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This paper presents a self-improving reactive control system for autonomous robotic navigation.
The navigation module uses a schema-based reactive control system to perform the navigation task.
The learning module combines case-based reasoning and reinforcement learning to continuously
tune the navigation system through experience. The case-based reasoning component perceives
and characterizes the system’s environment, retrieves an appropriate case, and uses the recom-

mendations of the case to tune the parameters of the reactive control system. The reinforcement

learning component refines the content of the cases based on the current experience. Together,

the learning components perform on-line adaptation, resulting in improved performance as the

reactive control system tunes itself to the environment, as well as on-line case learning, result-

ing in an improved library of cases that capture environmental regularities necessary to perform
on-line adaptation. The system is extensively evaluated through simulation studies using several

performance metrics and system configurations.

1 Introduction

Autonomous robotic navigation is defined as the task
of finding a path along which a robot can move safely
from a source point to a destination point in an
obstacle-ridden terrain, and executing the actions to
carry out the movement in a real or simulated world.
Several methods have been proposed for this task,
ranging from high-level planning methods to reactive
control methods.

High-level planning methods use extensive world
knowledge and inferences about the environment they
interact with (Fikes, Hart & Nilsson, 1972; Sacerdoti,
1975; Georgeff, 1987; Maes, 1990). Knowledge about
available actions and their consequences is used to for-
mulate a detailed plan before the actions are actually
executed in the world. Such systems can successfully
perform the path-finding required by the navigation
task, but only if an accurate and complete represen-
tation of the world is available to the system. Con-
siderable high-level knowledge is also needed to learn
from planning experiences (e.g., Mostow & Bhatnagar,
1987; Minton, 1988; Segre, 1988; Hammond, 1989).
Such a representation is usually not available in real-
world environments, which are complex and dynamic
in nature. To build the necessary representations, a
fast and accurate perception process is required to re-
liably map sensory inputs to high-level representations
of the world. A second problem with high-level plan-

ning is the large amount of processing time required,
resulting in significant slowdown and the inability to
respond immediately to unexpected situations.
Situated or reactive control methods have been pro-
posed as an alternative to high-level planning methods
(Brooks, 1986; Kaelbling, 1986; Payton, 1986; Arkin,
1989). In these methods, no planning is performed;
instead, a simple sensory representation of the envi-
ronment is used to select the next action that should
be performed. Actions are represented as simple be-
haviors, which can be selected and executed rapidly,
often in real-time. These methods can cope with un-
known and dynamic environmental configurations, but
only those that lie within the scope of predetermined
behaviors. Furthermore, such methods cannot modify
or improve their behaviors through experience, since
they do not have any predictive capability that could
account for future consequences of their actions, nor a
higher-level formalism in which to represent and rea-
son about the knowledge necessary for such analysis.
We propose a self-improving navigation system that
uses reactive control for fast performance, augmented
with multistrategy learning methods that allow the
system to adapt to novel environments and to learn
from its experiences. The system autonomously and
progressively constructs representational structures
that aid the navigation task by supplying the pre-
dictive capability that standard reactive systems lack.
The representations are constructed using a hybrid
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case-based and reinforcement learning method without
extensive high-level reasoning. The system is very ro-
bust and can perform successfully in (and learn from)
novel environments, yet it compares favorably with
traditional reactive methods in terms of speed and
performance. A further advantage of the method is
that the system designers do not need to foresee and
represent all the possibilities that might occur since
the system develops its own “understanding” of the
world and its actions. Through experience, the sys-
tem is able to adapt to, and perform well in, a wide
range of environments without any user intervention
or supervisory input. This is a primary characteristic
that autonomous agents must have to interact with
real-world environments.

This paper is organized as follows. Section 2
presents a technical description of the system, includ-
ing the schema-based reactive control component, the
case-based and reinforcement learning methods, and
the system-environment model representations, and
places it in the context of related work in the area.
Section 3 presents several experiments that evaluate
the system. The results shown provide empirical val-
idation of our approach. Section 4 concludes with a
discussion of the lessons learned from this research and
suggests directions for future research.

2 Technical Details

2.1 System Description

The Self-Improving Navigation System (SINS) consists
of a navigation module, which uses schema-based re-
active control methods, and an on-line adaptation and
learning module, which uses case-based reasoning and
reinforcement learning methods. The navigation mod-
ule is responsible for moving the robot through the
environment from the starting location to the desired
goal location while avoiding obstacles along the way.
The adaptation and learning module has two responsi-
bilities. The adaptation sub-module performs on-line
adaptation of the reactive control parameters being
used in the navigation module to get the best perfor-
mance. The adaptation is based on recommendations
from cases that capture and model the interaction of
the system with its environment. With such a model,
SINS is able to predict future consequences of its ac-
tions and act accordingly. The learning sub-module
monitors the progress of the system and incrementally
modifies the case representations through experience.
Figure 1 shows the SINS functional architecture.

The main objective of the learning module is to con-
struct a model of the continuous sensorimotor inter-
action of the system with its environment, that is, a
mapping from sensory inputs to appropriate behav-
ioral (schema) parameters used for reactive control.
This model allows the adaptation module to control
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the behavior of the navigation module by selecting and
adapting schema parameters in different environments.
To learn a mapping in this context is to discover envi-
ronment configurations that are relevant to the naviga-
tion task and corresponding schema parameters that
improve the navigational performance of the system.
The learning method is unsupervised and uses a re-
ward that depends on the similarity of the observed
mapping in the current environment to the mapping
represented in the model combined with a more tra-
ditional punishment signal. This causes the system to
converge towards those mappings that are consistent
and beneficial over a set of experiences.

The representations used by SINS to model its in-
teraction with the environment are initially under-
constrained and generic; they contain very little use-
ful information for the navigation task. As the system
interacts with the environment, the learning module
gradually modifies the content of the representations
until they become useful and provide reliable informa-
tion for adapting the navigation system to the partic-
ular environment at hand.

The learning and navigation modules function in an
integrated manner. The learning module is always try-
ing to find a better model of the interaction of the
system with its environment so that it can tune the
navigation module to perform its function better. The
navigation module provides feedback to the learning
module so it can build a better model of this interac-
tion. The behavior of the system is then the result of
an equilibrium point established by the learning mod-
ule which is trying to refine the model and the environ-
ment which is complex and dynamic in nature. This
equilibrium may shift and need to be re-established
if the environment changes drastically; however, the
model is generic enough at any point to be able to
deal with a very wide range of environments.

We now present the reactive module, the represen-
tations used by the system, and the methods used by
the learning module in more detail.

2.2 The Navigation Module

The navigation module, which uses schema-based re-
active control methods, is based on the AuRA archi-
tecture (Arkin, 1989). The module consists of a set
of motor schemas that represent the individual motor
behaviors available to the system. Each schema re-
acts to sensory information from the environment, and
produces a velocity vector representing the direction
and speed at which the robot is to move given current
environmental conditions. The velocity vectors pro-
duced by all the schemas are then combined to produce
a potential field that directs the actual movement of
the robot. Simple behaviors, such as wandering, ob-
stacle avoidance, and goal following, can combine to
produce complex emergent behaviors in a particular
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Figure 1: System architecture

environment. Different emergent behaviors can be ob-
tained by modifying the simple behaviors. This allows
the system to interact successfully in different environ-
mental configurations requiring different navigational
“strategies” (Ram, Arkin, Moorman, & Clark, 1992).

A detailed description of schema-based reactive con-
trol methods can be found in Arkin (1989). In this re-
search, we used three motor schemas: AvOID-STATIC-
OBSTACLE, MoVE-To-GoAL, and NOISE. AvoID-
STATIC-OBSTACLE directs the system to move it-
self away from detected obstacles. MoVE-To0-GOAL
schema directs the system to move towards a particu-
lar point in the terrain. The NoISE schema makes the
system move in a random direction; it is used to es-
cape from local minima and, in conjunction with other
schemas, to produce wandering behaviors. Each motor
schema has a set of parameters that control the poten-
tial field generated by the motor schema. In this re-
search, we used the following parameters: Obstacle-
Gain, associated with AvoID-STATIC-OBSTACLE, de-
termines the magnitude of the repulsive potential field
generated by the obstacles perceived by the system;
Goal-Gain, associated with MovE-To-GoAL, deter-
mines the magnitude of the attractive potential field
generated by the goal; Noise-Gain, associated with
Noise, determines the magnitude of the noise; and
Noise-Persistence, also associated with NOISE, de-
termines the duration for which a noise value is allowed
to persist.

Different combinations of schema parameters cause
different behaviors to be exhibited by the system (see
figure 2). Traditionally, parameters are fixed and de-
termined ahead of time by the system designer. How-
ever, on-line selection and modification of the ap-
propriate parameters based on the current environ-
ment can enhance navigational performance, as in the
ACBARR system (Ram, Arkin, Moorman & Clark,
1992). SINS adopts this approach by allowing schema

parameters to be modified dynamically. However, in
ACBARR, schema modification information is sup-
plied by the designer using hand-coded cases. Our
system, in contrast, can learn and modify its own cases
through experience. The representation of our cases is
also considerably different and is designed to support
reinforcement learning.

2.3 The System-Environment Model
Representation

The navigation module in SINS can be adapted to
exhibit many different behaviors. SINS improves its
performance by learning how and when to tune the
navigation module. In this way, the system can use
the appropriate behavior in each environmental con-
figuration encountered. The learning module, there-
fore, must learn about and discriminate between dif-
ferent environments, and associate with each the ap-
propriate adaptations to be performed on the motor
schemas. This requires a representational scheme to
model, not just the environment, but the interaction
between the system and the environment. However,
to ensure that the system does not get bogged down
in extensive high-level reasoning, the knowledge rep-
resented in the model must be based on perceptual
and motor information easily available at the reactive
level.

SINS uses a model consisting of associations be-
tween sensory inputs and schema parameters values.
Each set of associations is represented as a case. Sen-
sory inputs provide information about the configura-
tion of the environment, and schema parameter infor-
mation specifies how to adapt the navigation module
in the environments to which the case is applicable.
Each type of information is represented as a vector of
analog values. Each analog value corresponds to an
estimate of a quantitative variable (a sensory input or
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Figure 2: Typical navigational behaviors of different tunings of the reactive control module. The figure on the
left shows the non-learning system with high obstacle avoidance and low goal attraction. On the right, the
learning system has lowered obstacle avoidance and increased goal attraction, allowing it to “squeeze” through
the obstacles and then take a relatively direct path to the goal.

a schema parameter) over a window of time. A vector
represents the trend or recent history of such estimates
of a variable. A case models an association between
sensory inputs and schema parameters by grouping
their respective vectors together. Figure 3 shows an
example of this representation.

This representation has three essential properties.
First, the representation is capable of capturing a wide
range of possible associations between sensory inputs
and schema parameters. Second, it permits continuous
progressive refinement of the associations. Finally, the
representation captures trends or patterns of input and
output values over time. This allows the system to
detect patterns over larger time windows rather than
having to make a decision based only on instantaneous
values of perceptual inputs.

In this research, we used four input vectors to char-
acterize the environmental and discriminate among
different environment configurations:  Obstacle-
Density provides a measure of the occupied areas that
impede navigation; Absolute-Motion measures the
activity of the system; Relative-Motion represents
the change in motion activity; and Motion-Towards-
Goal specifies how much progress the system has ac-
tually made towards the goal. These input vectors are
constantly updated with the information received from
the sensors.

We also used four output vectors to represent the
schema parameter values used to adapt the naviga-
tion module, one for each of the schema parame-
ters (Obstacle-Gain, Goal-Gain, Noise-Gain, and
Noise-Persistence) discussed earlier. The values are
set periodically according to the recommendations of
the case that best matches the current environment.
The new values remain constant for a “control inter-

val” until the next setting period.

The choice of input and output vectors was based
on the complexity of their calculation and their rele-
vance to the navigation task. The input vectors were
chosen to represent environment configurations in a
generic manner but taking into account the processing
required to produce those vectors (e.g., obstacle den-
sity is more generic than obstacle position, and can be
obtained easily from the robot’s ultrasonic sensors).
The output vectors were chosen to represent directly
the actions that the learning module uses to tune the
navigation module, that is, the schema parameter val-
ues themselves.

2.4 The On-Line Adaptation And
Learning Module

This module creates, maintains, and applies the case
representations used for on-line adaptation of the reac-
tive module. The objective of the learning method is to
detect and discriminate among different environment
configurations, and to identify the appropriate schema
parameter values to be used by the navigation module,
in a dynamic and an on-line manner. This means that,
as the system is navigating, the learning module is
perceiving the environment, detecting an environment
configuration, and modifying the schema parameters
of the navigation module accordingly, while simulta-
neously updating its own cases to reflect the observed
results of the system’s actions in various situations.
The method is based on a combination of ideas from
case-based reasoning and learning, which deals with
the issue of using past experiences to deal with and
learn from novel situations (e.g., see Hammond, 1989;
Kolodner, in press), and from reinforcement learn-



Multistrategy Learning in Reactive Control Systems

Informatica 17(4) pages 347-369, 1993 5

value .
I’ ‘\
)
Obstacle Density I,‘ W
Co time
Absolute Motion PeTeT N o
Sensory Inputs | : *
Relative Motion ! OJEA_Q\\’_O
1 '
Vo
Motion Towards Goal | | ,,'/(/(‘\’—’
=2
Association use of .
\ resultsin
*l“\ 'I‘\‘
B
Obstacle Gain ! W
ol
Goal Gain RIS 0 PU
Control Outputs - I E
1 I
i
Noise Gain E m
o !
T
1 I i
Noise Persistence ! Mu—u—/
0 123 time

Figure 3: Sample representations showing the time history of analog values representing sensory inputs and

control outputs.

Associations between sensory inputs and control outputs are arranged vertically, and the

sequence of associations over time is arranged horizontally. Each case in the system is represented in this
manner, as is the current on-going navigational experience of the system.

ing, which deals with the issue of updating the con-
tent of system’s knowledge based on feedback from
the environment (e.g., see Sutton, 1992). However,
in traditional case-based planning systems (e.g., Ham-
mond, 1989) learning and adaptation requires a de-
tailed model of the domain. This is exactly what reac-
tive planning systems are trying to avoid. Earlier at-
tempts to combine reactive control with classical plan-
ning systems (e.g., Chien, Gervasio, & DeJong, 1991)
or explanation-based learning systems (e.g., Mitchell,
1990) also relied on deep reasoning and were typically
too slow for the fast, reflexive behavior required in re-
active control systems. Unlike these approaches; our
method does not fall back on slow non-reactive tech-
niques for improving reactive control.

To effectively improve the performance of the nav-
igation task, the learning module must find a consis-
tent mapping from environment configurations to con-
trol parameters. The learning module captures this
mapping in the learned cases, each case representing
a portion of the mapping localized in a specific envi-
ronment configuration. The set of cases represents the
system’s model of its interactions with the environ-
ment, which is adapted through experience using the
case-based and reinforcement learning methods. The
case-based method selects the case best suited for a
particular environment configuration. The reinforce-
ment learning method updates the content of a case to
reflect the current experience, such that those aspects

of the mapping that are consistent over time tend to
be reinforced. Since the navigation module implicitly
provides the bias to move to the goal while avoiding
obstacles, mappings that are consistently observed are
those that tend to produce this behavior. As the sys-
tem gains experience, therefore, it improves its own
performance at the navigation task. Additionally, the
reinforcement learning method uses a punishment sig-
nal to reject mappings that are not beneficial to the
system.

Each case represents an observed regularity between
a particular environmental configuration and the ef-
fects of different actions, and prescribes the values of
the schema parameters that are appropriate (as far as
the system knows based on its previous experience)
for that environment. The learning and adaptation
module performs the following tasks in a cyclic man-
ner: (1) perceive and represent the current environ-
ment; (2) retrieve a case whose input vector represents
an environment most similar to the current environ-
ment; (3) adapt the schema parameter values in use
by the reactive control module by installing the val-
ues recommended by the output vectors of the case;
and (4) learn new associations and/or adapt existing
associations represented in the case to reflect any new
information gained through the use of the case in the
new situation to enhance the reliability of its predic-
tions.

The overall algorithm is shown in table 1.
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do

/* PERCEIVE: Update input vectors =/
current_environment = perceive();

if ( end of control interval )
then {

/* LEARN: Decide whether to reinforce or explore x/
if ( outcome was good )
then {
reinforce_schemas (previous_case, current_environment);

/* LEARN: Decide if case should be extended %/
if ( prediction is good and at end of sequence )
then
extend_case (previous_case);

}

else
explore_schemas (previous_case);

/* RETRIEVE: Retrieve best case %/
best_case = retrieve_best_case(current_environment);

/* LEARN: Decide if a new case should be created x/
if ( best_case is not a good match )
then
best_case = create_case (current_environment);

/% ADAPT: Modify current set of schema parameters %/
adapt_schemas (best_case);

/* Wait until next cycle */
previous_case = best_case;

}

/% Mowve robot using the current set of schema parameters [
execute();

while (not (goal reached or maximum number of steps exceeded ))

Table 1: SINS algorithm

The perceive function constructs and maintains a
representation of the current environmental situation
by reading the robot’s sensors and updating the input
and output vectors accordingly. This results in a set
of J = 4 input vectors Einpmj, one for each sensory
input j, and K = 4 output vectors E,,;,u,, one for
each output vector k as described earlier. Then, every
control interval 7', the learning and adaptation module
performs two main functions: It adapts the schema pa-
rameters currently in use by the reactive control mod-
ule so that it performs better in the new environment,
and it learns useful sequences of associations between
environment situations and schema parameters.

Schema parameters are adapted using the re-
trieve_best_case and adapt_schemas functions. In
the retrieve_best_case function, the case most sim-
ilar to the current environment situation is selected
by matching the environment’s input and output vec-
tors Einpmj, E..ipu, from the perceive step against
the corresponding input and output vectors C?

input;)
Cipuy, Of the cases C" in the system’s memory (see
figure 4). The best matching case C"*=t and the

position of the best match p,., are handed to the
adapt_schemas function, which modifies the schema
parameter values currently in use based on the recom-
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mendations CThest,
put;

(Poest + 1) from the output vectors
of the case.

Finally, the learning and adaptation module decides
how to utilize information from the current experience
with the best case in order to improve its case library.
The system learns in three different ways: by improv-
ing the content of the case that was just used in order
to make it more reliable, by creating a new case when-
ever the best case retrieved is not good enough, or
by extending the length of the case in order to build
up longer sequences of associations. The contents of
a case are improved by the reinforce_schemas func-
tion, which reinforces the suggestions of the case if
these suggestions led to a favorable outcome over the
last control interval, and by the explore_schemas
function, which uses random exploration to try out
other schema parameter values if the suggested set of
values did not prove useful. The outcome is evaluated
by monitoring the behavior of the robot over the last
control interval; collisions are undesirable, as is lack of
movement.

One difference between our methods and traditional
reinforcement learning is that SINS is trying to maxi-
mize consistency in “useful” behaviors as determined
by a reward signal, whereas traditional reinforcement
learning tries to maximize the expected utility the sys-
tem is going to receive in the future as determined by
the reward signal (cf. Watkins, 1989; Whitehead &
Ballard, 1990). In schema-based reactive control nav-
igation, it is inherently a good idea to modify schema
parameters in an on-line fashion; however, not all mod-
ifications are equally good since some may cause the
robot to collide with obstacles or not to move at all.
SINS uses the reward signal to decide whether to re-
inforce a behavior or to explore alternative behaviors;
reinforcement, when chosen, is used to reinforce be-
haviors that are consistent across experiences. Thus,
in addition to external outcome, consistency is used
as an “internal” reward signal for the reinforcement
learning method.

Furthermore, traditional reinforcement learning as-
sumes that the outcomes of the system’s actions are
known; it learns which actions to execute to maxi-
mize a reward. In SINS, the outcomes of what corre-
sponds to “actions” (the adaptations to be performed
on the navigation module) are not known; part of the
learning task is to discover the sequences of environ-
mental situations are likely to result from a given se-
quence of adaptations and, in turn, which adaptations
are appropriate in different situations. Thus, SINS is
learning a model of its sensorimotor interaction with
the environment (represented as a set of cases) at the
same time as it is learning to improve its navigational
performance through on-line adaptation of its reactive
control schemas.

In addition to modifying its cases, SINS can also ex-
tend its cases and learn new cases. In order to decide
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Figure 4: Schematic representation of the match process. Each graph in the case (below) is matched against the
corresponding graph in the current environment (above) to determine the best match, after which the remaining
part of the case is used to guide navigation (shown as dashed lines).

which kind of learning to perform in a given situa-
tion, SINS uses a relative similarity criterion to judge
the appropriateness of the best matching case in the
current situation. This determination is based on sta-
tistical information about the quality of match in prior
applications of the case as compared to the quality of
match in the current situation. If the best matching
case is not as similar to the current environment sit-
uation as it has been in previous situations, the case
is probably inappropriate for this situation; thus, it is
better to learn a new case to represent what is prob-
ably a new class of situations. If this occurs, SINS
uses the create_new_case function to create a new
case based on the current experience and add it to the
case library. To determine whether to create a new
case, SINS compares the current match with the mean
match plus the standard deviation of the matches over
the past utilizations of the case. This ensures that new
sequences of associations are created only when the
available sequences of associations already captured in
the case library do not fit the current environment.

The third kind of learning is carried out by the ex-
tend_case_size function, which extends the length of
a case whenever the best case makes an accurate pre-
diction of the next environment situation and there
are no more associations in the sequence. This al-
lows the system to increase the length of the sequence

of associations only when it is confident that the se-
quence of the case accurately predicts how the envi-
ronment changes if the suggested schema parameters
are used. To estimate this confidence, the predicted
values are matched with the actual environmental pa-
rameters that result; if this match is better than the
mean match, the case is extended. Intuitively (as be-
fore), if the case predicts the current situation better
than it predicted the previous situations that it was
used in, it is likely that the current situation involves
the very regularities that the case is beginning to cap-
ture; thus, it is worthwhile extending the case so as
to incorporate the current situation. Alternatively, if
the match is not quite as good, the case should not
be modified because doing so would take it away from
the regularities it has been converging towards.

Since the reinforcement formulae are based on a rel-
ative similarity criterion, the overall effect of the learn-
ing process is to cause the cases to converge on stable
associations between environment configurations and
schema parameters. Stable associations represent reg-
ularities in the world that have been identified by the
system through its experience, and provide the predic-
tive power necessary to navigate in future situations.
The assumption behind this method is that the inter-
action between the system and the environment can
be characterized by a finite set of causal patterns or
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associations between the sensory inputs and the ac-
tions performed by the system. The method allows
the system to learn only the causal patterns that the
reward utility identifies as useful and to use them to
modify its actions by updating its schema parameters
as appropriate. Useful causal patterns are those that
do not cause robot collisions or do not cause the robot
to stop.

Genetic algorithms may also be used to modify
schema parameters in a given environment (Pearce,
Arkin, & Ram, 1992). However, while this approach
is useful in the initial design of the navigation sys-
tem, it cannot change schema parameters during nav-
igation when the system faces environments that are
significantly different from the environments used in
the training phase of the genetic algorithm. Another
approach to self-organizing adaptive control is that of
Verschure, Krése, and Pfeifer (1992), in which a neural
network is used to learn how to associate conditional
stimulus to unconditional responses. Although their
system and ours are both self-improving navigation
systems, there is a fundamental difference on how the
performance of the navigation task is improved. Their
system improves its navigation performance by learn-
ing how to incorporate new input data (i.e., condi-
tional stimuli) into an already working navigation sys-
tem, while SINS improves its navigation performance
by learning how to adapt the system (i.e., the navi-
gation module) itself. Our system does not rely on
new sensory input, but on patterns or regularities de-
tected in perceived environment. Our learning meth-
ods are also similar to Sutton (1990), whose system
uses a trial-and-error reinforcement learning strategy
to develop a world model and to plan optimal routes
using the evolving world model. Unlike this system,
however, SINS does not need to be trained on the same
world many times, nor are the results of its learning
specific to a particular world, initial location, or des-
tination location.

We now present a detailed description of and the
mathematical formulas used in the perception, match-
ing, adaptation, and learning tasks.

2.4.1 Perception

The objective of the perceive function is to generate
an accurate description of the current environment sit-
uation. It performs this task by shifting the previous
values in each input and output vector one position
back in time' and then calculating the current val-
ues for each input vector Ei,,.,(0),j = 1,...,J and
output vector E,,pu, (0), 6 =1,..., K, where 0 is the
current position in time. The current values for the in-
put vectors are based on the robot’s sensors, and the
current values for the output vectors are just the re-

1This is implemented using a circular buffer which does not
requires copying each of the values from one cell to the next.
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spective values of the schema parameters suggested in
the previous control interval. The vectors are updated
at the end of each control interval of time T'.

To update the input vectors, the system monitors
the values of the robot’s sensors Sensor; correspond-
ing to each input vector Einpmj. The sensors are mon-
itored at each time step over the past control interval;
these sensor readings are then averaged to yield the
new value for the corresponding input vectors. Thus,
the input vectors in the environment representation
are updated using the following formula:?

- Eiapur; (1 — 1) ifi>0
Eipur; (1) = = Sensor;(t
Lir 7 © ifi=0

where Sensor;(n) is the sensory input that corre-
sponds to the input vector Einpmj (sensed obstacles for
Obtacle-Density, distance traveled for Absolute-
Motion, relative position for Relative-Motion, and
normal relative position for Motion-Towards-Goal),
and ¢ ranges over each robot step since the last control
interval.

2.4.2 Retrieval and Matching

The function retrieve_best_case is responsible for se-
lecting a case from the case library that best matches
the current environment situation. The case similar-
ity metric is based on the mean squared difference be-
tween each of the vector values of the case over a trend-
ing window, and the vector values of the environment.
The best match window is calculated using a reverse
sweep over the time axis p similar to a convolution
process to find the relative position that matches best.
Each case C" in the case library is matched against the
current environment using exhaustive search, which
returns the best matching case C”®et along with the
relative position p,... of the match (see figure 4). Af-
ter retrieving the best case, the mean and variance of
the case’s statistical match history are updated; these
will be used later to calculate the relative similarity
criterion during learning.

The case similarity metric SM of a case C at po-
sition p relative to the environment E is a value that
indicates the similarity between the sequence of asso-
ciations encoded in the case to the sequence of asso-
ciations in the current environment situation starting
at position p. The lower the value of the case similar-
ity metric, the more similar the sequences of associ-
ations. The case similarity metric formula calculates
a weighted sum of the squared difference between the
corresponding vectors of the case and the environment.
For the SM to be valid, p must lie between 0 and .3

SM(E,C,p) =

?Note that : counts back in time (i.e., ¢ = 0 is the current
time and ¢ > 0 is the recent past.)

3We used wj = wy = 1.0 (i.e., input and output vectors all
contribute equally in the similarity metric.)
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J min(p,lz) (Einput]‘(i) _ Cinputj (P _ Z))2
Su Y
ji=1 =0
K min(p,ig) . A\ 2
(Eompm (Z) - Comput (P - Z))
5 SIS P LU
k=1 =0

The best case is obtained by matching each case C” in
the case library at all the positions p and selecting the
PAIr (Nyeae, Poewt) that yields the lowest SM. Formally,
this can be expressed as:

{Npesty Poest| Min(SM(E, C", p)), Vn, 0 < p <lg»}

Each case C maintains a statistical record of the sim-
ilarity metrics it has produced in the past, which is
updated every time the case is retrieved as the best
case. The mean (Cgpr,..,.) and variance (Cgpy,,,) of
the case similarity metric as well as the number of
times the case has been used (C,,.,) are updated us-
ing standard formulae in descriptive statistics:

C CusedCSMmean +SM
new =
S Mmean Cuea +1
Coa—1
new Cgpr,.. = LCSMvar
C.ica
+(new Csp,... — Csaronn)?
(SM — new Csmpe,,)’
+
C.ica
new C,.., = C..a+1

2.4.3 Adaptation

The best matching case C”P=t is used to adapt the
schema parameter values currently in use by the re-
active control module. The values of output vectors
for the next association CZL\;Dtii:tk after position py...
are used to determine the new set of schema parame-
ters values Parameter; until the next control inter-
val. Since learning tends to reinforce those associations
that are consistently observed over several experiences,
the new set of schema parameters can be expected
to cause the robot to move safely and the next envi-
ronment configuration that results from the movement
can be expected to be the one predicted by the associ-
ation. Since output vectors directly represent schema
parameters, adaptation is a straightforward operation:

Parameter; = Clhet (poeat+1), VE=1,... K

2.4.4 Learning

In addition to perceiving the environment, retrieving
the best matching case, and adapting the schema pa-
rameters being used by the reactive control module,
SINS must also learn by updating its case library based
on its current experience. Three types of learning are
possible: modification of the associations contained in
a case, creation of a new case based on the current
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experience, and extension of the size of a case to yield
associations over larger time windows. Modification of
case contents, in turn, can be of two types: reinforce-
ment of the associations contained in the case based on
a successful experience, and exploration of alternative
associations based on an unsuccessful experience.

SINS decides which kind of learning to perform us-
ing a relative similarity criterion which determines the
quality of the best match. The match value of the
best case, based on the case similarity metric, is com-
pared with the match values of the case in previous
situations in which it was used. If the current match
is worse than the mean match value by more than a
standard deviation, the case (although still the best
match) is considered to be too different from the cur-
rent situation, since it has been a better match to other
situations in the past. In this case, the create_case
function is invoked to create a new case containing a
sequence of associations formed by copying the values
of the sequence of associations in the current environ-
mental representation:

Ciran(0) = Ee(0), Vvi=1,...J
Cgubt;s\:tk (0) E?ubt;s;tk (O)a Vk = 1; ceey K

If, on the other hand, the best case matches the
current situation well, it is likely that the current sit-
uation is representative of the class of situations that
that case is beginning to converge towards. If the case
provides good recommendations for action, its recom-
mendations should be reinforced; if not, its recommen-
dations should be modified. In SINS, collisions with
obstacles and lack of movement are undesirable by def-
inition of the navigation task. A set of schema param-
eters is considered beneficial if using it does not lead
to an undesirable outcome. The objective of the learn-
ing functions is to improve the accuracy of prediction
of the system’s cases and, in turn, to discover those
schema parameter values that result in environmental
situations that are beneficial for the robot.

If the best case recommends a set of schema pa-
rameters that are not beneficial to the robot, the ex-
plore_schemas function is used to modify the case
such that it suggests a different set of schema parame-
ters in similar circumstances in the future. Specifically,
the output vectors ClE=t, (pue.. + 1) associated with
the environment situation following the best match po-
sition pi.., are modified in a random manner since the
current values are not useful to the system. The small
random changes allow the system to explore the space
of possible schema parameters in a controlled manner.
These changes are defined by the following formula:

velocity )

mln(l, & COHISIOHS + ﬁm

p =
Clizty (Poew + 1) =
(1 - p) C?ubt;s;tk (pbest + 1)
+ p random(min C”k=st

Nbest
outputy ! max C] ke )’
Ve=1,... K

outputy
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where p is a “reject” value that determines the ex-
tent to which the current recommendations should be
taken into account when determining the modified val-
ues. A value of p = 0 specifies that the value of the
output vector should be left unchanged, and a value of
p = 1 specifies that the value of output vector should
be replaced completely by a new random value in the
allowable range. In any given learning cycle, the value
of p depends on a and 8, which represent the impor-
tance of avoiding collisions and moving, respectively.
In this paper, we used « = 0.5 and g = 1.0.

If, on the other hand, the schema parameters sug-
gested by the best matching case produce desirable
results, the reinforce_schemas function is invoked.
This function updates the case by making it more like
the current environmental situation, so as to produce
the same recommendations in similar situations in the
future. This reinforcement is done using the following
formulae:

Vi=0,..., Poest

Cﬁz*z‘j (Z) = %(Einputj (pbest - Z) - Cﬁ‘;i‘j(i)),
Vi=1,..J

Vi=0,..., Poest

C?ubte;;tk (Z) = H—%(Emnputk (pbest - Z) - C?ubte;;tk (Z))’
Vk=1,.., K

where A determines the learning rate (0.9 in the cu-
urent version of SINS).

Finally, the extend_case function extends the se-
quence of associations contained in a case. The de-
cision to extend a case is also based on a statistical
relative similarity criterion. If the case’s predictions
Cﬁlgfﬂ‘j (Poess + 1) are similar to the resulting environ-
ment situation within a standard deviation from the
mean predictive similarity, and the case does not have
more associations in the sequence (that is, it cannot
provide a next set of schema parameters), then the
case is extended by duplicating the last association of
the case:

Chlbest (p,  +2) = Cleest(p, .+ 1),

input; input;
s

C?ubt;s;tk (pbest + 2) = Cgubt;s;tk (pbest + 1)’
Vk=1,... K

The net result of these learning procedures is to
cause the cases in the system’s case library to converge
towards regularities in the system’s interactions with
its environment. The system learns useful sequences
of schema parameters for different environment situa-
tions; these are used to guide navigation and, in turn,
are updated based on navigational outcomes so as to
improve the reliability of their predictions in similar
situations in the future.

A. Ram & J.C. Santamaria

3 Evaluation

We evaluated the methods presented above using ex-
tensive simulations across a variety of different types
of environment, performance criteria, and system con-
figurations. The objective of these experiments was
to measure the qualitative and quantitative improve-
ment in the navigation performance of SINS (denoted
“sing” in the figures), and to compare this perfor-
mance against several non-learning schema-based reac-
tive systems (the “static” systems) that do not change
schema parameters and a system that changes its
schema parameter values randomly after every control
interval (the “random” system). Furthermore, rather
than simply measure improvement in performance in
SINS by some given metric such as “speedup,” we were
interested in systematically evaluating the effects of
various design decisions on the performance of the sys-
tem using several different metrics. To achieve this, we
designed several experiments, which can be grouped
into four sets as discussed below.

3.1 Experiment Design

The systems were tested on randomly generated en-
vironments consisting of rectangular bounded worlds.
Each environment contains circular obstacles, a start
location, and a destination location, as shown in fig-
ure 2. Figure 5 shows an example runs of two of the
static systems, the random system, and the SINS sys-
tem on a typical randomly generated world. The lo-
cation, number, and radius of the obstacles were ran-
domly determined to create environments of varying
amounts of clutter, defined as the ratio of free space
to occupied space. 15% clutter corresponded to rel-
atively easy worlds and 50% clutter to very difficult
worlds. We tested the effect of three different design
parameters in the SINS system: max-cases, the max-
imum number of cases that SINS is allowed to create;
max-size, l¢, representing the maximum number of
associations in a case; and control-interval, T', which
determines how often the schema parameters in the re-
active control module are adapted.

We used three non-adaptive systems for comparison.
These systems were identical to the underlying navi-
gation module in SINS, but used different fixed sets
of schema parameter values. The “staticH” system
used a hand-coded set that we designed manually by
watching the behavior of the system on both 15% and
50% cluttered worlds. The “static15” and “static50”
systems used the schema parameter values reported in
Ram, Arkin, Moorman, and Clark (1992), which were
hand-optimized through extensive trial and error to
15% and 50% cluttered worlds, respectively. As dis-
cussed below, SINS performed as well as the staticlb
system on 15% cluttered worlds and the static50 sys-
tem on the 50% cluttered worlds; furthermore, SINS
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Noise-Persistence MNoise-Gain Goal-Gain Object-Gain Current-case Noise-Persistence MNoise-Gain Goal-Gain Object-Gain Current-case
2 0,30 1,00 1,10 [¢] 8 1,00 -1,00 1,10 o
Steps 1000 Contacts 13 Dist 310,73 Obstacles 0,00 Motion 0,00 To Goal 0,00 Steps 297 Contacts 20 Dist 172,39 Obstacles 0,00 Motion 0,00 To Goal 0,00
8] 8]
Magnitude 0,34 Direction -36,8997 Magnitude 1,00 Direction 179,5713

Hoisze—Persistence Moise-Gain  Goal-Gain  Okidect-Bain  Current-case Hoize—Persistence Moise-Gain  Goal-Gain  Okidect-GBain  Current-case
4 0,30 1,57 0,68 [¢] 9 0,42 0,78 0,70 18
Steps 106 Contacts 9 Dist 81,20 Obstacles 0,00 Motion 0,00 To Goal 0,00 Steps 93 Contacts & Dist 75,07 Obstacles 2,00 Motion 0,92 To Goal 0,340
TR R S
A He T
Magnitude 1,00 Direction -128,378 Magnitude 0,27 Direction 163,7263

Figure 5: Sample runs of the staticl5 (top left), statich0 (top right), random (bottom left), and SINS (bottom
right) systems on a randomly generated world. The robot starts at the black box (towards the lower right side
of the world) and tries to navigate to the white box. The graphs near the top of each figure show the values of
each schema parameter over time.



12 Informatica 17(4) pages 347-369, 1993

reached this level of performance autonomously and,
unlike the static systems which were optimized only for
a specific clutter, was robust across sudden changes in
clutter.

We used six estimators to evaluate the navigation
performance of the systems. These metrics were com-
puted using a cumulative average over several hundred
test worlds to factor out the intrinsic differences in dif-
ficulty of different worlds. Percentage of worlds solved
indicates in how many of the worlds posed the system
actually found a path to the goal location. The opti-
mum value is 100% since this would indicate that every
world presented was successfully solved. Average steps
per world indicates the average of number of steps that
the robot takes to terminate each world; smaller val-
ues indicate better performance. Average distance per
world indicates the total distance traveled per world
on average; again, smaller values indicate better per-
_aclual
optimal
cates the ratio of the total distance traveled and the
Euclidean distance between the start and end points,
averaged over the solved worlds. The optimal value is
1, but this is only possible in a world without obsta-
cles. Average virtual collisions per world indicates the
total number of times the robot came within a pre-
defined distance of an obstacle. Finally, average time
per world indicates the total time the system takes to
execute a world on average.

formance. Average distance per world indi-

The data for the estimators was obtained after the
systems terminated each world. This was to ensure
that we were consistently measuring the effect of learn-
ing across experiences rather than within a single ex-
perience (which is less significant on worlds of this size
anyway). The execution is terminated when the navi-
gation system reaches its destination or when the num-
ber of steps reaches an upper limit (1000 in the current
evaluation). The latter condition guarantees termina-
tion since some worlds are unsolvable by one or both
systems.

In this paper, we discuss the results from the follow-
ing sets of experiments:

— Experiment set 1: Evaluation of the effect of our
multistrategy case-based and reinforcement learn-
ing method by comparing the performance of the
SINS system against the static and random sys-
tems.

— Experiment set 2: Evaluation of the effect of the
parameters of the case-based reasoning compo-
nent of the multistrategy learning system.

— Experiment set 3: Evaluation the effect of the
control-interval parameter, which determines
how often the adaptation and learning module
modifies the schema parameters of the reactive
control module.

A. Ram & J.C. Santamaria

— Experiment set 4: Evaluation of the effect of
changing environmental characteristics, and eval-
uation of the ability of the systems to adapt to
new environments and learn new regularities.

3.2 Discussion of Experimental
Results

The results in figures 6 through 10 show that SINS
does indeed perform significantly better than its non-
learning counterparts. To obtain a more detailed in-
sight into the nature of the improvement, let us discuss
the experimental results in more detail.

Experiment set 1: Effect of the multistrategy
learning method. We first evaluated the effect of
our multistrategy case-based and reinforcement learn-
ing method by comparing the performance of the SINS
system against the static and random systems. SINS
was allowed to learn up to 10 cases (max-cases =
10), each of max-size = 10. Adaptation occurred ev-
ery control-interval = 4 steps.

Figure 6 shows the results obtained for each estima-
tor over 200 randomly generated worlds. Each graph
compares the performance on one estimator of each of
the five systems, SINS, staticH, staticl5, static50, and
random, discussed above. Figure 6 shows the results
obtained for each estimator over the 200 worlds with
50% clutter. The best configuration of SINS, which
could learn up to 10 cases of maximumsize 10 and with
a control interval of 4, was selected to do the compar-
ison. As shown in the graphs, SINS performed as well
as or better than the other systems with respect to five
out of the six estimators. Table 2 and 3 show the final
improvement in the system after all the worlds with
15% and 50% clutter, respectively. For example, ta-
ble 3 shows that SINS successfully navigates 100% of
the worlds, the same as the static50 system optimized
for 50% cluttered worlds, with 27% fewer virtual col-
lisions. Although the non-learning system was 85%
faster in time, the paths it found required the same
number of steps. On average, SINS’ solution paths
were about the same length as those of the statich0 sys-
tem; however, it should be noted that the staticb0 sys-
tem was customized for 50% cluttered worlds, whereas
SINS improved its performance regardless what type
of environment was dealing with. The staticb0 sys-
tem did not perform as well in 15% cluttered worlds;
although the staticlb system did better, SINS com-
pared favorably with that system in those worlds. An-
other important result is that SINS improved the per-
formance independently of the initial values for the
schema parameters; for example, when initialized with
the same schema parameters as the staticH system, it
was able to achieve performance far superior to the
staticH system, and comparable with or better than
the staticl system in 15% cluttered worlds and the
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Figure 6: Cumulative performance results on 50% cluttered worlds.
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Figure 9: Effect of control-interval on 50% cluttered world with max-cases=20 and max-size=15.
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| | staticl5| stati050| statz'cH| random | SINS |

Percentage of worlds solved 99.5% 100% 98.5% 99% 99.5%

Average steps per world 69.1 106.4 108.5 73.8 68.9

Average distance per world 49.9 71.8 49.8 56.5 51.5

Average actual - gictance 1.23 1.76 1.22 1.39 1.27
optimal

Average virtual collisions 0.85 1.53 3.99 2.66 0.62

Average time per world, ms 57 90 210 94 513

Table 2: Final performance results for 15% cluttered worlds.

| | staticl5| statz'c50| statz'cH| random | SINS |

Percentage of worlds solved 85.5% 100% 82% 100% 100%

Average steps per world 272.7 143.6 315.5 141 141.9

Average distance per world 127.1 103.8 126.2 113.7 107.2

Average actual - gitance 3.12 2.55 3.10 2.79 2.63
optimal

Average virtual collisions 24.1 14.4 48.1 13.7 10.7

Average time per world, ms 584 350 1400 413 1375

Table 3: Final performance results for 50% cluttered worlds.

statich0 system in 50% cluttered worlds.

The average time per world was the only estimator
in which the self-improving system performed worse.
The reason for this behavior is that the case retrieval
process in SINS is very time consuming. However,
since in the physical world the time required for phys-
ical execution of a motor action outweighs the time
required to select the action, the time estimator is less
critical than the distance, steps, and solved worlds es-
timators. Furthermore, as discussed below, better case
organization methods should reduce the time overhead
significantly.

The experiments also demonstrate also our assump-
tion about the utility of adapting schema parameter
values in reactive systems: the number of worlds solved
by the navigation system is increased by changing the
values of the schema parameters even in a random
fashion, although the random changes lead to greater
distances traveled. This may be due to the fact that
random changes can get the system out of “local min-
ima” situations in which the current settings of its pa-
rameters are inadequate. However, consistent changes
(i.e., those that follow the regularities captured by
our method) lead to better performance than random
changes alone.

Experiment set 2: Effect of case parameters.
This set of experiments evaluated the effect of two pa-
rameters of the case-based reasoning component of the
multistrategy learning system, that is, max-cases and
max-size. The parameter control-interval was held
constant at 4, while max-cases was set to 10, 20, 30
and 40, and max-size was set to 5, 10, 15 and 20. All

these configurations of SINS, and the static and ran-
dom systems, were evaluated using all six estimators
on 200 randomly generated worlds of 15% and 50%
clutter. Figures 7 and 8 show the results for two of
the estimators, average steps and average virtual col-
lisions.

All configurations of the SINS system navigated suc-
cessfully in a comparable or larger percentage of the
test worlds than the static systems. Regardless of
the max-cases and max-size parameters, SINS could
solve most of the 15% and 50% cluttered worlds. As
before, the graphs show that SINS’ performance was
comparable to that of the staticl5 system in 15% clut-
tered worlds, and to the static50 system in 50% clut-
tered worlds. Thus, even if SINS is initialized with a
poor set of schema parameter values, it can discover a
good set of values and improve upon its initial perfor-
mance.

Our experiments revealed that, in both 15% and
50% cluttered worlds, SINS needed about 40 worlds to
learn enough to be able to perform successfully there-
after using 10 or 20 cases. However, with higher num-
bers of cases (30 and 40), it took more trials to learn
the regularities in the environment. It appears that
larger numbers of cases require more trials to train
through trial-and-error reinforcement learning meth-
ods, and furthermore there is no appreciable improve-
ment in later performance. The max-size parameter
has an appreciable effect on the performance for differ-
ent environments. While in the 15% cluttered worlds,
the best performance is obtained with cases of size
5, in 50% cluttered worlds, the best performance oc-
curs with cases of size 15. The reason for this is that
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complex worlds (i.e., 50% cluttered) require longer se-
quences of associations to ensure real progress. With
shorter sequences of associations, there is a high proba-
bility that the system will get into a cycle that consists
of going in and out of a local minimum point.

As observed earlier in experiment set 1, SINS re-
quires a time overhead for case-based reasoning and
thus loses out on the average time estimator. Due to
the nature of our current case retrieval algorithm, the
time required for case retrieval increases linearly with
max-cases and with max-size.

Experiment set 3: Effect of control interval.
This set of experiments evaluated the effect of the
control-interval parameter, which determines how
often the adaptation and learning module modifies
the schema parameters of the reactive control mod-
ule. max-cases and max-size were held constant at
20 and 15, respectively, while control-interval was
set to 2,4, 6 and 8. All systems were evaluated using
all six estimators on 200 randomly generated worlds
of 50% clutter. The results are shown in figure 9.

Although all settings of control interval resulted in
improved performance through experience, the best
and worst performance in terms of percentage of worlds
solved was obtained with control-interval set to 4
and 8, respectively. For low control-interval val-
ues, we expect poorer performance because environ-
ment classification cannot occur reliably. We also
expect poorer performance for very high values be-
cause the system cannot adapt its schema parame-
ters quickly enough to respond to changes in the en-
vironment. Other performance estimators also show
that control-interval = 4 is a good setting. Larger
control-intervals require less case retrievals and thus
improve average time per world, however, this gets
compensated by poorer performance on other estima-
tors.

Experiment set 4: Effect of environmental
change. This set of experiments was designed to
evaluate the effect of changing environmental charac-
teristics, and to evaluate the ability of the systems
to adapt to new environments and learn new regu-
larities. With max-cases set to 10, 20, 30 and 40,
max-size set to 15, and control-interval set to 4,
we presented the systems with 200 randomly gener-
ated worlds of 15% clutter followed by 200 randomly
generated worlds of 50% clutter. The results for av-
erage steps and average virtual collisions are shown in
figure 10.

The results from these experiments demonstrate the
flexibility and adaptiveness of the learning methods
used in SINS. Regardless of parameter settings, SINS
was very robust and continued to be able to navigate
successfully despite a sudden change in environmental
clutter. After the 200th world, it continued to solve
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100% of the worlds presented to it, with only mod-
est deterioration in steps, distance, virtual collisions,
and time in the more cluttered environments. The
performance of the static systems, in contrast, deteri-
orated in the more cluttered environments, with the
exception of statich0 which was designed for such en-
vironments. The statich0 started to improve in 50%
worlds as compared to the 15% worlds where it was
not performing as well as staticlb. As can be seen
from the graphs, SINS performed as well as staticlb
in the first 200 worlds, and then as well as staticb0
in the next 200 worlds; furthermore, it achieved this
level of performance even when it was initialized with
non-optimized schema parameters. This result also
suggests that the regularities that SINS captures in its
cases encode strategic knowledge for navigation that is
generally applicable across different types of environ-
ments. The performance of the random system does
not deteriorate too badly but it was not the best in
either of the two types of worlds.

Summary: These and other experiments show the
efficacy of the multistrategy adaptation and learning
methods used in SINS across a wide range of quali-
tative metrics, such as flexibility of the system, and
quantitative metrics that measure performance. The
results also indicate that a good configuration for prac-
tical applications is max-cases = 20, max-size = 15,
and control-interval = 4, although other settings
might be chosen to optimize particular performance
estimators of interest. These values have been deter-
mined empirically. Although the empirical results can
be explained intuitively, more theoretical research is
needed to analyze why these particular values worked
best.

4 Conclusions

We have presented a novel method for augmenting the
performance of a reactive control system that combines
case-based reasoning for on-line parameter adaptation
and reinforcement learning for on-line case learning
and adaptation. The method is fully implemented in
the SINS program, which has been evaluated through
extensive simulations.

The power of the method derives from its ability
to capture common environmental configurations, and
regularities in the interaction between the environment
and the system, through an on-line, adaptive process.
The method adds considerably to the performance and
flexibility of the underlying reactive control system be-
cause it allows the system to select and utilize differ-
ent behaviors (i.e., different sets of schema parame-
ter values) as appropriate for the particular situation
at hand. SINS can be characterized as performing a
kind of constructive representational change in which
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it constructs higher-level representations (cases) from
low-level sensorimotor representations (Ram, 1993).

In SINS, the perception-action task and the
adaptation-learning task are integrated in a tightly
knit cycle, similar to the “anytime learning” approach
of Grefenstette & Ramsey (1992). Perception and ac-
tion are required so that the system can explore its en-
vironment and detect regularities; they also, of course,
form the basis of the underlying performance task,
that of navigation. Adaptation and learning are re-
quired to generalize these regularities and provide pre-
dictive suggestions based on prior experience. Both
tasks occur simultaneously, progressively improving
the performance of the system while allowing it to
carry out its performance task without needing to
“stop and think.”

Although SINS integrates reinforcement learning
and case-based reasoning, its algorithms are somewhat
different from the standard algorithms used in these
areas. One of the main differences between traditional
reinforcement learning and SINS is with respect to the
action model used by the system. While in reinforce-
ment learning the action model is given along with the
definition of the system, in SINS it is learned through
experience. One open issue in this respect is how to
use this action model once it has been learned or while
it is in the process of being learned. In SINS, the
action model is represented as sequences of associa-
tions. In our current implementation, the system al-
ways uses the sequence of associations most similar to
the current environment, but other implementations
may select different sequences according to other cri-
teria. One such criterion we are currently exploring is
selecting the sequence of associations that is likely to
result in a desired environmental configuration. This
would enable SINS to behave in a goal-oriented fash-
ion while still staying within a reactive framework (see

also Maes, 1990).

In contrast to traditional case-based reasoning
methods which perform high-level reasoning in dis-
crete, symbolic problem domains, SINS is based on a
new method for “continuous case-based reasoning” in
problem domains that involve continuous information,
such as sensorimotor information for robot navigation
(Ram & Santamaria, 1993). There are still several un-
resolved issues in this research. The case retrieval pro-
cess is very expensive and limits the number of cases
that the system can handle without deteriorating the
overall navigational performance, leading to a kind of
utility problem (Minton, 1988). Our current solution
to this problem is to place an upper bound on the num-
ber of cases allowed in the system. A better solution
would be to develop a method for organization of cases
in memory; however, conventional memory organiza-
tion schemes used in case-based reasoning systems (see
Kolodner, in press) assume structured, nominal infor-
mation rather than continuous, time-varying, analog

A. Ram & J.C. Santamaria

information of the kind used in our cases.

Another open issue is that of the nature of the reg-
ularities captured in the system’s cases. While SINS’
cases do enhance its performance, they are not easy to
interpret. Interpretation is desirable, not only for the
purpose of obtaining of a deeper understanding of the
methods, but also for possible integration of higher-
level reasoning and learning methods into the system.

Despite these limitations, SINS is a complete and
autonomous self-improving navigation system, which
can interact with its environment without user in-
put and without any pre-programmed “domain knowl-
edge” other than that implicit in its reactive control
schemas. As it performs its task, it builds a library
of experiences that help it enhance its performance.
Since the system is always learning, it can cope with
major environmental changes as well as fine tune its
navigation module in static and specific environment
situations. The system benefits from the tight inte-
gration of multiple learning strategies that support
and complement each other, and the on-line use of the
learned knowledge in guiding the performance task.
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