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Chapter 1

Introduction

Image analysis technology for investigating cell features in biological research has been

advancing over the past several decades. Finding protein associations within cells through image

analysis has the potential to deepen the understanding of disease microenvironment and how the

structural organization changes as cells transition from normal to abnormal cell behaviors. Our

study aims to establish a robust, rapid protein analysis pipeline for deciphering spatial organelle

networks within a single cell using the CellProfiler software and deep learning techniques.

To observe and analyze cell features, visual inspection by scientists has been a powerful

and common image analysis method, but this method is often more time-consuming, subjective,

and nonquantitative [1]. The application of analysis software as well as deep learning techniques

have shown to help improve the segmentation and analysis processes for identifying and

visualizing cellular and subcellular features [2]. We’re specifically interested in observing key

organelles in stem cells such as the nucleus, mitochondria, Golgi and endoplasmic reticulum.

Identifying these organelles through segmentation and quantifying biophysical features such as

cell size, symmetry, intensity, and shape across multiple cell images can lead to discoveries of

trends and associations that exist between and within organelles. The result can then be used for

statistical analyses such as t-SNE analysis and ratiometric analysis, as well as for visualization of

the structures in 2D and 3D for further spatial analysis. Our ultimate goal is to propose an

accurate and reproducible multiplexed protein imaging and analysis method that could aid in

better visualizing and understanding various disease states and microenvironments, which could

then be used to find or design drugs and therapy methods that work best depending on patient

needs.



The use of mesenchymal stem cells have become a promising therapy method for treating

a variety of diseases including myocardial infarction and diabetes, as they have the ability to

repair damaged cells by differentiating into replacement cells and by modulating immune

responses [3, 4]. Therefore, analyzing the spatial organelle networks within mesenchymal stem

cells can lead to a better understanding of cell functions in order to design appropriate treatment

methods. Although there have been recent studies focusing on spatial organelle analysis, these

studies have used spatial data of each organelle from different cells, which reduces the accuracy

of the resulting spatial information. A highly multiplexed protein imaging and analysis method

can be used to obtain spatial information of organelles within the same cell, which can then be

used to compare and understand differences in spatial organization between normal and

abnormal cells.

Literature Review:

Our study aims to develop a highly multiplex protein imaging and analysis method for

stem cell organelle networks within a single cell. Previous studies with similar focus have

explored how intracellular structures exhibit cell-to-cell variation in biophysical features such as

the location and size of organelles. Gut et al. developed a data-driven computer vision approach

to generate multiplexed protein maps (MPMs), which was then used to compare subcellular

spatial protein distribution between single cells based on the knowledge that the phenotype of a

cell is influenced by aspects such as their functional state, abundance, and morphology of

organelles [5]. Similarly, Viana et al. developed a reproducible microscope imaging pipeline and

investigated the impact of cell and nuclear size on the variation in the size of organelles using 25

isogenic human induced pluripotent stem cell (hiPSC) lines [6]. Their results showed that the



impact of cell and nuclear size metrics on the variation in cytoplasmic structure volumes is

structure-dependent, and that this correlation is consistent with the wide range of cell functions

that these structures regulate [6]. Although our study uses mesenchymal stem cells instead of the

hiPSC, the findings and approach from this study can be taken to the next level by including

other key biophysical characteristics into our focus, such the location, symmetry, shape, and

intensity of organelles and associated proteins, which can then be compared to find trends and

interactions between organelles.

Among several automated imaging software packages that have been developed in recent

years is a software called CellProfiler [7]. CellProfiler is a free, open-source system that was

designed for flexible, high-throughput cell image analysis [7]. The main purpose of this software

is to identify and measure a variety of biological objects in images [1]. Studies that utilize

CellProfiler for image analysis have shown that the reliability and applicability of this software is

promising. Weiss et al. compared the results for the quantification of Schwann cell (SC) purity

and proliferation between the automated CellProfiler program and manual counting [8]. No

significant difference was found between the two methods for the total cell count, SC purity, and

SC proliferation rate, which suggests the accuracy of the established CellProfiler pipelines for

the analysis of these features [8]. One limitation with this study is that the analysis was done on a

2D level, so maintaining accuracy in 3D spatial analysis for organelles in a single cell can

contribute to a better understanding of the structures of disease microenvironments. This is one

of the goals of our study, as proposing a more detailed and precise 3D analysis method would be

a notable step forward in better understanding how stem cells can be utilized for disease

treatment. The location and morphology of the proteins would be observed after segmentation,

where information such as the size of organelles, intensity of each marker and the colocalization



of multiple markers can be extracted. This information can then be used for 3D visualization of

organelle networks within a single cell without the use of spinning-disk confocal microscopes.

It has also been found that CellProfiler in combination with machine learning techniques

is suitable for the analysis of proteome dynamics on the single-cell level [9, 10]. Chong et al.

performed an evaluation on protein abundance and localization on a proteome scale of a single

yeast cell, then developed binary classifiers to generate localization data [9]. This field of study

is prominent because the quantitative approach to analyze protein abundance and localization can

be applied to various types of studies such as comparative studies, single-cell analyses,

modeling, and prediction [9]. The possibility of using machine learning for pattern recognition in

addition to a single-cell analysis using CellProfiler is worth noting as this increases the flexibility

in the types of cells and features of analysis.

Other studies have focused on the applicability of machine learning to identify and

classify various features within a single cell with higher accuracy and speed [11, 12].

Kriston-Vizi et al. showed that an automated high-content screening image analysis can be

performed to identify selected compounds, which had results similar to that of threshold-based

method [12]. Similarly, Hamilton et al. found that classification of subcellular protein

localization using machine learning and threshold adjacency statistics was able to provide high

accuracy with a calculation speed faster by an order of magnitude compared to other commonly

used methods [11]. These findings demonstrate a remarkable step forward in the application of

machine learning techniques in improving the speed and accuracy of the automated analysis

methods compared to conventional visual analysis methods as well as previously released

analysis software.



The above methods demonstrate a significant advancement towards the application and

automation of image analysis methods for various features on a single-cell level. These studies

provide insights on how open-source software packages such as CellProfiler can facilitate the

automation of image analysis as well as how deep learning technology could be added for a more

flexible and accurate pipeline for analyzing a variety of cell types and features of focus. A

previous study has trained their segmentation algorithm using a subset of 600 images through

two training assays, which were validated manually with an in-house scoring interface in Python

using Napari [6]. A similar training and validation method can be used to develop and validate a

robust algorithm using deep learning to segment and analyze organelle networks. Our study

builds upon these past findings to apply these automated image analysis methods for

investigating spatial organelle networks within a single stem cell. This information about the

associations found in stem cells on a single-cell level can eventually aid researchers in better

understanding microenvironments of normal and abnormal cells and to explore treatment

methods using mesenchymal stem cells.



Chapter 2

Materials and Methods

2.1 Preparing Images

Images of mesenchymal stem cells to be processed were chosen based on the clarity and

consistency among all markers. Mesenchymal stem cells extracted from two sources were used

and compared: umbilical cord (UC) and bone marrow (BM) stem cells. Over 100 file formats are

currently readable by CellProfiler, including BMP, GIF, JPG, PNG, TIF, DIB, LSM, and FLEX.

For our study, all images were kept in TIF format because it has the ability to store color and

transparency information using an alpha channel, which allows for fast compression and

decompression while retaining high image quality. Fluorescent imaging was performed to obtain

all the images in our laboratory using reagents and the microscope listed in Table 2.1. 11 markers

were used to investigate 7 organelles: DAPI, HSP60, TOM20, Nucleolin, β-tubulin, ATF6,

GOLPH4, Sortilin, Concanavalin A, Phalloidin, and WGA. The full names of the abbreviated

markers are included in Table 2.1. The target organelles of each of the markers are shown

inTable 2.2, some of which show overlaps in their target. These markers were selected in order

to capture a variety of organelles pictured in Figure 1, which allows us to compare across cells

and determine if any of the organelles show trends or unique characteristics [13]. Specifically,

we focused on biophysical characteristics such as major/minor axis lengths, perimeter, and

intensity.. Both masked images with already selected cells and unmasked images can be used as

the input of the pipeline.



Figure 1: Organelles labeled in a single cell. Dashed lines show an example of how minor/major

axis lengths, two of the parameters of interest, are measured for a segmented mitochondria.

REAGENT OR RESOURCE SOURCE

Antibodies

ATF6: Activating Transcription
Factor 6 (Rabbit monoclonal)

Abcam

Β Tubulin (Mouse monoclonal) Santa Cruz Biotechnology, Inc

Concanavalin A
(Alexa Fluor®488 conjugate)

Invitrogen

GOLPH4: Golgi Integral
Membrane Protein 4  (Rabbit
monoclonal)

Abcam

HSP60: Chaperonins (Rabbit
monoclonal)

Abcam



Nucleolin (Rabbit monoclonal) Abcam

Phalloidin
(Alexa Fluor®555 conjugate)

Invitrogen

Sortilin (Rabbit monoclonal) Abcam

Tom20: Translocase of outer
mitochondrial membrane 20
(Mouse monoclonal)

Santa Cruz Biotechnology, Inc

Wheat Germ Agglutinin
(Alexa Fluor®647 conjugate)

Invitrogen

Chemicals

10x Phosphate-buffered saline Sigma-Aldrich

Alexa Fluor®647 Conjugation
Kit (Fast) -  Lightning-Link®

Abcam

CSM Blocking solution 1% BSA, 0.1% Triton X-100 in PBS

DAPI (4',6-
Diamidino-2-Phenylindole,
Dihydrochloride)

Invitrogen

Hydrogen peroxide solution
(H2O2 30% (wt/vol))

Fisher Chemical

Sodium hydroxide (NaOH)
solution 1M

HiMedia

Triton X-100 Fisher BioReagents

Software and Algorithms

NIS Imaging Software https://www.nikonmetrology.com/en-us/industrial
-microscopes/nis-software-nis-elements-microsc
ope-imaging-software

RNAscope® HiPlex Image
Registration Software

https://acdbio.com/image-registration-software

ImageJ https://imagej.nih.gov/ij/

Colocalization Colormap plugin https://sites.google.com/site/colocalizationcolorm
ap/home



Coloc2 plugin https://imagej.net/Coloc2

Python https://www.python.org/

PARC https://github.com/ShobiStassen/PARC

Microscope

Eclipse TE2000-U Inverted
Research microscope with
motorized stage and filter wheel

Nikon

Table 2.1: List of all antibodies, chemicals, software/algorithms, and microscope used to obtain
images of stem cells for this study.



Table 2.2: List of markers of interest used in this study, their target organelles, and functions.

2.2 Installing and Setting Up CellProfiler



We used the CellProfiler software as the main analysis tool for our study. CellProfiler

addresses a number of challenges involved in previously published automated systems. First, this

single open-source program has the ability to perform analysis for several purposes such as

investigation of cell size, intensity, and quantification [1]. This is a useful improvement as it

eliminates the need for using multiple software packages that function separately for different

purposes. In addition, CellProfiler does not require any accompanying image acquisition

hardware that previously developed programs require and are often costly [1]. Another

remarkable difference between CellProfiler and previous programs is its modular design and

graphical user interface. The user-friendly design of the program makes it suitable for analysis of

various biological objects and assays without requiring programming [1]. This is a notable

benefit because there are other flexible analysis programs that allow for interactive analysis, but

the need for creating custom algorithms becomes a challenge without knowledge and experience

in programming. Due to these benefits we chose to use this software to automate the analysis

process and explore how this tool can be used in combination with deep learning techniques for

an accurate multiplex analysis of stem cell organelles.

Installation instructions from the web page to install CellProfiler were followed to

download the software. All test images were imported and classified based on the marker names

under the “NameAndType” module. The output location was manually selected for the data

spreadsheet containing the measurement results.

2.3 Measuring Size/Shape Features

To first identify and segment the nuclei of cells, “IdentifyPrimaryObject” was first used

on DAPI, a marker often used for visualization of cell nuclei in immunofluorescent histological



studies because of its high affinity for DNA [14, 15]. The global two-class Otsu thresholding

method was used, which is an approach that calculates the threshold separating the two classes of

pixels, foreground and background, by minimizing the variance within each class [16]. Using the

segmented nuclei, the “IdentifySecondaryObject” module was used to segment the general

shapes of the organelles marked by each marker using the same thresholding method. After

images of every marker were segmented, all the size/shape features were measured using the

“MeasureObjectSizeShape'' module for all the markers. Finally,  the shape/size data were

exported into an excel file in the output location specified in the earlier step.

2.3 Measuring Intensity Features

With the segmented images from the previous step, the “MeasureObjectIntensity” module

was used to make intensity measurements including the mean and total intensity of the selected

area. The units of intensity from this module are described as “intensity units” or “arbitrary

intensity units” because microscopes are not calibrated to an absolute scale. Intensity

corresponds to the amount of light emitted, which represents the amount of stained protein in the

cell [17]. This information can be applied in further analysis such as colocalization, which is a

useful method in determining if a protein is localizing to an organelle [18].

2.4 Visualization and Statistical Analyses

The data stored in an excel spreadsheet was manually sorted to extract and analyze only

the features of interest, which are area, intensity, major/minor axes, and perimeter of each

organelle. The measurements of interest were converted into CSV files for visualization.

Heatmaps were generated using Python with dendrograms to compare the biophysical



measurements and to determine any close relationships or associations between markers and

between the two sources (UC and BM). The z-score was calculated to evaluate the distribution of

the output data. Ratiometric analysis is performed to detect changes to the local environment,

and t-distributed stochastic neighbor embedding (t-SNE) analysis to reduce dimensionality for

visualizing the data in two dimensions data [19].



Chapter 3

Results

Segmentation was performed to first identify the nuclei, then to identify the organelles.

Example images that show the segmentation of the nuclei and the organelles are shown in Figure

1-2.

Figure 1: Segmentation steps of the nuclei, consisting of the original image (top left), outlines

detected using global Otsu thresholding method with two classes (bottom left), and the

segmented nuclei (top right). The segmented nuclei in the output are presented in different colors

for clear visualization, which will be used as masks to obtain data for each cell separately.



Figure 2: Segmentation steps of the nuclei, consisting of the original image (top left), outlines

detected using global Otsu thresholding method with two classes (bottom left), and the

segmented nuclei (top right). The segmented organelles in the output are presented in different

colors for clear visualization, which will be used as masks to obtain data for each cell separately.

Figures 3-8 are heat maps that quantify morphological features found in images of 14

selected cells (7 cells from umbilical cord and 7 cells from bone marrow) using 10 selected

markers. Specifically, the features of focus were major/minor axes, perimeter, and integrated

intensity. We plan to continue investigating more features and categorizing the features into the

following categories: area/shape features, intensity based features, image quality (blurriness and



granularity), and texture features. Once the data are visualized, trends and associations will be

examined across markers as well as across the two cell types, UC and BM.

Figure 3: Heatmap comparing the raw major axis length across 10 markers and 14 selected cells
X-axis: 10 selected markers
Y-axis: Cell type and assigned cell number
Color bar: Major axis length, raw (pixels)



Figure 4: Heatmap comparing the raw minor axis length across 10 markers and 14 selected cells
X-axis: 10 selected markers
Y-axis: Cell type and assigned cell number
Color bar: Minor axis length, raw (pixels)

Figure 5: Heatmap comparing the normalized major axis length across 10 markers and 14
selected cells
X-axis: 10 selected markers
Y-axis: Cell type and assigned cell number



Color bar: Minor axis length normalized using z-score (unitless)

Figure 6: Heatmap comparing the normalized minor axis length across 10 markers and 14
selected cells
X-axis: 10 selected markers
Y-axis: Cell type and assigned cell number
Color bar: Minor axis length normalized using z-score (unitless)



Figure 7: Heatmap comparing the normalized perimeter across 10 markers and 14 selected cells
X-axis: 10 selected markers
Y-axis: Cell type and assigned cell number
Color bar: Perimeter normalized using z-score (unitless)

Figure 8: Heatmap comparing the normalized integrated intensity across 10 markers and 14
selected cells
X-axis: 10 selected markers
Y-axis: Cell type and assigned cell number
Color bar: Integrated intensity normalized using z-score (unitless)

Figures 3-4 are examples of raw data represented in the heatmap format. In order to

focus on the variation between markers and better visualize the differences, z-score

normalization was performed for all features using Equation 1:

(1)

In Equation 1:



Z-score was calculated for each cell, with each population consisting of 10 values for the

10 markers. The x-axis is labeled with the selected 10 protein markers to target different

organelles, and the y-axis is labeled with the assigned cell number.

In Figure 5, the nucleolin marker generally has the lowest major axis lengths across all

cells followed by the sortilin marker. Other markers have varying major axis lengths when

compared across cells, with Beta-tubulin and HSP60 generally having high values.

In Figure 6, the nucleolin marker generally has the lowest minor axis lengths across all

cells followed by the sortilin marker. Other markers have varying minor axis lengths when

compared across cells, with Beta-tubulin and HSP60 generally having high values, which are the

same characteristics as the major axis.

In Figure 7, the nucleolin and sortilin markers generally have the lowest perimeter across

all cells. Other markers have varying perimeter when compared across cells, with GOLPH4,

Beta-tubulin, TOM60, ATF6, and Phalloidin generally having high values.

In Figure 8, the nucleolin, GOLPH4, and t20 markers generally have the lowest

integrated intensity across all cells followed by the sortilin marker. Other markers have varying

perimeter when compared across cells, with WGA and Phalloidin having high values.

From all figures, the low values for the nucleolin marker were expected, because the

nucleolin is a protein that is distributed inside the nuclei while other markers target organelles

that are larger than the nuclei. However, data for the other markers vary more with a few trends

that may be interesting to look at. For example, looking at normalized major/minor axis data, UC



cells generally have larger values for Beta-tubulin and HSP 60, which target the microtubules

and mitochondria, respectively. This could be a key difference between UC and BM cells,

although a larger data set may help find and confirm such a trend.



Chapter 4

Conclusion

Although processing and analysis of the images of more features are still in progress,

there are a few points to note from the data we were able to obtain. Heatmap is a useful method

to display large sets of data in a clear, visual manner, allowing us to compare values across

markers and across cells. Generally, the nucleolin marker showed the smallest values among the

10 markers, while the values for the other markers varied depending on the feature. The

dendrograms from the major/minor axis length show a split between UC and BM cells,

indicating that there is a difference between the two groups. This may be a key finding, as our

goal is to find trends and associations between markers or organelles as well as between the two

cell types. The next step in the analysis would be to investigate more features and create one

combined heat map that shows all of the features (averaged among UC cells and BM cells) on

one axis against the ten markers on the other axis. After finalizing which features to measure and

include in the visualization, statistical tests such as the t-distributed stochastic neighbor

embedding (t-SNE) can be performed to reduce dimensionality for visualizing the data in two

dimensions data.
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