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SUMMARY

The main obstacles to implementing ideal quantum operations are unwanted

interactions of quantum systems with the environment and noise in control fields.

This problem can be tackled by methods of quantum control. Among these meth-

ods are composite pulse (CP) sequences which have long been employed in nuclear

magnetic resonance (NMR) to mitigate the effects of systematic errors in the control.

CP sequences were initially developed to correct for static but otherwise unknown

errors in the amplitude or frequency of the driving field. One of the challenges to the

systematic incorporation of these control protocols into practical quantum informa-

tion systems remains the limited understanding of CP performance in the presence

of time-dependent noise. Treating the influence of time-dependent noise processes

on quantum control operations has been facilitated by recent advances in dynamical

error suppression based on open-loop Hamiltonian engineering. These approaches

provide a general framework for understanding and mitigating non-Markovian time-

dependent noise in a finite-dimensional open quantum system. In particular, arbitrary

single-qubit control characteristics may be captured quantitatively in filter-transfer

functions (FF) using methods of spectral overlap in the frequency domain. In this

thesis work, we present a systematic study of control pulse sequences in the pres-

ence of time-dependent noise. We use a combination of analytic formulations based

on FFs and numerical simulations to demonstrate that CPs are able to effectively

suppress control errors caused by time-dependent processes possessing realistic noise

power spectra. We provide a geometric interpretation of CP performance under time-

dependent amplitude noise, further linking the FF formalism with known techniques

in CP construction. We also develop new optimized pulse sequences that act as notch

xiii



filters for time-dependent noise. These high-fidelity control protocols effectively sup-

press errors from the noise sources with sharp features in spectral densities and can

be used practically on various quantum architectures. We also present our work

on simulation of randomized benchmarking protocols and CPs that have been used

experimentally by our collaborators to measure gate errors.
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CHAPTER I

INTRODUCTION

Employing coherence properties of electromagnetic fields in order to steer a quantum

system to a desired target state or particular dynamical behavior forms a basis for

the field of quantum control of light and matter. Recent developments in this area

indicate the beginnings of a new era of technology, technology that is fully based on

the unique laws of quantum mechanics. Due to the rise of this “second quantum

revolution” [8] there will be demand of a new and advanced quantum engineering

methodologies. At the present time, this new branch of engineering associated with

quantum technologies includes activities ranging from laboratory design of top-notch

electronic devices and advanced control system, to theoretical developments that

adopt results of classical control theory to better understand quantum-mechanical

systems.

Although, many original ideas of quantum control were developed in the com-

munity of physical chemistry [9], the field has grown to a number of various applica-

tions including NMR, non-linear spectroscopy, ultra-cold physics, atto-second science,

quantum computing and quantum entanglement in complex systems [10, 11, 12, 13,

9, 14, 15, 16].

1.1 Quantum control in the presence of noise fields

High-fidelity control of quantum systems is limited by unwanted interactions with the

environment and imperfections in the applied control fields. Composite pulse (CP)

sequences have long been employed in nuclear magnetic resonance (NMR) to mitigate

the effects of systematic errors in the control [17, 18, 19, 1]. Initially developed to

tackle static but otherwise unknown errors in the amplitude or frequency of the driving

1



field, CPs are expressed as the composition of rotations. CPs have been recently

extended to handle multiple error sources using symmetry [20, 21] and concatenation

[22, 2] and to provide efficient high-order error suppresion by optimized design [23].

These capabilities have made CPs broadly attractive in laboratory quantum systems,

including experimental platforms based on atomic [24, 25, 26, 27, 28, 29] and solid-

state qubits [30, 31, 32, 33].

Despite these advances, an outstanding challenge to the systematic incorporation

of CPs into practical quantum information systems remains the limited understanding

of CP performance in the presence of time-dependent noise. This is in contrast to

optimal control approaches for gate synthesis, where the presence of time-dependent

noise is typically assumed in the control design, see e.g. Refs. [34, 35, 36]. Previous

studies for CPs have examined a restricted set of time-dependent fluctuations in

the control including the numeric characterization of decoherence due to random-

telegraph noise in the qubit frequency [37], the effect of stochastic fluctuations in the

phase of the control [38], and the effect of 1/fα noise for singlet-triplet spin qubits

[39].

Treating the influence of time-dependent noise processes on quantum control op-

erations beyond these limited examples has been facilitated by recent advances in

dynamical error suppression based on open-loop Hamiltonian engineering [40, 41, 3,

42, 4]. These approaches provide a general framework for understanding and mit-

igating non-Markovian time-dependent noise in a finite-dimensional open quantum

system due to either uncontrolled couplings to the environment or a variety of control

errors. In particular, both dynamical decoupling [40, 41, 43] and dynamically cor-

rected gates (DCGs) [3, 44, 35] are able to perturbatively reduce the effects of classical

as well as quantum noise sources, provided that the correlation time scale of the noise

is sufficiently long compared to the control time scale at which the noise is “coherently

averaged out”. These characteristics may be captured quantitatively in filter-transfer

2



functions (FF henceforth) for arbitrary single-qubit control using methods of spectral

overlap in the frequency domain [45, 4]. The resulting approach allows for predic-

tion of the leading-order contribution to fidelity loss, and has been applied to the

study of both dynamically protected memory [46, 47] and nontrivial quantum logic

operations [48, 4] with results borne out through a variety of experiments [49, 50].

1.2 Organization of the thesis

The thesis is organized as follows. In Chapter 2 we introduce the basics of quantum

control theory. Particularly, we consider the role of quantum control for quantum com-

puting, and we also focus on a brief overview of optimal quantum control methods.

Chapter 3 discusses our work on robustness of composite pulses to time-dependent

noise [51]. We employ a combination of analytic formulations based on filter-transfer

functions and numerical simulations to demonstrate that composite pulses effectively

suppress time-dependent control errors with fluctuations as fast as ∼ 10% of the Rabi

frequency. We also present a geometric interpretation amplitude-noise filter function.

Chapter 4 introduces our recent work on designing new optimized pulse sequences

that act as notch filters. These pulse sequences effectively correct for the noise with

sharp spectral features. As an example we consider a strong Gaussian-shaped peak

on top of background noise with a power-law spectrum. Optimization procedures

discussed in Chapter 2 provide control sequences which demonstrate high perfor-

mance for a given noise model. Furthermore, the first-order filter-transfer functions

yields insight into the pulse robustness with respect to changes in the position of

the Gaussian peak. Finally, Chapter 4 describes our work [7] in collaboration with

Duke University. It introduces our numeric simulations and experimental work of

our collaborators on error compensation of single-qubit gates in a surface electrode

ion trap using composite pulses. In this work among other results recently developed

compact palindromic composite pulse sequences [23] have been shown to be effective

3



against high-amplitude errors. We also discuss randomized benchmarking protocols

that have been used to measure the average error per gate.
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CHAPTER II

QUANTUM CONTROL

2.1 Fundamentals of quantum control

In the last few decades there have been a growing interest in development of applica-

tions of quantum mechanical systems including quantum information and computa-

tion, cold atoms, control of chemical reactions, and quantum metrology [10, 11, 12,

13, 9, 14, 15, 16]. Accurate manipulation of quantum systems is crucial for these ap-

plications. In many cases, this is related to the capability of shaping electromagnetic

field in an arbitrary way as many control problems can be treated as the interaction

between quantum object and a classical electromagnetic field. Many quantum control

experiments adopt this semiclassical approach. Quantum control is based on classical

control theory and this adoption leads to new approaches to explore quantum physics

[52].

In control theory, a finite dimensional control system is typically described by the

set of ordinary differential equations of the form

ẋ = f(t,x,u), (1)

where x is the state of the system and u represents the set of possible control variables,

u = (u1(t), u2(t), ..., un(t)), which modulate the dynamical response of a state x.

In quantum control systems, the dynamics of the state |ψ〉 of quantum system is

governed by the Schrödinger equation (here and elsewhere in this work we assume

that ~ ≡ 1)

i
d|ψ〉
dt

= H(u(t))|ψ〉, (2)

where H(u(t)) is the Hamiltonian, a linear Hermitian operator on the same Hilbert

5



space H, where |ψ〉 is defined. From a control perspective, H(u(t)) is a function of a

control u = u(t) which models the external manipulation on the quantum object. If

|ψ0〉 is the initial state the solution of 2 can be written as

|ψ〉 = U(t)|ψ0〉. (3)

Here the propagator U(t) is the solution of the Schrödinger operator equation

iU̇(t) = H(u(t))U(t), (4)

U(0) = 1

We can consider U(t) as the object of control and this choice would be quite

natural for quantum computing, as the matrix U(t) represents the operation or gate

which is acting on a state of qubits In quantum computing, synthesizing a unitary

gate U(t) is more important than achieving a particular state. Therefore, in this

thesis we concentrate mostly on this control setting.

The operator U(t) is defined in the Lie group of n-dimensional unitary matrices,

where n is the dimension of the system (n = 2 for a single qubit) [16]. In practice it

is often possible to write down Hamiltonian in the following form

H(u) = H0 +
∑
k

Hkuk. (5)

In this bilinear representation, H0 is a drift Hamiltonian that cannot be controlled

explicitly and {uk} are components that define a magnitude of control along respective

Hermitian operators {H1, H2, ..., Hp}. Typically in the following chapters we omit a

constant term H0 by shifting to an interaction picture.

2.1.1 Controllability

One of the fundamental issues in quantum control theory is related to controllability

of quantum system [16, 15]. In the case of Eq. 4 it is a question whether a desired

unitary matrix Ū can be reached by changing the control u belonging to a space of

6



functions Ū . All possible matrices that can be obtained at time T form the reachable

set R(T ) corresponding to that time. If U(t, u) is the solution of Eq. 4, R(T ) is

the set of all unitary matrices Ū such that U(T, u) = Ū for some control u ∈ Ū .

Analogously, one can define the reachable set at time T, R(≤ T ) := ∪0≤t≤TR(t), and

the reachable set, R := ∪T≥0R(t).

The system Eq. (4) is defined to be controllable if any arbitrary unitary matrix

is in the reachable set. The question of controllability is practically important for

the universality of quantum computation. In the case of finite dimensional quantum

systems (such as qubits) it is possible to derive the controllability criteria from the

structure of corresponding Lie groups and Lie algebras. The advantage of this method

is that it can provide a straightforward mathematical treatment and a geometric

interpretation.

In fact, reachable state R is a Lie group - a group with additional differentiable

structure [53]. One can observe that R is a semigroup noting that a state U2 ·U1 can

be reached by concatenating controls u1 and u2 corresponding to states U2 and U1

respectively [16, 53].

2.1.2 Qubit control for quantum computing

The quantum state of a two-level system, or qubit, can be described as a superposition

of two basis states, |ψ〉 = c0|0〉+ c1|1〉, with normalization condition |c0|2 + |c1|2 = 1

[54]. Geometrically, this state is represented as a unit vector on a Bloch sphere (Fig.

1), uniquely specified by two angles, θ and φ (here we neglect an unobservable global

phase factor eiγ ):

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉. (6)

In quantum information a qubit plays a role similar to which a classical bit plays

in computer science. Namely, information is encoded in a state of two-level system.
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Figure 1: Bloch sphere representation.

One of the great differences between classical and quantum information is that the

qubit can exist in a linear superposition of two states (Eq. (6)).

In a vector or matrix form orthogonal basis states |0〉 and |1〉 can be written as

column vectors

|0〉 =

1

0

 ; |1〉 =

0

1

 . (7)

The core of computation process is based on an ability to manipulate the state

of a bit or qubit. In quantum computing, a logical operation or quantum gate is

represented by a unitary operator that transforms a quantum state in a certain way.

These quantum gates have to be 2× 2 unitary matrices in order to preserve the norm

of Eq. 6. For example, the bit-flip or NOT operation is described by the Pauli matrix

σx, and phase-flip operation is given by Pauli matrix σz. The Pauli operator, σx,

σy and σz are unitary traceless 2-dimensional matrices which play a great role in

8



quantum information. The have explicit forms of

σx ≡

0 1

1 0

 ; σy ≡

0 −i

i 0

 ; σz ≡

1 0

0 −1

 . (8)

One can verify that σx performs a bit flip by multiplying corresponding matrix and

a quantum state in vector representation. This way, we can confirm that σx|0〉 = |1〉

and σx|1〉 = |0〉, while the bit-flip, σz, flips the relative phase between two basis states,

σz(c0|0〉+ c1|1〉) = c0|0〉 − c1|1〉.

Examples of other important single-qubit gates include the Hadamard gate (H)

and phase-shift (Pφ) gates:

H =
1√
2

1 1

1 −1

 ; Pφ =

1 0

0 eiφ

 . (9)

The importance of these gates follows from the fact that combination of H and

Pφ can produce a transition between any two arbitrary qubit states. For example, a

general qubit state up to a global phase can be achieved by the following sequence:

Pπ/2+φ ·H · Pθ ·H|0〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (10)

The possibility to generate such gates via application of external controls implies

state controllability of the qubit systems, which in this special case of two-level sys-

tems is equivalent to evolution-operator controllability. Therefore, these properties

of the Hadamard and phase-shift gates are equivalent to single-qubit computational

universality [54].

2.1.3 Bloch-vector rotations

We have shown that control of the states of a single qubit consists of application of

unitary matrices. It is useful to think of unitary matrices as the rotations of the

Bloch vector described by Eq. (6). One can prove that by observing that a unitary

transformation preserves the norm of a Bloch vector. At this point, in order to make a

9



connection with a physical realization of quantum control, it is necessary to establish

the Hamiltonian description for the problem. First we consider ideal control in the

absence of noise fields. For such system the time-dependent control Hamiltonian in

the interaction picture with respect to the energy splitting between two levels can be

generally written as

H(t) =
1

2
Ω(t)ρ · σ ≡ 1

2
Ω(t)σφ, (11)

where σ ≡ (σx, σy, σz) and ρ ≡ (cosφ, sinφ, 0) is a unit vector, and σφ ≡ σx cosφ +

σy sinφ. It is useful to think of ρ · σ as the rotation generator for the Bloch vector

with the rotation rate Ω(t). Then the phase parameter φ determines the axis in xy-

plane along which the rotation occurs. If we physically realize a control field for qubit

manipulation described by Eq. (11) with Hamiltonian acting for time τ , the resulting

propagator can be obtained from operator equation Eq. (4):

U(τ) = exp

(
−iσφ

2

∫ τ

0

Ω(t)dt

)
. (12)

The profile of control parameter Ω(t), often called Rabi frequency, is typically

determined by the strength of external control field (e.g. power of the laser interacting

with two-level system). In terms of qubit rotations, this parameters characterizes how

fast we can perform rotations of the Bloch vector for given system and apparatus.

In order to demonstrate this, we can fix a Rabi frequency to some constant value,

Ω(t) ≡ Ω, then the propagator of Eq. (12) takes form

U(τ) = exp

(
− i

2
Ωτσφ

)
= exp

(
− i

2
θσφ

)
. (13)

Therefore, acting on the qubit state it generates a Bloch vector rotation by angle

θ = Ωτ through the axis determined by phase φ. In the figure 2 we provide examples

of such rotations.

10
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Figure 2: Examples of Bloch vector rotations generated by propagator of Eq. (13).
In the case of constant Rabi frequency, rotation angle, θ, is defined through θ = Ωτ .
Rotation axis is determined by phase φ. In all three examples, the initial state is |0〉
(gray dashed vector).

2.1.4 Imperfections in control

In the picture considered above, ideally, we are required to have control only over two

parameters, Ω(t) and φ, in order to produce any arbitrary rotations, and therefore, to

drive an initial qubit state to any final state. However, in the real world, there are at

least two main obstacles to this ideal control picture: the system typically interacts

with environment and control parameters are often subject to random noise processes

[54]. These two noise sources lead to an overall qubit evolution which is not unitary.

These processes are related to an increase in the entropy of the qubit, transforming

pure states to mixed states with randomly decaying relative phases and to energy

transfer in the form of heating and dissipation.

In quantum computing, one of the key roles of quantum control is to suppress

decoherence and noise in control parameters, and to achieve an evolution which ap-

proximates the target unitary process to a high fidelity. Fidelity is one of the metrics

to measure the performance of quantum operations. It characterizes the probabil-

ity of expected measurement outcome that follows from ideal unitary controls. It is

11



possible to realize quantum algorithms only if fidelities of universal gates are above

the certain thresholds which are defined by the limits of fault-tolerant quantum error

correction [54].

Various noise sources can be either additive or multiplicative in their nature. The

strength of additive noise does not depend on the magnitude of control parameters,

while multiplicative noise can grow proportionally to the value of applied control

fields. In the following subsection, we discuss the common noise models for single-

qubit gates in general terms.

2.1.4.1 Amplitude noise

When we realize qubit control implemented in a particular physical architecture, a

controlled quantum system suffer from systematic errors introduced by the application

of an imperfect control profile [1]. This type of error is called an amplitude error, and

it effectively leads to error rotation by angle, θ′, related to desired rotation angle θ:

θ′ = θ(1 + ε), where ε is an unknown systematic error. In terms of Hamiltonian,

this error originates from multiplicative error in control frequency (here and in the

following subsections we consider a static Rabi frequency, Ω):

Ha =
1

2
Ω(1 + ε)σφ, (14)

which produces the propagator

Ua(τ) = exp

(
− i

2
θ(1 + ε)σφ

)
. (15)

Therefore, an amplitude error leads to inaccurate Bloch vector rotations and to

noisy single-qubit gates.

2.1.4.2 Detuning noise

Often, there is also another type of systematic error present in the system, it may

originate from random shifts in laser frequency applied to control a qubit [1]. This

12



error is called detuning error and it effects in additional small rotation through the

z-axis of a Bloch sphere:

Hd =
Ω

2
[σφ + δσz],

U(τ) = exp

(
− i

2
θ[σφ + δσz]

)
. (16)

Geometrically, the detuning error shifts the intended rotation axis out of the xy-

plane.

2.1.4.3 Simultaneous noise

In the general case, we have both amplitude and detuning error present in the system,

which results in inaccurate rotation angle and shifted rotation axis simultaneously

[1, 2]. We refer to this situation as to simultaneous noise. In the case of static ε and

δ, the Hamiltonian and propagator can be written as

Hs(t) =
Ω(t)

2
[(1 + ε)σφ + δσz],

U(τ) = exp

(
− i

2
θ[(1 + ε)σφ + δσz]

)
. (17)

Graphically, all three types of noise is given in the figure 3, where we demonstrate

an ideal rotation along y-axis by angle θ = π/2 and imperfect rotations affected by

systematic static noise. Constant error values, ε and δ, exaggerated to the large

magnitude for the sake of clear demonstration.

2.1.5 Time-dependent noise

So far in the considered noise models we have been assuming unknown, static errors

effectively leading to an offset constant in time. In reality, the errors in quantum

system control will vary in time. In this case, we need to generalize the static DC-

errors to the time-dependent noise fluctuations. Typically, an assumption of Gaussian

(stationary) noise is accurate enough for description of the broad class of physical

processes in quantum control. The spectral power of Gaussian stationary noise , S(ω),
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Amplitude error Detuning error Simultaneous error

Figure 3: Graphical demonstration of amplitude (Eq. (15)), detuning (Eq. (18)) and
simultaneous (Eq. (17)) error in the case of intended y-rotation by angle θ = π/2.
Ideal evolution is represented by a blue color with final state denoted by a blue
dashed-dot vector along x-axis. Imperfect rotation is denoted by red color. In all
three cases the chosen initial state is |0〉 (denoted by gray dashed vector). The error
parameters are chosen to be large (ε = δ = 0.2) to clearly demonstrate the effect of
noise.

and its autocorrelation function , R(t), are related through Fourier transformation

according to Wiener-Khinchin theorem [55]:

S(ω) ≡
∫ ∞
−∞

dt e−iωtR(t).

In the following chapters we will use this relation for analytical derivations and

numeric noise simulations.

Formally, in order to introduce an amplitude and detuning time-dependent noise

in the Hamiltonian level, the effective static errors can be replaced by their time-

dependent counterparts, ε·Ω→ βa(t) and δ·Ω→ βd(t). Here, βa(t) and βd(t) represent

zero-mean Gaussian stochastic processes with particular spectral characteristics. It is

important to note that in general we assume a multiplicative nature of the amplitude

noise, however in the case of fixed Rabi frequency, Ω, this noise fluctuations can be

treated as the additive terms. The physical assumption of additive error model for

detuning noise is quite natural. Finally, we can write down the control Hamiltonians
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as

Ha(t) =
1

2
[Ω + βa(t)]σφ,

Hd(t) =
1

2
[Ωσφ + βd(t)σz]. (18)

The effect of stochastic noise on a single-qubit rotation is similar to the case of

static model with an exception that in the former case the error strength changes its

value through out the qubit state evolution.

2.2 Theoretical framework for time-dependent noise

2.2.1 Time-dependent error model for control protocols

In the previous sections we have discussed the idea of a single-qubit operation. As

it was pointed out, any environmental and/or control errors cause the actual effect

of a control protocol to differ from the intended one. In this thesis work we shall

be interested here in error models that may be pictured in terms of coupling to

classical degrees of freedom, as arising from noisy control actions and/or a fluctuating

background environment – in which case the net result is the implementation of a

different operation on the target system, say, M(θ, φ) 6= R(θ, φ).

In the following sections, we will overview the idea of quantum control protocols

which consist of multiple elementary control operations, which are sequentially im-

plemented in such a way that the desired target operation (quantum gate) is realized

while simultaneously reducing the net sensitivity to error. The mathematical frame-

works and error-model assumptions employed in arriving at these constructions vary

considerably, leading to different control modalities. While we refer to the relevant

literature for a more complete discussion [1, 3, 56, 44, 35], we focus here on the task

of effecting a target rotation on a single qubit. One class of such control protocols

is a construction of composite pulses (CP) specific implementations of which will be

discussed in the following chapter.
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The standard error model assumed in CP constructions involves a combination of

static (DC) pulse-length and off-resonance control errors, which we may represent as

M(θ, φ) = exp[−iθ{(1 + εa)ρ(φ) · σ + εdσz}/2],

where εa and εd quantify the amplitude and detuning offsets, respectively. CPs rely

on the application of constant-amplitude control fields segmented into rotations of

different durations about different axes (phase modulation) to counter these errors

which, until recently [22, 20, 21, 2], have been addressed separately. If Ma(θ, φ)

(respectively, Md(θ, φ)) denote the propagator for the special case in which only εa

(respectively, εd) is significant, an m-th order CP protocol M
[m]
µ (θ, φ) is a sequence of

elementary operations {Mµ(θ, φ)} for which [1]

M [m]
µ (θ, φ) = R(θ, φ) +O(εm+1

µ ), µ ∈ {a, d}.

In order to both introduce and analyze the effect of time-dependent amplitude

and detuning errors in CP sequences, and compare them to other control protocols in

a unified setting, it is necessary to formulate the control problem at the Hamiltonian

(rather than propagator) level.

Let us consider a piecewise-constant chain of n discrete time-segments, each in-

dexed by l and spanning time t ∈ [tl−1, tl] such that, in units ~ ≡ 1 and in a suitable

frame, we may write a total Hamiltonian of the form

H(t) =
n∑
l=1

G(l)(t)
[Ωl + βa(t)]

2
ρ(l)
a · σ +

βd(t)

2
σz

≡ H0(t) +Herr(t). (19)

Here, we have introduced a modulation function G(l)(t) ≡ Θ[t− tl−1]Θ[tl − t], which

has unit value for t ∈ [tl−1, tl], and is equal to zero otherwise, in order to capture

the fact that the control is implemented in a piecewise-constant fashion. The ideal

control field amplitude for the l-th segment is denoted by Ωl, and its axis of rotation by

ρ
(l)
a ≡ ρ(φl) = (cosφl, sinφl, 0). The two zero-mean Gaussian (stationary) stochastic
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processes βa(t) and βd(t) model amplitude and detuning noise, respectively. We

assume that both such processes enter the dynamics additively, and are independent

of the ideal amplitude and phase of the control, while also being mutually independent,

that is, 〈βa(t)βd(t′)〉 = 0.

The total Hamiltonian in Eq. (19) may be separated into ideal plus error Hamil-

tonians by isolating the noise terms proportional to βµ. That is, acting alone, H0(t)

generates the unitary propagator U0(t, 0) =
∑n

l=1G
(l)(t)U0(t, tl−1)R′l−1, which de-

scribes a sequence of n consecutive elementary control operations Rl ≡ R(θl, φl),

l = 1, . . . , n, executed over a total gating time τ ≡ tn. Here, the operator U0(t, tl−1) ≡

exp[−iΩl(t− tl−1)ρ
(l)
a ·σ/2] is the time-dependent propagator for the l-th elementary

pulse, such that θl = Ωl (tl − tl−1) and U0(tl, tl−1) = Rl. At the end of the sequence,

U0(τ, 0) = R(θ, φ) = R′n (the desired target operation), where R′l ≡ RlRl−1 . . . R0 and

R0 ≡ I.

Following [3], the total evolution operator U(t, 0), generated by the controlled

Hamiltonian in Eq. (19) may then be written as U(τ, 0) ≡ U0(τ, 0) exp[−iΦ(τ)],

where the “error action operator” encapsulates the effect of Herr(t) and, to the lowest

order in a perturbative Magnus-series expansion, we may write

Φ(τ) ≈ Φ1(τ) =

∫ τ

0

dt U †0(t, 0)Herr(t)U0(t, 0). (20)

Calculating this quantity requires consideration of all (ideal) time-ordered control

operations enacted during the sequence; accordingly, let us define “control vectors”

as follows [4]:

ρa(t) ≡
1

2

n∑
l=1

G(l)(t)ρ(l)
a Λ(l−1),

ρd(t) ≡
1

2

n∑
l=1

G(l)(t)ρ
(l)
d (t− tl−1)Λ(l−1),

where the matrices (vectors) Λ(l−1) (ρ
(l)
d (t− tl−1)) have components
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Λ
(l−1)
ij = Tr[R′†l−1σiR

′
l−1σj]/2,

ρ
(l)
d,j(t− tl−1) = Tr[U †0(t, tl−1)σzU0(t, tl−1)σj]/2,

for i, j ∈ {x, y, z}. Thus, Φ1(τ) = a(τ) · σ, where the “error vector”,

a(τ) ≡
∫ τ

0

dt [βa(t)ρa(t) + βd(t)ρd(t)],

captures the difference between the actual and target control operations, for each

realization of the noise.

2.2.2 Performance measure and filter-transfer functions

In order to gain useful information about the overall performance of a CP protocol, we

must characterize performance across an ensemble of noise realizations. As a figure of

merit, we consider the ensemble-averaged (denoted by 〈·〉) propagator fidelity, which

in our qubit setting reads

F =
1

4

〈
|Tr[U †0(τ, 0)U(τ, 0)]|2

〉
. (21)

In contrast to the worst-case fidelity, the average fidelity takes into account dif-

ferent noise realizations and refers to their average outcome.

In the (weak-noise or/and short-time) limit where the first-order description of

Eq. (20) is accurate, we may further write [4, 50]:

F ≈ 1− 〈a(τ)2〉, a(τ) ≡ [a(τ) · a(τ)]1/2.

This quantity is most conveniently calculated in the Fourier domain; introducing the

noise power spectral densities,

Sµ(ω) ≡
∫ ∞
−∞

dt e−iωt〈βµ(t0)βµ(t0 + t)〉
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for µ ∈ {a, d}, and exploiting the stationarity and independence properties of the

noise sources, we finally obtain the following expression for the (first-order) fidelity

loss:

1−F ≈ 1

2π

∫ ∞
−∞

dω

ω2

∑
µ=a,d

Sµ(ω)Fµ(ω). (22)

Here, Fµ(ω) ≡ ρ∗µ(ω) · ρµ(ω) is the generalized FF for amplitude (µ = a) and detun-

ing (µ = d) respectively, defined in terms of the frequency-domain control vectors,

ρµ(ω) = −iω
∫ τ

0
dtρµ(t)eiωt.

When we consider the realistic noise spectra, we take into account the frequency

cut-offs, ωmin and ωmax, and we integrate over positive frequencies only (it yields the

factor of 2 in front of the integral):

1−F ≈ 1

π

∫ ωmax

ωmin

dω

ω2

∑
µ=a,d

Sµ(ω)Fµ(ω). (23)

The FFs characterize the spectral properties of the applied control and thus pro-

vide a simple quantitative means to compare the control protocols of interest (see

Table 1) in the presence of time-dependent Gaussian noise [46, 4]. In Fig. 4 we

demonstrate an example of FF for primitive gate and example of spectral power. In

order to estimate the gate performance for frequency window determined by ωmin and

ωmax, we are interested in overlap of two functions (Fig. 4) within that particular

frequency range denoted by shaded area. In general, one may interpret these func-

tions by considering the transfer function of a high-pass filter, including passband,

stopband, and roll-off. The filter roll-off, captured by the slope of the FF near zero

frequency, serves as a lower bound on the order of error suppression in the presence of

time-dependent noise [57]. This approach has been validated for nontrivial control -

including CP constructions - in recent experiments [50]. On the theoretical side there

have been a recent development of general filter-transfer function approach to quan-

tum control problems [58]. We next proceed to calculate and present independently

the FFs for both amplitude and detuning quadratures.
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Figure 4: Example of filter-transfer function (top) and spectral density (bottom)
that can be used for estimating performance of a control operation. Fidelity loss is
estimated according to Eq. (23) as an overlap integral of these two functions in a
frequency domain within particular limits (in this example it is denoted by a shaded
area).
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We can notice that in optimal control settings, analytical integral in Eq. (68)

may serve a role of objective function that should be minimized in order to achieve

a better performance. General approach of optimal control will be discussed in the

next section.

2.3 Optimal control

Optimal control theory is widely used in quantum control systems for implementation

of quantum logical operations or quantum gates. It is also a method to reduce the

effects of the noise fields in the best possible way, with respect to some measure of

performance [59, 52]. Basically, the process of finding an optimal control solution

is a search over a landscape corresponding to an objective function as a function of

possible control parameters. The objective or cost function can be determined by

fidelity of logical operation or any other measure for performance of suppressing a

present noise. In this way, a main goal of optimal control is to locate extrema on

the given configuration space, which is to find such values of control parameters that

provide the best performance.

In recent years, applications of optimal control for mitigating noise and environ-

ment effects in quantum computation and quantum information have become very

popular [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 34, 69]. Typically, the qubit states

are tranformed by external controls characterized by parameters such as a shape of

applied pulses. These parameters are obtained by the methods of optimal control

associated with various numerical optimization techniques. Applying such control

protocols makes it possible to achieve an effect of error suppression to a tolerable

level where quantum error correction codes are practically feasible [54]. Before we

employ an optimal quantum control, we are required to attain a detailed knowledge

of the quantum system and noise processes from which the system can suffer.

There are at least two distinctive types of optimal control theory applications for
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quantum control. In one way, it is used to derive solutions for state-to-state transitions

[70, 71]. Here, the task is to design a control Hamiltonian that would drive the

given state of quantum system to a target state, taking into account constraints and

limitations of physical implementations. The second type of applications is related

to a synthesis of a particular desired unitary gate, that can be a logical element of a

quantum algorithm. In general, the problem for both applications can be extended

to allow an optimal control in the presence of noise fields caused by interaction with

a quantum bath or imperfections in control apparatus.

In the following, we briefly formulate both types of optimal control. Although in

this thesis, when implement an optimal control, we focus on synthesizing of desired

quantum gates, as this problem plays a primary role in quantum computing.

2.3.1 Optimal control for state-to-state transitions

We discuss quantum state-to-state transitions according to work by Kosloff et al. [70]

and Shi and Rabitz [71]. As it was mentioned above, the dynamics of an isolated quan-

tum system under the external control fields u(t) described by the time-dependent

Schrödinger equation:

i
d|ψ(t)〉
dt

= H(u(t))|ψ(t)〉,

|ψ(0)〉 = |ψ0〉. (24)

The dependence of Hamiltonian H(u(t)) on control field in the interaction picture

can be often written in the form H(u(t)) = −µ · u(t). Here we can consider µ

as the transition dipole operator. The task of optimal control is to design such

time-dependent control u(t) that would steer the system from given state |ψ0〉 to a

particular target state |φ〉 at final time t = T .

The physical objective for this type of problem will have a form of a functional

consisting of terminal and integral components. The terminal component Φs[〈Oφ(T )〉]

is determined by the distance of the state |ψ(T )〉 from the target state |φ〉, where
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expectation value of projection operator Oφ ≡ |φ〉〈φ| is given by

〈Oφ(t)〉 = 〈ψ(t)|Oφ|ψ(t)〉 = |〈φ|ψ(t)〉|2. (25)

The integral component of functional, Is[〈P (t)〉], characterizes the distance of

the system state from its target dynamic values throughout some particular time

interval specified in a control problem. If |ξ(t)〉 is a particular target trajectory for

the quantum system, then P (t) can be a projection operator to that state: Oξ ≡

|ξ(t)〉〈ξ(t)|. If we focus only on integral functional, this optimal control problem

sometimes is called a local control. The approach would be called global if we consider

only a terminal functional, i.e. we require a target state to match only at time t = T .

Typically, there is also a third term in a complete objective functional that charac-

terizes a measure of the energy applied to the system due to control field interactions.

We define that functional that sets the fluence penalty on the applied control as

L[u(t)] =

∫ T

0

α(t)u2(t)dt; α(t) ≥ 0, (26)

where α(t) is a weighting parameter.

The total objective functional would consist of three described terms:

Js[u(t), ψ(t)] = Φs[〈Oφ(T )〉] + Is[〈P (t)〉] + L[c(t)]. (27)

We should now take into account a dynamic constraint which is governed by

Schrödinger equation, Eq. (24) by introducing time-dependent Lagrange multiplier

|λ(t)〉. It will contribute to the objective functional by the following term:

Ms[u(t), ψ(t), λ(t)] = −2Re

[∫ T

0

〈λ(t)|(|ψ̇(t)〉+ iH(u(t))|ψ(t)〉)dt
]
. (28)

If we sum up Js and Ms we obtain an unconstrained objective functional J ′s =

Js +Ms. Solving an optimal control problem with respect to that functional leads

to the desired optimal solutions for u(t).
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The two following forms for functionals Φs and Is are commonly used:

Φs = |〈φ|ψ(T )〉|2,

Is =

∫ T

0

ω(t)〈ψ(t)|P (t)|ψ(t)〉dt. (29)

Here ω(t) is weighting factor of the integral objective and P (t) is the projection

operator on a dynamic trajectory of states.

The problem can be converged to the system of Euler-Lagrange equations

i
d|ψ(t)〉
dt

= H(u(t))|ψ(t)〉, |ψ(0)〉 = |ψ0〉, (30)

|λ̇(t)〉 = −iH(t)|λ(t)〉+ ω(t)P (t)|ψ(t)〉, |λ(T )〉 = 〈φ|ψ(T )〉|φ〉. (31)

Gradient of functional J ′s with respect to the control u(t) us written as

∇uJ ′s = −α(t)u(t) + Im[〈λ(t)|∇uH(t)|ψ(t)〉]. (32)

Using the method of variation of parameters [72], the equation Eq. (31) can be

solved as

|ψ(t)〉 = U(t, T )|λ(T )〉 − U(t, 0)

∫ T

t

ω(t′)U †(t′, 0)P (t′)|ψ(t′)〉dt′, (33)

where U(t2, t1) is the unitary time-evolution which corresponds to propagation of the

Lagrange multiplier state from |λ(t1)〉 to |λ(t2)〉. In the section 2.3.3, we will briefly

mention which optimization techniques can be employed for numerical solutions of

this nonlinear problem.

2.3.2 Optimal control for the evolution operator

The control objective for evolution operator is to maximize the quantum gate fidelity

which is equivalent to minimizing a distance between the propagator at final time

t = T and the target gate R. This requirement can be incorporated in the following

terminal objective functional:

Φv[U(T )] = 1− ‖V − U(T )‖ , (34)
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where ‖·‖ denotes a matrix norm.

We remind that evolution of U(t) follows the operator Schrödinger equation:

iU̇(t) = H(u(t))U(t), U(0) = 1. (35)

Similarly to state-to-state transition problem, we add the dynamic constraint (Eq.

(35)) by introducing a time-dependent Lagrange multiplier operator B(t) to an ob-

jective functional as an additional term Mv:

Mv[u(t), U(t), B(t)] = −2Re

(∫ T

0

Tr{B†(t)[U̇(t) + iH(t)U(t)]}dt
)
. (36)

The total unconstrained objective functional is then given by

J ′v[u(t), U(t), B(t)] = Φv[U(T )] +Mv[u(t), U(t), B(t)] + L[u(t)], (37)

where L[u(t)] is the fluence penalty term defined the same way as in Eq. (26). From

these expressions we can derive the following coupled Euler-Lagrange equations [72]:

iU̇(t) = H(u(t))U(t), U(0) = 1,

iḂ(t) = H(u(t))B(t), B(T ) = ∇UΦv[U(T )]. (38)

The gradient of objective functional with respect to the control field will have the

form

∇uJ ′v = −α(t)u(t) + Im{Tr[B†(t)∇uH(t)U(t)]}. (39)

If Hamiltonian has the form H(t) = −µu(t), the gradient of ∇uH(t) with respect

to control fields is ∇uH(t) = −µ. Therefore, we can compute gradient of objective

functional Eq. (39) based on control field u(t) and propagator U(t) which can be

calculated from Schrödinger equation. Thus, it is possible now to use gradient-based

optimization algorithms that provide optimal control profiles of u(t) that maximize

fidelity of logical gates. In the following section we overview different optimization

methods and discuss in details techniques that we use in this work.
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2.3.3 Optimization methods

There is a number of optimization algorithms that have been adapted and developed

for optimal control of quantum systems. They can be used to solve Euler-Lagrange

equations discussed above (Eq. (30) - Eq. (32) and Eq. (38), Eq. (39)), provided that

we can make a guess for initial control field. Among common optimization algorithms

are the Krotov method [73, 69, 74, 75], conjugate gradient search method [70, 71],

monotonically convergent algorithms [76, 77, 78, 79], and the gradient ascent pulse

engineering algorithm (GRAPE) [64, 74, 80]. There is an approach based on combin-

ing different method which provides a faster convergence [81]. More comprehensive

reviews on optimization algorithms can be found elsewhere [74]. Here we focus on

algorithms that were used in this thesis work for the quantum systems in the presence

of time-dependent noise.

2.3.3.1 GRAPE

Gradient ascent pulse engineering (GRAPE) algorithms initially have been developed

for the design of pulse sequences in NMR spectroscopy [64] and later have been

extended to different applications and have found a wide use in quantum control

theory [74, 80]. In the following we present the theoretical basis to the algorithm.

Here we describe a quantum state by the density operator ρ(t). Then its evolution

in the absence of relaxation is determined by the Liouville-von Neuman equation [16]

which is equivalent of Schrödinger equation for density operators:

ρ̇(t) = −i[(H0 +
m∑
k=1

uk(t)Hk), ρ(t)]. (40)

Here, as in previous sections, H0 is the free evolution Hamiltonian, and Hk and

{uk(t)} characterize available control settings. The problem is to obtain such control

amplitudes {uk(t)} that drive an initial density matrix ρ(0) = ρ0 to a density matrix

ρ(T ), where T is a given final time. In this case, the objective functional Φ0 is defined
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as an overlap of a given target operator C and final density operator ρ(T ):

Φ0 = 〈C|ρ(T )〉 = Tr[C†ρ(T )]. (41)

We assume that the total evolution time T can be discretized in N equal steps each

of duration δt = T/N in the way that during j−th time step each control amplitude

uk(j) takes a constant value. In this case we can write down the evolution propagator

during a time step j as

Uj = exp{−i∆t[(H0 +
m∑
k=1

uk(j)Hk)]}. (42)

Then the final density operator and objective functional would be given by

ρ(T ) = UN ...U1ρ0U
†
1 ...U

†
N (43)

Φ0 = 〈C|UN ...U1ρ0U
†
1 ...U

†
N〉. (44)

The objective functional can be rewritten as

Φ0 = 〈λj|ρj〉, (45)

where λj is the target operator C at time t = j∆t propagated backward:

λj = U †j+1...U
†
NCUN ...Uj+1, (46)

and ρj is the state at the same time:

ρj = Uj...U1ρ0U
†
1 ...U

†
j . (47)

Let us find out how the objective functional changes when we modify the control

fields. The following formula will be useful here

d

dx
eA+xB|x=0 = eA

∫ 1

0

eAτBe−Aτdτ. (48)

If we perturb the control amplitudes as uk(j)+δuk(j), the change in the propagator

of Eq. (42) to first order in δuk(j) is

δUj = −i∆tδuk(j)HkUj, (49)
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where H is defined from

Hk∆t =

∫ ∆t

0

Uj(τ)HkUj(−τ)dτ. (50)

The propagator Uj(τ) can be determined from Eq. (42). Using Eq. (45) and Eq.

(49), we can obtain to the first order in ∆t (in this approximation, Hk ' Hk)

δΦ0

δuk(j)
= −〈λj|i∆t[Hk, ρj]〉. (51)

We can notice that if we update the control fields according to the scheme

uk(j)→ uk(j) + ε
δΦ0

δuk(j)
, (52)

where ε is a sufficiently small step size. This is the core part of the GRAPE algorithm

with a basic flowchart given in Fig. 5.

2.3.3.2 Simulated annealing

So far we have been considering the gradient-based optimization methods. One of the

common obstacles of these methods is that they can lead to solutions which are local

rather than global extrema. Finding a global maximum or minimum is especially

hard problem when we deal with multi-dimensional control landscape.

Here we discuss a heuristic technique called simulated annealing (SA) which can

be often used to locate a good approximation to the global extremum. This method

was independently developed by Scott Kirkpatrick et al. [82] and by Vlado Černý

[83]. Inspired by thermodynamics, it is an adaptation of the Metropolis-Hastings

algorithm, a Monte Carlo method to generate sample states of a thermodynamic

system [84].

SA have been successfully used for a number of practical applications including

the traveling salesman problem [85] and designing complex integrated circuits [82,

86]. Despite the fact that SA is often used for discrete combinatorial minimization

problems it is also widely used for problems with continuously variable parameters.

Therefore, the technique can be employed in quantum control applications as well.
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Basic Routine of GRAPE algorithm

Figure 5: Basic flow for gradient ascent pulse engineering (GRAPE) algorithm. See
text for details.
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At the heart of the heuristic approach of SA is an analogy with cooling and

crystallization of a material. When the temperature is lowered the atoms are often

able to form an ordered structure that corresponds to the state of minimum energy.

The key notion is the process of slow cooling which allows atoms to redistribute

as they lose their mobility. In thermodynamics, the system in thermal equilibrium

at temperature T has its energy probabilistically distributed among different energy

states E according to Boltzmann distribution:

P (E) ∼ exp

(
− E

kT

)
. (53)

Therefore, even at low temperature, there is a non-zero probability that a system

can transfer to a high energy state, and there is a chance for the system to get out

of a local energy minimum which can potentially help find a global minimum. In

the contrast to gradient-based methods, the SA allows us to explore the control space

more extensively as the system can sometimes go uphill and sometimes downhill. But

when the temperature gets lower the probability of any significant uphill excursion

becomes lower (Eq. (53)). In this way, if we design an optimization routine which goes

over control landscape similarly to the way how thermodynamic system are cooled

down we can achieve an accurate approximation to global minimum. The basic steps

of SA algorithm are given in Fig. 6.

2.3.3.3 Walsh modulation

During the search for optimized control protocols we have to explore the control

space of modulated parameters, such as Rabi frequency or rotation phase. Employ-

ing a basis set of discrete functions for control modulation can greatly reduce the

dimensionality of the search space. One such basis consists of Walsh functions, which

are represented by trains of square pulses with the allowed binary states being -1

and +1. Forming an orthonormal-complete family defined in a piecewise-constant

manner, Walsh functions can be used for practical implementation of control profiles
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Basic Steps 
of Simulated Annealing algorithm

Figure 6: Basic flow for Simulated Annealing algorithm. In accordance with ther-
modynamical analogy, x plays a role of a system state (described by set of controls
uk(j)); objective function Φ0 is an effective energy of system that we need to minimize;
T (t) is an effective temperature at time t; ∆Φ0 = Φ0(uk(j))−Φ0(uk(i)). Termination
conditions are typically based on a low temperature threshold or certain number of
repetitions.
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with discrete clocking [87]. For decades Walsh functions have been used in many

applications of digital electronics, and recently they have been found to be a powerful

resource for quantum information [88, 89]. They also have been used in quantum

control settings for noise-filtering [90, 50].
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Figure 7: First 8 Walsh functions in Paley ordering

In this work we will use a Paley or dyadic ordering of Walsh functions, where the

function of order k is defined as

PALk(x) =
m∏
j=1

Rj(x)bj , (54)

Rj(x) := sgn[sin(2jπx)], x ∈ [0, 1], j ≥ 0, (55)

where Rj(x)bj is the jth Rademacher function [91], which is a periodic square wave

with 2j−1 times of zero crossings in one cycle. The superscript bj is defined from the

binary representation of order k. The first eight Walsh functions in Paley order are

given in Fig. 7.
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Having defined the Walsh basis, we can now represent a time-dependent piecewise-

constant function through the expansion with coefficients Ck. For example, if the total

duration of a control sequence is τ , the Rabi frequency Ω(t) can be expanded as

Ω(t) = ΣN
k=0CkPALk(t/τ). (56)

In optimization routine, with this expansion we can modify a set of coefficients Ck

instead of perturbing the control fields. This often leads to a faster convergence due

to reduced dimensionality of control landscape [90, 50].

2.4 Conclusion

This chapter discussed some aspects of general formalism for quantum control theory.

We have demonstrated the importance of single-qubit rotations for quantum compu-

tation. Imperfections in control fields and interaction between a quantum system and

environment in general prevent an accurate manipulation of the states of system. Ro-

bust qubit control with errors below some threshold is one of the main requirements

for fault-tolerant quantum computations, therefore quantum control protocols should

be applied which reduce the effect of noise. We discussed how the performance of

arbitrary control protocols consisting of qubit rotations can be considered in a unified

theoretical framework. One of the approaches to design such control protocols can be

adopted from optimal control theory. In the following chapter we consider how robust

specific implementations of quantum control protocols to time-dependent noise.
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CHAPTER III

COMPOSITE PULSE SEQUENCES IN THE PRESENCE

OF TIME-DEPENDENT NOISE

Chingiz Kabytayev, Todd J. Green, Kaveh Khodjasteh, Michael J. Biercuk, Lorenza

Viola, and Kenneth R. Brown “Robustness of composite pulses to time-dependent

control noise”. Phys. Rev. A 90, 012316 (2014).

In this chapter we use a combination of analytic formulations based on FFs and

numerical simulations to demonstrate that CPs are able to effectively suppress control

errors caused by time-dependent processes possessing realistic noise power spectra.

Specifically, we consider a variety of both standard and concatenated CP sequences

on a single qubit, as well as simple DCG protocols, and compare their performance

within a unified control framework. Remarkably, robust performance of CP sequences

is found up to fluctuations as fast as ∼10% of the Rabi frequency, providing an explicit

quantitative characterization of the sensitivity of these approaches to time-dependent

control noise. Calculations show that even under such noise environments, which are

beyond the static ones originally assumed for CPs, predicted fidelities are at least com-

parable to DCGs in scenarios where protocols of both kind are applicable. We present

a geometric interpretation of CP performance under time-dependent amplitude noise

in order to provide insight into this behavior, further linking the FF formalism with

known techniques in CP construction [1].
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3.1 Composite Pulses

The representative CP sequences we consider are given in Table 1. For instance,

SK1 and BB1 are first- and second-order CPs correcting for pure amplitude er-

rors [19, 18], whereas CORPSE is a first-order compensating sequence for pure detun-

ing errors [18, 92]. Simultaneous errors can be systematically suppressed for arbitrary

(θ, φ) by applying concatenated CPs [2], such as reduced CinSK (CORPSE in SK1)

and reduced CinBB (CORPSE in BB1).

DCG protocols are constructed from general Hamiltonian models for finite- di-

mensional open quantum systems exposed to non-Markovian decoherence due to

quantum or, as considered here, classical environments. This is to be contrasted

with CP constructions which are obtained without making reference to an underlying

physical model for the intervening error dynamics. In the simplest case DCGs em-

ploy piecewise-constant amplitude and phase modulation of the applied control fields

across a sequence of carefully designed elementary segments. Through this approach,

the error-sensitivity of the target operation is perturbatively minimized to a given

order [3]. More general analytical DCG constructions are also possible, involving

“stretching and scaling” arbitrary control profiles. In the present setting, we take

advantage of formal similarity of the propagator M(θ, φ) under pure off-resonance

errors (εa = 0) to the one arising from single-axis classical decoherence in the DCG

context. Specifically, the representative DCG we study is a first-order three-segment

sequence, obtained from general constructions in the special case θ = π [3, 4] (see

also Table 1).

3.2 Robustness of composite pulses to time-dependent noise

3.2.1 Analytical results

We begin by analyzing the effect of a single noise source, as described by the appro-

priate generalized FF introduced in the previous chapter. Results are summarized
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Table 1: CP sequences correcting the target rotation R(θ, 0) against different error
models [1, 2]. Here, φ1 = cos−1(−θ/4π), k = arcsin[sin(θ/2)/2], α = 2π + θ/2, a:
amplitude noise; d: detuning noise; s: simultaneous amplitude and detuning noise
[see text]. For the DCG sequence [3, 4], Ω1 = Ω, 0 ≤ t < t1 ≡ τ/4; Ω2 = Ω/2, t1 ≤
t < t2 ≡ 3τ/4; Ω3 = Ω, t2 ≤ t < t3 ≡ τ .

CP / Error model (θ1, φ1) (θ2, φ2) (θ3, φ3) (θ4, φ4) (θ5, φ5) (θ6, φ6)

SK1 / a (θ, 0) (2π,−φ1) (2π, φ1) - - -
BB1 / a (θ, 0) (π, φ1) (2π, 3φ1) (π, φ1) - -
CORPSE / d (α− k, 0) (2π − 2k, π) (θ/2− k, 0) - - -
Reduced CinSK / s (α− k, 0) (2π − 2k, π) (θ/2− k, 0) (2π,−φ1) (2π, φ1) -
Reduced CinBB / s (α− k, 0) (2π − 2k, π) (θ/2− k, 0) (π, φ1) (2π, 3φ1) (π, φ1)

in the two top panels of Fig. 9, where we also show, for comparison, FFs for an

uncorrected (elementary or “primitive”) π-rotation. As the latter is expected to have

no error-suppressing properties, a comparison of the FFs for CP protocols against

the primitive rotation reveals their relative performance advantages; a steeper slope

indicates improved (higher-order) error suppression. We compute fidelity loss as a

function of spectral parameter, ωb, that characterizes the knee of the roll-off from

1/f to 1/f 2 behavior. In Fig. 8 we show three examples of such spectrum with

different values of ωb.

As we observe from Fig. 9, all compensating sequences show the expected first-

order suppression of errors against which they are designed to be effective, in the

low-frequency limit. At the same time, they show no improvement over the primi-

tive for the uncompensated error quadrature. Remarkably, our analysis reveals that

the crossover frequency at which the FF for CP protocols becomes larger than that

for the primitive is as high as ∼ 10% of the driving frequency Ω. Accordingly, in

circumstances where the noise power spectral density is dominated by frequencies

below this value, CP sequences are still expected to provide robust error-suppressing

performance.
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Figure 8: Example of various shapes for spectral density for three different values of
a roll-off knee, ωb.

3.2.2 Geometric picture

For amplitude noise, it is possible to make connections between the form of the

amplitude FF and geometric models commonly used to describe CPs [1, 21, 93, 23].

One may represent a compensating sequence as an initial target rotation followed

by correction rotations, captured through a set of vectors in a multi-dimensional

space. Direct calculation shows that a sequence correcting DC errors to the first

order satisfies the condition:∑
l

Ω(tl − tl−1)ρ̃(l)
a = 0, ρ̃(l)

a ≡ ρ(l)
a Λ(l−1). (57)

If one treats each term in the above sum as a vector of length Ω(tl−tl−1) pointing in the

direction ρ̃
(l)
a , then placing the vectors end to end forms a closed figure, demonstrating

the effective DC error suppression. In this picture, SK1 yields a triangle, whereas

BB1 corresponds to two triangles with opposite signed area, indicating second-order

correction, as expected [1].

Returning to the FF construction, we find that the amplitude-noise FF may be
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Figure 9: Top: FFs as a function of dimensionless frequency for amplitude [Panel a)],
and detuning noise [Panel b)]. A target rotation angle θ = π is used for all sequences.
Bottom: Performance of CP sequences in the presence of constant power amplitude
[Panel c)] and detuning noise [Panel d)] with 1/f Gaussian noise spectrum and 1/f 2

roll-off, Eq. (59). Spectrum parameters: Aa = Ad ≡ A = 2.07·109/[log(ωb/ωmin)+1−
(ωb/ωmax)] (rad/s)3/Hz, where ωb is the knee of the roll-off; ωmin = 2π rad/s, ωmax =
4.5 · 109 rad/s. Control amplitude: Ω = 1.5 · 106rad/s. Numerical simulation involves
discretization of the continuous noise functions βµ(t), calculating a single instance
of U(τ, 0) and a single value for fidelity, and averaging over N noise realizations.
We employ the Karhunen-Loeve filter [5] to simulate discrete noise in the Gaussian
limit [6]. Analytical lines representing the fidelity loss calculated by the FF approach
[Eq. (68), in color] and by the DC limit approach [Eq. (58), gray] are plotted. The
DC limit for BB1 and CORPSE are below the bounds of the plot at 1−F = 3.9×10−9

and 1−F = 3.0× 10−9, respectively
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written as

Fa(ω) =
1

4

{∣∣∣∑
l

Al(ω)ρ̃(l)
a

∣∣∣2 +
∣∣∣∑

l

Bl(ω)ρ̃(l)
a

∣∣∣2},
Al(ω) ≡ cos(ωtl)− cos(ωtl−1),

Bl(ω) ≡ sin(ωtl)− sin(ωtl−1).

The above expression for Fa(ω) may be interpreted in terms of the magnitudes of

two three-dimensional real vectors A ≡
∑

lAl(ω)ρ̃
(l)
a and B ≡

∑
lBl(ω)ρ̃

(l)
a . When

ω is small compared to the relevant time scales, Taylor-expansion of Bl shows that to

second order in ω, we have
∑

lBl(ω)ρ̃
(l)
a ≈ ω

Ω

∑
l Ω(tl−tl−1)ρ̃

(l)
a = 0, which corresponds

to (a scaled version of) the closed-loop condition required for error suppression at DC,

Eq. (57). To second order, Al ≈ ω2

2
(t2l − t2l−1), which thus dominates the error. This

implies that all CPs for amplitude noise should have FFs that scale at least as ω4 in

the limit of small ω. These observations tie to previous knowledge about general FFs

and associated error-suppressing properties [46, 4].

Fig. 10 shows the vectors A and B divided by ω (dashed green arrows cor-

responding to Bl/ω and solid red arrows corresponding to Al/ω, respectively) and

placed end-to-end for SK1 and BB1, for two different values of the dimensionless fre-

quency ω/Ω. At sufficiently small ω the dashed green arrows trace an approximate

closed path, whereas for higher frequencies, ω & 0.1 Ω, higher-order terms become

important. In this case, the resulting figure is no longer closed and the sequence will

not be error-suppressing, in agreement with the FF analysis presented above. Thus,

this geometric picture reflects common observations for DC error analyses, but now

lifted to a time-dependent error model, analyzed in the frequency domain.

We can also use the small ω limit ofA andB to estimate the crossover frequency at

which the CP FF, FCP
a (ω), will exceed the primitive pulse FF, F P

a (ω). The primitive

pulse FF is determined by the leading term in B, F p
a (ω) ≈ 1

4
(ωτP )2, where τP is the

pulse duration. The low frequency CP FF is determined by the leading term in A,
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SK1

BB1

Figure 10: Geometric picture for first- vs. second-order amplitude-error CPs. The
axes represent Cartesian x and y, indicating the rotation axes of the different segments
[see text]. The initial rotation is about the x-axis, indicated by the horizontal line,
with corrections about different axes conducted subsequently. Returning to the origin
indicates suppression of error, with two different time-domain elements of the FF
being indicated by color (dashed green/solid red).
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which can be bounded from above by making the assumption that all ρ̃
(l)
a are the

same. This results in FCP
a = 1

16
(ωτCP )4, where τCP is the length of the composite

pulse. For SK1 and BB1 with θ = π, τCP = (4π + θ)/Ω and this bound predicts

that the composite pulse will reduce the error, FCP
a (ω) < F P

a (ω), when ω < 0.025Ω.

This is an approximate lower bound; the actual crossover frequencies are ω = 0.069Ω

for SK1 and ω = 0.127Ω for BB1.

3.2.3 DC limit

While the approaches described in previous subsection capture the effects of a dy-

namic bath well, the first-order FF formalism underestimates error in the region

ω/Ω � 1, corresponding to noise processes fluctuating slowly on the scale of op-

eration time. This may be understood by treating very slow noise as a constant

error term equal to the strength of Herr at the start of the sequence, βµ(0). For

small, constant noise an m-th order CP (or DCG) sequence is well approximated

by U [m](τ, 0) ≈ U0(τ, 0) exp[−iΦm+1(τ)], where Φm+1(τ) is the (m + 1)th order term

in the perturbative Magnus expansion [3, 1]. For a qubit as we consider, Φm+1(τ)

is traceless with eigenvalues ±λm+1 and the magnitude of λm+1 is proportional to

βµ(0)m+1. The fidelity of the sequence is then F ≈ 〈cos(λm+1)2〉. In this limit, the

leading order error term can thus be written as

1−F ≈ 〈λ2
m+1〉 = cm+1〈βµ(0)2(m+1)〉, (58)

where the proportionality constant cm+1, like Fµ(ω), depends on the sequence and

the noise axis, but not the noise strength.

As an example, consider SK1 with constant noise βa(0). The leading-order Magnus

term is

Φ2(τ) = i
βa(0)2

2

∫ τ

0

dt

∫ t

0

dt′[ρa(t), ρa(t
′)]

= βa(0)2π2 sin(2φ1)σz
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where φ1 = cos−1(−1/4) (see Table 1). The eigenvalues of Φ2 are±λ2 = ±βa(0)2π2 sin(2φ1)

and as a result 1− F ≈ (π2 sin(2φ1))2〈βa(0)4〉. The term c2 = (π2 sin(2φ1))2 depend

only the pulse sequence and 〈βa(0)4〉 is averaged over the ensemble of initial noise

strengths.

The error of the first-order fidelity approximation in the FF formalism [Eq. (68)]

only depends on the first-order Magnus term [Eq. (20)], so the slow-noise (DC) limit

contains fidelity loss contributions from higher-order FF terms that are ignored in the

first-order approximation (see also [4] for additional details). For a zero mean Gaus-

sian noise described by a spectral density S(ω), by definition 〈βµ(0)2〉 =
∫∞
−∞ dωSµ(ω).

All odd orders of the expectation value are zero and all even orders are proportional

to powers of the second order expectation value,

〈βµ(0)2(m+1)〉 = (2m+ 1)!!
(∫ ∞
−∞

dωSµ(ω)
)m+1

.

We may therefore estimate the analytical fidelity loss over the entire frequency range

by combining the contributions from Eq. (68) and Eq. (58).

3.2.4 Comparison with numerical results

Quantifying the fidelity loss [Eq. (68)] for control protocols implemented in a real

(classical) noise environment requires one to choose a specific noise spectrum. As a

practical example, we consider 1/f Gaussian noise with a roll-off to 1/f 2 noise at

high frequency with spectrum (see Fig. 8)

Sµ(ω) =


Aµ/ω, ωµmin < ω < ωµb ,

ωµb · Aµ/ω2, ωµb < ω < ωµmax,

0 otherwise,

(59)

where Aµ is a constant amplitude for the two error quadratures µ ∈ {a, d}. This type

of noise is frequently encountered in experimental qubit systems over a wide frequency

range [94, 95, 33] and naturally arises from independent bistable fluctuators [96]. The
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generality of this power spectrum in various noise processes allows us to reasonably

assume the same power spectrum for both amplitude and detuning noise, despite

the fact that these two noise sources have different physical origins in general and,

as remarked, we take them to be independent. Nonetheless we emphasize that our

methods are independent of the specific form of the power spectrum assumed in our

numerical calculations.

We analytically compute the fidelity loss according to Eq. (68) in combination

with the asymptotic error floor, Eq. (58). These analytic results are compared to

numerical data obtained from simulation of the Bloch vector evolution under the

noisy Hamiltonian in Eq. (19). Provided that the number of noise realizations, N ,

over which we average is large enough, this numeric simulation can be considered a

reliable direct method for calculating the fidelity. In fact, numeric results for fidelity

loss converge after averaging over N ' 104 noise realization. We perform a quick

analysis of fidelity distributions for primitive gate, SK1 and BB1 CPs. For the noisy

X-rotation that for primitive gate can be represented as M(θ) = R(θ) · R(ε) (where

ε is an over- or under rotation angle), the fidelity loss (Eq. (21)) scales as

1−F = 1−
〈

cos2
(ε

2

)〉
. (60)

While the random values of ε follow the Gaussian distribution, the numerical

fidelity loss will be distributed according to Eq. (60). In the Fig. 11 we demonstrate

the distributions for ε and deviations of fidelity loss calculated numerically for 1000

random samples of the noise. Corresponding distributions of numerical fidelity loss

for SK1 and BB1 are shown in Fig. 12. As we can observe, the SK1 fidelity loss,

comparing to BB1 protocol, is distributed over a wider range of values.

For the three first-order protocols studied (SK1, CORPSE, and DCG), the lower

panels of Fig. 9 show that as the roll-off frequency is reduced, the fidelity loss is well

approximated by the combination of the FF estimate and DC limit (lines). Vitally,

43



−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

400

500

600

700

F
re

qu
en

cy
F

re
qu

en
cy

Deviation from average fidelity loss

Numeric approach

a)

b)

−2 0 2 4 6 8 10 12 14
x 10−3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Analytical scaling

Figure 11: (a) Distribution of an angle of error rotation, ε (see text), based on
1000 samples of numeric noise realizations for primitive X-gate. (b) Distribution of
deviations of fidelity loss for primitive X-gate. Black bars correspond to numeric
calculations and red dashed line corresponds to Eq. (60).
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Figure 12: Distributions for fidelity loss deviations based on 1000 samples of numeric
noise realizations for BB1 and SK1 CP sequences.

both the analytic and numerical approach directly reveal the robustness of CP pro-

tocols against noise fluctuations up to ∼ 0.1Ω. Detailed performance variation in the

slow-noise limit stems from differences in construction of the selected gate protocols.

The DCG and CORPSE sequences both correct DC detuning noise to the first or-

der and have first-order FF’s for time-dependent errors. While for frequencies below

∼10% of the Rabi frequency the DCG has a FF of lower magnitude than CORPSE,

the specific CORPSE sequence used is designed to additionally minimize the residual

second-order DC pre-factor [1] (namely, c2 in Eq. (58)), which results in a DC limit

of X well below the plotted fidelities. The resulting relative performance between

the DCG and CORPSE protocols further depends on the specifics of the noise power

spectral density. Similarly, the effective second-order DC error cancellation associ-

ated with BB1 means that the DC-limit does not provide a substantial contribution

relative to the FF calculation for the example noise spectrum.
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Finally, we extend our analysis to include representative concatenated CP se-

quences (Table 1). We see that the FFs of the concatenated CP sequences depicted

in Fig. (13) exhibit error suppression for both forms of error at low frequencies rela-

tive to a primitive pulse, in contrast to the standard CP sequences. In the presence

of simultaneous noise, this leads to substantially improved performance when both

noises are slow. Fig. 14 and Fig. 15 present a quantitative comparison of analyti-

cal and numerical fidelity-loss calculations for the primitive π-pulse and for reduced

CinBB, showing good agreement between the two approaches. For this two-parameter

compensating sequence, the constant-error DC fidelity limit may be seen to arise due

to a cross-term of the two noise sources, namely,

1−F = c1,1〈βa(0)2βd(0)2〉,

where cm+1,n+1 is the cross-term equivalent of cm+1 for single noise sources in Eq.

(58). As the data show, the resulting DC limit matches the fidelity loss in the very

low frequency regime for the reduced CinBB sequence.

F
ilt

er
 F

un
ct

io
n

a) b)

Primitive
Reduced CinSK
Reduced CinBB

Amplitude Error Detuning Error

Figure 13: FFs as a function of dimensionless frequency for amplitude error [Panel
a)] and detuning error [Panel b)] for concatenated CP sequences Reduced CinSK and
Reduced CinBB. Unlike SK1, BB1, CORPSE, and DCG (see Fig. 9), these FFs scale
as ω4 for both errors.

Our numerical calculations validate the insights provided by the analytic FF for-

malism and demonstrate that, in combination with the calculated DC error floor, the

first-order FF is an effective tool for predicting single-qubit control performance in the
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Figure 14: Performance of CPs under simultaneous amplitude and detuning noise,
as a function of dimensionless frequency roll-off from 1/f to a 1/f 2 spectral density,
ωab and ωdb, respectively. Spectrum and control parameters as in Fig. 9. Analytical
results for fidelity loss. For each point the FF and DC limit calculations are compared
and the larger fidelity loss value is plotted.

Figure 15: Performance of Reduced CinBB under simultaneous amplitude and de-
tuning noise, as a function of dimensionless frequency roll-off from 1/f to a 1/f 2

spectral density, ωab and ωdb, respectively. Spectrum and control parameters as in
Fig. 9. Analytical (FF: green surface, DC-limit: gray surface) and numerical results
(green circles and mesh) for Reduced CinBB vs. analytical (DC-limit: blue surface)
and numerical results (black diamonds) for a primitive pulse.
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presence of time-dependent noise. The analytic approach comes with an additional

benefit, however, in terms of computational efficiency; the numerical calculations of

fidelity loss under time-dependent noise are in fact significantly more computationally

intensive than the FF approach. While this is beyond our current purpose, such an

advantage is likely to become even more dramatic in more complex control scenarios,

in particular including multiple qubits.

3.3 Trapezoidal pulses

In actual experiments, pulse shape deviates from the ideal square-pulses under which

CPs are derived. This is often done on purpose when, for example, Gaussian pulses

or Blackman pulses are used to limit the spectral bandwidth of the control [97, 98].

This also occurs accidentally due to bandwidth limitations of the instrument resulting

in fast amplitude fluctuations or slow turn off times. Although the FF formalism as

described in previous sections assumes piecewise-constant control, continuous pulse-

modulation profiles can be analyzed by a discrete time step approximation. We apply

this approximation to examine the effect of pulse shape on CP FFs for amplitude and

detuning noise.

We expect that the FF of amplitude noise CPs will be weakly dependent on pulse

shape since amplitude noise, unlike detuning noise, commutes with the control pulse.

In fact, using the error model of Eq. (19), the FF is pulse-shape independent if

the total pulse time is the same as the square pulse it replaces. CPs for amplitude

noise were developed assuming the error is proportional to the control (multiplicative

noise). This noise can be modeled in our formalism by replacing βa(t) in Eq. (19) with

Ωl/Ωmaxβa(t). We note that additive and multiplicative error models are equivalent

for the constant Ω pulses considered in the main text. In the case of multiplicative

noise, static error correction only requires the rotation angle be constant. On the

other hand, detuning noise does not commute with the control and as a result the
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pulse shape can have a significant effect.

As an example, we examine trapezoidal pulses where the k-th pulse is ramped up

to Ωk in a time r, held for a time w, and then ramped down in a time r. The total

pulse time is w + 2r and w + r is held constant to preserve the rotation angle. For

the CPs studied here, Ωk = Ω. BB1 and SK1 are designed assuming a systematic

and proportional error in the rotation angle. This is preserved for multiplicative

amplitude noise, and we see that the FF form is maintained (Fig. 16). There is an

increase in the magnitude of the FF in the small ω region due to the increase in the

overall sequence length in time.
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r =0.95

Primitive
BB1 (r =0)
r =0.05
r=0.1
r =0.5
r =0.95

Primitive
SK1 (r =0)
r =0.05
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Figure 16: FFs as a function of dimensionless frequency for SK1 [Panel a)] and BB1
[Panel c)] in the presence of multiplicative amplitude noise and for CORPSE [Panel
b)] and DCG [Panel d)] in the presence of detuning noise. The CPs are constructed
from trapezoidal pulses with ramp time r in units of π/Ω.

CORPSE is designed under the assumption of square pulses and the detuning

is additive. Consequently trapezoidal pulses do not perfectly remove the first-order
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error using the rotation angles of CORPSE. This changes the asymptotic behavior

of the FF and we see a bend corresponding to the residual ω2 term due to imperfect

error cancellation (Fig. 16b). The bend occurs at lower frequencies as the control

approaches a square profile.

In contrast, the design of π DCG does not assume square pulses [3]. The static

error cancellation will occur if the first and the third pulse have the same time-

dependent control profile applied for a total time T and the second pulse has the

stretched and scaled control profile applied for time 2T . The parameters for the

first and second trapezoidal pules are related as follows: 2r1 = r2, 2w1 = w2, and

Ω1/2 = Ω2 The FF form at small ω remains unchanged and the magnitude again

increases with overall sequence length (Fig. 16d).

In practice, if square pulses are not an adequate approximation, then CORPSE

should not be used. Instead a DCG should be chosen or one can derive a CORPSE-like

sequence using soft pulses to achieve similar slow-noise cancellation [99].

3.4 Conclusion

In this chapter we have shown that CP sequences originally designed to compensate

only for static control errors may be successfully employed for non-Markovian time-

dependent control and/or environmental errors as well. Our numeric and analytic

results demonstrate that these sequences are robust against noise fluctuations up to

∼10% of the control frequency, a surprisingly high value.
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CHAPTER IV

OPTIMIZED PULSE SEQUENCES THAT ACT AS

NOTCH FILTERS

In previous chapter, we examined the robustness of CP sequences and DCGs that

were designed for static noise in the presence of time-dependent noise. We observed

how the performance depended on the bend frequency where a broad spectral density

transforms from a 1/f to a 1/f 2 frequency dependence. A key tool for this analysis

was the filter-transfer function (FF) formalism [45, 4, 50]. The roll-off frequency of

the first-order FF was a good indicator of the maximum frequency of the frequency

bend. We also saw the limits for the first-order formalism where for a very slow noise

the FF approach underestimated the error and a pure DC approximation yielded

more reliable estimates.

One advantage of the FF formalism is that the error can be estimated by an

integral of the FF with the spectral density. Soare et al. [50] use this to design pulses

using an optimization procedure which minimizes the area under the first-order FF

alone. This method suppresses all slow noise processes irregardless of the spectral

density and is robust for noise sources with relatively shapeless spectral densities.

For the case of spectral densities with sharp features, the integral of the first-

order FF with the spectral density is a more appropriate target for minimization.

In this Chapter we demonstrate that optimizing on this approximate fidelity yields

results that are confirmed to be effective by direct numeric integration. Specifically

we examine a noise model corresponding to a strong and narrow Gaussian peak on

a broad 1/f background with a roll-off to 1/f 2. Furthermore, the first-order FF

yields insight into the pulse robustness with respect to changes in the position of
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the Gaussian peak. We employ the method of simulated annealing [82] and GRAPE

algorithm [64, 74, 80] in optimization routines.

4.1 Noise model

The system that we consider is a single qubit in the presence of a non-Markovian

noise representing an error in either the detuning or amplitude of the control. In

both scenarios, the noise spectrum is dominated by a strong Gaussian-shape peak

added on top of a weak 1/f background with a roll-off to 1/f 2:

S(ω) =


Sg(ω) + Ap/ω, ωmin < ω < ωb,

Sg(ω) + Ar/ω
2, ωb < ω < ωmax,

0, otherwise,

(61)

where

Sg(ω) = Ag exp[−(ω0 − ω)2/2σ2]. (62)

The spectrum parameters are chosen in a way that Sg(ω) corresponds to a narrow

strong peak. Example of this type of spectrum is presented in the fig. 17 and example

of corresponding noise trajectories is presented in the fig 18.

For a sequence of n operations, amplitude noise βa(t) and detuning noise βd(t),

both zero-mean Gaussian stationary processes, are introduced into the Hamiltonian

as follows:

Ha(t) =
n∑
l=1

G(l)(t)
[Ωl + βa(t)]

2
ρ(l) · σ, (63)

Hd(t) =
n∑
l=1

G(l)(t)
Ωl

2
ρ(l) · σ + βd(t)σz. (64)

Here, σ ≡ (σx, σy, σz), are the Pauli operators. The function G(l)(t) ≡ Θ[t −

tl−1]Θ[tl − t] has unit value for t ∈ [tl−1, tl] and takes zero value otherwise. Each

rotation characterized by control-field amplitude Ωl and the axis ρ(l) ≡ ρ(φl) =

(cosφl, sinφl, 0).
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Figure 17: Example of considered power spectrum of Eq. (61) formed by Gaussian-
shape peak with ω0/Ω ' 0.44 (Eq. (62)) and 1/f background with a roll-off to 1/f 2
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Figure 18: Example of noise trajectories for ω0/Ω ' 0.44 corresponding to the
spectrum of Eq. (61).

53



4.2 Control of amplitude noise

We employ several pulse sequence constructions a five-pulse model based on BB1 a

CP for DC amplitude errors [18, 19] for arbitrary rotation angles and the F1 5-π

sequence developed by Jones [93] for π rotations. We assume each square pulse l

has fixed Ω and we vary the time interval [tl−1, tl] to change the rotation angle. For

amplitude noise, the pulse shaping has minimal effect on the results if the total pulse

time does not change [51].

In the BB1 type sequences, we modulate parameters α, β, φ1 and φ2 in the

sequence

U1 = R(θ − α, 0)R(β, φ1)R(2π, φ2) ×

×R(2π − β, φ1)R(α, 0). (65)

It is constructed in a way that for each set of {α, β, φ1, φ2}, U1 is always equivalent

to R(θ, 0) in a noise-free regime. Parameter α is constrained to interval [0, θ], while

other parameters can take any value in [0, 2π].

For F1 type sequences [93], we sequentially perform an odd number n of operations

R(π, φl), they result in a total rotation R(π,Φ), where Φ =
∑n

l (−1)lφl. In this study

we limit this construction to n = 5 and Φ = 0. Therefore, the sequence for R(π, 0)

can be written as

U2 = R(π, φ5)R(π, φ4)R(π, φ3)R(π, φ2)R(π, φ1),

φ5 = φ4 − φ3 + φ2 − φ1, (66)

and independent parameters to be modulated are φ1, φ2, φ3 and φ4. The limitation

of construction U2 is that it only produces a π-rotation, while U1 can be used for

arbitrary rotations.
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4.3 Control of detuning noise

The presence of detuning noise term in Hamiltonian of Eq. (64) leads to decoherence

effects that can be potentially reduced if we vary control frequency {Ωl}. For this

purpose we modulate control profile in a basis of Walsh functions, which are binary

valued square-wave functions [100, 50, 88], and search for a sequence with the best

performance for a given noise model. Rotation phase φl is limited to 0 or π with a

default value of 0.
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Figure 19: Top: FFs as a function of dimensionless frequency. Vertical dashed lines
indicate target values of ω0 for which control protocols based on Eq. (65) [Panel
a)] and based on Eq. (66) [Panel c)] were synthesized. Bottom: Performance of
quantum control protocols as a function of parameter ω0/Ω for a Gaussian spectral
peak including control protocols based on Eq. (65) [Panel b)] and based on Eq. (66)
[Panel d)]. Analytical fidelity loss computed by the FF approach (lines) is compared
to numerical simulations (markers).

Let us replace our discrete control vector {Ωl} by continuous function Ω(t) defined

such that it takes the value Ωl for t ∈ [tl−1, tl]. We build the sequence power profile

as the following linear combination Ω(t) =
∑n

k=0XkPALk(t/τ), where PALk(t/τ) is

a Walsh function of Paley order k, and τ is a total duration of the sequence. We

are interested only in odd values of k and only in those Walsh functions which are
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Figure 20: (a) FFs as a function of dimensionless frequency. Vertical dashed lines
indicate target values of ω0 for which OCP1 and OCP2 were synthesized. (b) Per-
formance of quantum control protocols as a function of central frequency ω0/Ω for
a Gaussian peak in detuning spectrum. Analytical fidelity loss based on the FF ap-
proach (lines) is compared to numerical simulation (markers). Spectrum parameters:
(c) Amplitude profile for OCP1 synthesized from Walsh functions (d) Amplitude pro-
file for OCP2 . Diagonal-line pattern of 3rd and 6th pulse corresponds to the rotation
phase φ1 = φ8 = π which equals 0 elsewhere.
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symmetrical around the middle point of time axis. These conditions lead to the

control search space which has been shown to be more effective [50]. For example,

for 8-pulse sequence only the subset of k = {0, 3, 5, 6} is included in the sum.

Due to periodic properties of Walsh functions only the first term, X0PAL0(t/τ) ≡

X0, defines the area under the curve Ω(t) and, consequently, the resulted rotation

angle θ = X0τ . So, by fixing X0, in a noise-free regime we generate a target gate

regardless of values of X3, X5 and X6. During modulation of these parameters we

also perform a rescaling of τ to limit the maximum value of Ω(t) to 1, while the length

of each pulse equals τ/n. If Ω(t) is negative for some operation, we take its absolute

value and flip the phase from 0 to π.

4.3.1 Objective function and Optimization procedure

In both amplitude and detuning noise regimes, our goal is to design a sequence that

would be maximally close to an ideal unitary U0 in the presence of noise. The effect

of the noise is captured by the average fidelity

F =
1

4

〈
|Tr(U †0V )|2

〉
, (67)

where V is an actual propagator in the presence of single trajectory of stochastic

process, and the brackets 〈.〉 denote the averaging over large ensemble of noise trajec-

tories. The fidelity loss, 1− F , can be chosen as an objective function that requires

minimization.

One particular approach to fidelity loss is taken in FF formalism [45, 4], which

has shown a potential use for fast evaluation of performance for composite pulses

[51] (also, see previous chapter), and has been proven to be valid experimentally

[50]. FF F (ω) captures the spectral characteristics of an arbitrary set of single-qubit

operations and allows us to compare performance of different combinations of pulses

by quantitative means.

Using the definition of noise power spectrum, S(ω) ≡
∫∞
−∞ dt e

−iωt〈β(t0)β(t0 + t)〉,

57



we give the expression for the first-order fidelity loss [4]:

1−F ≈ 1

2π

∫ ∞
−∞

dω

ω2
S(ω)F (ω). (68)

With FF formalism we can easily calculate FFs for the sequence constructions

described for amplitude and detuning noise in previous sections. Being expressed

by analytical functions, the integral in Eq. (68) is a feasible measure of control

performance and it can be easily implemented in our numeric optimization routine.

4.3.1.1 Simulated annealing

We have discussed various optimization methods in more details in Chapter II. In

order to obtain notch-filter sequences we employ the method of simulated annealing

[82] implemented in MATLAB package for quantum control [74]. It takes minutes to

generate optimized solutions that can be considered as good approximations to global

minima for both amplitude and detuning noise control settings.

For the control construction of Eq. (65), we vary the set of {α, β, φ1, φ2} and

compute objective function of Eq. (68). For the sequence in Eq. (66) the varying

controls are {φ1, φ2, φ3, φ4}. Finally, in the case of detuning noise control variables

are coefficients, {X3, X5, X6}, of the expansion in Walsh basis.

The particular cooling scheme for simulated annealing that we implement is de-

fined as T (t+ ∆t) = cT (t), where c < 1 (see fig. 6 for details).

4.3.1.2 GRAPE algorithm

We also employ the GRAPE algorithm [64, 74, 80] for amplitude noise to compare

the resulted sequences to the constructions specified above. In contrast to the BB1-

type and F1-type sequences where the control power Ωl is fixed to 1, in GRAPE

optimization we modify it from pulse to pulse. Therefore, we also need to take into

account the multiplicative nature of the amplitude noise, and the Hamiltonian of Eq.
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(63) will take the form

Ha(t) =
n∑
l=1

G(l)(t)
Ωl[1 + ε(t)]

2
σφl . (69)

Here ε(t) represents a multiplicative control noise which is related to βa(t) by βa(t) =

Ωl · ε(t). In the case of fixed control power, ε(t) and βa(t) are formally equivalent.

In the GRAPE implementation, the variable controls are components u
(l)
x and u

(l)
y

of applied power along σx and σy:

Ha(t) =
n∑
l=1

G(l)(t)
1

2
{u(l)

x [1 + ε(t)]σx + u(l)
y [1 + ε(t)]σy}. (70)

Two forms of Hamiltonian in Eq. (69) and Eq. (70) are equivalent if we relate

u
(l)
x and u

(l)
y to control power, Ωl, and rotation phase, φl, by Ωl =

√
(u

(l)
x )2 + (u

(l)
y )2

and tanφl = u
(l)
y /u

(l)
x .

While in simulated annealing we evaluate the objective function by the means of

FF formalism, in GRAPE routine we calculate the average fidelity numerically using

Eq. (67) and the resulting objective function is averaged over multiple numerical

noise realizations. In order to generate the optimized sequences that way, we have

modified GRAPE implementation in QuTiP (Quantum Toolbox in Python) software

[101, 102]. In particular, we have added a support for the presence of stochastic noise

in control power. In this case, the objective function is computed as an ensemble-

averaged control performance.

4.4 Results

4.4.1 Amplitude noise

We present optimized notch-filter sequences for two different peak frequencies of am-

plitude control noise. Results based on simulated annealing are given in the Fig. 19,

where we compare them to standard pulses (SK1 and BB1 [19, 18]) and to primitive

π-rotation. In terms of FFs (top panels of Fig. 19) synthesized composite pulses

clearly demonstrate resonance behavior for the target frequencies (marked by vertical
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lines). In the bottom panels of Fig. 19 fidelity loss is calculated as a function of a

peak location in frequency domain. Performance of new sequences are significantly

better than that of SK1, BB1 and primitive gate for a certain frequency range around

the spectral peak.

In the fig. 21, we present GRAPE pulse sequences optimized for target frequency

ω0/Ω = 0.439. We compare these sequences to the pulses considered above and prim-

itive pulses of two types. Due to multiplicative character of amplitude noise, it can

be advantageous to apply pulses with a low power but longer durations. Therefore,

additionally to the original primitive π-pulse, we demonstrate the performance of

‘slow’ π-pulse where Ω is fixed to 0.2. In the panels (c) and (d) of the fig. 21 we

show GRAPE profiles for 5 and 10 pulses respectively. It is clear that 10-pulse se-

quences demonstrate better performance as these control protocols have more flexible

structure.
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Figure 21: Performance of GRAPE pulse sequences optimized for ω0 ' 0.44 with
5-pulse structure (a) and 10-pulse structure (b). Control power profiles are given
on panels (c) and (d), respectively. Dashed Horizontal lines denote ’slow’ π-pulse.
Fidelity loss for the F1-type pulse sequence (Fig 19) is given for comparison.
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We do not present results from GRAPE algorithm applied for a ‘slow’ sharp

peak (ω0/Ω ' 0.08) that we considered for simulated annealing. We observe that

GRAPE is not effective for time-dependent noise with slow dynamics due to existence

of multiple local minima on this control landscape.

4.4.2 Detuning noise

On the left panels of Fig. 20 we demonstrate FFs and the performance for control

protocols based on simulated annealing for the case of detuning noise. Optimized

notch-filter sequences with control profiles on the right panels of Fig. 20 are also

designed for particular frequencies of a spectral peak, they are compared to standard

pulses such CORPSE [18, 92] and DCG for X-gate [3, 4]. Again, notch-filter behavior

of FFs leads to advantage in performance in target range of frequencies. One can also

note that new pulse sequences for a slower frequency peak are more effective than

those which correct for fast frequency noise.

4.5 Conclusion

In this chapter we have demonstrated a possibility to obtain numerically single-qubit

pulse sequences optimized for particular target frequency of present noise. These

sequences act as notch filters which suppress a strong narrow peak in a noise spec-

trum. We compare performance of optimized control protocols to standard CPs and

to dynamically-corrected gates designed for slow non-Markovian noise. As it is ex-

pected, standard protocols are outperformed by optimized sequences for the given

noise model. We can conclude that this approach would help to reduce a noise effect

on the qubit system provided that the noise oscillations have a dominant frequency.
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CHAPTER V

COMPOSITE PULSES FOR SINGLE-QUBIT GATES IN A

SURFACE ELECTRODE ION TRAP

This chapter describes our recent work that has been done in collaboration with the

research group of Professor Jungsang Kim at Duke University. The study by E. Mount

et al. [7] considers experimental work on error compensation of single-qubit gates in a

surface electrode ion trap using composite pulses [7]. Here we discuss our theoretical

contributions to the simulation of randomized benchmarking protocols that have been

used to measure gate errors. In theses protocols, various composite pulse sequences

have been employed for compensation of introduced amplitude error, and in this way,

recently developed compact palindromic pulse compensation sequences [23] have been

shown to be effective against high-amplitude errors. We present details on randomized

benchmarking technique and the structure of pulse sequence simulations.

5.1 Experimental methods

Among quantum computer architectures the trapped atomic ion qubits successfully

demonstrate key properties such as long coherence times [103], high accuracy of qubit

measurement [104], and possibility to implement a set of universal logic gates [105].

The fidelity of quantum gates on trapped ion qubits has been limited by the stabil-

ity of the control fields used to manipulate the states of ion. In practice, the logic

gates based on microwave fields [106, 28, 107] provide gate fidelities several orders

of magnitude higher than those using laser fields [108, 109, 110]. In this work, the

low-error single-qubit gates performance is demonstrated by using stimulated Raman
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transitions on an ion qubit trapped in a microfabricated chip trap. In order to mea-

sure the gate errors a randomized benchmarking protocol [108, 111, 112] has been

employed. The randomized benchmarking technique is discussed in more details in

the next section. Amplitude errors in the control beam were suppressed by composite

pulses to the extent predicted by our numeric simulations. It has been shown that

the single-qubit gates based on BB1 CP sequence [1] can have an average error per

randomized Clifford group gate as low as 3.6(3) · 10−4. It is also demonstrated in

experiment that PD6 CP sequence designed by G. H. Low et al. shows an expected

high-order error compensation.

In microfabricated surface electrode ion traps atomic ions are trapped above a

two dimensional surface of electrodes. This device is a very promising platform for a

scalable quantum computer [113, 114].

In the experiment that we consider, the states of a qubit have been encoded

in two hyperfine ground states |0〉 = 2S1/2|F = 0,mf = 0〉 and |1〉 = 2S1/2|F =

1,mf = 0〉 of the 171 Yb+ ion (Fig. 22). The energy separation between these two

states corresponds to fqubit = 12.6GHz, and it is relatively insensitive to the possible

magnetic field fluctuations. For Raman transitions, they have used picosecond pulses

from a mode-locked titanium-sapphire (Ti-Sapph) laser doubled to a center frequency

of 376 nm, which creates combs in the frequency domain with comb teeth spacing

equal to the laser repetition rate (frep ' 76 MHz). The frequency doubler output

is split into two nearly co-propagating frequency combs using a single acousto-optic

modulator driven with modulation frequencies f1 and f2 , demonstrated in Fig. 23.

Resonant transitions are driven by pairs of optical frequency comb teeth ( 2 and 3 in

Fig. 23), one from each comb, with a frequency difference equal to fqubit [115, 116]

(see [7] for details).

For each experiment, the ion is first Doppler cooled for 1 ms using light that is red-

detuned from 2S1/2|F = 1〉 → 2P1/2|F = 0〉 resonance. The qubit is then initialized
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Figure 22: Relevant energy levels used in the 171Yb+ ion. Adapted from [7].

to the |0〉 state. In order to measure the qubit state, they use a light resonant with

2S1/2|F = 1〉 → 2P1/2|F = 0〉 transition turned on for 400 µs and measure the ion

fluorescence by a photo-multiplier tube (PMT). The fluorescence would correspond

to the |1〉 , and the absence of fluorescence (a dark state) would correspond to the

|0〉 state.
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. . .

. . .
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3 4

Figure 23: Relevant optical frequency combs. Adapted from [7].

In the described experiment, the impact of residual systematic amplitude errors

in the Raman beams was suppressed through the use of CP sequences. Since the CPs

(see Chapter III) are usually designed to work on systematic errors that are constant

over the duration of the sequence, the sequence length determines the bandwidth

below which the effect of fluctuating error is suppressed. The length of most CPs

increases rapidly at higher error correction order. The palindromic pulse sequences
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(PDn) are unique in that they scale linearly with the corrected error order (to n =

12) [23]. Here we analyze the use of BB1 [1] and PD6 [23] CPs and their ability

to correct for static amplitude errors in the presence of additional phase and timing

errors for Clifford group gates.

In order to efficiently characterize the average error of single-qubit gates we employ

the randomized benchmarking technique which is discussed in more details below.

5.2 Randomized benchmarking

A major requirement for quantum computing realizations is to implement low-error

logical gates. Namely, the error probability should be of the order of 10−4 [54]. It

is very hard to measure such low errors in experiments and one approach to that is

to use process tomography to determine the properties of quantum operations [54].

The limitations of this technique is that it does not necessarily provide a complete

information about quantum gate behavior for the wide range of situations. For ex-

ample, the process tomography does not necessarily determine how well a particular

gate would perform as the element of a sequence of logical operations. But more

importantly, these techniques do not allow to separate the effects of SPAM (state

preparation and measurement) errors from the intrinsic gate errors. An alternative

method, randomized benchmarking was proposed by E. Knill et al. [108] in 2008 and

was inspired by using randomization to analyze quantum noise [117]. It later found

a wide use in quantum computing [111, 112].

We consider the randomized benchmarking method in application for one qubit.

In this case, the qubit is first initialized to the |0〉 state. Then a large number of

experiments is performed that consist of an alternating sequence of either π-pulses

or identity operations (Pauli randomization) and π/2-pulses (considered as compu-

tational gates) chosen at random. All these rotations are in Clifford group [111] (see

Table 2) and the qubit state is always an eigenstate of a Pauli operator. All sequences
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are followed by a final Clifford gate which brings the final qubit state to either |0〉

or |1〉, at random. The qubit is then being measured in computational basis and

compared to the state which is expected in a noise-free regime.

The randomization ensures that the measurement outcome is not correlated with

any pulse sequences or with any particular operations. Typically, the length l of a

randomized pulse sequence is referred to the number of π/2-pulses in the sequence.

The role of π-pulses is only to randomize the error by changing the Pauli frame

[108]. If we perform N experiments for each length l = 1, ..., L and measure the error

probability pl for each experiment, we can estimate a single pulse error rate. Then

the average fidelity loss per pulse can be obtained from relationship between pl and

l. While we refer to original sources [108, 112] for details, we discuss the basic steps

of randomized benchmarking protocol:

1) Choose and fix a sequence length L and generate KL random sequences each

consisting of uniformly distributed Clifford elements. Overall, there are L+1 quantum

operation in each sequence, where L is a number of random Clifford gates and the

last (L+ 1)th operation returns the qubit state to z-basis.

2) For each of the KL sequences, obtain the survival probability measured by

comparing the final qubit state to the expected state.

3) Obtain averaged sequence fidelity by averaging over all KL random realizations.

4) For different values of L, repeat operations 1) - 3) to obtain averaged survival

probability Fseq(L) per gate length calculated as the fraction of events where measure-

ment outcomes match the expected results. Then fit the averaged survival probability

to the following model (this model corresponds to the case of gate-independent and

time-independent errors [112])

Fseq(L) = A0p
L +B0, (71)

where p is related to the average error per Clifford gate r through r = (1− p)/2, and

A0 and B0 correspond to the SPAM errors and the error on the final rotation. The
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derivation of the model Eq. (71) can be found here [112].

5.3 Experimental results and numeric simulation

In the case of considered experiment [7], for each sequence length L there were 20

random sequences. Each sequence was measured 800 times for calculating of averaged

survival probability. By fitting it to the model Eq. (71), average error per gate

and associated uncertainty have been obtained. The effective amplitude error was

introduced by changing the Raman beam duration for each pulse. Therefore, the

rotation angle was changed from θ to θ(1 + ε) (See previous chapters for amplitude

noise models). The lowest error per gate 3.6(3) · 10−4 was observed by translating

each individual rotation into a BB1 CP at an amplitude error of ε = 0.2. Correcting

the amplitude error for each pulse using BB1 reduced the gate error by 67% from the

lowest measured uncompensated gate error 1.1(2) · 10−3.

In order to compare the experimental results to numerical calculations, we de-

signed a simulation program that includes error due to the presence of non-resonant

comb teeth pairs and a non-static timing error. We simulated the exact sequences

used in the experiments in the presence of different types of noise.

In Fig. 24 we present a comparison of the error from primitive gates and BB1

and PD6 pulse sequences as a function of amplitude error. Our simulations qual-

itatively reproduce the agreement with experimental data for both BB1 and PD6

sequences. However, in experiment the best performance at suppressing amplitude

noise is demonstrated by BB1 sequence, since the PD6 is a longer sequence and it is

more sensitive to the additional errors caused by off-resonant Raman transitions.

5.4 Conclusion

In this chapter, we discuss a work which reports high fidelity single qubit gates driven

with tightly focused laser beams on trapped ion qubits by laser intensity stabilization

and use of compensating pulse sequences. An error probability as low as 3.6(3) ·
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10−4 is demonstrated, consistent with error levels required for realizing a range of

quantum error-correction schemes. We discuss the theoretical modeling that was

used to compare experimental data to numeric simulations.
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Figure 24: Single qubit gate error degradation with systematic amplitude error.
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Table 2: The Clifford group gates written as the physical gates applied.

Clifford gate Physical gates

1 I
2 X
3 Y
4 Z
5 X/2
6 Y/2
7 Z/2
8 -X/2
9 -Y/2
10 -Z/2
11 Z & X/2
12 X/2 & Z
13 Z/2 & X
14 X & Z/2
15 Z/2 & X/2
16 Y/2 & Z/2
17 X/2 & -Z/2
18 Y/2 & Z
19 -X/2 & Z/2
20 -Z/2 & Y/2
21 Z & Y/2
22 -Z/2 & X/2
23 X/2 & Z/2
24 -Y/2 & -Z/2
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CHAPTER VI

CONCLUSION

In this work, we present a systematic study of pulse sequences for single-qubit control

in the presence of time-dependent noise. In addition to substantially expanding the

practical significance of open-loop quantum control protocols, our analysis further

establishes the utility of FFs as a unifying and computationally efficient framework

for estimating and understanding the performance of coherent control protocols under

realistic noise spectra. Furthermore, we have shown that at least for the single-qubit

setting under consideration, slow noise can be accurately modeled by a DC-limit

approximation that can be combined with the FF approach to accurately estimate

control performance over a broader frequency range.

Altogether, our results show that, in combination, CP and DCG protocols provide

experimentalists with a viable toolkit capable of meeting a variety of constraints,

including the presence of colored time-dependent control noise.

We further notice that the geometric picture we have developed, in conjunction

with the FF approach, may prove instrumental for finding new CPs which are resilient

to specific noise spectra.

We have demonstrated this possibility by developing new pulse sequences that act

as notch filters. It is a demonstrative example that the overlap integral of the first-

order FF with the spectral density can serve as an effective target for performance

error minimization. We expect that these methods together with broad approaches

currently developed in quantum information community can further advance the field

of quantum control. Particularly with respect to time-dependent noise, the question

of a robust suppressing of arbitrary broad noise spectrum remains open.
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APPENDIX A

NUMERICAL NOISE SIMULATION

In this work we have used numerical simulations for stochastic processes to confirm

our theoretical findings and derivations. In this Appendix we discuss a technique of

Karhunen-Loéve (KL) filter for modeling a noise process with a given autocorrelation

function R(t) as a set of discrete numerical sequences [5]. This method is designed to

generate a wide-sense stationary Gaussian noise. For this type of noise the correlation

function is related to the power spectral density by the Wiener-Khinchin theorem [55]:

S(ω) =

∫ ∞
−∞

dte−iωtR(t)

R(t) =

∫ ∞
−∞

dteiωtS(ω).

The output of KL filter is a numerical noise vector, z, with a correlation matrix

defined in a discrete way as

〈zizj〉 = R(|j − i| · δt) ≡ Aij,

where δt is a discrete time step. The correlation matrix A is a positive semi-definite

Toeplitz matrix since correlation function, R(t), is a real, symmetric function [85].

Therefore, Toeplitz matrix can be diagonalized by a real orthogonal matrix M :

A = MΛMᵀ,

here Λ is a non-negative diagonal matrix. We can denote it by Λj.

Now we can generate noise trajectories as

zi = Mij

√
Λjxj,
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where xj is an element of a zero-mean vector x formed based on normal distribution.

This vector can be easily by a computer program.

We can check that {zi} has a required autocorrelation characteristics by calculat-

ing the expected mean 〈zi〉 and expected autocovariance 〈zizj〉:

〈zi〉 = Mij

√
Λj〈xj〉 = 0;

〈zizj〉 = Σm,nMim

√
ΛmMjn

√
Λn〈xmxn〉 =

= Σm,nMim

√
ΛmMjn

√
Λnδmn =

= ΣmMim

√
ΛmMjm =

= (MΛMᵀ)ij =

= Aij.

As we can see, the noise vector z has a given spectral characteristics and can be

used to simulate Gaussian noise with arbitrary autocorrelation function.
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