
09:06:22 OCA PAD AMENDMENT - PROJECT HEADER INFORMATION 05/14/92

Projec~ C-50-618
Center~ 10/24-6-R7458-0AO

Cost share I: C-50-315
Center shr I: 10/22-l-F7458-0AO

Rev #: 1
OCA file I:

Active

Work type : RES
Contract#: CCR-9121607
Prime #:

Subprojects ? : N
Main project #:

Project unit:
Project director(s):

APPELBE W F
STASKO J T

COMPUTING

COMPUTING
COMPUTING

Mod I: ADM REV

Unit code: 02.010.300

(404)894-6187
(404)-

Document GRANT
Contract entity: GTRC

CFDA: 47.070
PE #:

Sponsor/division names: NATL SCIENCE FOUNDATION
Sponsor/division codes: 107

I GENERAL
I 000

Award period: 920415 to 950930 (performance) 951230 (reports)

Sponsor amount
Contract value
Funded

Cost sharing amount

New this change
0.00
0.00

Does subcontracting plan apply ?: N

Total to date
215,904.00
80,723.00

2,388.00

Title: APPLYING PROGRAM VISUALIZATION TECHNIQUES TO AID PARALLEL AND DISTRIBUTED

OCA contact: Mildred S. Heyser

Sponsor technical contact

NATHANIEL MACON
(202)357-7375

NATIONAL SCIENCE FOUNDATION
1800 G STREET, NW
WASHINGTON, DC 20550

Security class CU,C,S,TS) : U
Defense priority r~ting
Equipment title vests with:

Administrative comments -

PROJECT ADMINISTRATION DATA

Sponsor

894-4820

Sponsor issuing office

STEPHEN G. BURNISKY
(202)357-9653

NATIONAL SCIENCE FOUNDATION
1800 G STREET, NW
WASHINGTON, DC 20550

ONR resident rep. is ACO CY/N): N
supplemental sheet

GIT X

TO CHANGE PROJECT NO. AND COST-SHARING NO. CFORMERLY C-36-628 AND
FORMER COST-SHARING NO. WAS C-36-392)

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

Closeout Notice Date 01/02/96

Project No. C-50-618 __________ -- Center No. 10/24-6-R7458-0AO_

Project Director APPELBE W F _____________ ___ School/lab COMPUTING _____ __

Sponsor NATL SCIENCE FOUNDATION/GENERAL __ ____

Contract/Grant No. CCR-9121607 __________________________ ___ Contract Entity GTRC

Prime Contract No.

Title APPLYING PROGRAM VISUALIZATION TECHNIQUES TO AID PARALLEL AND DISTRIBUTED

Effective Completion Date 960331 (Performance) 960630 <Reports)

Closeout Actions Required:

Final Invoice or Copy of Final Invoice
Final Report of Inventions and/or Subcontracts
Government Property Inventory & Related Certificate
Classified Material Certificate
Release and Assignment
Other

Y/N

N
N
N
N
N
N

Date
Submitted

Comments---
LETTER OF CREDIT APPLIES. 98A SATISFIES PATENT REQUIREMENT. ____________________ __

Subproject Under Main Project No.

Continues Project No.

Distribution Required:

Project Director
Administrative Network Representative
GTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Managment
Research Security Services
Reports Coordinator COCA>
GTRC
Project File
Other

y
y
y
y
y

N
y
y
y
N
N

Annual Report
NSF ~ Award CCR-9121607

Applying Program Visualization Techniques
to Aid Parallel and Distributed Program Development

\\.illiarn .-\ppelbe
.John T. S las k o

College of C'omput iug
c;eorgic=t Institute of Technology

.-\ t lanta. G A :30:3:32-0:280

This project is examining how \·isualization and animation can assist parallel program
devPlopment and debugging. \Ve are creating a framework and models for the process_
of mapping a. program ·s execution to a.n illustrative animation. and we are developing a
system. called PARADE. that implements these models. One key element of our work this
first year has to been define a model of program execution, of the resulting animation.
and methods for mapping program events into ordered animation activities. The project
has three main pieces: (1) annotating programs in order to extract important semantic
events from them during execution (2) creating a.n animation methodology and toolkit for
\·isualizing the programs (3) .de\·eloping the mapping techniques and a direct manipulation
system for controlling how program events activate animation routines. vVe will discuss our
progress on each section.

\Ve have chosen to initiall:v focus on parallel programs running on our Kendall Square
Research machine. both parallel (. and FORTRAN programs. vVe have developed a speci
fication technique (can be stored in a file) that allows programmers to describe the events
that their program will utilize. vVe have also built a tool that parses these specification files
and creates a. data structure describing the program events. All the tools in PARAJ?E com
municate with this tool. We also have identified techniques and program operations that
can be used to gather traces from program executions. We are currently building a tool
that shov.:s the source code of a program and allo\vs programmers to add t.he pertinent trace
annotations. The tool takes care of issues like acquiring a global times'tamp and possible

contentions in writing to output trace files. This first component of PARADE is probably
the one of least importance to the whole project.

The animation component of PARADE has probably come furthest of all portions of the
project. \Ve have developed an animation methodology called Polka for depicting parallel
program executions. Polka's strength is that it supports continuous smooth animations \Vith
concurrent activities, critical for portraying parallel program activities. The system has also
been designed to be easy to learn and understand, thus promoting its use by graphics non
experts. A paper about Polka (a preprint is attached) will appear in the Journal of Parallel
and Di8tribulf.d Computing this summer.

1

Polka's animation model utilizes a ntunber of classes of objects. Each animation window

is modelled through the View class. .-\. \"iew defines a part icu Ia r vis ua.l appearance for the
program. \Vithin a Vie'>v. programmers manipulate Location . .-\.nimObject. and Action
classes to actually create the animation. .-\.nim 0 bjects such as lines. circles, rectangles.

text. and so on. have .\ctions ··programmed .. into them to commence at particular times.

Actions are t .'>·ped (rno\·e. resize. color. fill. etc.) activities that objects can undergo.

\Ve ha'>·P developed a toolkit that implPments the Polka model. It is implemented in
(' + on top of the X \Vindow System . \Ve have made the toolkit available via anonymous
ftp, and a number of other researchers ha'>·e acquired it and begun to use it. \Ve have also
den'loped a :30 version of Pnlka that runs on Silicon Graphics workstations. A paper about
this :30 work has been submitted to the ·g:) \"isual Languages \\'orkshop.

Csing Polka we have developed a number of animations of parallel programs running on
the I\:SR machine. on a Sequent. and on a Butterfl.v. For the most part. these animations
b ave been of relat i vel.\· straightforward applications such as sorting, selection, and equation
solving. ~evertheless. these initial animations have done much to help us understand what
portions of the animation development process we need to simplify and assist.

The final component of PARADE. the mapping component. is the focus of the doctoral
thesis of a student supported hy this project. Eileen Kraemer is building an animation

chortographer that is responsible for gathering the program events that have been logged- tt:_
and structuring them according to nser preferences. The animation choreographer displays

an execution histor~· graph based on the trace events. including synchronization events.
l; sers will be able to interact with the choreographer display to control the ordering of the
display events and the relative speed of the displays. Sometimes users may wish to vie\v
animations of program executions with respect to relative global timestamps. Other times.
programmers ma,v '>Vish to view other feasible reordered executions. The choreographer

must. \vork in coordination with the Polka animation toolkit to properly display the program
animations.

Another student supported b.v the project is developing a browser tool that will allow
programmers to choose animations from a predefined collection of views. In a manner
similar to how a. person browses a library looking for books, programmers will be able to
preview a number of animations, and then choose to map events from their program into
the appropriate animation routines. \Ve are currently identifying and building a number
of views that represent common activities in parallel programs (displaying data structures.
mapping processors to work, etc.) This will allow programmers to use PARADE without
writing any graphics code at all. As this line of research continues, we will seek ways to
allow programmers to customize the views via some direct manipulation example-based

mechanism.

As the project moves into its second year. we will continue to develop all three compo
nents of PARADE as well as the tools described above. VVe have weekly project meeting
with all the students involved in the project where we discuss how everyone,s work is pro

ceeding. In addition to the students directly supported by the project as research assistants.

other students have been working in coordination with the project. One is examining how
to portray very large programs manipulating big data sets, and another is comparing and

constrasting how parallel program animation development varies under different architec
ture models. We anticipate the animation choreographer will begin to take shape this next

2

.vear. Tltat will drive much of the subsequent model IHlilding and development on the sys
tem. \\"e also continue to de\·etop a set of sample animations to sho\v how these techniquf>s
and tools can be used to illustrate parallel programs.

Annual Report
January 1, 1994

NSF Award CCR-9121607

Applying Program Visualization Techniques
to Aid Parallel and Distributed Program

Development

William Appelbe
John T. Stasko

College of Cornputing
Georgia Institute of Technology

Atlanta, GA 30332-0280

We are in the second and 111iddle year of this research grant. To briefly review,
this project is examining how visualization and a.nitna.tion can assist parallel program
development a.nd debugging. vVe a.re creating a framework and tnodels for the process
of mapping a program's execution to an illustrative anin1ation, and we are developing
a system that implements these models.

The grant has helped support Drs. Appelbe and Stasko to continue their research
in the visualization of concurrent systetns. The principal investigators have the used
the grant funding for sun1n1er support, for travel support to conferences such as
SuperComputing and SIGCHI, and to support graduate students. We currently have
a good group of 5 Ph.D. students who are working on topics related to this research.
The funding helped support the writing of a c01nprehensive survey of existing work
on the visualization and anin1ation of parallel and distributed systems[2].

Our current efforts are centered on the devclopn1cnt of the PARADE (PARallel
Animation Developn1ent Environn1cnt) environn1cnt for helping programmers and
developers create visualizations of their parallel and distributed progra1ns. PARADE
contains a number of con1poncnt projects that are critical to its overall success. We
summarize these below:

• POLKA aninut.tion devcloptncnt toolkit - We have developed an animation
toolkit called Polka. that is particularly useful for building animation libraries
for parallel progrcuns. Polka is in1plerncuted in C++ on top of the X Window

1

System and Motif. It supports true anirnation- srnooth, continuous movements
and actions, not just blinking objects or color changes. It also supports concur-
1'ent, overlapping anin1ation actions on n1ultiple objects. Thus, it can properly
reflect the concurrent operations occurring in a parallel program. POLKA is
available via anonyrnous ftp and we hope researchers at other i?stitutions will
be able to use the systctn to help them build visualizations for their pertinent
tasks. We published a paper about POLKA in this past June's Journal of
Parallel and Distributed Co·mputing[3].

• Animation libraries for specific machines and architectures - We are using the
POLKA toolkit as the support layer for building visualization libraries for par
ticular machines. In the n1ost cotnplcte subproject to date in this area, we
created a library of views for portraying Pthreads progran1s on Kendall Square
Research machines. We call this library Gthreads and it shows how threads are
created and n1ove through the functions in a progran1. It also shows mutexes,
barriers, etc. Just this week we added the Gthreads system to our anonymous
ftp archive, and we will announce and promote the library to KSR users across
the nation soon.

• Visualization of programs operating on extreme]y large data sets- In this project
we are developiug ways of portrayi11g large_• progrc1.1w; and big data sets. This
is a very challc11gi ng open problc1n. We are focusillg on ways of presenting
abstractions of the data and of how the progran1 is operating.

• Controlling the tetnporaiinapping of program events to their accompanying an
imations- This project is developing the Anirnation Choreographer tool of the
PARADE environrnelli. The Choreographer will allow programmers to examine
execution history graphs of their progrcuns, t.o apply different feasible temporal
orderings to those events, and then view the resulting animations. We have
recently had a paper about the Choreographer accepted at the 1994 IPPS con
ference. This project is the thesis work of Eileen Krae1ner, whom this grant has
helped support.

In addition to the work above, this grant helped support research which was
reported in two extended abstracts at this past spring's \Vorkshop on Parallel and
Distributed Debugging[!, 4].

In the upcoming year, we will continue to develop the different components of PA
RADE. We are looking to build program browser tools that will help programmers
annotate their programs with the necessary events to drive anitnations. We will con
tinue work on the Animation Choreographer-a very early prototype of it is running
now, but n1uch ~mprovetnent is needed. We wil1 look to develop ani1nation libraries
for machines other than the 1\Sll, perhaps Sll\'10, tnassively parallel machines. Fi
nally, we will continue to disserninate our tools free to other users who may benefit
by them. We hope to get feedback from their use that may guide future research.

2

References

[1] William Appelbe, Eileen 1\ractner, Bala Lakshrnanan, John Stasko, and Joe
Wehrli. Graphical support for debugging parallel progratns (extended abstract).
In P1·oceedings of the 1993 A CM/ONR Workshop on Parallel and Distributed De
bugging, pages 172-174, San Diego, CA, l\r1ay 1993.

[2] Eileen Kraemer and John T. Stasko. The visualization of parallel systems: An
overview. Journal of Parallel and Distributed Computing, 18(2):105-117, June
1993.

[3] John T. Stasko and Eileen Kraemer. A tnethodology for building application
specific visualizations of parallel programs. ./ou1·nal of Parallel and Distributed
Computing, 18(2):258-264, June 1993.

[4] Joseph Wehrli and John Stasko. Interactive thrce-ditnensional visual debugging
in massively parallel con1putation (extended abstract). In Proceedings of the 1993
ACM/ONR Workshop on PaTallel and Dislribulcd Debugging, pages 235-237, San
Diego, CA, May 1993.

3

Drs William Appelbe and John Stasko
College of Computing
Georgia Institute of Technology
801 Atlantic Dr.
Atlanta, GA 30332-0280

PART 1- PROJECT IDENTIFICATION INFORMATION

1. Program Officiai/Org.

2. Program Name

3. Award Dates (MMIVV) From: 920415 To: 960331

4. Organization and Address
National Science Foundation
4201 Wilson Blvd.
Arlin ton, VA 22230

5. Award Number CCR-9121607

6. Project Title

Applying Program Visualization Techniques to Aid Parallel and

Distributed Program Development.

33

, • IJ - • • 1 • e-qo1re suom ss1on o a ina
Project Report (NSF Form 98A) to the NSF Program Officer no later than 90 days after tht
expiration date of the award. Final Project Reports for expired awards must be recelvec
be~ore new awards can be made (NSF Grants Polley Manual Section 340) .

. Below, or on a separate page attached to this form, provide a summary of the completed projects and technical
· information. Be sure to include your name and award number on each separate page. See below for more instructions.

PART II • SUMMARY OF COMPLETED PROJECT (for public use)

The summary (about 200 words) must be self-contained and intelligible to a scientifically or technically literate reader.
Without restating the project title, it should begin with a topic sentence stating the project's major thesis. The summary
should include, if pertinent to the project being described, the following items:

The primary objectives and scope of the project
The techniques or approaches used only to the degree necessary for comprehension
The findings and implications stated as concisely and informatively as possible

PART Ill· TECHNICAL IN~ORMATION (for program management use)

List references tO publications resulting from this award and briefly describe primary data, samples, physical collections,
inventions, software, etc., created or gathered in the course of the research and, if appropriate, how they are being
made available to the research community. Provide the NSF Invention Disclosure number for any invention.

I certify to the best ·of my knowledge (1) the statements herein (excluding scientific hypotheses and scientific opinion)
are true and complete, and (2) the text and graphics in this report as well as any accompanying publications or other
documents, unless otherwise indicated, are the original work of the signatories or of individuals working under their
supervision. I understand that willfully making a false statement or concealing a material fact in this report or any other
communication submitted to NSF is a criminal offense (U.S. Code, Title 18, Section 1001).

v..,rv7 I / I ~, - - ~v'---' 12/5)Cf5
Principal Investigator/PrOject Dir~tor Signature Date 1 I

IMPORTANT:
MAILING INSTRUCTIONS

Return this entire packet plus all attachments in the
envelope attached to the back of this form. Please copy the infor
mation from Part 1, Block I to the Attention block on the envelope.

NSF Form 98A (Rev. 7/95)

34

Program Officer upon completion of project)

The data requested below are important for the development of a statistical profile on the personnel supported by Federal
grants. The informati'on on this part is solicited in response to Public Law 99-383 and 42 USC 1885C. All information
provided will be treated as contidential and will be safeguarded in accordance with the provisions of the Privacy Act of
1974. You should submit a single copy of this part with each final project report. However, submission of the requested
information is not mandatory and is not a precondition of future award(s). Check the "Decline to Provide Information" box
below if you do not wish to provide the information.

Please enter the numbers of individuals supported under this grant.
Do not enter information for individuals working less than 40 hours in any calendar year.

Senior Post- Graduate Under- Other
Staff Doctorals Students Graduates Participants

1

Male Fern. Male Fern. Male Fern. Male Fern. Male Fern.

A. Total, U.S. Citizens 2 3 1

B. Total, Permanent Residents

U.S. Citizens or
Permanent Residents

2
:

American Indian or Alaskan Native ..
Asian
Black, Not of Hispanic Origin

Hispanic
II

Pacific Islander

White, Not of Hispanic Origin

C. Total, Other Non-U.S. Citizens

Specify Country
1. China-_ 2

2. India 1
3.

D. Total, All participants
(A+ B +C)

2 5 1

Dlsabled
3

D Decline to Provide Information: Check box if yoi.J do not wish to provide this information (you are still required to return this page
along with Parts I-III).

1
Category includes, for example, col.lege and precollege teachers, conference and workshop participants.

2
Use the category that best describes the ethnic'racial status to all U.S. Citizens and Non-citizens wi~h Permanent Residency. (If more

than one category applies, use the one category that most closely reflects the person's recognition in the community.)
3
A person having a physical or mental impairment that substantially limits one or more major life activities; who has a record of such

impairment; or who is regarded as having such impairment. (Disabled individuals also should be counted under the appropriate
ethnic/racial group unless they are classified as "Other Non-U.S. Citizens.")

AMERICAN INDIAN OR ALASKAN NATIVE: A person having origins in any of the original peoples of North America and who
maintains cultural identification through tribal affiliation or community recognition.
ASIAN: A person having origins in any of the original peoples of East Asia, Southeast Asia or the Indian subcontinent. This area
includes, for example, China, India, Indonesia, Japan, Korea and Vietnam.
BLACK, NOT OF HISPANIC ORIGIN: A person having origins in any of the black racial groups of Africa.
HISPANIC: A person of Mexican, Puerto Rican, Cuban, Central or South American or other Spanish culture or origin, regardless of race.
PACIFIC ISLANDER: A person having origins in any of the original peoples of Hawaii, the U.S. Pacific territories of Guam. American
Samoa, and the Northern Marinas: the U.S. Trust Territory of Palau; the islands of Micronesia and Melanesia; or the Philippines.
WHITE, NOT OF HISPANIC ORIGIN: A person having origins in any of the original peoples of Europe, North Africa, or the Middle East.

NSF Form 98A (Rev. 7/95)
35

~

PART II- SUMMARY OF COMPLETED PROJECT

The purpose of this project was to examine whether visualizations and visualization sys
tems could assist developers of parallel and distributed programs. The project created the
PARADE environment for visualizing concurrent programs. PARADE is a large collection
of ideas and systems, all with a common goal. Some of the key developments of the project
included

• The Animation Choreographer - A methodology and tool for coordinating the map
ping of program events to their visualizations. In particular, the Choreographer allows
programmers to view alternate, feasible executions of their code.

• The POLKA animation system - POLKA is a methodology and toolset for building
color, window-based 2-D animations. It is particularly useful for building animations
of the executions of concurrent programs.

• The Dual Timestamping tracing methodology - This is a technique for extracting
both wall clock and logical timestamps from distributed systems.

• View libraries - We also developed a number of view libraries for different program
ming paradigms such as threads, PVM, and HPF.

PARADE has assisted many programmers in understanding their software, so a valid con
clusion of this report is that visualization tools can serve a valuable role in the development
and implementation of parallel and distributed programs.

PART III- TECHNICAL INFORMATION

Software Developed and Made Available

.All software mentioned below is available via anonymous ftp from ftp. cc. gatech. edu
under the directory pub/people/stasko.

POLKA is a general purpose animation system that is particularly well-suited to build
ing animations of programs, algorithms and computations, especially parallel computations.
POLKA supports color, real-time, 2 & 1/2 dimensional, smooth animations. The focus of
the system is on a balance of power and ease-of-use. POLKA provides its own high-level
abstractions to make the creation of animations easier and faster than with many other
systems. Programmers need not be graphics experts to develop their own animations.

Gthreads is an animation library with views that portray programs which use the KSR
Pthreads C programming package. Gthreads is implemented on top of the POLKA system.
It shows programmers information about threads, barriers, and mutexes in their code.

PVaniM is a new system that provides animated program visualizations of the ex
ecutions of PVM 3.3 applications. PVaniM includes both a set of graphics views and a
tracing package to drive the views. Unlike the performance visualizations of ParaGraph,
PVaniM focuses on visualizations of the actual execution and correctness of a program.
PVaniM provides a number of views that show different perspectives on the dynamics and
history of of the message passing in an application, as well as a more performance oriented
Gantt chart view. Graphical objects in a PVaniM view also can be queried to determine
their representation. PVaniM can animate the execution of a program according to a logical
clock, thus truly presenting the (potential) concurrency of the application. Finally, PVaniM
tracing provides support for custom user event tracing. Similarly, users can design and de
velop their own application-specific program views using the Polka animation system upon
which PVaniM is built. (Polka is also available at the ftp site below.) Recently, an on-line
visualization tool for PVM programs, pvanimOL, has been added.

Resulting Publications

References

[AKL +93] William Appel be, Eileen Kraemer, Bala Lakshmanan, John Stasko, and Joe
Wehrli. Graphical support for debugging parallel programs (extended abstract).
In Proceedings of the 1993 ACM/ONR Workshop on Parallel and Distributed
Debugging, pages 172-174, San Diego, CA, May 1993.

[GEK+95] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko,
Jeffrey Vetter, and Nirupama Mallavarupu. Falcon: on-line monitoring and
steering of large-scale parallel programs. In Proceedings of the 5th Symposium
of the Frontiers of Massively Parallel Computing, pages 422-429, McLean, VA,
February 1995.

[KS93] Eileen Kraemer and John T. Stasko. The visualization of parallel systems: An
overview. Journal of Parallel and Distributed Computing, 18(2):105-117, June
1993.

2

[KS94a] Eileen Kraemer and John T. Stasko. Issues in visualization for the compre
hension of parallel programs. In Proceedings of the 3rd Workshop on Program
Comprehension, pages 116-125, Washington, D.C., November 1994.

[KS94b] Eileen Kraemer and John T. Stasko. Toward flexible control of the temporal
mapping from concurrent program events to animations. In Proceedings of the
8th International Parallel Processing Symposium (IPPS '94), pages 902-908,
Cancun, Mexico, April 1994.

[MS95] Jeyakumar Muthukumarasamy and John T. Stasko. Visualizing program ex
ecutions on large data sets using semantic zooming. Technical Report GIT
GVU-95/02, Graphics, Visualization, and Usability Center, Georgia Institute of
Technology, Atlanta, GA, January 1995.

[SK93] John T. Stasko and Eileen Kraemer. A methodology for building application
specific visualizations of parallel programs. Journal of Parallel and Distributed
Computing, 18(2):258-264, June 1993.

[SP92] John T. Stasko and Charles Patterson. Understanding and characterizing soft
ware visualization systems. In Proceedings of the 1992 IEEE Workshop on Visual
Languages, pages 3-10, Seattle, WA, September 1992.

[Sta95] John T. Stasko. The PARADE environment for visualizing parallel program
executions: A progress report. Technical Report GIT-GVU-95/03, Graphics,
Visualization, and Usability Center, Georgia Institute of Technology, Atlanta,
GA, January 1995.

[SW93] John T. Stasko and Joseph F. Wehrli. Three-dimensional computation visualiza
tion. In Proceedings of the 1993 IEEE Symposium on Visual Languages, pages
100-107, Bergen, Norway, August 1993.

[TSS95a] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. The dual timestamping
methodology for visualizing distributed applications. Technical Report GIT-CC-
95/21, College of Computing, Georgia Institute of Technology, Atlanta, GA, July
1995. Submitted to IEEE Parallel and Distributed Technology.

[TSS95b] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. Integrating visualization
support into distributed computing systems. In Proceedings of the 15th Interna
tional Conference on Distributed Computing Systems, pages 19-26, Vancouver,
B.C., May 1995.

[WS93] Joseph Wehrli and John Stasko. Interactive three-dimensional visual debugging
in massively parallel computation (extended abstract). In Proceedings of the
1993 ACM/ONR Workshop on Parallel and Distributed Debugging, pages 235-
237, San Diego, CA, May 1993.

[ZS95] Qiang A. Zhao and John T. Stasko. Visualizing the execution of threads-based
parallel programs. Technical Report GIT-GVU-95/01, Graphics, Visualization,
and Usability Center, Georgia Institute of Technology, Atlanta, GA, January
1995.

3

Final Technical Report
NSF Grant CCR-9121607

William F. Appelbe
John T. Stasko

College of Computing
Georgia Institute of Technology

Atlanta, G A 30332-0280

Abstract

This report describes the PARADE visualization environment. PARADE supports the
design and implementation of software visualizations of parallel and distributed programs.
It contains primary components for monitoring a program's execution, building the software
visualization, and mapping the execution to the visualization. In this report we provide
brief descriptions of many of the projects that comprise the PARADE environment, and we
provide references to more detailed information on the projects.

1 Introduction

Every year an increasing amount of software is being written for parallel and distributed
computers. Unfortunately, parallel programs are more difficult to write, debug, evaluate,
optimize, and understand than serial programs because of the concurrency they manifest.
Programmers must coordinate and synchronize communication between processes, they
must control access to shared resources, and they must carry these actions out as efficiently
as possible.

One approach to facilitating the growth of parallel and distributed programming involves
the development of new programming languages and new hardware. Recently, however, re
searchers have begun to focus on the importance of good software tools to assist developers
of concurrent programs[Che93, PC94]. These tools include debuggers, performance moni
tors, execution analysis and replay tools, and other aids.

Our research also has focused on tools for program understanding and development,
but we have a different emphasis: software visualization tools[SP92]. A key component
of understanding a program execution is knowing what is occurring in the program, how
individual processes are working, and how they are communicating. By visualizing the
operations of a program, we help convey to the programmer what those operations are, and
if they are behaving in the desired manner.

Software visualization taps into the highly developed visual systems of humans. People
have a tremendous ability to track patterns, observe images, and detect anomalies in the
things they see. A well constructed picture, diagram, or visualization can communicate
much more information in a small space than a corresponding textual description[Tuf83,
Tuf90].

Recently, increasing attention has focused on the use of software visualization to assist
parallel programming (see [KS93] in particular and [CE93] for a collection of articles on this
topic). This paper is a progress report on a project called PARADE (PARallel program
Animation Development' Environment) that was started in 1991. Its goal was to develop
an environment that facilitates the creation and use of visualizations by programmers de
veloping concurrent programs. A report roughly summarizing the original proposal for the
project can be found in [SAK91]. Primary support for the project has been a three year
National Science Foundation grant (CCR-9121607). Portions of the project also have been
supported by Kendall Square Research and by an Intel Graduate Fellowship.

In the remainder of this report we describe the current status of the PARADE environ
ment and we describe the components and sub-projects within it.

2 Overview

A number of objectives have guided our efforts in building the PARADE environment:

• PARADE should support visualizations of many different types of programs from
different architectures, different programming models and languages, and different
applications. It should support the creation of automatic, canonical program views as
well as application-specific, algorithm animation style views. It should support both
performance visualizations and correctness visualizations.

1

Program of
interest

for (i=l2; ..)

x=l7;

Execution and
trace data
collection

Events .. Scenes ...

Analysis

POLKA animation
displays

Figure 1: PARADE system overview, highlighting the three major components.

• The environment should be easy to use. A developer need not be a graphics expert
to work with it.

• The visualizations developed in the environment should be relatively sophisticated
and also aesthetically pleasing. They should support color, animation, and be able to
depict concurrency in a program's execution.

• The environment should support visualizations that portray other feasible program
executions. That is, a viewer,may wish to examine a program execution as it occurred
with respect to a global clock, as it occurred under some logical clock ordering[Lam78],
or as it might have occurred under some other valid event ordering.

It is easy to see how these objectives have led us to develop a flexible environment with
many different components and tools, as opposed to a monolithic system built to do only one
thing. In fact, the PARADE environment can be conceptualized as having three primary
components. Figure 1 presents a high-level overview of the organization of PARADE.

The first component is the program monitoring aspect of the environment. Basically, to
drive a visualization, information about the program's execution is required. Many details
about the execution must be known in order to build an appropriate visual presentation of
it.

The third component of the environment, shown to the right side of Figure 1, is the
support visualization/animation system. In PARADE the Polka animation system is used
to build all the graphical views. Polka runs on top of the X Window System and it achieves
the objectives mentioned earlier.

The second or middle component of the environment provides the mapping from pro
gram execution data to appropriate visualization actions. In PARADE, simple mappings
are possible, but usually we utilize a system called the Animation Choreographer. The
Choreographer's primary functionality is to control the temporal mapping of program oper-

2

ations to visualization actions. In particular, it provides the capability to view animations
of the program execution under different logical orderings of program events or operations.

In the next section we expand on the descriptions of these three components and describe
our progress to date on each.

3 PARADE Components

3.1 Program Monitoring

To build a visualization of a program execution, adequate descriptive information about
the execution is required. For example, a programmer may want to know which processes
are active, which functions are being invoked, what the values of variables are, and so on.
Often, this program monitoring can be the most challenging problem in building a software
visualization.

In order to learn about a program's execution, we must instrument it at some level to
transmit tracing information. Hardware level instrumentation is sometimes available, but it
is usually too low level except for things such as performance monitoring. Therefore, we rely
on software-level instrumentation which can be utilized at many levels such as the operating
system, the run-time system, system-supplied libraries, libraries used as alternatives to
system-supplied libraries, or in the source code of the program under study. Typically,
software level instrumentation is very machine and language specific, however, so building
a general monitoring mechanism is unrealistic. In PARADE we utilize techniques that are
specific to the machine and language of the intended application, but all these different
techniques have some common, general principles.

Perturbation of the program under study is also a side effect of instrumentation. In
PARADE we have not focused on the perturbation issue. We simply make an effort to
minimize its influence whenever possible using established techniques.

A key issue in program monitoring is whether the software visualization will run on-line
(display as the program runs with some relative time delay) or post-mortem (the program
produces a trace which is post-processed at a later time). In PARADE our primary method
of operation is to use post-mortem visualization with trace files. This is necessary to take
full advantage of the Animation Choreographer. It also allows us to minimize perturbation,
as we can utilize substantial buffering in our software-level instrumentation.

The techniques for performing on-line visualization in PARADE involve mechanisms
to transmit program events to the animation component in a timely fashion. It is more
complex than a simple transmit/receive action though. Such an approach breaks down ·
due to transmission latency or lack of synchronization in timestamps across processes. For
instance, it would not be uncommon for the animation to receive a message receive program
event before the corresponding message send program event. Our approach uses filters that
preserve the causal ordering of program events by applying simple ordering rules to the
event transmissions[G EK+94].

To generate post-mortem visualizations with PARADE, the primary method used in
the environment, we utilize three different software instrumentation techniques. Below we
describe these in decreasing level of programmer involvement.

3

The most basic way to gather execution information is to have the programmer hand
annotate his or her source code with output statements. Typically, a print statement is
added that will produce a line of output containing the event name or type, a process-id, a
timestamp if available and any other event specific parameters. The programmer can have
all processes write to one file (contention is a clear problem here) or each process can write
its information to a unique file. Because of the direct programmer involvement and amount
of work required, this method can be time-consuming and error-prone. Nevertheless, it
is the one method that is truly general, and it is the method that can produce the most
detail about a program's execution. For example, if a visualization requires the value of a
program variable at key points, hand annotation may be the only adequate instrumentation
technique.

The second method of software instrumentation we have utilized is to override a stan
dard parallel communication library with a set of replacement macros. For example, KSR
machines provide a C library called pthreads that includes basic process control and commu
nication calls such as pthread_create, pthread....mutex_ini t, pthread_barrier _checkin,
and so on. We have developed a set of macros called gthreads that can be used to mon
itor KSR pthreads programs[ZS95]. In essence, we define a macro for each pthread call
that first writes a trace event of that call, then calls the original pthread routine. Because
this method can only trace actions that correspond to pthreads routines, we added two
supplemental calls, gthread_enter and gthread_back, that programmers can add to their
source. These macros are used to signal function entry and exit, tracing information not
available from the basic pthreads calls. The monitoring information from all these macros
serves as the input to a visualization package we have developed for KSR pthreads pro
grams. It will be discussed more thoroughly in the next section. The pthreads monitoring
macros are available via anonymous ftp from the machine ftp. cc. gatech. edu as the file
pub/people/stasko/gthread.KSRtracing.tar.Z.

The third and least programmer-involved method we have used to gather post-mortem
trace information is to actually modify the resident parallel communication library for a
system. We utilize this approach with Conch, an experimental heterogeneous network
computing system[BFK+94]. Conch contains communication primitives for send-receive
communication, barriers, rendezvous, and so on. We have modified the native code of these
routines to support run-time activation or deactivation of the trace prod uction[TSS94]. At
run-time the programmer simply specifies a command-line flag to turn on tracing. We also
have provided a way to gather more "subtle," application-specific trace information from a
Conch program, that is, information not available from the communication calls. We have
added the routine c_parade~og() that a programmer can place anywhere in source code.
This routine generates a trace event in a manner similar to a C printf statement, but it
only works when tracing is turned on.

Our monitoring techniques in Conch also are unique in the addition of logical clock times
tamping. Determining an ordering of events across processors is difficult in a distributed
system. We have added a logical clock to the system to help alleviate this problem.

The monitoring in Conch occurs with minimal perturbation as well. Program execution
times with tracing on are quite close to those without tracing.

All these techniques to extract program execution data have a common element. They
produce trace records or events that capture important operations in a program. In PA
RADE we have developed a specification file format that captures and describes what this

4

monitoring information will be for a particular program. Below is an example of a simple
event specification file.

KSR_C
1

INIT:id INIT:_synch pid:d ts:d
INPUT:id pid:d ts:d index:d value:d
READY:id pid:d ts:d index:d
EXCHANGE:id pid:d ts:d from:d to:d
FORK:id FORK:_synch pid:d ts:d forkedpid:d

The first line always describes the environment (machine and language) of the program,
and the second line tells the field in which the event type or name will appear in all the
event records. Subsequent lines describe the different event types and detail the trailing
arguments of each. Left-hand sides provide parameter names which can be special reserved
symbols such as pid (process-id) or ts (timestamp), or they can be user defined values such
as index. Right hand sides of parameters specify the type (printf argument style) of the
parameter.

We also have created these type of specification format files for the other two primary
components of the PARADE environment: the visualization and the event-to-visualization
mapping. All three specification files are used as input to the Animation Choreographer
when a user generates a software visualization of a program execution. Details of this
process will be described later in the report.

3.2 Visualizations

Visualizations in PARADE are built using the Polka animation system[SK92, SK93]. Polka
supports color, 2-D visualizations, and in particular, it provides high-level primitives for
smooth animation effects. It also supports independent scheduling and execution of anima
tion actions, thus permitting easy design of concurrent animation scenarios.

This last capability is important because of the number of different ways a concurrent
program may execute. On one run, an essentially serial ordering of operations may occur,
and the animation of the program should reflect this. On another run, a number of oper
ations may occur concurrently (or be thought of as logically concurrent) and the program
animation should illustrate this concurrency. Most importantly, the same visualization code
should suffice to illustrate both scenarios; the animation designer should not be forced to
write different code for each potential scenario. Polka meets these expectations.

Polka provides an object-oriented design model to developers. Animations can include
any number of windows or Views. Within a View, a designer utilizes Location, AnimObject,
and Action objects to implement the animation activities. The focus of the system has been
to provide sophisticated graphics capabilities, yet keep the paradigm easy to learn and use.
Very expressive, complex animations can be developed with relatively little code.

Polka is implemented in C++ on top of the X Window System and Motif. It is
available via anonymous ftp as the file pub/people/ stasko/polka. tar. Z on the machine
ftp. cc. gatech. edu. Detailed documentation and example animations are provided with

5

the distribution. We also have developed a 3-D version of Polka written in GL on Silicon
Graphics workstations[SW92, SW93]. We have used it to develop a number of interesting
software visualizations of parallel programs as well.

As was done in the program monitoring component, we have created a specification
format describing a Polka visualization. A sample visualization specification appears below.

View BlocksView qsort.H
Init name:s
Input pid:d ts:d pos:d value:f
Ready pid:d ts:d totalnurn:d
Exchange pid:d ts:d pos1:d pos2:d

View Chart qsort.H
Init name:s
Bounds ts:d pid:d nurn:d
Swap ts:d pid:d pos1:d pos2:d

The two sections here define the two different Views (windows) of the animation. This
particular animation is the one discussed in the next paragraph. Below each View name
(with the file in which the include information appears) are listed the individual animation
scenes (C++ member functions) provided by the View. The first argument is the scene
name and the trailing arguments are the parameters to the scene function.

Many different software visualizations and animations of concurrent programs have been
built using Polka. At one level, it is possible to build an application-specific visualization of
a particular program by writing the Polka code oneself. For instance, Figure 2 shows a two
View animation of a parallel quicksort program. The left View shows the classic algorithm
animation style blocks sorting view (we use color to indicate the process responsible for
a comparison or exchange of an element) and the right View encodes time along its y

dimension to portray the history of exchanges in the program. This entire animation with
smooth motion and potentially concurrent animation effects takes only 175 lines of Polka
code.

At a second level, it is possible to use Polka to build a canonical view library for a
particular machine or programming paradigm. Then, software developers simply use the
library as an application-they write no Polka code themselves.

We have done this for a few different programming paradigms. Figure 3 shows the set
of views built for the KSR pthreads package mentioned earlier in the Program Monitoring
section[ZS95]. These views highlight the state of threads, barriers, and mutexes; They show
where each thread is within the program call graph, and ~hey show a history of the threads
over time.

Figure 4 shows the set of views developed for the Conch distributed system also men
tioned earlier[TSS95b]. Here, views show message communication between processes, the
status of different processing elements, and the history of the computation. We currently
also are developing a visualization library for the PVM[Sun90] distributed system[TSS95a].
It will soon be available via anonymous ftp at the site mentioned at the end of this report.

Figure 5 shows our preliminary work in building a view library for High Performance
FORTRAN programs. Individual views here show the processor grid, data distribution,

6

Figure 2: Two Views from an application-specific animation of a parallel quicksort program.

Figure 3: Library of views ued to illustrate KSR pthreads programs.

7

Figure 4: Library of views used to illustrate Conch programs. Particular importance is paid
to message sends and receives.

8

Figure 5: Library of views used to illustrate High Performance FORTRAN programs. This
view illustrates important arrays in the program. Color is used to indicate the different
processors.

and the important arrays manipulated in the program. Color, image flashing, and arrows
are used to indicate data access, movement, and work between the processors.

Finally, views of the state of cthreads programs have been developed using Polka as
well[GEK+94].

Moving to the actual design of animations themselves, one key challenge is how to "scale
up" the views. That is, how do we visualize very large programs or execution of programs
on very large data sets? We utilize a concept called semantic zooming that is useful in
such situations[MS95]. With semantic zooming, we can present the entire program and
its data set within one view by using abstraction and clustering. From there viewers can
interactively select graphical objects to zoom in on are~ of interest. But rather than zoom
in by a straightforward magnification, the view adjusts to the next semantic level and the
presentoation may change dramatically.

Figure 6 shows the data in a parallel sort of 10,000 elements. Each rectangle represents
a contiguous 10% of the values being sorted, and geometric properties of each rectangle
depict the maximum, minimum, average, and sortedness of the region. When a rectangle
is selected, a new view is shown, focusing only on the selected portion of the array. As less
and less elements are shown in the view, the presentation adjusts to provide more detail.

We also have used the Polka-3D system to build visualizations of large programs. In
particular, we used natural 3-D perspective and zooming to depict executions of program
running on a MasPar machine[WS93].

9

Figure 6: Visualization of sort of 10,000 elements using a semantic zooming technique. This
animation allows a viewer to examine characteristics of the entire data set and to zoom in
on particular regions of the array.

10

To further help simplify the development of Polka visualizations, we are currently work
ing on a tool that will allow users to build visualizations without any textual graphics coding.
The tool will provide a number of view templates for things such as scalar variable views,
grids, graphs, charts, etc. Individual attributes of these views such as size, color, level, and
value will be modifiable through point-and-click direct manipulation means. Each attribute
will be able to be "attached" to particular values from program events. The designer will
be able to interactively specify the mapping between the two.

3.3 Program-to-Animation Mapping

The third component of the PARADE environment is the mapping from program executions
to their animations. At a first glance this may seem unnecessary-Whenever an event or
a state change occurs in a program, we could simply display the corresponding animation.
This solution might be sufficient for serial programs, but we believe it is inadequate for
concurrent programs.

One basic problem with this approach is how to decide when to display concurrent
animations (program execution events) in a view window. If the timestamp between two
events is very small, are they concurrent? Similarly, if two events can logically be thought
of as simultaneous (or potentially simultaneous), are they concurrent?

In the PARADE framework, we believe these questions must be answered by the pro
grammer or viewer. That is, we define a number of different temporal perspectives under
which an animation of a program execution ·can be viewed. We provide a system and in
terface, the Animation Choreographer, that allows a viewer to interactively choose one of
these perspectives and to further adjust the perspective interactively[KS94a, KS94b].

The Animation Choreographer of PARADE must know the operations of the program
being visualized, the set of available animation views and scenes, and the mappings between
these two sets. The first two are described by the event and visualization specification files
described in the prior two sections. The third is described by a mapping specification file,
an example of which is shown below.

INIT -> BlocksView.Init 1 ti 3
INIT -> Chart.Init ti 1
1 -> BlocksView.NewVal 1 ti 4
READY-> Chart.Axes ti 1 ~0.0 ~10.0

Each line defines a program event to animation scene mapping. The first line states that an
INIT event in the program should be presented by calling the Init scene of the Blocks View
view. The trailing parameters describe which arguments of the program event should be
passed to the scene, whose parameters are specified in the linear order in which they appear.
Values preceded by the '@' character mean to always pass a literal value to the scene for
that parameter. The 'ti' characters mean that the Choreographer should pass the time
(when to schedule the animation actions) in as that parameter.

Once the Choreographer has these three specification files, it knows how to proceed
with generating animations for this program. We use a Choreographer generator program
that reads all three specification files and outputs the source code for a Choreographer
appropriate to this particular animation. This source code is compiled together with generic

11

Choreographer code and the Polka animation code to generate the final binary. At run-time
the Animation Choreographer reads the set of post-mortem trace files from a program, then
it is ready for interaction. A summary of this framework in PARADE is shown in Figure 7.

The Animation Choreographer portrays a program execution as a directed acyclic graph
whose nodes are events. This depiction is presented in Figure 8. Each column corresponds
to a process or thread, and time starts from the top of the display and proceeds downward.
Dependences between events, such as a send-receive pair, are indicated by an edge between
the events.

The Ordering menu at the top contains our default temporal orderings of program
events. Currently, it includes

• Timestamp - Portray the events at times consistent and relative to how they oc
curred with respect to a global clock.

• Serial - Portray a serialization of all the events using their causal order.

• Minimal distortion - Portray the events relative to how they occurred in global
time, but resolve problems in the logical or causal order.

• Maximum concurrency - Portray the events as they would occur to generate max
imum concurrency under their causal ordering.

When a viewer selects one of these options, the presented event graph adjusts itself
to reflect the selected ordering. Choosing the Run option then starts the animation of
the program execution under that temporal ordering. When the maximum concurrency
ordering is chosen, for instance, the animation displays have many concurrent animation
actions occurring at once. When timestamp order is chosen, one often encounters large
bursts of animation followed by idle periods, thus mimicking (of course at a slower rate)
the actual program execution.

To achieve this functionality we needed to analyze the semantics of the different commu
nication and synchronization operations of the program being examined. Obviously, these
primitives vary between machines, architectures, and languages. Currently, the Choreogra
pher "understands" shared memory type primitives as exemplified by cthreads or pthreads
(barrier, mutex, condition, etc.) and message passing primitives common on distributed
systems such as PVM and Conch. We continue to add more semantics.

Additionally in PARADE we have built a few animations not using the Animation
Choreographer to do mappings. Essentially, these animations use a particular hard-wired
choice of one of the Choreographer mappings. When a particular perspective is sought and
a low-tech solution is sufficient, this approach is reasonable.

4 Using PARADE

In this section we briefly summarize how programmers use the PARADE environment to
visualize their programs and code. Let us begin with the case where the program trace events
are generated "automatically" (tracing of parallel primitives has been activated through a
macro or run-time library approach) and the visualization is predefined. This is the situation
with the KSR pthreads and the Conch visualizations discussed in prior sections. In this

12

Program event
specification

Generic choreographer
object code

I
I

Event records
from
parallel

_ program
..__

Mapping
specification

Animation view
specification

Choreographer
generator program

Generate

Application-specific
choreographer
source code

Application-specific
choreog. object code

Link

Compile

View-specific, trace-format specific
Animation Choreographer

View-specific
animation code
(POLKA)

View-specific animation
object code

..
POLKA
displays

Figure 7: Overview of how the Choreographer fits within the PARADE environment.

13

Figure 8: User interface for the Animation Choreographer that presents the ordering and
constraints between program execution events.

14

case, Animation Choreographers for each of these programming environments can be pre
developed since all three specification files are known a priori. Consequently, a programmer
simply runs his or her program, gathers the trace files, and then invokes the appropriate
Choreographer with the trace files' name as an argument. The Choreographer starts up,
displays the graph interface, and allows the viewer to interact with it in order to view ·
animations of program executions under different temporal orderings.

Now consider a scenario in which a programmer is building an application-specific,
algorithm animation style visualization ofa program. Here, the programmer must generate
semantic events beyond the simple parallel primitives, and the programmer hand codes the
visualization with Polka. In this situation, the programmer carries out the steps below to
generate a PARADE visualization. 1 Figure 7 can be used as a helpful summary of this
process also.

la. Design and implement the Polka animation views and scenes for the visualization.
Compile this code to make an object file.

1 b. Annotate the concurrent program with output statements so that it generates the
desired trace events. Run the program and gather the trace files.

2. Create the program event, visualization, and mapping specification text files.

3. Run the Animation Choreographer generator program with the three specification files
as input. It will generate source code for the application-specific Choreographer used
in the next step.

4. Compile the Choreographer source code and link it with the Polka scenes code from
step la and the generic Animation Choreographer object code in order to create the
Choreographer binary.

5. Run the Animation Choreographer, giving it the trace files from step lb as input. Now
the viewer interacts with the interface and watches animations.

Clearly, this last scenario is involved enough so that it is impractical for day-to-day
debugging chores. Rather, it is useful when a particular program requires detailed study
or a person wants to prepare a visualization a.S an explanatory instructional aid. The first
scenario in which a programmer simply runs their program and then invokes a pre-built
Choreographer is appropriate for program testing, debugging, and optimization chores, we
believe.

5 Conclusion

In this article we have described the current status of the PARADE environment for vi
sualizing concurrent program executions. PARADE consists of three primary components:
Program monitoring and tracing, a visualization system, and the mapping from program
actions to their visualizations. Currently, a number of different projects are underway in
each of these components. This report has provided a brief summary of those efforts and it
also serves as a reference on where to acquire more detailed information about them.

1 Lettered steps within one number signify that they can be done in any order. The numerical steps must
be carried out in the specified order.

15

6 Acknowledgments

PARADE has been and is the cumulative effort by a group of people. Bill Appel be, Charles
Hardnett, Eileen Kraemer, Song Liang, Jeyakumar Muthukumarasamy, John Stasko, Brad
Topol, Joe Wehrli, and Alex Zhao all have contributed to the project. PARADE has
been supported by the National Science Foundation under grant CCR-9121607, Kendall
Square Research and an Intel Graduate Fellowship. For up-to-date information on the
status of PARADE and publications ·relating to it, please examine the World Wide Web
page http: I /www. cc. gatech. edu/ gvu/ softviz/parviz/parviz. html. All ftp-able soft
ware mentioned in this article can be found on the machine ftp. cc. gatech. edu in the
directory pub/people/stasko. All GVU technical reports referenced here can be acquired
via ftp also, on the same machine in the directory pub/gvu/tech-reports.

References

[BFK+94] Doug Bowman, Adam Ferrari, Melisa Kelley, Brian Schmidt, Brad Topol, and
Vaidy Sunderam. The Conch network concurrent programming system. Tech
nical report, Emory University, Atlanta, GA, January 1994.

[CE93] Thomas L. Casavant (Editor). Special issue on tools and methods for visualiza
tion of parallel systems and computation. Journal of Parallel and Distributed
Computing, 18(2), June 1993.

[Che93] Darren Y. Cheng. A survey of parallel programming languages and tools. Tech
nical Report RND-93-005, NASA Ames Research Center, Moffett Field, CA,
March 1993.

[GEK+94] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko,
Jeffrey Vetter, and Nirupama Mallavarupu. Falcon: on-line monitoring and
steering of large-scale parallel programs. Technical Report GIT-CC-94-21, Col
lege of Computing, Georgia Institute of Technology, Atlanta, GA, April 1994.

[KS93] Eileen Kraemer and John T. Stasko. The visualization of parallel systems: An
overview. Journal of Parallel and Distributed Computing, 18(2):105-117, June
1993.

[KS94a] Eileen Kraemer and John T. Stasko. Toward flexible control of the temporal
mapping from concurrent program events to animations. In Proceedings of the
8th International Parallel Processing Symposium (IPPS '94), pages 902-908,
Cancun, Mexico, April 1994.

[KS94b] Eileen Kraemer and John T. Stasko. Toward flexible control of the temporal
mapping from concurrent program events to animations. Technical Report GIT
GVU-94/10, Graphics, Visualization, and Usability Center, Georgia Institute of
Technology, Atlanta, GA, March 1994.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

16

[MS95] Jeyakumar Muthukumarasamy and John T. Stasko. Visualizing program ex
ecutions on large data sets using semantic zooming. Technical Report GIT
GVU-95/02, Graphics, Visualization, and Usability Center, Georgia Institute of
Technology, Atlanta, GA, January 1995.,

[PC94] Cherri M. Pancake and Cutis Cook. What users need in parallel tool support:
Survey results and analysis. In Proceedings of the Scalable High Performance
Computing Conference (SHPCC '94), pages 40-47, Knoxville, TN, May 1994.

[SAK91] John T. Stasko, William F. Appelbe, and Eileen Kraemer. Utilizing program
visualization techniques to aid parallel and distributed program development.
Technical Report GIT-GVU-91/08, Graphics, Visualization, and Usability Cen
ter, Georgia Institute of Technology, Atlanta, GA, June 1991.

[SK92] John T. Stasko and Eileen Kraemer. A methodology for building application
specific visualizations of parallel programs. Technical Report GIT-GVU-92-10,
Graphics, Visualization, and Usability Center, Georgia Institute of Technology,
Atlanta, GA, June 1992.

[SK93] John T. Stasko and Eileen Kraemer. A methodology for building application
specific visualizations of parallel programs. Journal of Parallel and Distributed
Computing, 18(2):258-264, June 1993.

[SP92] John T. Stasko and Charles Patterson. Understanding and characterizing soft
ware visualization systems. In Proceedings of the 1992 IEEE Workshop on Visual
Languages, pages 3-10, Seattle, WA, September 1992.

[Sun90] V.S. Sunderam. PVM: A framework for parallel distributed computing. Con
currency: Practice f3 Experience, 2(4) :315-339, December 1990.

[SW92] John T. Stasko and Joseph F. Wehrli. Three-dimensional computation visualiza
tion. Technical Report GIT-GVU-92-20, Graphics, Visualization, and Usability
Center, Georgia Institute of Technology, Atlanta, GA, September 1992.

/

[SW93] John T. Stasko and Joseph F. Wehrli. Three-dimensional computation visualiza
tion. In Proceedings of the 1993 IEEE Symposium on Visual Languages, pages
100-107, Bergen, Norway, August 1993.

[TSS94] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. Integrating visualization
support into distributed computing systems. Technical Report GIT-GVU-94/38,
Graphics, Visualization, and Usability Center, Georgia Institute of Technology,
Atlanta, GA, October 1994.

[TSS95a] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. The dual timestamping
methodology for visualizing distributed applications. Technical Report GIT-CC-
95/21, College of Computing, Georgia Institute of Technology, Atlanta, GA, July
1995. Submitted to IEEE Parallel and Distributed Technology.

[TSS95b] Brad Topol, John T. Stasko, and Vaidy S. Sunderam. Integrating visualization
support into distributed computing systems. In Proceedings of the 15th Interna
tional Conference on Distributed Computing Systems, pages 19-26, Vancouver,
B.C., May 1995.

17

[Tuf83]

[Tuf90]

[WS93]

[ZS95]

Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT, 1983.

Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.

Joseph Wehrli and John Stasko. Interactive three-dimensional visual debugging
in massively parallel computation (extended abstract). In Proceedings of the
1993 ACM/ONR Workshop on Parallel and Distributed Debugging, pages 235-
237, San Diego, CA, May 1993.

Qiang A. Zhao and John T. Stasko. Visualizing the execution of threads-based
parallel programs. Technical Report GIT-GVU-95/01, Graphics, Visualization,
and Usability Center, Georgia Institute of Technology, Atlanta, GA, January
1995.

18

