APPLICATION OF THE FABRY-PEROT INTERFEROMETER TO ABSORPTION SPECTROSCOPY

A THESIS

Presented to
the Faculty of the Division of Graduate Studies Georgia Institute of Technology

In Partial Fulfillment of the Requirements for the Degree Master of Science in Chemistry

by
Walter William Moseley, Jr. June 1951

APPLICATION OF THE FABRY-PEROT INTERFTEROMETER TO ABSORPTION SPECTROSCOPY

Approved:

Date Approved by Ghairman Jund 5. 1951

ACKNOWLEDGMENTS

I wish to express my sincerest gratitude to Dr. W. H. Eberhardt, both for suggesting this problem, and for his valuable aid and assistance throughout its prosecution. I should also like to extend my appreciation to Dr. Vernon Crawford and the School of Physics for permitting the use of the Bausch and Lomb Large Littrow Spectrograph.

TABLE OF CONTENTS

CHAPTER PAGE
I SUMMARY 1
II INTRODUCTION 6III DESCRIPTION OF THE FABRY-PEROTINTERFEROMETER8
IV THEORY OF THE FABRY-PEROT INTERFEROMETER 11V THEORY OF THE INTERFEROMETERSPECTROGRAPH PATTERN15
VI REQUIREMENTS ON THE SPECTROGRAPH 34
VII PARABOLA BROADENING DUE TO TEMPERATURE AND PRESSURE GHANGES 38
VIII EXPERIMENTAL MEASUREMENTS ON THE ABSORPTION SPECTRUM OF NO_{2} 50
BIBLIOGRAPFY 66
TABLE PAGE
I Distance Broadening of Parabolas Due to Temperature and Pressure Changes 40
II Fractional Broadening of Parabolas Due to Temperature and Pressure Changes 41
III Value of Formulas in Table I for Conditions of this Work 42
IV Values of Equations in Table II for Conditions of this Work 43
V Determination of the Interferometer Plate Distance 54
VI Bands Observed in Region of 104 to 112 in Figures 20 and 21 58
VII Doublet Components Selected irom theAbsorption Spectrum of NO_{2}61
VIII Difference in Wave Numbers of Doublet Components in the Absorption Spectrum of NO_{2}63

IIST OF FIGURES

FIGURE
1 Interferometer Plates
2 Transmission and Reflection in the FabryPerot Interferometer

9
3 Interferometer Pattern for Two Wave Lengths in Four Orders14
4 Interferometer-Spectrograph Optical System 16
5 Interferometer-Spectrograph Patterns 16
6 Interferometer-Spectrograph Patterns for Two Yellow Mercury Lines 17
7 Negative Photograph of a Channelled Spectrum 17
8 Portion of Figure 3 Selected by a Spectro-graph Slit21
9 Overlapping Orders for Two Wave Lengths 21
10 Fringe Patterm at Slit for Five Nearly Equal Wave Lengths 22
11 Fringe Pattern at Slit for Several Nearly Equal Wave Lengths 22
12 Pattern Given in Figure 11 After Dispersion by a Spectrograph 24
13 Effect of Slit Width and Fringe Thickness 26
14 Interference Patterns 27
15 Microphotometer Traces of Channelled Spectra 28
16 Interferometer-Spectrograph Pattern for a Discrete Source 30
17 Intensity Distribution of Orders 33
FIGURE PAGE
18 Plots of Formula V 35
19 Reflection Coefficient for Silver Coating 45
20 Positive Photograph of Channelled andOrdinary Absorption Spectrum of $\mathrm{NO}_{2} \quad 55$
21 Positive Enlargement of Figure 20 56
22 Positive Photograph of Bands at 108 and112.5 in Figure 2057
23 Plot of Doublets in Table VII 62
24 Doublet Separation of NO_{2} Bands by Equation VI 64

APPLICATION OF THE FABRY-PEROT INTERFEROMETER TO ABSORPTION SPECTROSCOPY

I

SUMMARY

An attempt has been made to determine the practicability of crossing the dispersion of a Fabry-Perot interferometer with that of the Bausch and Lomb Large Iittrow Spectrograph to obtain greater resolution and dispersion for the study of molecular absorption than is ordinarily possible. Even though some studies of this technique have been made for monochromatic absorption, no research has been reported for more complex systems and little attempt has been made to correlate the details of the spectrogram produced in this manner with the characteristics of the interferometer, spectrograph, and photographic plate.

From fundamental equations expressing the behavior of the interferometer and spectrograph separately, equations were derived to determine the effect on the spectrogram of the following factors: slit width of the spectrograph, spectrographic dispersion, reflection coefficient of the interferometer plates, resolv-
ing pover of the photographic plates, and temperature and pressure changes during an exposure. From the theoretical study, it was possible to specify the precise requirements that an interferometer places on a spectrograph and to develop both an understanding of what features should appear in the absorption spectrum and to derive more accurate equations for converting measurable quantities into wave numbers of absorption bands.

The channelled spectrogram produced with a continuous source of radiation and very small slit width is known to consist of a series of closely spaced almost vertical parabola segments with the distance, $\Delta \mathrm{S}$, along the dispersion of the spectrograph between these given by the equation

where t in this equation is the distance between the interferometer plates, d is the dispersion of the spectrom graph, and λ is the wave length of the region under consideration. For infinitely sharp interference fringes, the channels just disappear to give a continuous background when the slit width is equal to ΔS, and overlap with a reduction in resolution when the slit width is larger than this value. For finite fringes the critical slit width required to produce the continuous background
is dependent upon the fringe width. Since it is desired to use the largest slit width consistent with maximum resolution, this condition represents the optimum operating conditions for studies of absorption spectra. The above equation then forms the basis for the specification of requirements on the spectrograph and interferometer.

The limit of resolution of the interferometerspectrograph combination operated in this condition is determined entirely by that of the interferometer which is simply related to the interferometer spacing and the reflection coefficient of the plates. For an interferometer spacing of 0.15 cm as used in this work and a reflection coefficient assumed to be at least 0.80, the theoretical resolving limit of the interferometer was calculated as 0.04 \&. In the region of 4,000 \& this corresponds to a resolving power of 1×10^{5}. From equations derived for the vertical distance between parabola segments for the optical system used in this study, the dispersion of the channelled spectrum normal to the spectrographic dispersion was calculated to be about $0.5 \AA / \mathrm{mm}$. Since the resolving power of most photographic plates is approximately 50 lines $/ \mathrm{mm}$ or $0.02 \mathrm{~mm} /$ line, the calculated resolution should be obtainable with ordinary plates, a relatively large slit width, and acceptable exposure times.

General equations derived to determine the extent
of the parabola broadening due to temperature and pressure changes during an exposure led to the conclusion that for the apparatus used in this study a control of temperature and pressure within $2^{\circ} \mathrm{C}$ and 4 mm Hg would be sufficient for very accurate work. However, ordinary changes in room temperature and atmospheric pressure should be of little consequence for most work.

The results of these considerations have been confirmed by an experimental study of the absorption spectrum of nitrogen dioxide in the region around 4,000 \&. The maximum resolving limit attained was $0.24 \&$ which corresponds to a resolving power of 0.2×10^{5}. This limitation was ascribed to the actual width or complexity of the absorption bands which prevented further resolution.

An important limitation in the use of the channelled spectrum for absorption work is the tediousness inherent in the interpretation of the spectrogram which is now essentially a two-dimensional rather than the usual linear record. The increase in resolution was, however, clearly evident and served to accentuate many of the features of the spectrum which otherwise escaped observation. In addition, the wave number differences of absorption features were determined with considerable accuracy from the expression

$$
\Delta \tilde{r}=\frac{\Delta m}{2 t}
$$

where Δm is the number of orders (parabola segments) between the absorption features.

It appears therefore, that the use of the inter-ferometer-spectrograph combination is practicable and permits a more detailed and accurate determination of fine structure dut for any but the simplest spectra presents a problem of interpretation of very great difficulty.

II

INTRODUCTION

In the investigation of excited electronic states of polyatomic molecules, it is necessary to obtain greater resolution and dispersion than that which can be furnishea by instruments now available at the Georgia Institute of Technology. For such studies in the region of 4,000 R, it is desired to measure energy differences of about $0.1 \mathrm{~cm}^{-1}$, or wave length differences of about 0.02 \&. Such measurements require a resolving power of the order of 2×10^{5}. Even though the Bausch and Lomb Large Littrow Spectrograph with glass optics has a theoretical resolving power of 1×10^{5} in this region, it has a linear dispersion of only $5 \& / \mathrm{mm}$. Consequently, a slit width of about 8μ would be required to realize this resolution. Such a small slit width would require relatively enormous exposure times and also place extreme demands on the resolving power of the photographic plate which is normally less than 50 lines $/ \mathrm{mm}$.

It seemed possible, however, that the required resolving power and dispersion could be obtained by crossing a Fabry-Perot interferometer with the Bausch
and Lomb Large Littrow Spectrograph available in the School of Physics. This investigation has been undertaken to determine the practicality of such a technique.

Although the application of the Fabry-Perot interferometer to monochromatic absorption has been studied in considerable detail $1,2,3$ there seemed to be no publications in which the Fabry-Ferot instrument was used for the study of molecular absorption. Furthermore, little attempt was found in the Iiterature to correlate the details of the spectrogram produced by a continuous source with the characteristics of the crossed instruments to the degree that seemed necessary for the type of measurement undertaken in this study.

[^0]DESCRIPTION OF THE FABRY-PEROT INTERFEROMETER

The Fabry-Perot interferometer consists of two partially metalized plates, A and B, placed one behind the other, so that rays of light, I, passing through the plates in sequence will be partially reflected at both as shown in Figure 1.

The distance between the plates, usually of the order of a few millimeters, is rigidly fixed since it must be accurately known for most experiments. The plates are usually quartz or glass discs coated with a metal that exhibits, in the desired wave length region, a high reflection coefficient in the solid state and a high transparency as a thin film. Thus, by properly coating the pletes, the desired degree of reflection may be obtained. Tolansky ${ }^{4}$ discusses the characteristics of various kinds of plates in considerable detail.

The interferometer used in this study is a commercially available instrument manufactured by the Gaert-

[^1]
ner Scientiffc Company, under the catalogue number L2320Q. The plates, which are of quartz, are 27 mm in diameter and about 5 mm in thickness with surfaces ground flat to better than $1 / 20$ th wave length. The front and back surfaces of each plate are inclined at a small angle to each other to prevent spurious interference. ${ }^{5,6}$

The plates are mounted in a brass holder with a flxed spacer. As originally designed, the spacer is a quartz annular ring 10.030 mm in thickness. This spacing gives good resolving power for discrete spectra, but produces a pattern for continuous spectra which is not adaptable to the Bausch and Lomb instrument. (See section on requirements of the spectrograph). In order to obtain a suitable pattern, the quartz spacer was replaced by three $1 / 16$ inch ball bearings held loosely in a ring of 1/32 inch lucite. The bearings were sufficiently unform in diameter to allow sharp, uniform patterns to be obtained with monochromatic radiation.

```
Ibid., p. }14
6
Harrison, Lord, and Loofbourow, Practical Spectroscopy (New York: Prentice Hall, Ince, 1948) p. 561
```


IV

THEORY OF THE FABRY-PEROT INTERFEROMETER

Figure 2 illustrates that the part of an incident ray, I, that is reflected at plate B of the interferometer will undergo repeated reflections between the plates, being partially transmitted upon each reflection at plate B to produce the series of parallel rays, $T_{\theta_{1}}$. The nature of all such transmitted rays may be discussed in the following manner:

If a monochromatic ray I of wave length λ strikes the second plate of a Fabry-Perot interferometer (Figure 2) making an angle θ_{1} with $N N^{\prime}$, the normal to the plates, a series of in-phase parallel rays will be transmitted also at an angle θ_{1} with respect to the nommal if θ_{1} satisfies the equation:

$$
\text { 2t } \cos \theta=n \lambda \text { (I) }
$$

where n is any integer less than $2 t / \lambda$, and t is the distance between the plates. Any incident ray parallel to I will produce transmitted rays identical in phase and direction with those produced by I.

All rays incident to plate B at an angle θ_{1} define the surface of a family of cones $F_{\theta_{1}}$ of semi-angle
θ_{1} perpendicular to $B W 1 t h$ apices in the plane of B. Any given ray on the surface of one such cone is parallel to one and only one ray in each of the remaining cones in the family. All the rays transmitted from one such group of parallel incident rays will be in phase and parallel and will therefore meet in a point at infinity. Any other group of parallel incident rays lying on the surfaces of the cones $\mathrm{F}_{\theta_{1}}$ will be transmitted to produce rays meeting in a different point at infinity. The totality of all such points will describe a circle $\mathrm{C}_{\theta_{1}}$ at infinity while the rays lying on the surfaces of another family of cones $\mathrm{F}_{\theta_{2}}$ will produce a circle $\mathrm{C}_{\theta_{2}}$ concentric with $\mathrm{C}_{\theta_{1}}$ if θ_{2} satisfies equation I.

It is possible to get an expression containing the diameter of these concentric circles when they are focused onto a screen. It has been shown that

$$
m=m_{0}+\theta=\frac{2 t}{\lambda}+\frac{2 t D^{2}}{8{ }^{\lambda} 2}(I I)
$$

where m , a large integer, is the order of interference for the ring of diameter D, m_{0} is the integral order of interference for a ring of diameter D_{0}, which is equal to zero, θ is the partial order of interference between the center and the first ring, f is the focal length of the lens used to focus the rings, and t is the distance between the interferometer plates.

From equation II it is seen that for two slightly different values of λ, two circles of slightly different dianeters will be formed for each value of m. However, for a given value of λ two successive integral values of m correspond to two circles with appreciably different diameters. The interference pattern of two slightly different wave lengths for four values of m is shown in Figure 3 where two different series of concentric circles correspond to two different values of λ.

Finally, for a spectrum of discrete lines, the pattern consists of severa \perp series of concentric circles superimposed upon each other, each series corresponding to a single spectral line; each circle in a given series corresponding to a definite order m.

Figure 3

INTPRFEROMETER PATTERN FOR TWO WAVE LENGTHS
IN FOUR ORDERS

Superscripts on λ indicate orders while subscripts indicate wave length values.

THEORY OF THE INTERFEROMETER SPECTROGRAPH PATTERN

The interferometer may be used in conjunction with a spectrograph as shown in Figure 4. Light entering the interferometer may or may not be parallel but the interference rings must be focused sharply on the spectrographic slit by a high quality achromatic lens L2. By so focusing the fringes on the slit, only an arc of each circle is allowed to pass through the spectrograph as diagramed in FHgure 5a. The spectrograph producesthe pattern diagramed in Figure 5b for a monochromatic source, but if the sour ce consists of a mixture of two sufficiently different wave lengths, λ_{1} and λ_{2}, the spectrograph produces the pattern diagramed in Figure 5c. As the slit is made smaller, the fringe arc becomes correspondingly smaller and approaches a point, Figure 5d. The effect shown in Figure 5c is illustrated in Flgure 6 for the yellow mercury lines; the two sets of fringes which are not resolved by the spectrograph result from the presence of two mercury isotopes in the source.

The quantity D in Figure 5d, the diameter of a

Figure 6
INTERFEROMETER-SPECTROGRAPH PATYERN FOR THE TWO YELIOW MERCURY LIIES
The black arcs are sections of the fringe circles, since the figure is a negative print.

Figure 7
NEGATIVE PHOTOGRAPH OF A CHANMELLED SPECTRUKE
The photograph was taken at $4,000 \mathrm{R}$ for an interierometer plate Cistance of 0.1576 cm . The apicos of the parabolas do not appear on the snectrogram as a result of cocusing the interference frince centeses below the spectrocen s.it.
ring of some definite value of m and λ as calcula ted from Equation II, will decrease with λ. The relationship between D and λ is indicated in Figure $5 d$ by the fact that $D\left(\lambda_{2}, m_{a}\right)$ is smaller than $D\left(\lambda_{1}, m_{a}\right)$, where λ_{2} is smaller than λ_{1}. If the spectrum between λ_{2} and λ_{1} were continuous, the spectrogram would be similar to Flgure $5 e$ with points infinitely close together and hence consist of lines inclined to the dispersion of the spectrograph, Flgure 7.

It is seen from Equation II that the pattern diagramed in Flgure 50 is a section of a family of parabolas with apices on the axis of the center of the fringe pattern with one parabola for each value of m. For ordinary values of the constants t and f in Equation II, the parabolas appear to be almost vertical straight lines as shown in Flgure 7. This pattern is known as a channelled spectrum.

It will be shown later that better absorption patterns are obtained on a channelled spectrum if the parabola lines touch. For infinitely sharp fringes, interference circles, the value of the slit width that will produce sufficiently broad parabola lines to field a continuous background will be the distance along the dism persion between adjacent infinitely sharp parabola lines.

This distance may be considered constant for any two parabolas since the portions of the lines actually found on the spectrogram are essentially equi-distant. An expression for such a slit width may be derived in the following fashion.

From Equation II it is seen that the diameter D_{1} of an interference fringe of order m for a wave length λ_{I} Will be equal to the diameter D_{2} of a fringe of order $m+1$ for λ_{2} if

$$
\begin{equation*}
\lambda_{1} m=(m+1) \quad\left(\lambda_{1}-\Delta \lambda_{0}\right), \tag{III}
\end{equation*}
$$

where $\Delta \lambda_{0}=\lambda_{1}-\lambda_{2}$. From Figure $5 f$ it is seen that the difference in wave length corresponding to D_{1} and D_{2} is the difference between the wave length values for two adjacent parabolas, m and $m+1$, and is, therefore, a measure of the slit width required to produce parabolas that touch. From Equations III and II, assuming $D^{2 / 8 f^{2}}$ small, or from Equations III and I with $\cos \theta$ equal to unity for $\operatorname{small} \theta$:

$$
\Delta \lambda_{0}=\frac{\lambda_{1}}{m+I_{1}}=\frac{\lambda_{2}}{m}=\frac{\lambda_{1} \lambda_{2}(I V)}{2)^{2}}
$$

where $\Delta \lambda_{0}$ is the wave length between orders. Finally, the siit width for which the parabolas just touch ror infinitely sharp fringes is seen to be:

$$
\begin{equation*}
\Delta S=\frac{\lambda_{1} \lambda_{-}}{2 t d} \tag{V}
\end{equation*}
$$

where d is the dispersion of the spectrograph in the region of $\quad \lambda_{1}$ and λ_{2}.

In practice, however, the fringe thickness as well as the slit width contributes to the parabola line thickness. The relative influence of the se two factors is indicated in the following discussion.

The points in Figure 5d are actually rectangles with a horizontal distance essentially equal to the slit width and a vertical dimension determined by the fringe thickess. Such rectangles are shown in Figure 8 as a portion of Figure 3 selected by a spectrographic slit where the horizontal and vertical dimensions represent the slit width and fringe thickness respectively. If $\boldsymbol{\lambda}_{2}$ were increased so that the difference in λ_{1} and λ_{2} were equal to $\Delta \lambda_{0}$ in Equation IV, any rectangle for λ_{2} in a given order would overlap that of λ_{1} in the next highest order since the fringes would have the same diameter as indicated in Figure 9.

For five nearly equal wave lengths, with the difference in the longest and shortest wave length equal to $\Delta \lambda_{0}$, the pattern would become that diagramed in Figure 10 with the rectangles for λ_{I} and λ_{5} in adjacent orders overlapping. Further overlapping would occur if the source

Figure 10
FRINGE PATHERN AT SLIT FOR FIVE NEARIY EQUAL WAVE IBNGTHS WITH THE EXIREME VALUES DIFPRPING BY ΔA_{0}.

Figure 11
FRINGE PATTERN AT SLIT FOR SEVEPAL NEARLY RQUAL WAVE LBENGIFS WIMH EVERY FIPTY DIPHEPING BY
$\Delta \lambda_{0}$ 。
contained wave lengths still greater than λ_{5}. For a sufficiently large number of wave lengths, rectangles for a given order may overlap those, several orders away. For example, λ_{10}^{1} would overlap λ_{2}^{2}, assuming equally-spaced wave lengths. Figure 11 illustrates, diagrammatically, the pattern obtained at the slit from a source consisting of a large number of frequencies, with the difference in every fifth wave length equal to $\Delta \lambda_{0}$. It is seen that the top five rectangles in Figure 11 represent four different wave lengths, each in a different order.

When the spectrograph disperses a pattern such as the top five rectangles in Figure ll, different wave lengths in a given rectangle are shifted along the dispersion of the spectrograph by different amounts, such that rectangles of the same order lie along the same parabola lines, as Indicated in Figure 12. Note that overlapping rectangles differ by multiples of $\Delta \lambda_{0}$ and that this is the difference in wave length of adjacent parabolas as shown in Figure 5f. One of three possible interferometer-spectrograph patterns may result after dispersion by the spectrograph: non-touching, touching, and overlapping parabola segments. Pigure 13 illustrates that either a broad slit or a thick fringe may cause either touching or overlapping parabolas.

If the difference in the wave lengths in Figure 12

Figure 12
Pattern given in figure 11 after dispersion by a spectrograph Dotted lines indicate parabolas
were infinitesimal, the rectangles on any one parabola would almost completely over $1 a p$ to produce broad parabola segments with smooth sides similar to those sketched in Figure 14. Figure 14 is a diagram of several channelled spectra produced by a continuous light source. The hypothetical rectangles in the various fllustrations have horizontal dimensions equal to various fractions $\Delta \lambda_{0}$, (See figure 5i) and vertical dimensions equal to various fractions of $\Delta D_{0} / 2$, the vertical distance between neighboring parabolas.

The eifect of slit width on the parabola thickness, for a given fringe thickness, is indicated in Figure 15 by the microphotometer traces of several channelled spectra, at about $4,000 \AA$, for several slit widths. Figures $15 a$ and $15 b$ are patterns for non-touching parabolas produced by a 0.03 mm and 0.08 mm slit, respectively. The greater density variation in Figure lba is a result of a longer exposure time. The double maxima in Figure l.5c indicate overlapping for a slit of 0.12 mm ; whereas, at 0.18 mm , Figure 15d, the pattern is too complex for interpretation. The theoretical slit width for touching parabolas with zero fringes is calculated from Equation V to be about 0.1 mm , which seems to be in agreement with the observed values.

The slit width required by finite fringes to pro-

Figure 15
MICROPHOTOMETER ITRACES OF CHANNELLED SPECITRA

Prace
a
b
c
d

Slit Wid th
0.03 mm
0.08 mm
0.13 mm
0.18 mm

See Text for Discussion of Traces
duce touching parabolas is clearly less than that defined by Equation V. For a given slit width, therefore, finite fringes require a greater spectrographic dispersion than that calculated from Equation V to produce touching parabolas. However, Equation V has a more serious limitation. When correctly adjusted to the condition of Equation V, the Bausch and Lomb Large Littrow Spectrograph will give a continuous background for a region of only about 500 \& at 4,000 \&, the limitation resulting from the variation of dispersion with wave length. The lines to shorter wave lengths do not touch; those to longer, overlap to give darker lines.

The mechanism by which greater resolution of absorption spectra is obtained with a channelled spectrum is indicated in Figure 16, which differs from Figure 12 only in the assumption that the slit width and the fringe thickness are such that all portions of adjacent parabolas touch. It is seen from Figure 16 that if the crosssectioned rectengles $\left(\lambda_{9}\right.$ and $\left.\lambda_{10}\right)$ were absorbed, the wave lengths of the absorbed rays could be determined by tracing along the vertical, dotted lines passing through the center of the rectangles to the wave length scale. The pattern of an ordinary spectrum could be obtained from Figure 16 by erasing all horizontal lines and extending all vertical lines. Clearly, λ_{9} and λ_{10} would not be resolved in such a spectrogram.

Figure 16

INTERFEROMETHR - SPECIROGRAPH PATMERN FGR A DISGRETE SOURCE

Pattern $f(x$ a region of several nearly equal monochromatic rays with a slit width and fringe thickness such that all portions of adjacent parabolas touch. The inclined dotted lines represent the several parabolas formed by the corresponding blocks. The vertical dot ted lines pass thragh the center of blocks of the wave length determined by the intersection of the dotted lines with the wave length scale.

If the parabola lines in Figure 16 did not touch, the absorption pattern would not be so clearly defined, since the spacing between the parabolas would tend to broaden the absorbed regions. However, it is seen from the following discussion that, for a certain type of measurement, it is desirable to take pictures of the absorption spectrum with non-touching parabolas.

An expression for the difference in the wave numbers of any two absorption features on the channelled spectrum may be obtained from Equation IV by setting $\Delta \lambda_{0}$ equal to $\Delta \tilde{r} \lambda_{1} \quad \lambda_{2}$, where $\Delta \tilde{\gamma}$ is the difference in wave numbers, corresponding to λ_{1} and λ_{2}, to obtain

$$
\begin{equation*}
\Delta \tilde{r}=\frac{\Delta m}{2 t} \tag{VI}
\end{equation*}
$$

If this is known, it is possible to determine $\Delta \tilde{r}$ quite accurately from a sufficiently enlarged spectrum with non-touching parabolas by counting the number of parabola lines, $\Delta \mathrm{m}$, between two absorption features.

The desirability of a thin fringe may be determined from a theoretical discussion of fringe thickness in terms of the reflection coefficient of interferometer plates. Tolansky ${ }^{7}$ derives the following approximate formula
S. Tolansky, High Resolution Spectroscopy (New York: Pitman Publishing Corporation, 1947) p. 104
from such a discussion:

$$
d r=\frac{(0.98-R)}{5 t}, 0.90 \geq R \geq 0.75, \text { (VII) }
$$

where $d V$, a measure of the fringe width, is the resolvIng limit in wave numbers, t is the distance between the interferometer plates, and R, the reflection coefficient of the plates, is the fraction of incident light reflected at the surface of an interferometer plate.

The value of R for a given interferometer may be estimated from plots given by Tolansky. ${ }^{7}$ An indication of fringe thickness for several values of R is given in Flgure 17, which is a plot of the intensity distribution of a given wave length from a point of maximum to a point of minimum intensity one half an order away. If a fringe differing in wave length by a tenth of an order appeared in Figure 17 with an intensity of 0.1 , a reflection coefficient of at least 0.8 would be required before it could be distinguished well from the more intense neighboring line. From Equation VI, such a reflection coefficient corresponds to a fringe width of $0.24 \mathrm{~cm}^{-1}$ at the wave length of Figure 17, for a plate distance of 0.15 cm .

Figure 17
INIEINSITY DISTRIBUMION FROM MAXIMUM INTENSITY POINTS FOR THE FABRY-PEROT INIER FIRROMETER FOR A GIVEN FREGUENCY.

Taken from S. Tolansky, High Resolution Spectroscopy (New York, Chicago: Pitman Publishing Corporation, 1947) p.99.

REQUIREMENTS ON THE SPECTROGRAPH

The theory developed in the previous section alLows the precise specification of requirements on the spectrograph and associated properties of the interferometer.

As pointed out in the introduction, the principle limitation in the available apparatus lies in the resolution of the photographic plate. Assuming a resolving power of 50 lines per milimeter or 0.020 millimeters per line, the minimum usable slit width of the spectrograph should be about 0.025 millimeters.

For fringes of zero thickness, any assumed mimimum slit width that will produce a continuous background is related by Equation V to the interplate spacing and the corresponding maximum allowable spectrographic dispersion ($8 / \mathrm{mm}$). This relation is indicated graphically in Pigure 18 where the maximum dispersion, dm, is plotted against the interferometer separation, t, for several wave lengths and a slit width of 0.025 millimeters. The dotted lines in the figure represent the dispersion of the Bausch

and Lomb Large Littrow Spectrograph for both glass and quartz optics and define the region over which this instrument is applicable. Thus, the points in Figure 18 on or below the dotted lines specify values of t and λ for which an interferometer may be crossed with this instrument with a slit of 0.025 mm to produce respectively touching and non-touching parabolas for fringes of zero width.

It was pointed out in the previous section that, for a given slit width, fringes of finite width require a smaller dispersion than that determined by Equation V. Therefore, for the minimum slit width of 0.025 mm , finite fringes require a smaller maximum dispersion than that indicated in Figure 18. Consequently, those points on or slightly below the dotted lines in Figure 18 indicate t and λ values which are not applicable.

As indicated in Figure 18, any interferometer spacing less then the critical value will decrease the demands on the sharpness of the fringes and, from Equation V, will allow the use of wider slit widths and therefore, shorter exposure times. However, these geins are obtained only at the sacrifice of resolution as indicated by Equation VII and result in an increase in the planarity demanded of the interferometer surfaces.

In the present investigation, a spacing of $1 / 16$ inch or 0.15 cm was chosen as optimising, at least approximately, these conditions. With this spacing, it was not possible to use the entire aperture of the interferometer, but only an area of about 5 mm in diameter, in order to obtain sharp fringes free from aberration. For such a spacing and with an assumed minimum reflection coefficient of 0.80, Equation V gives the slit width for touching parabolas at 4,000 \& as 0.1 mm and Equation VII gives the minimum resolving limit as $0.24 \mathrm{~cm}^{-1}$.

With a focusing lens, L_{2} in Figure 4 , of 35 cm focal length, Equation II gives the approzimate difference in radil of rings of successi ve orders near the center of the pattern as 0.10 mm and Equation IV gives the wave length interval between neighboring fringes as 0.5 \&. These values lead to a dispersion of the order of $0.5 \mathrm{~A} / \mathrm{mm}$ normal to the di spersion axis of the spectrograph and a theoretical resolution of about 0.04 .

VII

PARABOLA BROADENING DUE TO TEMPERA IURE
AND PRESSURE CHANGES

For accurate control of parabola thickness, it is necessary to consider the vertical and horizontal broadening due to temperature and pressure changes. The change in the refractive index of air and the expansion of the plate spacers in the interferometer during exposure time will produce broadening in both the horizontal and vertical directions; the expansion of the coating on the surface of the interferometer plates will produce vertical broadening.

Table I lists equations for the distance broadening on the photographic plate in terms of temperature and pressure changes. The equations in the second and third colums are respectively for the distance broadening in the vertical direction, ΔV, and horizontal direction, ΔH, and those in the fourth column represent the horizontal component due to the increase in the vertical distance between the edges of the parabolas, ΔH_{V}. The sum of the two horizontal effects is the total broadening
along the axis of the dispersion of the spectrograph.

The equations in Table II express values of the fractional broadening of the distance between neighboring parabolas; the second column for the fraction of the vertical distance, $f \Delta D_{0} / 2$; the third and fourth columns for the fraction of the horizontal distance, $f \Delta S_{O}$, due to ΔH, and ΔH_{V}, respectively. The equations in Tables I and II are evaluated in terms of temperature and pressure changes in Tables III and IV respectively where values assumed for the various constants are indicated in the tables. The derivation of these equations is discussed in the following sections of this chapter.

The following discussion of broadening due to the expansion of the plate coating material is necessarily made for silver since little data exists for other substances. Even though the plates used in this work were coated with aluminum, this discussion should be useful in determining the order of magnitude of the broadening as well as the data necessary for such a study.

All equations in Tables I and II are expressed in terms of temperature or pressure changes with the exception of the equations for the expansion of the coating material. The change in reflection coefficient, ΔR, in these equations may be determined from the temperature change

TABLE I

DISTANCE BROADENING OF PARABOLAS DUE TO TEMPERATURE AND PRESSURE CHANGES

Cause of Broadening	Vertical ΔV	Horizontal, ${ }^{\text {AH }}$	Horizontal Component of Vertical, ΔH_{∇}
Refractive Index	$\frac{2(n)(n-1) M \rho_{f^{*}}^{*}}{n^{2} L^{2}}$	$\frac{n(n-1) M \rho \lambda *}{R^{2} d}$	$\frac{n(n-1) M \rho \lambda *}{R T^{2}}$
Expansion of Spacers	$\frac{2 \propto f^{2}}{D} \Delta T$	$\frac{\alpha \lambda \lambda}{d} \Delta T$	$\alpha \boldsymbol{\lambda s T}$
Expansion of Coating Material	$\frac{2 \lambda f^{2}}{5 D t} \quad \Delta R * *$	-----------------	$-\frac{\lambda^{2}}{5 t} \quad \Delta \mathrm{R} 2 \pi$
*Times the quantity: ($P \Delta T-T \Delta P$)			
\#Wee Page 39			

TABLE II
FRACTIONAL BROADENING OF PARABOLAS DUE TO TEMPERATURE AND PRESSURE CHANGES

Cause of Broadening	Vertical, $f \Delta D_{0} / 2$	Horizontal, ΔS_{0} Due to ΔH	Horizontal, $\mathrm{f}^{\boldsymbol{D}} \mathrm{S}_{\mathrm{O}}$ Due to $\Delta \mathrm{Hv}$
Refractive Index	$\frac{\ln (n-1) M \rho t \%}{\lambda R T^{2}}$	$\frac{2 n(n-1) M P \rho_{t}}{\lambda R T^{2}}$	$\frac{2 n(n-1) M \rho}{\lambda R T^{2}}$
Expansion of Spacers	$\frac{2 t \propto \Delta T}{\lambda}$	$\frac{2 t \propto \Delta T}{\lambda}$	$\frac{2 d t a \Delta T}{\lambda}$
Expansion of Coating Material	$\frac{2}{5} \Delta R * *$	-----------------	$\frac{20}{5} \Delta R * *$
$\begin{aligned} & \% \text { times th } \\ & \% \text { See pag } \end{aligned}$	$\begin{aligned} & \text { quantity: (p } \\ & 39 \end{aligned}$		

VALUES OF FORVULAS IN TABLE I FOR CONDITIONS OF THIS WORK

Cause of Broadening	Vertical, ΔV	Horizontal, $\triangle H$	Horizontal Component \qquad of Vertical, ΔH_{v}
Reiractive \qquad	```For P=0, 4x\perp0-3 \triangleT mm/ }\mp@subsup{}{}{\circ}\textrm{K For T=0 7x^O-3 AP mm/mm Hg```	```For P=0 7 xlu-4 \DeltaT mm/ }/0\textrm{K For T=0 SxlO-4 AP mm/mm Hg```	```For P=0 4xlO-11 \DeltaT mm/OK For T=0 1xlu-1l }\Delta\textrm{P}\textrm{mm}/\textrm{mm Hg```
Expansion of Spacers	1 x ¢0-4 $\triangle \mathrm{T} \mathrm{mm} /{ }^{\circ} \mathrm{K}$	$1 \mathrm{x} \perp 0-2 \Delta \mathrm{~T} \mathrm{rm} /{ }^{\circ} \mathrm{K}$	$5 \times 10-10 \Delta T \mathrm{~mm} /{ }^{\circ} \mathrm{K}$
Expansion of Coating Material			
*Neglible, See page 39			
P, 1 at; $\lambda, 4,000 \AA$; d, $5 \AA / \mathrm{mmn} ; ~ \propto(y), \quad 1.9 \mathrm{x} 1 \cup-5 /{ }^{\circ} \mathrm{K} ; \mathrm{f}$, (steel), $1.3 \times 10-5 /{ }^{\circ} \mathrm{K} ; \mathrm{D}, 3.5 \mathrm{~cm} ., t^{\prime}=40 \mathrm{~m} \mu$			$\mathrm{cm} ; T, 300{ }^{\circ} \mathrm{K} ; \mathrm{t}, 0.15$

TABLE IV
VALUES OF EQUAIIONS IN TAELE II FOR CONDIIIONS OF THIS WORK

Expansion
of Spacers $0.1 \Delta T \mathrm{~mm} /{ }^{\circ} \mathrm{K}$
$0.1 \Delta \mathrm{Tmm} /{ }^{\circ} \mathrm{K}$
$5 \times \perp 0-9 \Delta \mathrm{~mm} /{ }^{\circ} \mathrm{K}$

Expansion of
Coating *

* -------------
*

Material

$\mathrm{cm}^{\prime} ; \alpha^{\prime}($ steel $), 1 / 3 \times 10-5 / 0 \mathrm{~K} ; \mathrm{D}, 3.5 \mathrm{~cm}, \mathrm{t}^{\prime}=40 \mathrm{~m} \mu$
of a silver coating material, ΔT, by use of the Fabry equation ${ }^{8}, 2$ and an erapirical chart by Fizeau ${ }^{9}$, 2. The Fabry equation

$$
\begin{equation*}
D^{\prime}=0.035 t^{\prime} \tag{VIII}
\end{equation*}
$$

where D^{\prime} is the optical density of the plate and t^{\prime} is the thickness of the coating material in millimicrons, may be expressed as

$$
\Delta D^{\prime}=0.035 t^{\prime} \propto \Delta T \quad(I X)
$$

where ΔD^{\prime} is the change in optical density due to a change in temperature ΔT, and α is the Linear coefficient of expansion for silver. It is then possible to determine ΔR from Fizeau's chart, Figure 19, for use in the equations in Tables I and II by calculation of D^{\prime} and ΔD^{\prime} from Equations VIII and IX.

In the following derivation of the equations in Tables I and II, three equations are first derived for $\Delta \lambda_{\mu}$, the change in wave length due to refractive index change $\Delta \lambda_{s}$, and $\Delta \lambda_{c}$, the wave length shift in the instruments due to expansion of the spacers and coating.

9
Fizeau, Annales de Chimie et de Physique, 63,

Figure 19
REFIECTI ON COEFFICIENT BOR SILVKR COATING

Taken from: sizeau, Ann. de Chim et de Phys., 63, 393. 7861.

The change in wave length due to refractive index change, $\Delta \boldsymbol{\lambda}_{\mu}$, may be determined in the following manner. Since

$$
\begin{aligned}
\lambda & =k^{1} / n, \text { for a given frequency } \\
n-1 & =k^{1} \rho, \text { and } \\
\rho & =P M / R T, \text { for an ideal gas, }
\end{aligned}
$$

wheren is the index of refraction of air, λ is the wave length in air k^{\prime} and $k^{\prime \prime} a^{\prime} \theta$ constants, ρ is the density of air, and P, T, and \mathbb{M} are the pressure, temperature, and molecular weight of air, it is seen that

$$
\lambda=\frac{\frac{k^{\prime} T}{k^{1} P M}}{R}
$$

Upon differentiation, the following are obtained:

$$
\begin{aligned}
& \left(\frac{\delta \lambda}{\delta T}\right)=\frac{k^{1} k^{1} 1 M P}{R^{T} Z}, \\
& \left(\frac{\delta \lambda}{\delta P}\right)=\frac{-k^{\prime} k^{1} 1 M}{R^{T} T}
\end{aligned}
$$

where the quantity $\mathrm{Pk}^{1} \mathrm{M} / \mathrm{R}=(\mathrm{n}-1) \mathrm{T}$ is considered negligible. For example, for a wave length of $4,000 \AA$ in air at $15^{\circ} \mathrm{C}$ and one atmosphere of pressure, $P k^{\prime} M / R$ is equal to 8.11 x $10^{-20} \mathrm{~K}$. Finally, it is seen that

$$
\begin{align*}
& d \lambda=\left(\frac{\delta \lambda}{\delta \delta}\right) d P+\left(\frac{\delta \lambda}{\delta T}\right) d T=\frac{k^{\prime} k^{1} M}{R T^{2}}(P d T-T d P), \text { or } \\
& \Delta \lambda_{\mu}=\frac{n(n-1) M \rho \lambda}{R T^{2}}(P \Delta T-T \Delta P) \quad(X) \tag{X}
\end{align*}
$$

If the fringe thickness, $\Delta \tilde{\boldsymbol{V}}$, is defined by Equation $V I$, the change of fringe thickness $\Delta \lambda_{t}$, due to the expansion of the plate coating is given by

$$
\begin{equation*}
\Delta \lambda_{t}=\frac{\lambda^{2}}{5 t} \Delta \mathrm{R} \tag{XI}
\end{equation*}
$$

where $\Delta \lambda_{t}$ is set equal to $\left(\hat{r_{2}}-d \tilde{\gamma} X \lambda^{2}\right)$, and where ΔR is the change in reflection coefficient due to the expansion of the plate coating. Finally, an expression for the broadening due to the expansion of the spacers, $\Delta \boldsymbol{\lambda}_{s}$. is seen from Equations IV and I to be:

$$
\Delta \lambda_{S}=\frac{\lambda}{t} \quad \Delta t=\lambda \propto \Delta T \quad(X I I)
$$

where cos is considered unity, and where Δt is the change in plate spacing due to the temperature change ΔT producing $\Delta \lambda_{S}$, and \propto is the linear coefficient of expansion of the spacers.

The two equations in Table I for horizontal broadening, ΔH, are obtained by expressing λ_{μ} and λ_{τ} in terms of the spectrographic dispersion. The remaining equations in Table I are obtained in the following fashian.

Upon rearrangement and differentiation of Equation II and appropriate substitution of Equation I with $\cos \theta$ equal to unity it is seen that

$$
\begin{align*}
& \left(\frac{\delta D L}{\delta \lambda}\right)=\frac{f^{2} m}{t D} \quad \frac{2 f^{2}}{\lambda D}, \text { and } \tag{XII}\\
& \left(\frac{\delta D / 2}{\delta m}\right)=\frac{f^{2} \lambda}{t D} \tag{XIV}
\end{align*}
$$

since m changes contimously if λ is not constant. Therefore,

$$
\begin{equation*}
\Delta V=\Delta D / 2=\frac{f^{2}}{D}(2 / \lambda \Delta \lambda+\lambda / t \Delta m) \tag{XV}
\end{equation*}
$$

where ΔV is the change in the vertical dimension of a parabola.

The three equations in Table I for ΔV are obtained from Equation $X V$ by setting Δm equal to zero since only one parabola is under consideration and by placing $\Delta \lambda$ equal. to the $\Delta \lambda$ values derived above for each of the three effects contributing to parabola broadening. If the equatlons for ΔV are divided by the slope of the parabola, Equation XIII, the equations in Table I for ΔH_{v} result, the fractional broadening equations in Table I by $\Delta D_{\rho} / 2$ for vertical broadening and by ΔS_{o} for horizontal broadening. These values are obtained in the following manner.

The horizontal distance between parabolas, ΔS_{o}, is

$$
\begin{aligned}
& d D / 2=\left(\frac{\delta D / 2}{\delta \lambda}\right) d \lambda+\left(\frac{\delta D / 2}{\delta m}\right) \quad d m=\frac{f^{2}}{D}(2 / \lambda d \lambda+\lambda / t \mathrm{dm}) . \\
& \text { or }
\end{aligned}
$$

the value of the slit width required to produce touching parabolas for fringes of zero width. This is the quantity $\Delta \mathrm{S}$ given in Equation V . The value $\Delta \mathrm{D}_{0} / 2$, the vertical distance between parabolas, is the distance between successive fringes of the same wave length. Setting $\Delta \lambda$ equal to zero and Δm equal to unity in Equation $X I$, we have

$$
\Delta D_{0} / 2=\frac{\lambda f^{2}}{E D} \quad(X V)
$$

From Table III it is seen that a temperature change of one degree will produce a broadening of approximately 0.01 mm along the dispersion of the spectrograph, and a pressure change of 30 mm Hg is required to produce the same effect. Vertical broadening will occur to this extent for temperature and pressure changes of three degrees and two millimeters of mercury, respectively. Since, as pointed out in the previous section, the maximum resolution of the plate is about 0.02 mm , temperature changes of $4^{\circ} \mathrm{C}$ and pressure changes of 8 mm of Hg should be barely noticeable.

VIII

EXPERIMENTAL MEASUREMENTS ON THE ABSORPTION SPECTRUM OF NO 2

The following considerations were the factors which led to the choice of NO_{2} for absorption measurements in this study: 1) NO_{2} has considerable structure in the region in which greater resolution is needed, i.e., 4,000 A.; 2) A short absorption cell, $10 \mathrm{~cm} .$, low pressures, $15 \mathrm{~mm} .$, and room temperature are suitable conditions for absorption in this region; 3) NO_{2} is easily prepared with sufficient purity, and is sufficiently stable, to produce a dependable absorption spectrum; 4) No diatomic molecule could be found with a sufficient number of the above advantages to permit its use with the available equipment.
NO_{2} was prepared by heating a mixture of sand and lead nitrate and distilling the gas through a side arm into the cell which was placed in a methyl alcohol-dry ice bath. The cell was then alternately slightly warmed and evacuated to remove all foreign gaseous material along with some NO_{2}. Finally, the cell was closed and
warmed to room temperature. The final pressure was dotained by partial evacuation to a pale yellow color.

The optical path for this work was essentially that outlined in Figure 4. The light source was a 100 watt incandescent bulb mounted in front of a focusing mirror to conserve light. Economy of light was somewhat necessary since considerable reduotion in intensity resulted from reflection at the first plate of the interferometer. An iris diaphragm in the source mounting projected the beam on the end of the absorption cell which followed imediately. The cylindrical cell was 10 cm in length and 1.5 cm in diameter with pyrex glass windows. A stopcock was connected to the side of the cell to permit filling. The light then passed through a 50 cm focal length converging lens, L_{1} in Figure 4, to concentrate the beam on the first interferometer plate in an area of about 5 mm in diameter as discussed in the previous section. A 35 mm focal length high quality achromatic lens, I_{2} in Figure 4, focused the light transmitted by the interferometer on the spectrograpkic slit. Several exposures were taken with a mercury lamp source to determine the optimum position of L_{2} for the ultra-violet.

Since it was found desirable to focus the center of the fringe pattern above or below the slit to obtai n both sharper fringes and more nearly linear parabola lines,
the interferometer was mounted on a base which could be rotated about a horizontal axis and accurately adjusted to the desired position by a screw mechanism. Type 103-F3 plates with a resolving power of 45 lines per millimeter were used. This required an exposure time of about four houss for a channelled spectrum and a slit of 0.08 mm and about thirty minutes for no interferometer and a slit of 0.03 mm .

The first measurement made on the channelled spectrum was similar to that described in connection with Equation VII. However, the purpose here was to determine the value of the interferometer spacing t from a known value of $\Delta \tilde{\gamma}$. A double exposure of a channelle d spectrum, with no absorption cell, and an iron arc covering only a portion of the channelled spectrum was used for this measurement. The partially overlapping iron lines facilitatedthe exact determination of the region over which the parabola lines were counted. The number of parabola lines, Δm, were counted on a projection of the plate (enlarged by a factor of l5) between two iron lines of known wave length, λ_{1} and λ_{2}. The wave numbers from which $\Delta \tilde{\gamma}$ was calculated were obtained from Kayser's Tables ${ }^{10}$ which are corrected for the refractive index

[^2]of air. Various values of $\lambda_{1}, \lambda 2, \Delta m$, and t are Iisted in Table V. The average of the experimental quantities indicate a value of the plate distance of 0.15760 $\mathrm{cm} \pm 0.00003 \mathrm{~cm}$.

Figures 20 and 21 present enlargements of a spectrogram showing a mililmeter scale, an iron arc spectrum, a channelled absorption spectrum and an ordinary absorption spectrum of NO_{2} in the region of 4,000 \& A general comperison of the two absorption spectra will reveal the fact that greater structure can be seen in the channelled spectrum. However, the very thin parabola segments, visible in these figures, should not be confused with NO_{2} structure. The ink dots in the figures indicate some of the more obvious cases of increased resolution. Figure 22 shows bands at 108 and 112.5 with greater contrast.

Values of Δm between various absorption features and the iron line at $22,587 \mathrm{~cm}^{-1}$ were determined in the region between 104 and 112 on the scale in Figures 20 and 21 to yield differences in wave numbers, $\Delta \vec{v}$. The values of $\Delta \tilde{\gamma}$ were appropriately added and subtracted from 22,587 cm^{-1} to obtain the wave numbers of the various absorption features. Various values of $\Delta \mathrm{m}, \Delta \hat{\gamma}$, and the final wave numbers are recorded in Table VI. The last colum in this table indicates the corresponding conditions in the ordinary spectrum.

TABLE V

IETERMINATION OF THE INTERFEROMETER PLATE DISTANCE

$\frac{\lambda_{1}}{4,315.09 \mathrm{~A}}$	$\frac{\lambda_{2}}{4,225.46 \mathrm{~A}}$	$\frac{\Delta \mathrm{~m}}{155.0}$	0.1577 cm
4.315 .09	$4,430.62$	190.5	0.1576
$4,602.95$	$4,442.35$	247.5	0.1576
Average: t	$=0.15760 \mathrm{~cm}$	\pm	0.00003 cm

Figure 20
POSITIVE PHOTOGRAPH OF A CHANNELLED AND ORDINARY ABSORPTION SPECTRUM OF NO2
a. channelled, b. ordinary

Figure 21

Figure 22

TABLE VI

BANDS OBSERVED IN REGION OF 104 to 112 IN FIGURES 20 AND 21

$\Delta \mathrm{m}$	$\Delta \tilde{r}$	2	Ordinary Spectrum
+12.0	38.0	22,625.0	
+ 9.0 R	29.0	616.0	B. R.
$\ldots 1.0 \mathrm{k}$	3.0	590.0	B. P.
-8.5	27.0	560.0	B. R.
-20.0	64.0	523.0	B. D.
-25.0	80.0	507.0	B. D.
-31.5 I	100.0	487.0	B. D
-30.5 I	107.0	480.0	B. D
-37.5 mI	119.0	468.0	
-40.5 B \& D	129.0	458.0	
-44.0	139.0	448.0	B. D.
-48.0	152.5	435.5	
-52.5 mI	167.0	420.0	
-56.5	179.5	408.5	
-58.0	184.5	403.5	D.
-60.0	190.0	397.0	B. D.
-63.0	200.00	387.0	
-65.5	208.5	379.5	D.
-73.5	230.0	354.0	D.
			Con't.

TABLE VI - Con't.

Δm	$\Delta \tilde{r}$	\tilde{r}	Ordinary Spectrum
-79.5 mI	252.0	335.0	
-80.5 I	255.5	332.5	D
-83.5 I	265.5	32\%. 5	
-86.0 I	274.5	313.5	D

Values of Δm are measured from the $22,587 \mathrm{~cm}^{-1}$ iron arc and are accurate to only 0.5.

$$
\begin{array}{cc}
\text { I, Intense } & \text { mI Medium Intensity } \\
\text { B, Broad } & \text { D, Diffuse } \\
\text { R, Shaded to Red }
\end{array}
$$

From the absorption spectrum of $\mathrm{NO}_{\mathcal{Z}}$ in the region of $4,000 \AA$ certain bands were selected as those resulting from a transition from the lowest vibrational level in the ground electronic state. These bands were selected as a result of an estimation of their spacing, allowing for perturbations, determined from estimated vibrational frequencies of the upper electronic state, and from their greater intensities. Since NO_{2} is an odd molecule, these absorption bands appear as doublets.

The approximate wave numbers of the doublets selected are Iisted in Table VII and plotted against a running index in Figure 23. The nature of these curves does indeed indicate that these bands might well belong to a vibrational sequence. Table VIII lists the difference in the wave numbers of the doublets as determined both by Equation VI and a Hartmann equation, where the wave lengths were converted to wave numbers by use of Kayser's Tables ${ }^{10}$. These differences are plotted against a running index in Figure 24 where the greater accuracy of Equation VI is indicated by the fact that the data in Figure $24 a$ fit a smooth curve much more closely than those in Figure 240.

The channelled spectrum has made possible both the measurement of more absorption Lines and a more ac-

TPABLE VII

DOUBLET COMPONENTS SELECIED FROM THE ABSORPTION SPECTRUM OF NO_{2}

Wave Numbers
23,720
23,550
23,400
23,210
22,970
22,770
22,450
22,300
21,980
21,600
21,060
20,480
19, 870
19,220

Wave Numbers
23,690
23,520
23,360
23, 180
22,940
22,730
22,430
22,270
21,950
21,580
21,040
20,440
19,830
19,190

DIFFERENCE IN WAVE NUMBERS OF DOUBLET COMPONENTS IN THE ABSORPTION SPECTRUM OF NO 2

Δm	$\Delta \tilde{r}$ by Equation VI	$\Delta \tilde{z}$ by Hartmann Equation
16.0	50.8	34.8
16.5	52.4	49.6
18.0	57.1	54.2
16.5	52.4	44.1
17.0	54.0	46.8
15.5	49.2	38.9
15.5	49.2	48.0
16.0	50.8	36.3
16.5	52.4	57.2
16.5	52.4	60.5
16.0	50.8	63.1
18.0	57.1	49.2
21.0	66.7	43.5
20.0	63.5	

Values of Δm are accurate to only 0.5

curate determination of the wave lengths of the lines present in the ordinary spectrum. The channelled spectrum seems to partly resolve components that appear to be sub-bands but no evidence of resolution of rotational structure was found. Visual interpretation was limited to determining that several bands of about $10 \mathrm{~cm}^{-1}$ in width (121.5, in Figure 20) and a few of about $3 \mathrm{~cm}^{-1}$ (101.4, in Figure 20) appear to be resolved into at least two components. Thus an energy difference of about $1.5 \mathrm{~cm}^{-1}$ is measured which indicates a resolving power of about 0.2×10^{5} at 4,000 \& The Bausch and Lomb Large Littrow Spectrograph for the same slit, 0.08 mm , has a theoretical resolving power of about 0.1×10^{5} at 4,000 \& However, interpretation on any one photograph yields littie information. Best results are obtained by comparing several photographs with different degree of contrast with the actual projection of the plate under different conditions of light intensity and enlargement. Little advantage seems to be gained by this technique for the preliminary analysis of absorption spectra. However, with sufficient experience in the techniques of interpretation, the channelled spectrum would probably yield more information on fine structure and more accurate values of molecular constants already known.

BIBLIOGRAPHY

Burns, K., and Wm. F. Meggers, Publications of the Allegheny Observatory of the University of Pittsburg, 6, 105, (1925)

Fabry, Ch., Comptes Rendus des Seances de L,Academie des Sciences, 140, 1136, (1905)

Fabry, Ch., Les Applications des Interferences Lumineuses, (1927)

Fabry, Ch., and H. Bujsson, Journal de Physics et le Radium, 9, 197, (1910)

Fizeau, Annales de Chimie et de Physique, 63, 393, (1861)

Harrison, Lord and Loofbourow, Practical Spectroscopy (New York: Prentice Hall, Incorporated, 1948) D. 561

Kayser, H., Tabelle der Schwingungszahlen, (Ann Arbor, Michigan! Edwards Brothers, Inc. 1944)

Meissner, Karl Willham, Journal of the Optical Society of America, 32 p. 191 (1942)

Tolansky, So, High Resolution Spectroscopy, (New York: Pitman Publishing Corporation, 1947) p. 104

[^0]: Karl Wilh. Meissner, Journal of the Optical Society of America 32 p. 191 (1942)

 2
 Chas. Fabry, Comptes Rendus 140, 1136 (1905): Chas. Fabry, H. Buisson, Journal de Physics et le Radium 9, 197 (1910)

 3
 K. Burns and Wm. F. Meggers, Publications of the Allegheny Observatory of the University of Pittsburgh, 6, 105. (1925)

[^1]: ${ }^{4}$ S. Tolansky, High Resolution Spectroscopy (New York: Pitman Publishing Corporation, 1947) p. 104

[^2]: ${ }^{10}$ H. Kayser, Tabelle der Schwingungszahlen (Ann Arbor, Michigan: Edward Brothers, Inc., 1944)

