
AN ANALYSIS OF REGISTER ALLOCATION TECHNIQUES IN

THE CONTEXT OF A RISC-V PROCESSOR

A Thesis Presented
for the Undergraduate

Research Option

by

Joshua Viszlai

In Partial Fulfillment
of the Research Option

in the College of Computing

Georgia Institute of Technology
April 2020

COPYRIGHT 2020 BY JOSHUA VISZLAI

AN ANALYSIS OF REGISTER ALLOCATION TECHNIQUES IN

THE CONTEXT OF A RISC-V PROCESSOR

Approved by:

Vivek Sarkar
College of Computing
Georgia Institute of Technology

Jisheng Zhao
College of Computing
Georgia Institute of Technology

ACKNOWLEDGMENTS

I would like to thank Vivek Sarkar for his continuous mentorship and guidance

throughout the research process. I also want to thank Jisheng Zhao and Anirudh Jain for

their assistance with this research.

iii

TABLE OF CONTENTS

Acknowledgments

Abstract

Chapter 1: Introduction

Chapter 2: Literature Review

2.1 – Register Allocation

2.2 – Instruction Scheduling

Chapter 3: Methodolgy

3.1 – Toolchain

3.2 – Experiments

Chapter 4: Results

Chapter 5: Discussion

5.1 – Limitations

5.2 – Conclusion

5.3 – Future Work

References

Appendix A

iii

v

1

3

3

4

6

6

7

8

10

10

10

11

12

13

iv

ABSTRACT

This research looks at the register allocation phase of a compiler for programs

running on a RISC-V machine. Register allocation algorithms were applied to a test

program compiled through an LLVM-based toolchain to be run on a RISC-V simulator.

Four register allocation algorithms were used in compilation of the libquantum test case

from the SPECint2006 CPU test suite. The number of loads and stores when executed on

a RISC-V simulator were observed, and the results showed that a large determinant of

performance was the extent of saving and restoring registers during function calls.

v

CHAPTER 1

INTRODUCTION

A compiler is a fundamental software tool that takes a program written in high level programming

languages, such as C or Java, and translates it into an intermediate representation (IR) which is then

translated into machine code for a specific processor. The use of an IR allows for applying

programming language and architecture independent program optimizations. The back-end of a

compiler is responsible for taking the IR and translating it into this architecture specific code, e.g.

assembly code. One of the important tasks performed during this compiler back-end process is register

allocation—mapping virtual registers, of which there can be an unlimited amount, to physical registers,

which are limited. The process of register allocation has a large impact on the efficiency of the

compiler and quality of the generated code. For example, cases where there are insufficient physical

registers may lead to spilling of virtual registers, meaning virtual registers are stored in memory and

loaded each time they need to be used. Since memory accesses can cause significant delays, this can

lead to performance decreases in the compiler’s generated code. In general, graph coloring based

approaches may produce minimized spilling, however optimal evaluation is on the order of exponential

time. [1]. Suboptimal heuristics are often used to avoid this exponential time complexity, but can still

be slow due to the size of the graph. This can be detrimental when compile-time performance is

necessary, such as for just-in-time (JIT) compilers. In response, register allocation techniques may

prioritize a greedier algorithm to improve the performance of the compiler, but at the cost of the

efficiency of the generated code [2]. Therefore if the register allocation step of a compiler performs

optimally, it can lead to noticeably faster performance of the generated code, affecting a wide variety of

programs.

1

The first purpose of this research is to explore the register allocation step of a compiler by

surveying and comparing current techniques, specifically by looking for cases where these techniques

fall short and designing novel techniques to better address such cases. After that, the research will

explore the relationship between register allocation and another back-end step in a compiler—

instruction scheduling. Instruction scheduling is a process that creates an ordering in which instructions

will be executed that may not match the input order. This research will look to build off previous work

to better understand how the interplay of the two steps affects performance [3]. For example,

reordering instructions before register allocation may cause extra spilling due to added interference

between virtual registers from the reordering, thus hurting performance. Alternatively, reordering

instructions after register allocation may result in extra dependencies created between instructions now

sharing physical registers, throttling possible optimizations. This relationship presents a trade-off

between whether instruction scheduling is performed before or after register allocation.

To explore both register allocation by itself and register allocation with instruction scheduling, this

research will implement register allocation and instruction scheduling techniques using the LLVM (no

meaning) compiler infrastructure targeting a Reduced Instruction Set Computer architecture, RISC-V

(pronounced “risk-five”). The choice of LLVM and RISC-V stems from their popularity. This makes

the results of the research easier for other researchers to replicate and compare. Metrics for the

performance of the generated code will be based on the number of memory accesses, measured through

load/store instructions. The reasoning for using load/store counts is register access has become nearly

instantaneous compared to memory access, so runtime performance is dictated largely by the number of

memory accesses. The end goal of the research is therefore to minimize load/store counts in compiler-

generated code for some specific cases targeting a RISC-V architecture, creating noticeable

performance improvements.

2

CHAPTER 2

LITERATURE REVIEW

When translating intermediate representation (IR) into machine code during the back-end phase of

a compiler, register allocation and instruction scheduling are two of the most commonly discussed and

researched steps. They present themselves as core to creating functional machine code, in addition to

allowing optimizations affecting both compiler (compilation) and program (runtime) performance. This

research will look to optimize the register allocation step in the context of a RISC-V processor,

exploring minimizing memory accesses by maximizing register moves when possible. This research

will then explore the relationship between the register allocation and instruction scheduling steps, also

in the context of a RISC-V processor. The development of these research goals stems from work and

literature already done in the field.

2.1 Register Allocation

Starting with register allocation, one of the first widely adopted approaches modeled the register

allocation problem as a graph. In this approach, the graph is a formulation where each virtual register is

a node, and an edge between two nodes means those two virtual registers are both “live” at a same

point in the program. Chaitin et al then went on to treat this representation as a graph coloring problem

[1], assigning a color (a physical register in this case) to each node such that no two nodes are assigned

the same color if they share an edge. Virtual registers that could not be assigned a color were instead

spilled into memory. This approach did a good job of minimizing spilling and served as a basis for

register allocation. However, solving the graph coloring problem optimally is an NP-hard problem

which makes it infeasible. Interestingly enough, work has been done to reduce the time complexity of

an optimal graph coloring based approach to register allocation. Studies have proven that if the input IR

is converted to Static Single Assignment (SSA) form, where no two instructions write to the same

3

virtual register, then graph coloring can be solved optimally in quadratic time [4, 5]. Even so, this time

complexity issue is often mitigated by instead using suboptimal heuristics to solve the graph coloring

problem. Such approaches may still be problematic, however, since they operate on graphs that are

often quadratic in the number of registers, slowing down performance. This may be fine if we don’t

care about compilation performance, however, for just-in-time (JIT) compilers where compilation steps

occur at runtime, a graph coloring approach would slow down the program.

Some approaches were designed to address this time complexity issue during compilation. Linear

scan approaches are based around the idea of performing register allocation in a single scan through the

input program [2]. These approaches take linear time, which is much faster than graph coloring, but

utilize a greedier approach in allocating and therefore may not always result in register allocations that

are as optimal as those from graph coloring. Similarly, other approaches build off this to maintain the

linear time complexity but improve the register allocation [6]. Many of these approaches utilize

register-move instructions, which allow a virtual register to be mapped to different physical registers at

different points in the program, by being moved between them at specific points. This can be useful to

reduce spilling, however, there is an extra cost associated with inserting a register-move instruction that

might be more than the cost of spilling itself. These costs are specific to the architecture being targeted,

and so raise important questions to be addressed about how to best use this trade-off between register-

moves and spills.

2.2 Instruction Scheduling

The next compilation step of interest after register allocation is instruction scheduling. Instruction

scheduling is the process of ordering the generated code as to minimize delays of instructions, which is

very important for in-order executed architectures. Of interest to this study is the interplay of the

instruction scheduling and register allocation steps. It may not be clear whether it’s better to perform

4

instruction scheduling before register allocation or after. Some research has already been done on this

topic to study the interaction between instruction scheduling and register allocation. One study found

that doing instruction scheduling first produced faster code [7]. However this is architecture-specific,

meaning the results won’t always be the same when either: there are different architectural details, such

as the number of registers or memory access delays, or there are different types of input programs. A

different study found success in combining a typical optimization, loop unrolling, with instruction

scheduling and register allocation, all into one step [8]. Part of the success of the study can be attributed

to its narrow focus on one specific area of a program structure—loops.

This study will focus on two research questions for the code generation phase of compilation:

optimal register allocation and the interaction between register allocation and instruction scheduling.

The architecture used in this study is RISC- V, which is a new generation of RISC computer

architecture with 32 general-purpose registers and currently performing in-order execution which

introduces more impact on optimization trade-offs. For register allocation, this trade-off can be between

register-move and spill instructions. Since the cost of register-moves will be much smaller than spills

with RISC-V, this study will attempt to maximize register-moves over spills when possible. Ideally,

exploring the interaction between the register allocation and instruction scheduling will result in

improvements to program execution on a RISC-V processor.

5

CHAPTER 3

METHODOLOGY

3.1 Toolchain

The methodology of this research entailed evaluating different register allocation algorithms when

applied to programs targeting a RISC-V processor. The specific test program was from the

SPECint2006 CPU test suite, namely test 462.libquantum. The test program was compiled using an

LLVM toolchain with a RISC-V backend. The input program was fed through LLVM’s Clang front-end

to produce LLVM IR. This was then linked via llvm-link and fed into LLVM’s llc tool which invoked

specified register allocation algorithms. The output of this was RISC-V assembly that was then

processed using an assembler into an ELF binary that could run on a RISC-V simulator. The choice of

tools made here, being LLVM, is due to its popularity in the field. The tools provided by LLVM both

facilitate the ability to try out different register allocation algorithms as well as ideally make this work

easier to replicate by other researchers.

6

Figure 1: Diagram of the LLVM-based toolchain used to compile input programs and test register
allocation and instruction scheduling algorithms.

3.2 Experiments

Experiments were performed on the resulting ELF binary by running it through a RISC-V

simulator. The overall number of loads and stores were recorded, and the trace file was parsed to

produce the 50 Program Counters (PCs) that contributed the most to the overall loads and stores. The

reasoning for using loads and stores is because memory accesses can dictate runtime performance and

so getting a measurement for how many memory accesses are made is a good metric for how fast the

program runs. Since a PC corresponds to a single assembly instruction, by also identifying the PCs that

contribute the most loads and stores, we could better understand where the bottleneck points in the

program are. With this information, we could analyze whether the instructions at these PCs were a

result of register spilling, and if so, work to modify the register allocation algorithms to remove the

spilling at those program points. Eventually this understanding can allow us to create modified register

allocation algorithms that are more effective for certain applications, which should lead to improved

performance.

Four register allocators were compared on the test case from SPECint2006 CPU. The register

allocators were four different LLVM-made register allocators: Basic, Fast, Partitioned Boolean

Quadratic Programming (PBQP), and Greedy. Each algorithm was tested on the libquantum test case

from the SPECint2006 CPU test suite, running on a RISC-V simulator.

7

CHAPTER 4

RESULTS

Figure 2 shows the overall number of loads and stores recorded after running the libquantum test

case with N = 15. This was an implementation of Shor’s algorithm [9] using libquantum, factoring the

number 15. The Basic, PBQP, and Greedy algorithms produced roughly the same number of loads and

stores, whereas the Fast algorithm produced significantly more. On inspection of the output of the

register allocation phase, the Basic, PBQP, and Greedy algorithms all produced spill-free allocations on

points in the program that were heavily executed, whereas the Fast algorithm produced unnecessarily

spilled registers in these areas.

8

Figure 2: Loads and Stores from running the SPECint libquantum test case on a RISC-V simulator after
being compiled with different register allocators

Basic Fast PBQP Greedy
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

libquantum Shor’s Algorithm N = 15

loads

stores

To better understand the performance of the Basic, PBQP, and Greedy allocators, the trace files

from the Basic register allocator were parsed to see where the majority of loads and stores were in the

program’s execution. Looking at some of these areas in the disassembled executable revealed a

common pattern where loads and stores were a result of saving and restoring callee-saved registers, out

of the 32 general-purpose registers in the RISC-V ISA. These callee-saved registers were allocated to

virtual registers within functions in addition to caller-saved registers allocated to other virtual registers.

In reality, a spill-free allocation typically existed using only caller-saved registers, meaning the use of

callee-saved registers and therefore the saving and restoring of the them was unnecessary. One example

of this from the libquantum test case is described in Appendix A. By manually going through a couple

of these functions that were executed often and re-allocating the function using only caller-saved

registers to eliminate these unnecessary memory accesses, the performance of the Basic register

allocator dropped to 1229167 loads and 598452 stores, an approximate 6% decrease in loads and 7%

decrease in stores.

9

Chapter 5

Discussion

5.1 Limitations

There are notable limitations encountered in this research. One limitation was a lack of resources to

fully execute larger inputs to the test case on a RISC-V simulator. We were able to successfully run the

test case for N=15, but larger values of N would not finish in reasonable amounts of time. Fully

running these would be helpful in order to further verify the correctness of the results, and analyze how

the performance scales with N. Future research could use the same simulator with more computational

resources, or another option would be to use a physical RISC-V device to run the test program, which

could also allow for more practical results. Another limitation was due to time constraints we weren’t

able to analyze instruction scheduling algorithms and their interplay with register allocation. This could

be questions future work could look at.

5.2 Conclusion

So far these results seem to show that inefficient usage of callee-saved and caller-saved registers

can noticeably impact the number of memory accesses in a program. In the case of the libquantum test

case, manual allocation of a couple functions using only caller-saved registers led to 6% less loads and

7% less stores. However, for applications consisting of many function calls, it’s possible this

improvement could be higher. It’s also possible some of these inefficiencies might have been addressed

by previously researched inter-procedural optimizations. These optimizations often occur during link-

time when typically all the information about function calls is known. In the results demonstrated in

this research, this knowledge at link-time could allow for efficient allocation of registers across

function boundaries considering both caller-save and callee-save registers, potentially eliminating the

observed inefficiencies.

10

5.3 Future Work

There’s a lot of directions future work could go. Future research could further work done in register

allocation strategies where register moves are inserted to minimize register spills, consider the research

done in extended linear scan [6]. Additionally, looking at the efficient usage of caller-save and callee-

save registers, future work could analyze the impact this has on performance for programs consisting of

many function calls, where the percentage of memory accesses due to building-up and tearing-down

stack frames is larger. Also looking at inter-procedural optimizations, future work could look at

situations where not all functions are visible at link-time. Inter-procedural optimizations performed

during dynamic loading, where a program can load a compiled binary at runtime to call desired library

functions, could be an area of research for future work, since dynamic loading could result in function

calls being made that link-time optimizations could not have analyzed.

Another area of interest that we were not able to get to is the relationship between register

allocation and instruction scheduling. Future research could run experiments where instruction

scheduling is done before or after register allocation, and compare the number of loads and stores for

different test cases.

11

REFERENCES

[1] Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins, M. E., & Markstein, P. W.

(1981). Register allocation via coloring. Computer languages, 6(1), 47-57.

[2] Poletto, M., & Sarkar, V. (1999). Linear scan register allocation. ACM Transactions on

Programming Languages and Systems (TOPLAS), 21(5), 895-913.

[3] Lozano, R. C., & Schulte, C. (2014). Survey on combinatorial register allocation and instruction

scheduling. arXiv preprint arXiv:1409.7628.

[4] Hack, S., & Goos, G. (2006). Optimal register allocation for SSA-form programs in polynomial

time. Information Processing Letters, 98(4), 150-155.

[5] Hack, S., Grund, D., & Goos, G. (2006, March). Register allocation for programs in SSA-form. In

International Conference on Compiler Construction (pp. 247-262). Springer, Berlin, Heidelberg.

[6] Sarkar, V., & Barik, R. (2007, March). Extended linear scan: An alternate foundation for global

register allocation. In International Conference on Compiler Construction (pp. 141-155). Springer,

Berlin, Heidelberg.

[7] Goodman, J. R., & Hsu, W. C. (2014, June). Code scheduling and register allocation in large basic

blocks. In ACM International Conference on Supercomputing 25th Anniversary Volume (pp. 88-98).

ACM.

[8] Domagała, Ł., van Amstel, D., Rastello, F., & Sadayappan, P. (2016, March). Register allocation

and promotion through combined instruction scheduling and loop unrolling. In Proceedings of the 25th

International Conference on Compiler Construction (pp. 143-151). ACM.

[9] Peter Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM Review, 41(2):303–332, 1999.

12

APPENDIX A

Here we have an example function from the libquantum test case, spec_rand, that uses four callee-

saved registers, s0-s3. The caller-saved registers used instead, a3-a6, were not saved in memory by the

caller, leading to less loads and stores overall. The left is the original output and the right is the

modified output after manual allocation using only caller-saved registers. Some code was omitted from

the middle to highlight the changes to the build-up and tear-down.

spec_rand: # @spec_rand

%bb.0: # %entry
addi sp, sp, -48
sd ra, 40(sp)
sd s0, 32(sp)
sd s1, 24(sp)
sd s2, 16(sp)
sd s3, 8(sp)
lui a0, 31
addiw s0, a0, 797
lui s3, %hi(seedi)
lw s1, %lo(seedi)(s3)
mv a0, s1
mv a1, s0
call __divdi3
mv s2, a0
mv a1, s0
call __muldi3

…

fld ft1, 0(a0)
fcvt.d.w ft0, a1
fdiv.d ft0, ft0, ft1
fmv.x.d a0, ft0
ld s3, 8(sp)
ld s2, 16(sp)
ld s1, 24(sp)
ld s0, 32(sp)
ld ra, 40(sp)
addi sp, sp, 48
ret

spec_rand: # @spec_rand

%bb.0: # %entry
addi sp, sp, -48
sd ra, 40(sp)

lui a0, 31
addiw a6, a0, 797
lui a5, %hi(seedi)
lw a3, %lo(seedi)(a5)
mv a0, a3
mv a1, a6
call __divdi3
mv a4, a0
mv a1, a6
call __muldi3

…

fld ft1, 0(a0)
fcvt.d.w ft0, a1
fdiv.d ft0, ft0, ft1
fmv.x.d a0, ft0

ld ra, 40(sp)
addi sp, sp, 48
ret

13

