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Abstract 

As robots enter the human environment, there are 
increasing needs for novice users to be able to program 
robots with ease. A successful robot programming system 
should be intuitive, interactive, and intention aware. 
Intuitiveness refers to the use of intuitive user interfaces 
such as speech and hand gestures.  Interactivity refers to 
the system’s ability to let the user interact preemptively 
with the robot to take its control at any given time. 
Intention awareness refers to the system’s ability to 
recognize and adapt to user intent. 

This paper focuses on the intention awareness problem 
for interactive multi-modal robot programming system. In 
our framework, user intent takes on the form of a robot 
program, which in our context is a sequential set of 
commands with parameters. To solve the intention 
recognition and adaptation problem, the system converts 
robot programs into a set of Markov chains. The system 
can then deduce the most likely program the user intends 
to execute based on a given observation sequence. It then 
adapts this program based on additional interaction. 

 The system is implemented on a mobile vacuum 
cleaning robot with a user who is wearing sensor gloves, 
inductive position sensors, and a microphone. 

1. Introduction and Related Work 

Human-Robot interaction is an important aspect of a 
successful robotic system. As robots enter the human 
environment and come in contact with inexperienced 
users, they need to be able to interact with these users in 
an intuitive and interactive fashion. An interactive multi-
modal robot programming system by Iba et al [1] 
demonstrated interactive sequential robot programming 
using voice commands and hand gestures on a mobile 
vacuum cleaning robot (Figure 1). The key elements 
behind this novice-friendly system are intuitive interfaces 
based on speech and hand gesture recognition, and 
interaction capabilities that allow the user to take over the 

control of the robot at any given time. Such interaction 
capabilities give a sense of assurance to the user and help 
him in dealing with loosely calibrated position sensors by 
including a human in the control loop using a 
combination of voice and hand-gesture commands. The 
user is able to initiate a programming phase through voice 
commands and move the robot to any desired location. 
The sequence of commands turns into a sequential robot 
program. The user can then initiate an execution phase 
and execute the program while letting the user take 
control at any given time. The multi-modal human-robot 
interaction described above can be thought of as a parallel 
to WYSIWYG (what you see is what you get) interface 
introduced in the human-computer interaction domain. 
Instead of off-line robot programming, this method lets 
the user see what to expect from the program execution. 

Intention awareness is an additional step towards a 
novice friendly robot programming system. Intent is the 
purpose or goal the user has in mind. An intention aware 
system can be used to reduce unnecessary and often 
redundant instructions by being aware of what the user 
really wants. The term intent is often loosely defined 
since it is heavily task dependent. In our framework, 
intention refers to a sequential robot program that the user 
would like to execute or modify, and the system needs to 
be able to tell if such robot program exists in the system’s 
database from inputs given by the user.   

An intention aware system should be able to map user 
input to an intended robot action, if one exists, and adapt 
such a mappings based on additional input from 
interactions. Accordingly, intention awareness for 
interactive multi-modal robot programming can be 
divided into two sub-problems: intention recognition and 
intention adaptation. We approach the intention 
recognition problem by representing robot programs as a 
set of Markov Decision Processes (MDP). We build 
Hidden Markov Models (HMM) based on the MDPs 
using observations collected during the programming 
phase. A probabilistic representation of a robot program 
can be used to better represent the realistic model of a 
robot program. Such representations allow us to search 
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efficiently for the most likely intended action based on a 
sequence of user inputs, as well as recognizing the 
possibility that the user intends to perform no action. 
Probabilistic frameworks have been applied in the past to 
model intentions, for example, in the form of HMMs [2] 
or stochastic Petri-nets [3]. This research successfully 
demonstrated intention recognition capabilities. However, 
if one claims to be truly intention aware, it is essential to 
have a mechanism to adapt and modify intention models 
according to new situations. Without such a mechanism, 
the system can only work in the way its designer 
intended. We approach the intention adaptation problem 
by giving the user a choice to simply add more robot 
programs, or to adapt existing program to the current 
situation by merging additional observations into the 
probabilistic representation. To reflect the most current 
model of intended actions, all observations of the program 
execution and all interactive corrections made at the time 
of execution are incorporated into the program 
representation. 

We describe the overall system and implementation in 
section 2, then describe the intention recognition and 
adaptation scheme in section 3, followed by the 
experimental result in section 4 and the conclusion in 
section 5.   

2. System Description 

The interactive robot programming system introduced 
by Iba et al. [1] offers the user, through an intuitive 
interface, the ability to provide interactive feedback to the 
robot to coach it throughout the programming and 
execution phase. Intention awareness is introduced in this 
paper to make the system even more novice-friendly. 

The framework is composed of three functional 
modules as illustrated in Figure 1. The first module 
(multi-modal recognition) translates hand gestures and 
spontaneous speech into a structured symbolic data 
stream without abstracting away the user’s intent. The 

second module (intention interpretation) selects the 
appropriate set of primitives based on the user input, 
current state, and robot sensor data. Finally, the third 
module (prioritized execution) selects and executes 
primitives based on the current state, sensor inputs, and 
the task given by the previous step. Each module includes 
two modes of operation: a learning and an execution 
mode. Depending on the mode of operation, the overall 
system can provide interactive robot control, or 
composition of robot programs. 

The first component, multi-modal recognition (the first 
block in Figure 1), initially interprets raw data into a 
stream of labeled data with parameters. In our system, it 
translates hand gestures and spontaneous speech into a 
structured symbolic data stream without abstracting away 
the user’s intent. The symbols could be gestures, words, 
or both. In our implementation, spontaneous speech is 
translated into words using SPHINX-II, an off-the-shelf 
speech recognition package [4]. For hand gestures, we 
implemented a word spotting technique using the Hidden 
Markov Toolkit (HTK) [5]. [1] lists some of the initial 
candidate gestures and words that such a basic vocabulary 
could include. 

The second component, intention interpretation 
module (the second block in Figure 1), generates a stream 
of prioritized action commands, given a sequence of 
labeled recognition results by the first component. The 
problem of intention interpretation can be considered as a 
mapping problem from the stream of user input, the 
current state of the system, and the robot sensor data to 
the correct robot task. The user input is an incoming 
stream of structured symbolic data (with parameters) from 
the multi-modal recognition module.  

The output is a prioritized task symbol representing a 
configuration of robot primitives, where a primitive is an 
encapsulation of a low level robot behavior. The 
primitives used for the current implementation are 
described in [1]. The task is a robot program composed of 
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Figure 1: Framework for Interactive Multi-Modal Robot Programming 
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one or more primitives. The current implementation only 
supports sequential execution of primitives. Conditional 
statements will be integrated in future work. The intention 
interpretation module is implemented as a look-up table 
that connects recognition results to action commands.  

The third component, prioritized task execution 
module (the third block in Figure 1) has two functions. 
The first is to arbitrate and execute primitives based on 
the current state, the sensor inputs, and the prioritized task 
given by the previous module. The second is to generate a 
robot program (task) by configuring primitives. For the 
arbitration, the task (a set of primitives) with the highest 
priority level is executed first. It can be interrupted by a 
task with equal or higher priority, if requested by the user. 
If possible, the system goes back to the interrupted task 
after the high priority task finishes. Such an interrupt 
scheme allows the user to stay in the control loop, and 
enables novice users to get acquainted with the system 
without feeling overwhelmed by the large number of 
unknowns in the system.  

Generation of a robot program (task) is performed 
interactively. The basic approach is to take a coaching 
strategy using a redundant input mode. The user sets the 
module to a learning mode (by giving voice command 
“program one”, for example) and executes primitives 
sequentially through hand gestures and voice commands; 
the system remembers the sequence as a task. 

The next section goes over the implementation of 
intention awareness, which is closely associated with the 
intention interpretation module.  

3. Intention Awareness 

The system’s intention awareness is composed of two 
capabilities: intention recognition and adaptation. Instead 
of merely mapping the sequence of multi-modal 
recognition results to the set of actions using the 
semantics database, the intention aware system should 
suggest which task (set of primitives) the user may want 
to execute based on an incomplete sequence of primitives 
executed by the user. This recognition ability can be 
thought of as similar to the auto-completion capability in 
a text editing program. It is especially helpful when there 
are a large number of programs, and picking any 
particular program may be difficult. The ability to 
perform online modification is also essential, since it is 
unreasonable to expect the system to have prior 
knowledge of every intended task. The system must be 
capable of adjusting and adding primitives to the program 
with ease. The system supports these adjustments by 
letting the user interrupt the task while it is running, and 
registering the interrupts as additional primitives in the 
task. 

In order to perform such recognition in the real world, 
it is necessary to represent tasks in a probabilistic 
framework rather than as a discrete sequence of 
commands such as {Goto(P1), Vacuum(vacOn), 
AreaCoverage(P2,P3), Vacuum(vacOff), GoHome()}, 
where Pi’s describe robot positions in terms of  (x, y). A 
Hidden Markov Model (HMM) [6] provides a way to 
model the task in a probabilistic framework, where both 
state transitions and observations can be expressed 
stochastically. Since no branching or looping is allowed 
in tasks, each task can be described as a left-right (Bakis) 
HMM using an observation sequence collected at the time 
of programming. Tasks represented as HMMs are 
organized and compared to the current observation 
sequence to detect which task, if any, the user may want 
to execute.  

Other systems such as the human intention recognition 
by Yamada et al. [2] and the online point-based hand-
writing recognition by Bahlmann [7] employ similar 
strategies. Our method for representing and recognizing 
tasks from an observation sequence using HMMs is 
similar to their work. However, our method has the 
advantage that it is capable of disregarding non-task 
sequences through dynamic garbage collection, without 
the prior training of a garbage model. 

Adaptation of models is necessary to account for 
changes in the robot’s environment, or modifications to 
the program made by the user while interacting with the 
system. Also, observation sequences collected from 
subsequent executions of the same task can be combined 
to improve stochastic parameters used in the HMM 
representation of the task.  

In the remainder of this section, we explain how tasks 
are represented as HMMs, how they are constructed, and 
how they can be modified in real-time during execution. 

3.1. Construction 

When a robot is programmed interactively, the system 
collects an observation sequence On = {o0n o1n … otn} for 
program action n, where ot = {xt, yt} correspond to the 
robot position at time t. The sequence O is the collection 
of observations On resulting from program actions 1 to N 
(0 is the start). The robot program is then converted into 
an HMM through the process described in Figure 2. The 
program (top of Figure 2) is first converted into a Markov 
chain description whose states correspond to each 
programmed action. The number of states in the chain is 
the number of actions in the program plus two (start and 
the end). The collected set of observations is used to 
calculate necessary statistics to describe observations 
coming out of the arcs. The observation sequence 
collected during the action associated with the state is 
used to construct the observation density function bii(o) 
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on the recurring arc, whereas observation sequence 
collected after the action but before the beginning of the 
next action is used to construct bij(o) for the transition arc. 
The state transition probability aij is determined by the 
ratio of number of observations used at recurring and 
transition arcs.  

3.2. Recognition 

During recognition, the current observation sequence 
is evaluated and compared to all robot program HMMs 
stored in the database. It is necessary to be able to detect 
in real-time which program the user may be interested in, 
and to be able to reject observations that are not part of 
any existing program. Our goal here is to find the most 
likely state qt at the current time t, given observations up 
to time t, and HMMs λ1, λ2 … λU, constructed from U 
robot programs organized into λnet as described in Figure 
3. It should be noted that the transition probabilities a*0 on 
the arcs from the initial shared state s00 are fixed to 
1/(1+U), regardless of the observation. This initial shared 
state collects observations that do not match any program. 

In order to find the single best state qt out of all states 
in the shared HMM network, we consider the variable 
δt(u,i) for program u, state i, for the Viterbi Algorithm 
extended from the definition in Rabiner’s tutorial [6]: 

)|,...,,...(max),( 1,1
... 11

nettiut
qq

t oosqqPiu
t

λδ ==
−

       (1) 

 Since we are only interested in the most likely state, 
we only need to keep the HMM trellis of δt scores to 
apply the algorithm when the new observation shows up. 
The score (probability) in each trellis entry describes the 
likelihood of being in the particular state after going 
through the most likely state sequence. Based on the 
assumption that the model λnet fully explains all 
observation sequences δt, the entire trellis is normalized to 
1.0 for every observation. The initial shared state 
becomes the most likely state if the observation sequence 
can not be explained by other models λ1..λU. After finding 
the current HMM node, the system can determine the 
action that should be taken according to the most probable 
robot program. 

3.3. Adaptation 

Online seamless adjustment of the statistics that 
describe the robot program is essential for keeping the 
system healthy. For example, an additional obstacle on 
the path between via-points can change the trajectory of 
the mobile robot, and the program description needs to be 
adjusted accordingly. The parameter adaptation can be 
used to improve HMM parameters over multiple 
executions of the same task. This can be done by first 
partitioning the observation sequence and merging 
statistics derived from additional samples with the old 
ones. Merging nadd additional samples with mean vector, 
µadd, and covariance matrix, Σadd, with nold old samples 
with µold, Σold to derive new combined statistics, nnew, µnew, 
Σnew can be done as follows: 

oldaddnew nnn +=        (2) 

newoldoldaddaddnew nnn  / )( µµµ +=        (3) 

)1( / )( −+++=Σ newnew nDCBA        (4) 
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We can compute statistics for adapted observation 
probabilities using above equations without having to 
keep the entire observation history. For implementation 
purposes, we always set nold = nadd, so that the effects from 
old samples will eventually decay with additional 
adaptation cycles. 

4. Experiment 

The system’s intention awareness was tested on the 
Cye personal robot [8] with vacuum cleaner against three 
robot programs in the database. Because observation 
sequences generated from an interactive user control are 
not reliable as a basis of comparison against HMM 
representation of a robot program, we used artificially 
generated observation sequences instead of direct user 
interaction to address issues such as intention recognition, 
and model adaptation. Three test programs used are: 

t1 = {Goto(P1), Vacuum(vacOn), Goto(P2), 
AreaCoverage(P3, P4), Vacuum(vacOff), 
GoHome()} 

t2 = {Vacuum(vacOn), Goto(S1), Goto(S2), 
AreaCoverage(S3, S4), GoHome()} 

t3 = {Goto(T1), Goto(T2), Goto(T3)} 

 where Pi, Si, Ti all represent positions on the map 
in (x, y), as described on Figure 4. 

HMM representations, λ1, λ2, and λ3, for the test 
programs, t1, t2, and t3 are created through the method 
described in section 3.1, after single execution of the 
program to collect observation sequence. Observations 
were collected in ~5Hz. The resulting HMM network 
representation, λnet, is similar to that of Figure 3, but with 
three programs with different number of states. Their 
observation probability distributions are described on 
Figure 5. 

Recognition was performed on the constructed HMM 
network using an artificial traversal data that travels in the 
order of {Home, P2, P1, T1, T2, Home}. Figure 6 describes 
the probability response of the states that correspond to 
s00, the initial shared state, s31 and s32 that correspond to 
1st and 2nd states in the third program, t3. The system 
recognized that the most likely state while traversing 

Figure 4: Positions used for the  
test programs t1, t2, and t3, 

 
Figure 5: Observation probability distributions for the 

HMMs of the test programs λ1, λ2, λ3 
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through P1, T1 and T2 were s31 and s32. The observations 
used to model the probability on s31’s recurring arc came 
from the path in between Home and T1 that P1 happens to 
be close to. Also, it should be noted that in between those 
regions with definite decisions, there exist a reading 
where the system seem bit confused. Those regions are 
where s00, the initial shared state with solid line on the 
graph can tell you that there are no conclusive winner and 
thus the system should give no decision. 

Adaptation of HMM statistics were performed for 
additional reliability using traversal data that matched 
closely to the ones in HMM network. Since the traversal 
data was artificial, the statistics didn’t really change, but 
this feature should be a useful tool when it comes to the 
real world, where the path between two points may not be 
straight at all. 

5. Conclusion and Future Work 

Human-Robot interaction needs to be intuitive, 
interactive, and intention aware. This paper presented the 
novel approach to make the interactive multi-modal 
robot-programming framework also intention aware. The 
keys to managing human-robot interactions are the ability 
to recognize in real-time the program the user intends to 
execute, and the ability to adapt interactively to changes. 
In this paper, a set of user intentions, expressed as a robot 
program, was converted to HMM representations, and 
was used to recognize the most likely action that could be 
suggested to the user. Furthermore, we suggested a way to 
incorporate new observations to adapt the statistical 
model to previously unknown situations. 

At this point, robot programs are sequential and non-
branching, which is a serious shortcoming if the user 

intends to use a robot with sensor-based autonomy. 
Interactive programming of conditional statements and 
their conversion to models that are easily recognizable 
and adaptable needs to be worked out. An interactive 
robot-programming system that makes useful suggestions 
would further improve the usability for novice robot users. 

6. Acknowledgements 

This research was funded in part by DARPA under 
contract DAAD19-02-1-0389 and ABB under contract 
1010068. Additional support was provided by the 
Robotics Institute at Carnegie Mellon University. 

7. References 

[1] Iba, S., Paredis, C. J. J., and Khosla, P. K., 
"Interactive Multi-Modal Robot Programming," 
International Conf. on Robotics and Automations, 
Washington, D.C., pp. 161-68, 2002. 

[2] Yamada, Y., Morizono, T., Umetani, Y., and 
Yamamoto, T., "Human error recovery for a 
human/robot parts conveyance system," International 
Conf. on Robotics and Automation, Washington, DC, 
USA, pp. 2004-9, 2002. 

[3] Manabe, Y., Hattori, M., Tadokoro, S., and Taiamori, 
T., "Generation of home robots movement based on 
prediction of human actions (A model of human 
actions by a Petri net and prediction of human acts)," 
Symposium on Robotics and Cybernetics. CESA '96 
IMACS Multiconference, pp. 210-15, 1996. 

[4] Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., 
and Rosenfeld, R., "The SPHINX-II speech 
recognition system: an overview," Computer Speech 
and Language, vol. 7, no. 2, pp. 137-48, 1993. 

[5] Young, S., Kershaw, D., Odell, J., Ollason, D., 
Valtchev, V., and Woodland, P., The HTK Book 
(Version 3.0). Redmond, Washington, USA: 
Microsoft Corporation, 2000. 

[6] Rabiner, L. R., "A tutorial on hidden Markov models 
and selected applications in speech recognition," 
Proceedings of the IEEE, vol. 77, no. 2, pp. 257-86, 
1989. 

[7] Bahlmann, C. and Burkhardt, H., "Measuring HMM 
similarity with the Bayes probability of error and its 
application to online handwriting recognition," Sixth 
International Conference on Document Analysis and 
Recognition, Seattle, WA, USA, pp. 406-11, 2001. 

[8] Batavia, P. H. and Nourbakhsh, I., "Path planning for 
the Cye personal robot," IEEE/RSJ International 
Conference on Intelligent Robots and Systems, pp. 
15-20, 2000. 

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frames

pr
ob

ab
ili

ty

δ t(Ot
, q

t
=s

u,i
 | λnet

 ) for program=u, state=i

s0,0
s3,1
s3,2

Figure 6: Probability Response from three states: 
s00 (initial shared state), s31, s32 


