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SUMMARY 

There are two parts in this thesis. Nuclear magnetic double resonance 

in chemically exchanging systems is discussed in Part One. Overhauser studies 

in three spin systems are treated in Part Two. 

In Part One, a density matrix description of nuclear magnetic double reso

nance on chemically exchanging system is developed using a double resonance basis 

set. The chemical exchange coefficients have many properties analogous to the 

relaxation coefficients. This allows the density matrix computation to be expressed 

in terms of symmetric array. The solutions then can be detained in terms of an 

eigenvalue procedure. The formalism is illustrated by self-exchange in the AB 

system, 2,2,2-trichloroethanol. Comparison of theoretical and experimental 

double resonance spectra allows the determination of the chemical exchange life

time and the relaxation parameters. 

In Part Two, the simple line approximation of the density matrix equation 

is used to describe the Overhauser effects in three spin systems. Intramolecular 

and intermolecular dipolar interactions are studied. The symmetry properties of 

the relative fractional change of intensities in the weak coupling limit are discussed. 

In addition, the relations between the relative fractional change of intensities for 

different double resonance experiments are established. The summation rule for 

the fractional change and relative fractional change of intensities are found to be 

very useful. The formalism is illustrated by the ABX system of vinyl bromide. 
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PART TWO 

OVERHAUSER STUDIES ESI THREE SPIN SYSTEMS 



C H A P T E R I 

I N T R O D U C T I O N 

D o u b l e r e s o n a n c e h a s b e e n a u s e f u l t e c h n i q u e f o r s t u d y i n g t h e r e l a x a t i o n 

p r o c e s s e s o f n u c l e a r s p i n s y s t e m s . I i i t h i s t e c h n i q u e , o n e o f t h e t r a n s i t i o n s o f 

a h i g h r e s o l u t i o n n u c l e a r m a g n e t i c r e s o n a n c e s p e c t r u m i s i r r a d i a t e d b y a s e c o n d 

r a d i o f r e q u e n c y f i e l d a n d t h e r e s t o f t r a n s i t i o n s a r e o b s e r v e d b y a w e a k r f f i e l d . 

I f t h e s t r e n g t h o f t h e s e c o n d r f i s s m a l l s o t h a t n o s p l i t t i n g s a r e o b s e r v e d , o n e 

o b t a i n s t h e w e l l k n o w n g e n e r a l O v e r h a u s e r e f f e c t s p e c t r a . I n t h i s c a s e , t h e s e c o n d 

r f o n l y c a u s e s t h e p o p u l a t i o n c h a n g e s a t v a r i o u s e n e r g y l e v e l s w i t h o u t a f f e c t i n g t h e 

s p i n e n e r g i e s . I f t h e s t r e n g t h o f t h e s e c o n d r f i s s t r o n g , i t w i l l p r o d u c e n e w 

t r a n s i t i o n l i n e s i n a d d i t i o n t o h a v i n g t h e p o p u l a t i o n c h a n g e s at v a r i o u s l e v e l s . 

I n f o r m a t i o n a b o u t t h e r e l a x a t i o n m e c h a n i s m s c a n b e o b t a i n e d f r o m t h e a n a l y s i s o f 

d o u b l e r e s o n a n c e s p e c t r a . T h e s i n g l e s p i n s y s t e m h a s b e e n s t u d i e d i n g r e a t d e t a i l 
» 

2 3 4 5 
b y B l o c h , B a l d e s c h w i e l e r , G o r d o n a n d R a o . T w o s p i n s y s t e m s 6-9 w e r e i n v e s -

1 10 12 

t i g a t e d e x t e n s i v e l y , b o t h t h e o r e t i c a l l y a n d e x p e r i m e n t a l l y . A B ' a n d A B X 

t h r e e s p i n s y s t e m s w e r e a l s o s t u d i e d b y s t e a d y s t a t e d o u b l e r e s o n a n c e . 

I n g e n e r a l , t h e d o u b l e r e s o n a n c e e x p e r i m e n t s a r e s e n s i t i v e t o t h e s p e c i f i c 

r e l a x a t i o n p r o c e s s e s f o r d i f f e r e n t k i n d s o f m o l e c u l e s . A n a d v a n t a g e o f t h i s t e c h 

n i q u e i s t h a t i n f o r m a t i o n a b o u t t h e r e l a x a t i o n p r o c e s s c a n b e o b t a i n e d b y u s i n g 

o n l y a s i n g l e s e t o f e x t e r n a l c o n d i t i o n s . 
W e a k d o u b l e r e s o n a n c e e x p e r i m e n t s , i n w h i c h t h e i r r a d i a t i o n s t r e n g t h i s 



2 

comparable to the strength of relaxation, are quite sensitive to the relaxation 

mechanism. In addition, the experiment and spectral analysis of weak double 

resonance spectra are simpler than those from strong1^ or pulsed11 double reso

nance experiments. The absolute relaxation parameters can also be obtained by 

this method. 

Recently, two spin systems were studied by this weak irradiation technique. 

In this thesis, three spin systems are studied by the same technique. 

The density matrix equation and the possible relaxation mechanisms are 

discussed in Chapter II. The equations for the weak irradiation experiments are 

formulated in Chapter III. The fractional intensity changes, F , and relative 
ap, CQ 

fractional intensity changes, G , ,, are defined and discussed in terms of this 
ao, co. 

formulation. Algebraic solutions for the weak coupling limit are given. The com

puter solution for a tightly coupled three spin system is discussed. The formalism 

is illustrated by the ABX system vinyl bromide in Chapter IV. 
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C H A P T E R I I 

J = - l p C o + J C i ( t ) + 3 C 2 ( t ) , o O - r ( a - o ^ ) . . . . ( 1 ) 

w h e r e a i s t h e s p i n d e n s i t y m a t r i x , a n d o \ i s a a t t h e r m a l e q u i l i b r i u m w i t h n o r f 

f i e l d . I n t h e h i g h t e m p e r a t u r e a p p r o x i m a t i o n ^ o*o = 1 / N - q3C w h e r e q = i i ^ N k T . 

A l s o , 

X = 2 7 T & v . 1 ( i ) + £ J . . . I ( i ) - I ( j ) 
o L. o i z 7 . i i 

1 K j 

' K ( t ) = L > 1 + e x p ( i a ^ t ) + D 1 e x p ( - i 

K 2 ( t ) = D 2 + e x p ( i ^ t ) + D 2 _ e x p ( - i ^ t ) 

V q . = y, Xo/2„, D 2 + = - , L W ) , D 

D 1 + . = . ^ ( i ) , D x _ = ^ ^ I _ ( i ) , ^ = 

y. i s t h e m a g n e t o g y r i c r a t i o o f n u c l e u s i i n c l u d i n g t h e c h e m i c a l s h i f t a n d J i s 
, i i j 

t h e s p i n - s p i n c o u p l i n g c o n s t a n t b e t w e e n ! a n d j i n c y c l e s p e r s e c o n d . T h e T ( a - a ) 

t e r m d e s c r i b e s r e l a x a t i o n , a n d i s g i v e n b y 

D E N S I T Y M A T R I X F O R M A L I S M F O R D O U B L E R E S O N A N C E 

A . D e n s i t y M a t r i x E q u a t i o n 

T h e s p i n d e n s i t y m a t r i x e q u a t i o n f o r d o u b l e r e s o n a n c e i s g i v e n b y 
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T / (a- a ) = - L R , (a- or)__, (2) aa v o' ,. / aa bib N o'bb bb 

16 The R M i / matrix elements are given by the Redfield formulation: aa ob 

**aa1bb' 2t*aba 1b' ^a %' 5 ̂ cbca âb'c? ̂ ca'cb7 ^ 

In equation (3) under extreme narrowing approximation, 

Jaba'b' = T c < < a f K : ( t ) | b > < a ' l K ( t ) | b ' > * > A V ( 4 ) 

w h e r e < > i n d i c a t e s a n e n s e m b l e a v e r a g e . T h e s u m m a t i o n a n d s y m m e t r y 
A V 

properties of the R^/^/ are given by equations (6) and (7) in reference 1. 

As in reference 1, it is convenient to deiine a difference matrix x(t) by 

X(t) = cr- 0"o. Equation (1) then becomes 

P̂ = -i[Ho>x(t)']-i|}C2(t>, Gr o+x(t)]-r(x) (5). 

The calculation forx(t) here is based upon the basis set of single resonance, 

|a>, lb>.. .etc., 

where 3C • a>=.<0 |a>. (6) 
o a1 

Small latin letters are used to specify the single resonance basis set. The calcu

lation of x(t) in reference 1 is based upon the basis set of double resonance in 

equation (4) of reference 1. The diagonal elements, of x(t) calculated here can be 

interpreted directly as the population changes from the equilibrium spin density 

\ 
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matrix. 

B. Relaxation Mechanisms in Three Spin Systems 

Three relaxation mechanisms are discussed in this analysis. 

1. Intramolecular Dipolar Interaction 

This is the dipole-dipole interaction between nuclei within the molecule. 

The interaction Hamiltonian"^ in the laboratory frame is given by 

where 
r̂2_7>:N 

±2 + + +1 / + ' Z ' Z + Y / 

and 
N V57 7k 7k N 2 \ N .N 

The subscript N indicates a pair of spins 1̂  and S^/. r^ is the distance between 
q 

and S^/. Y 2 are the spherical harmonics of rank 2 with and 

specifying the orientation of r^ relative to the laboratory coordinate system. The 
q * 

are random functions of time. Substituting equation (7) in equation (4) the spec

tral density becomes 
JabaV ĉ %.=, W \ \ \ , r N V X 

N>N N N N N 



w h e r e i s t h e a n g l e b e t w e e n r ^ a n d r ^ / « E q u a t i o n (9) w i l l b e w r i t t e n i n t h e 

f o l l o w i n g f o r m f o r c o n v e n i e n c e i n d i s c u s s i n g v i n y l b r o m i d e : 

(10) 

2 6 
3 c o s cp___T / - l r . 

w h e r e g ^ . _ / = N N : ab (11) 
N N 10 3 3 

r r , 
N N 

a n d 
4 2 

3 y H r 
_1 _ c 
T D ~ 6 

::ab 
(12) 

I n v i n y l b r o m i d e , r i s t h e d i s t a n c e b e t w e e n t h e g e m i n a l p r o t o n s . T h e d i p o l a r 
a b 

i n t e r a c t i o n o f t h e g e m i n a l p r o t o n s i s the s t r o n g e s t . T D w o u l d g i v e t h e d i p o l a r 

c o n t r i b u t i o n t o t h e r e l a x a t i o n t i m e o f t h e g e m i n a l p r o t o n s i f t h e v i c i n a l p r o t o n 

w e r e n o t p r e s e n t . 

2 . I n t e r m o l e c u l a r D i p o l a r I n t e r a c t i o n 

T h i s i s t h e d i p o l e d i p o l e i n t e r a c t i o n b e t w e e n n u c l e i i n d i f f e r e n t m o l e c u l e s . 

T h e i s o t r o p i c e x t e r n a l r a n d o m f i e l d i s u s e d t o d e s c r i b e t h e i n t e r m o l e c u l a r d i p o l a r 

17 

i n t e r a c t i o n , r a t h e r t h a n u s i n g a d e t a i l e d s u m p r o c e s s . T h e r e s u l t o f s u c h a 

m o d e l i s g e n e r a l l y i n a g r e e m e n t w i t h e x p e r i m e n t . T h e i n t e r a c t i o n H a m i l t o n i a n 

f o r i s o t r o p i c e x t e r n a l r a n d o m f i e l d 1 0 i s g i v e n a s 

K'(t) = S r k { H J(t»lJ + f i y t ^ + II" (t) £ (13) 

where < | i y t ) | > A y = I <|H+(t) I > A V = 4< \\W I > A V . * 
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Vt) = H*(t) ± 

and Ĥ (t), Ĥ (t) and Ĥ (t) 

are the Z, X and Y components of the random field strength respectively at spin 

site k. For ABX three spin systems, equation (13) can be rewritten as 

K'{t) = Zy, Z Z n- (14) 
k=A,B,X 

where A, B and X indicate the nuclear sites A, B and X respectively. From 

equations (4) and (14), the spectral density can be obtained as 

J aba V k=A,B,X ^ k 
<a|^|b><a'|^|b' > + 

i< l £ l b > < a' | £ | b > + i< a l ^ l b x a ' l ^ l b ' 

+ z CH^V < V * < V * 
k<k' 

[ < a | l ^ | b > < a | ] ^ / | b S + 4 < a | ^ | b > < a / | ^ | b / > + 

i < a | l ^ | b > < a M ^ / | b / 

> (15) 

where 
i = K<Kwi2>AVTc?k=A.B.x 
k 

(16) 
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| < | H ~ ( t ) | 2 > A V / k = A , B , X , 

and 

C 
<;TH^(t) H £ ,<t ) |> 

(17) 

- < | H k ( t ) | 2 > A V < | H V ( t ) l S A V J 
" f t 

T . i s t h e r e l a x a t i o n t i m e o f r a n d o m f i e l d at s p i n s i t e k . C . . / a r e t h e c o r r e l a t i o n 
k k k 

c o n s t a n t s b e t w e e n k a n d k ' v a r y i n g b e t w e e n 0 t o 1 f o r n o c o r r e l a t i o n a n d c o m p l e t e 

c o r r e l a t i o n . 

3 . S p i n - R o t a t i o n a l I n t e r a c t i o n 

T h e i n t e r a c t i o n b e t w e e n t h e - n u c l e a r s p i n s i n a m o l e c u l e a n d t h e m a g n e t i c 

f i e l d p r o d u c e d b y t h e r o t a t i o n o f t h e m o l e c u l e c o n t a i n i n g t h e s e n u c l e i i s c a l l e d 

18 
s p i n - r o t a t i o n a l i n t e r a c t i o n . T h e i n t e r a c t i o n H a m i l t o n i a n i s g i v e n b y 

w h e r e J i s t h e . a n g u l a r m o m e n t u m o f t h e m o l e c u l e c o n t a i n i n g t h e n u c l e a r s p i n I , 

a,nd C i s the? s p i n - r o t a t i o n t e n s o r . F o r a s p h e r i c a l m o l e c u l e t h e i n t e r a c t i o n 

18 
H a m i l t o n i a n i n t h e m o l e c u l a r f i x e d f r a m e i s g i v e n a s 

H ' ( t ) = I - C - ( t ) - J , (18) 

H ( t ) ( i > = L 
=-1 

C , A ^ J 
q'T-q' 

(19) 

1 
w h e r e 
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C Q = C „ = C Z A N D C ± 1 = - C J _ = C X = C Y . 

T R A N S F O R M I N G A A N D J F R O M T H E M O L E C U L A R F I X E D F R A M E T O T H E L A B O R A T O R Y F R A M E B Y 

A q = £ A q D ( 1 /, (si) A N D 
Q qq 

J Q = E D ( 1) „ ( A ) . , 

Q ' - Q Q 

T H E I N T E R A C T I O N H A M I F T O L ^ A N ' ' L N ^ E ^ G I V E N B Y 

K'(t) = £ , „(-if- A q c / D (^*U) ,/(n) J q 

Q , Q Q 1 ~q Q Q - Q Q 

( 2 0 ) 

W H E R E D / (.n) A N D D / , / A R E R O T A T I O N A L M A T R I C E S . T H E S P E C T R A L D E N S I T Y I S 
Q Q V - Q Q 

G ^ L V E N B Y H U B B A R D A S 

^ A B A ' B ' 

N G T T R F ( 2 C U + C T | ) 2 T I 

Q • JJI+̂ T̂  

2 ( C » - C . ) 2 R . 

* T 1 2 > 

1 2 < A | I Q | B X B / | L H F A > 
- Q ( 2 1 ) 

W H E R E 

I S T H E C H A R A C T E R I S T I C T I M E F O R T H E C H A N G E O F C O M P O N E N T S O F A N G U L A R M O M E N T U M 

Q • 

J ; 7 I S T H E C H A R A C T E R I S T I C T I M E F O R T H E M O L E C U L A R R E O R I E N T A T I O N A N D t I S 

D E F I N E D A S 1 / T 1 9 = L / R + 1 / T Q . I F T - « T 9 , T 1 9 = A N D E Q U A T I O N ( 2 4 ) B E C O M E S 
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Jab . V = I W(2Ci+
 Cf, )x <all>xb' |rq|a'> (22) 

This is equivalent in form to the spectral (density of the intermolecular dipolar 

interaction. Therefore, the relaxation mechanism of spin-rotation is mathe

matically equivalent to the intermolecular dipolar relaxation mechanism. ̂ a a ^ > 

can be obtained from equations (3) and (22). This interaction has been studied in 
20 a number of molecules. For example, in NH Q, the contribution to the relaxa-o 

tion time for spin-rotation at 25QC is about 100 seconds. However, the relaxa

tion time for vinyl bromide is about 20 seconds. Therefore, this interaction will 

not be important for the experiments discussed in this thesis. 
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CHAPTER HI 

SOLUTION OF DENSITY MATRIX EQUATION 

A. The Energy Level Diagram of an ABX System 

The discussion of this section will be in terms of the ABX spin system, 

vinyl bromide, 

H(:B) H(X) 
V / 

r=c\ 
(A) Br 

The wave functions, energy values and spectral parameters are given in Chapter rV. 

The energy level diagram of vinyl bromide is presented as a cube in Figure 1. 

Each corner in Fig. 1 represents a spin state. The eight spin states are labelled 

in the weak coupling limit. Each positive sign indicates one spin up and each nega

tive sign indicates one spin down. The order of the signs from left to right is X, 

B and A, respectively. The top of the energy cube corresponds to the lowest 

energy. The horizontal ordering of the energy levels assumes > v
0 # ^oX' 

21 
J A and J are positive and J is negative for vinyl bromide. Each edge 

A X B X A B 

represents a nondegenerate single quantum transition, each face diagonal connec

ting 1 or 8 represents a double quantum transition. The other face diagonals 

represent zero quantum transitions. Double and zero quantum transitions are 

explicitly indicated for the AB pair in this figure. Each transition has a label 
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shown below: 

Transition 5-> 1 6-> 2 7->3 8->4 4->2 3-> 1 8-> 6 7->5 4-> 3 2-> 1 8->7 6->5 

Label X4 X3 X2 XI B4 B3 B2 Bl A4 A2 A3 Al 

In the weakly coupled limit, X4, X3, X2 and XI are X proton transitions; B4, 

B3, B2 and Bl are B proton transitions; and A4, A2, A3 and Al are A proton 

transitions. 

When the irradiation strength is weak, it does not produce splittings. 

Therefore only intensity changes in each line are observed in the double resonance 

spectra. This is known as the nuclear Gverhauser effect. 

It is assumed that transition ab is irradiated by a weak rf field. The 

energy of state b is higher than the energy of state a. If transition ab is well 
6 

separated from any other line, equation (5) reduces to 

L R * = 21 u (23) c aacc c 2ab x ' 

and 

L R u, X =-2I0 ' (24) c bbcc c 2ab \ / 

L R , , x = 0 c V a,b (25) c c c cc c x .7 

where X = X , X, = X,, , 
^a aa b bb ' 
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'd21 T2 Tab 

and ' T , = T - T, , (28) 
ab a b 

where T and T, are defined below: a b 

X = T I' , X = T.I (29) a a ab b b ab 

Then equations (23) to (25) become 

E R T •= 2 (30) c aacc c 

ER, U T = -2 (31) c bbcc c 

a n d E R , , T = 0 c' ^ a,b . (32) 
c c c cc c 

T interprets the measurements of intensities, the fractional intensity changes 

are defined by 

jDR TSR 
„ "ab,cd *ab 

= ^ T - 2 : : 

ab, cd jSFl 
ab 

6 where I A / , are the measured intensities. F , _ can be expressed in terms a D , ab ab, cd 
of the T , , as F 

abTs T 
Fab)Cd= ¥T *2 • ' <34> cd 

A 2 = , ,2 , . ~2~2 <*7> 
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In equation (34), ab is the line observed and cd is the line irradiated. It is useful 

to define the relative fractional change of intensity. The relative fractional change 

of intensity ^ is given by 

G = - ^ c d ^ = Zab_ 
ab,cd . | , T | 

" cd,cd 1 cd1 

where line ab is observed and line cd is irradiated. 

The F - , obey a summation rule. The summation rule is that the sum-ab, cd J 

mation of the F , around any closed circuit of edges on the energy level cube 

is equal to zero. This rule can be used to compute ̂ c(j»6(j' This is important 
because the line irradiated in a double resonance experiment can not be observed 

directly. As an example, F . . may be obtained by applying the summation rule 

to faces 8437 or 8426 of the energy level cube. Using the 8437 face 

F = -(¥ + F + F il ) . (36) 84,84 4̂3,84 37,84 78,84' 1 ' 
Using the 8426 face F = -(F + F + F ) . (37) 84,84 v 42,84 26,84 68,84; w' 
Therefore, the experimental value of is obtained by taking the average of 

these two values. The G . , obey the same kind of summation rule. This will 
ab,cd J 

affect the number of independent G ., .. - There are 144 G . , for a three spin 
ab,cd ab,cd 

system. There are 12 lines one can irradiate, and hence 12 double resonance 

experiments. The summation rule shows that for each double resonance experiment, 
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there are in general 7 independent G Therefore, for a general three spin 
ao, CQ 

system there are 84 independent G ^ 

B. Algebraic Solution for a Weakly Coupled Three Spin System 

In this section we obtain algebraic solutions for the G ^ ^ assuming the 

weakly coupling limit. In this calculation, the intramolecular dipolar interaction 

is considered only for the AB pair. Then this interaction can be treated like an 
7 

AB two spin system. In vinyl bromide this amounts to neglecting the dipolar 

interactions involving the X proton (i.e. AX and BX pairs). As for the random 

f i e l d i n t e r a c t i o n , i t i s s e e n f r o m e q u a t i o n (15) t h a t ^ a ^ C ( j i s i n d e p e n d e n t o f t h e 

correlation constants in the weakly coupled limit. TA and TB are assumed equal 

because the A and B nuclei are attached to the same carbon atom. 

Using this relaxation model and assuming the weak coupling limit, it is 

seen that there are relations between different double resonance experiments. 

This reduces the number of independent double resonance experiments to two for 

the X lines, one for the B lines and one for the A lines. The G , , for irradi-
ab, cd 

ating XI are related to the G , , for irradiating X4, and the G •, , for irradi-
ab,ed to ab,cd 

ating X3 are related to the G ^ ^ for irradiating X2. Therefore there are only 

two independent double resonance experiments on the X lines. When B4, B3, B2 

and Bl are irradiated, all the G . \ are related, therefore there is only one 
ab,cd J 

independent double resonance experiment on the B lines. All the G , , are 
ab, cd 

related when A4, A3, A2 and Al are irradiated. Therefore, there is only one 

independent double resonance experiment for the A lines. The symmetry relations 

will be explicitly shown in the following; 
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and 

When XI is irradiated, there are the following symmetry relations: 

°43,84 °42,84 °86,84 °87, 84 ' ( 3 8 ) 

°31, 84 " G21, 84 - - G65, 84 " _ G75, 84 ' ( 3 9 ) 

G73,84 " G62,84' ( 4 0 ) 

These symmetry relations also hold for F • , when XI is irradiated by the 
ao, CQ 

second rf. By using the summation rule on the 3157 face and the symmetry 

properties, the following relation is obtained: 

G + G + G + G 31,84 15,84 57,84 73,84 

G31,84 °51, 84 G75,84 + °73,84 

°31, 84 °51, 84 + °31, 84 + °73, 84 

" G31,84 + G73,84 - G51,84 " ° * 

Therefore, G
3 1 , 84 V * < G 5 1 , 84 " °73, 84> (41) 

and there are only three independent G , / when XI is irradiated by the second 
. a o ,ao 

rf. 
In a similar manner, there are only three independent G , when X4 is 

ao, CQ 
irradiated by the second rf. These three independent G ^ ^ can be related to 
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those for irradiating XI as follows: 

G65,51 = G43 >84 ; G62,5l' G73 >84 ; a n d G84 )5i~ G51,84 ' ( 4 2 ) 

Similarly, there are three independent G when X3 or X2 is irradiated 
ab, cd 

by the second rf. They have the following relations: 

G84,73 _ G51, 62; G
62,73 " G73, 62! a " d G

8 7 , 73 " G21, 62 ' ( 4 3 ) 

The G , , when irradiating B4 and B2 have the following relations: ab, cd 

G42, 42 G86, 865 °84, 42 " G84, 86; °62, 42 " G62, 86: 

G42,42 " G87,86; G21,42 = °65, 86; °87,42 " °43,86 ( 4 4 ) 

G65,42 G21,86' 

The G ^ c^ chosen here are seven independent G ^ ^ as may be seen by using 

the summation rule. Therefore, all of the G , n for irradiating B4 and B2 are 
ab, cd 

related. The G ^ ^ for irradiating B4 and B3 have the following relations: 

G42,42 G31,31 ; °84,42 G51,3l; G62,42 ' G73 t3i ; 

G43,42 G21,31' °21,42 °43,3l; °87,42 G65,31; and (45) 

G 6 5 - 4 2 = G87,31-
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The G , . chosen here are seven independent G' , as may be seen by using ab, cd ab, cd 
the summation rule. Therefore, all the G , . for irradiating B4 and B3 are 

ab, cd b 

related. The relations of G ^ ^ for Irradiating B3 and Bl are similar to the 

relations of G for irradiating B4 and B2. From the above analysis, it is ao, CQ 

seen that all the G ^ c^ for irradiating B4, B3, B2 and Bl are related. Therefore, 

there is only one independent B double resonance experiment. 

Because of the symmetry between the A and B protons, it can be seen 

that all the G ^ ^ for irradiating A4, A3, A2 and Al are related in the same 

manner as the G ^ ^ for the B lines. Hence, there is also only one independent 

A double resonance experiment. 

Let us choose the double resonance experiment where XI is irradiated as 

an example to discuss the G , , in detail. The population changes of each energy 
ao, CQ 

level have the following relations when XI is irradiated by the second rf, 

X 8 - " X 4 ; X 6 " X 7 " " X 2 " " X3 ; X5 " " Xl (46) 

This reduces the number of unknowns to three. Therefore, three couples equa

tions are obtained in matrix form: 

• < 2 W 1 A + 2 W X + W2> 

W 1A -(2WX+ 2W1A) w 1A 

W, 2 W 1 A "< 2 W1A + W 2 + 2 W X > 

Tl 0 

T3 0 

T4 -2 



where = W ' + ; W A = W B ; 

W„ = - J - : W = 1 

2 5TDU ' 1 10TD 

W = — — - R = R = R = R A 2TA ; 1122 1133 4433 4422 

R2211 R3311 R3344 R2244 

W X 2TX R1155 R5511 R3377 R7733 

R4488 R8844* 

The solutions are 

AND 

T l = K(WL + W U W 2 + W X W 2 > 

T 3 = K ^ X W 1 A + W5A + W 1 A W
2 ) 

T 4 = K(2W 2
 + + WXWU + W X W 2 + 

4 where K = - — and A 

A = -8W X(W X + W - + W 2)(W X + 2 W L A ) 

To simplfy the following discussion, let us assume that W = W 
A si 

Gab cd ° a n ̂ e e x P r e s s e ( * * n terms of a single parameter, r, V 
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where w 

X 5TD . . r = ̂ -'= W (51) 

From equation (48), (49), (50), (51) and W = 4W , the G are obtained as 
2i J. ao, CQ 

follows: 

= -(2r"+7r+5) 
U73 74 2 9 

' ' ' 7r +14r+5 

I(r2
+10r+5) 

^51,84 „ 2 ' < 5 d' ' 7r +14r+5 

« •' • • 5r +7r , 
a n d °43 84 = _ T ~ ~~ ' (54) 

' 2(7r +14r+5) 

Si 84 = 2 ' ( 5 5 ) 

* 9 2(7 r +14r+5) 

In order to estimate the contribution of intramolecular and intermolecular-

dipolar interactions, G , can be plotted as function of the fractional contribu-

ab, cd 
tion of intramolecular dipolar interaction. The fractional contribution of intra

molecular interaction, F, is defined as 

' - i r t - ^ - ( 5 6 ) 

TD + TX 

Figure 2 shows G ^ g 4 > G ^ g 4 > G ^ ^ and G 3 1 > ^ as aAnction of F. 

G73 84 m o n ° t O I U c a H y decreases from -.29 at F = 0 to -1. 0 at F = 1. This may 

be qualitatively explained as follows using the energy cube in Figure 1. When %1 





23 

is irradiated, X„ is + andx o is -• When F = 0,x_ will be more negative than 4 o 7 
Xg becauseis connected to Xg hp A&a^:)^ î  

G is negative when F •= 0. When F = 1, X„ will be much more negative, than 73,84 & 7 
X because X is connected to X and in addition to X which is connected to X Q by o 7 8 5 8 
the strong 5-» 8 double quantum transition, and X is connected toX. and in addition 

O 4 
to X^, which is connected to by the: strong l-> 4 double quantum transition. 
Hence, G . .; -is; much more negative at F = 1. ' 73,84 > 

G,., nA decreases from.-.. 14 at F = 0 to - 1.0 at F = 1. When XI is irra-
51,84 ••• : *: •'• ;• , 

diated, X. is + and X is -. When F .= 0, X,_ is more negative than X. because X_ 

4 8 5 1 5 
is indirectly connected to X Q by Bl and A3 and'x is indirectly connected toX by 

8 JL 4 
B3 and A4. Hence, G . is negative when F = 0. When F = 1, X will be much 

O -L, ôfc j O 
more negative thanX^ because "X̂  is directly connected to Xg by strong double 

quantum transition 5-> 8 and X^ is directly connected to X̂  by strong double quan

tum transition l-»4. Hence, G,.., _. is much more negative at F = 1. 
51,84 

(*43 g 4 monotonically decreases from .36 at F = 0 to 0 at F = 1. When .X4̂ Svî isadiale.d̂ X.vl..̂ s-and Xnis When F = 0, X„ will be more positive than 4 8 4 X because X 0 is indirectly connected to X by X and A3. Hence, G. is posi-3 3 o 3 43, 84 

tive when F = 0. When F = 1, X^ is connected to X^ by the strong double quantum 

transition 4 ->1 and X is connected X by B3. Hence, G becomes 0 at F = 1. 

O J. 4o, o4 
G monotonically decreases from . 071 at F = 0 to 0 at F = .53. G o 1, 84 31, 84 

becomes negative when F continues to increase and finally goes back to zero at 
F = 1. When XI is irradiated X^ is + and X g is -. When F = 0, X^ will be more 
positive than X„ because X 0 is connected to X„. Hence, G„„ n. is positive when 1 3 4 ' 31,84 
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F = 0. When F > .53, ̂  will be more positive than x because is connected 

to by the strong double quantum transition 4-* 1. Hence, G ^ g^ is negative 

when F > .53. When F = 1, xQ
 i s equal toX-, because xQ is connected to-x, and 

, P X o 4 
X^, and X-̂  and X^ are connected by "strong double quantum transitions 4-> 1. Hence, 

G 0 1 is 0 at F = 1. The magnitude of G 0 1 is always close to zero and there-
3 1 , 8 4 o 1 , o 4 

fore is not useful. 

C. Computer Solution 

Equation (30), (31) and (32) can be expressed in matrix form as 

RT = K (57) 

where R is a symmetric matrix. Equation (57) can be solved by using the trans

formation U which diagonalizes R, i.e. 

R = U - V R a b = r a 6 a b (58) 

Then, the transform of equation (57) is 

RT = K (59) 

where 
- -1 
T = U T and (60) 

K .= U ^ K (61) 

The transform T is given by 
K - a T = (62) a r 
a 
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and 

The difficulty with the above is that - 0. However, = 0 also. This is 

because 

K T = ^(if1).. K. = Z U K. 
1 j « J j Jl J 

1 N 
L K. = 0 

Therefore, the general solution of (57) can be written as 

G a "M"'1'* V m l K m
 < 6 4 ) 

IT 1 m=JL 

The sum over 1 in (64) does not include I =11 and is restricted 4;o-values of 1 for 

which r^/O. It is useful to note that these terms could be included with arbitrary 

-1 " -f 
values for the corresponding â  . In this case, the off diagonal elements of x would 

not be affected, and a constant would be added to each diagonal element of %. This 

would not affect the computed values because only the differences between diagonal 

elements appear in subsequent computations. This is explicitly seen in the calcu

lation of G , , and F. .in equations (35) and (34), respectively. The advan-

ab,cd ab,cd 

tage of this calculation is that only one U is needed for all 12 double resonance 

experiments. This method agreed with the full calculation using the formalism 

of Part One to three significant figures. This calculation for a tightly coupled 

three spin system will be discussed in Chapter IV. 

T = U T (63) 
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CHAPTER IV 

EXAMPLE: VINYL BROMIDE 

A. Experimental 

1. Samples 

Vinyl bromide is used to illustrate the Overhauser effects of an ABX three 

spin system. Two samples were prepared for this experiment. The first sample 

was prepared with lQg% v vinyl bromide in C S solution. For a locking signal, 

5% v TMS was added to this sample. This sample was degassed by the usual 

freeze-thaw method. We shall call this sample A in the following. 

The second sample was prepared in a; standard 5-mm-o.d. NMR tube fitted 

with a standard taper joint and ground glass stopper. This sample was prepared 

with 10% v vinyl bromide in C S solution. For a locking signal, 5% v TMS was 

added to this sample. Oxygen gas was bubbled into this sample. We shall call 

this sample B in the following. The relaxation of sample B will be dominated by 

the intermolecular dipolar interaction of oxygen. 

2. Instrumentation 

The instrumentation for this experiment was the same as in reference 1 

except that the input to the phase detector was connected to the H modulation out-
Li 

put through a Hewlett Packard 250-D attenuator and a PAR Model JB-5 lock-in 

amplifier. This feed-back signal was used to cancel the response due to H . The 

lock-in amplifier was used to control the phase of the feed-back signal. The phase 
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and amplitude of the feedback signal were adjusted to completely cancel the 

response to H . The experiment did not show complete cancellation. This might 

have been due to the instability of the frequency and phase. 

B. Spectra and Spectral Parameters for Samples A and B 

The chemical shifts and coupling constants of vinyl bromide were obtained 

by fitting the observed frequency and intensity of each line with computed values. 

Table 1 shows the calculated and observed frequencies and intensities of all lines. 

A single resonance spectrum is shown in Figure 3. The A and B protons are 

attached to the first carbon atom. The X proton and bromine atom are attached to 

the second atom. The larmor frequency of the X proton is used as the reference 

for the measurement of all frequencies. The intensity of each line measured is 

relative to X4 line. The chemical shifts and coupling constants of vinyl bromide 

were found as: 

6AB = 1 5 i - l n z ; 6AX = 6 3 - 7 ±-1"z 

6 ^ = 48.7 ±.1H 2; J A B = -1.7 ± .lH z; 

^ x = 15.2 ± . 1 ^ ^ = 7.2 i . l H . 

These results are in good agreement with previously reported values. Table 2 

shows the expansion coefficients of the eigenkets |a>, |b >... with respect to the 

product kets J M ^ M ^ M ^ , and the energy for each eigenket. In the weakly coupled 

limit .|a>, |b>... correspond to J 1>, J.2>... respectively. In the first column, 

±J is denoted by ±. The energy for each ket is given in the bottom row. 
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Table 1. The Calculated and Observed Frequencies 

and Intensities of Vinyl Bromide 

Frequencies (H ) Intensities 

X4 

X3 

X2 

XI 

B4 

B3 

B2 

Bl 

A4 

A 2 

A3 

Al 

Calculated 
-12.269 

- 5.258 

2.940 

9.951 

44.644 

46.164 

51.655 

53.175 

56.285 

57.805 

71.494 

73.014 

Observed 
-12.1 

- 5.2 

2.9 

9.9 

44.5 

46.1 

51.5 ,. 

53.2 

56.3 

57.7 

71.5 

73.0 

Calculated 
1.000 

1.280 

1.545 

2.130 

1.626 

1.788 

1.064 

1.487 

1.993 

1.681 

1.277 

1.003 

Observed 
1.00 

1.29 

1.56 

2. 09 

1.75 

1.96 

1.24 

1.67 

2.40 

2.01 

1.57 

1.25 



Fig. 3 . Single and Double Resonance Traces of Sample A with H (t) at XI. 
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Table 2. The Expansion Coefficients of the Eigenkets Ja>, |b>...., 
with Respect to Product Kets JM^.M.gM^, and the Energy 
for Each Eigenket 

M X M B MA 

1.00 

.993 032 0 .110 0 

-. 039 ,.997 0 -.063 0 

+ + .989 0 -.074 -.129 

.107 . 067 0 .992 0 

+ . 083 0 .994 .065 

+ +• .123 0 -.075 .990 

+ + .0 0 

E 3 /2 i / oX oX oX oX hv v -k> v -h/ v -3/2y __ 2 oX ^oX ^oX oX 

(H )• -116.60 -15.13 -26.77 +73.33 -85.20 31.63 11.79 126.95 
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Fig. 3 shows single and double resonance spectra of sample A. A single 

resonance spectrum is on the bottom trace. Each line is well separated. A double 

resonance spectrum: is on the top trace. In this double resonance experiment, the 

XI line is irradiated. The strength of H is . 03 H . This was obtained analyzing 
& z 

strong irradiation double resonance spectra of 1,1,2-triehloroethane for one fixed 

strength of modulation. This calibrated H was attenuated to . 03 H with a Hewlett 
/L Z 

Packard 250-D attenuator. The beat pattern is caused by the response of H ^ 

Fig. 4 shows single and double resonance spectra of sample B. A single 

resonance spectrum is on the bottom trace. Although each line is broader than 

the corresponding line in sample A, they are still well separated. The broadening 

is caused by the dissolved oxygen gas in this sample. The oxygen causes a strong 

intermolecular dipolar interaction. A double resonance spectrum is shown on the 

top trace. The XI line is irradiated with a strength of . 076 H"z'. 

C. Dependence of ^ on F for Vinyl Bromide 

For intramolecular dipolar interaction, the structural parameters are 

listed below: 
o o o 

r , - 1.73A; r , = 2.34 A; r = 2.98 A; ab bx ax 

<HCH = 120° and-<HCC = 120°. 

The gj^/ of equation (11) are calculated from the structural parameters as follows. 

The AB, BX and AX pairs are numbered as 1,2 and 3, respectively. 

g n = .2000; g 2 2 = .0327; = .0077; 

g 1 2 = -.0405; g 1 3 = -.0050 and g 2 3 = .0100. 
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For the intermolecular dipolar interactions; TA, TB and TX are assumed 

equal because of the small distances between them and the rigid structure of vinyl 

bromide. The correlation constants are assumed to be C A = 1, C = 0 and 
AB BX 

C ^ x = 0. The experimental and theoretical results are not sensitive to the vari

ation of correlation constants. 
The G are plotted as a function of F by assuming C. = 1, C „ = 0, 

aD, CQ AH H2\. 

C A X = 0 and TA = TB = TX. The curves were computed assuming TD = 18 sec., 

however, the computed results depend only on TD/TX. Figure 5 indicates the 

plots of G , G , G and G versus F from the exact calculation. 
7o, o4 51,84 43, 84 31,84 

Figure 6 shows seven independent G versus F from an exact calculation. The 
ab, 86 independent G chosen here have the best sensitivity to the experimental re-ab, ob 

suits. Figure 7 shows seven independent G ^ ^ versus F from exact calculation. 

The independent G ^ ^ chosen here have the best sensitivity to the experimental 

results. 

The curves in Figure 5 can be compared with the corresponding curves in 

Figure 2. For the extreme case at F = 1, these curves are quite different. For 
example, G__ in Fig. 5 is -.44 and G_D in Fig. 2 is -1.0 at F = 1.0. The 73,84 73, 84 
difference results because now is connected to X g by the 3 -+ 8 double quantum 

transition of the AX pair. This makes x0 ^ e s s positive, hence, G less 
o 73,84 

negative. 

G^^ _ . in Fig. 5 is -. 65 and n A in Fig. 2 is -1 at F = 1. The difference 51, 84 bl, 84 
results because xn

 i s connected to x n by the l-> 6 double quantum transition of the 1 6 
AX pair, Y , is less positive, hence G_' O A is less negative. 

1 51,84 
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G in Fig. 5 is .25 and the G in Fig. 2 is 0 at F = 1. The dif-

ference results because x D is connected to xQ by the 3 ->8 double quantum transi-
3 8 

tion of the AX pair. x 3
 i s less positive, hence G^ 3 34 i n Fig- 5 i s more positive 

than in Fig. 2. 

The magnitude of the G in Fig. 5 is less thanythê G in Fig. 2. 
31 , 84 3 1 , 8 4 

This results because xD is connected to x Q by the 3->8 double quantum transition 
o 8 and \ is connected to \ .nby the l-> 6 double quantum transition. Both x 0 and 1 o 3 

X- are less positive, hence the magnitude of G . in Fig. 5 is less than in 
1 3 1 , 8 4 

Fig. 2. 

From this analysis, it is seen that there is a substantial effect when the 

intramolecular dipolar mechanism is important. The plots in Figs. 6 and 7 can 

all be explained qualitatively in a manner similar to the discussion given for 

Fig. 2 in section HIE. In Figs. 6 and 7, g 6 > 8(J,. 8 ( J, G 6 5 > 8 ?, 

G . and G • , are the most sensitive curves. 
4 3 , o 7 75 , 87 

The curves in Figs. 5, 6 and 7 will be used to determine contributions to 

relaxation from intramolecular and inter molecular dipolar interactions for the 

samples A and B. 

D. Results 

The experimental results for the samples were expressed as relative 

fractional change of intensities and compared with the calculated curves in Figs. 

5, 6 and 7. By obtaining the best fit with the calculated curves, F was obtained 

for each sample. The F ^ ^ were used to obtain TD and TX. This gave an 

independent check on the value of F obtained from the G ^ c (j. 
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1. Sample A 

DR DR W r = r x — - , (65) ws 

where are the signal height and width respectively in the double] reso-
s nance trace, and W is the width in the single resonance trace. The lines subjected 

sample A. The line heights for single and double resonance are given in Table 3. 

In addition, the double resonance line widths, are given when deviations from 

the single resonance line widths occur,. The line width of each single resonance 

transition was . 37 H . The lines irradiated by the second rf with strength . 03 H 
z z 

are given at the left hand side of the table. The lines observed are given at the top 
SR 

of the table. The observed single resonance signal heights, I , are given at the 
bottom of the table. Each entry has two values. The value on the top is the signal 

DR 

height of the double resonance line, I . The value on the bottom is the width of 

double resonance line, . There are no entries for the irradiated lines and 

some lines near the irradiated lines because they are covered by beat patterns. 
The G , , for the twelve double resonance experiments are listed in Table 4. ab, cd 
The lines irradiated by the second rf with strength . 03 H are given at the left 

z 

hand side of the table. The lines observed are given at the top of the table. Each 

entry has two values: theirbaleulatjed value is/on the top, ̂ithei experimental value is 

on the bottom. Since the calculation does not consider the effects of intensity from 

the splitting and field inhomogeneity, the observed double resonance line heights 

were corrected as follows: 

TD 

Double resonance experiments were carried out on all twelve lines of 



Table 3. -I8*1, I ™ and W° of Sample A 

X4 X3 X2 XI B4 B3 B2 Bl A4 A2 A3 Al 
(51) (73) (62) (84) (42) (31) (86) (75) (43) (21) (87) (65) 

X4 DR 3.20 4. 35 6.05 5.6 4.48 4.43 7.13 7.43 4.35 5.25 5.28 
(51) w D .39 .36 .43 
X3 jDR 2.60 4.65 5.38 6.00 8.30 3.9.5 3.53 4.85 6.05 6.23 4.33 
(73) W D 

3 6 .38 .36 .44 .44 .37 
X2 jDR 2.60 3.77 5.50 3.40 6.00 5.23 5.73 7.58 7.58 4.70 2.18 
(62) * .36 .46 .38 .39 .40 .38 .49 
XI IDR 2.74 3.38 4.06 6.48 6.63 2.33 5.38 8.75 6.80 2.93 3.85 
(84) W D 

B4 IDR 3.40 4.80 3.23 8.48 5.43 3.13 5.08 4.83 8.13 4.93 4.65 
(42) WE> .41 .38 .41 .38 .46 .40 
B3 jDR ,'2.00 '5j/;70. ;,5.03 7.90, $t&73 - 3.83 -4.83- 9.53 4. 00 5:53 4-75 
(3D vP .44 .40 .46 .3 
B2 jDR 3.45 3.95 6.38 4.68 4.88 6.05 5.18 7.75 7.1 3.68 5.23 
(86) W D .38 .37 .43 .38 .38 .36 .41 .38 
Bl jDR 4.25 3.05 5.83 7.1 5.53 5.73 3.60 8.10 6.70 6.80 2.53 
(75) W » .38 . 34 .38 .36 .46 
A4 jDR 3.23 2.88 5.23 7.43 4.10 7.43 3.95 5.73 6.50 4.20 .3.78 
(43) W D .36 .41 .39 .44 .36 .38 .39 .38 
A2 1.85 4.08 6.10 6.85 7.43 3.63 4.48 5.58 5.85 4.78 3.53 
(21) WD .48 .39 .39 .3.8 .36 .36 
A3 3.30 "5710 4.88 5.20 5.70 6.50 3.03 6.05 6.73 "6.20 "3V90 
(87) W D .38 .36 .38 .39 .38 
Al jDR 4.10 4.48 2.95 6.63 6.53 6.55 5.45 3.68 7.60 6.00 4.45 
(65) W D .46 .36 .44 

jSR 3.40 4.38 5.30 7.10 5.95 6.68 4.20 5.68 8.15 6.83 5.35 4.25 



Table 4. G . .of Sample A ab, cd 

X4 X3 X2 XI B4 B3 B2 Bl A4 A2 A3 Al 
(51) (73) (62) (84* (42) (31V (86) (75) (43) (2 It (87V (65) 

,X4 -1 -.3129 -.3170 -.2820 -.0095 -.3279 . 0255 .3592 -.0317 B.3502 -.0008 .3328 
(51 -1 -.30 -.28 -.23 -.05" r.30 .08 .41 #. 14 -.34 -.03 .38 
X3 - .2814 -1 -.1654 -.2863 .0688 .3913 -.0522 -.3271 -.3813 -.0587 . 3322 . 0574 
(73). - .29 -1 -.13 -.28 .01 .42 -.09 -.32 -.38 -. 16 .32 . 01 
X2 ~ .2786 -. 1612 -1 -.2785 -.3347 -.0486 .3869 .0688 . 0688 .3419 -.0615 -.3796 
(62) - .28 - r l 8 — -1 -.30 -. 32 -. 13 .38 .01 .05 .36 . 08 -.37 
XI - .2805 -.3155 -.3147 -1 . 3508 . 0323 -.3345 -.0025 .3300 .0114 -.3546 -.0226 
(84) - .26 -.31 -.31 -1 .35 .00 -.35 K 07 .34 . 00 -.35 -.12 
B4 - .0120 . 0824 -.4180 .3840 -1 -.1615 -.1981 -.0672 -.3178 .5208 -.0161 . 1147 
(421 0. 00 . 14 - T.41 . 3 a ; -1 H20. -.17 -.06 -.30 .51 -.12 .13 
B3 - .3576 .4613 -.0622 . 0331 -.1594 " -.0643 -.1812 .5210 -.3197 . 0927 -.0241 
(31) .34 .40 -.07 . 15 -.26 -1 -.12 -.20 .46 -.29 .04 -.05 
B2 .0266 -.0604 .4598 -.3489 -.1915 -.0632 -1 -.1502 -. 0244 . 1039 -.3129 .5370 
(86) .03 -.07 .45 -.34 -.19 -.05 -1 -.16 -.02 .07 -.33 .55 
Bl .4049 -.4019 .0876 -.0022 -.0702 -.1932 -.1600 -1 . 1099 -.0132 .5097 . 3305 
(75) .38 -.38 .09 .00 -. 12 -.21 -.21 -1 . 11 .03 .50 .32 
A4 - .0310 -.4480 .0683 .3551 -.3105 . 5189 -.0237 .1020 -1 -. 1705 -.1970 -.0713 
(43) - .07 -.47 .03 .37 -.32 -.03 .11 -1 -. 15 -.18 -.07 
A2 - .3758 -.0698 .4163 .0123 .5106 -.3184 . 1066 -.0123 -.1710 -1 -.0891 -.2080 
(21) - .37 -.10 .39 .01 .49 -.31 .10 -.03 -.23 -1 -.11 -.20 
A3 - .0011 . 4033 -.0769 -.3933 -.0156 . 0959 -.3321 . 5003 -.2032 -.0918 -1 -.1676 
(87) - .05 .39 -.12 -.36 -.06 .06 -.30 .46 -.18 -. 14 -1 -.14 
Al . 3478 .0688 -.4499 -.0251 . 1113 -.0260 .5358 -.3050 -.0652 -.2025 -.1592 -1 
(65) .35 .03 -.43 -.05 .17 -.03 .5.0 -.32 -.12 -.20 0.20 -1 
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to this correetion are those lines in which the line width in the double resonance 

trace shows a deviation from that of the single resonance trace. The experimen-
DR tal G , , listed in Table 4 were then computed using the corrected I . The ab, cd 

experiment points of G _ , , are drawn in the Figs. 5, 6 and 7 as circle o. The 
ao, co. 

G . , have an experimental error of 12%. The F corresponding to the experi-ab, cd 
mental point of G , r varies between .5 to .56. One best vertical line can be ab, cd 
drawn through the experimental points of G at F = .53. 

ao, CQ 
It was mentioned in section IVC that we assumed TA = TB = TX, C^ B= 1, 

C A = 0 and C = 0. Therefore, the absolute TX and TD can be obtained by the 
A X B X , 

best fit of experimental and calculated F obtained by varying TD and TX. In 
ao, CQ 

computing F . ., TD was varied from 15 to 21 seconds, and TX was varied from 
ab, cd :"! • 

17 to 23 seconds. The computation assumed C,.A =1, C = C = 0 andH = 
A B A X • B X Z 

. 03 H . The TD and TX for the best fit of the experimental and calculated F _ 
z ab,cd 

are 18 seconds and 20 seconds, respectively. These F for all twelve double 
ao, CQ 

resonance experiments are listed in Table 5. The lines observed are given at the 

top of the table. The lines irradiated are given at the left hand side of the table. 

Each entry has calculated and observed F , _. The calculated value is on the J ab,cd ' 
top of each entry and the observed value is on the bottom of each entry. The 

experimental F were corrected for line width changes as given by equation (65). ao, CQ 
The experimental values of F are obtained from the average of equations 

ao, ao 
(36) and (37). The calculated and experimental F in Table 5 agree within 

ao, ao 
experimental error, 8%. The experimental and calculated F • . . in Table 5 agree 

ab, cd - -̂ > 
within experimental error, 8%. Since the absolute TD and TX can be obtained from 



Table 5. F . of Samole A ab, cd 

;.: X4 X3 X2 XI B4 B3 B2 Bl A4 A2 A3 Al 
(51) (73) (62) (84) (42) (31) (86) (75) (43) (21) (87) (65) 

X4 -.5922 -.1853 -.1877 -.1670 -.0056 -.1942 .0151 .2127 -.0188 -.2074 -.0005 .1971 
(51) -.64 -.19 -. 18 -.15 -.03 -. 19 .05 .26 -.09 -.22 .02 .24 
X3 -.1962 -.6971 -.1153 -.1996 .0480 . 2728 -.0364 -.2280 -.2658 -.0409 .2316 .0400 
(75) -.20 -.69 -.09 -.19 .01 .29 -.06 -.22 -.26 -.11 .22 .01 
X2 -.2092 -.1210 -.7508 -.2091 -.2513 -.0365 .2905 .0517 .0419 .2567 -.0462 -.2850 
(62) -.21 -.14 -.76 -.23 , -. 24 -.10 .29 .01 .04 .27 -. 06 -.28 
XI -.2119 -.2383 -.2377 -.7554 . 2650 .0244 -.2527 -.0019 .2493 . 0086 -.2679 -.0171 
(84) -.19 -.23 -.23... -.74 .26 .00 -.26 -.05 .25 .00 -.26 -.09 
B4-, ----•0-081 ,0558 -.,2832 - :.2601 6774 -.1094 -.1342 -.0455 -.2153 .3528 -.0109 . 0777 
(42) 0.00 .10 -.28 • .27..-, -.69 .14 -.12 -.04 -.21 .35 -.08 . 09 
B3 -.2526 . 3258 -.0439 . .0234 -.1126 -.7063 -.0454 -.1280 .3680 -.2258 .0655 -.0170 
(31) -.26 .30 -.05 . 11 -.20 -.76 -.09 -.15 .35 -.22 .03 -.04 
B2 .0159 -.0361 .2749 -.2086 -.1145 -.0378 -.5979 -.0898 -.0146 . 0621 -.1871 .3211 
(86) .02 -.04 .26 -.20 -.11 -.03 -.58 -.09 -.01 .04 -.19 .32 
Bl .2601 -.2582 .0563 -.0014 -.0451 -. 1241 -.1028 -.6424 .0706 -.0085 . 3274 -.2123 
(75) .25 -. 25 .06 0.00 -.08 -.14 -.14 -.66 .07 -.02 ,33 -.21 
A4 -.0225 -.3255 . 0496 . 2580 -.2256 .3770 -.0172 .0741 -.7265 -.1239 -.1431 -.0518 
(43) -.05 -.34 . 02 .27 -.23 .38 -.02 .08 -.73 -.11 -.13 -.05 
A2 -.2602 -.0483 .2882 .0085 .3535 -. 22 04 . 0738 -.0085 -.1184 -.6923 -.0617 -.1440 
(21) -.26 -.07 .27 . 007 .34 -.22 .07 -.02 -. 16 -.70 -.08 -.14 
"A3 -.0007- °:2503 ̂  -.0477 -.2441 - .0097^ :0595 -;2061 .3105 -.1261 "-T0570 -76206 -.1040 
(87) -.03 .26 -. 08 -.24 -.04 .04 -.20 .30 -.12 -.09 -.56 -.08 
Al . 2047 .0405 -.2648 -.0148 .0655 -.0153 .3154 -.1795 -.0384 -.1192 -.0937 -.5886 
(65) .21 .02 -.26 -.03 .10 -.02 .30 -.19 -.07 -. 12 -.17 -.60 
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equation (56) as 0.53. This value of F agrees with that obtained from the best fit 

of the G , , curves in Figs. 5, 6 and 7. ab, cd 

2. Sample B 

Double resonance experiments were performed on all twelve lines of 

sample B. The signal heights of single and double resonance spectra and the width 

of the double resonance lines, when different from the single resonance lines, 

are listed in Table 6. The line width of each single resonance line is . 50 H . The 
z 

strength of the second rf is . 076 H . The arrangement of the Table 6 is similar 
z 

to Table 3. The G , ' for the twelve double resonance experiments are listed in ab, cd 
f .• 

Table 7. The arrangement of Table 7 is similar to Table 4. The experimental 
Gab cd ̂ s* e (* i n Table 7 were computed using the corrected. The experimen

tal points of G , , are drawn in the Figs. 5, 6 and 7 as cross sign X. The G , 
ab,cd b- to ab,cd 

have an experimental error of 15%, The F corresponding to the experimental points 

of G^k C(j may vary from . 05 to . 22. The best vertical line can be drawn through 

the experimental points of G ^ ^ at F = . 13. 

Again we assumed TA = TB = TX, C = 1, C =0 and C = 0. The 
A B A X B X 

absolute values of TX and TD can be obtained by the best fit of the experimental F ' , and calculated F , _ for different values of TD and TX. In computing ab,cd ab, cd F , ,, TD was varied from 15 to 21 seconds, TX was varied from 3 to 5 seconds, ao, CQ 
C._ = 1, C = C = 0 and H • = . 076 H . The TD and TX obtained from the best A B A X B X 2 Z 

fit of the experimental and calculated F ^ ^ are 18 seconds and 4 seconds, respec

tively. The F ^ C(j f° r a H twelve double resonance experiments are listed in 

Table 8. The arrangement of Table 8 is similar to Table 5. 



Table 6. I ™ and W ° of Sample B 

X4 X3 X2 XI B4 B3 B2 Bl A4 A2 A3 Al 
(51) (73) (62) (84) (42) (31) (86) (75) (43) (21) (87) (65) 

X4 3.5 4.4 6.3 5.4 4.8 4.0 6.2 7.0 5.1 5.2 4.6 
(51) W D .55 .48 .54 .46 
X3 iDR 2.5 4.4 5.4 5.3 6.5 3.4 3.8 5.1 5.5 5.4 3.7 
(73) W B .55 .56 .58 
X2 jDR 2.7 3.6 5.5 4.2 6.0 4.5 5.4 7.2 7.1 4.5 2.7 
(62) W D .51 .48 .53 .58 
XI jDR 2.9 3.5 4.3 6.7 6.5 2.8 5.3 8.7 6.5 3.5 3.7 
(84) W D .48 .53 .48 .49 .54 
B4 

_ 1 Wf 
J - L / X I 

2.9 3.7 3.3 6.8 3.2 5.2 5.7 7.5 5.0 4. 2 
(42) W D .58 .54 .49 .53 .47 .48 
B3 jDR . 2, 1 4.7 4.7 6.8 3.8 5,0 8.5 5.0 5.3 4.0 
(31) W D .60 .47 .48 .48 .47 .53 .47 . 47 
B2 jDR 3.3 3.8 5.8 5.1 5.0 5.8 7.1 6.6 3.9 4.6 
(86) W D .49 .45 .54 .51 .48 
Bl jDK 3.5 2.8 4.7 5.8 5.1 5.4 »• 7.1 5.5 5.3 2.6 
(75) W D .51 .55 .55 .52 .59 
A4 jUK 3.0 2.9 5.0 7.4 4.4 7.1 3.8 5.5 4.0 3.6 
(43) WE> .51 .53 
A2 jl)K 2.1 3.6 5.3 6.5 6.1 4.2 4.0 5.0 4.4 3. 2 
(21) W D .60 .53 .53 .60 .48 
A3 jDR 3.3 4.7 4.6 4.9 5.3 5.8 2.9 5.9 6.2 5.6 
(87) W D .44 .53 .54 .53 .51 .54 
Al jDR 3.5 4.0 3.7 6.2 5.7 6.0 4.2 4.6 7.0 5.9 
(65) W D .53 

jSR 3.1 3.7 4.6 6.3 5.3 6.1 3.6 5.2 7.1 6.4 4.7 3.8 



Table 7. G •, ,of Sample B ao, uu 

X4 X3 X2 XI B4 B3 B2 Bl A4 A2 A3 Al 
(51) (73) (62) (84) (42) (31) (86) (75) (43) (21) (87) (65) 

X4 -1 -.2867 -.2851 -.1723 -.0553 -.3575 .0575 .3558 -.0666 -.3688 .0478 .3461 
(51) -1 -.16 -.13 0 .06 -.42 .32 .42 -.03 -.45 .32 .42 
X3 -.2800 -1 -.1433 -.2768 .0664 .3706 -.0671 -.3494 -.3762 -.0749 .3441 .0618 
(75) -.39 -1 -.08 -.29 0 .33 -.12 -.35 -.35 -.29 .31 .06 
X2 -.2764 •-.1423 -1 -.2772 -.3581 -.0687 . 3647 . 0655 .0615 .3510 -.0734 -.3726 
(62) -. 26 -.06 -1 -.26 -.38 -.04 .38 .08 .02 .34 -. 08 -.36 
XI -.1728 -.2843 -.2868 -1 .3525 . 0605 -.3607 -.0510 .3430 .0510 -.3727 -.0630 
(84) -.13 -.11 -.15 -1 .46 .15 -.43 -.09 .43 .04 -.41 -.07 . 
X» A 

ry± 

-.0569 f \ n f\(\ 
. \Jt vjvj 

oono -.oovo — j_ oc r\r\ —.fiUUU -.2578 -.1231 O/l 1 1 — . Q*±-L J. A f\Qf\ n A r t O —. V*±J7̂  
(42) -.13 0 -.38 .36 -1 -.27 -.24 -, 13 -.33 .42 -.04 .11 
B3 -.3632 .3855 -. 0719 . 0613 -.2466 -1 -.1134 -.2514 .4071 -.3464 .0829 -.0552 
(31) -.37 . 37 -.08 .16 -.29 -1 -.06 -.24 .39 -.35 .08 -.06 
B2 .0583 -.0697 .3814 -.3647 -.2539 -.1132 -1 -.2412 -.0535 . 0872 -.3486 . 4103 
(86) .16 0 .34 -.37 -. 16 -.13 -1 -.29 0 .08 -.39 .42 
Bl .3703 -.3722 .0703 -.0529 -. 1244 -.2575 -.2475 -1 . 0824 -.0508 .4017 -.3508 
(75) .35 -.35 .04 -.17 -.09 -.24 -.30 -1 0 -.13 .37 -.39 
A4 -.0683 -.3980 .0651 .3507 -.3397 .4109 -.0541 .0811 -1 -.2494 -.2513 -.1160 
(43) -. 05 -.39 .16 .35 -.30 .40 .11 .11 -1 -.30 -.26 -.09 
A2 -.3758 -.0781 .3688 .0518 .4047 -.3475 .0877 -.0498 -.2479 -.2479 -.1179 -.2553 
(21) -.37 -.06 .36 .06 .38 -.35 . 11 -.08 -.24 -1 -.11 -.31 
A3 .0494 .3635 -.0781 -.3835 -.0493 .0842 -.3547 .3984 -.2529 -. 1194 -1 -.2469 
(87) .13 .34 0 -.37 0 -.11 -.37 .37 -.28 -.13 -1 -.26 
Al .3528 .0645 -.3917 -.0640 . 0807 -.0554 .4124 -.3437 -.1154 -.2554 -.2439 -1 
(65) .34 .21 -.39 -.05 .21 -.05 .45 -.32 -.03 -.21 -.29 -1 



Table 8. F . , of Sample B ab,cd 

X4 X3 X2 XI B4 B3 B2 Bl A4 A2 A3 Al 
(51) (73) (62) (84) (42) (31) (86) (75) (43) (21) (87) (65) 

X4 -.3771 -.1081 -.1075 -.0650 -. 0209 -.1348 •0217 . 1342 -.0251 -.1391 .0180 . 1305 
(51) -.31 -.05 -.04 0 .02 -.13 .10 . 13 -.01 -. 14 .10 .13 
X3 -.1260 -.4498 -f0645 -.1245 .0299 .1667 -.03112 -.1572 -.1706 -.0337 .1548 . 0278 
(75) -.19 -.49 -.04 -.14 0 .16 -.06 -.17 -.17 -.14 .15 .03 
X2 -.1385 -.0713 -.5010 -. 1389 -.1794 -.0344 . 1827 .0328 .0308 .1758 -.0368 -.1867 
(62) -, 13 -.03 -.50 -. 13 -.19 -.02 .19 . 04 .01 * .17 -. 04 -.18 
XI '-.0972 -.1600 -.,1614 -.5627 . 1984 .0341 -.2030 -.0287 . 1930 . 0287 -.2097 -.0354 
(84) -.06 -.05 -.07 -.46 .21 . 07 -.20 -.04 .20 .02 -.19 -.03 
B4 -.0277 . 0341 -. 1852 .1762 -.4869 --.1217 -.1255 ;-, 0599 -.1661 1001 

. Xi/ if j . 

-.0240 .0417 
(42) -.06 0 -.17 .16_ -.45 -.12 -. 11 -.06 -.15 .19 -.02 .05 
B3 -.1880 .1996 -.0373 .0317 -.1277 — 5 1 7 8 -.0587 , 1302 .2108 -.1793 .0429 -.0286 
(31) -.19 . 19 -.04 .08 -.15 -.51 -.03 -. 12 .20 -. 18 .04 -.03 
B2 . 0229 -.0273 .1495 -.1429 -.0995 -.0444 -.3919 -. 0945 -.0210 . 0342 -.1366 .1608 
(86) .06 0 .13 -.14 -.06 -.05 -.38 -.11 0 .03 -.15 .16 
Bl .1704 -.1713 .0323 -. 0243 -.0572 -.1185 -.1139 -.4602 . 0379 -.0234 . 1848 -.1614 
(75) .16 -.16 .02 -.08 -.04 -.11 -.14 -.46 0 -.062 .17 -.18 
A4 -.0370 -.2156 .0353 .1900 -.1840 . 2226 -.0293 .0440 -.5417 -.1351 -.1361 -.0629 
(43) -.03 -.22 . 09 .20 -.17 .23 .06 .06 -.57 -.17 -.15 -.05 
A2 -.1887 -.0392 . 1852 .0260 .2032 -.1744 . 0440 -.0250 -.1244 -.5020 -.0592 -.1282 
(21) -.19 -.03 . 19 .03 .20 -.18 .06 -.04 -, 12 -.51 -.06 -.16 
A3 .0211 . 1557 -.0335 -.1643 -.0211 .0361 -.1519 . 1707 -.1083 -.0512 -.4283 -.1058 
"(87) .06 .16 0 -.17 0 -.05 -.17 .17 -.13 -.06 -.46 -.12 
Al . 1325 .0242 -.1471 -.0240 .0318 -.0208 ,1549 -.1291 -.0433 -.0959 -.0916 -.3755 
(65) .13 .08 -.15 -.02 , 08 -.02 .17 -. 12 -.01 -.08 -.11 -.38 
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The experimental values of F _ are obtained from the average of 
ab, ab 

equations (36) and (37). In general the experimental and calculated F in 
ab, CQ 

Table 8 agree within experimental error of 10%. Since the absolute TD and TX 

can be obtained from the above comparison, F can be obtained from equation (56) 

as . 18. This value of F falls within the range of the G , . curves in Figs. 5, 
ab, cd 

6 and 7. The range on Figs. 5, 6 and 7 is large because the experimental error 
is large and most of the G curves in this region have a small slope. 

ab, CQ 

3. Discussion 

From the above results, sample A has 53% intramolecular dipolar inter

action with TD = 18 seconds and TX = 20 seconds and sample B has 18% intra

molecular dipolar interaction with TD = 18 seconds and TX.= 4 seconds. Because 

the make-up of the two. sample differ only by sample B haying dissolved O , it is 

reasonable to assume that TD is the same for both samples. However, sample B 

has a stronger intermolecular dipolar interaction because of the oxygen molecules. 

This shows up in a lower value of TX. 

The weak double resonance experiment is a straightforward and simple 

technique for studying relaxation processes in three spin systems. The features 

of double resonance spectra can be interpreted from the density matrix formalism. 

The advantage of using G ^ ^ is that it is independent of small frequency 

off sets and the strength of H^, and also requires only relative relaxation times 

for interpretation. The disadvantage of using G ^ c^ is that it has a larger experi

mental error than F ^ Also, the absolute relaxation parameters can not be 
obtained from the G . _•• The plots of G , _ versus F serve a similar function ab,cd ab,cd 
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for estimating the relative contribution of different relaxation processes as the 
* ' 1 * 10 strong double resonance experiments used by other investigators, T The reason 

that the strong double resonance experiments depend only on the relative contri-
13 

buttons is that the experiments may be described by Bloch's approximation. 

This can be seen in equation (10) of reference 10. 

The experimental results of three spin ̂systems are sensitive to the relax

ation mechanisms. The studies in two spin systems in reference 6 showed the 

same kind of sensitivity to the relaxation mechanisms. In addition, the three spin 

systems have a great variety of features in their double resonance spectra. Hence, 

this allows the study of interesting relations like the symmetry properties and 

summation rule of the G and F . The symmetry properties were 
ab,C Q ao, C Q 

developed for the special case of weak coupling and simplified relaxation mecha

nism. It is interesting that these relations for the G hold approximately for 
ab, CQ 

the tightly coupled three spin systems. 
23 

The two spin system can not be used to study anisotropic reorientation 

because the Overhauser effect does not depend on the anisotropic reorientation. 

However, for the three spin system, the Overhauser effect in principle does 
6 

depend on the anisotropic reorientation. Hence, it may be interesting to study 

the effect of anisotropic reorientation on the double resonance spectra of three 

spin systems. 
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Reprinted from: 
T H E J O U R N A L OF C H E M I C A L P H Y S I C S V O L U M E 5 4 , N U M B E R 4 IS F E B R U A R Y 1971 

Nuclear Magnetic Double Resonance in Chemically Exchanging Systems' 1 

P I N G P. Y A N G A N D S I D N E Y L . G O R D O N 
School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332 

( R e c e i v e d 6 A u g u s t 1 9 7 0 ) 

A d e n s i t y m a t r i x d e s c r i p t i o n o f n u c l e a r m a g n e t i c d o u b l e r e s o n a n c e o n c h e m i c a l l y e x c h a n g i n g s y s t e m s 

i s d e v e l o p e d u s i n g a d o u b l e r e s o n a n c e b a s i s s e t . T h e c h e m i c a l e x c h a n g e c o e f f i c i e n t s h a v e m a n y p r o p e r t i e s 

a n a l o g o u s t o t h e r e l a x a t i o n c o e f f i c i e n t s . T h i s a l l o w s t h e d e n s i t y m a t r i x c o m p u t a t i o n t o b e e x p r e s s e d i n 

t e r m s o f a s y m m e t r i c a r r a y . T h e s o l u t i o n s c a n t h e n b e o b t a i n e d i n t e r m s o f a n e i g e n v a l u e p r o c e d u r e . T h i s 

p r o c e d u r e i s m o r e e f f i c i e n t t h a n s t a n d a r d G a u s s - J o r d a n r e d u c t i o n a n d a u t o m a t i c a l l y t a k e s i n t o a c c o u n t 

t h e c o n s t r a i n t s i n t r o d u c e d b y t h e s u m m a t i o n p r o p e r t i e s o f t h e r e l a x a t i o n a n d c h e m i c a l e x c h a n g e c o e f f i c i e n t s 

a n d b y t h e s y m m e t r y o f t h e s p i n s y s t e m . T h e f o r m a l i s m i s i l l u s t r a t e d b y s e l f - e x c h a n g e i n t h e AB% s y s t e m , 

2 , 2 , 2 - t r i c h l o r o e t h a n o l . C o m p a r i s o n o f t h e o r e t i c a l a n d e x p e r i m e n t a l d o u b l e r e s o n a n c e s p e c t r a a l l o w t h e 

d e t e r m i n a t i o n o f t h e c h e m i c a l e x c h a n g e l i f e t i m e a n d t h e r e l a x a t i o n p a r a m e t e r s e v e n w h e n t h e e x c h a n g e 

r a t e s a r e s l o w c o m p a r e d w i t h t h e e x p e r i m e n t a l l i n e w i d t h s . 

I. INTRODUCTION 
In nuclear magnetic double resonance, the NMR 

spectrum is swept by a weak observing rf, Hi, while the 
spin system is simultaneously irradiated by a second 
strong rf, H 2 . 1 , 2 a The strong rf produces population 
changes which show up as intensity changes in the 
recorded spectrum. In addition, double resonance 
splittings appear when the strength of the strong rf is 
comparable to the linewidths. 
Nuclear magnetic double resonance has proven to be 

a valuable technique for studying relaxation processes 
in coupled spin systems.2* Chemical exchange of 
nuclear spins has many features similar to relaxation, 
and one would expect that an analysis of the double 
resonance spectrum of a chemically exchanging system 
would provide information on both the chemical ex
change processes and the relaxation mechanisms. 
In this paper, a formalism for double resonance on 

chemically exchanging systems is developed by combin
ing the relaxation formalism of Redfield3 with the 
chemical exchange formalism of Alexander.4 The form
alism is developed explicitly for intermolecular chemical 
exchange. Intramolecular conformer changes, however, 
are just a special case of intermolecular exchange.5 
Double resonance techniques have been used often 

to study chemical exchange processes by monitoring 
transfer of saturation.6-9 This paper differs from the 
others in that chemical exchange is incorporated into a 
density matrix double resonance formalism.2*'10 
The formalism is developed using a double resonance 

basis set.28,10 This provides a formulation which is 
exact for all values of irradiation strengths. 
The exchange coefficients have many properties 

analogous to the relaxation coefficients. This allows 
the double resonance calculation to be expressed in 
terms of a symmetric array. The solutions can then be 
obtained in terms of an eigenvalue procedure. This 
procedure appears to be more efficient on a computer 
than standard Gauss-Jordan reduction. 
The formalism is illustrated by the ABi system, 

2,2,2-trichloroethanol. In addition to line broadening, 

the chemical exchange tends to redistribute the popu
lation changes caused by the strong rf field. Hence, 
the nuclear Overhauser effect2* depends on the chemical 
exchange rates. The chemical exchange lifetimes and 
relaxation parameters may be measured by fitting 
experimental and theoretical double resonance spectra. 
This is possible even when the exchange rates are slow 
compared with the experimental linewidths. 

n. INSTRUMENTATION AND SAMPLES 
Frequency sweep double resonance spectra were ob

tained at 100 MHz with a JEOL 4H-100 NMR spec
trometer. This instrument uses an internal lock modu
lation frequency of 4 kHz. The strong rf, H 2 , was obtained from a General Radio 1164-A synthesizer. The 
lowest frequency which can be directly obtained from 
the GR synthesizer is 0.1 MHz. The required audio 
signal was obtained from the synthesizer by mixing the 
5-MHz synthesizer reference signal (J108 on the 
synthesizer) with the synthesizer output signal, by 
using a Hewlett-Packard 1951A mixer. The H 2 signal was amplified using a GR 1206-B unit amplifier and 
attenuated by a HP 250-D attenuator. Precision double 
resonance experiments are difficult on compounds with 
short relaxation times because of the large response due 
to H2. Interference from the strong signal at OJ 2 was considerably reduced by placing a Spectral Dynamics 
SD101B tracking filter with a 2.0-Hz bandwidth 
before the audio phase detector. 
The samples were prepared in standard 5-mm-o.d. 

NMR tubes fitted with standard taper joints and ground 
glass stoppers. The 2,2,2-trichloroethanol was ob
tained from Aldrich and was distilled before use. It was 
found that the hydroxyl exchange rate could be reduced 
to extremely low levels by simply shaking the substance 
with Fisher type 5A molecular sieves before use. The 
experiments for Fig. 2 were on a CS2 solution containing about 5% by volume of alcohol, 5% by volume of 
tetramethylsilane for the lock signal, and a drop of 
cyclohexane to monitor the receiver amplification. 
The experiments for Fig. 3 were on a sample of ap-

1779 
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AND THE R*PA'P ELEMENTS ARE GIVEN BY THE REDFIELD FORMULATION.2*-8 THE RAPa'P' RELAXATION ELEMENTS SATISFY THE IMPORTANT RELATIONS2*-10 

2 X ^ = 0 (6) 
A 

AND 
RA$Q'0' = RA'0'aP=R0aP'A'- (7) 

THE CHEMICAL EXCHANGE IS DESCRIBED BY E(a), WHERE 
E(a) WAS,GIVEN BY ALEXANDER4 AS 

£(S)=T- 1[I2'P?.?'P-5]. , (8) 
IN EQ. (8) T IS AVERAGE TIME BETWEEN CHEMICAL EXCHANGES, OR' IS THE DENSITY MATRIX FOR A SECOND MOLECULE, 
P IS A PERMUTATION OPERATOR DESCRIBING THE CHEMICAL EXCHANGE, AND I2' MEANS TRACE OVER THE SPIN STATES OF THE SECOND MOLECULE. THE STEADY STATE DENSITY MATRIX EQUATIONS ARE DERIVED BY TAKING COMPONENTS OF (1) WITH RESPECT TO THE DOUBLE RESONANCE BASIS, AND SUBSTITUTING (2), (3), (5), AND (8). IT IS ASSUMED THAT 

<A|A|J8>=<A|AO|J8>+<A| X|J8>+<A.H|J8>, (9) 
WHERE X IS DUE TO H 2 AND TJ IS DUE TO HI. IN ADDITION, IT IS ASSUMED THAT THE OFF-DIAGONAL ELEMENTS OF (a \ TJ | /3) ARE GIVEN BY 
(a | V | /8>- (a | V

+ | |9) EXP(IO>'/) + (a \ v ~ \ f i ) 

XEXP(-IO.'/), (10) 
WHERE (a | TJ+ | /3) = (/3 | IJ~ \ a)*. THEN, TO FIRST ORDER IN 
w i / k T AND { l i r v ^ / R ^ ^ , (a \ X I 0) AND (a | IJ- | 0) SATISFY THE EQUATIONS 

- 2 ERFA'P (a' | X I 0') = - i l i t q ^ 

X<«|E«O4F.(0 1/3), (11) 
i 

i(A>0<J-O>') <A|IJ-|/8>- L R a w l a ' \ V ~ | £'> 

- Z Z * . ' r W \ v - \ # ) = | [ff_,2IR?2:^,(T)+X]|/8>, (12) T 
AND 

, L ( A | X L « ) = L ( A U - | « ) = 0, (13) 
A A WHERE (i)AP=EA—EP. THESE EQUATIONS ARE THE STANDARD DOUBLE RESONANCE DENSITY MATRIX EQUATIONS2*'10 EXCEPT FOR THE ADDITIONS OF THE EXCHANGE TERMS, DESCRIBED BY THE ELEMENTS EAPA>P. THE SIGNAL DETECTED AT O»I IS PROPORTIONAL TO S, WHERE 
S=IM£<A|F|/3>(/3|S +|A>, (14) 

AND I M MEANS THE IMAGINARY PART. 

PROXIMATELY THE SAME COMPOSITION (AS MEASURED BY THE CHEMICAL SHIFT) BUT TO WHICH A FEW DROPS OF C S 2 SATURATED WITH H C L WERE ADDED TO INCREASE THE EXCHANGE RATE OF THE HYDROXYL PROTON. 
in. F O R M A L I S M 

A. DENSITY MATRIX EQUATIONS 
THE DEVELOPMENT OF SEC. ILL WILL ASSUME AN EXCHANGE PROCESS INVOLVING ONLY ONE NUCLEUS AND ONE TYPE OF MOLECULE (SELF-EXCHANGE). THE EXTENSION TO ONE NUCLEUS EXCHANGING BETWEEN TWO TYPES OF MOLECULES IS TREATED IN THE APPENDIX. THE EXTENSION OF THE FORMALISM TO EXCHANGE OF SEVERAL NUCLEI MAY BE DONE IN A STRAIGHTFORWARD MANNER. , IN NUCLEAR, T 'MAGNETIC DOUBLE RESONANCE, THE SPIN SYSTEM IS SIMULTANEOUSLY IRRADIATED BY A STRONG SATURATING RF FIELD H 2 AT ANGULAR FREQUENCY —O>2 AND A WEAK OBSERVING RF FIELD AT ANGULAR FREQUENCY — «I. IT IS ASSUMED THAT DOUBLE RESONANCE ON A CHEMICALLY EXCHANGING SPIN SYSTEM IS DESCRIBED IN THE ROTATING FRAME BY 

(dZ/dt) + i[3C<>R,Z]+i[D1+, «Q EXP(IO//)+I[A-, CR] 
"\ XEXP(-T W'/) + R(5- <R 0)+£(5)=0. (1) 

IN EQ. (LJ, 5 IS THE SPIN DENSITY MATRIX IN THE ROTATING FRAME, AND O-0 IS THE EQUILIBRIUM VALUE OF THE SPIN DENSITY MATRIX WITH NO RF FIELDS. 3CoR IS THE TIME-INDEPENDENT PART OF THE HAMILTONIAN AND IS GIVEN BY1'2* 
3CO*= 2 T { £ 4 ; ^ ( T ) + 2 ^ ^ ( T ) • $ ( ; > } + A + - T - A - . (2) 

i 

IN EQS. (1) AND (2), A { = - v o i + ( a 2 / 2 i r ) , ff(T) IS THE SPIN VECTOR FOR THE MAGNETICALLY EQUIVALENT SET i, 
A±=-IR2>*,«F±(T), k = l , 2 , 

^ = 7 . ^ / ( 2 ^ ) , k = 0, 1, 2, ,. _ 
0)'= 0)1 — 0)2, 

AND THE REMAINING SYMBOLS HAVE THEIR USUAL MEANING I,2A,2B I N THIS PAPER, <r0 WILL BE ASSUMED TO BE ADEQUATELY DESCRIBED BY 
a o = ( l / N ) + 2 w q Z v o i ^ ( i ) , (3) 

i WHERE N IS THE NUMBER OF SPIN STATES AND q = f i / ( N k T ) . IN THE FOLLOWING, THE KETS | A), | A'), | /3), | /3'), ETC., WILL DENOTE THE BASIS IN WHICH 3CQ

R IS DIAGONAL,1,2,10 

SUCH THAT 
•: , 3 C o R \ a ) = E a \ a ) . (4) 

THE RELAXATION OF THE SPIN SYSTEM IS DESCRIBED BY 
R(SR—<T 0 ), WHERE 
( a \ Y ( Z - o o ) \ 0 ) = - Z R * w ( W \ t , \ f r ) 

-(a'\*0\(3')), (5) 

file:///v~/fi
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D O U B L E R E S O N A N C E 1781 spin system. Notice, however, that (24) is the solution of Eq. (23) even when E„0a'0' = O. Physically, this occurs because Eq. (23) is an exact description and every transition is directly irradiated. Because there is no relaxation to oppose the effects of the rf field, every transition is saturated. That the chemical exchange does not oppose the saturation is no surprise; this may be inferred directly from the Alexander operator expression (8). Therefore, relaxation must be included in an analysis which allows saturation. This is true even though chemical exchange by itself may be adequate in formalisms which neglect saturation.11 
D. Numerical Solution When one attempts to quantitatively describe double resonance spectra with chemical exchange, one has the practical difficulty that the chemical exchange may couple the density matrix elements strongly. Then, the widely used Bloch approximation and simple line approximation are not adequate.2* We have found that the speed of a computation is improved by at least a factor of 3 by using a diagonalization procedure. Besides the advantage in computer time, this procedure automatically accounts for the constraints introduced by relations (6), (20), (21), and molecular symmetry coupled with (22). The diagonalization procedure we used will be discussed in detail in Sec. III.D.12 The real and imaginary parts of Eqs. (11) and (12) may be written in terms of a symmetric array by a simple change of variables. With this in mind, it is convenient to designate the diagonal elements, and the real and imaginary parts of the off-diagonal elements as follows: <a|x|a>=<a|xo|0>, (25) <a|x|i8)=<«|xi|/3)+*(«l»l/3), (26) 

and : (a | JT |#)= <<* hi- | <8)+»<a | t»s" | |8). (27) Because a is Hermitian, 
(a | Xi I 0)= (0| xi I «) 

and 
<« |X21/9)=-(01X2! «)• (28) Only the elements (a | x{ | 0) with a<|3 need be computed because of relations (28). The indices of (a | xi I 0) will be considered to define an ordered triplet £a/(5. The £a/3 triplets will be ordered in a linear array by successively stepping each index through its range of values, starting with,£. Thus, £ is incremented from 0 to 2. When £ equals 0, the pair a/3 is stepped through the sequence 11, 22/;"-, NN, where N is the number of spin states. For £ equal to 1 or 2, the pair a/3 is stepped through the sequence 12, 13, IN, 23, 2N, N-1N. Let k denote the position of the triplet £a/S in the sequence defined above. This defines a one-to-one 

B. Exchange Coefficients The exchange coefficients are given by 
= T-1[(TrB"«'BW/Nn) + (TrB*&'<*'/N.) 

Saa'Spp'2} (15) 
where the matrix B"P is defined by (#*)«*=zcf0«cy, (K5) t and Tr stands for trace. In Eq. (16), C\a" is an expansion coefficient for | a), defined by 

l«>=ZCV| f> | «>, (17) 
fo where | f) is a member of a basis set for the exchanging nucleus, and | a) is a member of a basis set for the non-exchanging nuclei. Ne is the dimension of \ f), and Nn is the dimension of | a), t is the average lifetime of the exchanging nucleus on one molecule. It is seen from their definition in Eq. (16) that the B"p matrices satisfy the relation (Bafi)^= (Bfia)ba. The exchange coefficients transform like 4th-rank tensors with respect to a change of basis. Thus, if Ua'a= (a1 \ a), 

£«'/J*7V= Z Ua'aU^Uy'yUt'tE^yt. (IS) Other useful properties which may be proven from the definition, Eq. (15), are 
Eapa'P' = Epap>a> = Ea>p>ap, (19) 
^1Eaaa>p> = T~15a>0', (20) 

X Ea^(a' | 2Xff.(t) | 0') = O, (21) 
and Z Eaaa.f,.= (Nr/N)T-l8a.fi.. (22) acr Equation (22) is obtained if the spin system has symmetry. Then T represents one species, and ithe summation is over all states which belong to ''that*;species. Nr is the dimension of the species T, and N is the total number of spin states. 

C. Solution of Eq. (11) for No Relaxation In order to understand the effects of chemical exchange, the solution of Eq. (11) will be examined in the limit of Rapa'p—>0, i.e., 
<̂a|x|/3>-E£W<a'|xl/3'> = -i2wquafi(a | £ Vo&.(i) | j9). (23) » Using Eq. (21), it is seen that an exact solution of Eq. (23) is 

X=-27r$2>0,tf2(i). (24) 
i This solution corresponds to complete saturation of the 
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TABLE I . AT 

0 0 2(RAAA>A> + EAAA.A,) 
0 1 2(RAAA^.+EAAA>$>) 
0 2 0 
1 2 COa^SAA'SJS' 

2 2 — (RA0A'0'— RA00'A') — (EA0A>0> — EA00'A') 

mapping of the ordered triplet | a / 8 onto the single 
index K. Therefore, £A(J is a function of K and may be 
written £A(I(K). Similarly, K is a function of £a/S, and 
may be written as K(£A&). The functional dependence 
of K on £ a j 8 depends upon the spin system and must be 
derived by the procedure described above. In general, 
however, fa&{K)=0KK for l < & < i V Y where N is the 
n u m b e r o f s p i n s t a t e s . I n t h e f o l l o w i n g , t h e s e c o n d 

index or second triplet of indices will be primed, and 
the functional dependence of K on £a/3 will be implied. 
Therefore, Ak(iaftK>$>A>P>) will be written simply as 
AKK< and RAPOTWPUC') 
these conventions, Eq. ( 1 1 ) will be compactly written as 

where 

will be written as RAPA>P. With 

AX = K, 

| Xo|a> for \<K<N 

XT\0)IORK>N, 

( 2 9 ) 

KK = —2TQL}afi(A | £ Vo&t(I) I / 3 ) ^ 2 , 
• * 

and A IS a symmetric matrix whose elements AKK' are 
given in Table I for K<K'. The diagonal elements are 
multiplied by 1 / 2 in order to make A symmetric. It 
is seen that AKK' = AK'K by using Relations ( 7 ) and ( 1 9 ) . 

The form of A is illustrated for an AB system in 
Fig. 1 . The upper-left-hand block, bounded by AN, 
AN, AN, and AN represents the interactions between the 
diagonal elements of x- The next block along the 
diagonal, bounded by AN, AS,U>, 4 i o , i o , and AW&, 
represents the interactions between the real parts of 
the off-diagonal elements of x- The lowest block on the 
diagonal, bounded by AN,\\, Awm, A\%,\$, and A\T,\\, 
represents the interactions between the imaginary 
parts of the off-diagonal elements of x- It is seen that 
there are no elements connecting the blocks for the 
diagonal elements and the imaginary parts of the off-
diagonal elements. 

In practice, many of the off-diagonal elements of x 
may be approximated using the Bloch approximation. 2 1 3 

For each off-diagonal element of x for which 

I W o f l | » | < a I T ( x ) I 0 )+ < a I E(X) \ 0) |, ( 3 0 ) 
(A j X I j 9 ) 2 i r g < a . j £ I'O$Z(I) j $). ( 3 1 ) 

It is obvious that the resulting A matrix is still sym

metric. In fact, the reduced A matrix is obtained from 
the A array for a complete calculation by simply delet
ing the rows and columns corresponding to the approxi
mated elements. We have found it convenient to set 
up the complete A array and then to delete the rows 
and columns by an array transfer procedure before 
using the diagonalization procedure. When A is re
duced, the elements of K corresponding to the ap
proximated X* are also deleted. The remaining elements 
of the reduced K array are then computed in an obvious 
manner. 

Since A is real and symmetric, it is diagonalized by 
an orthogonal transformation U, where 

U~LA U = diag(ai, A2, • • •, o„), ( 3 2 ) 

Using Eqs. ( 6 ) and ( 2 0 ) , it is seen that a general 
eigenvector of A is U1, where 

and 

UK

L=(L/N^), 

= 0,K>N, 

O I = 2 / T 

L<K<N 

If the spin system has symmetry, and if a relaxation 
mechanism such as uncorrected external random field 
is used, then RAPA>P> = 0 unless | A), | /S), | A') and 
I /S') belong to the same species.14 If there are P ir
reducible representations, then, using ( 2 2 ) , it may be 
shown that the eigenvalue 0 occurs P—1 times. 

The general solution of Eq. ( 2 9 ) is 

X*= ZAR'UUZ UMIKM. 

&1 M-L 

( 3 3 ) 

The sum over / in Eq. ( 3 3 ) does not include /= 1 and is 

51 • * - A5S - • • • 5 . W 1 2 

u 
2 3 

10,1 
24 

U 12 
3 4 

A 
01,11 

13 • • • • 
0 • • 

23 
2 4 

* 3 4 A « t l l » • • • 

FIG. 1. S c h e m a t i c f o r m o f A f o r AB s y s t e m . T h e e l e m e n t s w h i c h 

h a v e n o s y m b o l a r e i d e n t i c a l l y z e r o . 
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Table II. r Gti' 
1 1 Ra$a'$'-\-Eapa>0' 1 2 (ua0— w')*aa'*W 2 2 

D O U B L E R E S O N A N C E 1783 

Bl 62 B3.4 Al A2 A3 A4- Bl B2 63,4 Al A2 A3 A4 
Fig. .2. Experimental and theoretical double resonance spectra. 

Values of »s are given on theoretical traces. Theoretical spectra 
computed with T = 4 sec, TA = T B = 8 8 sec, and X=0.2 Hz. 

number of unknowns. The reduced L array is obtained 
by simply deleting the elements corresponding to the 
approximated H*. Denning V by 

F - ^ F = d i a g ( g l , g 2 , • . . , * „ ) , (35) 

it is seen that 

H*=T,GRlVkiZVmiLm. (36) 
i m ; 

The inhomogeneity of H 0 affects double resonance 
spectra in a complicated manner. 1 5 In this paper, the 
field inhomogeneity will be accounted for in an em
pirical manner by replacing all elements of the form Rafap-\-Eafiafi by Rafap+Eafafi—X when computing the G 
array. The parameter X measures the contribution of 
field inhomogeneity to the half-width. This technique 
essentially produces Lorentzian line shapes with an 
inhomogeneity contribution of X to the half-width of 
the lines. 
IV. EXAMPLE: 2,2,2-TRICHLOROETHANOL 
In Sec. IV, theory is compared with experiment for 

the ABi system 2,2,2-trichloroethanol. In this material, 
the hydroxyl proton undergoes acid or base catalyzed 
chemical exchange. 

Experimental and theoretical frequency sweep 
double resonance spectra for 2,2,2-trichloroethanol are 
compared in Figs. 2 and 3. The bottom trace in each 
figure is a single resonance spectrum; the upper traces 
are double resonance spectra. The spectra were re
corded with wi/27r decreasing from left to right at a 
sweep rate of 9 Hz/min. The hydroxyl resonances are 
labeled ^41 to ^44, and the methylene resonances are 
labeled B l to B4. Line ^42 corresponds to the anti
symmetric transition. 

restricted to values of / for which at^0. It is useful to 
note, however, that if desired, these terms could he 
Included with arbitrary values for the corresponding 
o r 1 . In this case, the off-diagonal elements of x would, 
be unaffected, and a constant would be added to each 
diagonal element of x- This would not affect the 
computed spectra, however, because only the differences 
between diagonal elements appear in subsequent 
computations. This feature can be useful in computer 
computations on systems with approximate symmetry 
because the calculation is guaranteed to be stable. 

The computation of tj_ has the added feature that 
(A | 7]~ | |8) and (j8 | ij~ | A) are not simply related and 
can both contribute to the spectrum. Thus, the ordering 
of the £aj8 triplets must be slightly modified. 

In analogy to the computation of x, £ is incremented 
first, but now through only the values 1 and 2. For £ 
equal to 1 or 2, the pair a/8 is stepped through the 
sequence 12, 21, 13, 31 , liV, JV1, 23, 32, 
IN, N2, •", N—1N, NN—1. Let k once again denote 
the position of the triplet in the sequence just defined. 
Similarly to the computation of x, this defines a one-to-
one mapping of the ordered triplet £aj8 onto the single 
index k. 

With these conventions, Eq. (12) may be written 

GR=L, (34) 
where 

H f c= (A | M~ | /8), Lk = irv1 (A | [3L, Imx] | 0)5*1 
+Trv1(A | L>_, Rex+27r£>oi5,(j-)] | /3)5,;2, 

and G is a symmetric matrix whose elements GW are 
given in Table II for k<k'. The form of the G matrix 
is similar to the A matrix with the first N rows and 
columns delected. In practice, the G matrix may be 
greatly reduced. If transition 75 is irradiated, then 
(A I tj~ I j8)~0 for all transitions a/8 not overlapping 
with 75. As with A, the reduced G array is obtained 
from the complete G array by simply deleting rows and 
columns corresponding to the approximated elements. 
The reduced G matrix is still symmetric. As with A, we 
have found it convenient to set up the complete G 
array and then to delete the rows and columns by an 
array transfer procedure before using the diagonali
zation procedure. In this way, one can optimize the 
computation for different segments of a spectrum and 
effectively obtain an exact computation using a small 
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B I B 2 B 3 . 4 A l A 2 A 3 A 4 B l 6 2 B3.4- A l A 2 A 3 A 4 

F I G . 3. Experimental and theoretical double resonancespectra. 
Values of j>2 are given on theoretical traces. Theoretical spectra computed with t=0.5 sec, TA = TB = 7 sec, and X=0.2 Hz. 

The spectra in Fig. 2 were obtained using a 5 % by 
volume solution of the alcohol in CS 2 . The sample also 
contained 5 % by volume of tetramethyl silane for the 
internal lock and a drop of cyclohexane to monitor the 
field inhomogeneity and to test for receiver saturation 
due to the strong irradiation. The chemical shift and 
coupling constant were determined to be 1 5 . 6 ± 0 . 1 
and 7 . 0 ± 0 . 1 Hz, respectively, by fitting the experi
mental and computed spectra. 

The spectra in Fig. 3 were obtained with a sample of 
approximately the same composition as that used for 
Fig. 2, but with a trace of HCl added. The increased 
exchange rate of the hydroxyl proton is apparent from 
the increased Unewidths. The chemical shift for this 
sample was 1 4 . 0 ± 0 . 1 Hz, and the coupling constant 
remained 7 . 0 ± 0 . 1 Hz. The feature in the upper-right-
hand corner of each experimental trace in Fig. 3 is 
the cyclohexane resonance. 

The double resonance spectra were obtained by 
irradiating AL with the strong rf field, H 2 . Irradiation 
of this line gave the most pronounced intensity changes. 
The same values of i; 2 (0.05, 0 .10 , 0 .20 Hz) were used 
for Figs, 2 and 3 . The value of i/2 is given on each 
theoretical trace. The values of V2 were obtained by 
calibrating a precision attenuator using an analysis 
of double resonance spectra obtained with H 2 strong 
enough to cause large splitting. The experiments 
described here were restricted to comparatively low 
values of t>2 because larger values produced an ap
preciable decrease in detector amplification, as moni
tored by the cyclohexane line. 

Besides causing population changes, the strong rf 
field, H 2 , produces a double resonance spectrum which 
includes new transitions.1 For the low values of V2 

.used here, these coherence effects are important only 
for the directly connected transitions, BL and .84. 
The effects of field inhomogeneity in double resonance 
are complicated and tend to reduce the inhomogeneity 

contributions for BL and increase the inhomogeneity 
contributions for 5 4 . 1 5 

The theoretical traces were computed from Eq. (14 ) 
after obtaining H from Eqs. (29 ) and ( 3 4 ) . Uncor-
related external random field was assumed to describe 
the relaxation. 1 6 This was a satisfactory description 
because the sample was not degassed. Within the frame
work of this model, the relaxation is described by 
relaxation times Ta and Tb for the hydroxyl and 
methylene protons, respectively, where 

TA-L = hA2(\HA(T) |2)A,re, ( 37 ) 
with a similar expression for Tb"1. In Eq. ( 3 7 ) , the 
expression in angular brackets is the root mean square 
random field at nucleus A, and T c is the correlation 
time. Therefore, the experimental parameters are T , 
Ta, Tb, and A. The value of X, the inhomogeneity con
tribution, was taken to be the half-width at half-height 
of the cyclohexane resonance, 2ir (0 .20) rad/sec. 
The values of R, Ta, and TB were determined by visually 
obtaining the best agreement between the experimental 
and theoretical traces. The same scale factor was used 
for all four traces in each figure. This gave 7U = Tb—& 
sec, and T = 4 sec for Fig. 2 ; and Ta=Tb=7 sec, and 
T = 0.5 sec for Fig. 3 . The theoretical traces were 
sensitive to variations of about 1 0 % in these numbers. 

It is seen that the computed spectra reproduce most 
of the features observed in the experimental spectra. 
The main disagreement is for the region around the 
connected transition 5 4 in Fig. 2. The treatment of 
field inhomogeneity using the single inhomogeneity 
parameter X is not adequate for this;, region. In the 
computed spectra, the splitting shows up as a line 
broadening. 

From the values of 7A and Tb obtained above, it is 
seen that the relaxation is substantially the same for 
Figs. 2 and 3 . The differences between the spectra in 
Figs. 2 and 3 are due to the change in the chemical 
exchange rate. 

Although chemical exchange and relaxation combine 
in a complicated manner in determining the spectral 
contours, chemical exchange does produce character
istic features in the observed spectra. Chemical ex
change is the only mechanism which can transfer 
saturation to the antisymmetric line A2. The external 
random field mechanism used here gives zero proba
bility for relaxation transitions connecting levels of 
different symmetry; however, other relaxation mecha
nisms will allow these transitions only under exceptional 
circumstances.17 It is seen that for a given level of 
saturation, as measured by the height of AL in the 
computed spectra, the spread of saturation to the lines 
not directly connected to AL is enhanced with an in
crease in chemical exchange rate. 

V. S U M M A R Y A N D C O N C L U S I O N S 

It was shown that the analysis of double spectra of 
chemically exchanging molecules allows the simul-
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with a similar equation for x2- In Eq. ( A l ) , the eigen-
states of molecule 1 are labeled by a and /3, and the 
eigenstates of molecule 2 are labeled by n and v. The 
exchange coefficients are denned by 

Ea0al^ = r1-1[_(TrB^'"'/Ne)-Saa>S^l (A2) 
Elirtl^r.r1l(TrB^B^'/NE)-8FLLL>8vv>2, (A3) 

and •£.ftBB=Ti-1CTr5*'J8W»/JVB], (A4) 
where (B»U=T,Cia"Cf,f, (AS) f 
with analogous definitions for Bttp

 and B>™. 
These exchange coefficients have properties analogous 

to those for the self-exchange case. The coefficients, Eafa'pn, E^'y'22, Eafov
n, and E^1

 all transform 
according to (18) with respect to a change of basis. 
In addition, they also satisfy the following properties: 

& * V L = = - E - W S (A6) 

F , ,ffl=F , , 2 2 = F . - 2 2 (A7) 

J-^Hvp'v Jsviivp -^li'v'tiv , l-**'/ 
Tl-Eafti,12 = T2£Mraj321 = TiEffavfl

12 = T2-EvM/3a>21 ( A8) Ê oa'̂ TrW, (A9) a 
ZE^^ = r2-\^, (AID) 
Z£«^12=Z^21=0, ( A l l ) 

Z JW'V I Z W3W) I fl*) 
+Z£«̂ 12(̂  I I>o^2(i) I "> = 0. (A12) 

ftv i 
Using these relations, one may demonstrate that all of 
the properties discussed for self-exchange have an
alogies for heteroexchange. In particular, the steady-
state equations may still be expressed as a symmetric 
array. However, Condition (A8) necessitates one 
change. Assume that there are tii unknown elements 
for xl and n 2 unknown elements for x2> and that the WiX1 elements are assembled first, and the «2x2 elements 
are assembled second in the A and K matrices of Eq. 
(29). Then, to obtain a symmetric array, one must 
multiply the first «i rows of A and K by n , and the 
last « 2 rows of A and K by T 2 . 
* A preliminary report of this work was presented at the 158th 

Meeting of the American Chemical Society, New York, N.Y., 
Sept. 1969. 

1 J. D. Baldeschwieler and E. W . Randall, Chem. Rev. 63, 81 
(1962). 

2 (a) B. D. Nageswara Rao, Advan. Magnetic Resonance4, 271 
(1970). (b) All of the symbols used in this paper agree with Refs. 
1 and 2(a) except for i>*,-, which differs by a change of sign. This 
makes a positive quantity for protons. 

3 A. G. Redfield, Advan. Magnetic Resonance 1, 1 (1965). 
4 S. Alexander, J. Chem. Phys. 37, 974 (1962). 
S R . A. Newmark and C. D. Sederholm, J. Chem. Phys. 43, 

602 (1965). 
• S. Forsen and R. A. Hoffman, J. Chem. Phys. 39, 2892 (1963). 
7 S . Forsen and R. A. Hoffman, J. Chem. Phys. 40, 1189 

(1964). 

= -i2n<»«f>{<* I Z W W ) I 0), (Al). 

taneous study of chemical exchange and relaxation. 
Relaxation opposes saturation by driving the spin 
system towards a Boltzmann distribution, and chemical 
exchange tends to distribute saturation throughout 
the spin system. Although relaxation and chemical 
exchange combine in a complicated manner in deterrhin-
ing the spectral contrours, the chemical exchange 
process does produce characteristic features, such as the 
spreading of saturation between lines of different sym
metry. This was illustrated by double resonance experi
ments on 2,2,2-trichloroethanol. The relaxation param
eters and chemical exchange lifetime were obtained for 
this self-exchanging system by fitting computed 
and experimental spectra. This was possible even when 
the chemical exchange rate was slow compared to the 
linewidths. The formalism was developed specifically 
in terms of double resonance eigenfunctions; however, 
the properties of the exchange coefficients (18) - (22) 
are valid for an arbitrary basis. 

It was found convenient to redefine the unknowns so 
that the density matrix equations were expressed in 
t erms of a real symmetric matrix. This allowed the 
solution in terms of an eigenvalue procedure. This 
procedure allows a more efficient computer computa
tion, and automatically takes into account constraints 
introduced by the summation relations (6) , (20), 
and (21) , and molecular symmetry coupled with the 
summation relation (22). This automatic feature is 
useful for computer computations on examples with 
approximate symmetry because the calculation is 
guaranteed to be stable. 

The eigenvalue procedure is" a generalization of similar 
procedures used for calculations involving either the 
off-diagonal elements1 8 or diagonal elements 1 9 , 2 0 of x, 
separately. The obtaining of a symmetric matrix by the 
construction outlined in Sec. III.D depends on the 
validity of Relations (7) . These relations are always 
valid for extreme narrowing, and are valid in general if 
the correlation functions for the long correlation time 
mechanisms (i.e., scalar coupling to a strongly quad-
rupolar relaxed nucleus) obey the secular approxi
mation. 2 1 ACKNOWLEDGMENT 
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APPENDIX 
The formalism will be extended to the exchange of one 

nucleus between two types of molecules with density 
matrices x1 and x2- Equation (11) is then replaced by 

ma$(a | x1 I 0 ) - Z Rafia-y W I x21 0') 
- Z iW'V I x11 /3')-Z^ 1 2<M I x21 v) 
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P i n g P . Yang and S idney L . Gordon 

Schoo l o f C h e m i s t r y , G e o r g i a i n s t i t u t e o f T e c h n o l o g y , A t l a n t a , G e o r g i a 30332 

E q s . ( A 9 ) , (AIO) and ( A l l ) o f t h e appendix shou ld be r e p l a c e d b y t h e f o l l o w i n g j 

T E 1 2 « T ~ 1

C . ; (A9) 
£ oaxuv 1 uv ' 

8 B. M . Fung, J. Chem. Phys. 47, 1409 (1967). " R. Freeman and W . A. Anderson, J. Chem. Phys. 37, 2053 
9 B. M . Fung, J. Chem. Phys. 49, 2973 (1968). (1962). 
1 0 B. D. N. Rao, Phys. Rev. 137, A467 (1965). M Reference 2, p. 296. 
1 1 C S. Johnson, Advan. Magnetic Resonance 1, 33 (1965). 1 7 K. F. Kuhlmann and J. D. Baldeschwieler, J. Chem. Phys. 
1 2 A copy of the computer program used for this paper will 43* 572 (1965). 

be supplied upon request.The program is written in F O R T R A N V 1 8 J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 39, (1963). 
for the U N I V A C 1108. .» J. H. Noggle, J. Chem. Phys. 43, 3304 (1965). 

1 3 F. Bloch, Phys. Rev. 102, 104 (1956). »° S. L. Gordon, J. Chem. Phys. 48, 2129 (1968). 
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