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Abstract 
 

We address the value of information (VOI) and value of centralized control (VCC) in 

the context of a two–echelon, serial supply chain with one retailer and one supplier that 

provides a single perishable product to consumers.  Our analysis is relevant for managing 

slower moving perishable products with fixed lot sizes and expiration dates of a week or less. 

We evaluate two supply chain structures.  In the first structure, referred to as Decentralized 

Information Sharing, the retailer shares its demand, inventory, and ordering policy with the 

supplier, yet both facilities make their own profit-maximizing replenishment decisions.  In 

the second structure, referred to as Centralized Control, incentives are aligned and the 

replenishment decisions are coordinated.  The latter supply chain structure corresponds to the 

industry practices of company owned stores or vendor–managed inventory.   

We measure the VOI and VCC as the marginal improvement in expected profits that 

a supply chain achieves relative to the case when no information is shared and decision 

making is decentralized.  Key assumptions of our model include stochastic demand, lost 

sales, and fixed order quantities.  We establish the importance of information sharing and 

centralized control in the supply chain and identify conditions under which benefits are 

realized.  As opposed to previous work on the VOI, the major benefit in our setting is driven 

by the supplier’s ability to provide the retailer with fresher product.  By isolating the benefit 

by firm, we show that sharing information is not always Pareto improving for both supply 

chain partners in the decentralized setting.        

 

Keywords:  value of information, vendor managed inventory, supply chain management, 
perishable inventory 
 



1. Introduction  

We place our research in the context of the grocery industry and, more specifically, in the 

area of managing perishable products.   The importance of perishables is growing in terms of 

sales, SKUs, and in attracting consumers.  For supermarkets, perishables are the driving force 

behind the industry’s profitability and represent a significant opportunity for improvement, 

accounting for up to $200 billion in U.S. sales a year but subjecting firms to losses of up to 15 

percent due to damage and spoilage.   Further, the quality, variety and availability of perishables 

have become an order winning criteria of consumers, representing the primary reason many 

consumers choose one supermarket over another (Hennessy 1998, Tortola 2005, Axtman 2006).   

The growing importance of perishables manifests itself in a proliferation of product 

variety.  Clearly, consumers equate freshness with quality and demand high variety (Fitzgerald 

2003).  In turn, retailers have responded by dramatically increasing the number of SKUs they 

offer for sale (Tortola 2005, Boyer 2006).  In some categories, such as produce, the average 

number of items stocked has doubled in the past five years and the trend is expected to continue.  

(Axtman 2006).  From an operational perspective, the growth in perishables creates additional 

challenges for retailers and there is a clear and obvious tradeoff: more product (and product 

variety) increases sales, but at the same time, increases the risk of spoilage (Tortola 2005, Miller 

2006).  Increasing product variety creates an increasing assortment of products over which 

demand is spread and contributes to an increasing number of slow moving perishables, resulting 

in substantial increases in product spoilage (Boyer 2006). 

The produce, meat, deli, bakery and seafood departments are key destinations into 
your store on a regular basis.  Unfortunately, these are also areas where you incur 
the highest amount of shrink, which takes a huge toll on your bottom line each 
year… While spoilage has always been a nasty fact of life in the grocery business 
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and often regarded as just another cost of doing business, thin margins are 
prompting retailers to seek ways to reduce the problem.  (Fitzgerald 2003, p. 38) 
 
Current estimates indicate that shrink costs an average supermarket 2.32% of sales or 

approximately $450,000 per year.  Perishable departments account for 30% of total store sales, 

but contribute 56% to total store shrink.  At a category level, 21% of all produce shrink is 

attributed to spoilage (National Supermarket Research Group 2003).   Clearly, spoilage has a 

significant impact on the bottom line.  Moreover, the estimated level of shrink across perishable 

departments is startling.  In Table 1.1, we reproduce a key exhibit in Miller (2006) which 

provides a classification of retailer performance with respect to shrink.  Even top performing 

departments (Low) can experience a considerable rate of product shrinkage. 

 
Department Shrink 

 
High 

Medium
High 

Medium 
(Average)

Medium 
Low 

 
Low 

Total Shrink 4.48% 3.67% 2.77% 2.24% 1.71% 
Dairy 1.45% 1.20% 0.82% 0.75% 0.55% 
Meat 7.70% 6.30% 4.86% 3.85% 2.95% 
Bakery 11.60% 9.50% 6.05% 5.80% 4.45% 
Produce 8.10% 6.60% 5.02% 4.00% 3.10% 
Deli 10.75% 8.80% 5.98% 5.40% 4.10% 
Seafood 6.00% 5.10% 4.92% 2.50% 1.95% 
Floral 9.30% 7.60% 6.24% 4.65% 3.55% 

Table 1.1: A classification of supermarket department shrink performance 

Moreover, the amount of shrink in perishables departments has consistently increased  

over the past six years (Tortola 2005).  From this perspective, the link between variety and 

spoilage is readily apparent.  There are generally a minority of products in an assortment that are 

high volume and account for the vast majority of sales.  For example, in produce, random weight 

vegetables and fruits account for approximately 2/3rd of produce sales.  This leaves a majority of 

slow moving items that account for a much smaller percentage of sales.  Even a cursory 

examination of industry averages is telling of the issue.  As reported by Progressive Grocer 

(Chanil and Major 2005), average weekly supermarket sales of produce is $27,900 and with an 
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average purchase size of $3.97 there are just over an average of 1,000 transactions per day.  With 

280 produce SKUs offered, the average unit sales per SKU is small.  Note that similar analysis of 

other perishable product categories will lead to the same conclusion.   Some retailers report that 

as much as 75% of their SKUs are slow moving (Småros et al. 2004).  Our own analysis of item 

movement at a division of Albertson’s, consisting of seventy stores, indicates that 75% of 

packaged produce items are slow movers – selling less than a case per day with more than half 

(52%) of the items’ case sizes composed of ten units or less.   

Clearly, efficient management of both fast and slow moving perishables are important 

elements to store profitability, but the management focus is different for each.  For fast moving 

items, spoilage principally arises when the product is unwrapped, displayed in bulk, and subject 

to consumer handling (Tortola 2005).  For slow moving packaged items, the challenge is 

managing inventory levels so the product sells before its expiration date (Falck 2005).  In this 

paper, we restrict our analysis to slow moving packaged perishables.  Growth in these products is 

expected to continue as variety increases (Chanil and Major 2005), yet maintaining a proper 

balance between inventory and service level is particularly acute (Falck 2005).  The case size 

(number of units packaged, ordered, and shipped together) imposes certain restrictions, as the 

size of a single case often represents several days of supply.  Even with small case sizes, low 

demand rates coupled with high demand variability challenge grocers in their ability to minimize 

spoilage, resulting in spoilage rates that can exceed 40% (Pfankuch 2006).   

We evaluate two common prescriptions cited in the literature to improve the management 

of perishable products: sharing information on demand or current inventory levels and 

coordinating replenishment activities (Falck 2005, Småros et al. 2004, Lee et al. 1997a,b).  

Although, there is anecdotal evidence from practitioner activity that such initiatives have 
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significant value, due to privacy and competitive issues, success stories are rarely communicated 

and many industry participants are quick to point out other opportunities like reducing case sizes 

(Småros et al. 2004).  Hence there remains a lack of understanding among both academics and 

practitioners regarding the value of these initiatives, how value is derived, and the conditions in 

which they are most valuable.   

We address the value of information (VOI) and the value of centralized control (VCC) in 

the context of a two–echelon, serial supply chain with one retailer and one supplier that provides 

a single perishable product to consumers.  Replenishment decisions are limited to zero units or a 

single case and the lead time is effectively zero since an order placed after observing demand one 

day arrives before demand occurs the next day.  When the supplier is unable to meet a demand 

request from the retailer with stock on hand, an emergency shipment is incurred at a significant 

penalty cost.  The product’s lifetime is fixed and deterministic once produced.  Any unsold 

inventory remaining after the lifetime elapses must be discarded (outdated) at zero salvage value.  

These assumptions capture characteristics of slow-moving packaged perishables with expiration 

dates of less than a week, where daily demand rates are typically less than a case, and overnight 

replenishments are available.   

We evaluate two scenarios.  In the first scenario, named Decentralized Information 

Sharing (DIS), both supply chain members share their inventory levels and replenishment 

policies with the other, but each facility makes its own profit maximizing replenishment 

decisions.  In the second scenario, named Centralized Control (CC), decision making is 

coordinated and corresponds to the practice of vendor–managed inventory (VMI).  We formulate 

the respective scenarios as Markov Decision Processes (MDPs) and measure the VOI and VCC 

as the marginal improvement in expected profit a supply chain achieves relative to the case of 
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traditional replenishment.  Key characteristics of our model include stochastic demand, lost 

sales, and fixed order quantities.  

We establish the importance of information sharing and centralized control, identifying 

the conditions when substantial benefits are realized.  Through a numerical study, we find that by 

sharing information, total supply chain expected profits increase an average of 4.2% with 

information sharing and 5.6% with centralized control.  The benefit of sharing information in the 

absence of coordination is not always Pareto improving for both firms.  In an extension, we 

evaluate the value of case size optimization, where the case size itself is a decision variable.  The 

literature promotes the choice of case sizes as another significant opportunity to reduce spoilage 

(Falck 2005, Småros 2004, Larson and DeMarais 1999) and our results support this claim as the 

VOI and VCC are minimal when an optimal case size is chosen.  We also find the VOI and VCC 

are minimized when the supplier’s revenue is freshness dependent.     

The rest of the paper is organized as follows:  §2 reviews the literature, §3 defines the 

model, §4 presents our numerical study with discussion, §5 provides extensions, and §6 

concludes the paper.  An appendix provides some additional details of our models and results.   

2. Literature Review 

Our research draws on two separate research streams:  perishable inventory theory and 

the value of information.  The principal distinction within the existing literature on perishable 

inventory is whether the product has a fixed or random lifetime.  We review the key literature on 

the management of fixed lifetime products in multi-member supply chains and refer the reader to 

Raafat (1991) for a comprehensive review of random lifetimes.  Nahmias (1982) provides a 

good, albeit now dated, literature review of fixed lifetime perishable inventory models.   
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Progress on the combined problem of multi–echelon inventory and perishable product 

inventory systems has been limited.  We are aware of only a few contributions in this area, the 

majority are motivated by the management of blood banks and focus almost exclusively on the 

allocation problem.  Yen (1965), Cohen et al. (1981), and Prastacos (1981) are representative 

examples.  More recently, Goh et al. (1993) consider a two–stage inventory system at a single 

facility.  The first stage contains inventory of fresh blood and the second stage contains older, but 

still usable, blood.  The issuing quantity to the second stage is automatically determined by the 

age of the blood from the first stage where both the supply and withdrawals of blood occur 

randomly.  Demand requests specify whether they must be satisfied with fresh units or if older 

units are acceptable.  

Fujiwara et al. (1997) provide the most recent contribution to the literature and the only 

one we are aware of that directly addresses perishable food products.  They consider a two–stage 

inventory system at a single facility where the first stage consists of the whole product (e.g. meat 

carcasses) made up of multiple sub–products (e.g. cuts of meat) while the second stage consists 

solely of the sub–products.  Exogenous demand occurs only at stage two, although unsatisfied 

stage two demand can be met by emergency issuing from stage one inventory at a cost premium.  

They derive optimal ordering and issuing policies for this scenario.  Our model extends the 

research on perishable inventory systems by evaluating a serial system under the assumptions of 

batch ordering and lost sales: two highly significant and relevant aspects to the management of 

perishables in the grocery industry.     

While the literature on the VOI in a multi-echelon supply chain context is nascent, there 

are a few papers that explore the VOI in serial supply chains.  Bourland et al. (1996) study how 

sharing inventory data improves the supplier’s ordering decisions with stationary stochastic 
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demand.  In their model, the VOI manifests itself in the supplier’s ability to respond to the 

change in the retailer’s inventory level, prior to the placement of the retailer’s order.  Chen 

(1998) compares echelon stock policies that require information sharing and centralized decision 

making with installation–stock policies that do not require information sharing and allow 

independent decision–making.  Although he reports a cost improvement with an echelon policy 

by as much as 9%, on average the benefit is reported at 1.8%.  Gavirneni et al. (1999) explore the 

impact of a supplier’s capacity restriction on the VOI.  They report a high level of VOI when the 

retailer shares information about underlying demand and the parameters of its order policy, but 

only an incremental additional benefit from sharing its inventory level in the second case.  Lee et 

al. (2000) address the VOI when demand follows an AR(1) process and is correlated one period 

to the next.  They show that sharing demand information can lead to substantial benefits, 

particularly when demand correlation is high.  Raghunathan (2001), however, points out that the 

supplier’s base stock policy used in Lee et al. (2000) without information sharing only utilizes 

the last observed order from the retailer.  He shows that when the full history of orders is used, 

the VOI is negligible.  Other studies investigate the VOI in the context of distribution systems 

consisting of one supplier and N retailers.  Examples include Cachon and Fisher (2000), Aviv 

and Federgruen (1998), and Moinzadeh (2002). 

Unlike the majority of the papers above where the VOI and VCC are often small in the 

context of non-perishable serial supply chains, we show significantly larger benefits due to the 

ability of the supplier to provide fresher product.  Beyond our study, Ferguson and Ketzenberg 

(2006) is the only study we are aware of that addresses the VOI in the context of perishable 

inventory.  They address the value of information sharing from a supplier to one of its many 

smaller retailers.  In their study, the supplier shares its age–dependent inventory state, 
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replenishment policy, and demand information with the retailer.  In contrast, we examine the 

reverse flow of information where the retailer shares information with the supplier.  Also, 

Ferguson and Ketzenberg (2006) model a retailer in a large distribution network where the 

supplier’s ordering policy is not dependent on a single retailer’s actions whereas we model a 

serial supply chain where the retailer’s actions are highly relevant to the supplier’s decisions.   

3. Model 

The setting is a serial supply chain consisting of a retailer and a supplier who provide a 

single perishable product to consumers that has a deterministic lifetime of M + 1 periods.  

Throughout its life, the utility of the product remains constant until the remaining lifetime is zero 

periods, after which the product expires and is outdated (disposed) without any salvage value.  

This assumption corresponds to the wide–spread use of product expiration dates on packaged 

goods such as fresh meat and seafood, deli, ready-made meals, and fresh cut fruit and vegetables.   

We assume a periodic review inventory model for each facility.  For the retailer, the order 

of events each day follows the sequence: 1) receive delivery, 2) outdate inventory, 3) place order, 

and 4) observe and satisfy demand.  Orders placed in the current period arrive before demand in 

the next period.  Retail demand is discrete, stochastic, and stationary over time.  Let  denote 

total demand in the current period, with probability mass function

D

( )φ ⋅ , mean μ , variance 2σ , 

and C  the corresponding coefficient of variation.  Unsatisfied demand is lost.  To simplify 

notation, we normalize the retailer’s revenue per unit of satisfied demand to one dollar and 

predicate the unit purchase cost on the product margin , expressed as a percentage of unit 

revenue.  A holding cost ( ) is assessed on ending inventory at the retailer (supplier) 

respectively.  

0m

0h 1h
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The retailer’s replenishment decision  is restricted to either zero or Q  units, where the 

batch size Q represents the bundle of units that are packaged, shipped, and sold together.  The 

fixed batch size captures certain economies of scale in transportation and handling and is 

common, both in practice (Falck 2005, Småros et al. 2004) and in the literature on the VOI 

(Moinzadeh 2002, Cachon and Fisher 2000, Chen 1998).  Because of increasing levels of 

product variety there are many slow moving perishable products where a single batch of 

replenishment is sufficient to satisfy expected demand during the order cycle.  In a later section, 

we show how our model can also be used to find an optimal value of Q.     

q

 The replenishment lead-time is one period.  Since the product is perishable, inventory 

may be composed of units with different ages.  Let xi  denote inventory, after outdating and 

before demand, that expires in x periods, where 1,  ...,  x M=  and M is the maximum product 

shelf life at the retail echelon.  Let ( )1 2,  ,  ..., Mi i i i=  represent the vector of inventory held at 

each age class and define 
1

M

x
x

I i
=

=∑ .  Demand is satisfied using a FIFO inventory issuing policy 

and inventory is not capacitated.   

For the supplier, the order of events each period follows the sequence: 1) receive delivery, 

2) observe and satisfy demand, and 3) place order.  An order placed by the retailer corresponds 

to a demand at the supplier in the same period.  Since the supplier only observes orders of Q  

units and faces no ordering cost, the supplier replenishes in orders of  units.   We assume the 

supplier orders from a perfectly reliably exogenous source (i.e. the outside source has ample 

capacity) and the lead-time is one period (i.e. whenever Q units are ordered they become 

available at the start of the next period).  Thus, the supplier faces uncertainty only in the timing 

of the order arrivals.  If the supplier receives an order and does not have units in stock to fulfill it, 

Q
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the supplier pays an expediting charge that allows it to meet the order in the same period.  Thus, 

the retailer always receives its order request at the beginning of the following day.  

The supplier’s replenishment policy corresponds to a time phased order point policy 

incorporating safety lead-time.  Denoted by α , safety lead time represents the number of periods 

the supplier waits after receiving a retailer order before it places its own replenishment order:  

(0,1, ..., )Mα ∈ .  The safety lead-time is based on the supplier’s critical fractile, determined 

from its cost of being early or late with a replenishment order.  This policy is optimal for a firm 

facing intermittent demand with deterministic quantities, uncertain timing, and non–perishable 

inventory (Silver et al. 1998).  Employing such a policy ensures no supplier outdating.  This is 

because the longest possible time between retail orders is M periods and, at that time, the age of 

product at the supplier has a minimum life of two periods remaining.  This statement requires a 

further condition:  the retailer never intentionally goes through a period with zero inventory, thus 

assuring the interval between retail orders never exceeds M periods.  These assumptions are 

supported by practice where 1) outdating at supplier echelons is trivial compared to the retail 

echelon and 2) there exists a strong emphasis on high, retail, in-store availability. 

3.1 No Information Sharing (NIS) Case 

We begin by establishing a base case where the retailer does not periodically share 

information pertaining to its replenishment process or inventory position.  Hence, this case 

corresponds to traditional replenishment practices in which the supplier only observes the timing 

between the retailer’s orders.   

3.1.1 NIS Case:  Retailer’s Policy 

We formulate the retailer’s replenishment problem as a MDP where the objective is to find 

an optimal reorder policy that maximizes expected profit.  The linkage between periods is 
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captured through the one period transfer function of the retailer’s age dependent inventory.  This 

transfer is dependent on the current inventory level, any order placed in the current period, the 

realization of demand D in the current period, and the remaining lifetime of any replenishment 

inventory (represented by the position x within the vector i  that is updated with the 

replenishment quantity).  The remaining lifetime of replenished inventory, denoted as A, is a 

function of the number of periods since the last retailer order L , where { }, 1, 2, ...,A L M∈ , and 

the supplier’s safety lead–time α .  

 For ease of exposition, let ( )  and ( )max ,0z z+ ≡ z′  denote a variable defined for the next 

period, whereas a plain variable z is defined for the current period.  Let i′  denote the retailer’s 

inventory level in the next period and ( ), , ,i D q Aτ  denote the one period transfer function.  

Then  where ( ), , ,i i D qτ′ = A

A

x A

1
1

0
x

x

z
z

x

i D i if x

i

q if

+

++

=

⎧⎛ ⎞⎛ ⎞⎪ − − < <⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎪⎝ ⎠′ = ⎨
⎪

=⎪
⎪⎩

∑
. 

Now, let  denote the retailer’s one period profit function where  ( )G I

( ) ( ) ( ) ( )0
0

min ,
D

G I D I h I D Dφ
∞

+

=

⎡ ⎤= − −⎣ ⎦∑ . 

We now introduce the retailer’s MDP.  The value c  is the equivalent average return per period 

when an optimal policy is used.  The extremal equation is 

( )
{ }

( ) ( ) ( )( ) ( ){ }00, 0
, max 1 , , , ,

q Q D
f i L c G I q m f i D q A L Dτ φ

∞

∈ =
′+ = − − + ∑    (1)  

where 
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1
M if

A
M L if L

L α
α α

≤⎧
= ⎨ − + + >⎩

       (2) 

1
1 0

if q Q
L

L if q
=⎧′ = ⎨ + =⎩

         (3) 

 
Since the state and decision spaces are discrete and finite and profit is bounded, there exists 

an optimal stationary policy that does not randomize (Putterman, 1994 pg 102 - 111).  The left 

hand side of (1) defines an extremal equation by the vector of inventory i and the number of 

periods L  since the last order was placed.  The right hand side of (1) computes the total expected 

profit composed of the one period profit function, the purchase cost associated with any new 

order, and future expected profit.  Equation (2) determines the remaining lifetime of any receipts.  

Note if L α≤ , then A M=  since replenishment occurs through expediting.  Also, (2) assumes 

the retailer knows both the supplier’s safety lead–time α  and the age of replenishment A.  The 

retailer can readily deduce these values given the replenishment history with the supplier.  

Finally, (3) updates the number of periods since the last order was placed, predicated on whether 

or not an order is placed in the current period. 

3.1.2 NIS Case:  Supplier’s Policy 

Because the retailer is restricted to ordering Q units at a time, the supplier also replenishes 

in batch sizes of Q units.  A sample path of the supplier’s inventory level follows a renewal 

process with the renewal occurring each time the retailer places an order.  The supplier’s 

objective is to make ordering decisions that minimizes its inventory related cost.   

Since the supplier is only concerned with the timing of its replenishment, the problem 

reduces to a myopic cost minimization problem the supplier faces each period he ends with zero 

units in inventory.  If the supplier does not have inventory when the retailer places an order, the 
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supplier pays an expediting charge of b.  If the supplier does have inventory and the retailer does 

not order, the supplier pays a holding cost of h1 for each of the Q units it holds.   

The maximum time between successive retailer orders is M days.  Let ( )Dψ β  denote the 

probability of the retailer placing a replenishment orderβ  days after the last 

order, (1, 2, ..., )Mβ ∈ .    The supplier’s decision is to choose a value for α  so that expected cost 

is minimized, as expressed by:  

 
( )

( ) ( )1 1

min
1

M
D

D

b
Qhα β

ψ β α β
β α ψ β α β=

⎛ ⎞− ≥⎧⎪
⎜ ⎟⎨⎜ ⎟− − − <⎪⎩⎝ ⎠
∑ .  

The expectation of the suppliers profit is taken over all probabilities for the retailer ordering 

within the next M days and takes into consideration two conditions: 1) α β≥ , the case when the 

retailer orders prior to the supplier receiving replenishment so that the retailer’s replenishment is 

satisfied through expediting, and 2) α β< , the case where the supplier holds inventory at the 

time it receives a retailer replenishment order.  In this case, the supplier incurs holding cost for 

1β α− −  days.  Let *α denote the value that minimizes the above expression. 

 In Appendix A, we characterize the distribution ( )Dψ β .  Note we assume the supplier 

acts honorably and does not attempt to increase its profit by ordering earlier than the safety lead-

time so the product’s useful life at the retailer will be shorter, forcing the retailer to order more 

frequently.  While there may be a short-term incentive for the supplier to act in this manner, the 

long-term negative consequences do not typically make it worthwhile, as the retailer would 

eventually figure out the supplier’s deceitfulness.    

To express the supplier’s expected profit per period, some additional notation is required.  

Let ,i Lπ  denote the steady state probability that the retailer is in state ( ),i L  and let  denote *
,i Lq
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the retailer’s corresponding optimal replenishment decision for this state.  Further, let  denote 

the supplier’s margin per unit expressed as a percentage of its unit revenue.  The supplier’s 

expected profit per period is  

1m

( )

( ) ( )

* *
1 0 , , ,

* *
1 0 1, , ,

1 0

1 0

0

i L i L i L

i L i L i L
i L

m m q b if L and q

m m q h Q q if L

otherwise

π α

π α

⎧⎡ ⎤− − − ≤⎣ ⎦⎪
⎪⎡ ⎤− − − − >⎨⎣ ⎦
⎪
⎪⎩

∑∑

0>

. 

3.2 Decentralized Information Sharing (DIS) Case 

The DIS Case builds on the NIS Case so that now the retailer shares its inventory state and 

replenishment policy with the supplier.  Decision-making, however, remains independent.  As 

before, we start by formulating the retailer’s MDP and then proceed to the supplier’s policy.  

3.2.1   DIS Case:  Retailer’s Policy 

 The retailer’s optimization is similar to the NIS Case except it is now necessary to track 

the supplier’s inventory state since the supplier’s replenishment decision is now state–dependent 

on the retailer’s inventory position.  To reduce notational complexity, we track the supplier’s age 

dependent inventory by using A – the remaining retail shelf life, since the age at the supplier is 

simply 1A+  if the supplier holds inventory.    This involves a slight change in interpretation, 

since now A  takes values in { }0,1, ..., M  and 0A =  corresponds to the state when the supplier 

has zero inventory and, implicitly, the age of replenished items will be M due to expediting.  

Since we now track the supplier’s inventory with A, we drop L  (the periods since the last retailer 

order) from the state space. The extremal equation is 

( )
{ }

( ) ( ) ( )( ) ( ){ }00, 0
, max 1 , , , ,

q Q D
f i A c G I q m f i D d A A Dτ

∞

∈ =
′+ = − − + ∑ φ    (4)  

where   
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*

*

1  and

0

A if q
A M if

otherwise

α β
α β

⎧ − ≥
⎪′ = <⎨
⎪
⎩

0=
.       (5) 

Note that (5) determines the supplier’s inventory state in the next period, predicated on 

both the retailer’s order and the supplier’s replenishment decision.  In the next section, we 

describe the supplier’s policy that incorporates the information shared by the retailer.    

3.2.2 DIS Case:  Supplier’s Policy 

Under the DIS Case, the supplier’s decision is to choose a value for α  so that expected 

cost is minimized, as expressed by:  

 
( )

( ) ( )1 1

min
1

M D

D

b i

Qh iα β

ψ β α β

β α ψ β α β=

⎛ ⎞⎧ − ≥⎪⎜ ⎟⎨⎜ ⎟⎜ ⎟− − − <⎪⎩⎝ ⎠
∑ .  

The conditional distribution ( )D iψ β  is a function of the retailer’s one-period inventory 

state transition probabilities and the optimal ordering decisions resulting from (4).  Since the 

retailer and supplier replenishment decisions are inter-related and decision–making is 

decentralized, some discussion is warranted regarding the order in which the values for  and *q

*α  are determined.  We employ the following solution procedure:  1) Given a system state 

( ),i A , condition on the decision  and compute the optimal supplier policy 0q = * 0qα = .  2) 

Compute the corresponding expected average profit for the retailer given these decisions.  3) 

Provide the same treatment to the condition for the decision q Q=  and find both the optimal 

supplier policy * q Qα =  and the associated expected average profit for the retailer.  4) Choose 

the value  that maximizes the retailer’s expected profit.   *q
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As in the NIS Case, the supplier’s expected average profit per period is determined from 

the limiting behavior of the retailer in steady state.  Letting  ,i Aπ  denote the steady state 

probability that the system is in state ( ),i A  and *
,i Aq  denote the corresponding optimal retailer 

replenishment decision, the supplier’s expected profit per period is 

( )

( ) ( )

* *
0 1 , , ,

* *
0 1 1, , ,

1 0

1 0

0

i A i A i A

i A i A i A
i A

m m q b if A and q

m m q h Q q if A

otherwise

π

π

⎧⎡ ⎤− − =⎣ ⎦⎪
⎪⎡ ⎤− − − >⎨⎣ ⎦
⎪
⎪⎩

∑∑

0>

. 

3.3 Centralized Control (CC) Case 

In the CC Case, a central decision maker seeking to maximize total supply chain profits 

makes replenishment decisions for both the retailer and the supplier.  This corresponds to the 

practice of vendor–managed inventories (VMI).  The retailer no longer places orders with the 

supplier.  Instead, we interpret the decision variable q as a planned shipment from the supplier to 

the retailer.  In addition, the supplier’s replenishment orderλ  is now added to the decision space 

of the MDP.  It is never optimal for the supplier to place an order in a period where it already has 

 units in inventory.  To see why, we offer an informal proof by contradiction.  Assume the 

supplier places a replenishment order when there are already Q units in stock at the supplier 

level.  This will bring the supplier’s inventory level up to 2Q units but the retailer is restricted to 

ordering either 0 or Q units each period; thus the retailer can not take advantage of the extra Q 

units.  This action only increases cost and does not improve the service level for a centralized 

system; thus it will never occur under an optimal policy.   

Q
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For convenience, let ( )( )1 01 1c Q m m= − − 1

0

 denote the supplier’s purchase cost.  

Assuming  (otherwise it is never optimal to hold inventory at the supplier) the extremal 

equation is 

1h h<

( )
( ) { }

( ) ( )( ) ( )

( )

1
0

0, , 0,1
1

1

, , , ,

0 0 0, max
0 0

D

q Q

G I c f i D q A A D

if A and qf i A c
b c if A and q
h Q q otherwise

λ

λ τ φ
∞

=

∈ ∈

⎛ ⎞⎡ ⎤′− + ∑⎜ ⎟⎣ ⎦
⎜ ⎟

⎧ = =⎜ ⎟+ =
⎪⎜ ⎟− − = >⎨⎜ ⎟⎪⎜ ⎟−⎩⎝ ⎠

 . (6) 

       
Since the objective is to maximize system–wide profit, the optimization expressed in (6) 

omits the transfer price between the supplier and the retailer.  Instead, expected profit maximized 

in the MDP is the sum of the one period profit function, the purchase cost to the supplier for 

regular replenishment, the purchase cost plus penalty cost for any supplier expediting, holding 

costs applied to ending inventory for both facilities, and future expected profit.  The age of the 

inventory at the retailer carries over from (5) in the DIS Case and is not repeated here.   

4. Numerical Study 

We evaluate the VOI in the DIS Case and the VCC in the CC Case where VOI and VCC are 

the % improvement in expected total supply chain profit, relative to the NIS Case.  Specifically,  

[ ] [ ]( )
[ ]

Profit Profit
Profit

DIS NIS

NIS

E E
VOI

E
−

=   and 
[ ] [ ]( )

[ ]
Profit Profit

Profit
CC NIS

NIS

E E
VCC

E
−

= . 

Consumer demand ( )φ ⋅  corresponds to a truncated negative binomial distribution with a 

maximum value of  (any probabilities for demand exceeding 50 are redistributed 

proportionately within the truncated limit of the distribution).  See Nahmias and Smith (1994) 

regarding the advantages of assuming negative binomial distributions for retail demand.   Across 

our numerical experiments, the mean of the distribution is held constant at four and the 

50
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Coefficient of Variation (C) is treated as a parameter to the model using the values reported 

below.  Each period represents a day and the holding cost at each echelon is 40% of the purchase 

cost, measured on an annual basis.  In total, we consider 972 experiments that comprise a 

factorial design for all combinations of the following parameters: 

( )0.5, 0.6, 0.7C∈   ( )4, 5, 6M ∈   ( )8, 9,10Q∈   ( )0 0.4, 0.5, 0.6m ∈  

( )1 0.4, 0.5, 0.6m ∈   ( )1 1 1 10.05 , 0.10 , 0.15 , 0.20b c c c∈ c  

Our selection of parameter values is motivated by values observed in practice for several 

common and slow moving packaged perishables in product categories like fresh meat and 

seafood, deli, ready-made meals, and fresh cut fruit and vegetables. Products in these categories  

are highly perishable although daily item movement is often less than the case size, which itself 

is generally small as confirmed by a study we conducted at a 70 store division of a regional 

grocer.  At the same time, our selection is constrained by the computational feasibility of the 

resulting MDP, since the size of the state space expands exponentially with the vector of age–

dependent inventory.  Current computing technology enables us to solve a MDP of about twenty 

million states in twenty minutes.  Notwithstanding, the range of parameter values considered 

covers an extensive selection of products (Office of Technology Assessment Report, 1979).   

For each experiment, we use value iteration to compute the results for the respective 

MDPs and then solve the accompanying state transition matrices using the method of Gaussian 

elimination to evaluate steady state behavior as described in Kulkarni (p. 124).  In §4.1, we 

discuss our general observations and in §4.2 we report the results of our sensitivity analysis. 

4.1 Results and General Observations 

In general, we find both information sharing and centralized control lead to considerably 

fresher product for sale at the retailer.  In Table 4.1, we report the VOI for the entire supply chain 
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and for each member under a decentralized structure (DIS Case) and the corresponding VCC for 

the total supply chain under a centralized structure (CC Case), at given percentiles of the 972 

experiments. For example, the 0.50 percentile denotes the median values.   From this table, three 

observations emerge:  1) the VOI is lower than the VCC, although it can still be substantial, 2) 

the VOI is not necessarily shared equally between the retailer and the supplier, and 3) both the 

VOI and VCC are sensitive to model parameterization and depend largely on system behavior as 

we discuss for each case below. 

  DIS Case CC Case 
Percentile Total Retailer Supplier Total 

0.00 0.0% 0.0% -10.1% 0.0% 
0.25 0.8% 1.2% -1.6% 1.2% 
0.50 3.3% 4.1% 0.3% 4.6% 
0.75 7.0% 10.1% 4.8% 8.7% 
1.00 13.3% 26.9% 19.0% 16.0% 
Mean 4.2% 6.2% 1.6% 5.6%

Table 4.1: VOI (DIS Case) and VCC (CC Case) across experiments 

4.1.1 DIS Case Observations 

In the DIS Case, information sharing enables the supplier to better time the arrival of its 

replenishment with the timing of retail orders.  In turn, the freshness of product (measured in 

terms of the expected average lifetime remaining) replenished at the retailer increases from an 

average of 3.77 periods to 4.46 (18.3% increase).  Thus, product outdating at the retailer 

decreases by an average of 39.0%.  This increased product freshness also enables the retailer to 

boost its service level by 3.1% on average.   

The change in retailer performance has two direct effects on the supplier, related to a 

change in the retailer’s average per period order quantity to the supplier.  The change reflects 

both a decrease in outdating at the retailer and an increase in retailer service.  When the increase 

in retailer service (and hence units of satisfied demand) exceed the reduction of outdating, the 

supplier realizes a net increase in retailer orders and the supplier is better off.  The opposite case 
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results in a net decrease in retailer orders and the supplier is worse off.  Across experiments, we 

find that half of the time, the combination results in a net decrease in retailer orders which can be 

as large as a 10.5% reduction.  In the other half of the experiments, there is a net increase in 

retailer orders which can be as large as an 18.5% increase.  Even though the supplier is able to 

reduce its expected inventory related costs in all experiments through information sharing; these 

savings are generally trivial compared to the increase or decrease in revenue that arises through 

the change in retailer behavior.  In §4.2 we evaluate the conditions which affect the retailer’s 

order stream in a sensitivity analysis. 

  Total supply chain profit always improves with information sharing, even when the 

supplier’s profit decreases.  An important avenue for future research is to explore how certain 

contracts and incentives can be implemented so that the maximum benefits from information 

sharing can be realized and Pareto improving.  In the absence of such contracts, it is doubtful the 

supplier will be a willing participant.  

4.1.2 CC Case Observations 

With centralized control, the improvement in total supply chain profit is greater than the 

improvement observed with information sharing.  On average, the VCC is 27% greater than the 

VOI.  There are two effects at work here.  First, there is minimal value in holding inventory at 

the supplier.  Thus, the supplier serves a cross–docking function wherein any replenishment it 

receives is immediately sent onward to the retailer.  We observe an average decrease of 44% in 

the supplier’s expected inventory holding costs and a related average improvement of 24% in the 

freshness of the product delivered to the retailer.  This represents over a 5% improvement in 

product freshness relative to the DIS Case. 
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The second effect comes from the elimination of double marginalization (the stocking 

decision at the retailer is predicated on the entire supply chain’s profit, not just the retailer’s as in 

the NIS and DIS Cases).  Consequently, the retailer’s service level increases an average of 7.0%.  

This represents a considerable improvement when compared to the 3.1% average increase 

observed in the DIS Case.  To provide the higher level of service, a higher level of inventory is 

positioned at the retailer and, therefore, the system may experience an increase in outdating 

relative to both the NIS and DIS Cases.   

4.2 Sensitivity Analysis 

Generally, we find that the VOI and the VCC are sensitive to product perishability, the 

retailer’s ability to match supply and demand, and the size of the penalty for mismatches in 

supply and demand.  We illustrate sensitivity to each parameter in Figure 4.1.  The height of each 

bar corresponds to the average VOI and VCC across experiments for the parameter value 

specified on the x-axis.  We discuss these relationships below.  For reference, we also provide a 

more complete set of performance measures in Appendix C.  
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Figure 4.1: Sensitivity of the average VOI/VCC for each fixed parameter value 
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4.2.1 Product Perishability 

As shown in Figure 4.1, the VOI and the VCC both decrease with respect to increases in 

the product lifetime.  The main benefit of information sharing is the supply of fresher product to 

the retailer.  When the product lifetime is short, improvements in product freshness have a larger 

impact on the retailer’s service level than when the product lifetime is long.  Fresher product 

reduces the potential for outdating, allowing the retailer to carry more inventory for the same 

amount (or less) of product outdating, resulting in higher sales so that the entire supply chain is 

better off.  However, the VOI and the VCC does not always increase with decreases in the 

product lifetime, as both the product lifetime and batch size impose constraints on the supplier’s 

ability to improve product freshness.  As an example, for a product lifetime of one day, the 

replenishment problem reduces to a newsvendor problem and there is no value with respect to 

information sharing.  In Figure 4.2, we show through an illustrative example the VOI and the 

VCC are actually concave with respect to the product lifetime.  Here we vary  

with a fixed set of parameter values: 

( )2,3,4,5M ∈

1 1 04, 0.7, 7, 0.2 , 0.5, and 0.6.C Q b c m mμ = = = = = =  
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Figure 4.2: Sensitivity of the average VOI/VCC for product lifetime 

Long product lifetimes result in small VOI and VCC because the prospect of outdating is 

small.  In this scenario, service levels are higher and outdating is lower so any improvement in 
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product freshness does not materially change the retailer’s behavior.  To see this, consider the 

extreme case of a non-perishable product.  Here, there is no outdating and the only benefit of 

information sharing is to improve the supplier’s ability to minimize its own related inventory 

costs which typically represent a small portion of total supply chain costs.  To demonstrate, we 

duplicate our experimental design (excluding variation with respect to the product lifetime) for 

the case of non-perishable products.  In total, there are 324 experiments and we find in all cases,  

both the VOI and the VCC are trivial: the average is 0.1% and the maximum is 1.3%. 

4.2.2 Matching Supply and Demand 

Two factors that affect the retailer’s ability to efficiently match supply with demand are 

demand uncertainty, measured as the coefficient of variation C, and the batch size Q.   As shown 

in Figure 4.1, it is clear that as these parameter values increase, so does the VOI and the VCC.  

The more difficult it is for the retailer to match supply with demand, the more perishability 

becomes an issue.  We further validated our result with respect to Q by examining the VOI and 

the VCC for smaller batches sizes, ( )5, 6, 7Q∈ ,  than those in our main study.  We report the 

results in Table 4.2 where the values for the VOI and VCC are averaged across experiments at 

each level of M and Q.  It is quite clear both the VOI and VCC quickly approach zero as the 

batch size approaches the mean demand rate. 

  Retail Lifetime    Retail Lifetime 
  VOI 4 5 6    VCC 4 5 6 

5 1.2% 0.1% 0.0%  5 1.5% 0.1% 0.0% 
6 1.4% 0.2% 0.1%  6 2.3% 0.6% 0.0% Batch Size 
7 1.4% 0.4% 0.2%  

Batch Size 
7 2.9% 1.5% 0.1% 

Table 4.2: Average VOI (left) and VCC (right) with respect to small batch sizes (Q) 
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4.2.3 Size of the Penalty Costs 

The VOI and the VCC also depend on the size of the penalty for mismatches between 

supply and demand as reflected in the parameters  and  (the retailer’s and supplier’s 

product margin), and the supplier’s expediting cost b.  As the product margin for either facility 

decreases, the VOI and the VCC increase.  We show these relationships in 

0m 1m

Table 4.2 where the 

values for the VOI and the VCC are averaged across experiments at each level of and .    0m 1m

 VOI VCC  
Retailer Margin 40% 50% 60% Mean 40% 50% 60% Mean  

40% 5.5% 4.3% 3.7% 4.5% 7.0% 6.4% 6.0% 6.5%  
50% 5.0% 4.1% 3.5% 4.2% 5.6% 5.3% 4.9% 5.2%  Supplier 

Margin 
60% 4.5% 3.7% 3.1% 3.8% 4.5% 4.2% 3.8% 4.8%  

Mean 5.0% 4.0% 3.4% 4.2% 5.7% 5.3% 4.9% 5.6%  
Table 4.2: Sensitivity of the VOI and the VCC to product margin 

 
For the retailer, when the cost of the product is high, the cost of outdating is also high 

relative to the opportunity cost of a lost sale.  Hence, without information sharing, the retailer 

holds less inventory to avoid costly outdating.  Fresher product provided through information 

sharing reduces the prospect of outdating and enables the retailer to achieve a higher service 

level that enhances revenues for both the retailer and supplier.  Conversely, when the cost of the 

product is low, the opposite is true and the retailer has a higher service level even without 

information sharing so that with information sharing, the major benefit is primarily a reduction in 

the retailer’s outdating.  In turn, this negatively impacts the supplier’s expected profit.  Hence, 

the opportunity for improving total supply chain profit is greater with a lower retailer margin.   

The same relationship holds for the supplier’s margin, as lower margins translate into a 

higher cost of expediting cost for the supplier.  This arises because we predicate the expediting 

cost on the supplier’s purchase cost and hence the supplier is more likely to order earlier without 

information sharing – thereby decreasing the retail shelf life.    
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5. Extensions 

In this section we explore model extensions that include 1) minimum product freshness 

and supplier price sensitivity to freshness, and 2) analysis of the optimal order quantity and its 

impact on both the VOI and the VCC. 

5.1 Price Sensitivity to Freshness and Minimum Product Freshness  

 In our earlier analysis, we assume that supplier receives the same revenue per unit, 

regardless of its product freshness, and the retailer accepts delivery of product without regard to 

its remaining lifetime.  From a practical perspective, however, it is reasonable to expect that 1) a 

supplier with fresher product may obtain a higher price than a supplier with older product and 2) 

the retailer may refuse shipment if the remaining product lifetime is too short.  Thus, we test how 

these two relaxations affect the VOI and the VCC.   

 With regard to supplier pricing, we now assume a simple linear model of freshness 

dependent pricing where the supplier’s revenue per unit is increasing with respect to its product 

freshness.  Let (1 1 )0p m= −  denote the supplier’s maximum revenue per unit.  Now let  1, Ap  

denote the revenue per unit for inventory at the supplier with a remaining retail shelf life of A 

days.  By definition, we assume that 1, 1Mp p= .  Then,  

1, 1 1 1A
Ap p p
M

δ ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

, 

where 0 1δ≤ ≤  is a pricing constant that conceptually represents sensitivity to freshness. 

 With regard to ensuring a minimum level of product freshness for the retailer, we explore 

the case in which the supplier is restricted from shipping product with less than  days of 

remaining lifetime.  We define  as the minimum lifetime in which the expected profit from a 

minA

minA
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replenishment of Q units is strictly positive.  Now, let ( )Aφ ⋅  denote the A-fold convolution of 

demand and let ( ) ( )1φ φ⋅ ≡ ⋅ .  For 2A ≥  we have ( ) ( ) ( )1A A
x y

x y xφ φ −+ = yφ∑∑ .  Then 

( ) ( ) ( ) ( ) ( )min 1, 0 0 1,
0

min : min , 0
2A A

D

Q Q D
A A p Q D h A p p Q D Dφ

+∞
+

=

⎛ ⎞⎡ ⎤⎛ ⎞− −⎜ ⎟⎢ ⎥= − − − + −⎜ ⎟
⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

∑ A > .  (8) 

 On the right side of (8), A is conditioned on the expected cost of product outdating, the 

approximate expected holding cost, and expected profit contribution.  An immediate 

consequence of the minimum freshness constraint is that inventory may now expire at the 

supplier.  Assuming the next period marks the β  period from the last time the retailer ordered, if 

the supplier places a replenishment order this period it faces a probability of the product 

outdating before the next retailer’s order of min(P D M A )β≥ − + . When it becomes obvious the 

supplier’s inventory will expire the next period, the supplier places a replenishment order so as to 

avoid the penalty b.  We assume the time between orders is small enough the supplier never 

incurs an outdating cost for this second replenishment.   

 Accommodating both minimum product freshness and price dependent freshness for the 

retailer’s replenishment decision in the NIS and DIS cases requires a trivial modification to the 

formulations expressed in (1) and (4) by replacing the term representing the retailer’s purchase 

cost: i.e., replace ( )01q m− −  with 1, Aqp− .  The supplier’s policies, however, are fundamentally 

different and considerably more complex.  Details are provided in Appendix B.  For the CC case, 

the policies are unchanged as the supplier’s price is meaningless with centralized control. 

 With our changed assumptions, we explore the VOI and the VCC in a numerical study of 

576 experiments that comprises a factorial design of the following parameters: 

( )0.0, 0.1, 0.2, 0.4δ ∈   ( )6, 7, ...,11Q∈   ( )0.45, 0.65C∈  
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( )0 0.4, 0.6m ∈    ( )1 0.4, 0.6m ∈    ( )0.1, 0.2, 0.3b∈  

The remaining parameters are fixed across experiments where M = 5, 6μ = , and the unit 

holding costs  and  are 40% of the purchase cost measured on an annual basis.   0h 1h

 The main results from the study indicate that 1) the VOI and the VCC decrease with 

respect to δ  and 2) in the DIS case, the supplier’s share of the total improvement in supply chain 

profit increases with respect to δ .  Sensitivity with respect to the remaining parameters is the 

same as in the fixed supplier price case.   In Table 5.1 we report the average VOI and VCC for 

each fixed level of δ . 

 Supplier Price Sensitivity (δ ) 
 VOI VCC 
Percentile 0.0 0.1 0.2 0.4 0.0 0.1 0.2 0.4 

0.00 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.1% 0.1% 
0.25 0.2% 0.2% 0.0% 0.0% 0.5% 0.5% 0.6% 0.6% 
0.50 0.7% 0.6% 0.1% 0.0% 0.9% 1.0% 1.1% 1.2% 
0.75 1.6% 1.3% 0.9% 0.1% 1.8% 1.8% 1.9% 2.2% 
1.00 9.8% 5.9% 3.8% 1.2% 10.6% 7.0% 5.8% 4.5% 

Table 5.1: VOI and VCC at percentiles for each value of δ  

 As shown in Table 5.1, both the range and median values of the VOI and the VCC 

decrease as δ  increases.  Overall, the VOI and the VCC are much smaller than in the fixed 

supplier price case, with averages across all experiments of 0.9% and 1.7%, respectively.  Only 

in the experiments with large batch sizes, ( )10,11Q∈ , and small freshness sensitivity, 0.1δ ≤ , 

do we find instances of any substantial value ( ).   5%≥

 As δ  increases, the supplier is increasingly price motivated to sell the freshest product 

possible in the NIS Case.  The prospect of outdating at the supplier also contributes to a fresher 

product for sale.   Hence, while we find, on average, there is over a 10% improvement in the 

supplier’s product freshness for 0.0δ =  in the DIS case, this measure drops to 1.2% for 0.4δ = .   
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As for supplier outdating, we only find measurable levels for ( )10,11Q∈ .  At this batch size 

relative to mean demand, the retailer requires a minimum lifetime of two days and the retailer’s 

order interval can exceed the allowable product lifetime available for sale at the supplier.  For 

these instances, the average level of outdating is 2.2% of the average quantity purchased per 

period with a maximum of 8.4%.  This compares with an average level of outdating of 3.4% for 

the retailer and a maximum of 8.5%.   

 The freshness dependent pricing at the supplier also affects the share of value captured by 

the retailer and the supplier in the DIS Case.  As  δ  increases, the supplier’s share increases, 

albeit of a decreasing total.  In Table 5.2 we report the average share of total profit for the retailer 

and supplier at fixed levels of δ . 

Supplier Price Sensitivity (δ ) 0.0 0.1 0.2 0.4 
% Supplier -16.7% 55.5% 60.2% 91.0% 
% Retailer 116.7% 44.5% 39.8% 9.0% 

Table 5.2: % Share of value in the DIS Case for each value of δ  

 Note in Table 5.2 that values exceeding 100% represent cases where one firm captures all 

of the value while the other firm is harmed.  Hence we see that for 0.0δ =  the supplier is on 

average worse off with information sharing (matching the results from §4), but as δ  increases, 

the supplier gains an increasing portion of the total value; for 0.4δ =  the supplier gains more 

than 91% of the total value.  This arises because there is little more that the supplier can do with 

information to increase product freshness (1.2% on average) and hence the only benefit remains 

with the supplier’s ability to reduce its own penalty and holding costs, which are a very small 

portion of total costs – hence the lower VOI for large δ .   
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5.2 Assessing the Optimal Order Quantity 

So far in our analysis, we assume the batch size Q is exogenously determined.  While our 

model is explicitly designed to explore the VOI and the VCC, we can also use it to find the 

optimal Q by searching for the largest total supply chain profit over the range of Q for which it is 

viable to stock and sell the product.  We surmise that total profit is concave with respect to Q.  

Consider Qmin and Qmax which represents minimum and maximum values for Q in which the 

product is market viable.  Any value less than Qmin poses an unacceptable level of service for the 

retailer and any value greater than Qmax poses an unacceptable level of product outdating.  As Q 

increases between Qmin and Qmax, the service level increases and so does product outdating.  

Hence, there is an explicit tradeoff between increasing revenue and increasing outdating cost.   

 We explore this tradeoff using the experiments from §5.1 by evaluating the total supply 

chain profit in each case for a fixed set of parameter values as Q changes from 6 to 11. In all 

comparisons, total profit is indeed concave with respect to Q.  We illustrate this general 

relationship for each supply chain structure in Figure 5.1, by taking the average of total profit 

across all experiments for each value of Q.  Over the range of Q studied, the maximum 

difference in total supply chain profit by choosing a non-optimal value of Q is 10.2%, the 

average is 3.1% and the minimum is 2.2%.   Figure 5.1 also indicates that the optimal value of Q 

increases with information and centralized control.  In the DIS Case, we find that in 13 sets of 

comparisons (13.3%), the optimal value of Q increases relative to the NIS Case.  For the CC 

Case, in 60 sets of comparisons (61.2%), the optimal value increases relative to the NIS Case.   
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Figure 5.1: Average Total Profit at each value of Q 
 

If we examine the VOI and the VCC in cases where the optimal value of Q is chosen for 

each supply chain structure (NIS, DIS, CC), then both the VOI and the VCC are minimal.  For 

the DIS Case, the VOI has an average of 0.2% and a maximum of 1.0%.  For the CC Case, the 

VCC has an average of 0.6% and a maximum of 1.8%.  Thus, information sharing and 

centralized control are less valuable if a supply chain can choose the optimal batch size.   

6. Conclusion 

We separately study the benefits of information sharing and centralized control in a two-

echelon, serial supply chain providing a perishable product.  Our policies and parameter values 

are motivated by slow moving perishables in the grocery industry, a management problem that 

has grown in tandem with increasing product variety in the industry.  We evaluate two common 

prescriptions from the literature to improve inventory performance: sharing information and 

centralized control. We do so by modeling each scenario; providing exact analysis of a two-stage 

perishable system with lifetimes more than one period at the retail level.  Specifically, our 

formulations enable us to track the age of product as it moves between echelons, a key modeling 

contribution to the literature.   
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Through a numerical study, our results show that the VOI for perishable items can be 

significant where even small improvements have a large impact on the bottom line.  As opposed 

to studies that address the VOI for non-perishable items, the VOI for perishables is derived by 

the supplier’s ability to provide a fresher product.  Indeed, for non perishables our results show 

the VOI is trivial and quickly drops off for lifetimes greater than five days.  The benefits of 

information sharing, however, are not shared equally between the retailer and the supplier.  In a 

decentralized control supply chain, the retailer receives the larger average benefit and, in many 

cases, the supplier can be harmed.  We show through a model extension, however, if the 

supplier’s revenue is freshness dependent, the supplier gains a more equitable share, although the 

VOI in these cases is considerably smaller.   

On average, the VOI obtains approximately 70% of the VCC, thus information sharing 

alone garners the majority of the benefit of centralized control.  In an industry with high levels of 

competition, significant legacy relationships, and a great deal of mistrust between supply chain 

partners, this may be significant for retailers who remain reluctant to give up decision-making 

control of their inventory.  We find supply chains benefit the most from information sharing or 

centralized control when product lifetimes are short, batch sizes are large, demand uncertainty is 

high, and when the penalty for mismatches in supply and demand are large.    

In another extension, our results also indicate that case size optimization can achieve the 

same level of benefits as information sharing and centralized control.  Given the relative costs of 

these initiatives with the costs of changing case sizes, supply chains may find it more beneficial 

to optimize case size and avoid the privacy issues of sharing information and control issues with 

centralized decision-making (Småros et al. 2004).  Regardless, our results make clear that with 
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current industry case sizes, local optimization (packaging and handling) can significantly 

undermine total system efficiency. 

There are a number of important issues still to be addressed.  As our numerical test show, 

an increase in the total supply chain profit is not always Pareto improving for both members.    

While we look at the VOI and VCC, we do not propose contracts that provide firms with the 

incentive to share/use the information or to act in a centralized manner. As another pursuit, we 

find few studies that provide a direct comparison between the relative efficacy of information 

sharing and centralized control, an important issue for industries where legacy relationships and 

high levels of competition provide barriers to implementation. Other areas for future research 

include the modeling of distribution supply chains, longer lead-times, different issuing policies, 

and capacity restrictions on the supplier. 
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Appendix A 
Retailer Order Probabilities in the NIS Case 

 
Here, we characterize the distribution ( )Dψ β  introduced in §3.1.2.  Without information 

sharing, the supplier only knows the batch size Q and the history of the number of periods since 

the retailer’s last order β .  We follow the procedure outlined in Bai et al. (2005) to show how 

this information is used to determine the retailer’s order distribution.  

Let Xi be a random variable representing the usage of the product (sales and outdating) at 

the retailer on day i for i = 1, …, M.  The Xi s are independent with the same mean and 

variance, but they may come from different distributions.  Assuming the retailer uses a reorder 

point inventory control policy (a reasonable assumption in this industry), once the retailer’s 

approximate inventory position Ii is below the reorder point r, then an order quantity of size Q 

will be ordered at time ti.  Thus, during the time interval [ti-1, ti) with length = tiD i - ti-1, the 

relationship between accumulated usage and the retailer’s inventory position can be expressed as 

1
1

iD

i i
j

jI I Q X−
=

= + −∑ .  Then the accumulated usage during time interval  is iD

1
1

iD

j i
j

iX I Q−
=

= + −∑ I

n

≤

.  Therefore, an interval length  can be defined by the minimal value of n 

for which the nth accumulated usage is greater than Q, that is, 

D

1 2( ) 1 min{ : }nD N Q n S X X X Q= + ≡ = + + ⋅⋅⋅ + > ,     (A.1) 

where .  1 2( ) max{ : }n nN Q n S X X X Q≡ = + + ⋅⋅⋅+

The following lemma from Feller (1949) provides the reasoning basis of the first two moments 

of the demand distribution for deriving the estimates. 

LEMMA. If the random variables  have finite mean E[1 2, ,...X X ]iX μ= and variance 

35 



2Var[ ]iX σ= , and  is defined by (A.1), then D E[ ]iX  and VAR[ ]iX  are given by: 

E[ ] (1)   QD o
μ

= +  and    
2

3Var[ ] (1)   as QD o Qσ
μ

= + →∞    respectively.   

The next theorem provides the asymptotic distribution of .  Its proof is a trivial extension to 

Theorem 3.3.5 in Ross (1996). 

D

THEOREM. Under the assumptions of the Lemma,  has the asymptotic normal distribution 

with mean 

D

/Q μ  and variance 2 3/Qσ μ : 

2 3N( / , / )  as  D Q Q Qμ σ μ→ →∞ . 

According to Theorem 2.7.1 of Lehmann (1990), the theorem still holds even when the daily 

usages are not identically distributed, but are independent with finite third moments.  While an 

asymptotic distribution may cause concern for small values of Q, our simulation studies show it 

provides good estimates for the distribution parameters over the values of Q used in this paper.  

Thus, we let ( )Dψ β  represent the cdf of D  with a mean of /Q μ  and a variance of 2 3/Qσ μ .   
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Appendix B 
Supplier’s Policies with Model Extensions 

 

 In §5.1, we introduce two model extensions, namely freshness dependent pricing for the 

supplier and a minimum level of guaranteed product freshness for the retailer that together 

fundamentally change the supplier’s replenishment problem for the NIS and DIS cases.  Here, 

we characterize these policies. 

NIS Case 

 The supplier’s objective is to maximize profit over the time until the next retailer’s order.  

As in our base model, the maximum time between successive retailer orders is M days.  Let 

( )D βΩ  denote the probability of the retailer placing a replenishment orderβ  days after the last 

order, (1, 2, ..., )Mβ ∈ .    The supplier’s decision is to choose a value for α  so that expected 

profit is maximized, as expressed by:  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
min

1, 1

1, 1 1 1 min
1

1, 2 1 1 min

max 1 , 1

2 1 , 1

M D
M

M D

M A D

Q p c b

Q p c h M A

Q p c h M A

β αα β

β α

β α β

β α β α β β α

β α β α β β α

− − +
=

− + − +

⎛ ⎞⎧⎡ ⎤− − Ω ≥⎣ ⎦⎜ ⎟⎪
⎪⎜ ⎟⎡ ⎤− − − − Ω < − + + ≥⎨⎜ ⎟⎣ ⎦
⎪⎜ ⎟⎡ ⎤⎪ − − − − Ω < − + + <⎜ ⎟⎣ ⎦⎩⎝ ⎠

∑ . (B.1)

 The expectation of the suppliers profit (B.1) is taken over all probabilities for the retailer 

ordering within the next M days and takes into consideration three conditions: 1) α β≥ , the case 

when the retailer orders prior to the supplier receiving replenishment so that the retailer’s 

replenishment is satisfied through expediting,  2) min and 1M Aα β β α< − + + ≥ , the case where 

the supplier holds inventory at the time it receives a retailer replenishment order and that no 

inventory at the supplier has outdated in the previous 1β −  days.  In this case, the supplier 

obtains a price per unit of 1, 1Mp β α− − +  and incurs holding cost for 1β α− −  days, and   
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3) min and 1M Aα β β α< − + + < , the case when the retailer orders after product has outdated at 

the supplier.  Note that in this case, the supplier replenishes two times between successive 

retailer orders. 

 It remains to determine ( )D βΩ .  Unlike the base model, a complication arises because 

the supplier’s policy may affect the retailer’s order probabilities since the purchase cost to the 

retailer is dependent on product freshness at the supplier.  To partially mitigate this problem, we 

use the following solution procedure. 1) Determine ( )D βΩ  in the same manner as the 

distribution ( )Dψ β  expressed in Appendix A.  2) Solve for the supplier’s optimal policy. 3) 

Solve for the retailer’s optimal policy.  4) Resolve for the supplier’s optimal policy using the 

exact order probabilities that result from the analysis of the retailer’s steady state behavior 

arising from step 3.  5) Resolve for the retailer’s optimal policy using the supplier’s updated 

policy.  Note that this procedure does not guarantee convergence.  That is, the order probabilities 

that arise from step 5) may be different from step 3) and therefore the supplier’s optimal policy 

may be different than what was solved for in step 4.    Note that resolving over multiple iterations 

still does not guarantee convergence.  

 To assess the impact this may have on our analysis, we took the 576 experiments that we 

evaluate in §5.1 and compared the solutions from the first and second iterations.  We found that 

in 18% of the experiments, the policies demonstrated differences, but that the impact on expected 

profit for either facility was less than 5%.  From these comparisons, we find our solution 

procedure is suitable for the purposes of our analysis.  
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DIS Case 

In this case, the supplier’s optimal policy is unknown, but state dependent on the retailer.  

We formulate the problem as a MDP with the objective to maximize average expected profit per 

period.  The extremal equations are 
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∑

∑
 .

 As in §3.2.2, the retailer and supplier replenishment decisions are inter-related and 

decision–making is decentralized.  Hence we solve ( ),f i A  for the retailer and ( ),g i A

*q *

 for the 

supplier simultaneously and use the same solution procedure for determining  and λ  as 

expressed in §3.2.2 for the base model. 



 
Appendix C 

Detailed Sensitivity Analysis 
 
 

Performance Measures in the DIS Case Relative to the NIS Case* 
Retailer 

 
Parameter Value VOI VCC Service Outdating 

Order 
Quantity

Order 
Interval Freshness

Supplier 
Freshness 

0.5 2.7% 3.3% 1.7% -34.1% -0.8% 0.9% 16.5% 20.2% 
0.6 2.8% 3.7% 1.9% -18.4% -0.2% 0.4% 14.8% 19.0% Coefficient of 

Variation 
0.7 7.0% 8.9% 6.1% -4.6% 4.2% -3.6% 14.4% 21.5% 

0.05 4.6% 5.4% 3.3% -37.7% 0.3% -0.1% 19.2% 23.8% 
0.10 4.2% 5.4% 3.2% -21.8% 0.9% -0.6% 15.8% 20.6% 
0.15 4.0% 5.3% 3.2% -11.1% 1.4% -1.1% 13.7% 18.9% 

Expediting Cost 

0.20 3.9% 5.1% 3.2% -5.4% 1.7% -1.4% 12.4% 17.7% 
5 5.8% 8.2% 4.2% -15.4% 0.8% -0.4% 18.8% 29.3% 
6 4.2% 4.9% 3.3% -20.3% 1.0% -0.7% 16.9% 19.4% Product Lifetime 
7 2.4% 2.7% 2.2% -21.4% 1.4% -1.3% 10.0% 12.1% 

0.4 4.5% 5.7% 3.3% -18.8% 1.1% -0.8% 15.3% 20.3% 
0.5 4.2% 5.3% 3.3% -18.9% 1.1% -0.8% 15.3% 20.3% Supplier Margin 
0.6 3.8% 4.9% 3.1% -19.4% 1.0% -0.7% 15.3% 20.2% 
0.4 5.0% 6.5% 3.6% -18.4% 1.2% -0.9% 17.4% 21.6% 
0.5 4.0% 5.2% 3.2% -18.9% 1.2% -0.9% 14.6% 19.9% Retailer Margin 
0.6 3.4% 4.2% 2.8% -19.7% 0.8% -0.5% 13.8% 19.2% 
8 2.1% 3.3% 2.1% -3.1% 2.1% -1.8% 8.5% 10.6% 
9 4.8% 6.0% 3.6% -21.2% 1.0% -0.6% 18.8% 21.3% Batch Size 
10 5.6% 6.5% 3.9% -32.8% 0.1% 0.1% 18.5% 28.9% 

* Performance measures in the DIS Case are calculated as the % change of the measure in the NIS Case.  All measures are per period 
averages, computed from steady state behavior of the MDP.  Freshness is measured as the average remaining lifetime at the point of sale. 
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