
 1

Intention Aware Interactive Multi-Modal Robot Programming

Soshi Iba1, Christiaan J.J. Paredis3, and Pradeep K. Khosla1, 2
1) The Robotics Institute, Carnegie Mellon University

2) Electrical and Computer Engineering, Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3890

3) G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
Atlanta, Georgia 30332-0405

iba@ri.cmu.edu, chris.paredis@me.gatech.edu, pkk@ece.cmu.edu

Abstract

As robots enter the human environment, there are
increasing needs for novice users to be able to program
robots with ease. A successful robot programming system
should be intuitive, interactive, and intention aware.
Intuitiveness refers to the use of intuitive user interfaces
such as speech and hand gestures. Interactivity refers to
the system’s ability to let the user interact preemptively
with the robot to take its control at any given time.
Intention awareness refers to the system’s ability to
recognize and adapt to user intent.

This paper focuses on the intention awareness problem
for interactive multi-modal robot programming system. In
our framework, user intent takes on the form of a robot
program, which in our context is a sequential set of
commands with parameters. To solve the intention
recognition and adaptation problem, the system converts
robot programs into a set of Markov chains. The system
can then deduce the most likely program the user intends
to execute based on a given observation sequence. It then
adapts this program based on additional interaction.

 The system is implemented on a mobile vacuum
cleaning robot with a user who is wearing sensor gloves,
inductive position sensors, and a microphone.

1. Introduction and Related Work

Human-Robot interaction is an important aspect of a
successful robotic system. As robots enter the human
environment and come in contact with inexperienced
users, they need to be able to interact with these users in
an intuitive and interactive fashion. An interactive multi-
modal robot programming system by Iba et al [1]
demonstrated interactive sequential robot programming
using voice commands and hand gestures on a mobile
vacuum cleaning robot (Figure 1). The key elements
behind this novice-friendly system are intuitive interfaces
based on speech and hand gesture recognition, and
interaction capabilities that allow the user to take over the

control of the robot at any given time. Such interaction
capabilities give a sense of assurance to the user and help
him in dealing with loosely calibrated position sensors by
including a human in the control loop using a
combination of voice and hand-gesture commands. The
user is able to initiate a programming phase through voice
commands and move the robot to any desired location.
The sequence of commands turns into a sequential robot
program. The user can then initiate an execution phase
and execute the program while letting the user take
control at any given time. The multi-modal human-robot
interaction described above can be thought of as a parallel
to WYSIWYG (what you see is what you get) interface
introduced in the human-computer interaction domain.
Instead of off-line robot programming, this method lets
the user see what to expect from the program execution.

Intention awareness is an additional step towards a
novice friendly robot programming system. Intent is the
purpose or goal the user has in mind. An intention aware
system can be used to reduce unnecessary and often
redundant instructions by being aware of what the user
really wants. The term intent is often loosely defined
since it is heavily task dependent. In our framework,
intention refers to a sequential robot program that the user
would like to execute or modify, and the system needs to
be able to tell if such robot program exists in the system’s
database from inputs given by the user.

An intention aware system should be able to map user
input to an intended robot action, if one exists, and adapt
such a mappings based on additional input from
interactions. Accordingly, intention awareness for
interactive multi-modal robot programming can be
divided into two sub-problems: intention recognition and
intention adaptation. We approach the intention
recognition problem by representing robot programs as a
set of Markov Decision Processes (MDP). We build
Hidden Markov Models (HMM) based on the MDPs
using observations collected during the programming
phase. A probabilistic representation of a robot program
can be used to better represent the realistic model of a
robot program. Such representations allow us to search

 2

efficiently for the most likely intended action based on a
sequence of user inputs, as well as recognizing the
possibility that the user intends to perform no action.
Probabilistic frameworks have been applied in the past to
model intentions, for example, in the form of HMMs [2]
or stochastic Petri-nets [3]. This research successfully
demonstrated intention recognition capabilities. However,
if one claims to be truly intention aware, it is essential to
have a mechanism to adapt and modify intention models
according to new situations. Without such a mechanism,
the system can only work in the way its designer
intended. We approach the intention adaptation problem
by giving the user a choice to simply add more robot
programs, or to adapt existing program to the current
situation by merging additional observations into the
probabilistic representation. To reflect the most current
model of intended actions, all observations of the program
execution and all interactive corrections made at the time
of execution are incorporated into the program
representation.

We describe the overall system and implementation in
section 2, then describe the intention recognition and
adaptation scheme in section 3, followed by the
experimental result in section 4 and the conclusion in
section 5.

2. System Description

The interactive robot programming system introduced
by Iba et al. [1] offers the user, through an intuitive
interface, the ability to provide interactive feedback to the
robot to coach it throughout the programming and
execution phase. Intention awareness is introduced in this
paper to make the system even more novice-friendly.

The framework is composed of three functional
modules as illustrated in Figure 1. The first module
(multi-modal recognition) translates hand gestures and
spontaneous speech into a structured symbolic data
stream without abstracting away the user’s intent. The

second module (intention interpretation) selects the
appropriate set of primitives based on the user input,
current state, and robot sensor data. Finally, the third
module (prioritized execution) selects and executes
primitives based on the current state, sensor inputs, and
the task given by the previous step. Each module includes
two modes of operation: a learning and an execution
mode. Depending on the mode of operation, the overall
system can provide interactive robot control, or
composition of robot programs.

The first component, multi-modal recognition (the first
block in Figure 1), initially interprets raw data into a
stream of labeled data with parameters. In our system, it
translates hand gestures and spontaneous speech into a
structured symbolic data stream without abstracting away
the user’s intent. The symbols could be gestures, words,
or both. In our implementation, spontaneous speech is
translated into words using SPHINX-II, an off-the-shelf
speech recognition package [4]. For hand gestures, we
implemented a word spotting technique using the Hidden
Markov Toolkit (HTK) [5]. [1] lists some of the initial
candidate gestures and words that such a basic vocabulary
could include.

The second component, intention interpretation
module (the second block in Figure 1), generates a stream
of prioritized action commands, given a sequence of
labeled recognition results by the first component. The
problem of intention interpretation can be considered as a
mapping problem from the stream of user input, the
current state of the system, and the robot sensor data to
the correct robot task. The user input is an incoming
stream of structured symbolic data (with parameters) from
the multi-modal recognition module.

The output is a prioritized task symbol representing a
configuration of robot primitives, where a primitive is an
encapsulation of a low level robot behavior. The
primitives used for the current implementation are
described in [1]. The task is a robot program composed of

Action DB

TrainerTrainer

Speech DB

Pr
io

rit
iz

ed
 ta

sk
 s

ym
bo

l

+
pa

ra
m

et
erIntention

Interpretation
Module

Multi-modal
Recognition

Module

Gesture DB

Task DB

Primitive DB
Motor

Sensori-Motor

Sensor

Info Manager

Trainer

Semantic DB

G
es

tu
re

 S
ym

bo
l +

 p
ar

am

W
or

d
Sy

m
bo

l +
 p

ar
am

2x
22

 g
lo

ve
-s

en
so

r i
np

ut

Ac
ou

st
ic

 In
pu

t

User
Mobile Vacuum Cleaning

Robot (Cye)

Sensor ReadingRobot Parameters
Sensor Reading

Multi-Modal
Recognition

Intention
Interpretation

Prioritized
Execution

2x
6

ha
nd

 p
os

iti
on

 in
pu

t

Prioritized
Execution
Module

C
on

tro
l v

ec
to

r

Figure 1: Framework for Interactive Multi-Modal Robot Programming

 3

one or more primitives. The current implementation only
supports sequential execution of primitives. Conditional
statements will be integrated in future work. The intention
interpretation module is implemented as a look-up table
that connects recognition results to action commands.

The third component, prioritized task execution
module (the third block in Figure 1) has two functions.
The first is to arbitrate and execute primitives based on
the current state, the sensor inputs, and the prioritized task
given by the previous module. The second is to generate a
robot program (task) by configuring primitives. For the
arbitration, the task (a set of primitives) with the highest
priority level is executed first. It can be interrupted by a
task with equal or higher priority, if requested by the user.
If possible, the system goes back to the interrupted task
after the high priority task finishes. Such an interrupt
scheme allows the user to stay in the control loop, and
enables novice users to get acquainted with the system
without feeling overwhelmed by the large number of
unknowns in the system.

Generation of a robot program (task) is performed
interactively. The basic approach is to take a coaching
strategy using a redundant input mode. The user sets the
module to a learning mode (by giving voice command
“program one”, for example) and executes primitives
sequentially through hand gestures and voice commands;
the system remembers the sequence as a task.

The next section goes over the implementation of
intention awareness, which is closely associated with the
intention interpretation module.

3. Intention Awareness

The system’s intention awareness is composed of two
capabilities: intention recognition and adaptation. Instead
of merely mapping the sequence of multi-modal
recognition results to the set of actions using the
semantics database, the intention aware system should
suggest which task (set of primitives) the user may want
to execute based on an incomplete sequence of primitives
executed by the user. This recognition ability can be
thought of as similar to the auto-completion capability in
a text editing program. It is especially helpful when there
are a large number of programs, and picking any
particular program may be difficult. The ability to
perform online modification is also essential, since it is
unreasonable to expect the system to have prior
knowledge of every intended task. The system must be
capable of adjusting and adding primitives to the program
with ease. The system supports these adjustments by
letting the user interrupt the task while it is running, and
registering the interrupts as additional primitives in the
task.

In order to perform such recognition in the real world,
it is necessary to represent tasks in a probabilistic
framework rather than as a discrete sequence of
commands such as {Goto(P1), Vacuum(vacOn),
AreaCoverage(P2,P3), Vacuum(vacOff), GoHome()},
where Pi’s describe robot positions in terms of (x, y). A
Hidden Markov Model (HMM) [6] provides a way to
model the task in a probabilistic framework, where both
state transitions and observations can be expressed
stochastically. Since no branching or looping is allowed
in tasks, each task can be described as a left-right (Bakis)
HMM using an observation sequence collected at the time
of programming. Tasks represented as HMMs are
organized and compared to the current observation
sequence to detect which task, if any, the user may want
to execute.

Other systems such as the human intention recognition
by Yamada et al. [2] and the online point-based hand-
writing recognition by Bahlmann [7] employ similar
strategies. Our method for representing and recognizing
tasks from an observation sequence using HMMs is
similar to their work. However, our method has the
advantage that it is capable of disregarding non-task
sequences through dynamic garbage collection, without
the prior training of a garbage model.

Adaptation of models is necessary to account for
changes in the robot’s environment, or modifications to
the program made by the user while interacting with the
system. Also, observation sequences collected from
subsequent executions of the same task can be combined
to improve stochastic parameters used in the HMM
representation of the task.

In the remainder of this section, we explain how tasks
are represented as HMMs, how they are constructed, and
how they can be modified in real-time during execution.

3.1. Construction

When a robot is programmed interactively, the system
collects an observation sequence On = {o0n o1n … otn} for
program action n, where ot = {xt, yt} correspond to the
robot position at time t. The sequence O is the collection
of observations On resulting from program actions 1 to N
(0 is the start). The robot program is then converted into
an HMM through the process described in Figure 2. The
program (top of Figure 2) is first converted into a Markov
chain description whose states correspond to each
programmed action. The number of states in the chain is
the number of actions in the program plus two (start and
the end). The collected set of observations is used to
calculate necessary statistics to describe observations
coming out of the arcs. The observation sequence
collected during the action associated with the state is
used to construct the observation density function bii(o)

 4

on the recurring arc, whereas observation sequence
collected after the action but before the beginning of the
next action is used to construct bij(o) for the transition arc.
The state transition probability aij is determined by the
ratio of number of observations used at recurring and
transition arcs.

3.2. Recognition

During recognition, the current observation sequence
is evaluated and compared to all robot program HMMs
stored in the database. It is necessary to be able to detect
in real-time which program the user may be interested in,
and to be able to reject observations that are not part of
any existing program. Our goal here is to find the most
likely state qt at the current time t, given observations up
to time t, and HMMs λ1, λ2 … λU, constructed from U
robot programs organized into λnet as described in Figure
3. It should be noted that the transition probabilities a*0 on
the arcs from the initial shared state s00 are fixed to
1/(1+U), regardless of the observation. This initial shared
state collects observations that do not match any program.

In order to find the single best state qt out of all states
in the shared HMM network, we consider the variable
δt(u,i) for program u, state i, for the Viterbi Algorithm
extended from the definition in Rabiner’s tutorial [6]:

)|,...,,...(max),(1,1
... 11

nettiut
qq

t oosqqPiu
t

λδ ==
−

 (1)

 Since we are only interested in the most likely state,
we only need to keep the HMM trellis of δt scores to
apply the algorithm when the new observation shows up.
The score (probability) in each trellis entry describes the
likelihood of being in the particular state after going
through the most likely state sequence. Based on the
assumption that the model λnet fully explains all
observation sequences δt, the entire trellis is normalized to
1.0 for every observation. The initial shared state
becomes the most likely state if the observation sequence
can not be explained by other models λ1..λU. After finding
the current HMM node, the system can determine the
action that should be taken according to the most probable
robot program.

3.3. Adaptation

Online seamless adjustment of the statistics that
describe the robot program is essential for keeping the
system healthy. For example, an additional obstacle on
the path between via-points can change the trajectory of
the mobile robot, and the program description needs to be
adjusted accordingly. The parameter adaptation can be
used to improve HMM parameters over multiple
executions of the same task. This can be done by first
partitioning the observation sequence and merging
statistics derived from additional samples with the old
ones. Merging nadd additional samples with mean vector,
µadd, and covariance matrix, Σadd, with nold old samples
with µold, Σold to derive new combined statistics, nnew, µnew,
Σnew can be done as follows:

oldaddnew nnn += (2)

newoldoldaddaddnew nnn /)(µµµ += (3)

)1(/)(−+++=Σ newnew nDCBA (4)

t1 = {Goto(P1), Vacuum(vacOn), AreaCoverage(P3, P4), Vacuum(vacOff), GoHome()}

Robot Program Task 1:

Markov Chain Description of Task 1:

a5:
Vacuum(vacOff)

s4

a6:
GoHome()

s5

ae:
end t1

se

HMM Description of Task 1 (conversion phase 1):

HMM Description of Task 1 (conversion phase 2):

O0’ O1’ O2’ O3’ O4’ O5’

O1* O2* O3* O4* O5*

O = {O0,O1,O2,…ON}
N = number of actions in the task

Oi = {Oi* ,Oi’}
Oi* = observation sequence while action ai is taking place
Oi’ = observation sequence after action ai is done

a0:
start t1

s0

a1:
Goto(P1)

s1

a2:
Vacuum(vacOn)

s2

a4:
AreaCoverage(P3,P4)

s3

s5 ses0 s1 s2 s3 s4

O0*

)(, 0101 toba)(, 1212 toba

)(, 1111 toba)(, 2222 toba

)(, 2323 toba

• • • • • •

• • • • • •

s5 ses1 s2 s3 s4s0

)(, 0000 toba

aij = state transition probability from si to sj

bij(ot) =

=Σ

≠Σ

jioN

jioN

ii

ii

OOt

OOt

 if),,,(

 if),,,(

**

''

µ

µ

O5’

Figure 2: Conversion of a program to HMM

sui= state i of program u
U = number of tasks (programs)
a00*0 = state transition probability from s00 to s*0 = 1/(U+1)
Nu = number of actions in program u

HMM Network for Task Recognition:

• • • • • • s1es10

λ1

• • • • • • s2es20

• • • • • • sUesU0

•••••••••

s00

1
1

+U

λ2

λU

λnet

1
1

+U

1
1

+U

1
1

+U

12s11s
11Ns

22s21s
22Ns

2Us1Us UUNs

Figure 3: HMM Network with Shared Initial State

 5

))((

)1(
))((

)1(

−−=

Σ−=
−−=

Σ−=

T
newoldnewoldold

oldold

T
newaddnewaddadd

addadd

nD

nC
nB

nA

µµµµ

µµµµ

We can compute statistics for adapted observation
probabilities using above equations without having to
keep the entire observation history. For implementation
purposes, we always set nold = nadd, so that the effects from
old samples will eventually decay with additional
adaptation cycles.

4. Experiment

The system’s intention awareness was tested on the
Cye personal robot [8] with vacuum cleaner against three
robot programs in the database. Because observation
sequences generated from an interactive user control are
not reliable as a basis of comparison against HMM
representation of a robot program, we used artificially
generated observation sequences instead of direct user
interaction to address issues such as intention recognition,
and model adaptation. Three test programs used are:

t1 = {Goto(P1), Vacuum(vacOn), Goto(P2),
AreaCoverage(P3, P4), Vacuum(vacOff),
GoHome()}

t2 = {Vacuum(vacOn), Goto(S1), Goto(S2),
AreaCoverage(S3, S4), GoHome()}

t3 = {Goto(T1), Goto(T2), Goto(T3)}

 where Pi, Si, Ti all represent positions on the map
in (x, y), as described on Figure 4.

HMM representations, λ1, λ2, and λ3, for the test
programs, t1, t2, and t3 are created through the method
described in section 3.1, after single execution of the
program to collect observation sequence. Observations
were collected in ~5Hz. The resulting HMM network
representation, λnet, is similar to that of Figure 3, but with
three programs with different number of states. Their
observation probability distributions are described on
Figure 5.

Recognition was performed on the constructed HMM
network using an artificial traversal data that travels in the
order of {Home, P2, P1, T1, T2, Home}. Figure 6 describes
the probability response of the states that correspond to
s00, the initial shared state, s31 and s32 that correspond to
1st and 2nd states in the third program, t3. The system
recognized that the most likely state while traversing

Figure 4: Positions used for the
test programs t1, t2, and t3,

Figure 5: Observation probability distributions for the

HMMs of the test programs λ1, λ2, λ3

 6

through P1, T1 and T2 were s31 and s32. The observations
used to model the probability on s31’s recurring arc came
from the path in between Home and T1 that P1 happens to
be close to. Also, it should be noted that in between those
regions with definite decisions, there exist a reading
where the system seem bit confused. Those regions are
where s00, the initial shared state with solid line on the
graph can tell you that there are no conclusive winner and
thus the system should give no decision.

Adaptation of HMM statistics were performed for
additional reliability using traversal data that matched
closely to the ones in HMM network. Since the traversal
data was artificial, the statistics didn’t really change, but
this feature should be a useful tool when it comes to the
real world, where the path between two points may not be
straight at all.

5. Conclusion and Future Work

Human-Robot interaction needs to be intuitive,
interactive, and intention aware. This paper presented the
novel approach to make the interactive multi-modal
robot-programming framework also intention aware. The
keys to managing human-robot interactions are the ability
to recognize in real-time the program the user intends to
execute, and the ability to adapt interactively to changes.
In this paper, a set of user intentions, expressed as a robot
program, was converted to HMM representations, and
was used to recognize the most likely action that could be
suggested to the user. Furthermore, we suggested a way to
incorporate new observations to adapt the statistical
model to previously unknown situations.

At this point, robot programs are sequential and non-
branching, which is a serious shortcoming if the user

intends to use a robot with sensor-based autonomy.
Interactive programming of conditional statements and
their conversion to models that are easily recognizable
and adaptable needs to be worked out. An interactive
robot-programming system that makes useful suggestions
would further improve the usability for novice robot users.

6. Acknowledgements

This research was funded in part by DARPA under
contract DAAD19-02-1-0389 and ABB under contract
1010068. Additional support was provided by the
Robotics Institute at Carnegie Mellon University.

7. References

[1] Iba, S., Paredis, C. J. J., and Khosla, P. K.,
"Interactive Multi-Modal Robot Programming,"
International Conf. on Robotics and Automations,
Washington, D.C., pp. 161-68, 2002.

[2] Yamada, Y., Morizono, T., Umetani, Y., and
Yamamoto, T., "Human error recovery for a
human/robot parts conveyance system," International
Conf. on Robotics and Automation, Washington, DC,
USA, pp. 2004-9, 2002.

[3] Manabe, Y., Hattori, M., Tadokoro, S., and Taiamori,
T., "Generation of home robots movement based on
prediction of human actions (A model of human
actions by a Petri net and prediction of human acts),"
Symposium on Robotics and Cybernetics. CESA '96
IMACS Multiconference, pp. 210-15, 1996.

[4] Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y.,
and Rosenfeld, R., "The SPHINX-II speech
recognition system: an overview," Computer Speech
and Language, vol. 7, no. 2, pp. 137-48, 1993.

[5] Young, S., Kershaw, D., Odell, J., Ollason, D.,
Valtchev, V., and Woodland, P., The HTK Book
(Version 3.0). Redmond, Washington, USA:
Microsoft Corporation, 2000.

[6] Rabiner, L. R., "A tutorial on hidden Markov models
and selected applications in speech recognition,"
Proceedings of the IEEE, vol. 77, no. 2, pp. 257-86,
1989.

[7] Bahlmann, C. and Burkhardt, H., "Measuring HMM
similarity with the Bayes probability of error and its
application to online handwriting recognition," Sixth
International Conference on Document Analysis and
Recognition, Seattle, WA, USA, pp. 406-11, 2001.

[8] Batavia, P. H. and Nourbakhsh, I., "Path planning for
the Cye personal robot," IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp.
15-20, 2000.

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frames

pr
ob

ab
ili

ty

δ t(Ot
, q

t
=s

u,i
 | λnet

) for program=u, state=i

s0,0
s3,1
s3,2

Figure 6: Probability Response from three states:
s00 (initial shared state), s31, s32

