illustrated in Figure 3.16, the results from CGCM3/SRESA2/RUN4 were 

downscaled using JVSD, BCSD, and CRCM/CGCM3 dynamic methods. The resulting 

precipitation and temperature fields are aggregated over the ACF watersheds, and 

comparisons are made among the aggregated time series.  

It is noted that the CGCM3 experiment provides boundary conditions for the 

CRCM run (Randel, 2007) without any bias correction. Therefore, the downscaled data 

inherit the original GCM biases.  To account for this inconsistency, JVSD was 

implemented and compared with CGCM3 with and without bias correction.  
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To facilitate the comparison, the data values are expressed in frequency curve 

form (Figures 3.17 and 3.18).  The graphs comprising these figures correspond to the 

ACF watersheds and include four curves corresponding to the dynamically downscaled 

data (blue line), BCSD downscaled data (pink line), JVSD downscaled data without bias 

correction (cyan line), and JVSD downscaled data with bias correction (green line).  

(BCSD data without bias correction is not available.)   The pair-wise statistical 

differences between these curves were assessed using the Kolmogorov-Smirnov test as 

reported in Table 3.3.   

First, the results show that there is no significant statistical difference between 

dynamic downscaling (DDS) and JVSD without bias correction.  This conclusion applies 

for both temperature and precipitation at the 0.05 and the 0.01 significance level.  (The 

only exception is DDS and JVSD precipitation for the George watershed which is 

marginally different at the 0.05 significance level, but not at 0.01.)  A plausible 

explanation for this interesting finding is that JVSD generates spatially coherent 

temperature and precipitation fields for the entire ACF, much like a dynamic 

downscaling scheme also does. Furthermore, temperature and precipitation over the ACF 

geographic region are fairly uniform.  

Second, comparing JVSD with bias correction and DDS indicates that the former 

is significantly different from the latter for both temperature and precipitation at 0.05 and 

0.01 significance levels.  (Buford temperature is the only exception where the two 

frequency distributions cannot be assessed as different at the 0.01 significance level, but 

the test statistic is marginal.)  This finding combined with the favorable JVSD (BC) 

comparison with observed data (in previous sections) leads to the conclusion that 
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dynamic downscaling without some form of bias correction may not be adequate for 

climate change assessments.  This conclusion is corroborated by Wood et al., 2004, who 

assess the seasonal hydrologic response in the Columbia River Basin using dynamically 

downscaled climate scenarios with and without bias correction.   

Third, comparing BCSD and JVSD with bias correction indicates that significant 

precipitation differences exist for all watersheds at the 0.05 significance level, while only 

Buford, West Point, and Woodruff remain clearly significant at the 0.01 level.  

Temperature distributions, on the other hand, are not found to be statistically different at 

0.05 or 0.01, with the exception of Buford.  The statistical differences between JVSD 

(BC) and BCSD result from the several differences between these two methods: joint 

variable downscaling versus marginal distribution downscaling, coherent basin-wide 

versus individual grid downscaling, and different handling of extreme distribution values.  
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Figure 3.17: Comparisons of Downscaled Precipitation Frequencies for ACF Watersheds 

based on NARCCAP Methods, BCSD, JVSD with no bias correction, and JVSD with 

bias correction. 
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Figure 3.18: Comparisons of Downscaled Temperature Frequencies for ACF Watersheds 

based on NARCCAP Methods, BCSD, and JVSD without bias correction, and JVSD 

with bias correction. 
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Table 3.3: Evaluation of Statistical Differences Among BCSD, JVSD (Bias Corrected), 
JVSD, and Dynamic Downscaling (DDS); ACF Precipitation and Temperature; “DIFF” 
Denotes Statistical Difference and “-“ Denotes No Statistical Difference. Number of Data 
Values N=384. 
K-S Test Statistic = 1 2max | ( ) ( ) |

x
F x F x−  

Precipitation               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS 0.0599 0.0599 0.1094 0.0625 0.0547 0.0859 0.0859 

JVSD(BC)-DDS 0.1302 0.1328 0.1589 0.1406 0.1615 0.1458 0.1536 

BCSD-JVSD(BC) 0.1380 0.1211 0.1211 0.1064 0.1085 0.1094 0.1242 

Temperature               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS 0.0703 0.0651 0.0729 0.0781 0.0703 0.0755 0.0651 

JVSD(BC)-DDS 0.1120 0.1328 0.1328 0.1406 0.1406 0.1510 0.1380 

BCSD-JVSD(BC) 0.1320 0.1042 0.0870 0.1016 0.0651 0.0729 0.0547 

Significant level 0.05 (K0.05 =
1
2

1 1 1
[ ( ) ln( )]

2 2N N

α− + =  0.098) 

Precipitation               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS - - DIFF - - - - 

JVSD(BC)-DDS DIFF DIFF DIFF DIFF DIFF DIFF DIFF 

BCSD-JVSD(BC) DIFF DIFF DIFF DIFF DIFF DIFF DIFF 

Temperature               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS - - - - - - - 

JVSD(BC)-DDS DIFF DIFF DIFF DIFF DIFF DIFF DIFF 

BCSD-JVSD(BC) DIFF DIFF - DIFF - - - 

Significant level 0.01 (K0.01 = 
1
2

1 1 1
[ ( ) ln( )]

2 2N N

α− + = 0.117) 

Precipitation               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS - - - - - - - 

JVSD(BC)-DDS DIFF DIFF DIFF DIFF DIFF DIFF DIFF 

BCSD-JVSD(BC) DIFF DIFF DIFF - - - DIFF 

Temperature               

  Buford West Point George Montezuma Albany Bainbridge Woodruff 

JVSD-DDS - - - - - - - 

JVSD(BC)-DDS - DIFF DIFF DIFF DIFF DIFF DIFF 

BCSD-JVSD(BC) DIFF - - - - - - 
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3.5 Assessing Climate Changes of the ACF Basin 

This section assesses the ACF precipitation and temperature change implied by the GCM 

scenario runs.  In this regard, monthly temperature and precipitation climatologies of all 

13 GCM A1B scenarios for the seven ACF sub-basins are first shown in Figure 3.19. All 

sub-basins show increasing temperature trends, with higher increases during spring and 

fall. Precipitation is projected to increase during late fall and winter and decrease during 

spring for upstream watersheds (Buford, West Point, and Montezuma). The change 

direction over the first and second halves of the century is generally similar, with the 

second half experiencing somewhat larger changes.  These observations apply also to the 

A2 scenarios (not shown). 

 The previous results provide information on mean monthly trends.  Critical 

climate change impacts, however, are also associated with changes of other distributional 

statistics (e.g., extreme precipitation and temperature values). To assess such changes, 

Figures 3.20 and 3.21 present monthly box plots of the historical and future precipitation 

and temperature scenarios (A1B and A2) for two ACF watersheds, Buford (at the ACF 

headwaters) and Woodruff-Bainbridge (before the river enters into Florida). In each 

figure, the historical box-plots are denoted “H1 through H12” while the two future 

scenarios are denoted “FF1 through FF12” (for the first 50 years of the 21st century) and 

“FS1 through FS12” (for the second 50 years). The future box-plots include data from all 

13 future scenarios, while the historical box-plots include only historical data.  These 

figures indeed show that climate change impacts are not uniform across the months of the 

year. More specifically, these figures support the following observations: 
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(1) Buford Precipitation: Figure 3.20 shows that mean precipitation increases during 

December through March, decreases during May through August, and remains stable in 

late spring (April and May) and early fall (September and October).  The largest increase 

occurs in March, while the largest decrease occurs in July and August.   

 The upper quartile (UQ) of the monthly precipitation distribution increases during 

December through June, with the largest increase occurring in March and April 

(exacerbating potential flooding impacts).  UQ decreases in October and November. 

 The lower quartile (LQ) of the monthly precipitation distribution increases in 

January, February, and October, and decreases in March through August.  July and 

August register the largest such decrease, raising concerns for summer water availability.            

(2) Buford Temperature: Mean monthly temperature increases in all months of the year 

with the most pronounced increases taking place from January through May and October 

through December. The largest increases, in the range 2 to 2.5 oC, are associated with the 

A2 climate scenarios in the second half of this century.   

 Likewise, the monthly upper temperature quartile increases for all months, with 

March and September registering the largest change (of approximately 3 oC) for the A2 

scenarios and the second half of the century. 

 The monthly lower temperature quartile also increases for all months, with the 

largest increases noted in February and March (of approximately 2 oC).     

 Other temperature statistics of interest have also been computed (e.g., consecutive 

summer days with temperature higher than a certain threshold) and show similar 

intensifying trends.  These are expected to have direct impacts on human communities, 
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agriculture, and ecosystems, and comprise the scope of continuing assessments 

(Georgakakos et al., 2010).    

(3) Woodruff-Bainbridge Precipitation:  Unlike Buford, the Woodruff-Bainbridge 

watershed does not show any mean precipitation increase in spring, but it does register 

increases in November and December (Figure 3.21).  Notable decreases occur in 

February, March, and July.   

  The monthly upper mean precipitation quartile increases for all months with the 

largest increase occurring in February through May. The monthly lower mean 

precipitation quartile shows a decreasing trend from January through August, with the 

most marked decline noted in June, July, and August.  On the other hand, LQ is 

increasing in September, October, and December.   

 The A1B and A2 scenarios exhibit similar trends, with the latter somewhat 

exacerbated for the second 50-year period.       

(4) Woodruff-Bainbridge Temperature: All three temperature statistics increase for all 

months of the year, all scenarios, and both 50-year future periods.  The largest mean 

temperature increases occur from January through May and from October through 

December and are in the order of 2.5 – 3 oC.  The largest UQ increases are in the order of 

3 to 3.5 oC and occur from January through May and in September.  Lastly, the largest 

LQ increase (2.5 – 3 oC) occurs in February.       

 Thus, the precipitation and temperature changes predicted for Woodruff-

Bainbridge are similar to those of Buford, raising alarming concerns with respect to 

summer water availability and the impacts of a hotter climate on people, crops, and 

ecosystems. 
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Figure 3.19: Climatologies of spatially aggregated precipitation and temperature for 

seven ACF watersheds: (1) Buford, (2) West Point, (3) George, (4) Woodruff, (5) 

Montezuma, (6) Albany, and (7) Bainbridge; Lines in Red–Observations (1950-1999); 

Green–JVSD downscaled (2000- 2049); Blue–JVSD downscaled (2050-2099) under A1B 

Scenarios. 
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Figure 3.20: Box Plots of Monthly Historical vs. Future (A1B and A2) Watershed 

Precipitation and Temperature, Buford: H denotes the historical period (1950-1999); FF 

the first future period (2000-2049); and FS the second future period (2050-2099). 
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Figure 3.21: Box Plots of Monthly Historical vs. Future (A1B and A2) Watershed 

Precipitation and Temperature, Woodruff: H denotes the historical period (1950-1999); 

FF the first future period (2000-2049); and FS the second future period (2050-2099). 
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3.6 Conclusions 

This chapter introduces a new statistical downscaling technique, named Joint Variable 

Spatial Downscaling—JVSD, for the generation of high resolution gridded datasets 

suitable for regional watershed modeling and assessments. JVSD follows the general 

two-step approach introduced by Wood et al., 2004, as part of the BCSD downscaling 

method, but it includes several distinguishing features including (1) joint downscaling of 

atmospheric fields; (2) identification of a constant pivotal quantity reducing the biases 

introduced by percentile-to-percentile mapping; (3) preservation of sub-grid correlations 

and variability; and (4) physical plausibility of the downscaled sequences over the entire 

region of interest.      

Comparisons with observed historical data, BCSD, and dynamic downscaling 

methods are favorable and demonstrate that JVSD has distinct advantages over existing 

methods.  JVSD can also be used to post-process dynamic downscaling results to correct 

for remaining biases.   

Application of the method to the Apalachicola-Chattahoochee-Flint (ACF) river 

basin (for all IPCC GCM scenarios) leads to the following conclusions:  

Mean monthly temperature exhibits increasing trends over the ACF basin for all 

seasons and all A1B and A2 scenarios. Most significant are the A2 temperature increases 

in the 2050 – 2099 time periods.  The most pronounced temperature increase is projected 

to occur in winter, spring, and fall. Temperature highs and lows also increase.  In the 

southern ACF watersheds, mean precipitation generally exhibits a mild decline, except in 

late winter when it shows an increase. For the northern ACF watersheds, mean 

precipitation increases are noted in winter (as in the south) but also early spring. In 
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addition to mean trends, the precipitation distribution “stretches” with higher highs and 

lower lows.  It is notable, however, that southeast US and ACF precipitation in summer 

and early fall is impacted by hurricane-induced tropical storms which are not well 

represented in the current GCMs.  

We have applied the JVSD method to generate downscaling dataset for the whole 

study basins in Georgia. We present the complete results of the climate assessments (with 

the corresponding hydrological assessments) for all six study river basins in Chapter 6.  
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CHAPTER 4 

HYDROLOGIC MODELING 

 

Hydrologic models have been broadly used in climate change assessments (Lettenmaier 

and Rind, 1992; Stamm et al., 1994; Conway, 1998; Wood et al., 2004; Maurer, 2007). 

This chapter presents a novel lumped conceptual watershed model (Georgakakos et al., 

2010) and discusses a new model calibration method based on control and optimization 

theory. 

 The proposed watershed model includes multiple storages with non-linear 

storage-release functions, percolation functions, and deep infiltration functions, 

characterized by a few model parameters estimated by applying inductive modeling 

approaches. Model parameters are estimated using a recursive identification methodology 

suitable for multiple, inter-linked modeling components. The new model has been 

applied to large and intermediate scale watersheds (102 to 104 square miles) in Georgia at 

monthly, weekly, and daily time resolutions. The calibrated Georgia watershed models 

are employed to characterize the hydrologic responses under the historical climate and 

the future climate scenarios. 

 

4.1 Model Formulation  

4.1.1 Model System Diagram 

The model formulation is similar to that of a lumped parameter Sacramento model type, 

and is intended to simulate the hydrologic processes of infiltration/percolation, 

evapotranspiration, and surface and subsurface runoff (Figure 4.1) in monthly, weekly, 

or daily basis.  
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Figure 4.1: Hydrologic Modeling System Schematic (Source: Georgakakos et al., 2010). 

 
Model inputs include precipitation and potential evapotranspiration demand 

(PET) averaged over the watershed area.  The model includes one surface and two 

subsurface moisture storage layers, with water contents S0, S1, and S2. Water enters the 

top model layer as precipitation, P, and, after some losses to surface retention, it 

infiltrates/percolates to the lower storage layers. Precipitation falling on impervious areas 

contributes immediately to runoff (QImp). Storage layers may be depleted by 

evapotranspiration ET0, ET1, and ET2, or runoff to the stream u0, u1, and u2.  

Evapotranspiration depends on PET as well as storage.  Runoff depends on storage 

through the storage-runoff functions u0(S0), u1(S1), and u2(S2). Total runoff, Q, to the 

stream is the sum of all runoff contributions, Q = QImp + u0(S0) + u1(S1) + u2(S2). The 
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infiltration/percolation functions u01 and u12 are key model elements and depend on 

various model variables.  In addition to the evapotranspiration, storage-runoff, and 

infiltration/percolation functions, model parameters include storage capacities. These 

functions and parameters are calibrated from contemporaneous observations of 

precipitation, PET, and total watershed runoff.  

A notable difference between this and the Sacramento model formulation is the 

distinction of soil moisture as tension and free water.  The assumption underlying the 

model implementation is that the apportionment, storage, and release of soil moisture to 

and from tension and free water storage occur at time scales much faster than a month or 

a week. Thus, at coarse time resolutions, tension and free water can be combined into an 

aggregate soil moisture storage which can adequately represent the observed storage-

runoff process. Distinguishing soil moisture storage in tension and free water components 

at finer time scales (e.g., daily or hourly) will be assessed based on the concomitant 

improvements in model performance.        

Furthermore on an hourly time scale, the infiltration process is controlled by the 

soil infiltration capacity and the availability of surface water supply. However, at larger 

time scales (e.g., monthly and weekly), the detailed infiltration dynamics is not 

observable.  Thus, over monthly and weekly intervals, it can be assumed that surface 

water (that is not retained in surface storage or does not become runoff from impervious 

surfaces) enters the upper sub-surface storage, provided that it is not filled to capacity.  

4.1.2 Soil Moisture Storages 

Three soil moisture storages represent three layers of the hydrologic model as shown in 

Figure 4.1: the surface layer, the upper soil moisture layer, and the lower soil moisture 
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layer. For each layer, the water balance dynamics controls the water flux getting through 

them.  

Surface Storage: S0 

     The dynamics of the surface water storage is represented by the storage-runoff 

function u0(S0).  This storage begins to fill during significant precipitation events when 

subsurface storage is filled to capacity. While water released from this storage may 

develop over a period of few days, it is assumed that the storage depletion process (to 

become runoff) will be fully completed over a period of a month without carryover 

effects.  Thus, a simple water balance representation equating surface water storage (less 

evaporation) to surface runoff would be adequate.  This particular assumption was tested 

with Georgia watersheds by using both a fully dynamic surface water element as well as 

the simpler water balance representation.  The calibration process showed that for 

monthly and weekly models the optimal storage-release functions u0(S0) are nearly 

vertical, validating the assumption that, over a monthly time step, release from surface 

storage is practically instantaneous. However, for daily models explicit surface storage-

runoff storage is necessary. 

Upper Soil Storage: S1 

         The dynamics of the upper soil storage is represented by the storage-runoff function 

u1(S1).  The upper storage is filled by water infiltrated from the surface when 

precipitation starts. When the accumulated soil moisture exceed certain threshold values, 

it begins to release significant amount of water by following the storage-runoff function 

u1(S1). We will assume that the storage-release rule is a monotonic function (i.e., no 

hysteresis) defined only on the storage S1. The soil moisture of the upper layer can also 
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infiltrate into the lower soil layer as water flux u02. The assumption implies that in 

catchment or watershed systems, the small-scale (e.g., hill-slope system) hydrological 

processes are averaged so that it can be implicitly treated as a homogenous storage, 

whose release only depends on the average soil moisture. 

The water flux between the upper and lower soil layers may depend on several 

variables (such as actual storages, precipitation, and evapotranspiration). The form of this 

relationship will be identified as part of the parameter estimation process.  

Lower Soil Storage: S2 

         The dynamics of the surface water storage is represented by the storage-runoff 

function u2(S2).  The lower storage is primarily in charge of the base flow of the river 

runoff. The release function is also assumed to be a monotonic function defined only on 

the storage S2.  

4.1.3 Water Fluxes and Dynamics 

In keeping with the previous comments and assumptions, the mathematical model 

formulation is as follows: 

Impervious Storage Runoff: Qimp 

( ) ( ) ,kPakQ impimp =  

Retention Storage: Sret 

( ) ( ) ( ) ,P(k)b,kP
max{PET}

kPET
amaxkS retretret









=
 

Effective Precipitation: Peff 

( ) ( ) ( ) ,kQ(k)SkPkP impreteff −−=  
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In the above equation, k is the monthly interval index, P(k) is the precipitation 

depth (averaged over the watershed area), aimp is a constant coefficient, PET(k) is the 

potential evapotranspiration demand during month k (averaged over the watershed area), 

max{PET} is the maximum monthly PET over the simulation horizon, and aret and bret are 

constant coefficients. 

Evapotranspiration: ETi, ( i = 0, 1, 2) 

( ) ( ) ( ) ( )
,2,1,0,

S2

1kSkS
kPETkET

0,1,2i

c
i

ii
i =
















++

=
∑
=

i  

In the above equation, Si
c is the capacity of storage i, i=0, 1, 2 for each layer. 

Other various forms including proportionality and exponent coefficients were also tested 

for the above relationships between ET, PET, and the monthly-average storage i as a 

fraction of the total storage capacity.  However, in all Georgia watersheds, the above 

relationship performs best.    

Groundwater Flux: uG 

The groundwater flux uG may represent surface water loss to or gain from the 

deeper groundwater system.  This interaction can take place through the lower soil 

moisture storage or directly through the stream channel. These two possibilities can be 

modeled as follows:  

(i) Interaction through the lower soil moisture storage:  

( ) ( ) ( ) ( ) ( ) .(k)ukukukETkS1kS G122222 −+−−=+  

(ii) Interaction through the stream channel:  
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( ) ( ) ( ) ( ) ( ) ( )kukukukukQkQ G210imp −+++= .
 

The uG flux can then be identified and by an iterative process described in the 

parameter estimation section.  

4.1.3 Storage Dynamics 

(i) Storage S1(k+1) not constrained by capacity limit:   

( ) ( ) ( ) ( ) ( ) ( )1 eff 1 1 121
S k 1 S k P k ET k u k u k ,+ = + − − −  

( ) ( ) ( ) ( ) ( ) ,(k)ukukukETkS1kS G122222 −+−−=+  

( ) ,01kS0 =+  

( ) .0ku0 =  

(ii) Storage S1(k+1) constrained by capacity limit:   

( ) ,S1kS c
11 =+  

( ) ( ) ( ) ( ) ( ) ( )[ ] ,SkukukETkPkSkQ c
11211eff1sat −−−−+=  

( ) ( ) ( ) ( ) ( ) ,(k)ukukukETkS1kS G122222 −+−−=+  

( ) ,01kS0 =+  

( ) ( ) ( ) .kETkQku 0sat0 −=  

Although the above dynamical relationships are expressed in monthly time steps, 

the actual simulation is performed at a finer resolution (e.g., daily intervals) to identify 

whether and when storage capacity limits are reached.  This is necessary, because when 
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subsurface storages become saturated, the form of their dynamical relationships and 

fluxes change.        

Storage-Runoff Functions (ui, i=1,2): 

( ) ( )[ ] .2,1,)/21kS(k)(Suku iiii =++= i   

The functional forms of these relationships are identified as part of the model 

calibration process.     

Percolation Functions (u12 and uG):  

( ) ( ) ( ) ( )12 12 2 eff 1 21
u k u S k ,S (k), P k , ET k , ET (k)] . =  

 

The functional form of this relationship is also identified as part of the model calibration 

process.        

Total Watershed Runoff (Q):  

( ) ( ) ( ) ( ) ( ) .kukukukQkQ 210imp +++=  

 

4.2 Parameter Estimation  

The parameter estimation (or model identification) process aims to identify a set of model 

parameters and functions such that model output matches with actual observations (total 

runoff Q) as best as possible.  The model parameters and functions can be distinguished 

in two categories.  

The first category includes parameters and functions of structural importance that 

govern the dynamical model response and the interaction/linkage among its structural 

components and processes (i.e., soil storages and runoff).  This primary parameter set 

includes:   
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� Total storage capacity, Sc; 

� Lower soil moisture storage runoff function, u2(S2);  

� Upper soil moisture storage runoff function, u1(S1);  

� Upper and lower soil storage capacities, S1
c and S2

c;  and 

� Percolation function, u12(S1, S2, …). 

The second parameter category includes parameters that fine-tune model response, 

within the structural framework established by the primary parameters, to capture other 

hydrologic response aspects.  This secondary parameter set includes:  

� Impervious area runoff parameter, aimp;  

� Retention Storage parameters, aret and bret; and 

� Deep groundwater flux, uG(S2) or uG(Q). 

This distinction is made here, because simultaneous estimation of all parameters, all 

too often, leads to parameter estimates assuming modeling roles for which they are not 

designed.  The second reason for the estimation approach introduced in this work is to 

systematically and incrementally add processes and parameters that are necessary to 

explain system behavior, not based on a preconceived model design.    

The estimation process is iterative and consists of (1) generating initial estimates of 

the parameters and functions, (2) iteratively refining the primary parameters and 

functions until no further improvements can be achieved, and (3) repeating the process 

for other secondary parameter values to fine-tune model performance.       
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4.2.1 Initial Parameter and Function Estimates 

The estimation process begins by assuming initial parameter values for the retention 

storage, impervious runoff, and deep percolation terms.  In this first step, deep 

percolation (i.e., percolation to or from groundwater aquifers) is assumed negligible. The 

other terms can also be initially assumed negligible. For the initial parameter values aimp, 

aret, and bret can be used to generate initial estimates of the impervious area runoff, Qimp, 

retention storage Sret, and effective rainfall Peff:  

( ) ( ) ,kPakQ impimp = k=1,…, N;
 

( ) ( ) ( ) ,P(k)b,kP
max{PET}

kPET
amaxkS retretret









= k=1,…,N; and  

 ( ) ( ) ( )  N, 1,..., k   ,kQ(k)SkPkP impreteff =−−=   

where N is the total number of months in the historical horizon used for calibration.  

Then, the storage equations become:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,kuku
S2

1kSkS
kPETkPkS1kS 121c

11
eff11 −−







 ++−+=+
 

( ) ( ) ( ) ( ) ( ) ( ) ( ).kuku
S2

1kSkS
kPETkS1kS 122c

22
22 +−







 ++−=+
 

  

Adding the above dynamical equations results in the following aggregate soil 

storage equation: 

  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ,kuku

S2

1kSkS
kPET(k)PkS1kS 21ceff −−







 ++−+=+
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where S(k) = S1(k) + S2(k), and  u1(k) + u2(k) = Q - Qimp (total runoff from soil storage).  

Substituting the runoff terms by the observed total runoff (Q - Qimp), yields an aggregate 

storage relationship with only one unknown: the total aggregate soil storage capacity Sc 

(Figure 4.2).  However, determining the correct Sc value is not obvious, as different Sc 

values (and the observed forcing of P, PET and Q) simply give rise to different storage 

sequences.  The key to selecting the most suitable Sc value is to examine the global 

behavior of the storage sequence it generates and determine the one most consistent with 

the expected physical system response.   

 

Figure 4.2: Hydrologic Model with One Storage Element. 

 
 More specifically, the expected behavior of the hydrologic system is to have a 

smooth and monotonic response of runoff relative to storage. This is expected to hold 

particularly during periods of storage depletion when the dominant runoff contribution 

comes from the lower soil storage.  Thus, if the observed data does not contain errors, the 

correct Sc value should generate a storage sequence such that when 

 S(k+1)  <  S(k), S(n+1)  < S(n), and [S(k+1)+S(k)]/2  < [ S(n+1)+S(n)]/2,  

it should also hold that Q(k) < Q(n) for all such values of k and n. 

Namely, during storage depleting periods, the runoff corresponding to ranked 

storage values (in, say, descending order) should also adhere to the same ranking.  To be 
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sure, because of the existing data errors in the observed values of P, PET, and Q, this 

relationship is not expected to be perfect.  But, the value of Sc that generates storages that 

adhere to this criterion as best as possible would represent the best Sc estimate.  While 

this is the main idea for identifying the initial Sc estimate, several quantitative criteria 

(that have been tested in this work) can be used to guide this process.  

 

Figure 4.3: Unsorted and Sorted Release-Storage Relationships Identified from the One 

Aggregated Soil Storage Model. (Example from Buford Monthly Watershed Model) 

  
Figure 4.3 illustrates the release-storage relationships identified from the Buford 

monthly model with one aggregated soil storage. The point scatter plot on the left shows 

the simulated storage during the depleting periods and the corresponding releases from 

the soil. The storage capacity was estimated to be about 0.63 meter for this watershed. 

The plot on the right shows the sorted release-storage relationships (both storage and 

release sequences are sorted individually) and two nonlinear approximations: the green 

line – exponential function and blue line – the power function. 

 An important side benefit of the above procedure is the identification of the lower 

storage runoff function u2(S2).  This function can be estimated by the ranked (Q-Qimp) 

versus ranked S relationship corresponding to the best Sc estimate.  As indicated earlier, 
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these rankings do not include all runoff-storage paired values generated by the dynamical 

equation, but only those that comply with depleting storage conditions. Because the lower 

storage is depleted last, the basis of this relationship should be the lower part of the 

aggregate storage range, for example, the lower one third.  This relationship can then be 

approximated through a suitable analytical function such as a power function: 

2,2

21,22
ββ Su =  

where β2,1 and β2,2 are constant coefficients.    

 In the next step, we will identify the storage capacity and storage-release function 

for the upper soil layer. Figure 4.4 shows the two-storage model compared to the 

previous aggregate storage model. The previous procedure can be repeated to provide 

initial estimates of S1
c and of u1(S1).  This involves substituting the newly obtained 

estimates of Sc and u2(S) into the aggregate storage equation and repeating the ranking 

process for S and [Q-Qimp-u2(S)]. The best value of S1
c is that for which the ranked data 

exhibit an almost one to one change of Q versus S.  This is because when the system is 

saturated, Q-Qimp is dominated by u0 which equals the storage in excess of S1
c.  The 

ranked [Q-Qimp-u2(S)] versus S relationship can then be analytically approximated to 

provide an initial estimate of the u1(S1) function.  As emphasized, these are only initial 

estimates to be revisited in the following stages of the estimation process. 
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Figure 4.4: Hydrologic Model with Two Storage Elements. 

 

 

Figure 4.5: Unsorted and Sorted Release-Storage Relationships for the Upper Storage 

Identified from the Two-Soil-Storage Model. (Example from Buford Monthly Watershed 

Model) 

 At this stage, initial estimates of Sc, S1
c, S2

c (= Sc - S1
c), u1[S1(k/k+1)], and 

u2[S2(k/k+1)] have been obtained, where the notation Si(k/k+1) is used to denote the 

average Si storage value over the interval k. The last, and most crucial task in the initial 

estimation cycle, is to identify the percolation function u12.  To this end, the individual 

storage equations are re-instated as follows:        
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( ) ( ) ( ) ( ) ( ) [ ] ( ) ,ku1)(k/kSu
S

1k/kS
kPETkPkS1kS 1211c

1
eff11 −+−







 +−+=+
 

( ) ( ) ( ) [ ] ( ) .ku1)(k/kSu
S

1)(k/kS
kPETkS1kS 1222c

2
22 ++−







 +
−=+

 

 

Consider a time step k with known initial storages S1(k) and S2(k).  Assuming at 

first that u12=0, the dynamical equations can be propagated to yield the end of the period 

storages S1(k+1) and S2(k+2).  This step requires a few iterations due to the dependence 

of {ET i, ui, i=1,2} on the end storage Si(k+1), but convergence is fast, requiring only two 

to three iterations.  This one-step computation also provides runoff estimates 

ui[Si(k/k+1)], i=1,2, which are used next to determine an optimal value for u12.  More 

specifically, this is accomplished by comparing the value of the model generated runoff, 

(u1 + u2), to the observed (Q-Qimp).  If these two quantities are equal, then u12 is indeed 

zero. Otherwise, the estimation process proceeds to determine the best u12 such that the 

values of (u1 + u2) and (Q-Qimp) are as close as possible.  This is a one-step, constrained 

optimization problem, where u12 is constrained to be within   

0 ≤ u12 ≤ min{S1(k), S2
c – S2(k)}, 

and the storage variables are constrained to be within their applicable ranges.  However, 

for each time step k, the solution can easily be obtained via an exhaustive, one 

dimensional search.  

 This process generates a series of u12 values {u12(k), k=0, 1, 2, …, N-1} that are 

most consistent with the observed data and the other initial parameters and functions.  

These values are used as the basis for relating u12 to other system variables that would be 



102 
 

available when the model runs in predictive mode (i.e., when Q is not known). Various 

functional forms were tested in this work for all Georgia watersheds.  The best and most 

robust performance is obtained by the following relationship:  

( ) ( )
( ) ( ) ( )

( ) ( )1 1
12 0 1 2 2 3 2 4 5

2 2

u eff

ET k S k
ET k S k P k

ET k S k
α α α α α α= + + + + + ,

 

 

where α0, α1, α2, α3, α4, and α5 are constant regression coefficients.  Furthermore, the 

continuing application of the model for several other Georgia basins supports the general 

validity of this functional form.  However, all models tested use a monthly time step, and 

the best u12 form may be different for daily or sub-daily time resolutions. Figure 4.6 

shows the optimized u12 versus the estimated u12 by the above equation. 

 

Figure 4.6: Initially Estimated Percolation by Using the Linear Regression Equations. 

(Example from Buford Monthly Watershed Model) 

 
 After the initial estimation of the parameters and functions, the model can be run 

in a predictive mode, and its performance can be assessed relative to observed runoff. 

Various criteria can be adopted to assess the model performance including the 

minimization of the sum of the square error or the absolute difference between model 
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predictions and observations, and the maximization of the Pearson and Spearman 

correlation (average and monthly), among others. For a more unbiased assessment, a split 

sample approach can be adopted where a portion of the historical record is retained for 

model verification purposes.     

4.2.2 Parameter and Function Refinement 

In keeping with the above, parameter and function refinement proceeds iteratively as 

follows:  

(1) Select aimp, aret, and bret;  

(2) Select S0
c, S1

c, and S2
c, and estimate u2(S2) from the aggregate storage model; 

(3) Estimate u1(S1) and u12(Peff, ET2, ET1/ET2, S2, S1/S2) from the full model form 

and iterate until the model performance criterion is optimized;    

(4) Repeat Steps (2) to (4) until the best performing parameter and function set 

{S0
c, S1

c, S2
c, u2(S2), u1(S1), and u12(Peff, ET2, ET1/ET2, S2, S1/S2)} is obtained; 

(5) Repeat Steps (1) to (5) until all model parameters are refined and model 

performance is optimized;  

(6) Identify data outliers by comparing each data point (predicted minus observed 

value) against the error distribution of the corresponding month;  

(7) Repeat Steps (1) through (7) until no model performance improvement is noted.         

Step (6) was found to be useful in generating more unbiased model parameters but 

also in pointing out data inconsistencies needing correction.  In some of the ACF 

watersheds, outliers occurred at a rate substantially higher than the statistically acceptable 

level. The parameter estimation process is computationally efficient, requiring only a few 

minutes on a high end personal computer. 
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4.3 Estimation of Potential Evapotranspiration 

A significant water loss from a drainage basin is evapotranspiration (ET). ET is 

the sum of evaporation and plant transpiration from the Earth's surface to the atmosphere. 

The actual ET is a function of the ground air temperature, wind speed, humidity, and 

other ambient environmental variables. The actual ET is hard to measure directly. 

Instead, evaporation pans are used to provide measurements of the combined effect of 

temperature, wind, humidity, and radiation on actual ET. 

4.3.1 Pan Evaporation 

A typical class-A evaporation pan (Figure 4.7) is circular, 10 inches deep, and 47 1/2 

inches in diameter and is constructed of monel metal. The evaporation pan is installed on 

wooden support. The support is set on the ground in a grassy site, away from bushes, 

trees, and other obstacles. The amount of evaporation to the nearest hundredth inch from 

the pan is measured every day. The measurement day begins with the pan filled to exactly 

two inches (5 cm) from the pan top. At the end of 24 hours, the amount of water to refill 

the pan to exactly two inches from its top is measured. If precipitation occurs in the 24-

hour period, it is taken into account in calculating the evaporation. Sometimes 

precipitation is greater than evaporation, and measured increments of water must be 

dipped from the pan. 

Other elements recorded include wind movement, water and air temperatures, and 

precipitation. The Class-A pan is usually installed with an anemometer and a floating 

minimal-maximal thermometer to measure the wind speed and average water-surface 

temperature. This is because that the amount of evaporation is a function of temperature, 
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humidy, wind, and other ambient conditions. Evaporation from a natural body of water is 

usually at a lower rate because the body of water does not have metal sides that get hot 

with the sun. 

 

Figure 4.7: U.S. National Weather Service Class-A Evaporation Pan. (Acquired from 

NWS website: http://www.crh.noaa.gov/lbf/?n=evap_pan on March 21, 2011) 

4.3.2 Free-Water Evaporation 

The pan evaporation can be used to estimate the free-water evaporation. Free-

water evaporation can also be defined as lake evaporation. An evaporation pan is 

different from a lake in that it has less heat-storage capacity, and thus it lacks surface- or 

ground-water inputs and outputs.  

Kohler et al. (1955) developed an empirical equation to estimate free-water 

evaporation: 

( )[ ]88.0

fw 00255.037.000064.07.0ET aspanpanpanpan TTvPET −⋅+⋅⋅±= α . 

where panET  and fwET  are daily pan evaporation and free-water evaporation, 

respectively, in cm/day; P is the atmospheric pressure in mb panv  is the average wind 
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speed at a height of 15 cm above the pan in km/day; Tspan and Ta are the daily average 

water-surface temperature and the air temperature in oC; and the sign (± ) is “+” when 

Tspan > Ta and “–” when Tspan < Ta.  The pan coefficient panα  is estimated form the 

following empirical equation (Linsley, et al., 1982): 

( )( ) 36.037 0135.08.17105.30117.034.0 panspanspanpan vTT ⋅++×−⋅+= −α . 

The pan coefficient varies between 0.15 and 0.9 for a typical class-A evaporation 

pan. The free-water evaporation can also be used to estimate the Potential 

evapotranspiration demand (PET), which is the amount of water that could be evaporated 

from open water surfaces and transpired by vegetation assuming unlimited water supply. 

The PET measures the ability of the lower atmosphere to transport moisture away from 

the land surface. At stations where the pan evaporation measurements are available, the 

PET (or reference crop evapotranspiration) can be estimated by the above free-water 

evaporation equation. 

4.3.3 Daily PET Estimation 

In places where pan evaporation recorders are not available, hydrologists have 

developed various methods to estimate PET, based on different assumptions, 

requirements, and regional climate specifications (Grismer, 2002).  PET estimation 

techniques include temperature based methods (e.g., Thornthwaite, 1948, Hamon, 1963, 

and Hargreaves-Samani, 1985), radiation-based methods (e.g., Turc 1961, Makkink, 

1957, and Priestley-Taylor, 1972), and combination methods (e.g., Penman, 1948).  In a 

comparative investigation of several monthly PET methods, Lu (2005) concluded that 

Priestley-Taylor, Turc, and Hamon’s equation are suitable for watershed-scale 
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applications in the southeastern United States. The Hamon’s equation discussed by Lu 

(2005) has the following form: 

 0.1651PET Ld RHOSAT KPEC= × × ×      

PET: daily PET (mm/day); 

Ld: daytime length (i.e., time from sunrise to sunset in multiples of 12 hours); 

RHOSAT: saturated vapor density (g/m3) at the daily mean air temperature (Tmean); 

  ( )216.7 / 273.3meanRHOSAT ESAT T= × +      

  ( )( )6.108 exp 17.26939 / 237.3mean meanESAT T T= × × +      

Tmean: daily mean air temperature (oC); 

ESAT: saturated vapor pressure (mb) at the given Tmean; 

KPEC: calibration coefficient set to 1.2 for the southeast US; 

Thus, the only input data needed for the Hamon’s method is “Air Temperature at 2 

meters”. 
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Figure 4.8: Southeast US Meteorological Stations with over 75% Percent Complete 

Temperature and Pan Evaporation Data from 1909 to Present. 

 

Before using the Hamon’s PET estimation approach, it is desirable to quantify 

and, if possible, improve its accuracy. Toward this end, data from all  meteorological 

stations in the Southeast US with daily records at least 75% complete (number of 

recorders are larger than 27,000 for both temperature and pan evaporation) from 1909 up 

to present are identified ( Figure 4.8) and their data retrieved from the National Climatic 

Data Center(NCDC) . The daily PET is then estimated using the Hamon’s PET equation 

and the free-water evaporation (Linsley, 1982).   

PET is estimated from Lu’s (2005) version of the Hamon’s equation based on the 

daily mean temperature (Tmean), and also based on the daily maximum temperature 

(Tmax).  The coefficient KPEC is also calibrated for each month of the year such that the 

means of the calculated PET values match the means of the free-water evaporation. 

Figure 4.9 shows the daily PET versus the free-water evaporation for June, July, 

and August for two typical stations located in north and South Georgia. The top panel of 

graphs depicts the estimated PET values based on the mean daily temperature.  PET 

estimates based on the maximum daily temperature are depicted in the graphs of the 

bottom panel.  The PET means in the lower panels are adjusted through calibration of the 

KPEC coefficient to match the means of free-water evaporation (for each month). In the 

top panel, the calibration coefficient is set to value used by Lu (2005). In each plot, the 

linear regression line that passes through the origin is also shown together with the 

associated R-square value. The results show that for all months, the PET estimates based 

on the daily maximum temperature provide a distinctly better approximation of the free 
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water evaporation values than those obtained by the original Hamon’s equation. This is 

evident by comparing the slope of the regression line and the R-square values.  This 

conclusion holds true for all months of the year (in addition to those shown) and all 

stations tested. 

 

Figure 4.9: Daily PET Estimation based on the Daily Mean Temperature (Top Panel) 

and Daily Maximum Temperature (Bottom Panel) for Station 93271: July and September. 

The PET Estimated from the Daily Maximum Temperature Provide a Distinctly Better 

Approximation of the Free Water Evaporation Values than Those Obtained by the PET 

Estimated from the Daily Mean Temperature. 

4.3.4 Monthly PET Estimation 

In this section, we will investigate the performance of estimating monthly PETs by using 

Hamon’s method.  Traditional Hamon’s approach for monthly PET estimation uses 

monthly averaged daily mean temperature and Hamon’s equations as discussed in the 

previous section. We have shown in Section 4.3.3 that the daily maximal temperature is a 

better predictor for daily PET estimation. In monthly resolution, the following 
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discussions show that the monthly-averaged daily maximal temperature is also a better 

predictor than the -averaged daily mean temperature in estimating monthly PET. In 

addition, it will be shown that the nonlinear form of the Hamon’s equation introduces 

additional errors, but it will also be shown that these biases can be rectified by a fairly 

straightforward modification of the Hamon’s implementation approach. 

Traditional Hamon’s Approach for monthly PET Estimation:    

In the following discussions, we compared two different PET calculation 

approaches: first, we applied the traditional Hamon’s equation and the monthly PET is 

calculated by using the monthly averaged daily mean temperature Tmean; second, we 

calculated the daily PET by using the daily maximal temperature Tmax and then the 

monthly PET is calculated by averaging the calculated daily PET. 
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Figure 4.10: Comparison of Two PET Calculation Approaches for Station 93271: (1) 

Using the Traditional Hamon’s Equation and the Monthly PET is Calculated by Using 

the Monthly-Averaged Daily Mean Temperature (top), and (2) Using the Daily Maximal 

Temperature to Calculate Daily PET and the Monthly PET Is Calculated by Averaging 

the Calculated Daily PET (bottom). 

 

 

Figure 4.11: Comparison of Two PET Calculation Approaches for Station 381770: (1) 

Using the Traditional Hamon’s Equation and the Monthly PET is Calculated by Using 

the Monthly-Averaged Daily Mean Temperature (top), and (2) Using the Daily Maximal 

Temperature to Calculate Daily PET and the Monthly PET is Calculated by Averaging 

the Calculated Daily PET (bottom). 

 
As shown in Figure 4.10 and 11, the traditional Hamon’s method tends to 

underestimate the PET for high temperature and overestimate the PET for low 

temperature. Figure 4.10 and 4.11 shows that using the daily maximal temperature to 
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calculate the monthly-averaged PET is apparently better than using the traditional 

Hamon’s method. This is evident by comparing the slope of the regression line (ideally 

close to 1) and the R-square values.  This conclusion holds true for all stations tested. 

However, in applying the monthly-averaged method the daily maximal temperature is 

required. When only the monthly-averaged maximal temperature is available, we develop 

a modified Hamon’s approach to calculate the PET as described in the following section. 

Modified Hamon’s Approach for Monthly PET Estimation:  

In the following discussions, we developed a quadratic form of the Hamon’s 

equation to taking into account the nonlinear feature of the exponential function used in 

the traditional Hamon’s method. We than compared the PET calculated from the 

modified Hamon’s method with the monthly-averaged daily PET discussed in the 

previous section.  

Because of the nonlinear feature of the Hamon’s equation, in monthly resolution, 

the parameters of PET equations need to be recalibrated. In daily resolution, the PET can 

be estimated from the daily maximal temperature. 
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 Then, the PET equation can be expressed as the following. 

( )0max1
2

max2 CTCTCKPETPET ⋅++⋅=  

In the month PET equation, for each calendar month, the three coefficients C2, C1 

and C0 can be calculated from the following equations: 
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The monthly PET then can be calculated by summing the daily PETs. 
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then the above equation can be expressed as: 
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The three coefficients C2, C1 and C0 can be calculated by using the monthly 

average maximal temperature E[Tmax]. Therefore, the above quadratic form of PET 

equation is expressed in the function both the average and the variance of the daily 

maximal temperature for a certain month. Another method to calculate PET is to use 

directly the Hamon’s equation and the average daily maximal temperature to calculate the 

monthly PET. 

( )
( ) ( )( )3.273/

3.237

26939.17
exp max

max

max +








+
⋅

⋅= TE
TE

TE
KPETPETmonthly

 



115 
 

 

Figure 4.12: Comparison of Two PET Calculation Approaches for Station 93271: (1) 

Using the Daily Maximal Temperature to Calculate Daily PET and the Monthly PET is 

Calculated by Averaging the Calculated Daily PET (bottom), and (2) Using the Monthly-

Averaged Daily Maximal Temperature and the Modified Hamon Method (bottom). 
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Figure 4.13: Comparison of Two PET Calculation Approaches for Station 381770: (1) 

Using the Daily Maximal Temperature to Calculate Daily PET and the Monthly PET is 

Calculated by Averaging the Calculated Daily PET (bottom), and (2) Using the Monthly-

Averaged Daily Maximal Temperature and the Modified Hamon’s Method (bottom). 

 
 

Figures 4.12 and 4.13 plot the monthly PET versus the monthly free-water 

evaporation for selected stations located in north Georgia and south Georgia. The PETs 

are calculated from both the monthly-averaged daily PET (upper panel) and the modified 

Hamon’s method by using monthly-averaged daily mean temperature (bottom panel).  In 

the upper panel, the means of PETs are adjusted by calibrating the calibration coefficient 

to match the means of free-water evaporation for each month. In each plot, two fitted 

lines are plotted: one is forced to pass the origin point and the other is set free to have 

offset from the origin point. Regression equations and values of R-square (the square of 

the correlation coefficient) are also plotted in each figure. Figures 4.12 and 4.13 also 
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show that the modified Hamon’s method is a good approximation of the monthly-

averaged daily PET approach. This is evident by comparing the slope of the regression 

line and the R-square values. The equations proposed in this section will be used to 

calculate the PETs as inputs into the hydrological models. 

 

4.4 Hydrologic Model Calibration for ACF Watersheds 

The watershed model is developed for six ACF sub-watersheds: Buford, West Point, 

George, Montezuma, Albany, and Woodruff-Bainbridge.  Monthly hydro-climatic data 

(precipitation, temperature, potential evapotranspiration, and watershed runoff) for these 

watersheds are collected or calculated for the period from 1939 to 2007. The ACF 

watershed models were then calibrated over this period using the procedure outlined 

earlier. 

4.4.1 Monthly Models 

Precipitation 

Monthly precipitation sequences for each ACF watershed are generated by 

aggregating existing gridded data over each watershed. The gridded dataset used in this 

study were obtained from the PRISM (Parameter-elevation Regressions on Independent 

Slopes Model) climate mapping system (Daly et al., 1997).  

The precipitation climatology in Figure 4.14 shows that all ACF basins exhibit a 

similar monthly precipitation pattern with highs in March and July and lows in October. 

The July high and October low become more pronounced for watersheds in lower 

latitudes. The Buford watershed, extending in the Blue Ridge Mountains, receives the 
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highest precipitation amounts in all months. It is also observed that annual precipitation 

may vary by as much as 40 percent of its long term mean. 

 In the following calibration study, we will use the maximum temperature to 

calculate PET values as inputs to the hydrologic models. The monthly maximal, minimal, 

and average temperature sequences are obtained from the PRISM dataset.  

Unimpaired Flow 

 Unimpaired flows are the river flows that would have been observed in the 

absence of human water use and regulation. The unimpaired flow sequences used in this 

study were initially developed by the U.S. Army Corps of Engineers (USACE) as part of 

the ACF Comprehensive Study for the period from 1939 to 1993. This dataset was 

extended to 2001 by USACE Mobile District in September 2003. A further extension to 

2007 was carried out recently by the Georgia EPD as part of the Georgia Water Plan. 

Models without Groundwater Fluxes 

 Watershed runoff is influenced by several factors (including catchment size, 

location, slope, soil type, vegetation, land use, and time scale). Runoff coefficient is 

defined as the percentage of precipitation that appears as runoff over a certain time 

period. The long term runoff coefficient for each sub-basin is computed by dividing the 

average incremental unimpaired flow values by the corresponding average precipitation.  

 



Figure 4.14

Potential Evapotranspiration (PET)

All hydrologic models are 

iterative parameter estimation process described in 
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14: Precipitation Climatology for ACF Sub-basins.

Potential Evapotranspiration (PET) 

odels are first calibrated in monthly time steps by following the 

iterative parameter estimation process described in Section 4.2. Parameters are estimated 

 

basins. 

first calibrated in monthly time steps by following the 

. Parameters are estimated 
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for the two-storage hydrologic models with power release functions, linear 

approximations of percolation functions, and other secondary components (e.g., u0, Qimp, 

and Sret). No groundwater fluxes are assumed in the first calibration round.   

Figures 4.15 provide a graphical comparison of Buford observed and simulated 

runoff and plots of the upper and lower soil moisture storage. Specifically, Figure 4.15 

(a) shows the mean and standard derivation of monthly observed runoff and monthly 

simulated runoff. Figure 4.15 (b) shows the mean and standard derivation of monthly 

observed runoff ranks and monthly simulated runoff ranks. Figures 4.15 (c) and (d) plot 

the release curves of the lower and upper storage layers. The red lines are polynomial 

approximations and the blue lines are power function approximations. Figure 4.15 (e) 

shows the optimized u12 versus the estimated u12 (percolation functions). Figure 4.16 

shows the time series of the (a) simulated versus the observed runoff, (b) simulated soil 

moisture for upper and lower storages, (c) precipitation and PET, and (d) normalized 

errors of the simulated runoff. Similar results and comparisons for West Point, George, 

and Montezuma watersheds (Figure 4.17-4.22) are also plotted in the figures.  

Table 4.1 shows the results of the model calibration exercise in a monthly and 

daily resolution for the ACF basin. Table 4.2 reports average global statistics for model-

generated and observed runoff.  As shown in the tables, the overall model performance is 

good. Most model predictions are within ±10% of the observed values. The global 

Pearson and Spearman correlation coefficients are all higher than 0.9. The number of data 

outliers (number of points out of µ±2.5σ bands) is between 3% - 5% of the historical 

records.  
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Figure 4.15: Model Calibration for Buford Watershed: Estimated Storage-Release Curves for Both Upper and Lower Soil Storages: (a) Runoff 

Climatology Comparison, (b) Runoff Rank Climatology Comparison, (c) Release Curve for the Lower storage, (d) Release Curve for the Upper 

Storage, (e) Optimized u12 Versus the Estimated u12, (f) Optimized u2 Versus the Estimated u2 in Log Space, (g) Optimized u1+u2 Versus the 

Estimated u1+u2 in Log Space, and (h) Optimized u1 Versus the Estimated u1 in Log Space. 
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Figure 4.16: Hydrological Simulation for Buford Watershed: (a) Observed Versus Simulated Runoff, (b) Simulated Soil Moisture for the Lower and 

Upper Storages, (c) Precipitation and PET as Inputs, and (d) Normalized Runoff Simulation Errors. 
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Figure 4.17: Model Calibration for West Point Watershed: Estimated Storage-Release Curves for Both Upper and Lower Soil Storages: (a) Runoff 

Climatology Comparison, (b) Runoff Rank Climatology Comparison, (c) Release Curve for the Lower storage, (d) Release Curve for the Upper 

Storage, (e) Optimized u12 Versus the Estimated u12, (f) Optimized u2 Versus the Estimated u2 in Log Space, (g) Optimized u1+u2 Versus the 

Estimated u1+u2 in Log Space, and (h) Optimized u1 Versus the Estimated u1 in Log Space. 
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Figure 4.18: Hydrological Simulation for West Point Watershed: (a) Observed Versus Simulated Runoff, (b) Simulated Soil Moisture for the Lower 

and Upper Storages, (c) Precipitation and PET as Inputs, and (d) Normalized Runoff Simulation Errors. 
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Figure 4.19: Model Calibration for W.F. George Watershed: Estimated Storage-Release Curves for Both Upper and Lower Soil Storages: (a) Runoff 

Climatology Comparison, (b) Runoff Rank Climatology Comparison, (c) Release Curve for the Lower storage, (d) Release Curve for the Upper 

Storage, (e) Optimized u12 Versus the Estimated u12, (f) Optimized u2 Versus the Estimated u2 in Log Space, (g) Optimized u1+u2 Versus the 

Estimated u1+u2 in Log Space, and (h) Optimized u1 Versus the Estimated u1 in Log Space. 
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Figure 4.20: Hydrological Simulation for W.F. George Watershed: (a) Observed Versus Simulated Runoff, (b) Simulated Soil Moisture for the 

Lower and Upper Storages, (c) Precipitation and PET as Inputs, and (d) Normalized Runoff Simulation Errors. 
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Figure 4.21: Model Calibration for Montezuma Watershed: Estimated Storage-Release Curves for Both Upper and Lower Soil Storages: (a) Runoff 

Climatology Comparison, (b) Runoff Rank Climatology Comparison, (c) Release Curve for the Lower storage, (d) Release Curve for the Upper 

Storage, (e) Optimized u12 Versus the Estimated u12, (f) Optimized u2 Versus the Estimated u2 in Log Space, (g) Optimized u1+u2 Versus the 

Estimated u1+u2 in Log Space, and (h) Optimized u1 Versus the Estimated u1 in Log Space. 
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Figure 4.22: Hydrological Simulation for Montezuma Watershed: (a) Observed Versus Simulated Runoff, (b) Simulated Soil Moisture for the Lower 

and Upper Storages, (c) Precipitation and PET as Inputs, and (d) Normalized Runoff Simulation Errors. 



 

 

Table 4.1: Watershed Model Parameters for ACF Sub-basins. 

  Buford W. Point George Montezuma Albany 
Wdrff-

Bnbrdge 
Storage Capacity and Impervious Area Coefficient0.71 

Sc 0.98 0.85 0.88 0.79 0.68 0.89 

S1
c 0.70 0.58 0.67 0.56 0.46 0.45 

S2
c 0.28 0.24 0.21 0.23 0.24 0.28 

aimp 0.0446 0.0480 0.0430 0.0510 0.0280 0.0220 

Storage-Release Functions 
BetaPwr(2,1) 0.0367 0.1812 0.2023 0.1342 0.3284 20.3589 

BetaPwr(2,2) 2.8748 4.2638 3.6610 3.2431 3.1107 4.3863 

BetaPwr(1,1) 6.2349 4.3579 12.8766 4.9963 8.9089 3.9369 

BetaPwr(1,2) 4.1261 3.5349 4.2279 3.4424 3.8090 3.5688 

Percolation Function 
Constant  0.2414 0.0804 0.0499 0.0621 0.0409 0.0704 

ET2  0.2792 0.1712 0.1041 0.1459 0.3244 0.3663 

ET1/ET2  -0.7579 -0.5478 -0.5683 -0.4876 -0.2754 -0.3427 

S2  -0.2647 -0.0980 -0.0370 -0.0602 -0.0500 -0.1112 

S1/S2  0.5692 0.4571 0.4782 0.4117 0.2306 0.2859 

Peff  0.3540 0.4668 0.5542 0.4611 0.4119 0.4009 

ErrSTDu12  0.0170 0.0155 0.0162 0.0175 0.0257  

Groundwater Function 

Constant  - - - - -0.011 -0.018 

a1 - - - - 0.4233 0.4670 

a2 - - - - -3.487 -5.8519 

a3 - - - - 21.441 34.806 

 

Table 4.2: Model Performance Measures of ACF Sub-basins. 

 Buford W. Point George Montezuma Albany 
Wdrff-

Bnbrdge 

Global Average Statistics 
AvgQ 0.0536 0.0314 0.0310 0.0322 0.0270 0.0355 

AvgQM 0.0518 0.0287 0.0288 0.0313 0.0244 0.0332 

StDevQ 0.0306 0.0295 0.0231 0.0237 0.0228 0.0221 

StDevQM 0.0317 0.0257 0.0222 0.0251 0.0217 0.0229 

AvgRnkQ 432.7 388.7 386.2 432.2 392.4 389.2 

AvgRnkQM 434.4 389.7 386.4 431.7 386.9 384.5 

StDevRnkQ 235.2 214.0 212.4 236.6 209.5 212.6 

StDevRnkQM 233.9 212.1 212.2 236.7 213.9 213.4 

Global Correlation Coefficients and Error Statistics 
Pcorr 0.9170 0.9373 0.9283 0.9343 0.9237 0.9022 

SpCorr 0.9112 0.9080 0.9032 0.9162 0.9116 0.9018 

QRMSE/Q 0.2392 0.3144 0.3175 0.2813 0.3284 0.2488 

RnkQRMSE/Rnk 0.4376 0.5078 0.5058 0.4777 0.5087 0.4484 

QAbsQError/Q 0.1917 0.2181 0.2160 0.2283 0.2193 0.2012 

Outliers % 3.8% 3.9% 4.2% 4.8% 4.6% 4.3% 
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 Models with Groundwater Fluxes 

As shown in Figure 4.23, the groundwater flux uG can represent a loss from the 

surface water system to deep aquifer percolation, or a gain in the opposite direction. This 

interaction can take place through the lower soil moisture storage layer or through the 

stream channel (Figure 4.23).  For interaction through the lower storage layer, the uG can 

be added to the dynamics as shown below: 

( ) ( ) ( ) ( ) ( ) .(k)ukukukETkS1kS G122222 −+−−=+  

For interaction through the stream channel, uG can be represented as follows:  

( ) ( ) ( ) ( ) ( ) ( )kukukukukQkQ G210imp −+++= .
 

 

Figure 4.23: Alternative Forms of Groundwater Interaction with the Surface Water 

System: (a) Interaction through the Lower Soil Storage; and (b) Interaction through the 

Stream Channel. 

Either of the above forms of groundwater-surface water interaction can be 

handled by the watershed model. However, in calibrating the model for the Georgia 
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watersheds, uG was best included through the stream channel. Therefore, in what follows, 

the applicable model structure is the one shown on the right of Figure 4.23.  

Flux uG is estimated by an iterative process similar to that for the percolation flux 

u12.  At every step k, uG is optimized by minimizing the errors between the observed and 

simulated flows. This process generates a series of uG values {uG(k), k=0, 1, 2, …, N-1} 

that are most consistent with the observed data and the other model functions and 

parameters.  These values are used as the basis for relating uG to other system variables 

that would be available when the model runs in predictive mode. After testing several 

variables, the total model runoff is identified as the best predictor variable.  Namely, uG is 

best related to Q' where   

( ) ( ) ( ) ( ) ( )kukukukQkQ 210imp +++=′ , 

and the uG-Q' relationship is expressed in a polynomial form:   

( ) ( ) ( )[ ] ( )[ ]33
2

210G ku kQkQkQ ss ′+′+′+= αααα  

 

Figure 4.24: Iterative Estimates of the Groundwater Flux uG for the Woodruff-

Bainbridge Watershed: Simulated Runoff Climatology Calculated after Each Iterative 

Step (Left), and Identified uG Flux Changes Estimated in Each Iterative Step (Right). 
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After initializing the uG sequences and after estimating the related groundwater 

function, the parameters and functions estimated previously without considering uG needs 

to be adjusted by an iterative calibration of the storage capacities and other parameters. 

The iterative process ends when the change (annual average) of uG between two adjacent 

iterations is less than 0.1% of the annual precipitation and when the updated storage 

capacities remain invariant (Figure 4.24).  

The simulated uG sequence and its climatology are plotted in Figure 4.25. It is 

estimated that the annual averaged upward groundwater flux rate is about 0.008 m/month 

for Woodruff-Bainbridge watershed. Figure 4.26 depicts the average ET/P, (Total 

Runoff)/P, (Qimp+u0)/P, and Ug/P for each watershed after including the groundwater 

recharge/discharge flux. As demonstrated in the above tables and graphs, the ratio of ET 

to P is generally higher in lower latitude watersheds.  Take ACF basin as an example, the 

watersheds are located in four distinct latitude regions: (1) Buford; (2) West Point and 

Montezuma; (3) George and Albany; and (4) Woodruff-Bainbridge. 

For watersheds in lower latitudes, ET/P increases and (Total Runoff)/P decreases.  

Ostensibly, Woodruff-Bainbridge (W-B) is an exception to these trends if no 

groundwater components are included. For Woodruff-Bainbridge and Albany watersheds, 

there are strong surface water - groundwater interactions which generally results in net 

water gain for the surface system.  The groundwater component is used to simulate this 

interaction, and compensates for the increased watershed outflow by decreasing the 

evapotranspiration to precipitation ratio and increasing the runoff coefficient beyond their 

hydro-climatically consistent values.   
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Figure 4.27 through Figure 4.30 shows the final results and comparison of 

Woodruff-Bainbridge and Albany watershed between observed and simulated runoff. It 

also provides a graphical comparison between observed and simulated runoff, plots of the 

upper and lower soil moisture storage. 

 

Figure 4.25: Climatology of Modeled Runoff and Groundwater Recharge for Woodruff-

Bainbridge. 

 

Figure 4.26: Average Hydrologic Response by Watershed (1901 - 2009) with including 

Groundwater Recharge flux Ug. 
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Figure 4.27: Model Calibration for Woodruff-Bainbridge Watershed: Estimated Storage-Release Curves for Both Upper and Lower Soil Storages: 

(a) Runoff Climatology Comparison, (b) Runoff Rank Climatology Comparison, (c) Release Curve for the Lower storage, (d) Release Curve for the 

Upper Storage, (e) Optimized u12 Versus the Estimated u12, (f) Optimized u2 Versus the Estimated u2 in Log Space, (g) Optimized u1+u2 Versus 

the Estimated u1+u2 in Log Space, and (h) Optimized u1 Versus the Estimated u1 in Log Space. 
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Figure 4.28: Hydrological Simulation for Woodruff-Bainbridge Watershed: (a) Observed Versus Simulated Runoff, (b) Simulated Soil Moisture for 

the Lower and Upper Storages, (c) Precipitation and PET as Inputs, and (d) Normalized Runoff Simulation Errors. 
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Figure 4.29: Model Calibration for Albany Watershed: Estimated Storage-Release Curves for Both Upper and Lower Soil Storages: (a) Runoff 

Climatology Comparison, (b) Runoff Rank Climatology Comparison, (c) Release Curve for the Lower storage, (d) Release Curve for the Upper 

Storage, (e) Optimized u12 Versus the Estimated u12, (f) Optimized u2 Versus the Estimated u2 in Log Space, (g) Optimized u1+u2 Versus the 

Estimated u1+u2 in Log Space, and (h) Optimized u1 Versus the Estimated u1 in Log Space. 
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Figure 4.30: Hydrological Simulation for Albany Watershed: (a) Observed Versus Simulated Runoff, (b) Simulated Soil Moisture for the Lower and 

Upper Storages, (c) Precipitation and PET as Inputs, and (d) Normalized Runoff Simulation Errors. 



 

 

4.4.2 Weekly Models 

In this section, the downward modeling philosophy is employed to build the weekly and 

daily hydrologic models for all sub-basins in Georgia. These models work on finer 

temporal resolutions than the models developed in the previous section. In the monthly 

time scale, the two-storage model structure was found to be adequate in simulating the 

dynamics of the watershed processes. In developing the weekly and daily models, this 

premise is again investigated.  

The following results are obtained by calibrating a two-storage model in both 

weekly time steps for the upper Oconee River sub-basin (Athens watershed). In addition 

to the Athens watershed, we also checked other three upstream watersheds: Buford 

watershed (upper Chattahoochee River), Montezuma watershed (upper Flint River), and 

Jackson watershed (upper Ocmulgee River). 

 

Figure 4.31: Release Curves for the Upper and Lower Storage in Weekly Hydrologic 

Model for the Athens Watershed. 

Figure 4.31 compares the monthly release curves to the weekly release curves of 

both the upper and lower storages. It shows that the lower storage capacity S2
c does not 

change from the monthly model to the weekly model; but the upper storage capacity S1
c 

decreases from 0.24 to 0.19. For the weekly model, the piece-wise linear approximations 
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of the release relationships match the power function approximations for the Athens 

watershed. Similar results are observed for other three watersheds. 

The Pearson correlation between observed and simulated flow is about 0.93. 

Table 4.3 shows the performances (correlation coefficients and normalized errors) of the 

runoff simulations for these four watersheds. It shows that for all four watersheds, the 

Pearson correlations are high (0.91-0.93) and the normalized errors of simulated runoffs 

are comparable to the monthly models (0.24-0.25), implying that the two-storage model 

structure is sufficient for the weekly model.  Figure 4.32 shows the observed and 

simulated flows in weekly steps for the above four watersheds.  

 

Table 4.3: Performance Measures of Four Georgia Watersheds Weekly Model with Two 
Storages. 
Two-Storage(Weekly) OOA_Athens OOA_Jackson ACF_Buford ACF_Montezuma 

Pcorr 0.9279 0.9205 0.9080 0.9150 

SPCorr 0.9102 0.9009 0.8868 0.8936 

QRMSE/Q 0.3161 0.3215 0.3691 0.3255 

RnkQRMSE/RnkQ 0.3958 0.3963 0.4092 0.4016 

QAbsQError/Q 0.2459 0.2465 0.2595 0.2516 
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Figure 4.32: Observed and Simulated Flows of the Weekly Hydrologic Model for four 

Georgia Watershed: Athens, Jackson, Buford and Montezuma (Top to Bottom, 1950-

1999). 

4.4.3 Daily Models 

In this section, the two-storage model structure is applied to the upper Oconee 

River Basin (Athens watershed) in daily time steps. In addition to the Athens watershed, 

we also checked other three upstream watersheds: Buford watershed (upper 
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Chattahoochee River), Montezuma watershed (upper Flint River), and Jackson watershed 

(upper Ocmulgee River). 

 

Figure 4.33: Release Curves for the Upper and Lower Storage in Daily Hydrologic 

Model for the upper Oconee River Basin (near Athens). 

Figure 4.33 compares the weekly release curves to the daily release curves of 

both the upper and lower storages. It shows that the lower storage capacity S2
c does not 

change from the weekly model (thus monthly model) to the daily model; but the upper 

storage capacity S1
c decreases from 0.19 to 0.14.  

Figure 4.33 also shows that the two storages show different changes in 

approximating the storage-release relationships. For the lower storage, the piece-wise 

linear approximation matches with the power function approximation very well, implying 

the dynamics of the lower storage can still be well represented by the power function 

form for the Athens watershed.  However, for the upper storage, significant discrepancies 

can be observed between the piece-wise linear approximation and the power function 

approximation (green vs. purple). Such discrepancies suggest that the dynamics of the 

upper layer soil cannot be well represented by a single storage or a single release 

function. 
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Table 4.4: Performance Measures of Four Georgia Watersheds Daily Model with Two 
Storages.  
Two-Storage(Daily) OOA_Athens OOA_Jackson ACF_Buford ACF_Montezuma 

Pcorr 0.8964 0.8734 0.8823 0.8621 

SPCorr 0.8623 0.8549 0.8210 0.8581 

QRMSE/Q 0.3592 0.4145 0.4432 0.3672 

RnkQRMSE/RnkQ 0.5569 0.5873 0.5120 0.5020 

QAbsQError/Q 0.3123 0.3348 0.3291 0.3368 
 

 

 

Figure 4.34: Observed and Simulated Flows of the Daily Hydrologic Model (with Two-

Storage) for four Georgia Watershed: Athens, Jackson, Buford and Montezuma (Top to 

Bottom, 1950-1999). 

The Pearson correlation between observed and simulated flow is about 0.89. 

Table 4.4 shows the performances (correlation coefficients and normalized errors) of the 

runoff simulations for these four watersheds. It shows that for all four watersheds, the 

Pearson correlations  are lower than the monthly and weekly models (0.86-0.89) and the 

normalized errors of simulated runoffs are higher than monthly and weekly models (0.31-

0.34), implying that the two-storage model structure is not sufficient for the daily model. 
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Figure 4.34 shows the simulated and observed daily runoff by using a two-

storage model. The simulated runoff generally underestimates peak flows and 

overestimates low flows. Such errors suggest that a more sophisticated model structure 

may be necessary for the daily hydrological model. A new surface storage needs to be 

added into the model structure to represent the surface dynamics of the hydrological 

system in the daily time resolution. As already discussed earlier, this is the role of the 

surface water storage S0. This storage begins to fill during significant precipitation events 

when subsurface storage (S1) is filled to capacity. Water release from storage S0 may 

develop over a period of one to a few days. The inclusion of this storage element converts 

the model to the structure shown in Figure 4.24.  

 

Figure 4.35: Hydrologic Model Structure for Daily Time Resolution 

 For the daily model structure shown in Figure 4.35, the system dynamics are 

rewritten as the following equations. 



144 
 

(i) Storage S1(k+1) and S0(k+1) not constrained by capacity limit:   

( ) ( ) ( ) ( ) ( ) ( ) ,kukukETkukS1kS 12110111 −−−+=+  

( ) ( ) ( ) ( ) ( ) ,(k)ukukukETkS1kS G122222 −+−−=+  

( ) ( ) ( ) ( ) ( ) ( ) ,kukukETkPkS1kS 0100eff00 −−−+=+  

(ii) Storage S0(k+1) but not S1(k+1) constrained by capacity limit:   

( ) ,S1kS c
00 =+  

( ) ( ) ( ) ( ) ( ) ( )[ ] ,SkukukETkPkSkQ c
00100eff0sat −−−−+=  

( ) ( ) ( ) ( ) ( ) ( ) ,kukukETkukS1kS 12110111 −−−+=+  

( ) ( ) ( ) ( ) ( ) ,(k)ukukukETkS1kS G122222 −+−−=+  

(iii) Storage S0(k+1) and S1(k+1) constrained by capacity limit:   

( ) ,S1kS c
00 =+  

( ) ,S1kS c
11 =+  

( ) ( ) ( ) ( ) ( )[ ] ,SkukETkPkSkQ c
000eff0sat −−−+=  

( ) ( ) ( ) ( ) ( ) ,(k)ukukukETkS1kS G122222 −+−−=+  

( ) 0ku01 =  
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Figure 4.36: Release Curves for the Surface, Upper and Lower Storage in Daily 

Hydrologic Model for the upper Oconee River Basin (near Athens). 

The three-storage model is next applied to the upper Oconee River Basin. Figure 

4.36 shows the calibrated weekly and daily release curves of all model storages. This 

figure shows that by adding the surface storage, the upper storage capacity does not 

change very much (around 0.14) from the two-storage model to the three storage model, 

and the surface storage capacity is identified to be about 0.07 with an offset of about 

0.04. Both curves fit the piece-wise linear approximations fairly well.  

Table 4.5: Performance Measures of Four Georgia Watersheds Daily Model with Three 
Storages.  
Three-Storage(Daily) OOA_Athens OOA_Jackson ACF_Buford ACF_Montezuma 

Pcorr 0.9301 0.9162 0.9141 0.9026 

SPCorr 0.9195 0.9046 0.9038 0.8923 

QRMSE/Q 0.2735 0.3124 0.3806 0.3840 

RnkQRMSE/RnkQ 0.4086 0.3388 0.3937 0.4264 

QAbsQError/Q 0.2587 0.2903 0.2926 0.2771 
 

The Pearson correlation between observed and simulated flow is 0.93. Table 4.5 

shows the performances (correlation coefficients and normalized errors) of the runoff 

simulations for these four watersheds by using the three-storage models. It shows that for 

all four watersheds, the Pearson correlations are high (0.90-0.93) and the normalized 

errors of simulated runoffs are comparable to the monthly models (0.26-.29), implying 
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that the two-storage model structure is sufficient for the weekly model.  Figure 4.37 

shows the observed and simulated flows in weekly steps for the above four watersheds. 
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Figure 4.37: Observed and Simulated Flows of the Daily Hydrologic Model (with Three-

Storage) for four Georgia Watershed: Athens, Jackson, Buford and Montezuma (Top to 

Bottom, 1950-1999). 

     

4.5 Conclusions 

Hydrologic models are important components of assessing regional climate change 

impacts on hydrological systems. This chapter introduces and describes a newly 

developed lumped conceptual watershed model that can serve this purpose.  

� The daily PET Hamon’s method can be improved by using the daily maximum 

temperature than by using the daily mean temperature.  

� The monthly PET Hamon’s method can be improved by using the modified approach 

presented in Section 4.3.4. 

� The proposed lumped hydrological model has  several water balance elements the 

parameters of which can be estimated through a data-driven estimation process.   

� The performances of monthly simulated watershed models demonstrate the validity 

and good simulation skill for all ACF watershed models as well as other watershed 

modes in Georgia. Most model predictions are within ±10% of the observed values. 

The global Pearson and Spearman correlation coefficients are all higher than 0.9. The 

number of data outliers is between 30 and 50, or 3% - 5% of the historical records. 

� The proposed hydrological model can also be applied to finer temporal resolutions, 

such as weekly and daily time steps. The two-storage model is sufficient for the 

weekly model with the model parameters and release functions changed accordingly. 

The storage capacity and release curves of the lower layer remain unchanged from 

monthly models to weekly models.  
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� The two-storage model is generally insufficient for the daily time scale, and an 

additional surface storage element needs to be added. With this addition, the model 

exhibits good performance in simulating daily runoff.  

The monthly hydrological models calibrated in this chapter for all Georgia watersheds 

will be employed to develop regionalization relationships between model parameters and 

watershed descriptors in the next chapter. They will also be employed to simulate the 

hydrological responses under historical and future climate change scenarios in Chapter 

6.  
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CHAPTER 5 

HYDROLOGIC MODEL REGIONALIZATION 

 

Hydrological measurements (e.g., catchment runoff) are often limited both temporally 

and spatially.  Data deficiencies in ungauged and poorly-gauged watersheds pose 

challenges in the calibration and the verification of hydrologic models.  Hydrologic 

regionalization is the process of extrapolating hydrological behavior from well-calibrated 

watershed models to ungauged or poorly-gauged watersheds within a certain region.  

This chapter investigates the regionalization of the hydrologic model for the 

southeastern United States by building relationships between calibrated hydrologic 

parameters (e.g., storage capacity) and catchment characteristics (e.g., land cover, area, 

altitude, slope, and soil type). To build the regionalization relationships, this study 

employs the monthly models developed and calibrated in Chapter 4for 45 watersheds.   

The main model parameters that will be regionalized include (1) storage capacities S1
c, 

and S2
c; (2) storage-release functions u1(S1) and u2(S2) with four model parameters (β1,1, 

β1,2, β2,1, and β2,2); (3) impervious area coefficient (aimp) and (4) percolation function u12 

with six parameters (α0, α1, α2, α3, α4, and α5).  

 

5.1 Explanatory Variables 

Model regionalization involves the development of statistically significant relationships 

between model parameters and explanatory variables.    After a list of potentially useful 

explanatory variables has been compiled, a preliminary investigation is carried out in 

which variables are screened for inclusion.  This preliminary investigation aims at 



150 
 

screening out variables that (1) do not significantly explain the values of the model 

parameters; (2) may be subject to large measurement errors; or (3) may duplicate other 

explanatory variables.  The following potential explanatory variables, collected from 

different sources, are compiled and aggregated for each catchment to be assessed against 

the calibrated hydrologic model. 

5.1.1 Dimension and Topography Dataset 

The topographic data are derived from the digital elevation models (DEMs) of the 

National Elevation Dataset (NED) developed by USGS (Gesch, 2007; Gesch et al., 

2002).  NED data are distributed in geographic coordinates in units of decimal degrees 

and in conformance with the North American Datum of 1983 (NAD 83) spatial 

coordinate.  These data are available nationally at resolutions of one arc-second (about 30 

meters) and one-third of an arc-second (about 10 meters), and in limited areas at one-

ninth of an arc-second (about three meters).  

 The DEM dataset of NED are geo-referenced and processed by the ArcGIS 

Geospatial Analysis toolbox (under NAD_1983_Lambert_Conformal_Conic).  Figure 

5.1 shows the topographic map of Georgia from the NED dataset.  For each catchment, 

the following ten quantities are aggregated and computed: 

• topo_area: area of the catchment; 

• topo_perimeter: perimeter of the catchment area; 

• topo_avg_att: average altitude of the catchment area; 

• topo_min_att: minimal altitude of the catchment area; 

• topo_max_att: maximal altitude of the catchment area; 

• topo_var_att: variance of the altitude within the catchment area; 
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• topo_avg_slope: average slope gradient (calculated for each DEM cell with 

respective to neighborint cells) of the catchment area; 

• topo_min_slope: minimal slope gradient of the catchment area; 

• topo_max_slope: maximal slope gradient of the catchment area; and 

• topo_var_slope: variance of the slope gradient within the catchment area. 

5.1.2 Climate Dataset 

The watershed climate data are derived from PRISM (Parameter-elevation Regressions 

on Independent Slopes Model) climate mapping system (Daly et al., 1997) discussed in 

Chapter 4. The following four variables are used in the regionalization study: 

• clm_avg_prcp: average precipitation within the catchment area; 

• clm_avg_pet: average PET within the catchment area; 

• clm_var_prcp: variance of precipitation within the catchment area; and 

• clm_var_pet: variance of PET within the catchment area. 

5.1.3 Soil Dataset 

The soil data are derived from the Soil Survey Geographic (SSURGO) database 

developed by the Natural Resources Conservation Service (NRCS) the U.S. Department 

of Agriculture.   The SSURGO database, which provides the most detailed level of soil 

information, was designed primarily for the planning and management of natural 

resources as they relate to farms and ranches, landowner/users, townships, counties, or 

parishes.  The following 13 soil measurements are used:  

• soil_avg_ slopegradd:  the difference in elevation between two points, expressed 

as a percentage of the distance between those points; 
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• soil_avg_slopegradw:   the difference in elevation between two points, expressed 

as a percentage of the distance between those points; 

• soil_avg_blockdepmin:  the distance from the soil surface to the top of a bedrock 

layer, expressed as a shallowest depth of components whose composition in the 

map unit is equal to or exceeds 15%; 

• soil_avg_wtdepannumi:  the shallowest depth to a wet soil layer (water table) at 

any time during the year, expressed as centimeters from the soil surface, for 

components whose composition in the map unit is equal to or exceeds 15%; 

• soil_avg_wtdepaprju:  the shallowest depth to a wet soil layer (water table) during 

the months of April through June, expressed in centimeters from the soil surface 

for components whose composition in the map unit is equal to or exceeds 15%; 

• soil_avg_asw025wta:  the volume of water that the soil can hold to a depth of 25 

centimeters; 

• soil_avg_asw050wta:  the volume of water that the soil can hold to a depth of 50 

centimeters; 

• soil_avg_asw100wta:  the volume of water that the soil can hold to a depth of 100 

centimeters; 

• soil_avg_asw150wta:  the volume of water that the soil can hold to a depth of 150 

centimeters; 

• soil_avg_ksat:  the saturated hydraulic conductivity of the soil layers; 

• soil_percent_sand:  percentage of sand composition of the soil column; 

• soil_percent_silt:  percentage of silt composition of the soil column; and 

• soil_percent_clay:  percentage of clay composition of the soil column. 
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Figures 5.2, 5.3, and 5.4 are maps of the surface soil texture, the saturated 

hydraulic conductivity, and the averaged soil available water capacity within Georgia, 

respectively. 

5.1.4 Land Use and Land Cover Dataset 

The Georgia Land Use Trends (GLUT) Project, completed by the natural resources 

spatial analysis laboratory at the University of Georgia, provides high resolution 

historical land cover maps for Georgia (Kramer et al., 2004).  The maps were produced 

from Landsat TM imagery with a spatial resolution of 30m x 20m.  The following 13-

category land use/cover data are used in this study: 

• land_avg_bdm:  open sand, sandbars, sand dunes, mud  (natural environmental 

features) as well as exposed sand from dredging and other activities; 

• land_avg_qsr:  exposed rock and soil from industrial uses, gravel pits, and 

landfills; rock outcrops, mountain tops, and barren land; 

• land_avg_ow:  lakes, rivers, ponds, oceans, industrial water, and aquaculture that 

contained water at the time of the image acquisition; 

• land_avg_liu:  single-family dwellings, recreation areas, cemeteries, playing 

fields, campus-like institutions, parks, and schools; 

• land_avg_hiu:  multi-family dwellings, commercial/industrial areas, prisons, 

speedways, junkyards, and confined animal operations; transportation, roads, 

railroads, airports, and runways;  

• land_avg_cs:  recent clearcuts, sparse vegetation, and other early successional 

areas; 
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• land_avg_df:  forest composed of at least 75% deciduous trees in the canopy and 

deciduous woodland; 

• land_avg_ef:  evergreen forest composed of at least 75% evergreen trees, 

managed pine plantations, and evergreen woodland; 

• land_avg_mf:  mixed deciduous/coniferous canopies, mixed woodlands, natural 

vegetation within the fall line and coastal plain eco-regions, and mixed 

shrub/scrub vegetation; 

• land_avg_rcp:  row crops, orchards, vineyards, groves, and horticultural 

businesses;  pastures  and non-tilled grasslands; 

• land_avg_fws:  cypress gum, evergreen wetlands, deciduous wetlands, 

depressional wetlands, and shrub wetlands; 

• land_avg_fwf:  salt marshes, brackish water; and 

• land_avg_nfw: freshwater marshes. 
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Figure 5.1 Topographic Map of Georgia. 
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Figure 5.2 Map of the Surface Soil Texture in Georgia. 
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Figure 5.3 Map of Saturated Hydraulic Conductivity (µm/s) in Georgia. 
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Figure 5.4 Map of Averaged Soil Available Water Capacity (cm/cm) in Georgia. 



 

 

5.2 Regionalization Relationships 

This section develops the regionalization relationships by screening and using the 40 

predictor variables (P=40) described in the previous section.  However, evaluating all of 

the possible alternatives is not practical, as the number of candidate variable 

combinations is large.  To simplify the screening process and to search systematically the 

predictor variable set, this study employs a stepwise and automatic computer-search 

procedure. 

5.2.1 Forward Stepwise Regression 

The Forward Stepwise Regression procedure starts with an initial set of explanatory 

variables and iterates by adding a new variable or deleting an existing variable based on 

certain criteria until convergence. The forward stepwise regression search procedure is 

outlined below: 

Step 1: 

For each candidate predictor Xk (k = 1, 2, … , P-1), fit a simple linear regression 

model and compute the t* statistics defined by { }k

k
k bs

b
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In the above, Xi is the predictor variable for the ith watershed; Yi is the observed 

value for the ith watershed; and MSE is the error mean square of the regression. 

The predictor with the largest t* value is the first variable added to the model.   

However, if the t* value is less than a predefined threshold (or likewise, if the p-value is 
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less than a predefined level α), the program ends with no predictor variables included.  In 

such a case, no significant predictor is identified.  

Step 2: 

Assume in the previous step that Xk is identified as the jth variable for entry to the 

relationship.  The program proceeds to develop a regression model with the augmented 

variable dataset (Xk, …, Xk+s) .  The new added predictor with the largest t* 

(corresponding to the newly added variable) is selected as a candidate for the second 

variable.  Again, if the t* value is less than a predefined threshold (or likewise, if the p-

value is less than a predefined level α), the program ends with no predictor variables 

included.  In such a case, only one significant predictor is identified. 

Step 3: 

Check the t* statistics for each of the “old” variables in the previous step.  The 

variable with the smallest t* is a candidate for deletion.  If the t* value is less than a 

certain predefined value (or likewise, if the p-value is larger than a predefined limit α), 

then the variable is removed from the model.  

Step 4: 

Repeat Step 2 until no new variables can be added to the model and/or no old 

variables can be dropped from the model.   

It is noted that the stepwise regression algorithm allows a predictor variable to 

enter the model at an early stage but possibly leave the model at subsequent steps.  

Before carrying out the regression, one must choose the α–to-enter and α–to-remove 

significance thresholds.  The choice of these two values represents the balancing of 

opposing tendencies.  By using a large α–to-enter value, more predictors enter the model, 
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while by using a small α–to-remove value, more predictors are dropped. In this study, the 

maximum acceptable α–to-enter value is set to 0.10, and the minimum α–to-remove limit 

is set to 0.15.  

5.2.2 Regression Model for S2
c (Lower Soil Layer Storage Capacity) 

The procedure for developing the regression model for S2
c is described in the following 

steps.  First, begin with a null model consisting of only the intercept (and no predictors).  

The result shows that the intercept is significant with a probability of Pr(t) < 2e-16 of this 

outcome being purely random (null hypothesis).  The regression model is summarized in 

Table 5.1. 

 

Table 5.1 Regression for S2
c with the NULL-Predictor Model. 

Model Parameter: S2_Cap (m/mo) 

Predictors: NULL 

Residuals: 

  Min 1Q Median 3Q Max 

  -0.2289 -0.0431 0.0119 0.0569 0.1419 

Coefficients: 

  Estimate Std. Err. t value Pr(>|t|)   

(intercept) 0.5881 0.0117 50.3300 <2e-16   

 

Second, identify and admit the predictor (if any) with the largest value above the 

predefined F limit or the smallest P-value below the α–to-enter.  For this study, the α–to-

enter is set to 0.1, and the obvious candidate for admission is “forest_all,” with a t-value 

of 48.399 and Pr(t)= 1.81e-08.  Then, fit a new linear model with forest_all as the 

explanatory variable and the intercept.  The regression model is summarized in Table 

5.2. 
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Table 5.2 Regression for S2
c with the One-Predictor Model. 

Model Parameter: S2_Cap (m/mo) 

Predictors: forest_all 

Residuals: 

  Min 1Q Median 3Q Max 

  -0.1557 -0.0433 0.0199 0.0385 0.1045 

Coefficients: 

  Estimate Std. Err. t value Pr(>|t|)   

(intercept) 0.3032 0.0418 7.261 <2e-16   

 forest_all 0.4420 0.0635 6.957 <=1.18e-8   

 

 Third, repeat the above process for another possible predictor.  This process leads 

to considering “canopy,” with an t-value of 16.9 and p-value Pr(t) = 1.72e-4.  Again, fit a 

new linear model with this added variable.  The regression model is summarized in Table 

5.3.  

 

Figure 5.5 Linear Regression of the Lower Storage Capacity (S2_Cap) on the Forest and 

Canopy Cover Percentage.  

Table 5.3 Regression for S2
c with the Two-Predictor Model. 

Model Parameter: S2_Cap (m/mo) 

Predictors: forest_all 

Residuals: 

  Min 1Q Median 3Q Max 

  -0.1564 -0.0413 0.0156 0.0420 0.0922 

Coefficients: 
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  Estimate Std. Err. t value Pr(>|t|)   

(intercept) 0.3851 0.0355 10.8440 <=5.18e-14   

 forest_all 0.1565 0.0475 3.2970 0.0019   

 avg_canopy 0.31 0.08 4.1060 0.0002   

 

Then, check the two-predictor model by looking into the t statistics for potential 

removal.  This leads to p-values for both of them being smaller than the preset α–to-

remove value of 0.15.  

 The final model is summarized above with two predictors: forest_all and 

avg_canopy.  Figure 5.5 shows the linear regressions for the above two predictors.  The 

storage capacity increases as the percentage of forest cover and canopy increases. 

 

Figure 5.6 Estimated S2
c Versus Observed S2

c by a Two-Predictor Model (Forest and 

Canopy Cover). 

 

Figure 5.6 shows the estimated S2
c versus the observed S2

c by the two-predictor 

model (Table 5.3). The estimated storages capacities are generally well represented 

(errors are within ±10% of the observed values).  

5.2.3 Regression Model for S1
c 
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In this section, the above stepwise regression procedure is applied to the storage capacity 

(S1
c) of the upper layer. The final model contains one predictor, the volume of water that 

the soil can hold to a depth of 25 centimeters (aws025_awm). Figure 5.7 shows the linear 

regression for the above predictor. The final regression model is summarized in Table 

5.4. The results show that the volume of water that the soil can hold in the shallow soil 

column (up to 25 centimeters) is a good indicator of the storage capacity in the upper 

layer.  

 

Figure 5.7 Linear Regression of the Upper Storage Capacity (S1_Cap) on Available 

Water Storage to a Depth of 25 Centimeters. 

Table 5.4 Regression for S1
c with the One-Predictor Model. 

Model Parameter: S1_Cap (m/mo) 

Predictors: aws025_awm 

Residuals: 

  Min 1Q Median 3Q Max 

  -0.0230 -0.0081 -0.0030 0.0084 0.0285 

Coefficients: 

  Estimate 

Std. 

Err. t value Pr(>|t|)   

(intercept) 0.0969 0.0082 11.8800 <=1.80e-15   

aws025_awm 0.0435 0.0028 15.7000 <2e-16   
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Figure 5.8 Estimated S1
c Versus Observed S1

c. 

Figure 5.8 shows the estimated S1
c versus the observed S1

c by using the one-

predictor model (Table 5.4). The estimated storage capacities represent very well the 

observed values (errors are within ±5% of the observed values).  

5.2.4 Regression Model Lower Storage Release Function (β2,1  and β2,2) 

In this section, the above stepwise regression procedure is applied to the parameters of 

the lower storage release function. The final model shows that the parameter β2,2 is related 

to the saturated hydraulic conductivity Ksat (Figure 5.9). The final regression model is 

also summarized in Table 5.5. 

 

Figure 5.9 Linear Regression of the β2,2 on Saturated Hydraulic Conductivity (Ksat). 
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Table 5.5 Regression for β2,2 with the One-Predictor Model. 

Model Parameter: Beta2 (m/mo) 

Predictors: Ksat 

Residuals: 

  Min 1Q Median 3Q Max 

  -1.5626 -0.4329 0.0432 0.5150 0.9856 

Coefficients: 

  Estimate Std. Err. t value Pr(>|t|)   

(intercept) 2.3702 0.1796 13.6100 <2e-16   

Ksat 0.0754 0.0062 11.9500 <=1.49e-15   

 

 

Figure 5.10 Linear Approximation of log(β2,1) by β2,2. 

 The other parameter in the storage-release function, β2,1, is found to be strongly 

related to β2,2.   Figure 5.10 shows that log(β2,1) can be approximated as a linear function 

of β2,2:   ��,� 	 
��1.0006��.� � 3.8549�. 

 

Figure 5.11 Estimated β2,2 (and β2,1) Versus Observed β2,2 (and β2,1). 
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Figure 5.11 shows the estimated β2,2 (and β2,1) versus the observed β2,2 (and β2,1)
 

using the one predictor variable model (Table 5.5).  It can be shown that the models 

perform well for watersheds with β2,2 > 4.50 and ln(β2,1) > 0.  Smaller values of these 

coefficients are estimated with less accuracy. The smaller coefficients mostly occur for 

the watersheds below the fall line, where the uncertainties of flow measurements are 

relatively larger than the upper watersheds. 

5.2.5 Regression Model for the Upper Storage Release Function (β1,1  and β1,2) 

In this section, the stepwise regression procedure is applied to the parameters of the upper 

storage release function. The final model shows that parameter β1,2 is related to the 

saturated hydraulic conductivity and the topographic slope. However, Figure 5.12 

suggests that the relationship between β1,2 and the topographic slope is nonlinear. 

Therefore, the logarithm of the slope is used instead.  

 

Figure 5.12 Linear Regression of β1,2 on Saturated Hydraulic Conductivity and Slope. 
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Figure 5.13 Linear Regression of β1,2 on the Saturated Hydraulic Conductivity and the 

Logarithm of the Slope. 

Figure 5.13 shows that the relationships between β1,2 and the logarithm of the 

topographic slope. The R2 in the β1,2 – slope relationship increases from 0.4105 to 0.6626 

when the ln(slope) is used instead of the slope. The final regression model is summarized 

in Table 5.6. 

Table 5.6 Regression for β1,2 with the One-Predictor Model. 

Model Parameter: Beta1 

Predictors: Ksat, slopegradw 

Residuals: 

  Min 1Q Median 3Q Max 

  -1. 1894 -0.4600 -0.0519 0.4504 1.1808 

Coefficients: 

  Estimate Std. Err. t value Pr(>|t|)   

(intercept) 4.0545 0.4923 8.236 <=1.85e-10   

Ksat 0.0411 0.0096 4.264 <=1.05e-4   

Ln(slopegradw) -0.4512 0.1556 -2.899 <=5.81e-3   

 

The other parameter β1,1 in the storage-release function is found to be closely 

related to β1,2 as shown in Figure 5.14: ��,� 	 
��0.9233��.� � 2.4073�. 
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Figure 5.14 Linear Approximation of log(β1,1) as a Function of β1,2. 

 

Figure 5.15 Estimated β1,2 (and β1,1) Versus Observed β1,2 (and β1,1). 

 

Figure 5.15 shows the estimated β1,2 (and β1,1) versus the observed β1,2 (and β2,1)
 

by using the one-predictor model (Table 5.6).  

5.2.6 Regionalization Model for the Percolation Function (α0, α1, α2, α3, α4, and α5) 

In Chapter 4, the percolation function is defined as follows: 

( ) ( )
( ) ( ) ( )

( ) ( )1 1
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2 2
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ET k S k
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where, α0, α1, α2, α3, α4, and α5 are constant coefficients. 

 Physically, the soil infiltration rate measures the rate at which soil is able to 

absorb rainfall or irrigation.  The infiltration rate is expected to depend on soil 

characteristics, including ease of entry, storage capacity, and transmission rate through 

the soil.  The texture and structure of the soil, the water content of the soil, and intensity 

of rainfall all play a role in controlling the infiltration rate (Horton 1933, 1940; Walker, 

1987).   
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First, toward developing the regionalization model, possible interdependencies 

among the percolation function coefficients are investigated.  

Figure 5.16 shows that α3 and α5 are highly correlated with α1 (R
2 = 0.89 and R2 

= 0.90). Therefore, α3 and α5 can be obtained from:  

�� 	 �0.7637�� � 0.0016  and  

�� 	 �0.4121�� � 0.4251.   

Furthermore, Figure 5.17 shows that α4 is highly correlated with α2 (R
2 = 0.98). 

Therefore, α4 can be obtained from �� 	 �0.7329�� � 0.0103.  

Thus, the regionalization process will focus on α0, α1, and α2, from which the rest 

of the percolation function coefficient can be derived as shown above.  

Second, the hypothesis that α0, α1, and α2 (in monthly models) are effectively 

constant in watersheds with similar soil types and vegetation is investigated.  As shown 

in Figure 5.2, watershed soils in Georgia are distinctly different above and below the fall 

line, with the former predominantly being sandy loam and the latter loamy sand.  

Vegetation is also likewise different above and below the fall line, as the southern 

watersheds are largely agricultural.       

To test the previous hypothesis, an optimal set of α0, α1, and α2 coefficients is 

determined for all watersheds above the fall line and similarly for watersheds below the 

fall line. The optimal coefficient sets are obtained by maximizing the correlation between 

the flow of the fully calibrated models (in Chapter 4) and the flow of the models using 

the optimal coefficient set. The optimal coefficient set is the one that maximizes the 

summation of these correlations across all watersheds above the fall line, and separately 

across the watersheds below the fall line. The models using the optimal coefficient set 
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also use the previously derived relationships between {α3, α4, and α5} and {α0, α1, and α2} 

to complete the model definition. In the results presented below, the optimal coefficients 

are denoted by α0
*, α1

*, and α2
*.  

 

Figure 5.16 Linear Approximations of α3 and α5 by α1. 

 

Figure 5.17 Linear Approximation of α4 by α2. 
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Table 5.7 Regionalization of α0, α1, α2, α3, α4, and α5 for Sandy Loam Watersheds Above 

the Fall Line. 

  ACT_Newell SO_Bell OOA_Penfield OOA_Jackson 

α0 0.07161 0.0642 0.0871 0.0626 

α1 0.1473 0.2077 0.2186 0.1595 

α2 -0.5924 -0.5321 -0.5834 -0.5394 

α3 -0.0978 -0.0861 -0.1009 -0.096 

α4 0.4789 0.4526 0.4893 0.4703 

α5 0.4695 0.4994 0.4625 0.4675 

α0* 0.079 

α1* 0.142 

α2* -0.579 

α3* -0.110 

α4* 0.466 

α5* 0.467 

PCor(Qsim,Qcalib) 0.98 0.96 0.96 0.94 

  

Table 5.8 Regionalization of α0, α1, α2, α3, α4, and α5 for Loamy Sand Watersheds below 

the Fall Line. 

  ACF_Milford OOA_Lumber SO_Claxton OSSS_Bemiss 

α0 0.0704 0.0927 0.1088 0.1083 

α1 0.3663 0.1404 0.2114 0.2884 

α2 -0.3427 -0.5414 -0.4961 -0.4323 

α3 -0.1112 -0.1432 -0.1991 -0.1872 

α4 0.2859 0.4146 0.3642 0.2991 

α5 0.4009 0.5747 0.5293 0.4605 

α0* 0.109 

α1* 0.275 

α2* -0.453 

α3* -0.211 

α4* 0.322 

α5* 0.312 

Pcoor(Qsim,Qcalib) 0.93 0.96 0.98 0.99 

  

Table 5.7 shows the regionalization of α0, α1, α2, α3, α4, and α5 for four sandy 

loam watersheds above the fall line:  the Newell (ACT), Bell (SO), Penfield (OOA), and 

Jackson (OOA) watersheds.  The first six rows list the calibrated α values, and the next 
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six rows list the regionalized α* values.  The last row shows the correlation coefficients 

between the simulated flows (using regionalized α* values α0*, α1*, α2*, α3*, α4*, and 

α5*) and the simulated flows using the fully calibrated α values (based on observed flow 

data as described in Chapter 4).  The table shows that the correlation coefficients between 

the two flow sequences are between 0.94 and 0.98.  Table 5.8 shows similar results for 

the four loamy sand watersheds below the fall line:  Milford (ACF), Lumber (OOA), 

Claxton (SO), and Bemiss (OSSS) watersheds.  Here too, the table shows that the 

correlation coefficients between the simulated flows are in the 0.93 to 0.99 range.  A 

similar analysis can be undertaken to distinguish the influence of soil and vegetation 

cover.   

5.2.7 Regionalization Model for Impervious Coefficient (aimp) 

The impervious area coefficient aimp determines the portion of precipitation becoming 

direct flow because of impervious surfaces in the watershed. Figure 5.18 shows the 

calibrated aimp versus the impervious area percentage obtained from the land use 

database. It shows that for watersheds with low impervious area percentages (< 3%; 

showing in red in the figure), aimp values are small (0.02-0.05) and can be approximated 

by a linear equation. For watersheds with high impervious area percentages (>3%; 

showing in blue in the figure), aimp values are significantly higher.   

 

Figure 5.18 Calibrated aimp Versus the Impervious Area Percentage. 
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 The impervious area coefficient aimp can be approximated by using a nonlinear 

form as shown in Figure 5.18. The nonlinear form will be used in this study: 

 !"# 	 0.0319 · exp'0.1391 · (
)*
+, -
!"#.. 

 The regionalization models’ performances can be assessed by several different 

statistics. For example, the regression residue for each parameter indicates the model 

assumptions and the selection of predictors. In addition, spatial correlations of the 

residuals can also be assessed to identify the models’ performances for different 

locations. The spatial correlations can also indicate any spatial biases existing for 

different locations of the study region. However, this study focuses mainly on the 

applicability of the regionalization models in simulating flows in ungauged watersheds. 

Therefore, in the next section of the model verification, the skills of flow simulation will 

be verified only. 

5.3 Model Regionalization Summary 

• Storage Capacity of the Lower Soil Layer: 

/�
0 	 0.3851 � 0.1565 · (
)*
+,123456 � 0.31 · (
)*
+,0782#9 . 

where Percent_Forest is the percentage of forest in the watershed, and           

Percent_Canopy is the percentage of canopy in the watershed. 

• Storage Capacity of the Upper Soil Layer: 

/�
0 	 0.0969 � 0.0435 · :;<_025. 

where Aws_025 is the volume of water (in cm) that the soil can hold to a depth of 25 

centimeters. 

• Storage-Release Function Parameters for the Lower Layer: 

��,� 	 2.4450 � 0.0737 · >< ,. 
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��,� 	 
��1.0006��.� � 3.8549� 

where Ksat is the average saturated hydraulic conductivity (in µm/s) of the watershed. 

• Storage-Release Function Parameters for the Lower Layer: 

��,� 	 4.0545 � 0.0411 · >< , � 0.4512 · Ln /AB�
�. 

��,� 	 
��0.9233��.� � 2.4073� 

where Ksat is the average saturated hydraulic conductivity (in um/s) of the watershed; 

and Slope is the average slope of the watershed. 

• Percolation Function Parameters: 

Table 5.9 Summary of the Percolation Coefficients. 

Sandy Loam Loamy Sand 

α0 0.079 0.109 

α1 0.142 0.275 

α2 -0.579 -0.453 

α3 -0.110 -0.211 

α4 0.466 0.322 

α5 0.467 0.312 

 

Table 5.9 summarizes the percolation coefficients for the sandy loam and loamy sand 

watersheds in Georgia. The last three coefficients (α3, α4, and α5) are calculated by the 

following equations: 

�� 	 �0.7637�� � 0.0016, 

�� 	 �0.7329�� � 0.0103, and 

�� 	 �0.4121�� � 0.4251.   

• Impervious Area Parameter: 

 !"# 	 0.0319 · exp'0.1391 · (
)*
+, -
!"#.. 

where (
)*
+, -
!"# is the percentage of impervious areas in the watershed. 
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5.4 Assessment of Parameter Regionalization 

This section employs the model regionalization procedures developed earlier to assess 

model performance in simulating stream flows.  Four watersheds are used in the 

assessment.  Two of these watersheds are located above the fall line and are the Newell 

watershed (ACT basin) and the Penfield watershed (OOA basin); the other two 

watersheds are located below the fall line and are the Claxton watershed (SO basin) and 

the Bemiss watershed (OSSS basin).  The model parameters of the fully calibrated 

models are listed in Table 5.10. 

Table 5.10 Fully Calibrated Parameters for the Newell watershed (ACT basin), the 

Penfield watershed (OOA basin), the Claxton watershed (SO basin), and the Bemiss 

watershed (OSSS basin). 

  Above Fall Line Below Fall Line 

  ACT_Newell OOA_Penfield SO_Claxton OSSS_Bemiss 

S1
c
 (meter) 0.25 0.26 0.18 0.18 

S2
c
 (meter) 0.62 0.63 0.55 0.51 

β1,1 3.6299 3.9369 2455.9810 468.6540 

β1,2 3.1843 3.5688 6.1359 5.4890 

β2,1 0.1572 0.1589 487.3160 235.6790 

β2,2 2.4444 4.3863 6.6647 5.7955 

α0 0.0716 0.0871 0.1088 0.1083 

α1 0.1473 0.2186 0.2114 0.2884 

α2 -0.5924 -0.5834 -0.4961 -0.4323 

α3 -0.0978 -0.1009 -0.1991 -0.1872 

α4 0.4789 0.4893 0.3642 0.2991 

α5 0.4695 0.4625 0.5293 0.4605 

 

The calibrated model parameters in Table 5.10 are used to generate flows 

(calibrated flows) for the above four watersheds.  The calibrated flows are then compared 

with the flows simulated using regionalized model parameters and with observed flows.  
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Table 5.11 shows the predictors of the regionalization relationships for the test 

watersheds.  The table shows that the two watersheds above the fall line differ from the 

two below the fall line in that (1) the above-fall-line watersheds have higher percentages 

of forest and canopy cover than the below-fall-line watersheds; (2) the water capacity at a 

depth of 25 centimeters of the above-fall-line watersheds is higher than that of the below-

fall-line watersheds; (3) the saturated hydraulic conductivity of the above-fall-line 

watersheds is much lower than that of the below-fall-line watersheds because of soil-type 

differences; (4) the above-fall-line watersheds have much higher topographic slopes than 

the below-fall-line watersheds; and (5) the soil types of the above- and below-fall-line 

watersheds differ as indicated earlier (i.e., sandy loams versus loamy sands respectively). 

Table 5.11 Watershed Regionalization Predictors for the Newell watershed (ACT basin), 

Penfield watershed (OOA basin), Claxton watershed (SO basin), and Bemiss watershed 

(OSSS basin). 

  Above Fall Line Below Fall Line 

  ACT_Newell OOA_Penfield SO_Claxton OSSS_Bemiss 

Forest (ratio) 0.61 0.64 0.43 0.39 

Canopy (ratio) 0.48 0.53 0.36 0.29 

Aws_025 (cm) 3.47 3.47 2.12 1.92 

Ksat (µm/s) 7.25 10.25 55.15 50.56 

Impervious Area 

(percentage) 
1.81 1.78 0.93 1.28 

Slope (m/m) 11.78 11.78 2.69 2.36 

Soil Type Sandy Loam Loamy Sand 

 

  The regionalized parameters for these watershed models (derived as summarized 

in Section 5.3) are presented in Table 5.12.  For the two watersheds above the fall lines, 

no groundwater components are involved in both the calibrated and regionalized 

simulations.  However, for the two watersheds above the fall lines, the calibrated models 
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include the groundwater components. The regionalized models use the calibrated 

parameters for the groundwater interactions (Ug flux). 

The Pearson correlations between the regionalized flows and the fully calibrated 

flows are between 0.93 and 0.95, implying that the regionalized models perform well.  

Table 5.12 Regionalized Model Parameters for the Newell Watershed (ACT Basin), 

Penfield Watershed (OOA Basin), Claxton Watershed (SO Basin), and Bemiss 

Watershed (OSSS Basin). 

  Above Fall Line Below Fall Line 

  ACT_Newell OOA_Penfield SO_Claxton OSSS_Bemiss 

S1
c 
(meter) 0.25 0.25 0.19 0.18 

S2
c 
(meter) 0.63 0.65 0.56 0.53 

β1,1 3.82 4.96 1037.22 787.93 

β1,2 3.24 3.36 5.87 5.74 

β2,1 0.09 0.15 458.11 210.21 

β2,2 2.98 3.20 6.51 6.17 

aimp 0.041 0.041 0.036 0.038 

α0 0.079 0.109 

α1 0.142 0.275 

α2 -0.579 -0.453 

α3 -0.110 -0.211 

α4 0.466 0.322 

α5 0.467 0.312 

Pcorr(Qreg, Qcalib) 0.9534 0.9514 0.9407 0.9406 

  

Figure 5.19 compares the time series of the calibrated and regionalized flows for 

the Newell, Penfield, Claxton, and Bemiss watersheds.  The figure shows that for the two 

watersheds above the fall line, regionalized flows generally compare well with calibrated 

flows especially in low flows, while peak flows are somewhat overestimated for a few 

months (especially for the Athens watershed).  Figure 5.20 also shows a similar trend for 

the two watersheds below the fall line, with the performance during low flows being 
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comparable, and regionalized high flows somewhat underestimating calibrated flows  

(especially for the Bemiss watershed after 1974).  

 

Figure 5.19: Comparison of Regionalized (Red) with Calibrated (Blue) Flows for  

Newell Watershed (ACT Basin), Penfield Watershed (OOA Basin), Claxton Watershed 

(SO Basin), and Bemiss Watershed (OSSS Basin).  
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Figure 5.20: Comparison of Regionalized (Red) and Observed (Blue) flows for the 

Newell Watershed (ACT Basin), Penfield Watershed (OOA Basin), Claxton Watershed 

(SO Basin), and Bemiss Watershed (OSSS Basin).  
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Table 5.13 Calibrated and Regionalized Model Performance of Newell Watershed (ACT 

Basin), Penfield Watershed (OOA Basin), Claxton Watershed (SO Basin), and Bemiss 

Watershed (OSSS Basin). 

Calibration Model 

  ACT_Newell OOA_Athens SO_Claxton OSSS_Bemiss 

Pcorr 0.9169 0.9321 0.8809 0.9020 

SPCorr 0.8995 0.9115 0.8755 0.8948 

QRMSE/Q 0.3507 0.3190 0.3721 0.3823 

RnkQRMSE/RnkQ 0.5161 0.5091 0.5440 0.5161 

QAbsQError/Q 0.2700 0.2595 0.2961 0.2830 

Regionalization Model 

  ACT_Newell OOA_Athens SO_Claxton OSSS_Bemiss 

Pcorr 0.9013 0.8879 0.8622 0.8836 

SPCorr 0.8838 0.8902 0.8433 0.8690 

QRMSE/Q 0.4032 0.4029 0.4219 0.4216 

RnkQRMSE/RnkQ 0.6109 0.6395 0.6701 0.5924 

QAbsQError/Q 0.3166 0.3120 0.3477 0.3407 

Regionalization vs. Calibration (Percentage Change) 

  ACT_Newell OOA_Athens SO_Claxton OSSS_Bemiss 

Pcorr -0.0170 -0.0474 -0.0212 -0.0204 

SPCorr -0.0175 -0.0234 -0.0368 -0.0288 

QRMSE/Q 0.1497 0.2630 0.1338 0.1028 

RnkQRMSE/RnkQ 0.1837 0.2561 0.2318 0.1478 

QAbsQError/Q 0.1726 0.2023 0.1743 0.2039 
 

Figure 5.14 compares the time series of observed flows with regionalized flows 

for the Newell, Penfield, Claxton, and Bemiss watersheds.  The figure shows that for the 

regionalized flows generally represent well the fluctuations of the monthly flows despite 

that there are some discrepancies in peak or low flows for all tested watersheds. 

Table 5.13 illustrates the performance of the calibrated as well as the regionalized 

models. For the calibrated models, the above-fall-line watersheds (Newell and Penfield) 

exhibit higher correlation with observed flows than the below-fall-line watersheds 

(Claxton and Bemiss); they also have smaller normalized simulation flow errors for both 
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mean square errors (QRMSE and RnkQRMSE) and absolute errors (QAbsQError). 

However, regionalized model performance is overall satisfactory.  

Table 5.13 also reports the percent change in performance between the calibrated 

and regionalized models. The table shows that the correlation of flows decreases 

approximately 2% - 4% (Pearson and Spearman correlation coefficients); the root mean 

square error of the flow values (QRMSE) and their ranks (RnkQRMSE) increase 

approximately 14%-25%; and the normalized absolute flow errors increase 

approximately 19% - 21%. These statistics show the additional uncertainties introduced 

by regionalization of the parameters and should be carefully assessed in model 

applications. 
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CHAPTER 6 

CLIMATE CHANGE ASSESSMENT FOR GEORGIA  

This chapter describes the potential hydrologic impacts of climate change over Georgia. 

The assessment utilizes the downscaled precipitation and potential evapotranspiration 

sequences and quantifies the corresponding watershed response in terms of watershed 

evapotranspiration, soil moisture, and runoff. The study utilizes the conceptual 

hydrologic models developed in Chapter 4, which simulate the important hydrologic 

processes operating at monthly time scales.  The calibrated models are used for each 

watershed in both historical and future climate assessments. 

6.1 Historical (Baseline) and Future Hydrologic Assessments for the ACF Basin 

6.1.1 Historical Assessment 

The calibrated watershed models are employed in this section to characterize the ACF 

hydrologic response under the historical climate from 1901 through 2009 for all ACF 

watersheds (Figure 6.1). The assessments consist of running the ACF watershed models 

under historical climatic forcing (of precipitation and temperature) for 109 years from 

1901 to 2009 in monthly steps.  The model output sequences, soil moisture, 

evapotranspiration, and runoff, are then used to assess the watershed response. The 

purpose of the assessment is to (1) verify whether the model hydrology is consistent with 

regional observations; (2) detect possible long term trends; and (3) create a baseline 

hydrologic response to be used as a comparison standard for the future climate 

assessments in the following section. 
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Figure 6.1: Map of ACF Watersheds: Buford, West Point, George, Montezuma, Albany 

and Woodruff-Bainbridge. 
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The results are presented in Figure 6.2.  The five charts in this figure show the 

precipitation (observed), potential evapotranspiration (observed), soil moisture 

(simulated), actual evapotranspiration (simulated), and runoff (simulated) sequences. In 

each chart, the normalized two-year moving averaged sequences of the six ACF 

watersheds are plotted. In addition, the trend lines for Buford and Woodruff watersheds 

are also included.  

The results support the following conclusions: 

� Watershed precipitation over ACF changes mildly. (Figure 6.2a; Table 6.1).  

Over the 109 year period, the decrease (Buford, Albany, and Woodruff-Bainbridge) is 

approximately 1% - 4% of the early 20th century value; and the increase (West Point, 

George, and Montezuma) is about 1% of the early 20th century value.  

� In addition, the two-year average precipitation is highly variable, reaching a 

maximum depth of 0.165 meters (in 1920) and a minimum depth of 0.085 meters (in 

1986 and 2007-2008).  In the most severe droughts (e.g., those in the early 1940’s, 

1950’s, 1980’s, 1998-2002, and 2006-2008), large precipitation deficits linger for several 

years.  These observations are consistent with regional drought occurrences. The high 

inter-annual rainfall variability (up to 50% of normal) and persistence renders the 

watershed vulnerable to droughts and has critical implications for Lake Lanier at the 

watershed outlet.  The lake is large relative to watershed inflow, and lake filling can take 

several years.  On the other hand, high lake releases can deplete lake storage within a 

year.  Thus, lake operation should adhere to and adapt based on the prevailing climate. 

� Watershed potential evapotranspiration also shows a mildly decreasing long term 

trend (Figure 6.2b; Table 6.1).  Over the 109 year period, this decrease is approximately 
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2% - 5% of the early 20th century value.   The inter-annual PET variability is much less 

than that of the precipitation (up to 10% of normal).  At the latitude of the Buford 

watershed, precipitation is consistently higher than PET.  However, during droughts, 

when precipitation declines, PET increases and occasionally exceeds precipitation. The 

most pronounced such reversal occurred during the most recent drought (in 2006-2008).  

The ratio of annual average PET to annual average precipitation is approximately 0.68. 

� Actual evapotranspiration generally follows the PET trend and is decreasing faster 

(Figure 6.2c) in the lower watersheds (e.g., Woodruff-Bainbridge).      

� Total soil moisture storage (Figure 6.1d; Table 6.1) shows an increasing long 

term trend of about 2% in 109 years for West Point, George, and Montezuma watersheds. 

However, for Buford, Albany, and Woodruff-Bainbridge watersheds, total soil moisture 

storage shows a declining long term trend of about 1% - 2% in 109 years.  This decline is 

solely due to the decline of the lower storage zone, while the upper storage exhibits no 

changing trend.  The ratio of annual average S1 to annual average P is approximately 1.5, 

and that of S2 to P is approximately 4.5.  Namely, the total active sub-surface storage in 

the rainfall-runoff process is about 6 times the amount of annual average precipitation.  

� Total runoff (Figure 6.2e; Table 6.1) exhibits a declining trend of approximately 

3% - 5% for Buford, Albany, and Woodruff-Bainbridge watersheds and an increasing 

trend of about 2% - 3% for West Point, George, and Montezuma watersheds in 109 years.  

It is notable that the most recent drought (2006 to 2008) was the worst two-year drought 

on record. More specifically, the most severe two-year droughts (in order of decreasing 

severity) occurred in 2006-2008, 1980’s, 1940’s, 1950’s, 1930’s, 1998-2002, 1920’s, and 

1900’s.  Furthermore, the last three major droughts (1980-1988, 1998-2002, and 2006-
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2008) were most persistent.  The declining trend of total runoff is due to the declining 

trend of the lower storage runoff.  This trend implies that the watershed ability to sustain 

base river flows is diminishing. The runoff from the upper storage exhibits no significant 

trend.  Across the ACF watersheds, the ratio of total annual average runoff to annual 

average precipitation is between 0.27 - 0.42, distinctly decreasing from north (higher 

latitudes) to south (lower latitudes).      

� Lastly, the trend analysis is also performed for the most recent 50 years (1960-

2009). It can be seen from Figure 6.3 and Table 6.1 that during this period (1) 

precipitation exhibits a declining trend of about 9% - 16% across all ACF watersheds; (2) 

PET exhibits an increasing trend of about 1% - 3% across all ACF watersheds (except for 

George where it decreases by about 0.8%); (3)soil moisture declines by about 3% - 6% 

across all watersheds; and (4) runoff declines by about 16% - 27% across all watersheds.   
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Figure 6.2: ACF Normalized, 2Yr Average Hydrologic Response (1901 - 2009).  
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Figure 6.3: ACF Normalized, 2Yr Average Hydrologic Response (1960 - 2009).  
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Table 6.1 Slopes of Linear Trends for Normalized, 2Yr Average Hydrologic Variables in 

the ACF Basin. 

  Buford West Point George Montezuma Albany W-B 

  1901-2009 (unit:  10-4 of the mean per year) 

Precipitation -1.44 0.36 0.96 0.72 -4.32 -3.60 

PET -1.80 -4.32 -4.56 -4.68 -3.24 -2.04 

Soil Moisture -0.17 1.92 2.40 2.28 -0.36 -1.56 

Runoff -2.76 2.16 2.52 2.76 -4.08 -5.28 

  1960-2009 (unit:  10-4 of the mean per year) 

Precipitation -31.44 -32.76 -22.92 -27.60 -22.08 -18.24 

PET 5.52 3.84 -1.68 3.36 1.92 2.16 

Soil Moisture -9.84 -11.40 -6.60 -11.04 -10.92 -8.88 

Runoff -54.12 -49.56 -33.60 -49.80 -41.40 -31.56 

  

  Buford West Point George Montezuma Albany W-B 

  1901-2009 (unit:  percentage increase over 109 years) 

Precipitation -1.570 0.392 1.046 0.785 -4.709 -3.924 

PET -1.962 -4.709 -4.970 -5.101 -3.532 -2.224 

Soil Moisture -0.183 2.093 2.616 2.485 -0.392 -1.700 

Runoff -3.008 2.354 2.747 3.008 -4.447 -5.755 

  1960-2009 (unit:  percentage increase over 50 years) 

Precipitation -15.720 -16.380 -11.460 -13.800 -11.040 -9.120 

PET 2.760 1.920 -0.840 1.680 0.960 1.080 

Soil Moisture -4.920 -5.700 -3.300 -5.520 -5.460 -4.440 

Runoff -27.060 -24.780 -16.800 -24.900 -20.700 -15.780 
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6.1.2 Future Assessment 

The future climate assessments are carried out by running the ACF watershed models 

under all A1B and A2 climate scenarios for the period from January 2000 through 

December 2099 (100 years) in monthly time steps.  The future climate scenarios for the 

ACF basin are downscaled using the Joint Variable Spatial Downscaling method 

described in Chapter 3. For each of the 26 future climate scenarios (i.e., 13 A1B 

scenarios and 13 A2 scenarios), the assessment process is similar to the historical 

assessment described in the previous section.  The future watershed response is 

characterized by two sequence ensembles, one for the A1B and a second for the A2 

scenarios.  

 Because of the voluminous results, a more meaningful comparison would be to 

plot the data in the form of frequency curves.  For Buford, these results are shown on 

Figures 6.5 and 6.5. The following observations can be made:  

� While on average (i.e., in the vicinity of the 50% percentile), Buford precipitation 

is not expected to change significantly, the precipitation distribution is expected to 

“stretch” becoming wetter and drier than the historical climate.  This assertion holds for 

both the A1b and A2 scenarios, with the latter stretching the distribution farther.   

� Almost all future scenarios result in higher PET, evapotranspiration, and lower 

soil moisture storage.  This effect is especially pronounced in dry years (falling below 

75% of the distribution values).  

� In the 15% wettest years, runoff is expected to be higher than historical.  

However, the rest of the future ensemble distributions portraits drier than historical runoff 
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conditions.  Thus, the coming decades are likely to usher in more severe floods and 

droughts than those experienced in the past.                

The previous results and conclusions are typical of all watersheds.  However, they 

are based on frequency comparisons with all data. To examine the potential changes on a 

monthly basis, box plots of the historical and future scenarios were developed for each 

month of the year, watershed, climate scenario type (A1B or A2), and hydrologic process 

(precipitation, PET, soil moisture storage, and runoff).  These plots are shown on Figures 

6.6 and 6.7 for the Buford watershed. In each figure, the historical box-plots are denoted 

“H1 through H12” while next to them are the future scenario box-plots denoted “F1 

through F12.” The future box-plots include data from all 13 future scenarios, while the 

historical box-plots include only historical data.  These figures indeed show that climate 

change impacts are not uniform across the months of the year. More specifically, the 

following observations can be made: 

� Mean watershed precipitation shows clear decline trends in June, July, and 

August, but it does not show any appreciable change for all other months of the year. 

However, the precipitation distributions for January through September are considerably 

extended (toward both ends) in comparison to the historical distributions.  This relative 

change is observed on the A1B and the A2 scenarios.  

� Future PET exhibits higher mean and wider range than historical PET from 

February to September, with the largest change observed in July and August.  For these 

two months, the future mean PET is higher than the historical PET up to 12%, while the 

quartile range of the future distribution exceeds that of the historical by nearly 20%. 
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� Future soil moisture is clearly lower than historical in almost all months.  The 

decline is more pronounced in late summer and the fall months and under A2 scenarios 

(about 6% - 10% decreasing).   

� Future runoff at Buford is wetter (in the mean and the 75% percentile) than 

historical in February, March, and April, and drier than the historical in June, July, 

August, and September under A1B scenarios. In comparison, the future Buford runoff is 

drier in all months under the A2 scenarios.  

Similar plots are also provided for the Woodruff-Bainbridge watershed in Figures 

6.26 and 6.27.  The results support the following findings:  

� Mean watershed precipitation of the Woodruff-Bainbridge exhibits a decreasing 

trend for early spring (January, February, and March) and summer (June, July and 

August) of about 4% - 9% (A1B and A2). In comparison, the Buford watershed does not 

show such significant trends in early spring.  

� Future PET of the Woodruff-Bainbridge watershed exhibits higher mean and 

wider range than historical PET with the largest change observed in July and August.  For 

these two months, the future PET is higher than the historical PET up to 15% (under A2 

scenarios).  This increasing trend is somewhat larger than that of the Buford watershed. 

� Future soil moisture of the Woodruff-Bainbridge watershed is lower than 

historical in most months.  This change is more pronounced for summer and fall, and the 

decreasing percentage is larger than the Buford watershed. The average soil moisture 

reduction reaches up to 11% (under A2 scenarios). Even more critical is the significant 

decline of the future low soil moisture levels (as indicators of agricultural droughts).  

Summer months are particularly impacted in the southern watersheds where soil moisture 
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is critical for agriculture. The adverse implications of this finding cannot be over-

emphasized for Georgia’s economy. 

� In the Woodruff-Bainbridge watersheds (and Albany watershed), noticeable mean 

runoff reductions begin in January and extend through July under both the A1B and A2 

scenarios. Generally, under the A2 scenarios, future runoff shows more reductions than 

under the A1B scenarios. Under A2 scenarios and in spring and early summer months, 

the mean runoff reduction is 9 -16% (which is a more severe reduction than at Buford). 

Under the A2 scenarios and in late summer and fall months, the runoff reduction is about 

6% - 16% (which is somewhat larger than at Buford). 

� In summary, the Woodruff-Bainbridge watershed is expected to experience more 

severe precipitation, soil moisture, and runoff impacts than the Buford watershed. Similar 

conclusions are also observed for Albany.  These findings imply that climate change 

impacts intensify for the southern ACF watersheds. 

Similar results are shown in Figure 6.8 through Figure 6.27 for other ACF 

watersheds (West Point, George, Montezuma, Albany and Woodruff-Bainbridge).    
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Figure 6.4: A1B Climate Scenarios (2000-2099), Buford, Frequency Curves.  

 

Figure 6.5: A2 Climate Scenarios (2000-2099), Buford, Frequency Curves.  
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Figure 6.6: Monthly Historical vs. Future (A1B) Watershed Response, Buford. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure 6.7: Monthly Historical vs. Future (A2) Watershed Response, Buford. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)            
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Figure 6.8: A1B Climate Scenarios (2000-2099), West Point, Frequency Curves.  

 

Figure 6.9: A2 Climate Scenarios (2000-2099), West Point, Frequency Curves.  
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Figure 6.10: Monthly Historical vs. Future (A1B) Watershed Response, West Point. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.11: Monthly Historical vs. Future (A2) Watershed Response, West Point. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)             
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Figure 6.12: A1B Climate Scenarios (2000-2099), W.F. George, Frequency Curves.  

 

Figure 6.13: A2 Climate Scenarios (2000-2099), W.F. George, Frequency Curves.  
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Figure 6.14: Monthly Historical vs. Future (A1B) Watershed Response, W.F. George. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.15: Monthly Historical vs. Future (A2) Watershed Response, W.F. George. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)             
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Figure 6.16: A1B Climate Scenarios (2000-2099), Montezuma, Frequency Curves  

 

Figure 6.17: A2 Climate Scenarios (2000-2099), Montezuma, Frequency Curves.  
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Figure 6.18: Monthly Historical vs. Future (A1B) Watershed Response, Montezuma. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 



206 
 

 

Figure 6.19: Monthly Historical vs. Future (A2) Watershed Response, Montezuma. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)             
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Figure 6.20: A1B Climate Scenarios (2000-2099), Albany, Frequency Curves.  

 

Figure 6.21: A2 Climate Scenarios (2000-2099), Albany, Frequency Curves.  
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Figure 6.22: Monthly Historical vs. Future (A1B) Watershed Response, Albany. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.23: Monthly Historical vs. Future (A2) Watershed Response, Albany. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)             
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Figure 6.24: A1B Climate Scenarios (2000-2099), Woodruff-Bainbridge, Frequency. 

Curves  

 

Figure 6.25: A2 Climate Scenarios (2000-2099), Woodruff-Bainbridge, Frequency. 

Curves  
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Figure 6.26: Monthly Historical vs. Future (A1B) Watershed Response, Woodruff-

Bainbridge. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 



212 
 

 

Figure 6.27: Monthly Historical vs. Future (A2) Watershed Response, Woodruff-

Bainbridge. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)             
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6.2 Historical (Baseline) and Future Hydrologic Assessments for the OOA Basin 

6.2.1 Historical Assessment 

The historical assessment is based on observed climatic data for the period 1901 through 

2009 and follows the same process described in Section 6.1.1. The results are also 

presented in a similar form.  

The OOA basin watersheds are shown in Figure 6.28. For fiveOOA watersheds, 

namely, the upper Oconee watershed (Milledgeville), upper Ocmulgee watershed 

(Macon), lower Oconee watershed (Dublin), lower Ocmulgee watershed (Lumber, and 

Altamaha watershed (Doctortown), Figure 6.29 presents the input and output sequences 

(normalized by their means). The results support the following observations:   

� OOA basin precipitation shows a mild increasing long-term trend for all 

watersheds (Figure 6.29a; Table 6.2).  Over the 109-year assessment period, the increase 

is about 1% - 3% of the early 20th century value.  The drought periods coincide with 

those of the ACF basin (e.g., early 1940’s, 1050’s, 1980’s 1998-2002, and 2006-2008).   

� Watershed potential evapotranspiration of the entire OOA basin shows a mild 

decreasing long-term trend (Figure 6.29b; Table 6.2).  Over the 109-year assessment 

period, the decrease is approximately 1% - 5% of the early 20th century value.  The lower 

Oconee watershed experiences the largest PET decrease (~5%), and the Altamaha 

watershed the lowest  (~1%). The inter-annual PET variability is much less than that of 

precipitation (up to 10% of normal).   

� Total soil moisture storage shows an increasing long-term trend (Figure 6.29d; 

Table 6.2) of about 2% - 5% over the 109-year assessment period.  
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� The changes of the actual evapotranspiration are relatively small (Figure 6.29c) 

and depend on the changes of both watershed soil moisture and PET. The actual 

evapotranspiration increases very mildly (0.2% - 0.4%) over the 109-year assessment 

period.   

� Total runoff exhibits an increasing trend of approximately 5% - 7% over the 109-

year assessment period (Figure 6.29e; Table 6.2) for the entire OOA basin. The 

Altamaha river flows increase little slower than Oconee River and Ocmulgee River.  

Across the OOA watersheds, the ratio of total annual average runoff to annual average 

precipitation is between 0.26 – 0.37, distinctly decreasing from upstream (northwest) to 

downstream (southeast).   

� Lastly, the above historical analysis is also performed for the most recent 50 years 

(1960-2009). It can be seen from Figure 6.30 and Table 6.2 that during this period (1) 

precipitation exhibits a declining trend of about 6% - 16%; (2) PET exhibits an increasing 

trend of about 1% - 3% (contrary to the corresponding 109 year trends); (3) precipitation 

decreases much faster in the upper watersheds than the lower river watersheds;  (4) soil 

moisture and runoff decline in the entire OOA basin; (5) runoff decreases by 15% to 20% 

in the downstream watersheds and by 25% - 28% in the upstream watersheds.  

� A comparison of the historical assessments for the OOA and ACF basins shows 

that their responses are fairly similar.  Most notably, in the last 50 years, (1) precipitation 

in all OOA and ACF watersheds decreases significantly; (2) PET increases  (except for 

George watershed); and (3) total runoff decreases.  While the actual rates of change vary, 

this observation implies that this response is a regional characteristic of the southeast US 
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and is not particular to a specific basin. This conclusion will be revisited/verified in sub-

sequent sections presenting assessments of other Georgia basins.                    

    

Figure 6.28: Map of OOA Watersheds: Upper Ocmulgee River (Macon), Upper Oconee 

River (Milledgeville), Lower Ocmulgee River (from Macon to Lumber), Lower Oconee 

River (from Milledgeville to Dublin), and Altamaha River (down to Doctortown). 
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Figure 6.29: OOA Normalized, 2Yr Average Hydrologic Response (1901 - 2009).  
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Figure 6.30: OOA Normalized, 2Yr Average Hydrologic Response (1960 - 2009).  
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Table 6.2 Slopes of Linear Trends for Normalized, 2Yr Average Hydrologic Variables in 

the OOA Basin.  

  

Upper 

Oconee 

Upper 

Ocmulgee 

Lower 

Oconee 

Lower 

Ocmulgee 

Altamah

a 

  1901-2009 (unit:  10-4 of the mean per year) 

Precipitation 1.68 1.68 2.76 1.92 0.84 

PET -1.08 -3.48 -4.80 -3.24 -1.44 

Soil Moisture 2.64 3.84 5.52 4.92 2.16 

Runoff 5.76 5.88 6.60 6.12 3.12 

  1960-2009 (unit:  10-4 of the mean per year) 

Precipitation -31.08 -30.96 -21.96 -15.36 -12.24 

PET 3.96 1.56 4.92 4.20 2.52 

Soil Moisture -16.08 -14.04 -5.52 -7.32 -8.04 

Runoff -55.80 -49.80 -29.64 -40.44 -31.08 

  

  

Upper 

Oconee 

Upper 

Ocmulgee 

Lower 

Oconee 

Lower 

Ocmulgee 

Altamah

a 

  1901-2009 (unit:  percentage increase over 109 years) 

Precipitation 1.831 1.831 3.008 2.093 0.916 

PET -1.177 -3.793 -5.232 -3.532 -1.570 

Soil Moisture 2.878 4.186 6.017 5.363 2.354 

Runoff 6.278 6.409 7.194 6.671 3.401 

  1960-2009 (unit:  percentage increase over 50 years) 

Precipitation -15.540 -15.480 -10.980 -7.680 -6.120 

PET 1.980 0.780 2.460 2.100 1.260 

Soil Moisture -8.040 -7.020 -2.760 -3.660 -4.020 

Runoff -27.900 -24.900 -14.820 -20.220 -15.540 

 

 

 

 

 

 



219 
 

6.2.2 Future Assessment 

The future climate assessments utilize all A1B and A2 climate scenarios for the period 

from January 2000 through December 2099 (100 years) in monthly time steps.  The 

assessment process is similar to the one presented for the ACF river basin.  

Figures 6.31 through 6.38 show the assessment results in frequency curves and 

box plots. For the upper Oconee basin, the frequency curves are shown on Figures 6.31 

and 6.32; for the Altamaha basin, the frequency curves are shown on Figures 6.35 and 

6.36. These results lead to the following observations:  

� While on average (i.e., in the vicinity of the 50% percentile), precipitation is not 

expected to change relative to the historical baseline, the precipitation distribution is 

expected to “stretch” becoming wetter and drier than the historical climate.  This 

assertion holds for both the A1B and A2 scenarios, with the latter stretching the 

distribution farther.      

� The median of the potential evapotranspiration is higher than the historical 

baseline under both A1B and A2 scenarios. In addition, future PET is expected to 

increase faster (in absolute value) for higher PET values than for lower. 

� The median of the soil moisture is decreasing for most A1B scenarios and for all 

A2 scenarios. The future soil moisture distributions are expected to “stretch” on both 

ends. In addition, the depletion of soil storages are especially pronounced in dry years 

and for the most southern watersheds (e.g., the Altamaha watershed) and under the A2 

scenarios (Figure 6.36).   

� The median of the runoff is expected to decrease under both scenarios. The 

decrease of runoff in southern watersheds (e.g., Altamaha watershed) is faster than the 
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decrease in northern watersheds (e.g., upper Oconee watershed). In the 15% wettest years 

for the upper Oconee watershed and in the 8% wettest years for the Altamaha watershed, 

runoff is expected to be higher than historical for all scenarios (expect for the INMCM 

GCM scenario). Thus the coming decades are likely to bring more severe floods than 

those experienced in the past decades.  

The box plots are shown on Figures 6.33 and 6.34 for the Milledgeville (upper 

Oconee) watershed and Figures 6.37 and 6.38 for the Altamaha watershed. The 

following observations can be made: 

� Mean watershed precipitation exhibits clear decreasing trends in June and July for 

upper Oconee and Altamaha, and does not show appreciable change for all other months 

of the year. In the Altamaha, precipitation is decreasing from June to September and 

increasing from October to December. In addition, the precipitation distributions for the 

months from January to August are considerably extended (toward both ends) in 

comparison to the historical distributions for both OOA watersheds and in both A1B and 

A2 scenarios.  

� Future PET exhibits a higher mean and a wider range than historical PET from 

February to September, with the largest change observed in July and August.  For these 

two months, the future mean PET is higher than the historical PET up to 10% under the 

A1B scenarios and up to 15% under the A2 scenarios. 

� Future soil moisture is lower than historical in almost all months.  The change is 

more pronounced (10% - 15%) in the southern watersheds (e.g., Altamaha) from July to 

November under the A2 scenarios.  For northern watersheds (e.g., upper Oconee), the 

largest decrease is in September and October (about 11%) under the A2 scenarios.  
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� Future runoff is generally drier under both A1B and A2 scenarios for all OOA 

watersheds. The highest decreases are in June, July, August and September by 10% - 

25% under the A2 scenarios. However, for Altamaha, future runoff is expected to be 

wetter than historical in two winter months (November and December) by 2% - 3% under 

the A1B scenarios and by 2% - 5% under the A2 scenarios. 

� Comparing the future changes in the OOA and ACF basins, one can note the 

following observations: (1) Most OOA and ACF watersheds clearly show precipitation 

reductions for the summer months (June, July, and August); (2) all OOA and ACF 

watersheds show higher PET in summer than in winter (in absolute value);  (3) OOA and 

ACF runoff generally decrease in summer and fall; and (4)  OOA and ACF  southern 

watersheds (e.g., Woodruff-Bainbridge and Altamaha) are generally expected to 

experience more summer soil storage/runoff deficits than northern watersheds (e.g., 

Buford and Milledgeville).     

� Results are presented for all OOA watersheds in Appendix A.        
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Figure 6.31: A1B Climate Scenarios (2000-2099), Upper Oconee, Frequency Curves.  

 

Figure 6.32: A2 Climate Scenarios (2000-2099), Upper Oconee, Frequency Curves.  
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Figure 6.33: Monthly Historical vs. Future (A1B) Watershed Response, Upper Oconee. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.34: Monthly Historical vs. Future (A2) Watershed Response, Upper Oconee. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)             
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Figure 6.35: A1B Climate Scenarios (2000-2099), Altamaha, Frequency Curves.  

 

Figure 6.36: A2 Climate Scenarios (2000-2099), Altamaha, Frequency Curves.  
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Figure 6.37: Monthly Historical vs. Future (A1B) Watershed Response, Altamaha. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.38: Monthly Historical vs. Future (A2) Watershed Response, Altamaha. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)       
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6.3 Historical (Baseline) and Future Hydrologic Assessments for the SO Basin 

6.3.1 Historical Assessment 

The calibrated SO watershed models are employed in this section to characterize the SO 

hydrologic response under the historical climate. This assessment is based on historical 

climatic data for the period 1901 through 2009, and it follows the same assessment 

procedures described in previous sections.  

The SO study watersheds are shown in Figure 6.39. They include the upper 

Savannah watershed (Hartwell, Russell, Thurmond), the middle Savannah watershed 

(Augusta), the lower Savannah watershed (down to Savannah), and the Ogeechee 

watershed.  Figure 6.40 presents the input and output sequences (normalized by their 

means). The results support several comments and observations:  

� Watershed precipitation in the three SO watersheds shows different long-term 

trends (Figure 6.40a; Table 6.3) over the 109-year assessment period.  The three 

northern watersheds (e.g., Hartwell, Russell, and Thurmond) show a 2% - 6% 

precipitation decrease relative to their early 20th century value. However, the other three 

southern watersheds (the middle Savannah, lower Savannah,  and  Ogeechee) show a 

long-term precipitation increase by 3% - 5% relative to their early 20th century value. 

� Watershed potential evapotranspiration exhibits a mild decrease by about 1% - 

4% of its early 20th century value (Figure 6.40b; Table 6.3). The PET of the northern 

watersheds (e.g., Hartwell) decreases (~4%) faster than the southern watersheds (~2%).      

� Total soil moisture storage shows different long-term trends (Figure 6.40d; Table 

6.3).  Total soil moisture storage shows a decreasing trend of 0.5% - 2.5% in the three 
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northern watersheds over the 109-year assessment period; but increases in the three 

southern watersheds by 2% - 6%. 

� Actual evapotranspiration changes generally follow the changes of soil moisture 

and PET (Figure 6.40c).  For the three northern watersheds, actual ET decreases by 1% - 

3% of the early 20th century value; for the three southern watersheds, actual ET increases 

very mildly by 0.5% – 1% of the early 20th century value.              

� Total runoff also exhibits different long-term trends (Figure 6.40e; Table 6.3). 

For the three northern watersheds, runoff decreases by 2% - 5% of its early 20th century 

value; for the three southern watersheds, runoff increases by  4% - 6% of its early 20th 

century value. This response is consistent with the previous finding that northern 

watershed precipitation decreases while southern watershed precipitation increases. 

� Lastly, the above historical analysis is also performed for the most recent 50 years 

(1960-2009). It can be seen from Figure 6.41 and Table 6.3 that during this period 

(1)precipitation exhibits a declining trend of about 10% - 18% for all SO watersheds; (2) 

PET exhibits an increasing trend of about 2% - 3% for all SO watersheds; (3) soil 

moisture decreases by 5% - 8% of its early 1960s value; and (4) runoff decreases by 11% 

- 23% of its early 1960s value.  Unlike the 109 historical horizon, these trends are more 

consistent across the OS basin watersheds, providing evidence of climatic change.  

� Comparing the historical changes of the SO basin with the changes in ACF and 

OOA basins over the last 50 years, one concludes that (1) all three basins show 

significant precipitation reductions; (2) all three basins show PET increases (expect for 

George); and (3) all three basins show runoff decreases.  The consistency of this response 

strengthens the conclusion that climatic change is regional.                      
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Figure 6.39: Map of SO Watersheds: Upper Savannah River (Hartwell, Russell, 

Thurmond), Middle Savannah River (Augusta), Lower Savannah River (down to 

Savannah), and Ogeechee River. 
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Figure 6.40: SO Normalized, 2Yr Average Hydrologic Response (1901 - 2009).  
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Figure 6.41: SO Normalized, 2Yr Average Hydrologic Response (1960 - 2009).  
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Table 6.3 Slopes of Linear Trends for Normalized, 2Yr Average Hydrologic Variables in 

the SO Basin. 

  Hartwell Russell Thrmnd Augusta Lower Savannah Ogechee 

  1901-2009 (unit:  10-4 of the mean per year) 

Precipitation -3.36 -6.12 -2.28 4.56 3.96 3.00 

PET -1.08 -1.56 -2.64 -3.96 -3.24 -3.00 

Soil Moisture -0.96 -2.28 -0.24 5.16 5.16 2.04 

Runoff -5.16 -4.68 -1.80 5.88 5.28 3.72 

  1960-2009 (unit:  10-4 of the mean per year) 

Precipitation -27.72 -35.52 -35.64 -30.36 -25.08 -21.48 

PET 5.16 3.24 6.84 5.28 5.76 5.28 

Soil Moisture -13.08 -15.60 -16.68 -12.96 -12.48 -9.96 

Runoff -31.56 -46.08 -41.04 -29.16 -26.16 -23.28 

  

  Hartwell Russell Thrmnd Augusta Lower Savannah Ogechee 

  1901-2009 (unit:  percentage increase over 109 years) 

Precipitation -3.662 -6.671 -2.485 4.970 4.316 3.270 

PET -1.177 -1.700 -2.878 -4.316 -3.532 -3.270 

Soil Moisture -1.046 -2.485 -0.262 5.624 5.624 2.224 

Runoff -5.624 -5.101 -1.962 6.409 5.755 4.055 

  1960-2009 (unit:  percentage increase over 50 years) 

Precipitation -13.860 -17.760 -17.820 -15.180 -12.540 -10.740 

PET 2.580 1.620 3.420 2.640 2.880 2.640 

Soil Moisture -6.540 -7.800 -8.340 -6.480 -6.240 -4.980 

Runoff -15.780 -23.040 -20.520 -14.580 -13.080 -11.640 
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6.3.2 Future Assessment 

The future climate assessment consists of running the SO watershed models under all 

A1B and A2 climate scenarios for the period from January 2000 through December 2099 

(100 years) in monthly time steps.  The results and conclusions are presented in a form 

similar to the other Georgia Basins.   

Figures 6.42 through 6.49 show the assessment results in frequency curves and 

box plots. The frequency curves, shown on Figures 6.42, 43, 44 and 45, lead to the 

following observations:  

� On average (i.e., in the vicinity of the 50% percentile), precipitation is not 

expected to change relative to the historical baseline.  However, for the Hartwell 

watershed, the median of the precipitation is expected to decrease by about 1% - 2%. The 

precipitation distribution is expected to “stretch” becoming wetter and drier than that of 

the historical climate.  This assertion holds for both the A1B and A2 scenarios, with the 

latter stretching the distribution farther.   

� The median of the potential evapotranspiration is higher than the historical 

baseline for both A1B and A2 scenarios. In addition, the future PET is expected to 

increase faster for higher PET values than for lower PET values.  

� The median of the soil moisture decreases for most A1B scenarios and for all A2 

scenarios. The future soil moisture distributions are also expected to “stretch” on both 

ends.   

� The median of the runoff decreases under both scenarios.  For the Hartwell 

watershed, the runoff reductions are significant for most flow scenarios. For the lower 

Savannah and Ogechee watersheds, runoff reductions are smaller.          
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The box plots are shown on Figures 6.44 and 6.45 for Hartwell and on Figures 

6.48 and 6.49 for Ogechee. The following observations can be made: 

� For Hartwell, mean watershed precipitation exhibits clear decreasing trends in 

June, July, and August  (up to 15%),  and clear increasing trends in October and 

December (up to 10%) under  both A1B and A2 scenarios. For Ogeechee, (Figures 6.45 

and 6.46) precipitation decreases in February, March, June, July and August (with the 

highest reduction occurring in July and August of up to 13%),  and increases in April, 

May and from September to December (up to 15%). In addition, the precipitation 

distributions for almost all months are considerably extended (toward both ends) in 

comparison to the historical distributions for both watersheds and under both A1B and 

A2 scenarios. 

� Future PET exhibits higher mean and wider range than historical PET from 

January to September.  For these two months, the future PET is higher than the historical 

PET up to 20% for Hartwell watershed and up to 15% for Ogechee basin. 

� Future soil moisture is clearly lower than historical in almost all months.  The 

change is more pronounced from August to October. For Hartwell, the largest reduction 

is up to 11% under the A2 scenarios, and for Ogechee up to 13% under the A2 scenarios.      

� Future runoff is generally drier under both A1B and A2 scenarios for all SO 

watersheds. For Hartwell, the largest runoff reduction is from May to November under 

the A2 scenarios; For  Ogechee, the largest runoff reduction is from June to October also 

under the A2 scenarios. Runoff reductions are more pronounced in Hartwell (northern 

watershed) than in Ogechee(southern watershed). 
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�  The following comments can be stated by comparing the response of the SO 

basin with those of the ACF and OOA basins: (1) most OOA, ACF, and SO watersheds 

show clear precipitation reductions for summer (June, July, and August); (2) all OOA, 

ACF, and SO watersheds show higher PET increases in summer than in winter (in 

absolute value); (3) ACF, OOA and SO runoff generally decreases for summer months 

under both A1B and A2 scenarios; and (4) all OOA and ACF southern watersheds are 

generally expected to experience higher summer soil storage runoff reduction than 

northern watersheds, with the exception of the SO basin where the runoff reduction in 

Ogechee  is less than that of Hartwell.    

� Results are presented for all SO watersheds in Appendix A. 
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Figure 6.42: A1B Climate Scenarios (2000-2099), Hartwell, Frequency Curves.  

 

Figure 6.43: A2 Climate Scenarios (2000-2099), Hartwell, Frequency Curves.  
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Figure 6.44: Monthly Historical vs. Future (A1B) Watershed Response, Hartwell. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.45: Monthly Historical vs. Future (A2) Watershed Response, Hartwell. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.46: A1B Climate Scenarios (2000-2099), Ogeechee, Frequency Curves.  

 

Figure 6.47: A2 Climate Scenarios (2000-2099), Ogeechee, Frequency Curves.  
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Figure 6.48: Monthly Historical vs. Future (A1B) Watershed Response, Ogeechee. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.49: Monthly Historical vs. Future (A2) Watershed Response, Ogeechee. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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6.4 Historical (Baseline) and Future Hydrologic Assessments for the Upper ACT 

Basin 

6.4.1 Historical Assessment 

The calibrated watershed models are employed in this section to characterize the upper 

ACT hydrologic response under the historical climate. This assessment is based on 

historical climatic data for the period 1901 through 2009 and follows the same 

assessment procedures described earlier.  

The upper ACT basin watersheds are shown in Figure 6.50. For five watersheds: 

Canton, Allatoona, Carter, Tilton, and Rome (Coosa), Figure 6.51 presents the input and 

output sequences (normalized to their means). All watersheds are located very close to 

each other and they exhibit similar climate and hydrological characteristics. The results 

support several comments and observations: 

� Watershed precipitation of the entire upper ACT watersheds shows a decreasing 

long-term trend (Figure 6.51a; Table 6.4) by approximately 2% - 6% of its early 20th 

century value.  

� Watershed potential evapotranspiration shows a very mild decreasing long-term 

trend (Figure 6. 51b; Table 6.4).  Over the 109-year assessment period, the decrease is 

about 1% - 4% of the early 20th century value. The PET in two downstream watersheds 

(Allatoona and Rome) decreases faster than in the three upstream watersheds (Canton, 

Carter, and Tilton).   

� Soil moisture shows a very small decreasing trend of less than 1% for all upper 

ACT watersheds over the 109-year assessment period.  
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� Actual evapotranspiration generally follows the changes of soil moisture and PET 

trend and it decreases by 1% - 2% of the early 20th century value (Figure 6. 51c; Table 

6.4).         

� Total runoff of the upper ACT watersheds exhibit a decreasing trend of 

approximately 1% - 6% over the 109–year period (Figure 6. 51e; Table 6.4).  

� The above historical analysis is also performed for the most recent 50 years 

(1960-2009). It can be seen from Figure 6.52 and Table 6.4 that during this period (1) 

precipitation exhibits a clear declining trend of about 11% - 15% for all upper ACT 

watersheds; (2) PET exhibits an increasing trend of about 3% -5% over 50 years; (3) soil 

moisture decreases by 4% - 5% of the early 1960s values; and (4) runoff decreases by 

about 20% - 23% of the early 1960s values.  

� Comparing the historical response of the upper ACT basin over the most recent 

50 years with that of the ACF, OOA, and SO basins, one can note the following 

observations: (1)  All four basins show significant precipitation reductions; (2)  all four 

basins experience PET increases (except for George in the ACF); and (4) all four basins 

show soil moisture and total runoff decreases.          
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Figure 6.50: Map of Upper ACT Watersheds: Canton, Allatoona, Carter, Tilton, Resaca, 

and Rome. 
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Figure 6.51: ACT Normalized, 2Yr Average Hydrologic Response (1901 - 2009).  
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Figure 6.52: ACT Normalized, 2Yr Average Hydrologic Response (1960 - 2009).  
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Table 6.4 Slopes of Linear Trends for Normalized, 2Yr Average Hydrologic Variables in 

the upper ACT Basin.  

  Canton Carter Tilton Allatoona Rome 

  1901-2009 (unit:  10-4 of the mean per year) 

Precipitation -2.04 -3.12 -2.40 -2.16 -5.64 

PET -1.20 -2.52 -0.84 -3.36 -4.08 

Soil Moisture -0.72 -1.08 -0.12 -0.48 -0.72 

Runoff -3.00 -2.28 -3.24 -0.72 -5.52 

  1960-2009 (unit:  10-4 of the mean per year) 

Precipitation -29.16 -23.76 -24.60 -27.84 -27.84 

PET 6.48 10.68 7.44 8.40 9.72 

Soil Moisture -8.04 -9.96 -7.92 -9.12 -9.84 

Runoff -42.72 -43.32 -41.88 -43.92 -46.68 

  

  Canton Carter Tilton Allatoona Rome 

  1901-2009 (unit:  percentage increase over 109 years) 

Precipitation -2.224 -3.401 -2.616 -2.354 -6.148 

PET -1.308 -2.747 -0.916 -3.662 -4.447 

Soil Moisture -0.785 -1.177 -0.131 -0.523 -0.785 

Runoff -3.270 -2.485 -3.532 -0.785 -6.017 

  1960-2009 (unit:  percentage increase over 50 years) 

Precipitation -14.580 -11.880 -12.300 -13.920 -13.920 

PET 3.240 5.340 3.720 4.200 4.860 

Soil Moisture -4.020 -4.980 -3.960 -4.560 -4.920 

Runoff -21.360 -21.660 -20.940 -21.960 -23.340 
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6.4.2 Future Assessment 

The future climate assessments consist of running the upper ACT watershed models 

under all A1B and A2 climate scenarios for the period from January 2000 through 

December 2099 (100 years) in monthly time steps.  The future assessment also follows 

the same future assessment procedures described in previous sections.   

Figures 6.53 and  6.54 show the assessment results in frequency curves and box 

plots of the Allatoona watershed. These figures lead to the following observations:  

� On average (i.e., in the vicinity of the 50% percentile), precipitation is expected to 

decrease by 2% - 3% relative to the historical baseline for the upstream watersheds 

(Canton, Carter, and Tilton) but  is not expected to change for the downstream 

watersheds (e.g., Rome). In addition, the precipitation distribution is expected to “stretch” 

becoming wetter and drier than that of the historical climate.  This assertion holds for 

both the A1B and A2 scenarios, with the latter stretching the distribution farther.   

� The median of the potential evapotranspiration is higher than the historical 

baseline for both A1B and A2 scenarios. In addition, the future PET is expected to 

increase faster for higher PET values than for lower PET values (similarly to other 

basins).  

� The median of the soil moisture decreases for all watersheds under both A1B and 

A2 scenarios. The median of the runoff also decreases under both scenarios.  The 

upstream watersheds (Canton, Carter, and Tilton) are expected to experience more soil 

moisture reductions than the downstream watershed (Rome). In addition, much like for 

precipitation, the future soil moisture distributions are also expected to “stretch” on both 

ends for all watersheds.  
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The box plots for the Allatoona watershed are shown on Figures 6.55 and 6.56. 

The following observations can be made: 

� Mean watershed precipitation exhibits clear decreasing trends from April through 

September for both A1B and A2 scenarios by about 7% - 14%.  It also shows mild 

increasing trends from December through March for A1B scenarios and from December 

to January for A2 scenarios.  

� Future PET exhibits a higher mean and a wider range than historical PET from 

February to September, with the largest percentage changes observed in April and May.  

For these two months, the future mean PET is higher than the historical PET by up to 

15% - 20%, while the quartile range of the future distribution exceeds that of the 

historical by nearly 10% - 20%. 

� Future soil moisture is clearly lower than historical in almost all months. The 

change is more pronounced in August and September. Under the A1B scenario, the 

largest soil moisture reduction is up to 8%, while under the A2 scenario, up to 10%.  

�  Future runoff is drier under both A1B and A2 scenarios in most months. The 

change is more pronounced in August and September. Under the A1B scenario, the 

largest runoff reduction is 20%, while under the A2 scenario, up to 25%. Runoff 

increases only in December under the A1B scenario, by about 2%.    

� Comparing the future response of the upper ACT basin with that of the ACF, 

OOA, and SO basins, one can conclude that (1) most watersheds in all four basins are 

expected to experience precipitation reduction during summer and early fall (June, July, 

August, and September); (2) all watersheds show significant PET increases; (3) summer 

PET increases are larger than those  of winter in absolute value; (4) upstream watersheds 
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show higher PET increases in late spring (April and May); (5) runoff in all watersheds is 

expected to decrease for most months (especially in summer).         

Results for all upper ACT watersheds are presented in Appendix A. 
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Figure 6.53: A1B Climate Scenarios (2000-2099), Allatoona, Frequency Curves.  

 

Figure 6.54: A2 Climate Scenarios (2000-2099), Allatoona, Frequency Curves.  
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Figure 6.55: Monthly Historical vs. Future (A1B) Watershed Response, Allatoona. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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Figure 6.56: Monthly Historical vs. Future (A2) Watershed Response, Allatoona. (Unit: 

Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.) 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS  

 

7.1 Scientific Contributions and Conclusions 

This research used an integrative approach to assess the hydrologic impacts of climate 

change for four river basins in Georgia.  The study combines (1) downscaling and 

assessment of future precipitation and temperature scenarios, and (2) hydrologic 

assessments for each sub-watershed.  The study has made several important scientific 

contributions: 

� Development and evaluation of a new statistical downscaling method (joint variable 

statistical downscaling) for downscaling GCM outputs (Chapter 3). 

� Calibration of lumped conceptual watershed models developed by Georgakakos et al. 

(2010) in monthly time steps for all major Georgia basins where unimpaired flow 

observations have been developed (Chapter 4). 

� Development modified Hamon PET equations to estimate the PET by using maximal 

month temperature and calibration of watershed model on weekly and daily time 

scales (Chapter 4). 

� Development of model parameter regionalization procedures based on measurable 

watershed characteristics related to land cover, soil properties, and geomorphologic 

features (Chapter 5). 

� Assessment of the hydrologic impacts of climate change on Georgia basins using 

A1B and A2 scenarios (Chapter 6).  

 The main findings of the assessment are summarized below: 
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� Historical precipitation of the 20th century and the early 21st century (1901-2009) in 

Georgia basins shows different long-term trends over the last 109 years.  Some 

watersheds show a mild decreasing long-term trend (e.g., the upper ACT watersheds) 

and some show a mild increasing trend (e.g., the OOA watersheds).   The 

precipitation increases are generally less than 5% of the early 20th century values; and 

precipitation decreases are generally less than 6% of the early 20th century values. 

� Historical precipitation of the most recent 50 years (1960-2009) in Georgia shows a 

consistent decreasing long-term trend.   

� Historical potential evapotranspiration of the 20th century and the early 21st century 

(1901-2009) shows a clearly decreasing long-term trend over Georgia basins, while   

PET decreases by about 1% - 5% of its early 20th century value. 

� By contrast, historical potential evapotranspiration over the most recent 50 years 

(1960-2009) shows a consistent increasing trend. PET increases are about 1% - 5% of 

the early 1960 PET values. 

� As a result of precipitation reductions and PET increases in the 50-year assessment 

period, runoff decreases by about 10% - 25% of its 1960 level. 

� Assessments with 26 IPCC future climate scenarios (A1B and A2 scenarios; 2000-

2099) generally do not indicate any long-term change in mean precipitation.  

Exceptions are few and include the watersheds at Harwell, Canton, Carter, Allatoona, 

and Tilton, where precipitation mildly decreases.  In addition, the same IPCC 

scenarios indicate that all future precipitation distribution are expected to “stretch,” 

showing wetter and drier conditions than those of the historical climate.  
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� Future potential evapotranspiration (with its strong dependence on daily maximum 

temperature) shows a consistently increasing future trend (see chapters for slope 

values of the trends for different basins) for all Georgia basins and under both A1B 

and A2 scenarios.   

� As a result of increasing PET and decreasing precipitation, soil moisture exhibits a 

clear declining trend under future climates.  Future soil moisture is expected to be 

lower than historical in almost all months (see chapters for slope values of the trends 

for different basins).  The change is more pronounced for dry years and in the 

southern watersheds and is a foreboding indicator of adverse agricultural impacts.  

� Future runoff generally decreases in summer months (June, July, and August) for 

most Georgia watersheds and under both A1B and A2 scenarios (see chapters for 

slope values of the trends for different basins).  

� Generally, for all Georgia watersheds under A2 scenarios, future runoffs show greater 

reductions than those under the A1B scenarios.    

� By comparison, for ACF and OOA basins, the southern watersheds are expected to 

have more summer runoff reductions than northern watersheds. However, for the SO 

basin, runoff reductions in downstream watersheds are less than upstream watersheds.  

� In the southern watersheds of the OOA and ACF basins, a noticeable reduction in the 

mean runoff generally begins in January and extends through July (or through 

September for some watersheds) under A1B and A2 scenarios. This runoff reduction 

has implications for all water resources uses.    

7.2 Recommendations for Future Research 
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General useful extensions of the current study include (1) assessment of groundwater 

resources impacts; (2) conjunctive assessment of surface water and groundwater 

resources; (3) assessments pertaining to daily time steps; and (4) assessments pertaining 

to water resources impacts such as water supply, hydropower, lake levels, and ecology.     

 More specific extensions are described below.  

The JVSD downscaling method can be extended to include more climatic 

variables (e.g., solar radiation, wind speed, and air pressure) from future GCM outputs.   

The issue of combined surface water - groundwater assessments is critical for 

Georgia and the southeast US because of the direct hydraulic linkage of these two 

systems.  A follow-up study addressing the watershed model changes required at 

different temporal scales (from monthly to weekly to or daily) would enhance the 

simulation capability of the hydrologic model.  

 Hurricanes impact summer and early fall precipitation in the southeast United 

States, spawning tropical storms and destructive floods.  Recent studies indicate that the 

frequency and severity of hurricanes will most likely intensify by warming sea 

temperatures (Bender et al., 2010).   Future assessments would benefit by a more 

quantitative understanding of the impact of hurricanes on summer and early fall 

precipitation and increase the value of climate model precipitation scenarios in hurricane- 

prone areas.           

            Finally, daily and possibly sub-daily assessments that quantify the impact of 

climate change associated with flooding are needed.  This effort would mainly require 

that hydrologic models be extended and re-calibrated to account for hydrologic processes 

that become important at finer time scales.  This effort is currently on-going.       
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Figure A.1: A1B Climate Scenarios (2000-2099), OOA - Lower Oconee, Frequency 

Curves.  

 
Figure A.2: A2 Climate Scenarios (2000-2099), OOA - Lower Oconee, Frequency 

Curves.  
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Figure A.3: Monthly Historical vs. Future (A1B) Watershed Response, OOA - Lower 
Oconee. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.4: Monthly Historical vs. Future (A2) Watershed Response, OOA - Lower 

Oconee. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.5: A1B Climate Scenarios (2000-2099), OOA - Upper Ocmulgee, Frequency 

Curves.  

 
Figure A.6: A2 Climate Scenarios (2000-2099), OOA - Upper Ocmulgee, Frequency 

Curves.  
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Figure A.7: Monthly Historical vs. Future (A1B) Watershed Response, OOA - Upper 

Ocmulgee. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.8: Monthly Historical vs. Future (A2) Watershed Response, OOA - Upper 

Ocmulgee. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.9: A1B Climate Scenarios (2000-2099), OOA - Lower Ocmulgee, Frequency 

Curves.  

 
Figure A.10: A2 Climate Scenarios (2000-2099), OOA - Lower Ocmulgee, Frequency 

Curves.  
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Figure A.11: Monthly Historical vs. Future (A1B) Watershed Response, OOA - Lower 

Ocmulgee. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.12: Monthly Historical vs. Future (A2) Watershed Response, OOA - Lower 

Ocmulgee. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.13: A1B Climate Scenarios (2000-2099), SO - Russell, Frequency Curves.  

 

 
Figure A.14: A2 Climate Scenarios (2000-2099), SO - Russell, Frequency Curves.  
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Figure A.15: Monthly Historical vs. Future (A1B) Watershed Response, SO - Russell. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.16: Monthly Historical vs. Future (A2) Watershed Response, SO - Russell. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.17: A1B Climate Scenarios (2000-2099), SO - Thrmnd, Frequency Curves.  

 

 
Figure A.18: A2 Climate Scenarios (2000-2099), SO - Thrmnd, Frequency Curves.  
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Figure A.19: Monthly Historical vs. Future (A1B) Watershed Response, SO - Thrmnd. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.20: Monthly Historical vs. Future (A2) Watershed Response, SO - Thrmnd. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.21: A1B Climate Scenarios (2000-2099), SO - Augusta, Frequency Curves.  

 
Figure A.22: A2 Climate Scenarios (2000-2099), SO - Augusta, Frequency Curves. 
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Figure A.23: Monthly Historical vs. Future (A1B) Watershed Response, SO - Augusta. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.24: Monthly Historical vs. Future (A2) Watershed Response, SO - Augusta. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.25: A1B Climate Scenarios (2000-2099), SO - Lower Savannah, Frequency 

Curves.  

 
Figure A.26: A2 Climate Scenarios (2000-2099), SO - Lower Savannah, Frequency 

Curves.  
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Figure A.27: Monthly Historical vs. Future (A1B) Watershed Response, SO - Lower 

Savannah. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.28: Monthly Historical vs. Future (A2) Watershed Response, SO - Lower 

Savannah. (Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.29: A1B Climate Scenarios (2000-2099), ACT - Canton, Frequency Curves.  

 
Figure A.30: A2 Climate Scenarios (2000-2099), ACT - Canton, Frequency Curves.  
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Figure A.31: Monthly Historical vs. Future (A1B) Watershed Response, ACT - Canton. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.32: Monthly Historical vs. Future (A2) Watershed Response, ACT - Canton. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.33: A1B Climate Scenarios (2000-2099), ACT - Carter, Frequency Curves.  

 

 
Figure A.34: A2 Climate Scenarios (2000-2099), ACT - Carter, Frequency Curves.  
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Figure A.35: Monthly Historical vs. Future (A1B) Watershed Response, ACT - Carter. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.36: Monthly Historical vs. Future (A2) Watershed Response, ACT - Carter. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.37: A1B Climate Scenarios (2000-2099), ACT - Tilton, Frequency Curves.  

 
Figure A.38: A2 Climate Scenarios (2000-2099), ACT - Tilton, Frequency Curves.  
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Figure A.39: Monthly Historical vs. Future (A1B) Watershed Response, ACT - Tilton. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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Figure A.40: Monthly Historical vs. Future (A2) Watershed Response, ACT - Tilton. 

(Unit: Precipitation – m/mo; PET – m/mo; Soil Moisture – m; Runoff m/mo.)  
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