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CHAPTER III CYCLES THROUGH THREE INDEPENDENT EDGES 8

CHAPTER IV CYCLES THROUGH THREE FIXED VERTICES . . . . 10

CHAPTER V 3-SEPARATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER VI 4-CONNECTIVITY . . . . . . . . . . . . . . . . . . . . . . . . 22

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



LIST OF FIGURES

Figure 1 Catlin’s Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2 A 7-Coloring of Catlin’s Example . . . . . . . . . . . . . . . . . . . . . . 7

Figure 3 Graphs with no cycle through e1, e2, e3 . . . . . . . . . . . . . . . . . . . 9

Figure 4 Graphs with no cycle through x, y, z . . . . . . . . . . . . . . . . . . . . . 11

Figure 5 A 3-separation of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 6 A coloring of G2 in Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 7 x′ separating x from y and z. . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 8 The structure of G∗
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 9 A Coloring of G1 in Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



SUMMARY

Hajós conjectured that, for any positive integer k, every graph containing no Kk+1-

subdivision is k-colorable. This is true when k ≤ 3, and false when k ≥ 6. Hajós’ conjecture

remains open for k = 4, 5.

We will first present some known results on Hajós’ conjecture. Then we derive a result

on the structure of 2-connected graphs with no cycle through three specified vertices. This

result will then be used for the proof of the main result of this thesis. We show that any

possible counterexample to Hajós’ conjecture for k = 4 with minimum number of vertices

must be 4-connected. This is a step in an attempt to reduce Hajós’ conjecture for k = 4 to

the conjecture of Seymour that any 5-connected non-planar graph contains a K5-subdivision.
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CHAPTER I

INTRODUCTION

All graphs considered in this thesis are simple. For terminology not defined here, we refer to

[1]. A graph H is a subdivision of a graph G, if H is obtained from G by subdividing some

of the edges, that is replacing the edges by internally disjoint paths. An H-subdivision in

a graph G is a subgraph of G which is isomorphic to a subdivision of the graph H.

For m ∈ N, we denote the complete graph on m vertices by Km. A path P is a graph

of the form

V (P ) = {x1, ..., xn}, E(P ) = {xixi+1|i = 1, ..., n− 1},

and x0, xn are the endvertices of P , x2, ..., xn−1 its internal vertices. A family of paths P
is said to be internally disjoint if for P1, P2 ∈ P, v ∈ V (P1) ∩ V (P2) implies that v is an

endvertex of P1 as well as P2. A path in a graph G is a branching path if its internal vertices

all have degree 2 in G and its endvertices have degree at least 3 in G. The vertices of degree

at least 3 in G are called branching vertices of G.

A coloring c of a graph G is a function c : V (G) → {1, ..., k} for some k ∈ N such

that c(x) 6= c(y) for all xy ∈ E(G). G is k0-colorable if there exist a coloring c : V (G) →
{1, ..., k0}. The chromatic number χ(G) is defined as χ(G) = min{k ∈ N|G is k-colorable}.

Hajós conjectured in [6] that every graph with no Kk+1-subdivision is k-colorable. While

this is true for k ≤ 3 and has been disproved by Catlin [2] for k ≥ 6, it is still open for k = 4

and k = 5. The case k = 4, if true, implies the Four Color Theorem. In 1975, Seymour [10]

conjectured that every 5-connected non-planar graph contains a K5-subdivision. Let us

assume for a moment that a counterexample to Hajós’ conjecture with minimum number of

vertices is 5-connected. Then, Seymour’s conjecture implies Hajós’ conjecture for k = 4. A

counterexample to Hajós conjecture is not 4-colorable and therefore non-planar by the Four

Color Theorem. Therefore, Seymour’s conjecture, if true, implies that the counterexample

contains a K5-subdivision, a contradiction. The main result of this thesis should be seen as a
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first step in establishing a connection between Hajós’ conjecture and Seymour’s conjecture.

Let G be a graph with chromatic number at least five, which does not contain a K5-

subdivision and has minimum number of vertices with respect to these properties. We will

call such a graph a Hajós graph from now on. Our main result is the following:

Theorem 1 Every Hajós graph is 4-connected.

As evidence for Hajós’ conjecture for k = 4, we mention a related conjecture of Dirac [4]:

every simple graph on n vertices with at least 3n − 5 edges has a K5-subdivision. In [7]

it has been shown that a minor-minimal counterexample to Dirac’s conjecture must be 5-

connected and that Seymour’s conjecture implies Dirac’s conjecture. Using the result in [7],

Mader proved in [9] that Dirac’s conjecture is indeed true. Seymour’s conjecture remains

open.

In order to show Theorem 1, we need to show that no Hajós graph G admits k-cuts with

k ≤ 3. This is relatively easy to show when k ≤ 2; the main work here is to show that no

Hajós graph admits a 3-cut. We will now introduce the necessary notation to give a short

outline of the proof.

A separation of a graph G is a pair (G1, G2) of edge disjoint subgraphs of G such

that G = G1 ∪ G2, and V (Gi) − V (G3−i) 6= ∅, for i = 1, 2. Note that our definition of

a separation is different from the usual one where instead of V (Gi) − V (G3−i) 6= ∅ one

requires E(Gi) − E(G3−i) 6= ∅. We call (G1, G2) a k-separation if |V (G1) ∩ V (G2)| = k.

A set S ⊆ V (G) is a k-cut in G, if |S| = k and G has a separation (G1, G2) such that

V (G1) ∩ V (G2) = S.

Suppose G has a 3-cut. We choose a 3-separation (G1, G2) of G that minimizes |V (G2)|.
By G′

i, we denote the graph obtained from Gi by adding an edge for every pair of vertices

in V (G1 ∩G2). To decide whether G′
i has a K5-subdivision, we need to know whether G3−i

contains a cycle through V (G1 ∩ G2). We characterize graphs which do not have such a

cycle. It turned out that this has been done by Watkins and Messner [11] before. However,

we obtained our proof independently and it is significantly shorter.

At this point, it becomes clear why proving that every Hajós graph G is 5-connected is
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much harder then proving it is 4-connected. This next step requires structural information

about graphs which have a K4-subdivision with specified branching vertices. Some work in

this direction has been done by Yu [12].

We will now introduce some further notation. Let G be graph. For U ⊆ V , we denote

by G[U ] the subgraph of G with vertex set U and edge set {xy ∈ E(G)|x, y ∈ U}. For

A,B ⊆ V (G), an A-B path in G is a path with one endvertex in A and the other one in

B, which is internally disjoint from A ∪ B. If A = {x}, then we speak of an x-B path,

and similarly an x-y path if B = {y}. We say that a set S ⊆ V (G) separates A and B if

there is a separation (G1, G2) of G such that V (G1 ∩G2) = S, A ⊆ V (G1), B ⊆ V (G2) and

A− S 6= ∅ 6= B − S.

Let H be a subgraph of a graph G, let v1, . . . , vk ∈ V (G), and (ui, wi), i = 1, . . . , m

denote pairs of distinct vertices in G. Then we let H +{v1, . . . , vk, u1w1, . . . , umwm} denote

the graph with vertex set V (H) ∪ {v1, . . . , vk} and edge set E(H) ∪ {u1w2, . . . , ukwk}.
Let U ⊆ V (G) and F ⊆ E(G). Then, G− F denotes the spanning subgraph of G with

edge set E(G) − F , and G − U denotes the subgraph of G with vertex set V (G) − U and

edge set {xy ∈ E(G)|{x, y} ∩ U = ∅}.
We will state one of the fundamental theorems in Graph Theory without proof, since

we use it frequently throughout the thesis:

Theorem 2 (Menger 1927) Let G be a graph and A, B ⊆ V (G). Then the minimum

number of vertices separating A from B is equal to the maximum number of disjoint A-B

paths in G.

The rest of this thesis is organized as follows. In Section 2, we present a proof for Hajós’

conjecture in the case k = 3 and counterexamples for k ≥ 6. In Section 3 we give a proof of

a result of Lovász. This result will be used in Section 4 to characterize 2-connected graphs

with no cycle through 3 fixed vertices. In Sections 5 and 6, we prove our main result.
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CHAPTER II

KNOWN RESULTS ON HAJÓS’ CONJECTURE

In this section we will review some known results on Hajós’ conjecture that every graph

with no Kk+1-subdivision is k-colorable.

First of all, the conjecture is trivially true for k = 1. For k = 2 it is also easy to see

that the conjecture is true. Graphs containing no K3-subdivision are forests and hence are

2-colorable.

We will now show that the conjecture is true for k = 3, a result first shown by Dirac [3].

We will use the following notation. Let P be a path and x, y ∈ V (P ). We write P [x, y] to

denote the subpath P [{v0, ..., vk}] where x = v0 and y = vk.

Theorem 3 A graph G with χ(G) ≥ 4 contains a K4-subdivision.

Proof: Suppose the claim is not true. Let G be a graph such that χ(G) ≥ 4, G contains

no K4-subdivision and subject to these |V (G)| is minimum.

Obviously, G is connected. We may also assume that χ(G) = 4, for otherwise we may remove

edges until we obtain a 4-chromatic subgraph G′ of G. If G′ contains a K4-subdivision, so

does G.

Also note that G is 2-connected. Otherwise, suppose there is a 1-separation (G1, G2)

and {v0} = V (G1 ∩G2). Then, G1 and G2 are 3-colorable as |V (Gi)| < |V (G)| for i = 1, 2.

Let ci be a 3-coloring of Gi, where c1 and c2 use the same set of colors. We may assume

c2(v0) = c1(v0) by permuting the colors of vertices of G2. Now we define a 3-coloring c of

G where c(v) = ci(v) for v ∈ V (Gi), i = 1, 2. This contradicts that χ(G) = 4.

G is not 3-connected. We will show a little more generally, that any 3-connected graph

contains a K4-subdivision. Any 3-connected graph G contains a cycle C and a vertex

v ∈ V (G)− V (C) as G− {v} is 2-connected. As G is 3-connected, there exist three C − v

paths P1, P2, P3 such that Pi ∩Pj = {v} for i, j ∈ {1, 2, 3}, i 6= j. Then, C ∪P1 ∪P2 ∪P3 is
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a K4-subdivision.

We conclude that there exists a 2-cut S = {x, y} in G. Let (G1, G2) be a 2-separation

of G such that V (G1)∩V (G2) = S. Then, G1 and G2 are both 3-colorable by the choice of

G. Suppose G1 and G2 have 3-colorings c1 respectively c2 such that ci(x) 6= ci(y). We may

assume that both colorings use the same set of colors. By permuting the colors of vertices

in G1 we may assume that c1(x) = c2(y) and c1(y) = c2(y). Then, we define a 3-coloring c

of G by setting c(v) = ci(v) for all v ∈ V (Gi), a contradiction. Similarly, it is not possible

that G1 and G2 are both 3-colorable such that x and y receive the same color. Therefore,

we may assume that x and y receive different colors in every 3-coloring of G1 and every

3-coloring of G2 assigns the same color to x and y. Then, G2 + xy is 4-chromatic and has

fewer vertices then G.

By the choice of G, G2+xy has a K4-subdivision Σ. If xy 6∈ E(Σ), Σ is a K4-subdivision

in G. If xy ∈ E(Σ), let Pxy be an x−y path in G1, which exists as G is 2-connected. Then,

(Σ ∪ Pxy)− xy is a K4-subdivision of G, a contradiction. ¤

In 1979 Catlin [2] found a counterexample disproving Hajós’ conjecture for k ≥ 6. He

uses the notion of a line graph. Let G be a graph. The line graph L(G) has vertex set E(G)

and two vertices e, f ∈ V (L(G)) = E(G) are adjacent if, and only if, they are incident in

G. We will also use the following fact.

Lemma 1 If S is a cut in a Kr-subdivision, r ≥ 2, separating two branching vertices then

|S| ≥ r − 1.

Proof. This is an immediate consequence of Menger’s Theorem, as there are r−1 internally

disjoint paths between two branching vertices a, b in a Kr-subdivision: the a-b branching

path, and the union of the c-a and c-b branching paths for each branching vertex c 6∈ {a, b}.
¤

Example: Let C5 be a cycle of length 5 and C3
5 be obtained from C5 by replacing each

xy ∈ E(C5) by three edges joining x and y. Let e and f be non-adjacent edges of C3
5 and

G the line graph of C3
5 − {e, f}.
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D0 D1 D2 D3 D4

Figure 1: Catlin’s Counterexample

We claim that G does not contain a K7-subdivision and χ(G) = 7.

We first show that G has no K7-subdivision. We can represent G in the following way:

let D0, D2, D4 be disjoint copies of K3 and D1, D3 disjoint copies of K2 in G that are also

disjoint from the D0, D2, D4. Then

G =
4⋃

i=0

Di + {xy|x ∈ V (Di), y ∈ V (D(i+1) mod 5)}

For any W ⊂ V (G) with |W | = 7, we want to show that W cannot be the set of branching

vertices of a K7-subdivision in G.

If W = V (D1)∪V (D2)∪V (D3), then V (D0) is a 3-cut in G−V (D2) separating V (D1)

and V (D3). Hence, there are no four disjoint V (D1)− V (D3) paths in G− V (D2) and W

cannot be the set of branching vertices of a K7-subdivision of G.

So assume W 6= V (D1) ∪ V (D2) ∪ V (D3), let and w ∈ W ∩ V (D0 ∪D4). There exists

v ∈ W ∩ V (D1 ∪ D2 ∪ D3) as |V (D0 ∪ D4)| = 6. If v ∈ D2, then D1 ∪ D3 is a 4-cut in

G separating v and w, and W cannot be the set of branching vertices of a K7-subdivision

of G. Therefore, without loss of generality, let v ∈ V (D3). If w can be chosen in V (D0)

then V (D1) ∪ V (D4) is a 5-cut in G separating v and w, and W can not be the set of

branching vertices of a K7-subdivision in G. Otherwise, W = V (D1)∪ V (D3)∪ V (D4) and

V (D0) ∪ V (D3) is a 5-cut in G separating V (D1) and V (D4). Again, W cannot be the set

of branching vertices of a K7-subdivision of G.
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D0 D1 D2 D3 D4

A

B

C

E

F

E

D A

B

C

F

G

D

Figure 2: A 7-Coloring of Catlin’s Example

As the maximum size of an independent set in G is 2, and |V (G)| = 13, the chromatic

number of G is at least 7 and Figure 2 shows a 7-coloring of G. ¤

Using the following construction this example can be extended to a counterexample for

any k ≥ 6: Let G + v be the graph with vertices V (G) ∪ {v} and edge set E(G) ∪ {vw|w ∈
V (G)}. Then χ(G + v) = χ(G) + 1 and if G has no subdivided Kr, then G + v cannot have

a subdivided Kr+1.

We mention a result by Erdös and Fajtlowicz [5] without proof.

Theorem 4 Let the topological clique number of a graph G be defined by

tcl(G) = max{r|G has a Kr-subdivision}.

Then tcl(G) < χ(G) for almost every graph G.
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CHAPTER III

CYCLES THROUGH THREE INDEPENDENT EDGES

In this section we present a result by Lovász and include his proof. We will then use

Lemma 2 to prove Theorem 5 in Chapter 4:

Lemma 2 [Lovász [8, Ex.6.67]] Every set L of three independent edges in a 3-connected

graph G lies on a cycle in G if and only if G− L is connected.

Proof: Every cycle intersects an edge cut in an even number of edges. As G is 3-connected

this implies that, if L lies on a cycle, G− L is connected.

Suppose e1, e2, e3 are three independent edges in G which do not lie on a cycle.

(1) There exist a cycle C in G containing two edges out of {e1, e2, e3}, such that V (C) is

disjoint from the endpoints of the third edge e.

Let C1 be a cycle through e1 and e2, which exists as G is 3-connected and let R1, R2 be

the components of C1−{e1, e2}. Let e3 = xy. If {x, y} ⊆ V (C1), then we may assume that

x ∈ V (R1) and y ∈ V (R2). Hence one of the x-y path on C1 and e3 form the desired cycle

C. So assume by symmetry that x ∈ V (R1), and y 6∈ V (C1). Then, let P be an y-V (C1−x)

path, which must end on R2 as otherwise there is a cycle containing all the edges in L. We

may assume that V (P )∩ V (C1− x) = {z}. As e1, e2 are independent, we may assume that

there is an x-z path Q on C1 which is disjoint from the endpoints of e1. Now, Q∪P ∪ {e3}
forms the desired cycle C.

We may assume that e1 and e2 lie on the cycle C which exits by (1) (and e = e3).

(2) Let e3 = xy. We may choose the notation such that all {x, y}-V (C) paths are either

x-V (P1) or y-V (P2) paths.

No two {x, y}-V (P1) paths in G−V (P2) are disjoint, therefore there exist u ∈ V (G) meeting

all of them and similarly there exists v ∈ V (G) meeting all {x, y}-P2 paths in G − V (P1).

Then, {u, v} meets all {x, y}-V (C) paths and as G is 3-connected {u, v} = {x, y}.
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e1

a

b

z1

R

P1

P2 z2

Q1

Q2

x

y

e3 e2

v

w

Figure 3: Graphs with no cycle through e1, e2, e3

(3) There is no x-y path in G− {e1, e2, e3}.

Suppose the assertion is false and let T be an x-y path in G−{e1, e2, e3}. Suppose V (P1)∩
V (T ) = ∅. As G is 3-connected, there exists a V (T )-V (P1) path in G − {x, y}, implying

that there is y-V (P1) path in G− {x}, contradicting (2) which implies V (P1) ∩ V (T ) 6= ∅.
By symmetry, V (P2) ∩ V (T ) 6= ∅. Let R denote the V (P1)-V (P2) subpath of T , and a its

endpoint on P1, b its endpoint on P2.

As G is 3-connected, there exists an {x, y}-V (C −{a, b}) path Q1 in G−{a, b}, say the

endpoints of Q1 are x and z1 ∈ V (P1). We denote the endpoint of e2 on P1 by v and its

endpoint on P2 by w. We may assume that a lies on the z1-v subpath of P1.

Let Q2 be an y-P2 path in G−{x,w} and denote its other endpoint by z2. Q1∩Q2 = ∅, for

otherwise there is an x-y path in G− {e1, e2, e3} which is disjoint from C, a contradiction.

Denote the z1-z2 path on C not containing e2 by S and note that e1 ∈ E(S). Then,

S ∪ Q1 ∪ Q2 ∪ {e3} is a cycle C0 disjoint from the endpoints of e2. But there exist an

v-V (P1) path in (G− {e1, e2, e3})− {w} as well as an v-V (P2) path, contradicting (2).

¤
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CHAPTER IV

CYCLES THROUGH THREE FIXED VERTICES

In this section we characterize all 2-connected graphs in which there are three vertices not

contained in any cycle. This has been done by Watkins and Mesner [11, Theorem 2] before.

Our proof was developed without knowing about this result. We give an altenative proof

which makes use of Lemma 2. Our proof is significantly shorter than [11], even including

the proof of Lovász result.

The main result of this section is the following theorem:

Theorem 5 Let G be a 2-connected graph and x, y, z be three distinct vertices of G. Then,

there is no cycle through x, y and z in G if and only if one of the following statements holds.

(i) There exists a 2-cut S in G and there exist three distinct components Dx, Dy, Dz of

G− S such that u ∈ V (Du) for each u ∈ {x, y, z}.

(ii) There exist a vertex v of G, 2-cuts Sx, Sy, Sz in G, and components Du of G − Su

containing u, for all u ∈ {x, y, z}, such that Sx∩Sy∩Sz = {v}, Sx−{v}, Sy−{v}, Sz−
{v} are pairwise disjoint, and Dx, Dy, Dz are pairwise disjoint.

(iii) There exist pairwise disjoint 2-cuts Sx, Sy, Sz in G and components Du of G − Su

containing u, for all u ∈ {x, y, z}, such that Dx, Dy, Dz are pairwise disjoint and

G−V (Dx ∪Dy ∪Dz) has exactly two components, each containing exactly one vertex

from Su, for all u ∈ {x, y, z}.

Proof: It is straightforward that if one of (i),(ii) or (iii) holds, then G has no cycle through

x, y and z. Now assume G contains no cycle through x, y, z.

Suppose that {x, y, z} is not an independent set in G. Without loss of generality let

xy ∈ E(G). Then, as G is 2-connected, there exists a z-x path Px and a z-y path Py such

10
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Figure 4: Graphs with no cycle through x, y, z

that V (Px ∩ Py) = {z}. Hence, Px ∪ Py + xy is a cycle through x, y, z, a contradiction.

Therefore,

(1) {x, y, z} is an independent set in G.

Next we show that,

(2) for any u ∈ {x, y, z}, u is not contained in any 2-cut in G separating the two vertices

in {x, y, z} − {u}.

For otherwise, we may assume that there is a 2-separation (G1, G2) of G such that x ∈
V (G1 ∩ G2), y ∈ V (G1) − V (G1 ∩ G2), and z ∈ V (G2) − V (G1 ∩ G2). Since G is 2-

connected, G1 (respectively, G2) contains two internally disjoint paths from y (respectively,

z) to V (G1 ∩G2). These four paths form a cycle containing {x, y, z}, a contradiction.

(3) For any u ∈ {x, y, z} there is a 2-cut Su = {au, bu} in G separating u from {x, y, z}−{u}.

Suppose the assertion is false. Without loss of generality, assume G has no 2-cut separating

x from {y, z}. By Menger’s Theorem, there are two internally disjoint y-z paths P1 and

P2. Let C = P1 ∪ P2 be a cycle through y, z, which by assumption does not contain x. By

11



Menger’s Theorem, there must exist three paths R1, R2, R3 from x to C sharing only x. We

may assume two of these paths, say R1 and R2, end on P1. Thus C ∪ R1 ∪ R2 contains a

cycle through x, y and z, a contradiction.

For each u ∈ {x, y, z} let Du denote the component of G− Su containing u.

(4) We may choose Sx, Sy, Sz so that Dx, Dy, Dz are pairwise disjoint.

Since G is 2-connected, there must exist a cycle C through x and z, and by (2), Sx ∪ Sz ⊆
V (C) and y 6∈ V (C) as x, y, z are not contained in any cycle. If there exist three y-V (C)

paths sharing only y then two of its paths must end on the same x-y paths in C, yielding

a cycle through x, y, z in G, a contradiction. Hence we may choose Sy to separate y from

V (C). By (2), x, z /∈ Sy. Thus, Dx and Dy are disjoint, and Dz and Dy are disjoint.

Again since G is 2-connected, there must be a cycle D through x and y in G, and

Sx ∪ Sy ⊆ V (D) by (2). By a similar argument as above, we may choose Sz separating z

from V (D). By (2), x, y /∈ Sz, and hence, Dz is disjoint from both Dx and Dy. So we have

(4).

Case 1. For some choice of Sx, Sy, Sz satisfying (2) and (3), Sx, Sy, Sz are not pairwise

disjoint. Without loss of generality, let Sx ∩Sy 6= ∅. If Sx = Sy we can also choose Sz = Sx

so that x, y, z belong (pairwise) to different components of G− Sx. Then, (i) holds.

So let {v} = Sx∩Sy. Then, there do not exist two paths from z to (Sx∪Sy)−v sharing

only z in G − v; for otherwise, G would contain a cycle through x, y, z. Hence, there is

vertex w in V (G− v)− V (Dx ∪Dy) separating (Sx ∪ Sy) \ {v} from Sz in G− v. Then, by

choosing Sz = {v, w} we see that (ii) holds.

Case 2. For any choice of Sx, Sy, Sz satisfying (2) and (3), Sx, Sy, Sz are pairwise disjoint.

Choose Su = {au, bu} for all u ∈ {x, y, z} such that, subject to (3) and (4), Dx, Dy, Dz

are maximal. Let G′ := (G − V (Dx ∪ Dy ∪ Dz)) + {axbx, ayby, azbz}. By the maximality

of Dx, Dy, Dz, if G′ is not 3-connected then, for every 2-separation (G1, G2) of G′, either

{axbx, ayby, azbz} ⊆ E(G1) or {axbx, ayby, azbz} ⊆ E(G2). Suppose {axbx, ayby, azbz} ⊆
E(G1). Replace G2 by an edge between the vertices in V (G1∩G2). Repeating this operation
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until no such 2-separation exists, we obtain a 3-connected graph G′′ in which axbx, ayby and

azbz are independent edges.

Suppose G′′−{axbx, ayby, azbz} is connected. Then by Lemma 2, there exists a cycle C ′′

in G′′ through axbx, ayby and azbz. From C ′′ we may produce a cycle C through x, y, z in G

by replacing the edges in E(C ′′)− E(G) with paths in G, a contradiction. So assume that

G′′ − {axbx, ayby, czbz} is not connected, and hence, it has exactly two components. Then

we see that G−V (Dx ∪Dy ∪Dz) has exactly two components, each containing exactly one

vertex from Su for all u ∈ {x, y, z}. Hence (iii) holds. ¤
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CHAPTER V

3-SEPARATIONS

The goal of this section is to show that every Hajós graph is 3-connected, and if a Hajós

graph admits a 3-separation (G1, G2) chosen to minimize G2, then G1 and G2 admit special

4-colorings.

Lemma 3 Every Hajós graph is 3-connected.

Proof: Let G be a Hajós graph. Obviously, G must be connected. Suppose G is not 2-

connected. Then, there exists a 1-separation (G1, G2) of G and G1, G2 are proper subgraphs

of G, {v} = V (G1 ∩G2). Since G has no K5-subdivision neither G1 nor G2 contain a K5-

subdivision. Hence, G1 and G2 are 4-colorable. Let ci denote 4-colorings of Gi for i = 1, 2

using the same set of four colors. We may assume c1(v) = c2(v) by permuting the colors of

vertices in G1. We obtain a proper 4-coloring c of G by defining c(u) = ci(u) for u ∈ V (Gi),

a contradiction. Therefore, G is 2-connected.

Now, suppose G is not 3-connected. Then, there exists a 2-separation (G1, G2) of G.

Let V (G1 ∩ G2) = {x, y}. Consider G′
1 = G1 + xy and G′

2 = G2 + xy. We claim that G′
i,

i = 1, 2, has no K5-subdivision. For otherwise, let Σ be a K5 subdivision in G′
i. Then,

xy ∈ E(Σ), or else Σ is also a K5-subdivision in G, a contradiction. As G is 2-connected,

there exists an x-y path P in G′
3−i, and we may replace xy to obtain a K5-subdivision in

G, a contradiction.

Hence, since |V (G′
i)| < |V (G)|, both G′

1 and G′
2 are 4-colorable. Let ci be a 4-coloring

of G′
i for i = 1, 2, using the same set of colors. Since ci(x) 6= ci(y) for i = 1, 2 we can

permute the colors of the vertices of G′
2 such that c1(x) = c2(x) and c1(y) = c2(y). Again,

this yields a 4-coloring of G by defining c(u) = ci(u) for u ∈ G′
i, a contradiction. ¤

Suppose now that G is not 4-connected. Then G has a 3-separation (G1, G2) and let

V (G1) ∩ V (G2) = {x, y, z}. For the remainder of this section, we choose (G1, G2) so that
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Figure 5: A 3-separation of G

G2 is minimal. We shall show that G1 and G2 admit certain 4-colorings. First, we need

some structural information about G2.

Lemma 4 Let G be a Hajós graph, and let (G1, G2) be a 3-separation of G chosen to

minimize G2. Then

(i) |V (G2)| ≥ 5,

(ii) G2 − V (G1 ∩G2) is connected, and

(iii) G2 is 2-connected.

Proof: (i) If |V (G2)| ≤ 4, then |V (G2)| = 4. Let v ∈ V (G2) \ {x, y, z}. Then v has degree

at most 3 in G, and as G − v does not contain a K5-subdivision it is 4-colorable by the

choice of G. Since the degree of v in G is at most 3, G is 4-colorable, a contradiction.

Hence, |V (G2)| ≥ 5.

(ii) Suppose G2−V (G1∩G2) is not connected. Let D denote a component of G2−V (G1∩G2).

Then there is a 3-separation (G′
1, G

′
2) with V (G′

1)∩V (G′
2) = V (G1 ∩G2) and G′

2−V (G1 ∩
G2) = D. This contradicts the choice of (G1, G2) since G′

2 is properly contained in G2.

(iii) By (ii), G2−V (G1∩G2) is connected and as G is 3-connected, every vertex in V (G1∩G2)

has a neighbor in G2 − V (G1 ∩ G2), so G2 is connected. Suppose there is a cut vertex
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v ∈ V (G2)− V (G1 ∩G2) in G2. Then, V (G1 ∩G2) cannot be contained in one component

of G2 − v, for otherwise v would be a cut vertex in G. We may assume some vertex

x ∈ V (G1 ∩ G2) is separated from V (G1 ∩ G2) − {x} by {v} in G2. Then, since G is

3-connected, xv ∈ E(G), and since |V (G2)| ≥ 5, (V (G1 ∩ G2) − {x}) ∪ {v} is a cut in G

yielding a separation (G′
1, G

′
2) such that G′

2 is a proper subgraph of G2, a contradiction. ¤

Proposition 1 Let G be a Hajós graph, let (G1, G2) be a 3-separation of G chosen to

minimize G2, and let V (G1 ∩G2) = {x, y, z}. Then there is a 4-coloring c1 of G1 such that

c1(x), c1(y) and c1(z) are all distinct.

Proof: Suppose this is not true, that is G′
1 = G1 + {xy, xz, yz} is not 4-colorable. By the

choice of G, G′
1 contains a K5-subdivision, say Σ.

First we claim that x, y, z are branching vertices of Σ. If {xy, xz, yz} ⊆ E(Σ) then we see

that x, y, z are branching vertices of Σ. So we may assume by symmetry, that yz 6∈ E(Σ).

As G2 is 2-connected by (iii) of Lemma 4, there exist internally disjoint paths Y from x to y

and Z x to z in G2. Then, (Σ−{xy, xz})∪Y ∪Z is a K5-subdivision in G, a contradiction.

Therefore, if G2 contains a cycle C through x, y, z, (Σ − {xy, xz, yz}) ∪ C (and hence

G) contains K5-subdivision, a contradiction. Hence there cannot be a cycle through x, y, z

in G2. By applying Theorem 5 to G2, it suffices to consider the following three cases.

Case 1 There exist a 2-cut S in G2 and 3 distinct components Dx, Dy, Dz in G2 − S such

that u ∈ V (Du), for u ∈ {x, y, z}. Let S = {a, b}. If, |V (Dx)| ≥ 2 then G − {x, a, b},
has a component properly contained in G2 − {x, y, z} contradicting the choice of (G1, G2).

Thus, V (Dx) = {x}, and similarly V (Dy) = {y} and V (Dz) = {z}. Hence a, b are the only

vertices of G not in G1.

By the choice of G, G1 is 4-colorable. Let c1 be a 4-coloring of G1. If c1(x), c1(y), c1(z)

do all receive distinct colors, then c1 is also a 4-coloring of G′
1. Otherwise, a coloring c′1 of

G such that c′1(a) and c′1(b) are two colors not in {c1(x), c1(y), c1(z)}, and c′1(u) = c1(u) for

all u ∈ G1. Then, c′1 is a 4-coloring, of G, a contradiction.

Case 2 There exist a vertex {v} of G2, 2-cuts Sx, Sy, Sz in G2 and components Du of G2−Su

containing u, for all u ∈ {x, y, z}, such that Sx ∩Sy ∩Sz = {v}, Sx−{v}, Sy−{v}, Sz−{v}
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are pairwise disjoint, and Dx, Dy, Dz are pairwise disjoint.

As in Case 1, we conclude V (Dx) = {x}, V (Dy) = {y} and V (Dz) = {z}. Since G has

no K5-subdivision we see that G1 + xy has no subdivision of K5. For otherwise, as G2 is

2-connected, there exists an x-y paths in G2 − z and we may produce a K5-subdivision in

G.

Hence, by the choice of G, we know that G1 + xy admits a 4-coloring c1. Then c1(x) 6=
c1(y) and if c1(z) 6= c1(x) as well as c1(z) 6= c1(y), then c1 is a 4-coloring of G′

1. We may

assume that c1(z) = c1(y) by the symmetry between x and y.

Next we extend this coloring of G1 to a 4-coloring of G. By the choice of G there exists a

4-coloring c2 of G2 using the same set of colors as c1. As y and z only have three neighbors

in G2, we may choose c2 such that c2(y) = c2(z). Since x has only two neighbors in G2,

we may assume that c2(x) 6= c2(y). Now, by permuting the colors of vertices of G2 we may

assume that c1(u) = c2(u) for u ∈ {x, y, z}. Then, c defined by c(u) = ci(u) for u ∈ V (Gi)

is a 4-coloring of G, a contradiction.

z

ay

by

bz

xy β α

z

β

bx

β

α

ax

γ

γ

δ

α

Figure 6: A coloring of G2 in Case 3.
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Case 3 There exist disjoint 2-cuts Sx, Sy, Sz in G2 and components Du of G2−Su containing

u, for all u ∈ {x, y, z}, such that Dx, Dy, Dz are pairwise disjoint. Moreover, G2 − V (Dx ∪
Dy ∪Dz) has exactly two connected components, each containing exactly one vertex of Su,

for all u ∈ {x, y, z}.
As in Case 1, we conclude V (Dx) = {x}, V (Dy) = {y} and V (Dz) = {z}.
Let Sx := {ax, bx}, Sy := {ay, by}, and Sz := {az, bz}, and assume that {ax, ay, az}

(respectively, {bx, by, bz}) is contained in the component A (respectively, B) of G−V (Dx ∪
Dy ∪ Dz). Then |V (A)| = 3 = |V (B)|; for otherwise, G − {ax, ay, az} or G − {bx, by, bz}
has a component which is properly contained in G2 − {x, y, z}, contradicting the choice of

(G1, G2).

G1 + {xy, yz} does not contain a K5-subdivision. Suppose G1 + {xy, yz} contains a

K5-subdivision Σ. By (iii) of Lemma 4, G2 has two internally disjoint paths X from y

to x and Z from y to z. Now, (Σ − {xy, yz}) ∪ X ∪ Z ⊆ G contains a K5-subdivision, a

contradiction.

Since |V (G1 + {xy, yz})| < |V (G)|, G1 + {xy, yz} is 4-colorable. Let c1 be a 4-coloring

of G1 + {xy, yz}. Then c1(x) 6= c1(y) 6= c1(z). If c1(x) 6= c1(z), then G′
1 is 4-colorable,

a contradiction. So assume that c1(x) = c1(z). For convenience, assume that the colors

we use are {α, β, γ, δ} and c1(x) = α and c1(y) = β. Let c be a coloring of G such that

c(u) = c1(u) for all u ∈ V (G1), c(ax) = c(bz) = γ, c(bx) = c(az) = β, c(ay) = δ and

c(by) = α. It is easy to check that c is a 4-coloring of G, a contradiction. ¤

G1 does not only admit a 4-coloring such that x, y, z receive all different colors. Under

additional assumptions, we can also prove that the following special colorings of G1 exist.

Lemma 5 Let G be a Hajós graph, let (G1, G2) be a 3-separation of G chosen to minimize

G2, and let V (G1 ∩ G2) = {x, y, z}. Suppose there is a vertex x′ ∈ V (G1) − {x, y, z}
separating x from {y, z} in G1. Then there exist 4-colorings c1 and c2 of G1 such that

c1(x) = c1(y) 6= c1(z) and c2(x) = c2(z) 6= c2(y).

Proof: Note that xy, xz 6∈ E(G) for otherwise x′ does not separate x from {y, z} in

G1. As G is 3-connected, xx′ ∈ E(G), for otherwise {x, x′} would be a 2-cut in G. Let
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Figure 7: x′ separating x from y and z.

G∗
1 := (G1 − x) + {x′y, yz}. We claim that G∗

1 has no K5-subdivision. Suppose G∗
1 has a

K5-subdivision Σ. Since G does not have a K5-subdivision in G′
1, clearly {x′y, yz}∩E(Σ) 6=

∅. Since G2 is 2-connected, it contains two internally disjoint paths X, Z from y to x, z,

respectively. Now (Σ − {x′y, yz}) ∪ (X + {x′, xx′}) ∪ Z, and hence G, contains a K5-

subdivision, a contradiction.

Therefore, since |V (G∗
1)| < |V (G)|, G∗

1 is 4-colorable. Let c∗1 be a 4-coloring of G∗
1. Then

c∗1(x
′) 6= c∗1(y) 6= c∗1(z). Define a coloring c1 of G1 by letting c1(x) = c∗1(y) and c1(u) = c∗1(u)

for all u ∈ V (G1)− {x}. It is easy to see that c1 gives the desired 4-coloring of G1.

Similarly, by defining G∗
1 := (G1 − x) + {x′z, yz}, we can show that G1 has the desired

4-coloring c2. ¤

Next, we want to prove that G2 admits certain 4-colorings. The following Lemma will

be needed to do prove this and allow us to apply Theorem 5 to G1.

Lemma 6 Let G be a Hajós graph, and let (G1, G2) be a 3-separation of G chosen to

minimize G2. Then G1 is 2-connected.

Proof: Suppose G1 is not 2-connected. Since G is 3-connected (by Lemma 3), there must

exist vertices x ∈ V (G1 ∩ G2) and x′ ∈ V (G1) − V (G1 ∩ G2) such that x′ separates x

from V (G1 ∩ G2) − {x}. Let y, z denote the other two vertices in V (G1 ∩ G2) − {x}. By
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Lemma 5, there exists a 4-coloring c1 of G1 such that c1(x) = c1(y) 6= c1(z), and there

exists a 4-coloring c′1 of G1 such that c′1(x) = c′1(z) 6= c′1(y).

Note that G2 +yz contains no K5-subdivision. For otherwise, let Σ be a K5-subdivision

in G2 + yz. By Lemma 3, G is 3-connected. Hence, if G1 − x has no y-z path then

xy, xz ∈ E(G) and V (G1) = {x, y, z} contradicting the assumption that (G1, G2) is a

separation. So we may assume that G1 − x has a y-z path P . Now (Σ − yz) ∪ P ⊆ G

contains a K5-subdivision, a contradiction. Since |V (G2 + yz)| < |V (G)|, G2 + yz is 4-

colorable. Let c2 be a 4-coloring of G2 + yz. Then c2(y) 6= c2(z).

First, assume that c2(y) 6= c2(x) 6= c2(z). Then c2 is a 4-coloring of G2 + {xy, xz, yz}.
By Proposition 1, G1 has a 4-coloring c1 such that c1(x), c1(y) and c1(z) are all distinct. We

may assume c1 and c2 use the same set of four colors, and by permuting colors of vertices

in G1, we have c1(u) = c2(u) for all u ∈ {x, y, z}. Now define a coloring c of G by letting

c(u) = ci(u) for all u ∈ V (Gi), i = 1, 2. This shows that G is 4-colorable, a contradiction.

Now by the symmetry between y and z, we may assume that c2(x) = c2(y) 6= c2(z).

We may assume that c1 and c2 use the same set of four colors, and by permuting colors if

necessary, c1(u) = c2(u) for all u ∈ {x, y, z}. Define c(u) = ci(u) for all u ∈ V (Gi), i = 1, 2.

Then it is easy to see that c is a 4-coloring of G, a contradiction. ¤

Proposition 2 For F ⊆ {xy, xz, yz} G2 + F is 4-colorable if and only if |F | ≤ 2.

Proof: Suppose that |F | = 3 and G2 + F = G2 + {xy, xz, yz} is 4-colorable. Then there

is a 4-coloring c2 of G2 such that c2(x), c2(y) and c2(z) are all distinct. By Proposition 1,

let c1 be a 4-coloring of G1 such that c1(x), c1(y) and c1(z) are all distinct. Assume that

c1 and c2 use the same set of four colors. By permuting colors if necessary, we may assume

that c1(u) = c2(u) for all u ∈ {x, y, z}. Let c(u) = ci(u) for all u ∈ V (Gi), i = 1, 2. Then

we see that c is a 4-coloring of G, a contradiction. Hence G2 + F is not 4-colorable when

|F | = 3.

Now assume |F | = 1. By symmetry, consider F = {xy}. If G2 + xy has no K5-

subdivision, then by the choice of G, we see that G2 + xy is 4-colorable. So assume that
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G2 + xy has a K5-subdivision, say Σ. By Lemma 6, we see that G1 − z has an x-y path P .

Now (Σ− xy) ∪ P ⊆ G contains a K5-subdivision, a contradiction.

Finally, assume |F | = 2. By symmetry, we consider F = {xy, xz}. If G2 + {xy, xz}
contains no K5-subdivision then, by the choice of G, we see that G2+{xy, xz} is 4-colorable.

So we may assume that G2 + {xy, xz} does contain a K5-subdivision, denoted by Σ. By

Lemma 6, G1 contains internally disjoint paths Y,Z from x to y, z, respectively. Hence

(Σ− {xy, yz}) ∪ Y ∪ Z ⊆ G contains a K5-subdivision, a contradiction. ¤

We conclude this section with a useful observation.

Lemma 7 Let G be a Hajós graph, and let (G1, G2) be a 3-separation of G chosen to

minimize G2. Then there is no cycle in G1 containing V (G1 ∩G2), and V (G1 ∩G2) is an

independent set in G1.

Proof: Let V (G1 ∩G2) = {x, y, z}. By Proposition 2, G2 + {xy, xz, yz} is not 4-colorable.

Hence by the choice of G, G2 + {xy, xz, yz} has a K5-subdivision Σ. If there is a cycle C

in G1 through x, y, z, then (Σ−{xy, yz, zx})∪C (and hence G) contains a K5-subdivision,

a contradiction. So G1 contains no cycle through x, y, z. Therefore, by Lemma 6 {x,y,z}
must be independent in G1. ¤
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CHAPTER VI

4-CONNECTIVITY

In this section we prove Theorem 1. In order to do so, we need the following lemma.

Lemma 8 Let G be a Hajós graph, let (G1, G2) be a 3-separation of G chosen to minimize

G2, and let V (G1 ∩G2) = {x, y, z}. Let Ex (respectively, Ey) denote the set of edges of G1

incident with x (respectively, y), and let G∗
1 denote the graph obtained from G1 by adding the

edge yz and identifying x and y as x∗ . Then, Ex ∩Ey = ∅, G∗
1 contains a K5-subdivision,

and for any K5-subdivision Σ in G∗
1,

(i) x∗ is a branching vertex of Σ,

(ii) yz /∈ E(Σ),

(iii) |Ex ∩ E(Σ)| = 2 = |Ey ∩ E(Σ)|, and

(iv) for any two branching vertices u, v of Σ, there are four internally disjoint u-v paths

in Σ.

Proof: For convenience, vertices and edges of G1 are also viewed as vertices and edges

of G∗
1, except for x and y. By Lemma 7 and Lemma 6, Ex ∩ Ey = ∅, using Theorem 5.

Suppose G∗
1 contains no K5-subdivision. Then by the choice of G, G∗

1 is 4-colorable.

Then G1 has a 4-coloring c1 such that c1(x) = c1(y) 6= c1(z). By Proposition 2, G2+{xz, yz}
is 4-colorable. Let c2 be a 4-coloring of G2 + {xz, yz}. Then c2(x) 6= c2(z) 6= c2(y).

If c2(x) 6= c2(y) then G2 + {xy, yz, zx} is 4-colorable, contradicting Proposition 2. So

c2(x) = c2(y). We may assume that c1 and c2 use the same set of four colors. Then we may

permute colors so that c1(u) = c2(u) for all u ∈ {x, y, z}. Let c(u) = ci(u) for all u ∈ V (Gi),

i = 1, 2. Then c is a 4-coloring of G, a contradiction.

Now let Σ be a K5-subdivision in G∗
1. By (iii) of Lemma 4, let Pyz denote a y-z path in

G2 − x, Pxz an x-z path in G2 − y, and Pxy an x-y path G2 − z. For the same reason, G2
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Figure 8: The structure of G∗
1

contains internally disjoint paths Xy, Xz from x to y, z, respectively, and internally disjoint

paths Yx, Yz from y to x, z, respectively.

Proof of (i). Suppose x∗ is not a branching vertex of Σ. Then since G1 has no K5-

subdivision, exactly one branching path of Σ, say R, uses x∗. Let q, r be the neighbors

of x∗ in R. First assume that z ∈ {q, r}, say z = r. If qy ∈ E(G1) then ((Σ − x∗) +

{y, qy}) ∪ Pyz is a K5-subdivision in G, a contradiction. So assume qx ∈ E(G1) then

((Σ − x∗) + {x, qx}) ∪ Pxz is a K5-subdivision in G, a contradiction. So assume that

z /∈ {q, r}. If qx, rx ∈ E(G1) then (Σ − x∗) + {x, qx, rx} is a K5-subdivision in G1, a

contradiction. If qy, ry ∈ E(G1) then (Σ − x∗) + {y, qy, ry} is a K5-subdivision in G1, a

contradiction. So assume by symmetry qx, ry ∈ E(G1). Then ((Σ−x∗)+{x, y, qx, ry})∪Pxy

is a K5-subdivision in G, a contradiction. Thus x∗ is a branching vertex in Σ, and (i) holds.

Proof of (ii). Suppose yz ∈ E(Σ). Then either |Ex ∩E(Σ)| ≤ 1 or |Ey ∩E(Σ)| ≤ 1. By

symmetry, assume that |Ex∩E(Σ)| ≤ 1. If |Ex∩E(Σ)| = 0 then let yy1, yy2, yy3 ∈ Ey∩E(Σ),

and we see that ((Σ−x∗)+{y, yy1, yy2, yy3})∪Px is a K5-subdivision in G, a contradiction.

So assume |Ex ∩ E(Σ)| = 1 then let yy1, yy2 ∈ Ey ∩ E(Σ) and xx1 ∈ Ex ∩ E(Σ). Then

((Σ − x∗) + {x, y, yy1, yy2, xx1}) ∪ Yx ∪ Yz is a K5-subdivision in G, a contradiction. So

yz /∈ E(Σ), and (ii) holds.
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Proof of (iii). If |Ex ∩ E(Σ)| = 0 or |Ey ∩ E(Σ)| = 0, then by (ii), Σ gives a K5-

subdivision in G (by simply renaming x∗ as y or x), a contradiction. Suppose (iii) fails and

assume by symmetry that |Ex ∩ E(Σ)| = 1 and |Ey ∩ E(Σ)| = 3. Let xx1 ∈ Ex ∩ E(Σ),

yy1, yy2, yy3 ∈ Ey∩E(Σ). Then ((Σ−x∗)+{x, y, xx1, yy1, yy2, yy3})∪Pxy is a K5-subdivision

in G, a contradiction. So (iii) must hold.

(iv) is a special case of Lemma 1. ¤

Proof of Theorem 1. Suppose the assertion of Theorem 1 is not true. Let G be a Hajós’

graph and assume that G is not 4-connected. By Lemma 3, G is 3-connected. Let (G1, G2)

be a 3-separation of G such that |V (Gi)| ≥ 4 and subject to this, |V (G2)| is minimum. Let

V (G1 ∩G2) = {x, y, z}.
By Lemma 7, {x, y, z} is not contained in any cycle in G1, and {x, y, z} is an independent

set in G1 (see claim (1) in the proof of Theorem 5). Let Ex (respectively, Ey) denote the

set of edges in G1 incident with x (respectively, y). Let G∗
1 denote the graph obtained from

G1 by adding the edge yz and identifying x and y as x∗. Then by Lemma 8, Ex ∩ Ey = ∅
and G∗

1 contains a K5-subdivision, say Σ. Note that Σ satisfies (i)–(iv) of Lemma 8.

Note that G1 is 2 connected (by Lemma 6) and contains no cycle through x, y, z (by

Lemma 7). By applying Theorem 5 to G1 and x, y, z, we consider the following three cases.

Case 1. There exists a 2-cut S in G1 such that x, y, z are in pairwise different components

Dx, Dy, Dz of G1 − S, respectively.

Let S := {a, b}. By (i) of Lemma 8, x∗ is a branching vertex of Σ. Therefore, Dz

contains no branching vertex of Σ since S and the edge zx∗ show that G∗
1 contains at most

three internally disjoint paths between x∗ and Dz. Similarly, either Dx − x or Dy − y has

no branching vertex of Σ since S ∪ {x∗} is a 3-cut in G∗
1 separating Dx − x from Dy − y.

Therefore, we may assume that all branching vertices of Σ are in Dx ∪ S ∪ {x∗}. Then,

there is at most one a-b path contained in Σ, and we denote it by P if it exists. We shall

derive a contradiction by either constructing a K5-subdivision in G or giving a 4-coloring

of G.
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By (iii) of Lemma 8, there let Pa be the path between y and a contained in Σ and Pb the

path between y and b contained in Σ. If G[V (Dy)∪S] contains internally disjoint path Y,B

from a to y, b, respectively, then we can produce a K5-subdivision in G as follows: replace

Pa, P by Y, B, respectively, replace Pb by a path in G[V (Dz)∪{b}] from z to b, and add two

internally disjoint paths from x to {y, z} in G2 (which exist by (iii) of Lemma 4). This gives

a contradiction. So we may assume that such paths Y, B do not exist in G[V (Dy)∪S]. Then

there is a cut vertex ay of G[V (Dy) ∪ S] separating a from {y, b}. Since G is 3-connected,

we see that ay is the only neighbor of a in G[V (Dy) ∪ S].

Similarly, we conclude that b has only one neighbor by in G[V (Dy) ∪ S], a has only one

neighbor az in G[V (Dz) ∪ S], and b has only one neighbor bz in G[V (Dz) ∪ S].

Next we use the above structural information to color vertices of G.

Dx Dz

a

b bz

az

by

ay

Dy

γ β γ

β α γ

β α γ

Figure 9: A Coloring of G1 in Case 1

By Proposition 1, G1 has a 4-coloring c1 such that c1(x), c1(y) and c1(z) are all distinct.

We shall obtain a new 4-coloring c′1 of G1 such that x, y, z use exactly two colors. For conve-

nience, let {α, β, γ, δ} denote the four colors used by c1, and let Hij denote the subgraph of

G1 induced by vertices of color i or j, for all {i, j} ⊆ {α, β, γ, δ}. Let c1(x) = α, c1(y) = β,

and c1(z) = γ. Note that {y, z} must be contained in a component of Hβγ , as otherwise we

could switch colors in the component of Hβγ containing y, yielding the desired 4-coloring c′1

of G1. Therefore by symmetry between a and b, we may assume that c1(ay) = β = c1(az)

and c1(a) = γ or c1(ay) = γ = c1(az) and c1(a) = β. By the same argument, {x, z} must

be contained in a component of Hαγ , and {x, y} must be contained in a component of Hαβ.
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Therefore, c1(by) = β, c1(b) = α, and c1(bz) = γ. But then, neither x nor z can be in the

component of Hβδ containing y, and neither y nor z is in the component of Hαδ containing

x. Thus we can switch the colors in the component of Hβδ containing y and in the compo-

nent of Hαδ containing x. This yields the desired 4-coloring c′1 of G1, with c′1(x) = c′1(y) = δ

and c′1(z) = γ.

Now by symmetry, assume that c′1(x) = c′1(y) 6= c′1(z). By Proposition 2, G2 + {xz, yz}
is 4-colorable. Let c2 be a 4-coloring of G2 + {xz, yz} using the colors from {α, β, γ, δ}. If

c2(x) 6= c2(y) then c2 is a 4-coloring of G2 + {xy, yz, zx}, contradicting Proposition 2. So

c2(x) = c2(y). By permuting colors if necessary, we may assume that c2(u) = c′1(u) for all

u ∈ {x, y, z}. Now let c(u) = c′1(u) for all u ∈ V (G1) and c(u) = c2(u) for all u ∈ V (G2).

Then c is a 4-coloring of G, a contradiction.

Case 2 There exist a vertex v of G1, 2-cuts Sx, Sy, Sz in G1, and components Du of G1−Su

containing u, for all u ∈ {x, y, z}, such that Sx ∩Sy ∩Sz = {v}, Sx−{v}, Sy−{v}, Sz−{v}
are pairwise disjoint, and Dx, Dy, Dz are pairwise disjoint.

Our goal is to show that G∗
1 does not admit the K5-subdivision Σ. By (i) of Lemma 8,

x∗ is a branching vertex of Σ. Therefore, Dz contains no branching vertex of Σ since Sz and

the edge zx∗ shows that G∗
1 contains at most three internally disjoint paths between x∗ and

Dz, contradicting (iv) of Lemma 8. In fact, all branching vertices of Σ must be contained

in R := V (Dx − x) ∪ V (Dy − y) ∪ Sx ∪ Sy ∪ {x∗}. For otherwise, Σ has a branching vertex

v 6∈ R, and Σ must have four disjoint path leaving R ∪ {x∗}. This means that yz ∈ E(Σ),

contradicting (ii) of Lemma 8.

We claim that, for each u ∈ {x, y}, not all branching vertices of Σ are contained in

V (Du) ∪ Su ∪ {x∗}. For otherwise, suppose by symmetry that all branching vertices of Σ

are contained in V (Dx) ∪ Sx ∪ {x∗}. By (iii) of Lemma 8, let x∗s, x∗t be the two edges in

E(Σ)∩Ex, let x∗q, x∗r be the two edges in E(Σ)∩Ey, and let Bq, Br be the branching paths

in Σ containing x∗q, x∗r, respectively. Since yz /∈ E(Σ) (by (ii) of Lemma 8), both Bq and Br

have an x∗-Sy subpath whose internal vertices are all contained in Dy. Let Pxy, Pxz be two

internally disjoint paths in G2 from x to y, z, respectively, which exist by (iii) of Lemma 4.

Note that there exists an (Sz − {v})-(Sx − {v}) path Qxz in (G1 − v)− V (Dx ∪Dy ∪Dz);
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for otherwise, one of {v, x}, {v, z} is a 2-cut in G, contradicting Lemma 3. Let Y be a y-v

path in G[V (Dy) ∪ {v}] and let Z be a z-(Sz − {v}) path in G[V (Dz) ∪ (Sz − {v})]. Then

(((Σ− x∗) + {x, xs, xt})− (V (Bq ∪Br)− (V (Dx) ∪ Sx))) ∪ (Pxy ∪ Y ) ∪ (Pxz ∪ Z ∪Qxz)

is a K5-subdivision in G, a contradiction.

Since |{x∗} ∪ Sx ∪ Sy| = 4, there must exist a branching vertex x′ of Σ such that

x′ ∈ V (Dx−x)∪V (Dy− y). By symmetry, we may assume that x′ ∈ V (Dx−x). Hence by

the above claim, there is also a branching vertex y′ of Σ such that y′ ∈ V (Dy−y)∪(Sy−{v}).
Now Sx ∪ {x∗} is a 3-cut in Σ separating x′ from y′, contradicting (iv) of Lemma 8.

Case 3 There exist pairwise disjoint 2-cuts Sx, Sy, Sz in G1 and components Du of G1−Su

containing u, for all u ∈ {x, y, z}, such that Dx, Dy, Dz are pairwise disjoint and G1 −
V (Dx∪Dy∪Dz) has exactly two components, each containing exactly one vertex from each

of Su, for all u ∈ {x, y, z}.
Let Sx = {ax, bx}, Sy = {ay, by}, and Sz = {az, bz} such that {ax, ay, az} is contained

in a component A of G1− V (Dx ∪Dy ∪Dz), and {bx, by, bz} is contained in the component

B of G1 − V (Dx ∪Dy ∪Dz).

As in Cases 1 and 2, we can show that all branching vertices of Σ are in R ∪ Sz, where

R := V (Dx − x) ∪ V (Dy − y) ∪ Sx ∪ Sy ∪ {x∗}. In fact, all branching vertices of Σ must be

in R. For otherwise, assume by symmetry that az is a branching vertex of Σ. Then, since

yz /∈ E(Σ) (by (ii) of Lemma 8), {bz, ax, ay} show that Σ cannot contain four internally

disjoint paths between az and x∗, a contradiction.

We claim that, for each u ∈ {x, y}, not all branching vertices of Σ are contained in

V (Du) ∪ Su ∪ {x∗}. For otherwise, we may assume that all branching vertices of Σ are

contained in V (Dx) ∪ Sx ∪ {x∗}. By (iii) of Lemma 8, let x∗s, x∗t be the two edges in

E(Σ) ∩ Ex, let x∗q, x∗r be the two edges in E(Σ) ∩ Ey, and let Aq, Br be the branching

paths in Σ containing x∗q, x∗r, respectively. Since yz /∈ E(Σ), both Aq and Br have an

x∗-Sy subpath whose internal vertices are all contained in Dy. Let Pxy, Pxz be two internally

disjoint paths in G2 from x to y, z, respectively, which exist by (iii) of Lemma 4. Note that

there exists an ay-ax path Qxy in A (since A is connected) and there exists a bz-bx path
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Qxz in B (since B is connected). Let Y be an y-ay path in G[V (Dy) ∪ {ay}] and let Z be

an z-bz path in G[V (Dz) ∪ {bz}]. Then,

((Σ− x∗ + {x, xs, xt})− (V (Aq ∪Br)− (V (Dx)∪ Sx)))∪ (Pxy ∪ Y ∪Qxy)∪ (Pxz ∪Z ∪Qxz)

is a K5-subdivision in G, a contradiction.

We claim that the set of branching vertices of Σ is Sx ∪ Sy ∪ {x∗}. For otherwise, there

must be a branching vertex x′ of Σ such that x′ ∈ V (Dx − x) ∪ V (Dy − y). By symmetry,

we may assume that x′ ∈ V (Dx− x). Then by the above claim, there is a branching vertex

y′ of Σ such that y′ ∈ V (Dy − y)∪Sy. Now Sx ∪ {x∗} is a 3-cut in Σ separating x′ from y′,

contradicting (iv) of Lemma 8.

Since yz /∈ E(Σ), we see that Σ must contain two branching paths from {ax, ay} to

{by, bz} which are also contained in G1 − V (Dx ∪Dy). But this is impossible, because az

separates {ax, ay} from {by, bz} in G1 − V (Dx ∪Dy), a contradiction. ¤
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