
Visualizing Complex Hypermedia Networks through
Multiple Hierarchical Views

Sougata Mukherjea, James D. Foley, Scott Hudson
Graphics, Visualization & Usability Center

College of Computing
Georgia Institute of Technology

E-mail: sougata@cc.gatech.edu, foley@cc.gatech.edu, hudson@cc.gatech.edu

ABSTRACT
Our work concerns visualizing the information space of hy-
permedia systems using multiple hierarchical views. Al-
though overview diagrams are useful for helping the user to
navigate in a hypermedia system, for any real-world system
they become too complicated and large to be really useful.
This is because these diagrams represent complex network
structures which are very difficult to visualize and compre-
hend. On the other hand, effective visualizations of hierar-
chies have been developed. Our strategy is to provide the user
with different hierarchies, each giving a different perspective
to the underlying information space, to help the user better
comprehend the information. We propose an algorithm based
on content and structural analysis to form hierarchies from
hypermedia networks. The algorithm is automatic but can be
guided by the user. The multiple hierarchies can be visualized
in various ways. We give examples of the implementation of
the algorithm on two hypermedia systems.

KEYWORDS: Hypermedia, Overview Diagrams, Informa-
tion Visualization, Hierarchization.

INTRODUCTION
Overview diagrams are one of the best tools for orientation
and navigation in hypermedia documents [17]. By present-
ing a map of the underlying information space, they allow
the users to see where they are, what other information is
available and how to access the other information. How-
ever, for any real-world hypermedia system with many nodes
and links, the overview diagrams represent large complex
network structures. They are generally shown as 2D or 3D
graphs and comprehending such large complex graphs is ex-
tremely difficult. The layout of graphs is also a very difficult
problem [1]. Other attempts to visualize networks such as
Semnet [3], have not been very successful.

In [13], Parunak notes that: “The insight for hypermedia
is that a hyperbase structured as a set of distinguishable hi-
erarchies will offer navigational and other cognitive benefits
that an equally complex system of undifferentiated links does

not, even if the union of all the hierarchies is not itself hier-
archical.” Neuwirth et al. [12] also observed that the ability
to view knowledge from different perspectives is important.
Thus, if different hierarchies, each of which gives a different
perspective to the underlying information can be formed, the
user would be able to comprehend the information better. It
should be also noted that unlike networks some very effective
ways of visualizing hierarchies have been proposed. Exam-
ples are Treemaps [7] and Cone Trees [15].

This paper proposes an algorithm for forming hierarchies
from hypermedia graphs. It uses both structural and content
analysis to identify the hierarchies. The structural analysis
looks at the structure of the graph while the content analysis
looks at the contents of the nodes. (Note that the content anal-
ysis assumes a database-oriented hypermedia system where
the nodes are described with attributes). Although our al-
gorithm is automatic, forming the “best” possible hierarchy
representing the graph, the user can guide the process so that
hierarchies giving different perspectives to the underlying in-
formationcan be formed. These hierarchies can be visualized
in different ways.

Section 2 presents our hierarchization process. Section 3
shows the implementation of the algorithm in the Naviga-
tional View Builder, a system we are building for visualiz-
ing the information space of Hypermedia systems [10], [11].
This section discusses the application of the algorithm on a
demo automobile database and a section of the World-Wide
Web. Section 4 discusses how the hierarchies can be trans-
formed to other forms of data organizations. Section 5 talks
about the related work while section 6 is the conclusion.

THE HIERARCHIZATION PROCESS
New Data Structure
For our hierarchization process we use a data structure which
we call the pre-tree. A pre-tree is an intermediate between
a graph and a tree. It has a node called the root which
does not have any parent node. However, unlike a real tree,
all its descendants need not be trees themselves - they may
be any arbitrary graph. These descendants thus form a list
of graphs and are called branches. However, there is one
restriction - nodes from different branches cannot have links
between them. An example pre-tree is shown in Figure 1.
Note that pre-tree is another data structure like multi-trees
[4] - it is not as complex as a graph but not as simple as a
tree. Also note that although the term “pre-tree” has not been
used before, this data structure has a long history in top-down



ROOT

BRANCHES

X

Figure 1: An example pre-tree. It has a root node which does not have any parent. The descendants of the root node are
graphs. However, none of these graphs have any links between them. Our hierarchization algorithm tries to identify the
best pre-tree to represent the given graph. The final tree is formed by calling the algorithm recursively for the branches.

clustering techniques [5]. Top-down clustering would often
be halted when new divisions were not auspicious, leaving a
final structure which is essentially a pre-tree.

Hierarchization Algorithm
The algorithm tries to identify a suitable pre-tree from a given
graph. Thus a root node is identified and the other nodes are
partitioned into branches. This root node forms the root of
the final hierarchy. The algorithm is recursively called for
each of the branches and the trees formed by these recursive
calls become children of the root of the final hierarchy. The
recursion stops if a branch has very few nodes or the required
depth of the final tree has been reached. It may also happen
that for certain branches, no suitable pre-trees can be formed.
In these cases, the nodes of the branches become children
of the parent of the branch. (This case generally occurs for
branches with very few nodes).

For identifying potential pre-trees both content and structural
analysis are used.
� Content analysis:
For content analysis, for each attribute, the nodes of the graph
are partitioned into branches based on the attribute values by
Content-based Clustering. The clustering algorithm is ex-
plained in [11]. If too many or too few branches are formed,
the attribute is not suitable for forming a pre-tree. Otherwise
a new pre-tree is formed with these branches. The root of
the pre-tree is a cluster representing all the nodes of the graph.

� Structural analysis:
A pre-tree is formed for nodes in the graph which can reach
all other nodes. These nodes are designated as the roots of the
pre-trees. The branches are the branches of the spanning tree
formed by doing a breadth-first search from the designated
root node. 1

Both content and structural analysis can identify several po-
tential pre-trees. A metric is used to rank these pre-trees.
The metric consists of the following submetrics:
� Information lost in the formation of the pre-tree: When
the nodes are partitioned for forming the branches, all links
joining nodes in different branches are removed. Thus valu-
able information is lost and a submetric calculates the ratio
of the number of links remaining in the branches to the total
number of links in the original graph to rank the pre-trees in

1A detailed analysis is omitted for the purpose of brevity. The algorithm
is explained with examples in the next section.

order of the least amount of information lost.
� “Treeness” of the branches: Since our overall objective is
to form trees, it is advantageous if the branches of the pre-tree
are already close to trees. If all the branches only consisted
of trees, there would be a total of n - c links where n is the
total number of nodes in the branches and c is the number of
connected components. Thus a submetric which calculates
the ratio (n � c)=l where l is the total number of links is an
indication of the “treeness” of the branches.
� “Goodness” of the root: For a structural pre-tree the good-
ness of the root is determined by the sum of the distances of
the shortest path from the root to all other nodes. A “good”
root will reach all other nodes by following only a few links
so that the resulting tree is not very deep. A deep tree is
not desirable since it will force the user to follow a long and
tedious path to reach some information. For content analysis
the goodness of the root is determined by the relevance of
the attribute. (For example, for an automobile database, the
manufacturer of the cars is a more relevant attribute than the
number of doors of the cars).

Each submetric returns a number between 0 and 1. The over-
all metric is calculated by a weighted sum of the submetrics
where the weight is determined by the relative importance of
the submetrics.

The Role of the User
By default, the entire process would be automatically forming
the “best” hierarchical form for the original graph. However,
the user can guide the process both during the translation of
the graph to a tree and during the visualization of the tree.
� Translation phase:
– The users can control the various variables that are used
in the translation process. For example, they can control the
variable which specifies the maximum possible depth of the
tree (the recursion stops when this depth is reached).
– The user can control the relative importance of the various
submetrics in the overall metric that is used to rank a given
pre-tree. For example the user can specify that the “goodness’
of a root is not a useful criteria for judging pre-trees. The
user can also assign different weights to different link types to
influence the submetric calculating the amount of information
lost.
– The algorithm generally selects the best possible pre-tree
at each level. However, the user can choose the pre-tree
instead. The user is shown the possible pre-trees that can be
selected ranked by the metric and the user can choose one
of them. The user can specify to what level of the hierarchy



Figure 2: An overview diagram of an automobile database. The diagram is very difficult to comprehend.

the pre-trees would be chosen. By choosing different pre-
trees during different runnings of the algorithm, different
hierarchies, giving different perspectives to the data can be
formed.
� Visualization phase:
– Besides a 2D tree, the hierarchy can also be visualized as
Cone Trees, Treemaps or as a Table of Contents of a book
(which is formed by listing the nodes in the order of a depth-
first search).
– Different visual attributes can be bound to information
attributes in the views. This is an extension of the work
reported in [10].

IMPLEMENTATION

The algorithm has been implemented in the Navigational
View Builder, a system for forming overview diagrams of
hypermedia systems. Figure 2 represents an overview dia-
gram of an automobile database. There are a lot of inter-
connected nodes showing, for example, textual information
about the cars, images of the cars, TV advertisements and
audio of previous buyers’ comments. There are also links to
other cars with similar price and other models by the same
manufacturer. From this complex network a hierarchy can
be formed automatically. The top-level root of this tree and
its children are shown in the left hand screen of Figure 3.
In this case, the attribute Price was used to form the initial
partitioningand the root represents a cluster for all the nodes.

The user can form different hierarchies by selecting other
pre-trees. For example, if the user wanted to select the pre-
tree at the initial level, the dialog box shown in Figure 4
pops up. If the user wants to partition based on the attribute
Country, the tree shown in the right hand screen in Figure 3 is
formed. In this figure some of the children represents clusters
for countries. For example the node labeled Japan represents
all the Japanese cars and its children are shown in the left
hand screen of Figure 5. Here the partitioning is done by the
attribute Manufacturer. For some other countries the nodes
in the cluster formed a tree. In these cases the roots of the

tree were identified by structural analysis and they became
the children of the overall root. Thus for Sweden, Saab-Info
is the root of the tree for all nodes related to Swedish cars.
Its children are shown in the right hand screen of Figure 5.

Color plate 1 shows a 3D Tree view of this hierarchy. In
this view, the colors of the nodes represent various coun-
tries and the colors of the links represent link types. Various
zooming and filtering operations that are mentioned in [15]
are possible for this 3D tree. Moreover, smooth animation is
used so that the view changes are not abrupt and allow the
user to see the changes easily. (Note that the implementation
is done using C++, Motif and Open Inventor [18].)

Forming Hierarchies in the World-Wide Web
Let us now look at an example from perhaps the most pop-
ular hypermedia system, the World-Wide Web. For input to
the Navigational View Builder, information was automati-
cally extracted from the WWW about the various files, their
authors, their links to other files and other information by
parsing the HTML documents using the method described in
[14]. Figure 6 shows an unstructured overview diagram of
the WWW pages about the research activities at the Graphics
Visualization & Usability (GVU) Center at Georgia Tech.2

Obviously, this information is very complicated.

The left hand screen of Figure 7 shows the top level of the
hierarchy automatically created for the data by the system.
The file research.html which lists the various research activ-
ities of the GVU Center is the root. It has branches to the
major research area as well as to gvutop.html, a file contain-
ing general information about GVU. The right hand side of
Figure 7 shows a view of a section of this hierarchy where
the nodes are listed as a table of content of a book.

A major drawback of the World-Wide Web is that very few
useful semantic attributes are defined for the pages. To create
some other meaningful hierarchies, attributes like the topic

2URL: http://www.gatech.edu/gvu/gvutop.html



Figure 3: The left hand screen shows the default tree formed for the automobile database. The top-level partitioning is
by the attribute Price. The right hand screen shows the tree formed if the top-level partitioning is done by the attribute
Country.

Figure 4: At each level various pre-trees can be used. A metric ranks these pre-trees. By default the pre-tree with the
best metric is selected. However, the user can select others using the above menu.

Figure 5: Examples of Content and Structural analysis for forming pre-trees. The left hand screen represents the nodes
for Japan. The root is a cluster representing all Japanese cars. The nodes are partitioned by the attribute Manufacturer.
The right hand screen is for Swedish cars. These nodes form a tree with the node Saab-Info as the root.



Figure 6: An overview diagram of the World-Wide Web pages about the research activities at GVU. It indicates clearly
why traditional overview diagrams are useless for real-world hypermedia systems.

Figure 7: The left hand screen shows the top level of the default hierarchy formed for the GVU WWW pages. research.html
is the root and the major research areas are shown. The right hand screen shows a book view of a portion of this hierarchy
showing research in Software Visualization.



Figure 8: A Perspective Wall view showing a linear arrangement of the files based on the last modification time. The
different walls show files which were last modified in different time frames. Only some walls are in the focus at a given
time.

of the page (whether it is a research page or a personal page,
etc.) were inserted manually. (Efforts are underway to incor-
porate metadata into WWW and hopefully in the near future
we can extract all useful information from the WWW auto-
matically.) The left hand screen of Color plate 2 represents
a treemap view of a hierarchy formed when the initial parti-
tioning is done by the topic of the page. The colors are used
to represent the kind of users who created the pages. Green
is used to represent Phd students and the color plate indicates
that the Phd students are the primary authors of the pages.

Multiple hierarchies, each giving a different perspective to
the underlying information space can be formed. If a user
selects a node in one view, its positions in the other views are
also highlighted. Thus, these views help the user in compre-
hending the data. It should be also noted that the user can
go directly to the corresponding WWW page for the selected
node. Thus in the Treemap view, the node visdebug.html is
highlighted. The corresponding WWW page is shown on the
right hand screen of Color plate 2.

GENERATING OTHER VIEWS

Once a hierarchy is formed from the original graph structure,
the hierarchy can be transformed to other data organizations
as well. Visualizations can be formed for these data orga-
nizations also. For example, if the original partitioning for
forming the hierarchy was done by a quantitative attribute, a
linear structure sorted by that attribute can be formed from
the subtrees of the root node.

Figure 8 represents a perspective wall [9] view of a linear
arrangement of the GVU WWW pages sorted by the last
modification times of the files. From the hierarchy whose
initial partitioning was by the attribute last-modified-time,
the files were divided into partitions based on the time when
they were last modified. These partitions were arranged on
walls. Only some walls are in the focus at a given time. The

user can easily control the walls which are in focus through a
scrollbar. Similarly, for the automobile database a Perspec-
tive Wall view can be formed where the cars are sorted by the
attribute Price.

Other views can also be generated. For example, a tabu-
lar view showing information like average price, mileage,
etc. for various car models and also such useful statistics for
different manufacturers of the cars can be formed by a depth-
first traversal of the hierarchical structure whose partitionings
are done by the attributes Manufacturer and Car-Model.

RELATED WORK
Our structural analysis is similar to that described in [2]
for identifying hierarchies from hypermedia structures. Al-
though using just structural analysis to identify hierarchies
works for hypertext systems with simpler underlying struc-
tures, identifying meaningful hierarchies by structural analy-
sis alone is difficult for real-world systems. Content analysis
is also essential as is evident from the paper. [6] describes a
method to linearize complex hyper-networked nodes to facil-
itate browsing using a book metaphor. However, this work
also uses structural analysis only.

This paper is also related to systems that deal with graphical
presentation of informationautomatically or semi-automatically.
Examples include APT [8] and SAGE [16]. However, our
information domain is different from these systems - these
systems deal with highly structured information. The views
that we want to develop are also different. The previous sys-
tems generally produced bar diagrams, scatter plots and such
graph views.

CONCLUSION
One of the best ways to comprehend a large complicated
information structure is to form multiple simpler structures
each highlighting different aspects of the original structure.
Our work tries to use this philosophy to make a complex hy-



permedia system understandable to the user. We believe that
by forming various effective views of the underlying space,
we would allow the user to better understand the complex
information. We give examples of the hierarchization pro-
cess from two complicated hypermedia systems to illustrate
our point. These examples show that our algorithm was able
to extract meaningful hierarchies which gave better insights
into the complex information spaces.

Future work is planned along the following directions:

� Visualizing Larger Databases: Although a detailed com-
plexity analysis is beyond the scope of this paper, it can be
shown that the major bottleneck of the algorithm is the struc-
tural analysis to identify roots. [2] uses an O(n3) algorithm
to identify roots. On the other hand we use O(n2 +nl) algo-
rithm to identify roots (by calling the breadth-first search for
each node). Although in the worst case l = O(n2), on aver-
age l = O(n) and our algorithm will perform better. For the
WWW database with about 400 nodes and 800 links our algo-
rithm took about 7 seconds on a SGI reality engine. Although
this is acceptable, we will face problems for larger databases.
We are investigating ways to enhance the performance by
improving the efficiency of the code and using probabilistic
algorithms to identify roots. Moreover, even cone trees and
treemaps are not able to visualize larger databases effectively.
New visualization techniques are needed.
� Usability Studies: A limitation of our system is that no
evaluation of how useful our views really are have been done
so far. We plan to do serious usability studies in the near
future. These studies may give us new insights that will help
to improve our system.

ACKNOWLEDGEMENT
This work is supported by grants from Digital Equipment
Corporation, Bell South Enterprises, Inc. and Emory Uni-
versity System of Health Care, Atlanta, Georgia as part of
the Hypermedia Interface for Multimedia Databases project.
We would also like to thank the reviewers of this paper for
their useful comments.

REFERENCES
1. G. Battista, P. Eades, R. Tamassia, and I. Tollis. Algo-

rithms for Drawing Graphs: an Annotated Bibliogra-
phy. Technical report, Brown University, June 1993.

2. R. Botafogo, E. Rivlin, and B. Shneiderman. Struc-
tural Analysis of Hypertexts: Identifying Hierarchies
and Useful Metrics. ACM Transactions on Office Infor-
mation Systems, 10(2):142–180, 1992.

3. K. Fairchild, S. Poltrok, and G. Furnas. Semnet: Three-
dimensional Graphic Representations of Large Knowl-
edge Bases. In R. Guindon, editor, Cognitive Science
and its Applications for Human-Computer Interaction.
Lawrence Erlbaum, 1988.

4. G. Furnas and J. Zacks. Multitrees: Enriching and
Reusing Hierarchical Structures. In Proceedings of the
ACM SIGCHI ’94 Conference on Human Factors in
Computing Systems, pages 330–336, Boston, Ma, April
1994.

5. J. Hartigan. Clustering Algorithms. John Wiley and
Sons, 1975.

6. S. Ichimura and Y. Matsushita. Another Dimension to
Hypermedia Access. In Proceedings of Hypertext ’93
Conference, pages 63–72, Seattle, Wa, November 1993.

7. B. Johnson and B. Shneiderman. Treemaps: A Space-
filling Approach to the Visualization of Hierarchical
Information. In Proceedings of IEEE Visualization ’91
Conference, pages 284–291, San Diego, Ca, October
1991.

8. J. MacKinlay. Automating the Design of Graphical Pre-
sentation of Relational Information. ACM Transactions
on Graphics, 5(2):110–141, April 1986.

9. J. D. Mackinlay, S. Card, and G. Robertson. Perspec-
tive Wall: Detail and Context Smoothly Integrated. In
Proceedings of the ACM SIGCHI ’91 Conference on
Human Factors in Computing Systems, pages 173–179,
New Orleans, La, April 1991.

10. S. Mukherjea and J. Foley. Navigational View Builder:
A Tool for Building Navigational Views of Information
Spaces. In ACM SIGCHI ’94 Conference Companion,
pages 289–290, Boston, Ma, April 1994.

11. S. Mukherjea, J. Foley, and S. Hudson. Interactive Clus-
tering for Navigating in Hypermedia Systems. In Pro-
ceedings of the ACM European Conference of Hyperme-
dia Technology, pages 136–144, Edinburgh, Scotland,
September 1994.

12. C. Neuwirth, D. Kauffer, R. Chimera, and G. Terilyn.
The Notes Program: A Hypertext Application for Writ-
ing from Source Texts. In Proceedings of Hypertext ’87
Conference, pages 121–135, Chapel Hill, NC, Novem-
ber 1987.

13. H. Parunak. Hypermedia Topologies and User Navi-
gation. In Proceedings of Hypertext ’89 Conference,
pages 43–50, Pittsburgh, Pa, November 1989.

14. J. Pitkow and K. Bharat. WEBVIZ: A Tool for World-
Wide Web Access Log Visualization. In Proceedings
of the First International World-Wide Web Conference,
Geneva, Switzerland, May 1994.

15. G. G. Robertson, J. D. Mackinlay, and S. Card. Cone
Trees: Animated 3D Visualizations of Hierarchical In-
formation. In Proceedings of the ACM SIGCHI ’91
Conference on Human Factors in Computing Systems,
pages 189–194, New Orleans, La, April 1991.

16. S. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein. In-
teractive Graphic Design Using Automatic Presentation
Knowledge. In Proceedings of the ACM SIGCHI ’94
Conference on Human Factors in Computing Systems,
pages 112–117, Boston, Ma, April 1994.

17. K. Utting and N. Yankelovich. Context and Orientation
in Hypermedia Networks. ACM Transactions on Office
Information Systems, 7(1):58–84, 1989.

18. J. Wernecke. The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor.
Addison-Wesley Publishing Company, 1994.


