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THE GEORGE W. WOODRUFF SCHOOL OF 
MECHANICAL ENGINEERING 

7===rn4;77,0AN9 

GiOnGlA TICK 11115-1965 

DESIGNING TOMORROW TODAY 

11 September 1986 

Dr. G. McKee 
Davidson Laboratory 
Stevens Institute of Technology 
Hoboken, NJ 07030 

Dear Glenn: 

Pursuant to our recent telephone conversation, I am writing to provide you 
with an update of my research associated with our ONR contract. I 
conducted some preliminary computations of turbulent flow over a backward 
facing step using a vorticity-streamfunction code developed by G. Mellor of 
Princeton University (a sample output of a turbulent separated flow is 
attached). However, this code now appears to have the undesirable feature 
of giving rise to instabilities when the inlet flow conditions are 
appreciably changed (this problem results from singularities in the 
vorticity terms at the corner of the step). Consequently, I have lost 
complete confidence in the results of the code and I am now conducting 
alternate calculations based on the TEACH Code (a primitive variable 
formulation). Some, definitive results should be forthcoming in the next 
month or two. 

In connection with my ONR research, I am scheduled to present papers at the 
following meetings: 

(i) The Tenth Symposium on Turbulence, University of Missouri- 
Rolla, 22-24 September 1986 

(ii) The APS/Division of Fluid Dynamics Meeting, The Ohio State 
University, 23-25 November 1986 

I have already sent you copies of these papers. If you have any additional 
questions or comments, please feel free to call me. 

Sincerely, 

Charles G. Speziale 
Associate Professor 
[404-894-7404] 

jmv 
enclosure 

Georgia Institute of Technology 
Atlanta. Georgia 30332-0405 

An Equal Education and Employment Opportunity Institution 	 A Unit of the University System of Georgia 
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5 January 1987 

Dr. Glenn McKee 
The Davidson Laboratory 
Stevens Institute of Technology 
Hoboken, NJ 07030 

Dear Glenn: 

I am writing to inform you of the progress of my work related to 
our ONR contract. 	The computations on turbulent flow past a 
backward facing step have been completed. 	Mr. Tuan Ngo (my 
graduate student) is currently writing his Master's Thesis on 
this subject and I will send a copy to you when it becomes 
available in February. A condensed version of this paper will be 
submitted to the ASME Journal of Fluids Engineering, for 
publication. 

During the upcoming months, I have offered to present two papers 
at conferences which arose out of this ONR work. These papers 
are as follows: 

(i) "Numerical Study of Turbulent Flow Past a Backward 
Facing Step." 20th Midwestern Mechanics Conference. 

(ii) "On the Invariance of Turbulence Models Obtained from a 
Two-Scale DIA Method." 	24th Annual Meeting of the 
Society of Engineering Science. 

and I have enclosed copies of each. 

If you have any comments or questions, please feel free to 
contact me. 

Sincerely, 

L 
Charles G. Speziale 
Associate Professor 
[404-894-7404] 

jmv 
enclosure 

Georgia Institute of Technology 
Atlanta Georgia 30332-0405 
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NUMERICAL STUDY OF TURBULENT FLOW PAST A 
BACKWARD FACING STEP* 

C. G. Speziale and Tuan Ngo 

The George W. Woodruff 
School of Mechanical Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332 

ABSTRACT 

The problem of fully-developed turbulent flow past a backward facing step 
has played a central role in bench marking the performance of turbulence models 
in the prediction of separated flows. It is well known that the widely used K - c 
model of turbulence badly underpredicts the reattachment point in this problem 
(the relative error is of the order of 20-25%). A numerical solution of this 
problem is presented using a new nonlinear generalization of the K-r model (see 
Speziale [1,2]). Computations are performed at high Reynolds numbers on a finite 
difference mesh with approximately 20,000 grid points using the TEACH computer 
code. The computed results that are obtained show a dramatic improvement in the 
reattachment point over that which is predicted by the linear K - c model. 
Comparisons between the computed and experimental mean velocity profiles and 
turbulence intensities are made. It is also demonstrated that the results 
obtained herein compare favorably with those generated by second-order closure 
models which require substantially more computer time. Applications of the 
results obtained in this study to problems of technological importance are 
discussed briefly. 

REFERENCES 

[1] C. Speziale, Bull. Am. Phys. Soc. 30, 1693 (1985). 
[2] C. Speziale, J. Fluid Mech. (in press). 

*Research supported by ONR Contract N00014-85-K-0238 



ON THE INVARIANCE OF TURBULENCE MODELS OBTAINED FROM A TWO-SCALE 
DIA METHOD* 

Charles G. Speziale 

The George W. Woodruff 
School of Mechanical Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332 

ABSTRACT 

Recently, Yoshizawa [1] obtained a generalization of the eddy viscosity 
representation for the Reynolds stress tensor from a statistical viewpoint 
based on a spectral analysis. To be more specific, Kraichnan's DIA formalism 
was combined with a scale expansion technique where the slow variations of 
the mean field were distinguished from the fast variations of the fluctuating 
fields. The resulting representation for the Reynolds stress tensor contained 
additional terms consisting of the substantial derivative and Laplacian of 
the mean rate of strain tensor along with additional terms that were 
quadratic in the mean velocity gradients. 

In this paper, it will be demonstrated that this generalization of the 
eddy viscosity model for the Reynolds stress tensor (in the form given in 
[1]) is inconsistent with the established invariance property of material 
frame-indifference in the limit of two-dimensional turbulence [2]. By making 
a suitable modification in the coefficients of the nonlinear terms of this 
representation, it will be shown how this invariance property can be 
satisfied identically. The second-order accurate approximation of this 
properly invariant expression for the Reynolds stress tensor will be shown to 
be identical to the nonlinear K-I and K-c model recently derived by Speziale 
[3] by alternate means. Some of the improved predictions that this 
generalization of the eddy viscosity model yields for turbulent internal 
flows will be discussed briefly. 

REFERENCES 

[1] A. Yoshizawa, Phys. Fluids 27, 1377 	(1984). 
[2] C. Speziale, Phys. Fluids 24, 1425 	(1981). 
[3] C. Speziale, J. Fluid Mech, in press. 

Research supported by ONR Contract N00014-85-K-0238. 



THE GEORGE W. WOODRUFF SCHOOL OF 
MECHANICAL ENGINEERING GEORGIA =CH 1111154948 

DESIGNING TOMORROW TODAY 

11 March 1987 

Dr. G. McKee 
Davidson Laboratory 
Stevens Institute of Technology 
Hoboken, NJ 07030 

Dear Dr. McKee: 

Enclosed you will find a copy of my annual technical report for 
our ONR Contract N00014-85-K-0238. As you will see when you 
examine this report, the proposed research for the backward 
facing step problem has been completed. This work represents the 
Masters Thesis of Mr. Tuan Ngo who will be graduating from 
Georgia Tech this month. It will be submitted for publication in 
the ASME J Appl Mech. 

In addition to this work, I would like to briefly summarize the 
other publications that resulted from my part of this research 
program for the second year (i.e., the time period of March 1986 
- February 1987): 

(i) "On the Decomposition of Turbulent Flow Fields for the 
Analysis of Coherent Structures," Proceedings of the Tenth 
Symposium on Turbulence, University of Missouri-Rolla, pp. 
10:1 - 1Q:6 (September 1986). 

(ii) "On the Prediction of Turbulent Flow Past a Backward Facing 
Step," (with Tuan Ngo), Bull Am Phys Soc 31, 1733 (1986). 
This work was presented at the 39th Annual Meeting of the 
APS/Division of Fluid Dynamics, The Ohio State University, 
November 1986. 

In addition to these works, I 
entitled "Numerical Study of 
Facing Step" (with Tuan Ngo) 
Conference which is to be held 
- 2 September 1987. 

am scheduled to present a paper 
Turbulent Flow Past a Backward 
at the 20th Midwestern Mechanics 
at Purdue University on 31 August 

Georgia Institute of Technology 
Atlanta, Georgia 30332-0405 

An Equal Education and Employment Opportunity Institution 	 A Unit of the University System of Georgia 



Dr. G. McKee 
page 2 - 11 March 1987 

I would welcome any comments or questions that you may have, and 
will look forward to our interactions during the third year of 
this research program. 

Sincerely, 

/1-0414-s-A 
Charles G. Speziale 
Associate Professor 
[404-894-7404] 

jmv 
enclosure 

CC: 
	

Dr. James Fein 
Dr. Doyle Knight 
Dr. Siva Thangam 



NUMERICAL SOLUTION OF TURBULENT FLOW PAST A 
BACKWARD FACING STEP USING A NONLINEAR K -E MODEL 

by 

C. G. Speziale and Tuan Ngo 

Technical Report ME-VH-87001 

March 1987 

Annual Report 

for 

ONR Contract N00014-85-K-0238 
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NUMERICAL SOLUTION OF TURBULENT FLOW PAST A 

BACKWARD FACING STEP USING A NONLINEAR K-E MODEL 

C. G. Speziale and Tuan Ngo 

The George W. Woodruff School of Mechanical Engineering 

Georgia Institute of Technology 

Atlanta, GA 30332 

ABSTRACT 

The problem of turbulent flow past a backward facing step is important 

in many technological applications and has been used as a standard test 

case to evaluate the performance of turbulence models in the prediction of 

separated flows. It is well known that the commonly used K-E (and K-1) 

models of turbulence yield inaccurate predictions for the reattachment 

point in this problem. By an analysis of the mean vorticity transport 

equation, it will be argued that the intrinsically inaccurate prediction of 

normal Reynolds stress differences by the K-e and K-11 models is a major 

contributor to this problem. Computations using a new nonlinear K- E model 

(which alleviates this deficiency) are made with the TEACH program. 

Comparisons are made between the improved results predicted by this 

nonlinear K-E model and those obtained from the linear K-E model as well as 

from second-order closure models. 



1. 	INTRODUCTION 

Among the various turbulence models in existence, the linear K-E 

and K-t models are the most widely used by scientists and engineers to 

solve practical problems. The primary advantages of the models 

include their broad invariance properties and the relatively simple 

manner in which they can be incorporated into most existing 

Navier-Stokes computer codes which allow for a variable viscosity (see 

Speziale 1986). Furthermore, for unseparated turbulent boundary 

layers, these linear K-Q and K-E models have been shown to provide 

excellent descriptions of the flow (see Rodi 1982). 

However, one major drawback of the linear K-6 (and K-Q) model is 

that it yields highly inaccurate predictions for the normal Reynolds 

stress differences. Consequently, for the types of turbulent flow 

where the normal Reynolds stress differences play an important role 

(such as secondary flows in a non-circular duct or separated flows), 

the linear models can give rise to considerable inaccuracies. There 

have been many efforts over the years to include nonlinear effects in 

the modeling of the Reynolds stresses within a two-equation format 

(see Lumley 1970, Launder and Ying 1971, Gessner and Emery 1976, and 

Saffman 1977). However, these models do not exhibit the general 

invariance necessary for the broadest range of application. Recently, 

a nonlinear K - E (and K-9„) model was obtained by making an asymptotic 

expansion subject to the constraints of dimensional and tensorial 

invariance, realizability, and material frame-indifference in the 



limit of two-dimensional turbulence (see Speziale 1986). This model 

was shown to yield improved predictions for the normal Reynolds 

stresses in internal flows which are unseparated. However, for any 

proposed model to be sufficiently applicable, it has to be successful 

in predicting turbulent flows which have separated regions since these 

occur in a wide variety of problems which are of technological 

importance. 

In this study, the new nonlinear K - c model is incorporated into 

the TEACH computer code in order to analyze the problem of a 

two-dimensional turbulent flow past a backward facing step. Turbulent 

flow past a backward facing step has served as a primary benchmark for 

the performance of turbulence models in the prediction of separated 

flows (c.f., Abbott and Kline 1962; Briggs, Mellor and Yamada 1977; 

Kim, Kline and Johnston 1980; Eaton and Johnston 1981; Sindir 1982; 

Celenligil and Mellor 1985; and Chen 1985). The nonlinear K-E model 

will be shown to yield improved predictions for the reattachment point 

and turbulence intensities. Comparisons between the computed 

turbulence statistics and existing experimental data (along with the 

predictions of other turbulence models) will be made. In addition, 

the sensitivity of the results to the new empirical constant in the 

nonlinear model will be examined along with the effect of the Oldroyd 

derivative terms. The numerical results obtained will be discussed in 

detail along with other prospective future research. 

2 



( 3 ) 

2. THE PHYSICAL PROBLEM 

The problem to be considered in this study consists of the 

turbulent flow of an incompressible viscous fluid past a backward 

facing step (see Figure 1). The governing equations to be solved are 

the Reynolds equation and the continuity equation which are of the 

general form (c.f., Hinze 1975) 

DV 
a-  + V.VV ) p ( 	 = - V P + pV 2-  V + V'T 

V•V = 0 

where 

v 	Mean velocity field 

P E Mean pressure field 

p = Density of the fluid 

p E Dynamic viscosity of the fluid 

and T is the Reynolds stress tensor whose components are given by 

T.. = - pU.U. lj 	1 j 

where u is the fluctuating part of the velocity field. 

In order to achieve closure, equations relating the Reynolds 

stress tensor to the global history of the mean velocity field are 

needed. For the linear K-E model of turbulence, the Reynolds stress 

tensor is assumed to be of the form (see Hanjalic and Launder 1972) 

3 



2 
Iii = - 2  p K d.. + 2p C 	u. p E

K 
lj 

where 

1 
K = - — T 2p 11 

	

ay

- 

. 	ay

- 

. 
.. = 1 r 	) 5 
13 	2 L ax. 	ax. ) 1 

are, respectively, the turbulent kinetic energy per unit mass, and the 

mean rate of strain tensor. 	Here, E is the dissipation rate of 

turbulence, and C 	is a dimensionless constant which assumes an 

approximate value of 0.09. 

Typically, at high Reynolds numbers, the turbulent kinetic energy 

and dissipation rate are modeled by transport equations (c.f., 

Hanjalic and Launder 1972) of the form 

@v

- 

. DK 	1 	 a = _ T .. 
Dt 	p T ij 3 . 	C 1 3x. xj  

K ( 
	 !Iii 	aK 

P 
2
6  L

T jm axm 	P T ij 8x. ) 

	

3v

- 

. 	2 
DE 	_ C 2 	a 	K 	aE ) + , E 	i 	E 

Tij 
	T k... -- T

ij 
	C 

Dt = 	p 	ax. ( e ij a . 	C3 pKijax.4K 1 	 xj 	
J 

(8) 

where C 1 , C2,  C3, and C
4 

are dimensionless constants which take the 

approximate values of 0.11, 0.15, 1.43, and 1.92, respectively. 

The above set of equations are closed, and form the basis for the 

linear K-E model. Because of its simple structure, the K- E model can 

4 

(4) 

(5) 

(6) 
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be easily incorporated into any Navier-Stokes computer code which 

allows for a variable viscosity. This feature, together with its 

accurate predictions of thin turbulent shear flows (i.e., unseparated 

turbulent boundary layers), has made the model very popular with 

engineers and scientists (see Rodi 1982). Nevertheless, despite these 

advantages, the K -E model is known to yield highly inaccurate 

predictions for the normal Reynolds stresses. For example, in a fully 

developed turbulent channel flow (see Figure 2), the linear K - E model 

predicts that the normal Reynolds stresses are all equal, i.e., that 

T
XX 

= T
YY 

 = T 
ZZ 
	

(9) 

which is in substantial contradiction of experimental data. 	To be 

more specific, the experimental data of Laufer (1951) for turbulent 

channel flow at a Reynolds number of 30,800 indicates that contrary to 

(9), 

II T yy 	T XXI I  11T vv 	Txxli  - 
li T xx 11  

where 11'11  denotes the maximum norm. 

At1  
 11Txyll 	
2.5 

 
(1 0) 

Such serious errors in the normal Reynolds stress difference (I 
YY 

T
XX

) can yield significant inaccuracies in the calculation of a 

two-dimensional recirculating flow with the mean velocity 

v = u(x,y)i + v(x,y)j• 	 (11) 

A problem arises since such a flow is a solution of the vorticity 

transport equation (which determines the mean velocity) 



2 
a
2
T a 2

(TYY x 
) 	a T 

aw 	BW 	v2W + u T(. + v Ty-  = 	axay 	
x 	xy 	xy 

ax2 	ay2 

where V = ap is the kinematic viscosity and 

— _ Dv 	au U 
ax 	ay 

is the mean vorticity. 	In the recirculation zone of turbulent flow 

past a backward facing step (see Figure 1), the term 

a 2 (T
yy 

- T ) 
xx  

axay (7)  

(which vanishes in a unidirectional mean turbulent flow or in an 

unseparated turbulent boundary layer) is of a comparable order of 

magnitude to the Reynolds shear stress terms on the right-hand-side of 

(12). This arises from the fact that x-derivatives are of a 

comparable order of magnitude to the y-derivatives and, as indicated 

above, 
IITyy 

- T XXII > II T xy II 
in the recirculating zone. Hence, the 

serious inaccuracies that arise from the linear K- c model in the 

calculation of the reattachment point for the backward facing step 

problem may be largely due to this modeling deficiency in the normal 

Reynolds stresses (see Speziale 1986). 

The linear K - 6 model substantially underpredicts the reattachment 

point for turbulent flow past a backward facing step as discussed 

extensively at the 1980-81 AFOSR-HTTM Stanford Conference on 

Turbulence (the separation length L/AH predicted by this model varies 

6 

(12) 



from 5.2 to 5.5, whereas experiments indicate that it should be 

approximately 7.0). As alluded to above, a significant cause of this 

problem may arise from the inability of the linear K- E model to 

predict normal Reynolds stress differences accurately. Recently, 

Speziale (1986) derived a nonlinear generalization of the K- E model 

which takes the form 

	

K 	
lj 

2 
 

Iii = 
- 3 p K6. + 2pC 	D. 

 j 	E  

	

2 	
3 

 
+ 4 CD 	p 
	(Dim 
	. - — D..) 

	

D u 	2 	im mj 	3 mn
D 
 mn

6 
 ij 

3 ° 
+ 4 C

E  Cu  p K2 
-- (D.. - 	DmW ij ) 
E 

(14) 

where 

	

D. = 	r ay. 	av 
__a ) 

	

lj 	2 	ax. 	ax. 

35. 	av 	av . 	

- 

. 

	

5i  = 
	5 	_ 

- 

. 5 	5 	(15) 

	

j 	at 	 ij 	axm mj 	ax
m 	

mi 

and C
D 

= C
E 

= 1.68. 	As a result of the presence of the Oldroyd 

derivative term 	
j 

D..
lj 

and the quadratic terms in 5 l., this nonlinear K- E 

model is able to describe turbulent memory effects (it bears a certain 

resemblance to the Rivlin-Ericksen fluids of viscoelastic 
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flow; see Rivlin 1957) and yields much more accurate predictions for 

the normal Reynolds stresses in turbulent channel flow. 

The Reynolds equation (1) for turbulent flow past a backward 

facing step has two components which take the form 

	

r - Du _I.  — au ) 	aP at 
= - 	+ 	+ 

aT xx 	xy  
P 	u  ax ' v  ay 	ax 	ax 	ay 

- 	 - 	 - av _,_ - av ) = 	aP + at xy .4_ at yy p 	u .5-i + v 77 1 

	

ay 1 	
_ 

i5T, 	ax 	ay 

where (for the nonlinear K - E model) 

2, + 
	K

2 
3

5 
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p K 
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 3 	 E 	ax 

+ 4  p C 2 
3 

3 	p 2 
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E
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2 _ - 
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+ 4 C  
2 K

3 ( - a 2 5 - 	a 2 v ) 
P E  C —f 	u 2  

11  E 	ax 	ay2 

2 
2 , „ K aV 
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In deriving (18) - (21), the continuity equation (2) given by 

au 4_ ay _ n 
 ax 	ay - 

(19) 

has been made use of. Equations (16) - (22) must be supplemented with 

transport equations for K and E. For the problem under consideration, 

turbulent diffusive effects can be neglected (see Chen 1985) and, 

thus, the transport equations (7) - (8) can be simplified to the form 

(21) 
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Equations (16) - (24) represent a closed system of equations for the 

determination of the mean turbulent flow fields. Of course, these 

equations must be solved subject to the appropriate boundary 

conditions. For turbulent flow past a backward facing step, these 

boundary conditions consist of fully-developed turbulent channel flow 

sufficiently far upstream and downstream of the step. The law of the 

wall is applied at the solid boundaries (c.f., Rodi 1982). More 

details concerning the boundary conditions will be presented in the 

next section where the numerical approach will be discussed. 



3. NUMERICAL METHOD 

In this study, the Imperial College's TEACH (Teaching Elliptic 

Axisymmetry Characteristics Heuristically) computer program will be 

used since it was written for the calculation of recirculating flows 

and performs reasonably well for such problems (see Lilley and Rhode 

1982). Furthermore, because this program is based on the linear K - E 

model, it is a relatively straightforward process to incorporate the 

nonlinear K-E model (this simply requires the addition of the 

appropriate nonlinear terms where the Reynolds stresses appear). 

The TEACH computer program will be implemented on the nonuniform 

finite difference mesh shown in Fig. 3. This 166x73 finite difference 

mesh spans 5 step heights upstream and 30 step heights downstream from 

the step. The grids are uniform and extremely dense in the 

recirculation region and in the vicinity of step corners in order to 

conveniently calculate and adequately resolve the higher-order 

velocity gradients. Special merits of the staggered grid system used 

in the TEACH code are discussed in Gosman and Pun 1974, and Gosman and 

Ideriah 1976. The scheme is second-order accurate overall since the 

first-order derivatives are evaluated by central differences over a 

single mesh spacing (c.f., Roache 1972). However, in evaluating 

second-order derivatives (which are needed in the nonlinear model), 

this nonuniform mesh requires a more complex finite difference 

expression which has a second-order accurate form given by 
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f"(i) = 2 

 

. 	 . 
f(i+1) A

3 
  - f(1)(A

3 
 + A+

3 
 ) + f(1-1) A+3  

 

2 2 A+ A - (A+ + A - ) 

   

A+  A_ 
+ f'(i) ( 	A A 	) 

+ - 

where f(i) is any function, f'(i) is its first derivative, f"(i) is 

its second derivative, A+  is the mesh spacing in the forward 

direction, and A_ is the mesh spacing in the backward direction. 

Equation (25) can be applied for the calculation of second partial 

derivatives with respect to x or y (by invoking the continuity 

equation, no mixed derivatives in x and y need to be calculated). 

Since this finite-difference expression requires the value for f', 

which is not exact, this expression is actually somewhat less than 

second-order accurate. Hence, the application of equation (25) is 

limited to outside of the recirculation zone where second derivative 

contributions are small. Within, and immediately adjacent to, the 

recirculation zone (where the mesh is uniform), fourth-order accurate 

expressions for the first and second derivative terms in the Reynolds 

stresses are used that are given by 

f'(i) = -f(i+2) + 8f(i+1) - 8f(i-1) + f(i-2)  
120 

f"(i) - -f(i+2) + 16f(i+1) - 30f(i) + 16f(i-1) - f(i-2)  

1202 

(25) 

(26) 

(27)  



A top hat filtering scheme is used to smooth any numerical 

fluctuations which arise due to the steep velocity gradients. The 

reader is referred to Isaacson and Keller (1966) for more details on 

these numerical representations. 

In the TEACH code, the governing equations for the linear K- E 

model are the continuity equation, the x and y components of the 

Reynolds equation, and the kinetic energy and dissipation rate 

transport equations as given in the previous section. The Poisson 

equation for pressure (obtained by taking the divergence of the 

Reynolds equation (1)) is also used since the solution procedure here 

is based on primitive variables (i.e., is based on pressure-velocity 

as opposed to the stream function-vorticity approach). Since the 

problem considered is at very high Reynolds numbers (above 100,000), 

the contributions of the diffusion terms in the transport equations 

for K and e are quite small and can be neglected. For more details on 

this general numerical method, the reader is referred to Lilley and 

Rhode (1982). 

The governing equations for the nonlinear K-E model are the same 

as for the linear model except for the differences in the expressions 

for the Reynolds stresses. Since the additional nonlinear terms in 

the Reynolds stresses are not extremely large, they are simply treated 

as added source terms in the TEACH code. It should be noted that the 

variables 
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are already calculated for the linear K - E model and, hence, are 

generated by the basic TEACH code. The only new variables that need 

to be calculated are the second derivatives of the velocity fields 

a 2 t-i 
2- 

a u 
2- 

a v 

 

2- 
a v 

     

ax2 ' ay2 ' Bx2 ' By 
 

Inside the recirculation region, these second derivatives are computed 

by the fourth-order accurate finite difference scheme given by 

equation (27). A lower-order accurate scheme was tried, but it 

yielded some fluctuations in these derivative fields (especially 

within the recirculation zone) due to its inability to resolve the 

steep velocity gradients. This problem persisted (although to a 

substantially lesser extent) even with the higher-order accurate 

scheme and therefore a smoothing filter was employed. As alluded to 

earlier, a top hat filter was used. This filter can be applied to a 

field more than one time, yielding a smoother result after each pass. 

The velocity fields are filtered once before they are used in 

evaluating first and second derivatives. As mentioned before, a 

fourth-order accurate expression is also used to calculate the first 

derivatives within the recirculation zone in the nonlinear Reynolds 

stress calculations. It should be noted that at the solid boundaries, 

an outward Taylor expansion is used to evaluate the derivatives. 
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After obtaining the first and second order derivatives, the nonlinear 

part of each Reynolds stress is readily obtained from equations (18) - 

(21). In order to incorporate these nonlinear Reynolds stress terms 

into the program, the linear representations for the Reynolds stresses 

were located in the various parts of the TEACH code, and the nonlinear 

terms were added in an appropriate fashion. 

Computations were conducted in a channel with an expansion ratio 

of 3:2 at a Reynolds number of approximately 132,000 (based on the 

upstream centerline mean velocity and downstream channel width). The 

program was run with an automatic vectorizer on the CYBER 205 computer 

at the University of Georgia. Iterations were performed until a 

converged solution was obtained based on a residual source criterion 

(see Lilley and Rhode 1982). Approximately 90 minutes of CPU time 

were required on a 166x73 mesh for the nonlinear K - E model to 

converge, whereas only about 45 minutes were needed for the linear K - E 

model. The number of steps required for a converged solution depends 

on the model and the input conditions and varied from 400 to 1000 

Iterations. The closer that the initial guess of the variable fields 

is to the actual solution, the less iterations are needed. However, 

by a comparison of the rate that the residual sources decrease, it was 

clear that the nonlinear model converges at a slower rate than the 

linear model. This is not very surprising considering the fact that 

the nonlinear K - E model contains Reynolds stress relaxation terms 

which are dispersive rather than dissipative. The detailed numerical 

results obtained will be discussed in the next section. 



4. DISCUSSION OF THE RESULTS 

We will now present the computed results obtained for turbulent 

flow over a backward facing step for a Reynolds number Re = 132,000 

and an expansion ratio of 3:2. The computed streamlines and mean 

velocity profiles obtained from the linear K - 6 model are shown in Fig. 

4 which clearly indicate a reattachment length of L/AH = 5.5 -- a 

value in the range of previously conducted computations. This 

compares rather unfavorably to the experimental value of L/AH = 7.0 

(see Kim, Kline, and Johnston 1980). The nondimensional turbulence 

intensity (uu) 1/2  and shear stress uv obtained from the linear K- c 

model are shown in Figs. 5-6 alongside the available experimental data 

(reliable experimental data is not available for the recirculation 

zone). The computed streamlines and mean velocity profiles obtained 

from the nonlinear K-6 model, shown in Fig. 7, clearly demonstrate an 

improved prediction for the reattachment point of L/AH = 6.4. This 

improvement is probably due to the better prediction of the turbulence 

intensities in the recirculation zone (the reader should compare Figs. 

8-9 with Figs. 5-6). However, since no reliable Reynolds stress data 

is available inside the recirculation zone (due to flow oscillations), 

the present conclusion must rest on comparisons of data from Kim, 

Kline, and Johnston (1980) downstream of the reattachment point. 

Comparisons will now be made between the results of the nonlinear 

K- E model and those obtained from second-order closure models. As 

shown in Fig. 10, the second-order closure model of Briggs, Mellor, 
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and Yamada (1977) predicts a reattachment length of L/AH = 8.0 (it 

should be noted, however, that in a more recent study of this model 

conducted by Celenligil and Mellor 1985, a result L/AH = 7.7 was 

claimed which is of a comparable accuracy to the result of L/AH = 6.4 

predicted by the nonlinear K-E model). The reasons for this 

compatibility are more apparent when Reynolds stress results are 

compared. As shown in Fig. 11, the turbulence intensity predictions 

of the nonlinear K-6 model and the second-order closure model are in 

good qualitative agreement throughout the unseparated flow. The 

turbulent shear stress predictions shown in Fig. 12 are not in as good 

agreement inside the recirculation zone (it is unfortunate that no 

reliable data is available in this region in order to make a critical 

comparison). However, in so far as the reattachment point is 

concerned, it is clear that the nonlinear K - E model yields comparably 

good, if not better, results to second-order closure models with the 

need for substantially less calculations (second-order closure models 

require a higher level of computation since transport equations must 

be solved for each component of the Reynolds stress tensor). 

The nonlinear K -E model examined herein introduces two new 

empirical constants, C D  and C E , in equation (14). These constants 

were found to assume a value of 1.68 by correlating with experimental 

data for normal Reynolds stress differences in turbulent channel flow 

(Speziale 1986). 	However, the accuracy of this data is somewhat 

questionable; 	errors of the order of 10% can easily occur. 

Consequently, calculations were performed to test the sensitivity of 

17 
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the computed results to the precise value of C O  and C E . 	For this 

purpose, the computations were repeated for C D  = CE  = 1.40. 	The 

computed streamlines and turbulence intensity for this case are 

compared with the previous computations in Figs. 13 - 14. There is no 

significant difference in the two results, indicating that even a 15% 

error in the predicted value of CD  and C E  would have little effect on 

the major conclusions of this study. 

Computer runs were also made for the nonlinear K - E model where 

the second-order derivative terms of the mean velocity arising from 

the Oldroyd derivative in (14) are set to zero (such a resulting model 

bears a qualitative resemblance to previous nonlinear models proposed 

by Lumley 1970 and Saffman 1977). As shown in Fig. 15, without the 

second-order derivatives, the resulting reattachment length reduces a 

significant amount to a value of L/AH = 6.0. This shortening of L/AH 

is not unexpected since the second derivative terms have a dispersive 

character which would reduce the dissipation in the separated zone 

allowing it to expand. It is rather surprising, however, that the 

elimination of the second derivative terms had a relatively small 

effect on the turbulent stress intensity shown in Fig. 16. Since the 

second derivative terms generally are of a comparable order of 

magnitude to the first derivative terms squared (see equations (18) - 

(21)), one might expect the contribution of these terms to be more 

significant in the turbulence intensity predictions. Hence 

considering their substantial impact on the reattachment point, the 

most dominant contribution of the second derivative terms must be in 



the prediction of normal Reynolds stress differences (quantities which 

play an important role in the calculation of a recirculating flow as 

discussed earlier). Thus, it is clear that the Oldroyd derivative 

(which distinguishes this new nonlinear K - E model from all previous 

such nonlinear models) plays a significant role in the turbulent 

backward facing step calculation. 

Unfortunately, as discussed in Section 3, the accurate evaluation 

of higher-order derivatives is extremely difficult even with a 

fourth-order accurate finite difference scheme. In this study, a top 

hat filter was used to alleviate some localized numerical fluctuations 

in these derivatives. Since the top hat filter is an averaging 

algorithm, it also somewhat reduces the steep velocity gradients in 

the flow, thus adding to the problem of numerical accuracy. However, 

this problem is a localized one and any adverse consequences of 

filtering appears to be in the direction of underpredicting the 

reattachment point as a result of smoothing. Some initial 

computations that were conducted without filtering (which must be 

viewed with suspicion as a result of fluctuations in the second 

derivative terms) yielded a reattachment length of L/AH = 6.7. Thus, 

it appears that the more accurate calculation of the second 

derivatives is likely to bring the computed results of this study in 

closer agreement with experimental observations. It is our opinion, 

however, that such improvements in the numerical algorithm are 

unlikely to make more than a 5 or 6% change in the numerical results 

presented herein. 
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5. CONCLUSIONS 

The nonlinear K - E model examined in this study has been shown to 

yield considerably improved predictions for the reattachment point for 

turbulent flow past a backward facing step. To be specific, the 

nonlinear K - E model was shown to predict a separation length of 

L/AH = 6.4 as compared to the experimental value of L/AH = 7.0. This 

result constitutes a substantial improvement on the value of L/AH in 

the range of 5.2 - 5.5 predicted by the linear K - E model and is of a 

comparable accuracy to results obtained from the substantially more 

complicated second-order closure models (e.g., Celenligil and Mellor 

1985 obtained a separation length of L/AH = 7.7). From an analysis of 

the mean vorticity transport equation, it was argued that these 

improved results probably arise from the nonlinear K-E model's ability 

to predict normal Reynolds stress differences more accurately. While 

there is no reliable experimental data for the Reynolds stresses 

inside the recirculation zone, the results obtained from the nonlinear 

K - E model are in the range of those obtained from second-order closure 

models and appear to constitute an improvement over those predicted by 

the linear K - E model. 

Several questions about the accuracy of the numerical results 

presented in this study still need to be resolved as is true of most 

numerical studies of the backward facing step problem. The TEACH code 

has certain undesirable features in its convergence properties when 

terms (such as the nonlinear contributions to the Reynolds stresses) 
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which are not purely dissipative are added. Furthermore, as a result 

of the large velocity gradients in the recirculation region, it was 

extremely difficult to calculate higher order derivatives of the 

velocity field in a highly accurate fashion. However, as a direct 

consequence of the smoothing properties of the top hat filter, it 

appears that any errors in the computed reattachment point would be in 

the direction of underprediction, thus, putting the results obtained 

herein in closer agreement with the experimental data. Nonetheless, 

it would be useful to check these results using several alternative 

numerical algorithms. 	Likewise, it would be of value to consider 

other geometries. 	Unfortunately, such investigations are beyond the 

scope of the present study and must await future research. Although 

several questions remain to be answered, the results obtained in this 

study are extremely encouraging and strongly support the pursuit of 

future investigations of this nonlinear K - E model which may prove to 

be of considerable value in the future analysis of a variety of 

turbulence problems. 
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FIGURE 1. Turbulent flow past a backward facing step. 
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FIGURE 15. Computed streamlines obtained for the nonlinear K—c model 
without the second derivative terms. 
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FIGURE 1 6. Dimensionless turbulence intensities for the nonlinear K--e model 
without the second derivative terms. 
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