
Abstract—This paper implements several methods for 
performing vision-based formation flight control of multiple 
aircraft in the presence of obstacles. No information is 
communicated between aircraft, and only passive 2-D vision 
information is available to maintain formation. The methods 
for formation control rely either on estimating the range from 
2-D vision information by using Extended Kalman Filters or 
directly regulating the size of the image subtended by a leader 
aircraft on the image plane. When the image size is not a 
reliable measurement, especially at large ranges, we consider 
the use of bearing-only information. In this case, observability 
with respect to the relative distance between vehicles is 
accomplished by the design of a time-dependent formation 
geometry. To improve the robustness of the estimation process 
with respect to unknown leader aircraft acceleration, we 
augment the EKF with an adaptive neural network. 2-D and 
3-D simulation results are presented that illustrate the various 
approaches.

I. INTRODUCTION

S demonstrated in recent events, unmanned aerial 
vehicles (UAVs) are becoming an important 

component of our military force structure. Looking 
forward, maintaining a formation while executing missions 
in the presence of terrain and obstacles is seen as an 
important challenge. It will also remain important to 
minimize communication between vehicles. In this paper, 
we focus on measurement, estimation and formation control 
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guidance strategies [1]-[3].  
Although imperfectly understood, flocking behavior of 

birds, schooling behavior of fish, and even studies of 
swarming insects have provided inspiration for concepts of 
coordinated multi-vehicle operation [4]. Existing work on 
coordinated group motion include a distributed behavioral 
approach to synthesizing the flocking motion of boids [5] 
(bird and fish-like objects). It was shown in [6] that 
coordinated multi-robot motion could be constructed by 
using a small basis set of behaviors. A control-theoretic 
approach to vision-based formation control is given in [7]. 
The control laws allow each follower vehicle in the 
formation to regulate range and relative orientation with 
respect to one leader vehicle, or range with respect to two 
leader vehicles, or range with respect to a leader vehicle 
while maintaining safe distance from obstacles. Switching 
between the control laws leads to changes in formation 
shape. Related work on formation control includes 
assignment of feasible formations [8] and moving into 
formation [9].  

Most of the approaches for formation control assume that 
a leader vehicle state of motion is known at least partially 
to the follower (neighboring) vehicles [2][8]. The approach 
taken here is to observe these quantities through passive 
vision information. That is, a single camera is provided 
with a view of another aircraft, and that imagery is 
processed in real-time to determine other aircraft state 
information. We assume that the image is represented in 
terms of a noisy measurement of image center and size 
[15]. Range or depth information is not directly available. 

We utilize the vision information from two different 
perspectives. In one approach, we construct an Extended 
Kalman filter (EKF) to estimate relative velocity and 
position [14], [15], which we utilize in the guidance policy. 
In the second approach, the guidance policy is based on 
directly regulating the vision (image-plane) measurements, 
for e.g., regulate the image position to be in the center of 
the image plane and image size to a specified size.  

The image size measurement is not a viable 
measurement at large ranges, and in this case we rely on 
bearing information. This represents a “worst case” for 
vision-based formation control. By applying an EKF to the 
bearing measurement, estimates of the relative position and 
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velocity are obtained of each vehicle in the formation by 
every other vehicle. In general, regardless of the approach 
taken to processing vision-based data, the distance between 
one vehicle and any other vehicle is difficult to estimate. If 
we use poor range estimates to control a vehicle performing 
station-keeping with the target, a dangerous proximity may 
occur. It is well known that the accuracy of range 
estimation depends on camera translating motion, and the 
best translation for range estimation is a motion parallel to 
its image plane [13].  

Another associated problem is the influence of the 
unknown target aircraft acceleration on the estimates 
provided by the EKF. The unknown acceleration acts as 
unmodeled disturbances on the estimation process, giving 
rise to biased or even diverging estimates. In this paper, we 
discuss a method to augment an EKF with a neural network 
(NN) based adaptive element that provides robustness to 
unknown and unmodeled dynamics. In a complementary 
approach, the nominal guidance policy associated with 
regulating the vision measurements is augmented with the 
output of an adaptive NN that compensates for the effect of 
target aircraft motion on the dynamics of these 
measurements.  

Obstacle avoidance is a problem that, in general, cannot 
be completely separated from that of maintaining a 
formation, as obstacle avoidance considerations must take 
precedence. There are numerous approaches to static 
obstacle avoidance. A popular approach is the Artificial 
Potential Field Approach [10]. Other approaches include 
Motion Planning [11] and “Steer Towards Silhouette Edge” 
[12]. In this paper we describe and implement the latter 
approach, as in [17].  

The organization of the paper is as follows. Section II 
summarizes the theory for vehicle state estimation, and 
states the problem formulation for formation control. 
Section III describes the guidance strategy for formation 
control. Section IV describes the approach to avoiding 
static obstacles. Section V describes an adaptive guidance 
approach based on directly regulating the image plane 
measurements. In Section VI we present and discuss 
simulation results for each approach. Section VII briefly 
describes our 6 DOF image-in-the-loop simulation 
capability.

II. BEARING-ONLY TARGET STATE ESTIMATION

A. Filter design 
Here, the EKF formulation described in [14] is utilized 

per other vehicle that requires state estimation. At most, 
this could include all vehicles in the formation estimating 
the state of all others. The four states used per filter have 
the dynamics 
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where  is the bearing to the other aircraft, r is the range, 
and

xa  and 
ya  are the horizontal relative acceleration 

components in a Cartesian frame, i.e., the acceleration of 
the target minus the acceleration of the platform doing the 
estimation. These components are illustrated in figure 1, for 
aircraft i tracking aircraft j.
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Fig. 1.  Illustration of parameters for tracking of aircraft j by aircraft i.

Here it assumed that each vehicle knows its own heading 
though typical sensing methods. As a result, the relative 
bearing information provided by vision sensing another 
aircraft is immediately converted to a bearing to the other 
aircraft. The acceleration of the platform doing the 
estimation is considered known through measurement.  

B. Optimization 
Analysis of the contributing factors to the range estimate 

covariance indicates that a large magnitude of  gives 
more accurate range estimation. This also makes sense 
physically, as viewing the tracked vehicle from a different 
direction will provide information about position in an 
additional dimension.  From this analysis, it is concluded 
that  should be maximized in order to obtain an accurate 
range estimate. At the same time, it is preferred that the 
relative bearing stay close to its prescribed desirable value. 
Also, it is important to limit the acceleration . Therefore, 
an optimization problem that maximizes the predicted 
range estimation accuracy is formulated as   
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subject to the relative motion dynamics (1). The optimal 
solution can be derived by solving the Euler-Lagrange 
equations.  
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then becomes simply [16] 
              tBtA sincos , 1K .

C. Adaptive Estimation 
A method for augmenting a linear time invariant estimator 
with a NN based adaptive element was described in [20].  
This approach has recently been extended to augment an 
EKF [21].  These approaches provide robustness to 
unknown and unmodeled dynamics in the process. A 
critical application of the adaptive EKF lies in the realm of 
tracking maneuvering targets, particularly in the bearings-
only target-tracking problem. It is well known in the target-
tracking literature that the accuracy of the resulting EKF 
estimates depends extensively on the target behavior. The 
universal approximation property of NNs has paved the 
way for NN-based identification and estimation schemes 
that may account for these unknown modeling 
errors/uncertainties in the process. The training signal for 
the NN is generated by the residuals produced by the EKF. 
The residuals are the difference between the image plane 
measurements and the EKF estimates.  

III. FORMATION GUIDANCE STRATEGY

Here, a leader takes the formation along the desired 
trajectory. This trajectory is unknown to the other, follower, 
aircraft. The follower aircraft each attempt to maintain a 
prescribed time-dependent relative position to the leader.  

The relative position is time-dependent to ensure 
observability of range to the leader. Collision hazards 
between following aircraft are prevented by careful 
selection of these chosen relative positions; mitigating the 
need for robust estimation of other aircraft state for 
anything but the leader. Here, the commanded distance is 
set to a constant, and the angle is varied periodically by a 
small amount.  

Each follower generates a lateral and longitudinal 
acceleration command to bring it to the prescribed relative 
position with a second order response, utilizing its position 
and velocity estimates for the leader aircraft. An aircraft 
performance model then limits this acceleration command. 

However, all aircraft will depart from these strategies as 
necessary to avoid obstacles. This is the subject of the next 
section.

IV. STATIC OBSTACLE AVOIDANCE

The controller design strategy for static obstacle 
avoidance is based on a reactive “steer towards silhouette 
edge” approach [12]. The idea is to project the shape of 
nearby obstacles onto the local, velocity-fixed frame of the 
vehicle. If this projected shape, adjusted (enlarged) to allow 
for the size of the vehicle and uncertainty, surrounds the 
origin of the velocity frame, then some portion of the 
obstacle is dead ahead (see figure 2). The vehicle must steer 

away to avoid a collision, and the most efficient direction to 
turn is toward the portion of the projected shape that is 
closest to the origin. 
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Fig. 2.  Illustration of obstacle avoidance approach described here. Lateral 
acceleration required to miss target is applied once it exceeds a threshold 
value.

To illustrate the concept, it is assumed that the obstacles 
are contained within bounding spheres (circles in 2 
dimensions), and that the centers oo YX ,  and radii or  of 
the obstacles are known. The goal of this strategy is to keep 
an imaginary line oL  of length oD , originating at the 
vehicle current position and extending in the direction of 
the velocity vector, from intersecting with any obstacle 
boundary [5]. The length of this line is typically based upon 
the vehicle’s speed and maneuverability. An obstacle 
further away than this length oD  is not an immediate 
threat.

Corrective steering action to avoid an obstacle involves a 
speed and heading change command. The heading change 
command OA  is towards the closest projected edge of 
the obstacle as shown in figure 2. No speed change is used. 
The corresponding lateral acceleration command can 
replace the formation flight command when obstacle 
avoidance is required. When the hazard has passed, the 
vehicle then returns to the formation.  

V. SUBTENDED-ANGLE GUIDANCE APPROACH

The paper by Betser et. al. [15] in this session shows how 
additional information from the imaging camera can be 
used to make the range estimation process more robust to 
the leader (target) acceleration. The additional information 
is the angle subtended by the leader aircraft on the image 
plane, referred to as the subtended angle . However, 
leader acceleration can still cause problems by giving rise 
to biased estimates of range.  

An alternative approach would be to directly regulate the 
subtended angle to a desired value instead of the range. The 
subtended angle is given by 

r2
tan2 1

where  is a leader aircraft representative size (e.g., wing-
span). The subtended angle dynamics can be written as 
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rcos12

by assuming 0 . The guidance strategy involves 
inverting the  equation to get a desired velocity vector 
for the follower aircraft. Noting that the range-rate term r
involves the leader aircraft velocity along the LOS, we can 
augment the nominal inverting solution with the output of 
an adaptive NN to compensate for this leader velocity. This 
approach is identical to that shown in Ref. [17] where range 
is the regulated variable. The approach requires that noisy 
visual information be directly input to the adaptive NN, 
along with velocity and heading information. The adaptive 
guidance approach is robust to vehicle dynamics that are 
neglected in the process of treating velocity as control, and 
to parametric uncertainties that arise from not knowing the 
exact leader aircraft size .

VI. SIMULATION RESULTS

Figures 3 and 4 show results obtained with the bearings-
only, non-adaptive target state estimation approach. We 
consider a team of 3 aircraft flying in formation in a 2 
dimensional environment in the presence of obstacles. 
Aircraft #2 is the leader. It sets the trajectory for the 
formation by commanding a sequence of heading changes 
while maintaining a constant speed. Each follower aircraft 
regulates to a time-dependent relative position to the leader. 
In addition, the 3 aircraft are also commanded to avoid 
obstacles.
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Fig. 3.  Ground track of a typical result. The formation starts at the bottom, 
and proceeds to the top. Aircraft #2 (center) is the leader. The estimated 
positions for the leader are also plotted for both followers. Both followers 
and the leader are occasionally required to maneuver to avoid one of the 
four fixed obstacles. Without utilizing a time-dependent formation shape, 
range tends to be under-predicted. 

The ground track for a typical simulation result is 
illustrated in figure 3. The leader performs a series of left 
and right turns, although during one of the turns it must 
avoid an obstacle instead. The two followers also 
occasionally must avoid one of the four obstacles. The 
position estimate for the leader is also shown for each of 
the two followers. Here, the relative commanded position is 
held constant, and estimation performance suffers.  

A slight periodic time dependency is added for the result 
in figure 4. The changes in commanded relative position, 
yields acceptable estimation performance. 
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Fig. 4.  The formation starts at the bottom, and proceeds to the top. 
Aircraft #2 (center) is the leader. The estimated positions for the leader are 
improved by slight periods changes in formation shape. 

Figure 5 shows tracking results with a highly 
maneuvering leader aircraft. Only 1 follower aircraft is 
included in this simulation. The leader aircraft commands a 
sinusoidal heading maneuver at constant speed. The upper 
plot shows the trajectory of the leader, and the follower and 
an estimate of the leader trajectory by the follower. The 
bottom plot shows the true range, estimated range by the 
Follower and the commanded range. The reason for the 
poor estimates is that the model for the leader acceleration 
used in the estimation process is highly inaccurate. Figure 6 
show results for the same leader aircraft maneuver obtained 
by augmenting the EKF with an adaptive NN, where the 
true and estimated ranges correspond very well, indicating 
that the NN is able to reconstruct target acceleration.  

Figures 7 and 8 show results for regulating the subtended 
angle to commanded value com  for the same sinusoidal 
leader aircraft maneuver. The command value com
corresponds to a command range equal to 2 wing-span 
lengths. Figure 7 shows the result with the nominal 
guidance policy that does not account for leader aircraft 
motion. 
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Fig. 5. Range Estimation for a sinusoidally maneuvering leader with non-
adaptive bearings-only approach. The estimated range varies significantly 
from the true range because the Leader acceleration is not accurately 
modeled in the estimation process. 

Fig. 6. Range Estimation for a sinusoidally maneuvering leader with 
adaptive bearings-only approach. The range estimation is excellent 
compared to the non-adaptive bearings only approach, the NN is able to 
reconstruct target acceleration.  

Fig. 7. Subtended Angle regulation with nominal guidance policy. The 
steady-state tracking error is due to neglecting leader aircraft motion. 

An estimate for the leader aircraft size equal to 1.2 times 
the true size is used when inverting the dynamics. The 
effect of neglecting the leader aircraft motion shows up as 
steady-state error in the subtended angle regulation. In the 
above plot, ref  refers to a reference obtained by 

filtering com through a first-order command filter. Figure 
8 shows the subtended angle regulation obtained by 
augmenting the nominal guidance policy with the output of 
an adaptive NN. The reference command ref  does not 

coincide with command com  after the initial transient 
because the command filter is hedged [18] to protect the 
adaptive process from control saturation. 

Fig. 8. Subtended Angle regulation with adaptive guidance policy. 

VII. 6 DOF IMAGE-IN-THE-LOOP SIMULATION

The relative position and velocity estimator discussed in 
the previous section is extended to 3-dimensions and 
applied to a formation flight of two airplanes. Estimation 
results of 6 DOF image-in-the-loop simulations are shown 
in this section.  Figure 9 shows a display of the 6 DOF 
airplane simulator. It includes two airplanes, configured as 
leader and follower. The follower aircraft has a camera and 
its image is also simulated. The synthetic images are 
processed and providing the same type of output we expect 
in an actual flight [19].   

The image processor provides a position and size 
(wingspan) of the leader in camera images. From those 
measurements, the filter is designed to estimate relative 
position and velocity between the two aircraft. In order to 
avoid singularity occasions, a filter state and a 
measurement vector are chosen as follows.  

T

b
r
r

r
1TT uux ,

u
z

where u  is a unit vector pointing to the leader, r  is the 
distance between the two aircraft, b  is the wingspan of the 
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leader, and is the subtended angle.   

Fig. 9.  6 DOF image-in-the-loop airplane simulator. Two airplanes 
(blue=leader, red=follower) are shown. Right top window shows a 
simulated camera image and the bottom one displays outputs of the image 
processor.

We consider the case in which the follower aircraft is 
guided to change its relative position to the leader obeying 
a box-shaped command, while the leader flies straight with 
a constant speed. Figure 10 shows estimation results of 
relative position. The position x is approximately the range 
between the two aircraft.

Fig. 10.  Relative position estimation. The Follower is guided by a relative 
position command (dashed red line).  

VIII. CONCLUSIONS

   In this paper, several approaches for vision-based 
formation control of multiple aircraft are implemented. No 
communication is required between vehicles, and simple 
passive vision processing is assumed, sufficient only to 
provide noisy bearing and image size measurements. 
Effects of unmodeled leader aircraft acceleration on the 
estimation and guidance processes are shown, and two 
adaptive methods to compensate for the same are discussed 
and demonstrated in simulation. 
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