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A simple low-order model is derived for developing flight control laws for controlling
the longitudinal dynamics of an aircraft using synthetic jet type actuators. Bi-directional
changes in the pitching moment over a range of angles of attack are effected by controllable,
nominally-symmetric trapped vorticity concentrations on both the suction and pressure
surfaces near the trailing edge. Actuation is applied on both surfaces by hybrid actuators
that are each comprised of a miniature obstruction integrated with a synthetic jet actuator
to manipulate and regulate the vorticity concentrations. In previous work, a simple model
was derived from a reduced order vortex model that includes one explicit nonlinear state
for fluid variables and can be easily coupled to the rigid body dynamics of an aircraft. This
paper further simplifies this model for control design. The control design is based on an
output feedback adaptive control methodology that illustrates the effectiveness of using the
model for achieving flight control at a higher bandwidth than achievable with typical static
actuator assumptions. A unique feature of the control design is that the control variable is
a pseudo-control based on regulating a control vortex strength. Wind tunnel experiments on
a unique dynamics traverse verify that tracking performance is indeed better than control
designs employing standard actuator modeling assumptions.

I. Introduction

The idea of using small, simple active flow control devices that directly affect the flow field over lifting
surfaces sufficiently to create control forces and moments has attracted growing interest over the last decade.
Compared to conventional control surfaces, flow control actuators have the potential benefits of reduced
structural weight, lower power consumption, higher reliability, and faster output response. Significant work
on open-loop flow control has already demonstrated control effectiveness on both static and rigidly moving
test platforms. These studies have primarily focused on mitigation of partial or complete flow separation
over stalled wing sections or flaps1,2 . The lift and drag benefits associated with flow attachment enable
control in a broader angle-of-attack range, however, these methods provide no direct control as they rely on
conventional control surfaces for control actuation, and provide little benefit at moderate flight conditions.
A different approach to flow control that emphasizes fluidic modification of the apparent aerodynamic shape
of the surface by exploiting the interaction between arrays of surface-mounted synthetic jet actuators and
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the local cross flow was recently developed3,4 . With this approach bi-directional pitching moments can
be induced by individually controlled miniature, hybrid surface actuators integrated with rectangular, high
aspect ratio synthetic jets that are mounted on the pressure and suction surfaces near the trailing edge5 . An
important attribute of this technique is that it can be effective not only when the baseline flow is separated
but also when it is fully attached, namely at low angles of attack such as at cruise conditions.

Despite the amount of the effort devoted to active flow control technology in recent years, a majority
of the work published depends on experience and intuition rather than on a fundamental understanding of
the flow physics. This is due to the lack of an analytical formulation of the mechanism behind flow actua-
tion. Even though various aspects of flow actuation have been investigated experimentally, mostly on steady
models, it is still difficult to draw conclusions and predict performance on dynamic models. This presents
a challenge for feedback controller design as the vast majority of control synthesis techniques are inapplicable.

In our recent studies, we demonstrated successful closed-loop control of pitch motion of a 1-DOF and
2-DOF wind tunnel model by using the aforementioned actuators with no moving control surfaces6,7 . First
a linear controller was designed for the rigid body model of the test model by approximating the actuators
as linear static devices. This controller worked well for slow maneuvers where the static actuator assumption
holds. For faster maneuvers, requiring higher bandwidth controller design, interactions between the flow
and vehicle dynamics get stronger and the linear rigid body model can no longer represent overall system
behavior accurately. In these regimes, linear controllers that ignore effects of flow actuation have limited
performance. A neural network (NN) based adaptive controller was introduced to improve the controller
performance by compensating for the modeling errors in the design including the unmodeled dynamics of
actuation. We assume that the system dynamics can be written as

ẋ = Ax + B (u + ∆(x, xf , u))
ẋf = f (x, xf , u)

(1)

where x represents the rigid body states of the vehicle, xf is the state vector associated with the dynamics
of the flow, and u = udc − uad is the control signal to the actuators with udc dc being the output of a linear
dynamic compensator and uad the adaptive control signal. Matrices A and B form the linear system model
used to design udc and ∆ represents the modeling errors in rigid body dynamics and the couplings between
the vehicle and unmodeled flow dynamics.

For slow maneuvers where changes in the flow field due to actuation occur much faster than the vari-
ations in the vehicle states, ∆ remains comparatively small. In this case, the vehicle behavior approaches
the linear design model and udc alone can control the system sufficiently well. As the vehicle starts moving
faster, vehicle-flow interactions get stronger and ∆ becomes large enough to disturb the vehicle’s predictable
dynamics. The adaptive controllers proposed6,8 were shown on the experiment to successfully compensate
for ∆ for moderate bandwidths for a 1-DOF and a 2-DOF airfoil. The adaptive controller only used x and u
feedback to compensate for ∆ that is a function of x, u, and xf . This is possible only if the xf dependence of
∆ is observable from x and u, which was evidently the case. For more aggressive maneuvers the observability
assumption is likely to fail, or the dependence becomes much more complex. For such cases feedback from
flow states is necessary to control the vehicle, which requires some information on f(x, xf , u) and ∆(x, xf , u).

The objective of this research is to develop a low-order approximate flow model for the wind tunnel
setup at Georgia Tech, validate it with the experiment data, and utilize it for simulation and control design.
For our adaptive control design, a simple reduced order model is derived that captures the gross effect
of the flow dynamics. The model is developed by simplifying a reduced order vortex model developed in
our previous studies.9 The reduced order vortex model includes only one explicit nonlinear state for fluid
variables and can be easily coupled to the rigid body dynamics of an aircraft. The required modeling is
mostly obtained from geometric information. The rest of the needed data is obtainable from simple static
wind tunnel tests. A unique feature of control designs using this model is that the control variable is a
pseudo-control based on regulating a control vortex strength. The control design is based on an output
feedback adaptive control methodology that illustrates the effectiveness of using the model for achieving
flight control at a higher bandwidth than achievable with a static actuator assumption. Since the linear
model provides some information on f , this is incorporated into the linear part of the design (A and B
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matrices in Eq. (1)), effectively reducing the amount of modeling error that the adaptive controller must
compensate. This provides superior results compared to conventional modeling techniques. Experimental
examples on a unique dynamic wind tunnel traverse verify that tracking performance is indeed better than
control designs employing standard actuator modeling assumptions. The reduced order model from our
previous work will also be used to simulate the system with higher accuracy. This is crucial to allow for
investigation of various control architectures without spending expensive wind tunnel time.

II. Experimental Hardware

The experiments are conducted in an open-return low-speed wind tunnel having a square test section
measuring 1m on the side. The present experiments use a 2-D airfoil model with a fixed cross section that
is based on a NACA 4415 configuration as shown in figure 1. The chord length is c = 457mm, maximum
thickness to chord ratio t/c = 0.15, and the model spans the entire width of the wind tunnel test section.
The airfoil is modular and comprised of interchangeable spanwise segments which include a module of a
circumferential array of 70 static pressure ports located at mid-span, and several modules of high-frequency
integrated pressure sensors for measurements of instantaneous pressure. Bi-directional pitching moments
induced by trapped vorticity flow-control are effected by individually-controlled miniature, hybrid surface
actuators integrated with rectangular, high aspect ratio synthetic jets that are mounted on the pressure
and suction surfaces near the trailing edge (Figure 1). The actuators have a characteristic height of 0.017c
above the airfoil surface and the long dimension of the exit plane of each rectangular jet is parallel to the
trailing edge and height (in the cross stream direction) of each jet orifice is 0.4 mm. The jets are generated
by piezoelectric membranes that are built into a central cavity within the actuator and are operated off
resonance within the range 1770Hz < fact < 2350Hz. The spanwise-segmented actuators are individually
controlled from the laboratory computer and the system controller. The bulk of the present experiments
are conducted at a free stream speed of U∞ = 30m/s, with a corresponding Reynolds number based on the
airfoil chord length of Rec = 8.55 · 105. At this speed, the actuation Strouhal number is St = factc/U∞ = 34
and the maximum momentum coefficient is Cµ = 1 · 10−3.

Figure 1. Render of wing model

In the present experiments, the wind tunnel model executes commanded flight maneuvers in two degrees
of freedom (pitch and plunge) that are exclusively effected by flow control actuation within the constraints of
the test section. The model is mounted on a programmable, 3-DOF (pitch, plunge, and roll) traverse that is
constructed on an I-beam frame around the test section of the wind tunnel as shown in figure 2. The traverse
is driven electromechanically by a dedicated feedback controller that removes the effect of parasitic mass and
rotational inertia of the dynamic support system. The controller can also prescribe stability characteristics
to mimic the behavior and control of a range of ”virtual” air vehicles, all having the same wing as the wind
tunnel model, but with static margins that can be adjusted by the traverse controller, including unstable
configurations for high maneuverability.

The wing model is mounted on a rotating hollow shaft (which serves as conduit for wiring and pressure
tubes). In one mode of operation pitch commands are executed by rotating the model using an AC servo
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motor (torque motor) that is attached to one of the two vertical stages (figure 2) and is driven by a servo
amplifier in torque mode to directly control the pitching moment on the model from the system’s controller
(the pitch range is limited to ±25◦). At the opposite end the pitch shaft is supported by an air bearing that
allows both rotational and axial motions. The axial motion allows the wind tunnel model to bank while it is
maneuvered in pitch and plunge since the two plunge drives are controlled independently on each side of the
tunnel. For open-outer-loop characterization the inner-loop controller is used to enforce a prescribed angle
of attack α(t) trajectory. It also serves as a virtual variable tail surface by providing the torque required to
trim the wing at any given condition, and by modifying its dynamic characteristics by changing its stiffness
and damping properties. The application of torque T (α, α̇, α̈) effectively alters ∂CM/∂α and ∂CM/∂α̇ and
the moment of inertia of the model, and allows for control of a range of stable and unstable configurations
of “virtual” air vehicles. In addition, the servo motor is used as a transducer to indirectly measure the
aerodynamic moment. In torque mode the motor generates a torque proportional to the input voltage and
in steady state, the motor torque balances the aerodynamic moment, and moment due to gravity.

Vertical (plunge) commands are executed by two independently-controlled and synchronized linear slides
mounted vertically on opposite sides of the wind tunnel test section. As shown in Figure 2, the linear slide
on the left carries the pitch axis drive mechanism and the slide on the right carries the air bearing. Both
ends of the pitch axis are connected to the linear slides through gimbals that allow free rotation about axes
in the streamwise and cross stream directions, and prevent misalignment from binding the plunge slides.
Each slide includes a carriage that is moved along rails by a 20mm pitch ball screw turned by an AC servo
motor with an integrated encoder and an electromagnetic release brake that prevents load on the carriage
when the traverse is not in operation. The travel of each linear slide is constrained by adjustable stops and
limit switches. The model shaft moves in plunge through vertical slots in the side walls of the test section.
The controller synchronizes the motion of the linear drives and thereby can enable controlled plunge and roll
of the model. A force sensor based on a spring set and load cell system and linear accelerometers allow for
measurements of the vertical forces and compensation for the weight and inertia of the model. In the present
work, the linear motion of the model is software limited to speeds and accelerations of up to 0.5m/sec and
2g, respectively (the maximum design speed and acceleration in the present configuration are 2.5m/sec and
5g).

Figure 2. Render of traverse showing various components

4 of 24

American Institute of Aeronautics and Astronautics



III. Aerodynamic Model

A low-order vortex model for a pitching and plunging airfoil with trailing-edge synthetic jets was pre-
sented in Tchieu et. al. (2006)9 . In this section we review that model for the purposes of developing a
control design model. Unlike many other low or reduced-order models, this model is built from physical
principles, i.e. the conservation of momentum. The vorticity in the model consists of freely-moving vortices
in the wake, a trapped control vortex with circulation ΓC(t), and the boundary-layer vorticity on the airfoil
surface. We consider small-amplitude motions of a flat-plate airfoil which leads to a number of simplifying
assumptions. Thus, for example, all but one of the wake vortices move uniformly downstream along the
nominal x-axis that is fixed to the airfoil. The exception is the vortex being fed circulation from the trailing
edge. The velocity of the latter vortex is modified to conserve momentum as discussed below. In addition we
assume that vorticity is shed into the wake to satisfy the unsteady Kutta condition (no velocity singularity)
at the trailing edge. Also, a vortex sheet with a continuous distribution of vorticity γ(x) is used to satisfy
the boundary condition on the airfoil surface (normal component of velocity is continuous) plus the Kutta
condition.

For the control input, the synthetic jet is modeled with a trapped vortex that represents the averaged
effect of the actuation. The control vortex circulation depends on the control variable, u, for example,

dΓC

dt
= F (u, ΓC). (2)

This function, F , can only be experimentally determined.

III.A. Wake Vortex Dynamics

Consider an airfoil of chord length c occupying the portion −c/2 ≤ x ≤ c/2 of the x-axis as presented in
figure 3. The airfoil is undergoing small-amplitude motions in pitch and plunge. The pivot point for rotation
is located at x = −a as shown. The airfoil velocity is U in the negative x-direction. Alternatively, one could
apply the results below to a stationary airfoil with a freestream velocity U in the positive x-direction. See
figure 3 where the fluid flow and the airfoil motion are given relative to a frame of reference moving in the
negative x-direction with the airfoil.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

ẏ
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Figure 3. Pitching, plunging airfoil, control vortex with strength ΓC , and free wake vortices with strengths Γi, i = 1, ..., N.

Now also consider a wake vortex with circulation Γi located at x = ξi. This vortex will result in a given
distribution of vorticity on the airfoil, γi(x), to satisfy the boundary condition on the airfoil and the Kutta
condition given by (see, e.g., von Karman and Sears (1938)10)

γi(x) =
Γi

π(ξi − x)

√
c/2− x

c/2 + x

√
ξi + c/2
ξi − c/2

. (3)
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We find that

∫ c/2

−c/2

γi(x)dx = Γi

[√
ξi + c/2
ξi − c/2

− 1

]
. (4)

It appears that the correct location of the control vortex should be slightly forward of the trailing edge
and just above the airfoil for suction-side actuation and just below the airfoil for pressure-side actuation.
The total effect of both actuators can be represented by a single vortex on the mid-plane located slightly
forward of the trailing edge. In any event, the control vortex with strength ΓC will produce a corresponding
contribution to the airfoil circulation given by γC(x). We assume that a change in ΓC on its own produces
no net change of circulation in the wake. Thus,

∫ c/2

−c/2

γC(x)dx = −ΓC . (5)

The total circulation, which must equal 0, is therefore given by

Γ0 +
N∑

i=1

Γi

√
ξi + c/2
ξi − c/2

= 0. (6)

Here Γ0 is the quasisteady circulation about the airfoil that depends only on the pitch angle, its time deriva-
tive, and the plunge rate, and N is the number of free vortices in the wake.

It is also assumed that all but one of the free vortices in the wake move with speed U . Thus,

dξi

dt
= U (i ≥ 2), (7)

and the vortex being fed circulation (labeled i = 1) moves with speed

dξ1

dt
= U − (ξ2

1 − c2/4)
ξ1Γ1

dΓ1

dt
(8)

where we have used conservation of impulse to derive Eq. (8). This is in contrast with previous models
where the force on the vortex and branch cut system was forced to be invariant.11–14 It has been found
that this so-called Brown-Michael correction introduces the incorrect initial lift curve for the specific case of
the flat-plate undergoing an impulsive start. The conservation of impulse argument given above, correctly
captures the initial behavior for this specific case.

Except for the vortex being fed, all vortices in the wake remain at constant circulation, i.e.

dΓi

dt
= 0 (i ≥ 2). (9)

The strength of Γ1 is such that Eq. (6) remains satisfied. As mentioned earlier, the circulation of the control
vortex is given, for example, by

dΓC

dt
= F (u, ΓC), (10)

where u is the control variable and the function f is to be determined. With the absence of a model for
Eq. (10), Eqs. (6)-(9) constitute a close system of equations for the wake dynamics of the system given a
sufficient initial condition. Since Eqs. (7) and (9) are easily integrable, this system can be reduced to one
non-linear differential, i.e. Eq. (8), with the algebraic constraint represented by Eq. (6). In accordance to
Eq. (1), the fluid states are represented by xf = [ξ1Γ1]T . In contrast to other models, the fluid state is
directly related to the physical variables of vortex location and strength.
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III.B. Lift and Moment Relationships

From the results derived in our previous work,9 we have the following expressions for the lift and moment.

L = −ρπ(
c2

4
ÿ + Ucẏ)− ρπ

[
ac2

4
θ̈ + U(a +

c

2
)cθ̇ + (

U̇c2

4
+ U2c)θ

]
− ρUc

2

N∑

i=1

Γi√
ξ2
i − c2/4

− ρUΓC , (11)

and

M(a) = aL +
ρπUc2

4
ẏ − ρπ

[
c4

128
θ̈ − Uac2

4
θ̇ − U2c2

4
θ

]
+

ρUc2

8

N∑

i=1

Γi√
ξ2
i − c2/4

− ρUΓCξC , (12)

The lift coefficient, defined as CL = 2L/(ρUc2), is

CL = −π(
c

2U2
ÿ +

2
U

ẏ)− π

[
ac

2U2
θ̈ +

2a + c

U
θ̇ +

cU̇ + 4U2

2U2
θ

]
− 1

U

N∑

i=1

Γi√
ξ2
i − c2/4

− 2
Uc

ΓC , (13)

and the moment coefficient (with pitch up as positive) CM = −2M(a)/(ρU2c2) is

CM =
a

c
CL +

π

2U
ẏ − π

[
c2

64U2
θ̈ − a

2U
θ̇ − 1

2
θ

]
+

1
4U

N∑

i=1

Γi√
ξ2
i − c2/4

− 2ξC

Uc2
ΓC . (14)

The above equations can quite be integrated in time easily. Equation 8 is singular when t = 0. In general,
a small-time, asymptotic solution is necessary to provide a sufficient initial condition for the startup of the
simulation. This model uses a different strategy to determine ξ1(t) and Γ1(t). From the conservation of total
circulation, Eq. (6), we can write

Γ1

√
ξ1 + c/2
ξ1 − c/2

= −Γ0 +
N∑

i=2

Γi

√
ξi + c/2
ξi − c/2

≡ G(t), (15)

where the newly defined function G(t) can be considered known up to time t. In addition, Eq. (8) can be
written as

d

dt
(
√

ξ2
1 − c2/4 Γ1) =

ξ1Γ1U√
ξ2
1 − c2/4

=
ξ1GU

ξ1 + c/2
. (16)

Defining

H(t) ≡
√

ξ2
1 − c2/4 Γ1, (17)

we can write Eq. (16) as

dH

dt
=

H + cG/2
H + cG

GU, (18)

where we have used Eqs. (15) and (17) to determine ξ1 as

ξ1 =
H + cG/2

G
. (19)

Similarly, Γ1 is found to be

7 of 24

American Institute of Aeronautics and Astronautics



Γ1 = G

√
H

H + cG
. (20)

WIth this approach, integrating equation (18) is numerically is now straightforward. Physically we expect
that Γ1(t) cannot decrease in magnitude as time progresses. Let t∗ be a time when dΓ1/dt changes sign.
Thus we check, after each time increment, to see if Γ1 has decreased in magnitude. If so, we return to the
previous time t, which, by definition, t = t∗, and add the present Γ1 and ξ1 to the list of wake vortices
labeled i ≥ 2 and form a new i = 1 vortex with initial conditions ξ1(t∗) = c/2 and Γ1(t∗) = 0. Typically,
near t ≈ t∗ (t > t∗) we expect G ∼ t − t∗ which leads to ξ1 ≈ 1 + U(t − t∗)/4 and Γ1 ≈ G(t)

√
U(t− t∗)/8

for U(t − t∗) ¿ 1. An exception to this behavior would occur, for example, for an impulsive start at t = 0
with say G(0) = −Γ0(0) 6= 0. In this case, ξ1 ≈ 1 + Ut/2 and Γ1 ≈ −Γ0(0)

√
Ut/4 for U(t− t∗) ¿ 1.

III.C. Rigid-Body Dynamics

Dealing with the fluid and body interaction problem is usually a difficult problem. For this case, due to the
low-order fluid model, a closed system of equations can be constructed to predict the orientation and the
motion of the airfoil. To model an airfoil is free flight it is assumed that the airfoil is attached to a spring
and damper in the y-direction in addition to a torsional spring and damper in the θ-direction. This stabilizes
the system and gives a model for non-stalled flutter in cross-flow.15

�
�
�
�

�
�
�
�

U

ky

bθ kθ

by

ξ1ΓC , ξC

Γ1

Figure 4. Schematic showing the config-
uration of rigid body coupling. Here the
rigid body is attached to a mass-damper-
spring system in both the plunge and
pitching degrees of freedom. See figure
3 for more detail.

The system of equations for the airfoil in this configuration be-
comes

mÿ − Sxθ̈ + by ẏ + kyy = L

Iθ̈ − Sxÿ + bθ θ̇ + kθy = M(a) (21)

where L is the lift, M(a) is the moment about the location a,
Sx is the static imbalance per unit width, and all other terms are
related to the linear and rotational mass, damping, and stiffness of
the system.b The static imbalance per unit width is defined as

Sx ≡
∫

ξρsdξdη

This is an area integral in a principle coordinate system where ρs is
the density of the structure, and ξ and η are the principle coordi-
nates. This can equivalently be expressed as

Sx = ma

where m is the mass of the object and a is the distance from the elastic axis (the point at which the springs
and dampers are attached) to the center of mass, previously defined in figure 3.

III.D. Non-zero Thickness and Camber Correction

This model assumes that the wing is a flat plate. To correct the neglected effect of thickness and camber on
the lift and moment, we introduce corrections to the lift coefficient and moment coefficients in Eqs. (13) and
(14). It is believed that the corrections are static and do not depend on the angle of attack in the range of
operation or the unsteady maneuvering. Thus we simply add the the zero angle of attack lift and moment
coefficient to obtain

C̃L = CL,0 + CL

C̃M = CM,0 + CM

bNote that a right hand system has been used in this case, thus positive θ (or moment) corresponds to pitch down.
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For example, on a clean NACA 4415 airfoil, the moment coefficient is nearly constant through the quarter
chord for the range of angle of attacks in this study and thus CM,0 ≈ −0.1.16 For the lift coefficient, the
change in lift per angle of attack for the NACA 4415 is nearly that of a flat plate and thus we correct the
lift by offsetting the lift coefficient by the zero angle of attack lift for a NACA 4415, i.e. CL,0 ≈ 0.4. Of
course, this correction is wing section dependent and is taken from experimental results. This results in the
following lift and moment corrections.

L̃ = L +
(

1
2
ρU2c

)
CL,0

M̃ = M −
(

1
2
ρU2c2

)
CM,0 +

(
a− c

4

) (
1
2
ρU2c

)
CL,0

In our experiments, the c.g. is close to quarter chord and M simplifies since
(
a− c

4

) ≈ 0.

IV. Control Formulation

Though the developed model is a set of ordinary differential equations, it cannot be used for control
design. Due to the highly nonlinear manner in which a vortex is added, the model is not casual. If the error
caused by not resetting the time step in the model is neglected, the model can be made casual. However,
because a vortex is created at each time the nascent vortex strength changes sign, at which point, the model
resets the fluid dynamic states, i.e. it resets the location of the vortex at ξc = c/2 and the corresponding
strength to ΓC = 0. This is a result of the low-order nature of the model. While in this model the number
of model states are kept fixed, in reality the number of vortices ultimately increases. To circumvent this
problem the previous states are reused for the newest vortex. This causes a discontinuity in both the vortex
position and strength when a new vortex is shed.

IV.A. A Simplified Control Design Model

The vortex model by its nature captures some dynamics that negligible on the time scales of a flight control
system. From this prospective, it is reasonable to expect that it is possible to simplify the model further
to make it appropriate for control design. When examining the lift and moment equations, (11) and (12),
we observe that it is a function of only the states of the rigid body (i.e. both the added mass and the
quasi-steady terms) in addition to a term due to the wake. For example, consider the lift equation. In this
case, the term due to the wake is simply

LW = −ρUc

2

N∑

i=1

Γi√
ξ2
i − c2/4

(22)

Therefore, we define a characteristic circulation for the entire wake as

ΓW = c

N∑

i=1

Γi√
ξ2
i − c2/4

(23)

Even though the discontinuities of the flow (i.e. the startup of Γi and ξi) are included in this term, ΓW

is fairly smooth. Hence, its reasonable to model this term using an ordinary differential equation. To choose
a satisfactory differential equation, examine the startup case where dΓw/dt = 0 and only a single vortex is
created. In this case

L = −ρU

(
Γ0 +

1
2
ΓW

)
(24)

From classical theory, it is expected that half of the lift is attained at the moment the plate is impulsively
started from rest. Thus, at t = t0, ΓW ≈ −Γ0. When t → ∞, the lift term due to the wake term should
disappear as the wake vortices move further and further away. Therefore we propose using the model

dΓW

dt
= −dΓ0

dt
− βΓW (25)
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where β is a constant.
Note that this introduces an exponential decay of ΓW (which gives a 1− eβt rise in lift) given a constant

Γ0. This is contrary to the classical square root type growth for the lift and a decay in the lift that is
geometric at best. We choose β to best fit the case of an impulsive start flat plate by computing a norm
between the original model and the simple model. The best fit for a given ∆t = T is given in table 1. We
chose β = 0.406.

T β

20 0.333
10 0.360
5 0.406

Table 1. Best fit for β

From this, a linear model can be formed consisting of geometrical parameters and the derivatives of y and
θ. The differential equation governing the fluid dynamics reduces to a simple first order differential equation

Γ̇W + βΓW = −πc
(
ÿ +

(
a +

c

4

)
θ̈ + Uθ̇

)
(26)

with an initial condition of

ΓW (t0) = −πc
[
ẏ +

(
a +

c

4

)
θ̇ + Uθ

]
t=t0

(27)

Furthermore, the lift and moment expressions simplify to:

L = −ρπ

(
c2

4
ÿ + Ucẏ

)
− ρπ

[
ac2

4
θ̈ + U

(
a +

c

2

)
cθ̇ +

(
U̇c2

4
+ U2c

)
θ

]
− ρU

2
ΓW − ρUΓC (28)

and

M = aL +
ρπUc2

4
ẏ − ρπ

[
ac2

128
θ̈ − Uac2

4
θ̇ − U2c2

4
θ

]
+

ρUc

8
ΓW − ρUΓCξC (29)

The above equations include added mass, quasi-steady lift, lift due to wake, and control terms.

V. Linear Control Formulation

For control design is desirable to rewrite the simplified equations of motion as a matrix quadruple. To
this end, we can equate equations (28), (29), and (21) to form the rigid body differential equations as

M

[
ÿ

θ̈

]
+ D

[
ẏ

θ̇

]
+ K

[
y

θ

]
+ AΓw = BΓc (30)

where the mass matrix M is given by

M =

[
m + ρπc2

4 −Sx + ρπ ac2

4

−Sx + aρπc2

4 I + aρπ ac2

4 + ρπ c4

128

]
(31)

the stiffness matrix is given by

K =


 ky ρ

(
U̇c2

4 + U2c
)

0 kθ − ρπ
(

U2c2

4 − aU̇c2

4 − aU2c
)


 (32)

the damping matrix is given by

D =

[
by + ρπUc ρπU

(
a + c

2

)
c

ρπc
(
aU − Uc

4

)
bθ + aρπU

(
a + c

4

)
]

(33)
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and the aerodynamics coupling matrix, A, and the control matrix, B, is given by

A =

[
ρU
2

ρU
(

a
2 − c

8

)
]

, B =

[
−ρU

−ρU (ξc + a)

]
(34)

The governing relation for aerodynamics in equation (26) combined with (30) is used to form the required
matrix quadruple

˙̄x = Āx̄ + B̄Γc

y = C̄x̄ + D̄Γc (35)

where the system state, x̄ = [y θ ẏ θ̇ Γw]T and

Ā =




0 I 0
−M−1K −M−1D −M−1A

πc
[
1 +

(
a + c

4

)]
M−1K πc

[
1 +

(
a + c

4

)]
M−1D −

[
0 πcU

]
πc

[
1 +

(
a + c

4

)]
M−1A− β


 (36)

and

B̄ =




0
M−1B

−πc
[
1 +

(
a + c

4

)]
M−1B


 , C̄ =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 , D =




0
0
0
0


 (37)

Note that the control term ΓC is a non-physical variable that is related to control voltage and the system
states. This relationship will be explored in more detail later in the paper. Also, not all of the states are
measurable. If all of the states were measurable, it is easy to formulate a control design based on LQR
theory. In this paper, the nominal control design consists of a robust servomechanism LQR control law
with augmented feed forward term to improve transient error tracking response. Consider the linear time
invariant state space model:

ẋ = Fx + Gu + Ew

y = Hx (38)

where xεRn, uεRm, wεRm and yεRl. Furthermore, it is assumed that w is an unmeasurable disturbance.
Next we define the command input vector rεRp such that r satisfies the differential equation given in 39 and
we assume that the disturbance w satisfies the same differential equation.

r(p) =
p∑

i=1

air
(p−i) (39)

Assuming that the p < l and defining the error signal as:

e = y − r (40)

and given the control objective that the command error e(t) → 0 as t → ∞ in the presence of unmeasured
disturbances satisfying 39, it is possible design an optimal stabilizing control law for the plant dynamics
given in 38. The solution of this standard formulation is derived in Wise17 and yields that nominal control
signal of the form:

u = −Ke

∫ t

0

e(τ)dτ −Kxx (41)

Letting r satisfy ṙ = 0, the LQR based technique yields an integral action on the tracking error that
allows for robust tracking of commands with zero steady state error. Augmenting the control law in 41 with
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a feedforward term, Z, and allowing for an additional augmenting control input, ∆u, for adaptive control
design the final nominal control law is given by:

u = −Ke

∫ t

0

e(τ)dτ −Kxx + Zr + ∆u (42)

Graphically this can be represented as the simulation diagram shown in figure 5. The effect of the feedforward
term is to help speed up the transient response of the control law. From a frequency domain standpoint,
the eigenvalues of the closed loop system remain fixed under a constant gain Z. In a SISO system, this is
equivalent to adding an adjustable zero that allows the designer to cancel a slow pole in closed loop transfer
function Y (s)

R(s) .

Figure 5. Robust Servo LQR with feedforward element and added control signal

Since the system is not full state feedback, we use the static projective control technique17 , to formulate
an output feedback law without feedback of the flow state. Augmenting the model dynamics with the control
law dynamics, the closed loop system is given by

[
e

ẋ

]
=

[
0 Ct

−B̄Ke Ā− B̄KX

][ ∫
e

x

]
+

[
−1
B̄Z

]
r

yt =
[

0 Ct

] [
e

x

]

where Ct is a matrix that multiplied by x that gives the plunge position, z. Since, we are not using the flow
state in feedback we can retain all but two of the closed loop eigenvalues. Let K = [Ke Kx] and Xy be
the eigenvectors corresponding to the closed loop eigenvalues we wish to retain. Then the required output
feedback gain is computed as

K̄ = KXy

(
C̄measXy

)−1

where C̄meas corresponds to measured states of x such that ymeas = C̄measx = [
∫

e y θ ẏ θ̇]T . The
projective control effort is then defined by

ΓC = −K̄

[ ∫
e

ymeasured

]
+ Zr

Though this technique does not guarantee closed loop stability, in practice, closed loop stability is easily
satisfied.

V.A. Augmenting Output Feedback Adaptive Control

The assumed linear dynamics of the model (35) ignores nonlinearities and unmodeled dynamics associated
with the flow actuation process. We assume that the true dynamics of the system can be represented as:

ẋ = Āx + B̄Λ (Γc + f (x,Γc))
y = Cx

(43)
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where C is a matrix capturing the the system output, A ∈ Rnxn, B ∈ Rnxm, and C ∈ Rmxn are known
matrices. Λ ∈ Rmxm is an unknown but constant positive definite matrix, x ∈ Rn is the system state,
u ∈ Rm is the control input, y ∈ Rm is the system output, and f : Rn × Rm 7→ Rm is Lipschitz continuous
function that is unknown. The nominal vortex control law has the form

ΓC,n = −Kyy + Krr (44)

where Ky ∈ Rmxm and Kr ∈ Rmxr where chosen such that the following reference system achieves the
desired tracking characteristics

ẋm(t) = Amxm(t) + Bmr

ym(t) = Cxm(t)
(45)

where Am = A − BKr is Hurwitz and Bm = BKr. For the purposes of adaptive design, assume that Am

satisfies the following Lyapunov equation

AT
mP + PAm = −Q, Q = QT > 0, Q ∈ Rnxn (46)

To introduce an adaptive signal to compensate for f (x, Γc), we redefine the total control effort as

ΓC(t) = ΓC,n(t)− ΓC,ad(t) (47)

Inserting the control law given in (42) into the open loop dynamics (43) the closed loop dynamics can be
written

[
ė

ẋ

]
=

[
0 C

−B̄KI Ā− B̄KX

][
e

x

]
+

[
−1
B̄Z

]
r +

[
0
B̄

]
(−uad + ∆ (x, xa,Γc))

ẋa = g (x, xa, Γc) (48)

y =
[

0 C
] [

e

x

]

One can rewrite the closed loop system in a more compact form as

ẋ(t) = Amx(t) + Bmr + B [δΛΓC(t) + Λf(x,ΓC)− ΓC,ad] (49)

We wish to approximate Λf(x, ΓC) by a nonlinear in parameters neural network. To construct such an
approximation in an output feedback setting18–22 , we reconstruct the system states via delayed values of
system outputs and inputs. If the number of delayed values for each output is s, the number of delayed
values for each input is t, and the length of the time delay time is d, the delayed value vector, η(t), is given
by

η(t) = [[y1(t), y1(t− d), ..., y1(t− sd), ..., ym(t), ym(t− d), ..., ym(t− sd)]T ;

[ΓC,1(t− d), ..., ΓC,1(t− sd), ..., ΓC, m(t− d), ..., ΓC,m(t− sd)]T ]
(50)

where η(t) ∈ Rw and w = (s + t)m. Note that the current control output is not included in η(t). This
is prevent to implementation issues associated with realizing the control. Using η(t), we assume that the
function f(x, ΓC) can be approximated over a compact set Dx×DΓC

to an arbitrary degree of accuracy such
that

Λf(x, ΓC) = WT σ̄(V T η(t)) + ε(x, ΓC), (x,ΓC) ∈ Dx ×DΓC
(51)

where ‖ε(x, ΓC)‖ < ε∗ < ∞, σ̄(q) = [1, σ1(q1), · · · , σ1(ql)], l is the number of hidden layer neurons,
σi(z) = 1

1+exp(−z) and W ∈ R(l+1)xm and V ∈ Rwxl are unknown but constant neural network ideal weights.
The closed loop system can then be equivalently expressed as

ẋ(t) = Amx(t) + Bmr + B
[
δΛΓC(t) + WT σ̄(V T η(t))− ΓC,ad

]
+ Bε(x, ΓC) (52)
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To develop the complete output feedback algorithm, an error observer must be introduced. Consider the
following error observer

ξ̇ = Amξ + L(y − yξ − ym)
yξ = Cξ

(53)

such that Ã = Am − LC is Hurwitz and satisfies the following Lyapunov equation

ÃT P̃ + P̃ Ã = −Q̃, Q̃ = Q̃T > 0, Q̃ ∈ Rnxn (54)

The adaptive control signal is given as

uad =
[
Im + δ̂Λ

]−1 [
δ̂Λun + ŴT σ̄

(
V̂ T η(t)

)]
(55)

The adaptive update laws are defined as

˙̂
W (t) = −ΓW Proj

[
Ŵ (t), σ̃

(
V̂ (t), η(t)

)
ξ(t)T PB

]

˙̂
V (t) = −ΓV Proj

[
V̂ (t), η(t)ξT PBH

(
Ŵ (t), V̂ (t), η(t)

)]

˙̂
δΛT (t) = −ΓδProj

[
δ̂Λ

T
(t), u(t)ξT (t)PB

]
(56)

where

σ̃
(
V̂ (t), η(t)

)
= σ̄

(
V̂ (t)T η(t)

)
− σ̄′

(
V̂ (t), η(t)

)
V̂ T (t)η(t)

H
(
Ŵ (t), V̂ (t), η(t)

)
= ŴT (t)σ̄′

(
V̂ (t), η(t)

) (57)

and

σ̄′
(
V̂ (t), η(t)

)
=




0 · · · 0
dσ1(dq1(t))

dq · · · 0
...

. . .
...

0 · · · dσl(dql(t))
dq




(58)

where qi is the ith row of q = V̂ (t)T η(t). Its easy to show with a standard Lyapunov candidate that the
adaptive weights are bounded and that the system tracking error is uniformly ultimately bounded.

The modeling error f (x, Γc) is a function of unmodeled flow dynamics as well. In the absence of an
analytical model for flow actuation dynamics and devices to measure the related states, we can only use
measurable states in the adaptive controller. In the relatively low bandwidth maneuvers performed in our
experiments, the effects of flow dynamics on rigid body dynamics are expected to be small. In addition, we
also assume that such effects are observable from rigid body states. With these assumptions, the adaptive
signal defined in 55 can be used to approximate f (x, Γc).

V.B. Control Hedging

In order to prevent adaptation to effects due to control saturation control hedging has been applied to modify
the reference model (45). The difference between the commanded control and the control applied to the
plant is defined as the hedge signal. The hedge signal is then subtracted from the input to the plant model
of the reference model as shown in figure V.B. This modification effectively moves the reference model
backwards by an estimate of the amount the controlled system did not move due to saturation and produces
a reachable command within the capabilities of actuation. With this modification during periods of full
saturation tracking error remains small, preventing winding up of the NN weights.

Applying control hedging to the adaptive vortex control algorithm in this paper requires the hedging
algorithm to be gain scheduled. The reference model is modified as

ẋm = Amxm + Bmr + BhΓC,h
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where Bh is the modeled control effectiveness matrix. The hedge signal is computed as

ΓC,h = g(uf , θ)− ΓC

where g(uf , θ) models the saturation limits of the actuator and ΓC is the ideal control action. This is
illustrated graphically in figure V.B and the actuator model, g(uf , θ) is shown in figure V.B.
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Figure 6. Control Hedging diagram.
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Figure 7. Gain scheduled saturation block.

VI. Model and Control Design Validation

Experimental verification of the model was performed under open loop excitation.9 Numerical simula-
tions were also used to validate the models in situations not realizable by the experiments. The numerical
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simulations were computed at the University of Texas at Austin using a Delayed Detached Eddy Simulation
(DDES). The DDES scheme is a hybrid non-zonal Reynolds-Averaged Navier-Stokes (RANS) and Large-
Eddy Simulation (LES) turbulence model based on the Detached Eddy Simulation (DES) model. Simulations
were run at a free-stream Reynolds number, Re = 9× 105. In this section, the model developed in our pre-
vious research was used to validate control design effort under high bandwidth free flight conditions and
wind tunnel experiments conducted on a novel traverse capable of simulating free flight was used to further
validate the control algorithms.

VI.A. Experimental Determination of Control Vortex Strength vs. Actuator Input Voltage

In the development of the control law, the control input was assumed to be Γc. In reality, a control moment
is generated via a continuous signal (DC voltage) representing a commanded change amplitude modulation.
The effect is analogous to a commanded control surface deflection in conventional flight control. Positive
control signal indicates nose up moment and requires activation of the pressure side (PS) actuators and
similarly negative control signal requires activation of the suction side (SS) actuators. Alternate amplitude-
modulated operation of SS (top) and PS (bottom) actuators with a sample control signal is shown in figure
8.

Figure 8. Amplitude Modulated Flow Actuation

It has been previously shown that the usage of synthetic jets traps vorticity in the boundary layer to
directly modify the flow in the average sense.4,23 This can be also be viewed as “virtual shaping” of the
airfoil since this modifies the streamlines in the vicinity of the actuator. Here we model this “virtual shaping”
or trapped vorticity as a stationary control vortex that depends on the control parameter (e.g. voltage), u.
Since the PS and SS actuation do not act at the same time, the control vortex can be thought of as one
vortex (situated on the x-axis) with a positive strength representing PS actuation and a negative strength
representing SS actuation. Experiments show that the pressure distribution away from the neighborhood of
the actuation point is essentially unaffected. This leads to the conclusion that no net circulation is injected
into the wake as a direct consequence of turning the actuation on or off.

For simplicity, we model the actuation with a single vortex located on the x-axis. If the time scale for
formation of ΓC << c/U then it can be assumed that the control vortex depends on only the control input,
u, and the angle of attack, θ, such that

ΓC = g(uf , θ). (59)

This is sufficient for the situations where the time-scale for the formation of the vortex is much smaller than
the convective time-scale, a more rigorous method of identification of a function in the form of Eq. 2) may be
required for other cases. Given this assumption, one can generate a lookup table (or approximate function)
for ΓC based on steady state information. If there are no dynamics in the system we find

CM (u, θ) =
πθ

2

(
1− 4a

c

)
− 2ΓC

Uc2
(a + ξC) . (60)
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Subtracting the moment at u = 0 we obtain

∆CM (u, θ) = CM − CM,u=0 = −2ΓC

Uc2
(a + ξC) . (61)

Now an equation for ΓC given the distance ξC (e.g. ξC = 0.45c) is given by

ΓC

Uc
= −1

2

(
a

c
+

ξC

c

)−1

∆CM . (62)

Thus we conduct the following: we span the space of u ∈ [−umin, umax] and θ ∈ [θmin, θmax] and calculate
the steady moment (after transients have been removed), CM . Next, Eq. (62) is used to generate a look up
table, i.e. interpolation is used to find the value of ΓC given u and θ. Plotted in figure 9 is the approximate
function corresponding to Eq. (62). Notice that the function is nearly independent of angle of attack as
expected. The trapped vorticity should not depend strongly on angle of attack but instead should depend
strongly on the voltage supplied to the actuators.
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Figure 9. Experimental Approximation to ΓC(uf , θ)

VI.B. Comparison Between Simulation Models and Experiment

In order to validate the static actuator model, linear vortex model and the non-linear vortex model, simula-
tions using single degree of freedom model (z = 0 and ż = 0) were carried out and their results compared
with experimental results. The experimental results were obtained with the ball screws locked in position
so that the wing model was only allowed to pitch. The airfoil was then trimmed at an angle of attack, α, of
3 degrees with the torque motor providing the required torque. Then a series of doublets with an amplitude
of 10 Volts and different durations were applied to the flow actuator in open loop as shown in Figure 10.
The corresponding pitch response of the experiment was then compared with the simulations. As observed
from the plots in Figure 11, the static actuator model response in pitch angle deviates significantly from the
experimental response. This justifies our assumption that the static actuator model does not adequately
capture the response of the flow actuator. As also observed from Figure 11, the linear vortex model and
the nonlinear vortex model responses track the experimental results better than the static actuator model.
Another interesting observation is that the response of the linear vortex model and the nonlinear vortex
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model are almost equal and justifies the use of the linear vortex model for control design instead of the
nonlinear vortex model.

VI.C. Regulating Control Vortex Strength

The relationship between Γc and the input control voltage was assumed to be of the form Γc = g(u, θ). This
results in a system model of the form

˙̄x = Āx̄ + B̄g(u, θ) (63)

For control, if ΓC(·, ·) was invertible in u, the system could be inverted. Clearly form figure 9, for a
given θ, the mapping ΓC(·, ·) is really invertible. Examining figure 12, which plots ΓC vs. u for fixed θ,
we see that the effect of the input control voltage effectively can saturate in two ways. The total control
voltage can saturate and the magnitude of ΓC can saturate. When the input voltage increases above a point,
ΓC no longer increases in magnitude (it indicates control reversal). If we restrict the control, the curve for
fixed θ is monotonic on a compact set which implies invertibility over the restricted domain. We also see
that depending on θ, the maximum and minimum ΓC shrinks in magnitude. Therefore, we have an angle of
attack saturation dependence. We can use this information to develop the following feedback linearization
strategy.

• Use control law formulation to compute required ΓC

• Use interpolation over θ to determine [max ΓC , min ΓC ]. Determine if ΓC is achievable.

– If ΓC is achievable, compute corresponding control voltage.

– If ΓC is not achievable, apply the best control voltage possible and the appropriate control hedge
signal.

This strategy can be realized in a lookup table and precomputed. This precomputed lookup table is
shown in figure 12. In this figure, the inverse map is saturated. Note that since Γc is a continuous signal,
the corresponding control voltage will also be continuous.

VI.D. Experimental Results

The control strategy for the experiments is as follows. First, the traverse is operated in position control mode
where a tracking control design is used to drive the model to a desired position and attitude. Then position
control is transferred to the flow actuator loop while the traverse is switched to the force control mode. In
this mode, the traverse maintains the forcing derived from the required system dynamic properties while the
outer loop controller, based on the control laws described previously, forces the modified dynamics of the
wing model to track the given reference trajectory. In this paper, a variable force is applied to the model
via the force control law to remove only the effect of gravity and friction. The outer loop control design
assumes that ideal force tracking is achieved in the plunge axis and makes no account for the presence of
the traverse. This assumption has proved sufficient.24 It is also assumed that rigid body state information
is available; consisting of vertical position, pitch attitude, and their derivatives. State estimation is achieved
using a Kalman filter to blend sensed angular position and angular acceleration in the pitch axis, and by
differentiation of sensed vertical positions in plunge. The flow state is unknown in all designs.

VI.D.1. Simulating Free Flight

Force control is a technique commonly used in robotics to control the position of a manipulator and its
applied force. Here we control the forces and moments that are applied to a wind tunnel model in order
to simulate the complete longitudinal dynamics of an arbitrary aircraft configuration. The techniques used
in this application are different than those used in robotics because the force must be applied on a system
while in motion and the control system must restrict the model to stay in the longitudinal plane regardless
of the commanded and applied disturbance forces on the plunge axis. The control objective is achieved by
manipulating the forces applied by two servo driven ball screws and the moment applied by a servo motor in
the pitch axis. Applying a prescribed force to the model is difficult due to the large mass and high friction of
the linear drives in relation to the model. The limitations in force control arise from the lack of compliance
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between the model and the linear actuator. Having a stiff coupling between the actuator and the point of
force application can cause a chattering effect. This is due to a large stiffness at the force measurement
point. Furthermore, a stiff coupling results in poor force tracking. This is due to the actuators not being
able to respond quickly enough to maintain an acceptable level in force tracking error. To overcome these
limitations, linearly compliant springs were mounted between the model and each ball screw carriage as
shown in figure 13. The contact force between the actuator and the model can then be precisely regulated
through control of the spring deflections.

In order to study aircraft flight in a wind tunnel on a traverse heavy enough to carry all of the support
and measurement equipment, the control system must serve three fundamental purposes: removing the effect
of the high traverse mass, modifying the stability characteristics of the model, and restricting the motion
of the traverse to the longitudinal plane. To meet these requirements, a three loop control architecture was
used that consists of the carriage control loop, the force control loop, and the stability modification loop. A
distinguishing feature of the latter loop is the ability to actively compensate for the effect of the center of
gravity offset from the model pivot. A full description on the force tracking control law used in this paper
is described in Muse.24

VI.D.2. Experimental Results

In this section we present typical results from application of the control designs described previously. All
linear control designs were tuned to have a theoretical response that is similar in behavior. We fixed the
overshoot and required the response the have the same shape. To evaluate improvements in performance,
we slowly increased the response rise time until each model failed. Each model was tuned based solely on
the linear design model. No tuning was used. Figure 14 illustrates the behavior of the static model using
a torque motor to simulate the assumed response of the actuators. The torque motor output was scaled to
have the same control effectiveness as the measured actuator gain. The same control gains and were used to
control the model. As seen in the figure the response closely matches the expected ideal response. Hence,
the traverse is functioning as expected. Figure 15 compares the response of the vortex model based linear
control design to a control design using the static model for a rise time of 0.39 seconds (rise time is defined
as 10 percent to 90 percent os the final command). The gains for the static model based control law are the
same ones used for the torque motor in figure 14. The linear control law in this case exhibits a limit cycle
type behavior that does not decay. However, the vortex model response remains quite close to the ideal
response. In figure 16, the bandwidth of the nominal vortex control law is increased further, in this case the
system rise time is 0.19 sec. The vortex model seems to be stable but suddenly looses stability. However, the
adaptive control law is able to maintain stable ideal tracking. Figure 17 gives a visual comparison between
the responses of the each design at the limit of each model’s closed loop performance.

VII. Conclusion

A novel low-order model was developed to facilitate flight control design using synthetic jets. To the
authors knowledge, this is the first model developed for control design that is based solely on first principles
based modeling. Though the model used for a linear control design helps achieve higher control bandwidths
than achievable with a conventional modeling assumptions, as the control bandwidth is increases, the nonlin-
earities in the flow become large requiring adaptive control methods to maintain tracking performance and
stability. The adaptive architecture uses a single hidden layer neural network with delayed system output and
control values to observe and compensate for the unmodeled system dynamics and nonlinearities. Control
designs were verified on a novel wind tunnel traverse capable of simulating free flight in a wind tunnel.
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Figure 10. Pulse input applied to the flow actuator
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Figure 11. Pitch angle comparison of models with experimental data

21 of 24

American Institute of Aeronautics and Astronautics



−1

−0.5

0

0.5

1
−10

0

10

20

−1

−0.5

0

0.5

1

Pitch Angle (deg)
Γ

C

C
o

n
tr

o
l V

o
lt

ag
e 

(%
)

Figure 12. Γ−1
c with control voltage saturation limits

Figure 13. Diagram illustrating how the spring system interfaces to the wind tunnel model
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Figure 14. Verification that static model models response with torque motor accurately (Black - Command, Blue -
Experimental Response).

0 2 4 6 8 10 12
−5

0

5

P
lu

n
g

e 
(c

m
)

0 2 4 6 8 10 12
−10

−5

0

5

10

P
it

ch
 (

d
eg

)

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

Time

C
o

n
tr

o
l (

%
)

Figure 15. Comparison between vortex model and static model when static model assumption fails(Black - Command,
Red - Vortex Model, Green - Adaptive Control Law).
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Figure 16. Comparison between vortex model and adaptive control law when vortex model fails.

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

P
lu

n
g

e 
P

o
si

ti
o

n
 (

m
)

 

 

Vortex Model Stability Barrier
Static Actuator Stability Barrier

Figure 17. Comparison of rise time stability barriers.
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