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ABSTRACT 

MODEL STUDIES OF LOAD DISTRIBUTION 

WITHIN GROUPS OF FRICTION PILES 

IN A COHESIVE SOIL 

(89 pages) 

Lyle Lawrence Wilson 

Directed by Professor George F. Sowers 

The purpose of this investigation was to farther the develop

ment of a rational approach to the design of friction pile foundations • 

This objective was accomplished by measuring the distribution of load 

that occurred within groups of model friction piles in a cohesive soil. 

Load tests were conducted on a single pile and on groups of 

nine piles. SR-lj. electric strain gages, mounted inside of the tub

ular model piles, were used to measure the distributions of load. 

The results of the tests show that the bearing capacity of a 

group became greater as the pile spacings increased* The greatest 

variation in the group bearing capacities occurred between the pile 

spacings of one and one-half and two and one-half diameters. 

The group test with pile spacings of one and one-half diameters 

performed with the soil and the piles acting entirely as a unit. At 

pile spacings of two and two and one-half diameters, the groups be

haved in a manner that was a combination of unit action and individual 

pile action. When the spacings were three and one-half diameters or 

more, the action of the piles within the group was similar to that of 

a single pile. 
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It was found that a rigid cap did not distribute load to the 

piles in equal amounts, but that piles on the edge of the group re

ceived more load than did the center pile* At close spacings, the 

test results showed that adjacent piles interfered with one another's 

ability to develop adhesion along their surfaces. 

A plastic redistribution of stress within the soil was observed. 

When the soil reached a maximum stress at any one point, it did not 

immediately fail* Instead the stress became constant at that point* 

Additional increases in load were then distributed to other locations, 

within the soil, that were not as highly stressed. 

It is hoped that tests of this nature will be continued. These 

tests should be extended to include variations in the soil properties, 

number of piles, length of piles, and the shape of the group* An 

accumulation of data of this type will be necessary before a compre

hensive theory for the behavior of friction piles in a cohesive soil 

can be developed* 
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CHAPTER I 

INTRODUCTION 

The Problem,—It is often necessary to place structures with heavy-

foundation loads on deep strata of soft soils* At these locations it 

is usually not economical and sometimes not physically possible to 

place the foundations on firm materials* Therefore, friction piles, 

embedded in the soft material, may-be utilized to carry the loads of 

the structure» These piles derive their support from skin friction 

along their full length which transmits load to the surrounding soil* 

The design of the friction pile group is one of the least 

rational and most empirical operations in foundation engineering, 

Numerous failures have proven there is great need for an accurate 

method of determining load carrying capacity of groups of piles that 

depend mainly on skin friction for support. Improvements in the pre

sent methods of design have been restricted by lack of knowledge and 

test data, 

A major cause of pile foundation failures in the past has been 

the application of single pile, load test results to the design of a 

pile group. It has been known for sometime that an average pile load 

from a group of friction piles does not have the same carrying capacity 

as that of a single pile* It is also apparent that the spacing of 

friction piles affects the group carrying capacity. The reason for the 

lack of information concerning these actions is that it is extremely 
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expensive to load-test groups of piles to failure. Furthermore, it is 

difficult to construct a model pile foundation test that will simulate 

actual conditions, 

The behavior of friction pile groups is a complex problem, in

volving the distribution of load from the cap to the piles, and the 

behavior of the pile shafts. It is commonly assumed that in a clay 

soil exterior piles of a group carry considerably more load than in

terior piles if all are connected by a rigid cap. That adjacent, 

closely spaced piles in a group interrupt one another's development of 

skin friction also becomes apparent in determining group load carrying 

capacity. Somewhere in the interaction of these variables undoubtedly 

lies the reason for the behavior of a particular group of friction 

piles under load. 

A final factor, and an important one in the design of friction 

pile foundations, is the requirement for adequate information con

cerning the characteristics of the soil in which the piles will be 

placed. Reliable soil data are absolutely necessary, since they will 

influence the effectiveness of the analysis regardless of the design 

approach used. 

Brief History.-^Evidence exists that pile foundations have been in use 

for approximately 15,000 years. Methods of design, however, are still 

based mostly on experience and blind faith. Considerable progress has 

been made in the past few years, but reliable information is still 

lacking• The verification of a pile foundation analysis is much more 

difficult than verifying the action of other component parts of a 

structure. 
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Very little data have been recorded and published concerning 

the performance of actual friction pile foundations. Load testing of 

a single pile to failure is fairly common, but the useful information 

obtained as far as group design is concerned, is quite limited* There 

has been some load testing of both model and full size friction pile 

groups (l) (2). Although this has added mostly to empirical methods 

of group design, it has also shown some of the danger areas in the use 

of friction pile foundations* 

In recent years there has been interest shown in the ways a 

pile transmits its load into the surrounding soil by use of electric 

strain gages and other forms of instrumentation* Most of these tests 

have been conducted on isolated single piles* This is a step in the 

right direction for establishing a rational analysis of the carrying 

capacity of friction piles$ however, the tests must be extended to 

the critical case, which is load distribution within a pile group* 

Purpose of Research,--»This work attempts to further the development 

of a theory of friction pile behavior. A simulated, sensitive clay 

soil and model piles with strain gages mounted on the inside were 

utilized in accomplishing the objective. Measurements were made to 

determine the distribution of load to the pile heads and the transfer 

of load from the pile shafts to the soil* By varying the pile spac-

ings within a group of nine piles, it was possible to show the effect 

of these load distributions on the bearing capacity of the group* It 

is hoped also that these tests will help to promote further investi

gation in this direction* 
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CHAPTER II 

REVIEW OF THEORY AND LITERATURE 

The effect of grouping on the bearing capacity of friction 

piles appears to be the major complication in the use of pile founda

tions. Both experience and tests have shown that the load carrying 

capacity of a group is less than the number of piles in the group 

multiplied by the load capacity of a single isolated pile. This re

duction seems to depend on the size and shape of the group, and the 

length and spacing of the piles. Experience has also indicated that 

the spacing of friction piles has by far the greatest effect on group 

load capacity. The theory and literature that surrounds the subject 

is quite limited. However, a brief review of it follows• 

The load carrying capacity of a pile can be attributed partly 

to skin friction along the pile!s sides, and partly to the resistance 

of the soil directly beneath the point. The equation representing 

the ultimate bearing capacity may then be written thus? 

p t = p f + p
P 

where P » total bearing capacity 
"t 

P« • portion due to skin friction 

P - portion due to point resistance 

In the case of soft clays, the point resistance is usually negligible 

compared to the skin friction. 
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Friction pile groups may fail in two distinctly different 

manners. A group may fail as a unit by breaking into the ground, or 

it may fail by individual pile action when the load per pile exceeds 

its safe carrying capacity* When the piles and the confined mass of 

soil sink as a unit, the ultimate bearing capacity of the group may 

be considered analogous to that of a deep foundation such as a pier 

or caisson. This capacity consists of the shearing resistance of the 

soil at the periphery of the group between the surface and the em

bedded depth, and the bearing capacity of the base of the group* The 

load capacity of a group that fails by individual pile action is 

dependent only upon the development of skin friction along the sides 

of the piles* It seems logical that at certain spacings the load 

distribution action within a group will overlap, resulting in re

duced carrying capacity. 

According to Solomon (3) the stress around a pile in a homo

geneous soil increases quickly from zero at the surface to a fairly 

constant value, until sufficient resistance has occurred in an upper 

section of the pile to account for the applied load* With successive 

increments of loading, this process continues doen the pile shaft 

until load reaches the point. 

Some attempts have been made to utilize the classic Boussinesq 

equations in predicting the bearing capacity of friction pile groups. 

Masters (U) proposed a method for predicting group failure loads 

utilizing this approach. Its application checked closely with the re

sults of tests he conducted. The method consisted of computing the 
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average shear values on the soil around each pile$ and then calculating 

their effects on each of the other piles by integrating Boussinesq8 s 

point load formulas. He assumed that all piles within a group re

ceived equal amounts of load from the pile cap* 

Many soil mechanics experts feel that any resemblance between 

the actual failure load of a group of friction piles and that pre

dicted by an analysis based on the Boussinesq equations is accidental» 

The fundamental assumption of the Boussinesq equations is that the load 

is applied to a plane boundary of a semi^infinitep elastic solid5 and 

therefore a line type load beneath the furface would not apply* 

Furthermore^ the presence of neighboring piles within a group must 

interrupt load transfers from the piles to the soil* In addition^ the 

driving of piles will certainly 9 to some extent̂ , destroy elastic con

tinuity of the soilo 

Mindlin (5>) solved the three~dimensional elasticity equations 

for the case of a concentrated force acting in the interior of a semi-

infinite2 elastic solide The Mindlin equations for stresses and dis

placements may be extended̂ , by integration^ to the case of the line 

distribution of a force that exists along the surface of a friction 

pile as long as elasticity is assumedo However^ Mindlin (6) states that 

the integral equation for determining the shear distribution along a 

pile is difficult to handle<» It must also be kept in mind that the 

assumption of elasticity is debatable© 

The application of efficiency equations or factors is a method 

often used for reducing the load carrying capacity of friction pile 

groups. This approach provides an efficiency figure in percentage that 
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is multiplied by the load capacity of an isolated single pile* The 

result is supposedly the average load carrying capacity of a pile 

within a group* These formulas are completely empirical and apply 

only to specific experience* 

One such approach of accounting for the grouping of piles is 

termed the Converse-Labarre Method (7), and is expressed in terms of 

efficiency as follows: 

Efficiency - 1 - 0 (n - l)m + (m - l)n 

L 9 mn J 
where 

m • number of rows 
n - number of piles in a row 

0 • d/s, in which 0 is numerically equal to the 

angle whose tangent is d/s, expressed in degrees 

s - spacing center to center of piles 

d » pile diameter 

This formula has appeared in the Uniform Building Code of the Pacific 

Coast Building Officials Conference and in the specifications of the 

American Association of State Highway Officials* 

Another way of reducing the load carrying value for a pile 

within a group is known as the Seiler and Keeney Method (8). This 

method consists of adjusting the Converse-Labarre efficiency curves 

to fall within the range of the Master!s values for smaller groups* 

The formula is written ast 

Efficiency [1 - 1/s m * n - 2~| 0*3 

7(s2 - 1) x m + n - lj + m + n 
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Notation is the same as that for the Converse-Labarre formula. 

Mr. Feld (°) uses a rule of thumb method for reducing pile 

group capacity which is based on his. experience. It consists of re

ducing the load value of each pile In a group by one-sixteenth due to 

the effect of the nearest pile in each diagonal or straight row of 

which the pile in question is a member, 

Most building codes specify a minimum spacing in the driving 

of piles. No explanation for these specifications is available; how

ever, it appears that no theoretical considerations are behind them, 

As mentioned previously, literature and recorded data con

cerning pile foundation behavior are very scarce. One of the most 

worthwhile contributions to the field has been made by Chellis (10). 

In his text, Pile Foundations, appears a complete compilation of 

today's knowledge of the theory, design and practice in use of piles. 

In addition to being a valuable source of information, the book also 

contains a comprehensive bibliography. 

A paper by Morrison (11) discusses the several types of pile 

foundations and the fundamental principles regarding the. interaction 

between piles and soil. Miller (12) compiled data concerning the 

behavior of pile foundations in actual use, then correlated pile 

foundation action with soil conditions and attempted to show the 

many fallacies in present design methods. A discussion by Conner, 

Woodruff, Feld, Greulich, Paxson, Mindlin, Solomon and Cummings (13) 

of Masters1 paper on friction pile foundations is especially worthy 

of notice. These experts cover thoroughly the problems and dis-
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crepancies of existing design procedures, and they also indicate what 

must be done in the way of research to develop a rational approach in 

the design of friction piles, 

Hansen and Kheas (lU) reported results of tests in which they 

measured relative movements of various sections of pile shafts when 

the piles were under load. These tests were significant in that they 

were among the first in this country to attempt the measurement of 

load distribution from a pile to the soil. Swiger (13>) gave the re

sults of group load tests which indicated that a rigid pile cap does 

not evenly distribute load to the friction piles within a group. In 

view of this it should be noted that all of the methods for group 

design of friction piles previously discussed assumed that load dis

tribution to the pile heads was equal. 

The foregoing paragraphs present briefly the literature avail

able to the designer of friction pile foundations. It can readily be 

seen that a great deal of work remains to be done in this field. 



CHAPTER III 

EQUIPMENT AND INSTRUMENTATION 

The development of the SR-U strain gage in recent years has 

made the measurement of load distribution within a group of friction 

piles more possible. However, not many tests of this sort have been 

performed, since economical reasons usually prevent full scale group 

tests, and model piles have proven difficult to instrument. The 

entire scope of this investigation depended on the successful in

stallation of SR-lj. strain gages inside of tubular, model piles, for 

the measurement of load distributions• 

Three foot sections of extruded aluminum tubing, one and one-

quarter inches in diameter, with a wall thickness of thirty-five 

thousandths of an inch, were used in making the model piles. The 

tubing was machined down to a diameter of one and twenty-one hundredths 

of an inch. This was necessary in order that strain readings, due to 

small individual pile loads, would be of such magnitude that a reason

able degree of accuracy would be obtained. Two holes were drilled 

opposite one another near the top of the piles for bringing out the 

lead wires from the gages. 

It was found that with some simple equipment and considerable 

care it was possible to make satisfactory installations of these gages 

inside the aluminum tubes* The main item of equipment was a five foot 

aluminum rod, three-eighths of an inch in diameter. A two inch strip 
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of cork was glued on its surface about fourteen inches from one end, 

and a strip of masking tape with the adhesive surface out was then 

glued to the cork* 

The rod could easily be inserted through a model pile without 

damaging any of the gages already installed. The cork pad served as 

a base for applying pressure to the gage during the drying of the 

cement, and the masking tape held the gage in the correct position 

during initial stages of the installation. Wood blocking at each end 

of the rod kept the operation off the working surface. A small bag 

filled with sand and weighing about three pounds was used to apply 

pressure during the bonding of the cement. 

The installation of the gages was as follows; First, the in

terior surface of the piles at gage locations was prepared in accord

ance with the manufacturer's instructions. Different colored lead 

wires for identification of the gages were then soldered to the gage 

leads. Short sections of Neoprene tubing were slipped over these con

nections to prevent their contacting each other or the metal of the 

pile. The gage was next placed in position with its felt pad ad

hering to the adhesive surface of the cork, and a liberal amount of 

glue was applied to the contact surface. The pile was then slid over 

the gage to the desired location, and weighted with the sand bag. 

It was necessary to leave the pile in this position for twenty-

four hours to assure proper bonding of the gages to the pile. At the 

end of this time a slight upward pressure on the pile would break the 

contact between the felt pad and the masking tape. This operation 
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allowed the installation of only one gage per pile per day. 

In this manner a total of eight A-5, SR-li strain gages were in

stalled in each instrumented pile. Gage locations were at each end 

and at approximately the one-third points of the pile* At each location 

two gages were installed opposite each other so that bending effects in 

the pile could be eliminated. The tests consisted of nine pile groups, 

but it was necessary to instrument only three piles due to the symmetry 

of the groups* In addition, two dummy gages were installed in another 

pile, one for each channel of the strain indicator, to compensate for 

temperature effects on the strain readings. 

When all gages had been installed in a pile, the lead wires 

were brought out through the holes at the top of the pile. The area 

around these holes was covered with waterproof tape, and several coats 

of Petrosene wax were applied to prevent infiltration of moisture in

side the tube. The tubes were finally sealed against moisture by 

forcing tapered, rubber stoppers in each end. 

Figs. 1 and 2 show a typical set-up for installing the strain 

gages, and an interior view of a typically instrumented pile. 

A volt-ohm micro-ammeter was used to test for correct gage 

resistance, and for resistance to leakage from the gage to the metal 

underneath. These gages had one hundred-twenty ohms resistance each. 

In addition, they registered infinite resistance to leakage at all 

times during the test program. 

Strain readings were made with a Hathaway Type RS-20 portable 

strain indicator. Two separate channels were available on this in-
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strument, and readings were possible to one microinch per inch. In 

conjunction with the indicator, two Baldwin SR-U switching and balanc

ing -units, a six unit and a twenty unit, were utilized in order that 

readings could be made on all twenty-four gages in the three piles by 

simply switching from one to another• 

Leads from the strain gages were connected to the active side 

of the switching and balancing units • Each of the latter was con

nected to one of the channels on the strain indicator. One dummy 

gage served each switching and balancing unit since all compensating 

units were connected. 

The soil material, in which the pile groups were tested, con

sisted of commercial, dry bentonite mixed with water to a water con

tent of three hundred per cent. This provided a sensitive cohesive 

material that would jell to a reasonably stable condition in approxi

mately five days after being disturbed. The proper mixture for this 

particular reconsolidation ability was determined by Martin (16) 

through a series of tests in an earlier study at the Georgia Insti

tute of Technologyo A portion of the soil in the present investi

gation was also furnished from the work of Martin. The mixing of the 

soil was done by hand, since no mechanical mixer on the Georgia Tech 

campus could perform this task satisfactorily. 

The soil container was a piece of culvert pipe. Its size was 

three feet in diameter and four feet high. A steel plate welded to 

one end served as a bottom. A raised platform base was constructed 

for the container in order that it could be conveniently moved. 
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A steel loading frame, -which extended above the container, was 

attached to the base, and a lever system was used to load the pile 

groups. The lever was fashioned from one-half inch aluminum flat 

stock* It had a level ratio of four to one* Lead weights were used 

to apply load to the lever* An illustration of the container and 

loading apparatus appears in Fig* 3* 

The pile cap was cast of pottery plaster* It consisted of ten 

parts plaster to seven parts water and was reinforced with a wire 

mesh. 

A micrometer dial gage was used to measure the vertical de

flection of the group* A miniature plate load test device and a 

miniature vane shear device were used to determine the physical 

properties of the soil, and to keep a check on its consistency during 

the test program. 
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CHAPTER IV 

PROCEDURE 

Calibration*—When the installation of the strain gages in a pile had 

been completed, it was necessary to calibrate each pair individually, 

The pile was placed in the testing machine and the gage leads were 

connected to the strain indicating equipment. Loads, fifty per cent 

in excess of the maximum estimated pile loads, were applied and then 

removed. This cycle was repeated approximately ten times to allow 

the physical properties of the metal to become constant* After this 

was completed, strain readings were made for each gage at twenty 

pound load increments until a maximum of one hundred-forty pounds was 

reached, 

It was found that under identical loading conditions the gages 

would repeat themselves to within three micro inches per inch. This 

indicated good installation of the gages. A plot of average strain 

readings for a gage location against known load gave the expected 

straight line variations for gages one and two, three and four, and 

five and six. It was noticed that if the pile were rotated in the 

testing machine about its vertical axis, individual gage readings 

might vary from those observed in the former position of the pile. 

However, the average of the opposite gages always agreed closely. 

This illustrates the importance of bending effects in the loaded pile. 

Some difficulty was encountered in calibrating gages seven and 
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eight• Reasons for this were the unfavorable end conditions and the 

fact that these gages were located very close to the end of the pile. 

This situation was corrected by using a resilient loading head on a 

baH joint against this end of the pile. 

In order to increase the accuracy of all the calibration 

curves, many strain readings were taken with the pile rotated to 

various positions about its vertical axis. These readings were then 

averaged. The calibration curves for each pair of gages in each pile 

are shown by Figs. 7, 8, and 9. 

&t various times throughout the testing program the piles were 

again placed in the testing machine and the calibration of the gages 

was checked. In all instances the strain readings agreed closely with 

the original calibrations, indicating good stability characteristics. 

Before loading the pile groups it was necessary to determine 

the force exerted on the pile head by the weight of the lever system. 

A set of scales was used to measure this force, and it was found to be 

twenty-two pounds. No attempt was made to counter weight the lever 

apparatus in the loading of the pile groups. 

Tests.—Load tests were conducted on a single pile and variations of 

a nine pile group. The embedded length of the pile remained the same 

in all tests, and the only variable was the spacing of the piles witK-

in the groups. Pile spacing is defined as the distance in pile diame

ters from center to center of the piles. Spacings used in this in

vestigation were one and one-half diameters, two diameters, two and 

one-half diameters, three and one-half diameters and five diameters. 
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These particular spacings were chosen in an attempt to determine all 

significant load distribution actions that might occur within the 

group. 

The actual test procedure followed a general pattern. The 

piles were first placed in a template form to establish the correct 

spacing. The instrumented piles were placed adjacent to one another 

at corner, side and center positions. A form for pouring the cap 

was constructed around the pile heads, so that they would extend 

about an inch and one-half into the cap. The latter was then poured 

and allowed to set-up for about two hours. The pottery plaster pro

vided a rigid cap that held the piles firmly at their correct spac

ings when the forms were removed. 

Before placing the piles in the soil, a clear plastic lacquer 

was sprayed on their surfaces to prevent any corrosive action that 

might occur between the bentonite and the aluminum. The group was 

then forced into the soil to an embedded depth of twenty-five 

diameters, which was about thirty and one-half inches. The soil was 

allowed to reconsolidate for one week before the load tests were 

performed. 

Before the load tests were begun, all gages were checked for 

resistance to leakage. They were then connected to the balancing 

and switching units, which in turn were connected to the strain in

dicator. The gage bridges were balanced to zero, and the system was 

ready for making strain measurements. 

The loading apparatus was next placed in position, and a micro-
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meter dial gage was attached to measure the vertical deflection of the 

group* Loads were first applied in even increments to the model foun

dations, but were decreased in magnitude as the failure load was ap

proached. The lead weights which loaded the lever system were placed 

gently to avoid any dynamic load effects. 

Strain readings were made on each gage, at each load increment, 

until the failure load was reached. Accuracy checks of these read

ings were made throughout the test by summing up the strain gage load 

indications at the one and two gage location of each pile. This 

figure was then compared to the actual load on the model foundation. 

Failure load was the point at which the group deflected constantly. 

After the load test was completed, the piles were removed and 

wiped free of the soil material. The cap was easily broken loose 

from around the heads of the piles with chisel and hammer. Aluminum 

wool was then used to remove any corrosive effects of the bentonite, 

or rough spots on the pile surfaces. The piles were then again 

coated with the clear plastic lacquer, and were ready for the next 

test. 

A miniature vane shear test and a miniature plate load test 

were next run on the undisturbed soil in the container to determine 

its physical properties and consistency. The soil was then removed 

from the container to a depth about six inches below the embedded 

depth of the piles. It was carefully remixed and replaced to avoid 

the formation of air pockets. 

A poly-ethylene cover prevented moisture loss at all times ex

cept during the actual load testing* Fig. 3 shows an actual test in 

progress. 
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CHAPTER V 

DISCUSSION OF RESULTS 

General Comments 

Bearing capacities of friction pile groups have previously 

been studied, at Georgia Tech and correlations have been made between 

these capacities and various design methods presently in use (17)• 

Considerable variation between the actual and theoretical capacities 

have been found. It was not the primary intent of this study to 

make comparisons of this sort. The purpose of this work was to study 

the distribution of load in friction pile groups, and attempt to ob

tain an understanding of the manner in which the piles within groups 

carry their loads• 

To accomplish this, the distribution of load was determined 

along a single pile, and within groups of nine piles* This dis

cussion will consist of two parts: first, a report of the tests? and 

second, an interpretation of significant test results. 

Results of Tests 

Single Pile Load Test ».—-The first load test was conducted on "a 

single pile. The purpose was to establish a guide or control for the 

pile action in the group tests that were to follow. 

The failure load was seventy-nine pounds. Accuracy checks 

during the tests showed that the applied load agreed closely with the 

load registered by gages one and two, which were above the surface of 
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the soil. "When the pile was removed, it was noticed that no soil 

adhered to its surface. This indicates that failure did not occur 

by shearing of the soil adjacent to the pile's surface* 

The load distribution curves of Fig. 10 show the action of 

the soil in removing load from the pile shaft. The invert of the 

slope of these curves, which is the difference of load that occurs 

within an increment of length along the pile shaft divided by that 

length increment, represents the adhesion that is actually developed 

along the pile surface. Adhesion will hereafter be referred to as 

friction. A plot of these values showing relative frictions between 

the top, middle, and bottom sections of the pile appear in Fig. 11. 

It is noticed from these illustrations that friction along the sur

face of the pile is not constant, but becomes greater with increas

ing depth. A sharp increase is observed in the developed friction 

of the bottom section Just prior to failure. This indicates that 

failure would first commence at the tip of the pile. 

Group Load Test Number One.—The pile spacing of one and one-half 

diameters in this test was selected to assure a unit type action. 

This action, which occurs when the piles and the soil act as a solid 

unit, was observed to occur when the group was forced into place, as 

considerable bulging of the soil was noticed. It was observed again 

when the group failed, since the piles and the soil within the group 

behaved as a single large pile. The periphery of the soil shear was 

along the approximate center line of the exterior piles. This, of 

course, left a portion of the outer piles' surfaces failing by ad-
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hesion of the soil to the pile. An illustration of this "unit typen 

action appears in Fig. lw 

The total load on the group at failure was three hundred sixty-

four pounds. Fig. lU shows the amount of load that is distributed to 

the individual piles. The corner piles received approximately sixty-

eight per cent, the side pile received less than thirty per cent, and 

the center pile around three per cent. The load in the center pile 

appeared to increase slightly at group failure. 

The load distribution curves of Fig. 15 show the transfer of 

load from the piles to the soil. It is noticed that the pattern of 

these curves vary considerably. The corner pile shows a slight drop

off in load Just before the group failed. At this point the shape of 

the load distribution curve readjusted, and the friction values be

came more constant along the pile shaft. The dashed line in this 

illustration indicates that failure first started near the top of the 

corner pile. 

Fig. 16 shows relative frictions between the piles in the 

group. Fig. 17 shows the variation in friction along the pile shafts. 

The first curves cited show that greatest values of friction within 

the group occur around the corner pile, and the least occur around the 

center pile. The friction along the surface of the side pile is 

greatest in the top section and lowest in the middle section. ALong 

the center and corner pile, the greatest values of friction are in 

the bottom sections, and lowest values in the top sections. 
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Group Load Test Number Two •—This test was run at a pile spacing of 

two diameters. Bulging of the soil at the surface again occurred 

when the piles were placed; however, it was considerably less than 

in the previous test. A unit action occurred when the group failed, 

but it was not as pronounced as that of Group Number 1. Indications 

were that this particular group was in a transition zone of failure 

between unit action and individual pile action. The failure line of 

the soil was again along the center line of the outer piles. 

The bearing capacity of the group was five hundred and eight 

pounds. The amount of load distributed to each of the piles is seen 

in Fig. 18. It is noticed that the side piles carried from forty to 

forty-eight per cent of the nine pile total. With increasing total 

load, the corner piles decreased from fifty-seven to forty-four per 

cent of the total, and the center pile increased from two per cent 

to eight per cent. 

The transfer of load from the piles to the soil appears in 

Fig. 19. A small drop-off in load appeared in the side pile at the 

level of gages three and four as failure load approached. This con

dition remained local and did not extend up or down the pile. The 

corner pile first began to indicate failure at its tip. This action 

worked its way up the pile shaft. At the same time, the friction 

along the pile approached a constant. This illustration also shows a 

definite readjustment of load distributed to the heads of the corner 

and center piles. In latter increments of group loading, the corner 

pile reached a maximum constant load, and at the same time the center 
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pile began to pick up load in much larger increments. 

Figs, 20 and 21 illustrate relative frictions. These values 

are greatest in the corner piles, and smallest in the center pile, 

Along the individual piles surfaces, the friction is greatest in the 

bottom sections. It is lowest in the top sections for the side and 

corner piles. The least value of friction along the center pile 

occurs in its middle section, 

Group Load Test Number Three,—The spacing of the piles in this test 

was two and one-half diameters. The group failed by adhesion of the 

soil to the individual piles. The failure load consisted of five 

hundred forty-eight pounds, 

From Fig. 22 it is observed that at the start of the test the 

center pile received only three per cent of the load distributed by 

the cap to the piles* At this stage the corner pile took sixty-five 

per cent of this load. However, as the loading continued, the corner 

pile decreased in its percentage, while the center pile increased, 

At failure the load in the center pile was almost three-quarters of 

that in the corner pile. The side piles received approximately one-

third of the total group load during the entire test, 

A study of the load distribution curves of Fig, 23 indicates 

that failure of the group first started at the tips of the piles© 

This illustration indicates that, as in the previous tests, a redis

tribution of load took place within the group as failure load ap

proached. 

The relative friction curves of Fig, 2k show the corner piles 
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to generally have the largest friction values. Smallest frictions 

are seen to be in the center pile. Relative frictions along the pile 

shafts may be observed in Fig. 2£. These values are largest in the 

bottom sections in all three piles. The smallest value of friction 

along the center pile is in its top sections. The other two piles 

record their smallest friction values in their middle section. 

Group Load Test Number Four.—Files were spaced at three and one-half 

diameters for this test. As in group number three, failure occurred 

by individual pile action. 

The total load at failure was five hundred seventy-five pounds. 

The loading of this group was done in even eighty pound increments; 

therefore, no load distribution was measured at loads close to failure. 

However, the maximum load on the group was considered to be the full 

amount necessary to cause failure. This became apparent when it was 

almost necessary to apply an additional load to cause the group to 

fail. 

The loads delivered to the heads of the piles are illustrated 

in Fig. 26. The corner piles carried over fifty per cent of the total, 

and the center pile carried approximately six per cent. The side piles 

took about forty per cent of the total load. These percentages re

mained fairly constant during the entire test. 

The load distribution curves which appear in Fig. 27, have the 

same general shape as those of the single pile. Also, the relative 

frictions along the pile shafts varied as they did for the single pile, 

These frictions are shown by Fig. 29 to become greater as the depth 
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increases. Fig. 28 compares the friction values between the piles. 

Largest values occur in the corner piles, and smallest values occur 

in the center pile. 

Group Load Test Number Rive.—The spacing of the piles in this test 

was increased to five diameters© Failure occurred again "by individual 

pile actiono The failure load consisted of six hundred pounds. 

Fig. 30 shows the loads received by the side and corner piles 

during the test to be approximately equal. The center pile increased 

from six to nine per cent of the total load distributed to the piles. 

Just prior to failure, the loads in the pile heads appeared to be 

approaching equal amounts» 

The load distribution curves of Fig. 31 show failure com

mencing at the pile tips first. The curves then readjust, with suc

cessive load increments^, until load distribution along the piles' 

surfaces becomes more uniform. The corner pile again recorded a con

stant load. 

The friction values along the individual pile surfaces were 

greatest in their bottom sections. The least values occurred in the 

top sections. Fig. 33 shows these relative actions. The frictions 

between the piles in the group are related in Fig. 32. Generally 

these are greatest in the corner piles and least in the center pile 

as in all other group tests. 

Soil Tests.—Tests were conducted on the physical properties of the 

soil after each load test had been completed on the model pile foun

dations. The main purpose in doing this was to determine if the soil 
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properties remained constant during the entire test program* 

The shear strength of the soil, as determined by the vane 

shear tests, remained almost constant at 0,8 of a pound per square 

inch. Results of these tests are listed in Table 8* They cannot be 

directly applied to the behavior of the piles, since the latter 

failed by adhesion of the soil to their surfaces, rather than by 

shearing of the soil adjacent to their surfaces* 

The size of the miniature plate load test was one hundredth 

of a square foot. Bight pounds were required to produce failure in 

the first two tests, while only seven were required in the last four 

tests. The amount of deflection was also greater in the latter tests. 

This action was attributed to test procedure. The first two tests 

were conducted on a portion of the soil's surface that had not been 

disturbed for several weeks. The last four tests were run on soil 

that had been completely remolded about one week prior to each test. 

Results of the tests are listed in Table 7 and plotted in Fig. 36. 

Interpretation of Results 

The various illustrations, referred to in reporting the test 

results, were designed to describe the distributions of load that 

occurred. A set of curves for each load test show the load that is 

distributed to the heads of the instrumented piles. The load distri

bution curves show in pictorial style the transfer of loads from the 

pile shafts to the surrounding soil. Other sets of curves relate the 

frictions that are actually developed along the surfaces of the piles. 

The data upon which these illustrations are based may be found in the 

Tables in the Appendix. 
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The load tests are often referred to in this discussion as 

single pile, Group Number 1, Group Number 2, Group Number 3, Group 

Number h$ and Group Number f>. The group tests refer to pile spacings 

of one and one-half, two, two and one-half, three and one-half, and 

five diameters respectively. 

The load tests were conducted in the following order* (1) 

Single pile, (2) Group Number 1, (3) Group Number 3, (k) Group 

Number U, (f>) Group Number f>, and (6) Group Number 2. The decision 

to run a test at a pile spacing of two diameters, which was last in 

the order, was made after observing a curve relating group capacities 

to pile spacing. It was seen that a large variation existed in the 

bearing capacities of Groups 1 and 3. It was desired to determine 

the pile action in this critical area. 

The average pile efficiencies within the groups were determined 

and illustrated in Fig. 13* The results of the Single pile tests were 

the basis for these so called group efficiencies. It is noticed that 

the group efficiencies become greater as the spacings between the piles 

are increased. In these group tests they were fifty, seventy-six, 

seventy-nine, eighty-one, and eighty-three per cent respectively. 

Group Load Tests Number h and f> produced load distribution 

curves that closely resembled those of the single pile test. However, 

the average pile loads within the group did not reach the load capacity 

of the single pile test. The upward trend of the efficiency curve in 

Fig. 13 indicates that one hundred per cent efficiency may be reached 

at some greater pile spacing. 
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A factor in the test procedure may also have affected the 

group efficiencies• The soil was allowed to lie idle for approxi

mately four weeks, and was not disturbed until the Single Pile Test 

was run. Thereafter, it was remixed after each load test (which 

occurred on the average of once a week). This additional time for 

consolidation may have allowed the single pile to develop greater 

friction values than those developed in the subsequent group tests. 

The vane shear tests indicated a slight decrease in the shearing 

strength of the soil during the test program. However, when the load 

capacity for the Single Pile Test was reduced accordingly, only a 

small increase was noticed in the group efficiencies. 

A significant observation in these tests is that a rigid cap 

does not deliver load to the pile heads in equal amounts. The center 

pile received less load than the piles on the edge of the group. The 

corner pile generally received more load than the side piles except 

at group loads close to failure. 

An explanation of why an exterior pile in the group received 

more load than an interior pile, can be seen in Fig. 3>a. Consider a 

rigid spread footing resting on a clay soil. The settlement profile 

of an elastic type soil will assume a dish shape. The rigid footing, 

however, must settle uniformly. It follows, then, that load must be 

shifted from the center to the edges. Hence, contact pressure must be 

greater under the edges than in the center. This analysis may be com

pared to the pile group, since the piles rest in a clay soil and are 

connected by a rigid cap. 

Another line of reasoning may also explain why greater loads 
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were recorded in the corner piles. Part b of Fig. 3> shows a typical 

group of nine piles. The stresses in the soil around the piles would 

be symmetrical and may be represented by circles with the piles as 

their centers. It then becomes apparent that the corner pile has less 

interference in the development of friction along its surface. 

The distribution of load from the cap to the piles led to 

another important observation of the pile groups1 behavior. This was 

a plastic redistribution of load that appeared to occur within the 

soil when it became over stressed at any one point. This action was 

seen to happen several times during these tests, and will be described 

in the following paragraphs. 

Maximum stresses were first reached in the soil around the 

corner piles. In the groups with the smaller spacings, this condition 

occurred when the group load had reached about two-thirds its maximum 

value. In groups four and five, maximum stresses around the corner 

piles occurred just prior to group failure. 

It was expected beforehand that when the soil had reached its 

maximum stress around any one pile, failure of the group would take 

place immediately. This did not happen. The loads reached a maximum 

in the corner piles, and then became constant. When this condition 

developed, the center and corner piles began to pick up the entire 

increases in the group loads. This process continued until the loads 

in these piles approached that in the corner piles, at which time the 

group failed. Illustrations of this performance may be seen in both 

the load distribution curves, and in the relative friction curves. 
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The test results showed that Group Number 1, which had the 

smallest spacings, exhibited the least amount of plastic readjust

ment. Extensive interference between the load distribution curves 

appeared to be responsible for the pronounced unit action that oc

curred* Since this action resembled that of a large single pile or 

pier, the possibility of load redistribution in or around the group 

was very limited* Consequently, the bearing capacity of the group 

was very low* 

The behavior of the piles in Groups I* and f> resembled that of 

the single pile* Overlapping action of adjacent piles appeared small. 

This allowed the pile loads to be more nearly equal* Plastic redis

tribution of load that occurred was uniform throughout group loading. 

The adjacent piles of Groups 2 and 3 indicated definite inter

ference with one another's ability to transfer their loads to the 

soil* The soil within these groups, however, showed a pronounced 

ability to redistribute its load when it became overstressed around 

the corner piles* Load distribution curves of Figs* 19 and 23 

sharply define this action. It should be pointed out that the corner 

piles reached a maximum capacity in Groups 1, 2, and 3 at approxi

mately the same total group loads. It follows then, that if the 

plastic action had not occurred, the bearing capacities of groups two 

and three would have been much lower than they were* 

A second type of plastic action was also noticed in the tests. 

At certain times the soil along an individual pile shaft would become 

overstressed* This may have been due to the overlapping actions of 
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adjacent piles or to local conditions in the soil. Mien this happened 

the load in the pile at this point would be shifted up or down the 

pile shaft to a location where the soil was not so highly stressed. 

Dashed lines in the load distribution curves indicate this action in 

several instances* 

The curves of relative frictions show that these values are 

greatest in the bottom portions of the piles in almost all cases. The 

Single Pile, Group k9 and Group £ load tests show that friction values 

increased at greater depths along the pile shafts. An explanation for 

this behavior may be seen in the Mindlin analysis for a point load in 

the interior of a semi-infinite, elastic mass. Fig. 6 illustrates 

this situation. Mindlin1 s equation for the vertical displacement at 

any point (x, y, z) in this mass is as follows: 

,2 
¥ -

L*! 
{ 8(l-nr - (34m) , 

16TIG(1-U) 1^ 1^ 

(z-c) (3-liu) (z«c) - 2cz 6cz(z*c) 

T* 73 * TT 
2 _J V 

where P • point load 

G - modulus of rigidity 

u • Poisson?s ratio 

c,z,R-, and Jt> * distances shown in Fig. 6 

Let the Mindlin equation be applied to determine the vertical 

deflection in the soil near the surface of the pile. Point loads are 

applied successively at gage locations along the vertical axis of the 
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pile. When numerical values are substituted for the terms in the 

equation, it is found that for the same point load vertical displace

ment becomes less with increasing depth. 

Since the pile is rigid compared to the soil, all points along 

it must settle uniformly. Therefore, it would be necessary for the 

load applied to the soil to become larger with increasing depth. The 

Mindlin analysis and the results of these tests verify this action. 

The application of Mindlinfs analysis is not strictly correct 

for this situation, since the pile develops a line type load and not 

point loads. However, the deflection trends with respect to increas

ing depth would be the same for either case. 

The group settlements are compared by the load-settlement 

curves of Fig. 3£. They appeared to be elastic until loads near 

failure. The point at which the curves departed from the elastic 

pattern can be correlated with the point at which plastic redistri

bution of load began. These results also indicate that as the length-

width ratio of the pile groups decreased, the settlement of the groups 

decreased. 

Accuracy checks were often made during the load tests. The 

loads registered by gages one and two were summed up to see if they 

agreed with the load actually being applied. This procedure always 

produced agreement within five per cent. Considerable care was also 

taken in other aspects of the test procedures. 

Since the strain readings were small, it should be pointed out 

that chance for error does exist. A sudden surge of voltage in the 
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power source would cause the strain indicator to vary its readings. 

A small error of this type would of course cause an error in the 

indicated load distributions. Local conditions in the soil, such as 

air pockets, could also cause variations in the test results. 

For these reasons no rigorous mathematical analysis was at

tempted in describing the load distribution patterns. Much more 

data from tests of this type will be required before a more rigorous 

analysis could be justified. 
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CHAPTER VI 

CONCLUSIONS 

The following conclusions can be drawn from the results of 

these tests* It should be kept in mind that they apply only to the 

performance of a single pile and to nine pile groups in a sensitive 

clay soil. 

1* The bearing capacity of a pile group becomes greater as the 

spacing of the piles is increased. 

2. Critical pile spacing occurs between one and one-half diameters 

and two and one-half diameters. Group bearing capacities vary 

greatly between these spacings. 

3. The rigid pile cap does not distribute load to the pile heads in 

equal amounts. The corner pile receives the most load and the 

center pile the least. 

lu The pile groups transmit their loads to the soil in one of three 

ways: unit action, individual pile action, or a combination of 

these two. 

5. The friction per unit area that is developed along a single pile, 

or along the piles within a group that demonstrates individual 

pile action, is not uniform. It becomes greater as the depth 

increases. 

6. The frictions per unit area along the piles, in a group posses

sing a combination type action, may vary greatly. However, they 
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are always greatest at the tips of the piles. 

7. A plastic redistribution of load occurred within the groups in 

two different manners. This plastic action occurred between 

pile capacities within a group, and in the friction developed 

along the surface of an individual pile. 

8. Plastic redistribution of load was least in the group with the 

unit action. It was more noticeable in the groups with in

dividual pile action, and was very pronounced in the groups with 

the combination actions. 

9. Pile Groups 3, U, and £ appeared to fail when the individual 

pile loads approached equal amounts. 

10. Failure first started at the tips of the piles and then worked 

its way up the pile shafts with successive load increments. 

11. As pile spacing within a group was increased, its settlement, due 

to quick loading, decreased. 
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CHAPTER VII 

RECOMMENDATIONS 

In order to establish a rational design approach, it is recom

mended that studies of the load distribution within groups of friction 

piles be continued. Pile lengths should be considered as well as 

spacings. The studies should be extended to include groups with greater 

numbers of piles. Tests should also be conducted to compare the per

formance of pile groups of different shapes. The latter should con

sist of square, rectangular and circular groups, 

If aluminum tubes are used for model piles in future tests, 

they should have their surfaces roughened uniformly. This should be 

done to assure that failure occurs by the shearing of the soil adjacent 

to the pile surface, rather than by adhension to its surface. Some 

type of paint may be available that would accomplish this, and would not 

deteriorate when in contact with the soil mixture. 

It is suggested that a tool with expanding surfaces be developed 

to install strain gages in the interior of additional model piles. 

It is recommended that strain indicators used in future model 

tests be of the automatic, null balancing type that is unaffected by 

line voltage variations and changing tube characteristics. A time-axis 

strain recorder for determining loads in the piles at their failure 

would also be helpful. 



The installation of strain gages in full size piles that will 

actually become a part of a foundation should be encouraged. This 

would give designers valuable data of load distribution actions over 

a long period of time. 
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23 19 11 2 
33 25 Ik 3 
1|3 33 19 h 
53 la 23 k 
63 1*8 27 5 
73 % 32 5 

Table 1 

Single Pile Load Test 

# 
Pile Load Applied Average Gage Readings Pile Load at Gage Levels 

Increment Load 1&2 3&U 5&6 7&8 1&2 3&U 5&6 7&8 
(pounds) 

1 23 hi 30 2h h 
2 33 62 39 32 5 
3 U3 81 52 hZ 7 

2 k 53 100 65 5i 8 
5 63 119 76 61 9 
6 73 138 88 71 9 
7 77 Failure 

Table la 

Relative Friction (Adhesion) - Single Pile 

Pile Load Applied Friction (Lbs. per sq. in.) 
Increment Load Top Middle Bottom 

(pounds) Section Section Section 

1 23 0,16 0.20 0.23 
2 33 0.25 0.28 0.29 
3 1*3 0.31 0.35 0.39 

2 k 53 0.37 0.U5 0.U8 
5 63 0.1*6 0.U8 0.56 
6 73 0.53 0.61 0.69 
7 77 Failure 

*Failure Load « Applied Load + 2 Pound Cap Weight 

NO 



Table 2 

Group No. 1 -1.5 Diameter Spacing 

Pile 

Side 

(1) 

Center 

(2) 

Load Applied Average Gage Readings Pile Load at Gage Levels 
Increment Load 

(pounds) 
1&2 3&U 5&6 7&8 1&2 3&U 96 7&8 

1 Uo 6 2 1 0 3 1 1 0 
2 80 11 5 U 1 6 3 2 0 
3 120 15 9 7 3 8 5 U 1 
k 160 19 XL 8 3 10 6 k 1 
5 200 26 Hi 12 5 Ik 8 6 2 
6 2U0 32 19 15 7 17 11 8 2 
7 280 36 20 17 8 19 12 9 3 
8 300 m 2k 21 10 23 1U 11 U 
9 320 y 26 22 10 23 15 12 U 
10 3U0 U8 30 25 12 26 18 13 U 
11 360 Failure 

1 Uo 2 1 2 0 1 1 1 0 
2 80 U 2 3 0 2 2 2 0 
3 120 7 5 1* 2 k 3 2 1 
H 160 9 6 7 2 5 U 3 1 
5 200 11 9 10 3 6 6 U 2 
6 2li0 16 12 13 5 8 8 6 2 
7 280 21 15 15 5 11 10 7 3 
8 300 25 18 19 6 13 12 8 3 
9 320 27 20 20 7 IU 13 9 fc 
10 3U0 30 23 23 8 16 15 10 U 
11 360 Failure 

Tailure Load « Applied Load + h Pound Cap Vfeight 

s 



Table 2 (Continued) 

Group No» 1 - 1.5 Diameter Spacing 

n 
Applied Average Gage Readings Pile Load at Gage 
Load 1&2 3&U 5&6 7&8 1&2 3&U 5&< 

[pounds) 

Uo 15 7 h 0 6 3 2 
80 33 18 12 k 13 8 5 
120 k9 28 18 k 20 33 7 
160 72 50 29 5 29 2h 32 
200 86 59 31 6 35 28 33 
2U0 100 ^9 Ul 7 UO 28 18 
280 117 81 U3 9 U7 39 19 
300 122 80 m 10 k9 38 21 
320 135 98 5U 11 5U hi 23 
3U0 130 89 ^ 33 53 U3 2h 
360 Failure 

""Failure Load • .Applied Load + k Pound Cap Weight 
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Table 2a 

Relative Friction (Adhesion) - Group No. 1 

Pile 

Side 

(1) 

Center 

(2) 

Corner 

(3) 

Load Applied Friction (Lbs, per sq. in.) • • « 

Increment Load Top Middle Bottom 
(pounds) Section Section Sectior 

1 ko 0.06 0 0.03 
2 80 0.09 0.03 0.05 
3 120 0.09 0.03 0.08 
h 160 0.12 o.o5 0.08 
5 200 0.19 o.o5 0.10 
6 2U0 0.19 0.Q8 0dl5 
7 280 0.22 0.08 0.15 
8 300 0.28 0.08 0.18 
9 320 0.25 0.08 0.20 
10 3U0 0o25 0.33 0.23 
11 360 Failure 

1 Uo 0 0 0.03 
2 80 0 0 0.05 
3 120 0.03 0.03 0.03 
U 160 0.03 0.03 0.05 
5 200 0 o.o5 0.05 
6 2h0 0 0.05 0.10 
7 280 0.03 0.08 0.10 
8 300 0.03 0.10 0.13 
9 320 0.03 0.10 0.13 
10 3U0 0.03 0.13 0.15 
11 360 Failure 

1 UO 0.09 0.03 0.05 
2 80 0.16 0.08 0.10 
3 120 0.22 0.15 0.15 
U 160 0.16 0.30 0.28 

5 200 0.22 0.38 0.28 
6 2U0 0.37 0.25 0.U0 
7 280 0.25 o.5o oJ*o 
8 300 0.3U 0.U3 oJi5 
9 320 0.22 0.60 0.U8 
10 3li0 0.31 0J4.8 0.50 
11 360 Failure 



Table 3 

Group No. 2 - 2«0 Diameter Spacing 

Load Applied Average Gage Readings Pile Load at Gage Le-vel 
increment Load 

(pounds) 
1&2 3&U &6 7&8 1&2 3&1* 5&6 7&8 

1 2*0 9 6 6 0 5 U 3 0 
2 80 15 9 9 1 8 6 It 0 
3 120 23 15 a 2 12 10 6 1 
k 160 30 20 18 3 16 12 8 1 
5 200 39 26 2h k 20 16 11 2 
6 2li0 W 31 29 5 25 20 13 3 
7 280 56 36 33 6 29 23 15 3 
8 320 62 U3 38 6 33 27 17 3 
9 3b0 70 w 38 5 37 28 17 3 
10 360 75 W U 5 ko 30 18 3 
U 380 81 53 Uh 7 U3 3U 20 I* 
12 1*00 87 58 U8 8 U6 37 21 U 
13 U20 9k 57 1*8 6 50 36 21 3 

s hho 99 59 U9 8 53 37 22 k 
15 U60 105 57 50 9 56 36 22 h 
16 U80 111 m k9 8 ^9 32 22 k 
17 500 Failure 

1 Uo 3 0 0 0 1 0 0 0 
2 80 5 b 2 2 2 2 1 0 
3 120 9 6 U 2 U 3 2 1 
U 160 13 8 6 2 6 5 3 1 
5 200 17 10 8 4 8 6 h 1 
6 2l*0 20 Ik 11 6 10 8 6 2 
7 280 23 16 12 7 12 9 6 2 
8 320 28 19 16 7 15 11 8 2 

*Failure Load • Applied Load + 8 Pound Cap Weight 



Table 3 (Continued) 

Group No* 2 - 2.0 Diameter Spacing 

Pile 

Center 

a) 

Load Applied Average Gage Readings 
Increment Load 

(pounds) 
1&2 3&U 5&6 7&8 

9 3Uo 30 19 16 8 
10 360 33 2U 20 8 
11 380 36 25 20 8 
12 U00 UO 29 25 9 
13 2*20 U3 32 26 9 
1U UUo U9 35 31 9 
05 U60 58 Ul 3k 10 
16 U80 70 U8 37 9 
17 5oo 1 

1 Uo 15 9 6 1 
2 80 29 19 12 2 
3 120 U2 28 19 k 
U 160 56 38 27 5 
5 200 72 U8 33 9 
6 2U0 m 59 Uo 9 
7 280 99 67 U5 9 
8 320 113 77 51 10 
9 31*0 119 78 U5 9 
10 360 123 80 5U 11 
11 380 126 82 ^ 11 
12 U00 129 8U 57 10 
13 1*20 132 8U 57 10 

m hho 13k 88 56 9 
15 U60 13k 83 5U 9 
16 180 13k 86 58 10 
17 5oo F 

Failure 

Failure 

"^Failure Load • Applied Load + 8 Pound 

Pile Load at Gage Level 
1&2 3&U 9£ 7&8 

16 11 8 3 
17 li 10 3 
19 15 10 3 
21 17 13 3 
23 19 31; 3 
26 21 17 3 
31 2k 18 3 
37 28 20 3 

6 U 2 0 
31 9 5 0 
17 13 8 1 
22 18 11 2 
29 23 1U 3 
3U 28 17 3 
UO 32 19 3 
U6 37 22 3 
M 37 19 3 
50 38 23 3 
51 39 2U 3 
52 UO 25 3 
53 UO 25 3 
5U U2 2U 3 
5U UO 23 3 
5k Ul 25 3 

Cap Weight 



1*5 

Table 3a 

Relative Friction (Adhesion) - Group No, 2 

Load Applied Friction (Lbs. per sq.in, 
jicreraent Load Top Middle Bottoii 

(pounds) Section Section Sectic 

1 2*0 0.03 0.03 0.08 
2 80 0.06 0.05 0.10 
3 120 0.06 0.10 0.13 
h 160 0.12 0.10 0.17 

5 200 0.12 0.13 0.23 
6 2l*0 0.16 0.17 0.25 
7 280 0.19 0.20 0.29 
8 320 0.19 0.25 0.35 
9 3U0 0.28 0.28 0.35 
10 360 0.30 0.29 0.38 
11 380 0.28 0.35 o.l*o 
12 I*oo 0.28 0.1*0 0.1*3 
13 1*20 0.1*3 0.38 0.2*5 
Hi hho 0.1*9 0.38 0.1*5 
15 1*60 0.62 0.35 0,2*5 
16 1*80 0.82* 0,25 0.2*5 
17 500 Failure 

1 2*o 0.03 0 0 
2 do 0 0*03 0.03 

3 120 0.03 0.03 0.03 

1* 160 0.03 o.o5 0.05 
5 200 0.06 o.o5 0.08 
6 2l*0 0.06 o.o5 0.10 
7 280 0.09 0»08 0.10 
8 320 0.12 0.08 0.15 
9 3U0 0.16 0.08 0.13 
10 360 0.09 0.10 0.17 
11 380 0.12 0.33 0.17 
12 1*00 0.12 0.10 0.25 
13 2*20 0.12 0.13 0.28 
Ik hho 0.16 0.10 0.35 
15 2*60 0.22 o.i5 0.38 
16 2*80 0.28 0.20 0.2*3 
17 500 Failure 



Table 3a (Continued) 

Relative Friction (Adhesion) - Group No. 2 

Pile 

Corner 

(3) 

Load Applied 
Increment Load 

(pounds) 

1 Uo 
2 80 
3 120 
k .160 
5 200 
6 2U0 
7 280 
8 320 
9 3U0 
10 360 
11 380 
12 Uoo 
13 U20 
1U UUo 
15 U60 
16 Wo 
17 5oo 

Friction (Lbs. per sq. in,) 
Top Middle Bottom 

Section Section Section 

0.0? 
0.13 
0.17 
0.23 
0.28 
0.35 
o.Uo 
0.U8 
o.Uo 
o.5o 
o.53 
o.55 
o.55 
o.53 
o.5o 
o.55 

0.06 0.05 
0.06 0.10 
0.12 0.13 
0.12 0.17 
0.19 0.23 
0.19 0.28 
0.25 0.33 
0.28 0.38 
0.3U O.ij.5 
0.37 0.38 
0.37 0.38 
0.37 0.38 
o.Uo 0.38 
0.37 0.U5 
0.U3 o.IO 
O.iiO 0.1*0 
Failure 



Table k 

Group No. 3 - 2.5 Diameter Spacing 

Load Applied Average Gage Readings Pile Load at Gage Levels 
iicremenl > Load 

(pounds) 
1&2 m 5&6 7&8 1&2 3&U &6 7&8 

1 80 12 6 6 0 6 3 3 0 
2 160 21* 15 13 3 13 9 7 1 
3 21*0 38 23 19 1* 20 li* 10 1 
k 280 U5 27 22 5 21* 16 12 2 
5 320 53 33 26 7 28 19 U* 2 
6 360 59 37 31 8 31 22 17 3 
7 too 6$ la 32 8 35 21* 18 3 
8 U*o 76 1*7 37 9 1*2 28 20 3 
9 U60 89 1*9 38 9 1*7 29 21 3 
10 1*80 93 52 1*0 9 50 31 22 3 
11 5oo 98 57 1*1* 9 52 31* 2k 3 
12 520 105 (6 1*1* 8 56 39 21* 3 
13 51*o Failure 

1 80 1*5 3 3 0 2 2 2 0 
2 160 12 8 8 1 6 5 1* 0 
3 2l*0 17 15 15 3 9 9 7 1 
1* 280 21 15 16 3 11 10 7 1 
5 320 2k 20 20 1* 13 13 9 2 
6 360 32 23 2l* 5 17 15 11 3 
7 too 35 29 30 5 19 18 13 3 
8 14*0 1*5 38 38 6 21* 21* 17 3 
9 1*60 1*8 38 39 5 25 21* 17 3 
10 1*80 60 1*9 1*8 7 32 31 21 3 
11 5oo 76 60 50 7 ko 38 23 3 
12 520 87 69 1*5 6 he 1*1* 20 3 
13 5i*o Failure 

*Failure Load = Applied Load + 8 Pound Cap Weight 



Table k (Continued) 

Group No. 3 - 2.5 Diameter Spacing 

•ft 

Applied Average Gag< 5 Readings Pile Load at Gag 
Load 1&2 3&k $&6 7&8 1&2 3&U 5&6 

(pounds) 

80 29 18 13 3 12 9 5 
160 $9 38 27 7 2k 18 11 
2h0 86 56 ko 12 35 26 17 
280 93 57 U6 Hi 38 *, 27 20 
320 101 59 52 lU , la 28 23 
360 11$ 67 55 ik U6 32 2k 
liOO 126 73 58 li 51 35 25 
bko l5l 88 63 15 61 U2 27 
h60 1U7 81 63 . 12 60 39 27 
km 1SS 97 62 13 63 U6 27 
5oo 157 9k 63 12 63 U6 27 
520 156 92 S9 12 63 hk 25 
9x0 Failure 

Failure Load » Applied Load + 8 Pound Cap Weight 
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Table l*a 

Relative Friction (Adhesion) - Group No. 3 

Pile 

Side 

(1) 

Center 
(2) 

Corner 
(3) 

Load Applied Friction (Lbs. ] 
Increment Load Top Middle 

(pounds) Section Sectioi 

1 80 0.09 0 
2 160 0,12 0.05 
3 2l*0 0,19 0.10 
k 280 0.25 0.10 
5 320 0.28 0.13 
6 360 0.28 0.13 
7 too 0.31* 0.15 
8 i*l*o 0.1*3 0.20 
9 1*60 0.55 0.20 

10 1*80 0.59 0.23 
11 5oo 0.59 0.25 
12 520 0.53 0.38 
13 51*0 Failure 

1 80 0 0 
2 160 0.03 0.03 
3 2U0 0 o.o5 
1* 280 0.03 0.08 

5 320 0 0.10 
6 360 0.06 0.10 
7 1*00 0.03 0.13 
8 hho 0.03 0.17 
9 1*60 0.03 0.17 

10 1*80 0.03 0.25 
11 500 0.06 0.38 
12 £20 0.06 0.60 
13 £Uo Failure 

1 80 0.09 0.10 
2 160 0.19 0.17 
3 21*0 0.28 0.23 
1* 280 0.31* 0.17 
5 320 0.1*0 0.13 
6 360 0.1*3 0.13 
7 1*00 o.5o 0.25 
8 1*1*0 o.59 0.38 
9 1*60 0.65 0.29 

10 1*80 0.53 0.1*8 
11 500 0.53 0.1*8 
12 520 0.59 0.1*8 
13 51*0 Failure 

Bottom 
Section 

0.08 
0.15 
0.23 
0.25 
0.30 
0.35 
0.3S 
0.1*3 
0.1*5 
0.1*8 
0.53 
0.55 

o.o5 
0.10 
o.i5 
o.i5 
0.17 
0.20 
0.25 
o.35 
0.35 
o.l*5 
o.5o 
o.l*3 

o.io 
0.23 
0.33 
0.38 
0.1*5 
0.1*8 
o.5o 
o.55 
0.58 
0.58 
o.58 
0.53 



Pile load Applied 
Increment Load 

(pounds) 

1 80 
2 160 

Side 
(2) 

3 
U 
5 

2U0 
320 
Uoo 

6 U80 
7 560 

1 80 
2 160 
3 2U0 

Center U 320 
(1) 5 Uoo 

6 U80 
- 7 560 

1 80 
2 160 
3 2U0 

Corner U 320 
(3) 5 Uoo 
••̂  # 6 U80 

7 56o 

Table 5 

Group No. U - 3*5 Diameter Spacing 

Average Gage Readings 
1&2 3&U 5&6 7&8 

Pile Load at Gage Levels 
1&2 3&U 5&6 7&8 

15 11 11 3 8 7 5 2 
30 21 21 k 16 13 9 2 
U6 33 30 8 25 21 13 U 
62 U5 Ul 9 33 29 18 5 
81 % 52 11 U3 36 23 6 
101 72 63 12 

Failure 
5U U6 28 6 

9 6 5 3 6 k 3 1 
18 13 11 5 10 8 6 2 
29 20 18 7 15 12 10 2 
38 28 2U 9 20 17 13 3 
U8 36 30 13 25 21 16 5 
57 U6 38 13 

Failure 
30 

! 
27 20 5 

30 20 15 5 12 9 6 2 
57 39 29 8 23 18 12 3 
85 57 Uo 11 3U 27 17 U 
109 76 52 1U UU 36 22 5 
131 90 e6 19 53 U3 28 6 
156 110 87 20 

Failure 
63 

! 
53 37 7 

Failure Load * Applied Load + 15 Pound Cap Weight 

» 
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Table 5a 

Relative Friction (Adhesion) - Group No. k 

Pile 

Side 
(2) 

Center 

(i) 

Corner 
(3) 

Load 
Increment 

1 
2 
3 
k 
5 
6 
7 

1 
2 
3 
h 
5 
6 
7 

1 
2 
3 
It 

6 
7 

Applied 
Load 

(pounds) 

80 
160 
2U0 
320 

Eoo 
U80 
560 

80 
160 
2l|0 
320 

Uoo 
1*80 
560 

80 
160 
2li0 
320 

Uoo 
!tfO 
560 

Friction (Lbs. per sq» In.) 
Top Middle Bottom 
Section Section Section 

0.03 
0.0° 
0.12 
0.12 
0.22 
0.31 
Failure 

0.06 
0.06 
0,09 
0.09 
0.12 
0.09 
Failure 

0.09 
0.16 
0.22 
0*25 
0.31 
0.31 
Failure 

0.05 
0.10 
0.20 
0.23 
0.25 

o.U5 

0.03 
o.o5 
o.o5 
0.10 
0.13 
0.17 

0.08 
o.i5 
0.25 
0.35 
0.38 
o.Uo 

0.08 
0.17 
0.23 
0.33 

o.itf 
0.55 

0.05 
0.10 
0.20 
0.25 
0.28 
0.37 

0.10 
0.23 
0.28 
o.h3 
o*55 
0.75 



Table 6 

Group No* £ - £»0 Diameter Spacing 

Pile Load Applied 
Increment Load 

(pounds) 

1 80 
2 160 

Side 
(2) 

3 
k 
£ 

2U0 
320 
to) 

6 U80 
7 £20 
8 £60 

1 80 
2 160 

Center 3 2li0 

a) h 320 
£ to) 
6 U80 
7 £20 
8 560 

1 80 
2 160 

Corner 3 21*0 
(3) U 320 

U to) 
6 U80 
7 £20 
8 £60 

Average Gage Readings 
1&2 3&it £&6 7&8 

Pile Load at Gage Levels 
1&2 3&U £&6 7&8 

i£ 11 9 2 8 7 U 1 
33 23 19 3 18 l£ 9 1 
£o 3£ 30 £ 27 22 13 2 
70 U6 Ul 7 37 29 18 U 
87 £8 £1 7 k6 37 23 h 
102 66 £3 9 ££ U2 21* £ 
11U 68 £0 10 

Failure 
61 li3 22 £ 

10 8 6 2 £ li 3 l 
20 Hi 11 3 10 8 6 l 
31 23 18 £ 16 13 9 2 
k2 30 2£ 7 22 18 13 2 
££ 1L0 31 8 29 2h 17 3 
70 £l 37 8 37 30 20 3 
82 £9 31 8 

Failure 
!i£ 3£ 17 3 

23 16 9 2 9 7 3 1 
U6 3k 19 £ 19 16 8 2 
69 £2 32 6 28 2£ lit 2 
88 63 ia 8 36 30 18 3 
108 78 k9 9 Ul; 37 21 3 
130 92 60 9 £3 hh 26 3 
132 90 k9 8 & 10 21 3 

Failure 

^Failure Load • Applied Load * kO Pound Cap Weight 
vn. ro 
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Table 6a 

Relative Friction (Adhesion) - Group No. $ 

Pile Load Applied Friction (lbs. per sq. in. 
Increment Load Top Middle Bottoi 

(pounds) Section Section Secti< 

1 80 0.03 0.08 0.08 
2 160 0.09 0.1$ 0.20 
3 21*0 0.16 0.23 0.28 

Side It 320 0.2$ 0.28 0.3$ 
(2) $ Uoo 0.28 0.3$ 0.U8 

6 U80 0.U0 o.U$ 0.U8 
7 $20 0.$6 0.53 0.U3 
8 $60 Failure 

1 80 0.03 0.03 0.0$ 
2 160 0.06 0.0$ 0.13 
3 2U0 0.09 0.10 0.17 

Center k 320 0.12 0.13 0.28 
( i ) $ Uoo 0.16 0.17 0.3$ 

6 U80 0.22 0.2$ 0.U3 
7 $20 0.31 o.U$ 0.3$ 
8 560 Failure 

1 80 0.06 0.10 0.0$ 
2 160 0.09 0.20 0.1$ 
3 2U0 0.09 0.28 0.30 

Corner u 320 0,19 0.30 0.38 
(3) 5 Uoo 0.22 o.Uo o.U$ 

6 U80 0.28 o.U$ 0.$8 
7 $20 0.3U 0.$$ o.U$ 
8 $60 Failure 
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Table 7 

Plate Load Test Results 

load 
(pounds) 1 

Deflections per 
2 3 

Test (inch 

i 
ss) 

5 6 

1 
2 
3 
| 
5 
6 
7 
8 

0.003 
0.006 
o.oio5 
o.oi5 
0.020 
0.025 
0.0305 
o.oU5 

0.003 
0.007 
0.010 
0.012 
0.018 
0.030 
0.037 
0.056 

0.006 
0.012 
0.019 
0.027 
0.036 
0.0U6 
0.058 

o.ooU5 
0.009 
0.017 
0.025 
0.03U 
0.0U2 
0.065 

o.ooU5 
0.009 
0.0135 
0.021 
0.028 
0.039 
0.070 

0.00U 
0.008 
0.01U 
0.021 
0.030 
0.051 
0.077 

Table 8 

Vane Shear Test Result s 

T**<5t Critical Load 
(pounds) 

s Pd * 
l o u U 

No. 

Critical Load 
(pounds) 

s 
naZ(X + a/3) 

1 
2 

j 
5 
6 

2.91 
2.91 
2.91 
2.86 
2.86 
2.86 

0.82 
0.82 
0.82 
0.805 
0.805 
0.805 

J L 

Shear strength in lbs / sq . i n . 
where P • c r i t i c a l load 

d « 0 of torque disk « 2.0625" 
a • diameter of vane • 1.0" . 
L « height of vane - 2.0W . 
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Fig. 1 Detail of Strain Gage Installation 

Leads 

Gages 1&2 J -

Top, 
Section 

Middle 
Section 

Gages 5&6 

Bottom 
Section 

Gages 7&8 

Gages 3&U !; 

Leads 

Fig. 2 Interior View of Gage Locations 
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Fig. 3 Test Apparatus 

Fig. k Illustration of Unit Action 
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Soil Profile 

Pressure Diagram 

-a-

Rigid Footing on Clay Soil 

-b-

Illustration of Stress Interference 

Fig. $ Analysis of Load Distribution to Pile Heads 
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Fig. 6 Point Load in Serai-Infinite Elastic Body 
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Fig. 10 Load Distribution Curves (single p i le ) 
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Fig. U Relative Frictions Between Sections (Single Pile) 



63 

0.5 h 

ro 

$0.3 

1°-2 r 
0.1 

0 

Group f> 

Group h 
Group 3 

2 3 

Spacing in Diameters 
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Fig* 16 Relative Frictions Between Piles (l»5> Diameter Spacing) 
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18 Load Distributed From Cap to Piles (2#0 Diameter Spacing) 
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320 U80 
Group Load (pounds) 

Bottom Section 

Fig* 20 Relative Frictions Between Piles (2o0 Diameter Spacing) 
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Side Pile 

320 U80 
Group Load (pounds) 

Corner Pils 

• 21 Relative Frictions Between Sections (2.0 Diameter Spacing) 
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Fig. 22 Load Distributed From Cap to Piles (295 Diameter Spacing) 



Load in Pile (pounds) for each Increment of Group Load 

Fig» 23 Load Distribution Curves (2.5 Diameter Spacing) 

Clarifies increments of group loads 
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