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SUMMARY

The warty layer is an amorphous structure containing numerous protuber-

ances and covering the inner cell wall surface of the longitudinal tracheids

of most softwoods and the vessel elements and sometimes the fibers of a few

hardwood species. Electron microscopy and various analytical chemistry

techniques were employed to study the development and composition of the warty

layer in a softwood, balsam fir [Abies balsamea CL.) Mill.].

Samples of living tissue were taken during a period of active growth,

chemically fixed to preserve cell constituents, then sectioned and stained for

electron microscope observation. The warty layer was observed to be gradually

developed external to the plasma membrane after secondary wall deposition and

the greater part of lignification were complete. Warts developed first in

cell corners and pit cavities and then on the radial and tangential cell walls

nearly simultaneously. No organelle within the cytoplasm was found to be

associated with wart formation. After the warty layer was elaborated, the cyto-

plasm disappeared from the cell without leaving any apparent, disorganized

residue. The bulk of the wart structure had similar staining characteristics

to lignin; however, the basal portions of individual warts were sometimes less

darkly stained than the outer portions.

Examination of the inner surfaces of developing tracheid walls confirmed

the observations recorded from the parallel study of wall sections. In the

course of these examinations, it was also found that the permeable margo

region in the membrane of mature bordered pits arose from a gradual perforation

of an initially solid membrane. The perforation process occurred at the end

of cell differentiation after wart formation was complete and was likely

associated with cell autolysis.
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The composition of the warty layer was determined by using the electron

microscope to monitor the results of various chemical, physical, fungal, and

enzymatic treatments on mature balsam fir wood. From the response of the warty

layer to these treatments, it was concluded that the warty layer consisted

largely of a ligninlike material. The interior, basal component of individual

warts and some of the accompanying encrustant on the inner surface of the

secondary wall consisted of an amorphous carbohydrate, probably a pentosan or

pectic substance. While the bulk of the warty layer was definitely ligninlike

in chemical reactivity, it was more resistant than a significant portion of the

other lignin in the cell wall, even though the warts were the cell wall compo-

nent most accessible to the treatment solutions. From the results, it appeared

that the lignin in the warty layer was more concentrated and more condensed

than lignin in other parts of the cell wall. Vacuum drying at 105°C condensed

the wart structure even further, making it even more resistant to most treatments.

Reagent solutions found to dissolve the warty layer were analyzed in an

attempt to determine the specific composition of this structure. The warty

layer in solution had UV absorbance similar to lignin, or, if it was different,

any such indication was masked by the extracted lignin from other portions of

the cell wall also in solution. Different chromatographic analyses of extraction

solutions failed to reveal any unique components associated exclusively with the

warty layer. The analyses did indicate that the warty layer was extracted as a

high molecular weight material by at least some treatments. Attempts to

physically isolate the warty layer were largely unsuccessful.

Three alternative hypotheses are offered to explain the development and

composition of the warty layer in balsam fir:
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1. Warts are vestiges of sites of material transport from the
cytoplasm to the developing cell wall.

2. Warts are formed by deposition through the plasmalemma of
autolysis products of the dying cell with no relation to
sites of previous deposition of cell wall components.

3. While less likely, the wart structure may be due to an
eruption of material from the cell wall into the lumen
caused by localized areas of high osmotic potential.

Several additional observations were made to fulfill secondary objectives

of this research. Evidence was obtained to indicate that the chemically re-

sistant warty layer may act as a barrier to the penetration of liquids into

the cell wall, thereby causing different delignification rates among species

depending on the nature of the inner cell wall surface. In cells of hardwood

species, the presence or absence of a warty layer may follow a trend that can

be generally associated with the degree of phylogenetic advancement of the

cell type. Within hardwoods containing both vessel elements with scalariform

perforation plates (more primitive) and simple perforation plates (more

advanced), warts, when present, were most often associated with the former

vessel type.



INTRODUCTION

The wood cell wall is the fundamental natural resource of the pulp and

paper industry. As such, an understanding of its structure and composition

ts important even at the most minute levels to facilitate the intelligent and

efficient use of this raw material. This thesis research was undertaken to

explain the origin, nature, and significance of one feature of the wood cell

wall - the warty layer which lines the interior (lumen) surface of the cell

wall.

HISTORICAL REVIEW

In many wood cells the surface of the wall adjacent to the lumen consists

of a bumpy covering known as the warty layer. Figure l is a cutaway model of

a mature softwood tracheid showing the appearance and location of the wart

structure (W). The existence of this structure was first reported in 1951 by

Kobayashi and Utsumi (1) and by Liese (2). It is one of the very few basic

cell wall components that was discovered only after the application of the

electron microscope to the study of wood ultrastructure.

Experimental observations and theories on the structure, occurrence, com-

position, origin, and significance of the warty layer have been reviewed by

Frey-Wyssling in 1957 (3), Liese in 1963 (4), Wardrop in 1964 C5), Liese again

in 1965 (6) and Katkevich and Milyutina in 1972 (7). Of these, the 1965 review

by Liese is the most comprehensive. The review by Katkevich and Milyutina in

Russian has the advantage of presenting the most recent literature. Some

experimental observations on the warty layer, most notably those of Scurfield,

et al. (9-14), have been published very recently and are not included in any

review.
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Figure 1. Cutaway Model of a Mature Softwood Tracheid Illustrating
Cell Wall Layers: ML = True Middle Lamella (Intercellular
Substance); P = Primary Wall; S1, S2, and S3 = Outer,
Middle, and Innermost Layer of the Secondary Wall,

Respectively; W = Warty Layer. From C8te (8)



STRUCTURE

The warty layer is an amorphous layer of material lining the inner surface

of the secondary wall in cells of many wood species. This layer contains

numerous protuberances- hence the name, warty layer. In some species the

warts appear to lie directly on the innermost portion of the secondary wall,

S3, with very slight or no additional encrustant. A few other species possess

an amorphous layer as a lining on the cell lumen and very few or no protruding

warts. Usually, however, the warts and amorphous layer are found in combination.

The distribution of warts can be quite random in cells that exhibit them.

Individual warts vary in shape from nearly flat mounds in some species to high,

fingerlike projections in others. Wart diameter reportedly ranges from 0.01 pm

to 1.0 um (15). Within one species, however, the range is usually relatively

narrow, and the average size lies between 0.1 pm and 0.25 um (6). Other

physical characteristics found for the warty layer are a refractive index of

1.52 and' the ability to absorb ultraviolet light (16).

OCCURRENCE

The warty layer is found in the longitudinal tracheids of many softwoods

and in the vessels and sometimes the fibers of a few hardwood species, lining

the lumen and pit structure in these wood cell types. The occurrence of warts

is reported not only for softwood and hardwood xylem, but also for the vascular

cells of herbaceous plants (17) and softwood needles (1). The warty layer is

not restricted to normally differentiated cells since it also appears in com-

pression wood of softwoods (18, 19) and tension wood fibers of some hardwoods

C20), although the evidence here is not as strong.
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True wart structure apparently occurs only in lignified tissue, though there

is some controversy on this point. The lumen of cotton seed hair, an unlignified

cell, exhibits a granular structure on the cell wall surface consisting of dis-

organized cytoplasmic debris as shown by fluorescence and electron microscopy

C21, 22). Azzola, et al. (22) indicated that this material is analogous to the

warty layer. Their association is based on the supposedly common origin of

these deposits in cotton and the warty layer in wood. This supposition is

questionable, as will be shown later. Also, the debris in cotton bears little

resemblance to the protuberances into the lumens of wood cells. Previous to

Azzola's work, Rollins (23) stated clearly, "nothing resembling the warty layer

has been identified in cotton fibers."

Warts appear in only some wood cell types, and they can be quite variable

from species to species in size and distribution pattern. This raises the

question of whether or not the warty layer has some taxonomic significance.

Liese (6) has summarized observations on the appearance of the warty layer in a

large number of gymnosperms. The data, along with a few contradictions by other

workers, are presented in Table I.

Within most softwood genera, all species possess a similar trend for warty

layer appearance Cor absence). The genus Pinus, however, shows a distinction

between the Diploxylon species Chard pines) which possess a distinct warty

layer and the Haploxylon species (soft pines) in which warts are rare or

absent (24-27). It is of interest to note that the presence of dentate ray

tracheids in pine follows an identical pattern.

Ohtani and Fujikawa C28) studied the warty layer in sixteen softwood

species and found that variability of wart number, size, and shape within a
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TABLE I

OCCURRENCE OF A WARTY LAYER WITHIN THE GYMNOSPERMS (6)

Genera
Species

Examined Appearance

Cycadaceae
Ginkgoceae
Pinaceae

Taxodiaceae

Cupressaceae

Podocarpaceae

Cephalotaxaceae
Araucariaceae

Taxaceae

Welwitschiaceae
Ephedraceae
Gnetaceae

a0 = rare or absent, + =

Cycas
Ginkgo
Abies
Pseudotsuga
Tsuga
Picea
Pseudolarix
Larix
Cedrus
Pinus:

Subgenus
Haploxylon
Diploxylon

Sequoia
Sequoiadendron
Metasequoia
Taxodium
Cryptomeria
Cunninghamia
Sciadopitys
Athrotaxis
Taiwania
Cupressus
Chamaecyparis
Thuja
Thujopsis
Librocedrus
Pilgerodendron
Callitris
Neocallitropsis
Tetraclinis
Widdringtonia
Fitzroya
Diselma
Juniperus
Pherosphaera
Phyllocladus
Saxegothea
Microcachrys
Da'crydium
Podocarpus
Cephalotaxus
Agathis
Araucaria
Torreya
Taxus
Welwitschia
Ephedra
Gnetum

distinct.

Family

1
1

10
1
5

11
1
4
2

0
0
+

0
+

0
0
OC+,30)
+

19
62

1
1
1
1
1
1
1
1
1
3
5
4
1
4
1
5
1
1
1
1
1
5
1
3
1
1

10
5
1
3
5

.3

3
1
1
1

0
+

+
+

0
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

0
0
0
0
0
0
0
0,+
0,+

+CO,31)

0

o(+,14)
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growth increment is characteristic of the species. Consequently, they suggested

that the appearance of warts in tree species could be useful as a diagnostic

feature.

The presence of warts in hardwoods has not been studied as systematically

as in softwoods, and early observations were recorded using only a light micro-

scope (17, 29). Any detail as minute as warts is difficult, if not impossible,

to resolve with this instrument; therefore, these early data may be unreliable.

Presented in Table II is a compilation of data from several sources summarizing

the reported occurrence of a warty layer in angiosperm species. Only those

observations made with an electron microscope are reported.

The majority of angiosperm species do not exhibit a distinct warty layer..

One systematic exception is that warts are present in nearly all of the species

examined in the order Myrtales, which includes families 135-144 in Table II.

Included in Table II are the observations of Scurfield, et al. (14) who

used the scanning electron microscope to study the presence of warts and pit

vestures in tracheary elements of 22 species distributed among the Gnetaceae

and 16 angiosperm families. The authors concluded that the occurrence of these

cell wall features can be placed in no sensible evolutionary context.

COMPOSITION

The chemical reactivity of the warty layer has been the subject of many

investigations. Presented in Tables IIIA and IIIB is a summary of the litera-

ture on various treatments of the warty layer. Most workers agree that the

warty layer is very resistant to chemical dissolution. A notable exception is

Tsoumis (42) who argued that this structure could be extracted, or at least

eroded, simply with hot water or with a series of hot organic solvents over



TABLE II

OCCURRENCE OF A WARTY LAYER WITHIN THE ANGIOSPERMS

Genera
Species

Examined Appearance ReferenceReference

5 Magnoliaceae

7 Winteraceae

8 Cercidiphyllaceae
30 Violaceae
35 Pittosporaceae
39 Vochysiaceae
60 Dipterocarpaceae

63 Malvaceae
65 Sterculiaceae
66 Tiliaceae

67 Elaeocarpaceae

87 Meliaceae

90

93
99

101

102
104
110
112
115

Icacinaceae
Aquilifoliaceae
Rhamnaceae
Sapindaceae

Aceraceae
Hippocastanaceae
Corynocarpaceae
Coriariaceae
Leguminosae
--Mimosaceae

--Caesalpiniaceae

--Papilionaceae

117 Rosaceae

118 Saxifrageae
120 Cunoniaceae

Magnolia
Liriodendron
Bubbia
Pseudowintera
Cercidiphyllum
Melicytus
Pittosporum
Vochysia
Pentacme
Monotes
Parashorea
Hoheria
Triplochiton
Entelea
Tilia
Aristotelia
Elaeocarpus
Dysoxylum
Entandrophragma
Turraeanthus
Pennantia
Ilex
Discaria
Alectryon
Dodonaea
Acer
Aesculus
Corynocarpus
Coriaria

Acacia
Plathymenia
Sophora
Gleditsia
Goniorrhachis
Gymnocladus
Amburana
Carmichaelia
Notospartium
Robinia
Prunus
Rubrus
Ixerba
Ackama
Ceratopetalum
Weinmannia

2
1
1
1
1
1
2
1
1
1
1
2
1
1
1
1
2
1

.1
1
1
1
1
1
1
3
1
1
1

2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2

0
0
+

+

0
0
0
+

+

+

+

0
0
0
0
0
0
0
0
0
0
0
0
0
+

0
0
0
0

+

+

0
0
+

0,+
+

S

+

0,+
0
0
+

0
0
0

C33,34)
T3sT

(3)
C33)
(Q)
C33)
(W)

(14,37)

C(37)
(33)CT33)
C()
C33)
(Q=)
(33)

(3T5)
(35)
C T)

(31,36)
T33T
C33)
(33)

C31 ,35)
T31T
(33)
C33)

C14,37)
T37T
(33)
(31)
C3()

(14,3l),(37)
-- g) -

C33)

C35)7,37)'
-(31T-

(33)
(33)(nT)
(35)
(33)

See end of table for footnote.

No.a Family

-10-
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TABLE II (Continued)

OCCURRENCE OF A WARTY LAYER WITHIN THE ANGIOSPERMS

Genera
Species

Examined Appearance Reference

121 Escalloniaceae

128 Hamamelidaceae

135 Compretaceae
136 Myrtaceae

139
143
144

157

Lythraceae
Sonneratiaceae
Onagraceae
Araliaceae

158 Cornaceae

161 Nyssaceae
164 Rubiaceae

168 Compositae

174 Ericaceae

177 Epacridaceae

182 Myrsinaceae
187 Oleaceae

189
191
198
203
206
208

210
224
226
228

Apocynaceae
Loganiaceae
Scrophulariceae
Bignoniaceae
Myoporaceae
Verbenaceae

Plantaginaceae
Piperaceae
Chloranthaceae
Monimiaceae

229 Lauracea

232 Proteaceae

234 Gonystylaceae

Carpodetus
Quintinia
Altinga
Liquidambar
Terminalia
Eucalyptus
Eugenia
Leptospermum
Lophomyrtus
Metrosideros
Neomyrtus
Lagerstroemia
Sonneratia
Fuchsia
Pseudopanax
Schefflera
Cornus
Griselinia
Nyssa

Calycophyllum
Coprosma
Cassinia
Helichrysum
Olearia
Senecio
Gaultheria
Oxydendrum
Cyathodes
Dracophyllum
Myrsine
Fraxinus
Olea
Aestonia
Geniostoma
Veronica
Catalpa
Myoporum
Avicennia
Vitex
Plantago
Piper
Ascarina
Hedycarya
Laurelia
Beilschmiedia
Sassafras
Knightia
Persoonia
Gonystylus

1
2
1
1
4

.4
2
2
1
3
1
1
1
1
2
1
1
2
1
2
8
1
1
2
2
1
1
1
1

3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1

0
0
+

0
+

+

+

+

s
+

s

0++

Os0O,s

0+O,

0
0
0
0
00

0

000
s

0
0

s

s0
0
00

+

0
+

+

(33)
(33)
(37)

(14,35,36)
E4-737-

(13,14,-33 ,37,39)
-1i,33T,39)
Thr4,33Y

-73_37T33T
(33)

(33)
('T)
C3)
C33)

C37)
C33)

C31,36)
C8,14,37)
- T37

(3)
(¢3)

C33)

C.-)
C33)(37)
(-33)

[35)C35y(37)T33)cT=)33)

C33f)3_)(T35)33)C33)

(.~)(33)Cl)
C33)C3)
C 17)

See end of table for footnote.

No. a Family
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TABLE II (Continued)

OCCURRENCE OF A WARTY LAYER WITHIN THE ANGIOSPERMS

Genera
Species

Examined Appearance

Santalaceae
Euphorbiaceae
Daphniphyllaceae
Moraceae

251 Ulmaceae

Platanaceae
Juglandaceae
Betulaceae

258 Corylaceae

259 Fagaceae

260 Salicaceae

Fusanus
Bridelia
Daphniphyllum
Chlorophora
Morus
Ulmus
Celtis
Platanus
Carya
Alnus
.Betula
Carpinus
Ostrya
Castanea
Castanopsis
Fagus
Nothofagus
Quercus
Populus

1
1
1
1
1
5
1
1
1
1
2
1
1
1
1
4
5
8
3

0
+

0
0
0
0
0
+

0

0,+
0
0
0
+

+

0,+
0
0O
O

(33)
(37)

(35)ctr)

C31,35)
T3-53T

C34,36)

C35,37_, C40)
- T34) -

CT)

C8,14,33,34,41)

(33,35)

Monocotyledons

Liliaceae
Pandaneae
Palmaceae

aNumbers correspond to
Dicotyledon families.

Rhipogonum
Freycinetia
Rhopalostylis

those of Metcalfe and Chalk C32) in listing

0 = absent, s = possibly slight, + = distinct.

No. a Family

239
243
245
250

Reference

252
254
257

1
1
1*

0
0
0

(33)

(33)
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TABLE IIIA

TREATMENTS THAT REMOVE THE WARTY LAYER

Action

Hot (60°C) running water,
3 weeks

Extraction with alcohol-
benzene, alcohol, and
water, Soxhlet apparatus,
12 hr

50% Cold chromic acid

72% H2S04 , room tempera-
ture 25 min

78% H3PO4, room tempera-
ture 3 hr

14% Nitric acid, 55°C,
1 hr; 14% nitric acid,
95°C, 1½ hr; then 3%
NaOH, 95°C, 1 hr

30% H202 and glacial
acetic acid (1:1),
boiling

30% H202 and glacial
acetic acid (1:1),
90°C, until sections
were colorless

30% H202 and glacial
acetic acid (1:1), 60°C

NaOH solution, boiling
5 min, then cold chlorine
water, 6 g/liter

Saturated chlorine
water, 5 min; then 2%
NaOH, room temperature;
repeated until sections
were colorless

Removal or at least
partial erosion of
warty layer

Removal of warts in one
species, only slight
change in another

Warts dissolved slowly
after 24 hr

Warts could no longer be
distinguished

Warts swell and then both
they and the associated
membrane dissolve

Warts and vestures
removed

Warts dissolved after
4 hr

Dissolution of warts and
membrane

Warty layer removed

Warts dissolved rapidly

Warts removed, but a wart-
free membrane appeared
to persist in some cells

See end of table for footnote

Treatment Wooda Reference

G

G

G

Gr

Gr

A

G

Gr,
A

G

G

Gr,
A

(42)

(42)

C16)

(l2)

(12)

C13)

(16)

(12,13)

(42,45)

(16)

(12,13)
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TABLE IIIA (Continued)

TREATMENTS THAT REMOVE THE WARTY LAYER

Action

0.1N KOH extraction of
chlorite holocellulose

Solution containing
12.6% NaOH and 4.1% Na2S
60°C, 21 hr

Delignification by
alkali digestion 120°C

Prolonged extraction in
5M urea

White-rot fungi and some
soft-rot fungi species

All wartlike mounds
removed

Warts may or may not be
removed, a wart-free
membrane sometimes
occurred

The warty layer became
chemically unstable and
dissolved

Membrane removed from cell
lumens but not from pit
chambers

Warty layer eventually
dissolved, warts decompose
before the covering layer

G = gymnosperm, A = angiosperm, r = reaction wood.

Treatment Reference

G

Gr

G

G

A,
G

(43)

(12)

(46,47)

(48)

(49,50)
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TABLE IIIB

TREATMENTS THAT DO NOT REMOVE THE WARTY LAYER

Treatment

Boiling water, 4 hr

Boiling alcohol, 4 hr;
then boiling ether, 4 hr

Hot alcohol extraction

Chloroform extraction

Acetone extraction

Pyridine, boiling, 2 hr

Anhydrous ammonia, 145
psi, room temperature,
72 hr

72% Sulfuric acid, 2 hr

98% Sulfuric acid, 2 hr

Butanol and HC1, boiling,
2 hr

80% Hydrofluoric acid,
12 days

80% Hydrofluoric acid,
160 hr; then 2% HC1,
boiling gently

30% H202 , 98°C, 1.5 hr

Sodium hypochlorite,
cold, 8 hr

Acidified sodium chlorite
solution, 75°C, 4 hr

Action

Warts unchanged

Warts unchanged

Resin droplets which can
easily be confused with
warts in pine were extracted,
"true warts" remain intact

No effect

No effect

Warts unchanged

Lumen surface became en-
crusted, warts still present

Warts unchanged

Warts unchanged

Warts unchanged

Warty layer intact while
carbohydrates were removed

99.8% Lignin in residue,
warty layer remained

Warts unchanged

Warts unchanged

Middle lamella completely
removed, but warts not badly
degraded

See end of table for footnote.

Wood

G

G

G

G

G

G

G

G

G

G

G,
Gr,
A

A

G

G

A,
G

Reference

(16)

(6,48)

(52)

(48)

(48)

(16)

(53)

(16)

(16)

(16)

(13,44)

(54)

(16)

(16)

(37)



TABLE IIIB (Continued)

TREATMENTS THAT DO NOT REMOVE THE WARTY LAYER

Action

Delignification in sodium
chlorite solution, pH 6.8
initially, 3 weeks, room
temperature

Neutral sulfite semi-
chemical cooking liquor,
140°C, 60 min

0.25M NaOH, boiling,
4 hr

17.5% NaOH, boiling,
4 hr

17.5% NaOH, 60°C, 2.5 hr

5M Urea, boiling, 4 hr

1% Osmic acid, room
temperature, 2 hr

2% Potassium permanganate,
room temperature, 15 min

Groundwood pulping

Heating at 550°C

Steam under pressure,
150°C, 2 hr

2000-Yr natural degrada-
tion of submerged Viking
ship

72.1% Yield, remnants
of wart structure remained

88.7% Yield, warts unchanged
but the areas between in-
dividual warts were laid bare

Warts unchanged

Warts unchanged

Warts may undergo swelling
but they were not dissolved;
it was doubtful that the
membrane was dissolved

Warts unchanged

No effect

Deposition of granular
material on wart surface;
warts may undergo prior
swelling

Tracheids may be split
open to reveal intact
warty layer

Membrane encasing the warts
was destroyed; the warts
remained exposed as crystal-
like deposits (see footnote
p. 21)

Warts may swell but were
not dissolved

92.7% Lignin in remains,
warts and warty layer still
evident

See end of table for footnote.

Treatment Reference

G

A

G

G

Gr

G

Gr

Gr,
A

G

G

A

A

(43,55)

(56)

(16)

(16)

(12)

(16)

(12)'

(12,13)

(57)

(51)

(13)

(54)
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TABLE IIIB (Continued)

TREATMENTS THAT DO NOT REMOVE THE WARTY LAYER

Action Wooda

Brown-rot fungi

Blue-stain fungi

Xylanase attack after
mild chlorite delignifi-
cation

Polysaccharides of the
cell wall hydrolyzed;
neither the warts nor the
covering membrane appeared
digested

No alteration of the
warty layer

Warts were resistant

G = gymnosperm, A = angiosperm, r = reaction wood.

Treatment Reference

A (49,58)

G

A

(59)

(60)
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a period of weeks. Here, however, the action may have been due more to physical

erosion rather than chemical reaction or dissolution.

In addition to chemical treatments, the effect of a few microorganisms on

the warty layer has also been explored. These latter treatments represent the

action of complex enzyme systems. Commercial enzyme treatments and physical

treatments have also been investigated and are reported in Tables IIIA and IIIB.

In general, the results of the different treatments on wood were consistent

over the wide range of species studied. This would seem to indicate that the

reactivity and, therefore, the composition of the warty layer is similar from

species to species.

Presented in Table IV are reported staining characteristics of the warty

layer. While some investigators attributed a positive staining reaction to the

presence of a certain chemical class in the warty layer, the staining reaction

in reality may not have been that specific.

Workers have speculated on the composition of the warty layer by ob-

serving its chemical reactivity. Wardrop, et al. (16) stated that the warty

layer had chemical reactions similar to those for lignin, but in addition

showed staining evidence for the presence of protein, which is not normally

found to any extent in the secondary wall. Dunning (43) speculated that warts

in longleaf pine may be some combination of lignin and carbohydrate, since a

mild oxidative treatment followed by an alkaline extraction was required for

complete removal. Scurfield, et al. (12) concluded from ultraviolet absorption

and chemical reactivity evidence that the warts, and perhaps any covering

membrane, may have a lignin component. Cote, et al. (44) also implied that

the warty layer contains lignin because warts were present in "lignin

skeletons" created by hydrolysis of wood with 80% hydrofluoric acid. Cote
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was unsure, however, whether or not the terminal lamella contained the same

kind of lignin that occurred throughout the secondary wall C66).

TABLE IV

REAGENTS THAT STAIN THE WARTY LAYER

Reagent Specificity Reference

Phloroglucinol-HCl Lignin (16)

Potassium ferrocyanide- Protein (16)
FeCl3

Methylene blue -- (16)

2% Os04 -- (16,48)

Basic hydroxylamine Uronic acid C61)

Victoria Blue B Hemicellulose con- (3,62,63)
taining uronic acid

KMnO 4 -- C64)

Uranyl acetate-lead -- C65)
citrate

aAccording to the reference quoted.

One indication that the wart material is different from cell wall lignin

is that the wart structure remained more or less intact during some treatments

that removed a major portion of the middle lamella and cell wall lignin. Cote

and Day C37) showed that for both hardwoods and softwoods, a 4-hr digestion in

acidified sodium chlorite at 75°C dissolved the middle lamella lignin but left

the warty layer unchanged. Jayme and Azzola (56) reported no trace of damage

to the wart structure of beech vessel members in a neutral sulfite semi-

chemical pulp (87.7% yield, 16.5% lignin). Dunning C43, 55) reported that

remnants of the wart structure remained in chlorite holocellulose of longleaf
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pine (72.1% yield, 0.45% lignin). Berenzon and Bogomolov (46), however, found

that during alkali delignification (kraft and soda pulping) the warty layer

was chemically unstable and dissolved at 120°C.

An elemental composition of the warty layer has been reported only by

Cronshaw, et al. (67). They isolated warts by dissolving the cell wall using

the method of Pew (68), which consists of soaking wood sections in formaldehyde,

macerating them in 72% H2S04, dilution of the acid suspension with a 1:1

mixture of cellosolve and acetone, and subsequent centrifugation to sediment

the wart residue. The presence of material in the residue similar in appearance

to the warty layer was confirmed by electron microscopy. Microchemical analysis

of the isolated warty layer from three different softwood species gave these

results: carbon, 47.5-59.7%; hydrogen, 5.5-6.0%; oxygen, 32.4-39.4%; methoxyl,

3.3-7.3%; nitrogen, 0.6-2.1%; and phosphorus, 0.0-0.3%. There are at least

two reasons why these values cannot be regarded as absolute. There is a high

probability that material other than warts, such as insoluble middle lamella

or secondary wall lignin, was present in the residue. Also, the isolated wart

material was probably altered chemically by such a harsh extraction.

Wardrop, et al. (48) reported a chemical-physical technique that was

successful in isolating an osmiophilic layer with a wartlike texture which

lined the lumen. They cut 20-um longitudinal sections from osmium-stained

blocks and treated them in a mechanical disintegrator. Fragments of the

osmiophilic membrane could be separated because of their dark color among the

cell debris. The membrane was isotropic when viewed with polarized light

and was thus assumed not to contain highly-oriented cellulose. This method

of isolating the warty layer did not yield any large quantity of material

(16). Therefore, subsequent analysis was not attempted.
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It is known that warts occur in some species without an associated

amorphous layer. There is some feeling that the composition of the individual

warts is different from that of any amorphous layer, when present. This idea

was based on the different response of these two structures to various physical

and chemical treatments. In UV light (216 nm) the warts were characterized

by high absorbing properties while the membrane displayed a very weak absorbance

(16). (This result, however, could have been due to a concentration effect

rather than any difference in composition.) Warts in vessel elements of beech

latewood were more resistant to neutral sulfite semichemical cooking liquors

than the membrane which was noticeably attacked (56). Tsoumis (42), on the

other hand, showed that warts were destroyed during prolonged solvent treat-

ments, while the region between the warts remained undissolved. Knudson and

Williamson (51) reported that on heating Douglas-fir wood to 550°C, membranes

encasing the warts on pit tori and cell walls were destroyed, leaving the

warts exposed as crystal-like deposits.* White-rot fungi and also some soft-

rot species were found to dissolve both components, but the warts appeared

more readily decomposed than the layer, in that small craters sometimes occurred

during the first stages of enzymatic dissolution (49, 50, 69). Scurfield and

Silva (12) showed with chemical reagents that wart dissolution does not

necessarily involve simultaneous dissolution of the associated membrane. They

concluded that "warts and membrane apparently differ in chemical composition."

Several workers have pointed out similarities between warts and the pit

vestures found in the vessel members of some hardwood species (3, 13, 14, 37-39).

*Discrepancies here are that warts have not been previously reported on pit
tori of any species and warts on the cell wall of Douglas-fir are rare or
entirely absent (6, 35).



Schmid and Machado (38) acknowledged these similarities but felt that the two

structures have different origins in the developing cell. Scurfield, et al.

(14), however, concluded that there seems to be no adequate reason for distin-

guishing vestures from warts other than on the grounds of the greater structural

complexity of the former.

In another study, Cronshaw, et al. (67) have shown that the warty layer

is morphologically very similar but chemically different from the pollen sexine

at the outer portion of the exine of pollen grains.

ORIGIN

The origin of the warty layer in the developing wood cell is a subject of

controversy. Liese (4) reported that the layer consists solely of dead proto-

plasmic material deposited on the lumen surface at the end of cell differentia-

tion. According to this view, the warty layer comprises two protoplasmic

membrane residues, the plasmalemma and vacuole tonoplast, with fragments of

cytoplasmic debris trapped between to form the warts.

Wardrop and Davies (64) found evidence in developing cells that wartlike

protrusions are formed as part of, and continuous with, the last deposited

secondary wall layer, S3. At cell death the cytoplasmic membranes retract and

ultimately dry onto the lumen surface, enclosing the remaining organelles which

form spherical bodies on top of wartlike, cell wall protrusions. Thus,

according to these authors, the complete wart structure consists of localized

cell wall thickenings with a covering of residual cytoplasmic components.

Several workers have suggested different explanations for the origin of

the warty layer solely from observations of wart morphology in mature wood

cells and without examining developing tissue. According to Jurbergs (52),



-23-

who studied four pine species, the nonuniformity in the distribution of warts

and their preferential accumulation at certain sites are evidence that these

structuresare not produced by the still-organized cell protoplast. He inter-

preted the observations to indicate a random process of wart deposition,

perhaps by sedimentation of decomposed protoplasts during translocation of

the latter from the mature cell.

In contrast, Frey-Wyssling and Muhlethaler C70) concluded that a morpho-

genic factor is active during wart formation in addition to passive degradation

of the cell contents. Their conclusion was based on the relationship that

exists between warts and dentate ray tracheids in pine and between warts and

vestured pits in some hardwood species.

Esau (in 5) raised a good question concerning the supposition that the

warts consist totally or partially of cytoplasmic organelles that settle on

the cell wall after differentiation is complete: "I am disturbed that these

organelles appear like little pebbles which have settled down. Actually, when

they die and dry up, they will not be recognizable as little bodies, will they?"

Cronshaw (65) also could not accept the cytoplasmic debris theory for

the origin of the warty layer, explaining that this view is difficult to

reconcile with the fact that the conifer tracheids do not "dry out" until

heartwood formation, many years after formation of the warty layer. He also

cited the taxonomic significance of the warty structure as evidence against

this theory.

Upon detailed study of pine cambial tissue, Cronshaw (65) found that the

wart structure was developed external to the plasma membrane during the final

stages of cell differentiation. It formed the innermost layer of the cell
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wall and was distinct from the S3 layer. Later, the protoplast degenerated

and disappeared from the cell. Therefore, according to this view, the warty

layer is neither cytoplasmic remains nor part of the S3 layer. Rather, it is a

structure elaborated by the living cytoplasm in its final role before disin-

tegration.

Cronshaw identified two possible cytoplasmic systems which could contribute

precursors and enzymes from wart formation. Both the Golgi bodies (and Golgi

body-derived vesicles) and the endoplasmic reticulum were evident in the receding

cytoplasm of cells during the later stages of differentiation. Elsewhere (71-73),

it is argued that these two organelles are probably also functional in the syn-

thesis of plant cell wall materials.

If residual cytoplasm is not dried onto the cell wall as earlier workers

have believed, what then is its fate? Cronshaw's explanation was that cyto-

plasmic contents are depolymerized and eluted out of the cell by the transpira-

tion stream as the tracheids become functional for water conduction. This

suggestion is consistent with the results of Merrill and Cowling (74) and

Grozdits and IfJu (75) who observed that there was a sharp decrease in nitro-

gen content within the last-formed growth increment of several woody species

and that samples taken from other annual increments had a remarkably low nitro-

gen content.

Kutscha (19), in support of Cronshaw's work, also found that the warty

layer is deposited apparently external to the plasmalemma following secondary

wall formation. He observed continuity between the tips of the conelike warts

and various membrane-bound vesicles or dark-staining particles in the cytoplasm.

Wart formation in compression wood apparently follows the same course ( 19).
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Despite Cronshaw's convincing report, his work has been overlooked or dis-

regarded in several recent reviews and texts (e.g., 76, 77) which continue to

explain the origin of the warty layer as "cytoplasmic debris and possibly local-

ized thickening of the S3 layer." Such disregard would seem unwarranted and

misleading.

Scurfield and Silva C12), considering the origin of the warty layer,

speculated that warts constitute a replica of invaginations of the plasma

membrane through which wall materials are actively secreted at the time of

cell death. Warts might then be regarded as consisting of something less than

completely elaborated wall constituents plus the products of protoplast autoly-

sis, which are reported by Scurfield to consist largely of phenolic substances

(9). This speculation is not inconsistent with known properties of the warty

layer, but it does lack verification.

SIGNIFICANCE

The presence of the warty layer lining the lumen surface of wood cell

walls may have some effect on gross wood properties both in nature and in the

subsequent processing of woody tissue. The warts provide increased lumen

surface area and surface roughness. Also, this layer, if lignin is present,

probably has a lower hydrophilicity than an exposed, microfibrillar S3 layer.

It is, therefore, reasonable to propose that these cell wall properties, due

solely to the presence of the warty layer, likely influence the flow of the

aqueous transpiration stream in conducting sapwood of a living tree or the

penetration of liquids through the cells in cut wood.

Several investigators (78-80) have suggested that the freer movement

of liquids through aspirated bordered pits in softwoods is at least partially
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due to the wart structure in the pit chamber. If an aspirated torus abuts a

warted border, the adhesion cannot be as strong as the contact between the

same torus and a smooth border. As a result, the pit is less firmly sealed

CFig. 2). While this mechanism for increased permeability does not completely

explain all the permeability differences observed among conifers, it may play

an important part (78). Such an effect is not as great as might be expected

because in many conifer species warts are very sparsely distributed near the

pit aperture (78).

Since the warty layer appears to be quite chemically resistant, and since

it is the terminal lamella of the cell wall, it is not unreasonable to propose

that this structure may act as a barrier to the penetration of liquids from

the cell lumen into the wall. For the pulp and paper industry, this would be

an important consequence because pulping liquors must diffuse through the cell

wall in order to dissolve intercellular substances and thereby free individual

fibers. If the warty layer does, in some instances, act to curtail penetration,

then such information should affect the papermaker's choice of wood species or

pulping procedure. This concept that the warty layer may act as a barrier has

been briefly considered before (6, 81), but there apparently has been no

published investigation designed specifically to ascertain any effect the

warty layer might have on penetration of liquids into the wood cell wall.

Another possible consequence of the presence of warts in wood tissue

emerges in the production and processing of dissolving pulp. The resistance

of the warty layer to chemical dissolution may contribute to the difficulties

in filtering solutions of cellulose acetates and viscoses and may also be

responsible for haziness in resulting films or weakness in resulting fibers.

Sperling and Easterwood (82) identified two classes of characteristic gel
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Margo

~/11 ~ ~-- Wart

Pit Border

Incomplete Seal

Torus

Figure 2. Diagram of an Aspirated, Intertracheid Bordered Pit of a
Softwood; for an Actual Micrograph, see Cote (29), Fig. 5
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particles from material blocking filters and causing solution haze in cellulose

acetates: those over 15 4m and those quite a bit smaller. The predominant

characteristics observed among the small gel particles was a nearly monodisperse

spherical- or potato-shape and a mean diameter of about 0.3 Wm in dispersion

(light-scattering) and 0.1 Jm dry (electron microscopy). These measurements

are quite consistent with the wart size. Chemical analyses showed these

small particles to contain cellulose and xylan.

An analogous study on wood pulp viscose yielded similar results in regard

to number, size, monodispersity, and swelling characteristics of the small gel

particles (83). A major difference, however, was a lack of xylan in the compo-

sition. Only half of the minute viscose insolubles was carbohydrate material,

probably cellulose. The other half was not identified.

Jurbergs (52), working in the same laboratory, felt that the source of the

tiny gels in cellulose solutions was in the original pulp. The most conspicuous

features of this size present in large numbers in wood are warts. The fine

gels and resulting haze were also found, however, in dissolved pulps from cotton

linters which probably do not have warts (23). But, yield of fine gel from

this source was considerably lower.

It is questionable whether the warts in wood can survive the harsh pulping

and bleaching procedures required for production of dissolving pulps. Jurbergs

(52) apparently did not consider this point as a prerequisite to his hypothesis.

OBJECTIVES AND APPROACH OF THE THESIS

There were two primary objectives of the thesis. The first was to deter-

mine the origin of the warty layer in the differentiating cell. The second

was to determine the chemical composition of this structure as it exists in
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mature wood. As is implied in the Historical Review, both of these areas have

been investigated in previous work, but there is still a great deal of contro-

versy surrounding both points.

In order to study the origin of warts, developing tissue was examined in

ultrathin section and from replicas of the interior surface of the differenti-

ating cell wall. The latter approach is unique to the study of warty layer

development.

The composition of warts in mature wood was studied by using the electron

microscope to monitor the results of various chemical, physical, fungal, and

enzymatic treatments on the warty layer. In conjunction with selected chemical

treatments that were found to dissolve the warts, analyses were performed to

identify residual as well as extracted material.

There were two secondary objectives of the thesis. The first was to

determine, if obvious under limited conditions, any effect of the presence of

the warty layer on the removal of lignin from the cell wall. The second was

to determine any evolutionary significance of the warty layer in wood.

The possible effect of a warty layer on pulping of woody tissue was

studied briefly by comparing initial delignification rates of two softwood

species with different lumen linings.

A number of hardwood species were examined to determine if the presence

of the warty layer can be placed in any logical evolutionary context. A

special effort was made to correlate the presence of a warty layer with the

occurrence of any other cell wall feature of suspected evolutionary

significance.
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Balsam fir was chosen as the major source of experimental material be-

cause it has a very prominent warty layer and it is locally available. Also

balsam fir is a commercially important pulpwood in the Northeast, the Lake

States, and in eastern Canada.
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MATERIALS AND METHODS

SOURCE OF THE WOOD

The source of the cambial tissue examined in this investigation was an

erect balsam fir [Abies balsamea (L.) Mill.], 12-inch dbh, growing in a mixed

stand north of Black Creek, Wisconsin. Samples were taken on June 12, and

July 13, 1972, according to the procedure described in Appendix I.

Increment core samples (11 mm in diameter) of mature sapwood were taken

on August 12, 1971 from another erect balsam fir, 8-inch dbh, growing near

Tomahawk, Wisconsin. After extraction from the tree, these samples were

immediately sealed in black rubber tubes and stored in a freezer until needed.

Mature stem and root xylem were also cut from a normal 3-yr-old balsam

fir seedling grown in a greenhouse at The Institute of Paper Chemistry.

Thin, acetone-extracted, earlywood wafers of loblolly pine (Pinus taeda L.)

were obtained from a supply left from the completed research of Albrecht (84).

The wafers were tangential sections, approximately 0.5 mm in thickness.

Samples of hardwood species to be studied were cut from sapwood of dry

wood blocks from a collection at The Institute of Paper Chemistry. The

following species were examined:

American hornbeam (Carpinus caroliniana Walt.)

eastern hophornbeam [Ostrya virginiana (Mill.) K. Koch]

coachwood (Ceratopetalum apetalum D. Don)

golden chinkapin [Castanopsis chrysophylla (Doug.) A. DC]

American chestnut [Castanea dentata (Marsh.) Borkh.]

American beech (Fagus grandifolia Ehrh.)
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Mediterranean beech (F. orientalis Lipsky)

European beech (F. sylvatica L.)

negro-head beech (Nothofagus moorei J. H. M.)

sassafras [Sassafras albidum (Nutt.) Nees]

cucumber magnolia (Magnolia acuminata L.)

southern magnolia (M. grandiflora L.)

American sycamore (Platanus occidentalis L.)

sourwood [Oxydendrum arboreum (L.) DC.]

ELECTRON MICROSCOPY

Both replica and ultrathin sectioning techniques were used to prepare

material for examination with the transmission electron microscope (TEM).

Surface replicas of wood sections were prepared by the direct-carbon method

outlined by Cote, et al. (85) using the procedure and apparatus described by

Dunning (43). Platinum, applied at an angle of 45° from 8 cm, was employed to

cast a shadow parallel with the axis of the tracheids. Carbon and metal

coatings were applied in a Denton Vacuum Model DV502 vacuum evaporator. Metal-

ized wood surfaces were backed with polystyrene (Appendix VI) and the wood was

dissolved with 72% H2S04 (18 hr) followed by 10% chromic acid-10% nitric acid

(l:l) (4 hr). The polystyrene was then dissolved with benzene from the

replicas, which were supported on 100-mesh nickel grids precoated with collodion

and carbon for TEM examination. Replicas and ultrathin sections were examined

with an RCA Model EMU-3F TEM at 50 kv.

Samples for direct observation with the scanning electron microscope (SEM)

were oven-dried at 60°C and affixed to standard specimen pedestals with transfer

adhesive tape (3M no. 465). They were then coated omnidirectionally with
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approximately 20 nm each of carbon and 60:40 gold-palladium to prevent specimen

charging in the electron beam. Samples were examined with a JEOL JSM U-3 SEM

at 15-25 kv.

CAMBIAL TISSUE

Two forms of cambial samples, radial slices and blocks, were cut from

the 12-inch dbh balsam fir tree by the procedure described in Appendix I.

The radial slices were processed for eventual TEM study of developing cells.

They were first fixed with either permanganate or one of two aldehyde-mixture

schedules outlined in Appendix II. They were then dehydrated and embedded with

an epoxy resin by one of the procedures in Appendix III. Ultrathin cross

sections of the embedded cambial tissue were cut about 60 nm in thickness with

a diamond knife on a Sorvall MT-2 ultramicrotome. The sections were picked up

on the previously described grids and stained with lead citrate or potassium

permanganate or both in sequence by the procedure in Appendix IV.

The block-size cambial samples were prepared so as to permit inspection

of the inner, radial surface of the developing cell wall. Cytoplasmic contents

were not chemically fixed. The blocks were embedded with collodion according

to Appendix V, and then sectioned radially at about 100 um with a sliding

microtome. The collodion embedment was dissolved with ether-alcohol (1:1),

and the sections were then dried from ether and replicated from the TEM or

coated for SEM study.

MATURE WOOD

The frozen increment cores of fir sapwood were allowed to thaw and become

water-saturated. They were then trimmed into blocks and sectioned radially at

about 100 pm with a sliding microtome. After subjection to various treatments,
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replicas were prepared for TEM study to determine the effect of the treatment

on the warty layer and other ultrastructural wood features.

Treated and untreated loblolly pine wafers as well as untreated stem and

root tissue from a balsam fir seedling were also prepared for examination with

the TEM.

Hardwood samples were saturated in water and sectioned radially at about

150 um with a sliding microtome. After drying and metal coating they were

examined with the SEM. Surface replicas were made of selected samples for

more detailed examination with the TEM.

TREATMENTS

Sections of balsam fir sapwood were subjected to chemical, enzymatic,

fungal, and physical treatments in an effort to dissolve or otherwise remove

the warty layer. Unless otherwise specified, the treated tissue was from the

never-dried increment cores and was in the form of radial sections, 100 um

thick. Only the surfaces of the treated sections were examined with the TEM,

but Albrecht (84) has shown that penetration and reaction is homogeneous in

sections even five times as thick.

CHEMICAL TREATMENTS

Unless otherwise specified, all chemicals used were reagent grade.

1. Sequential extraction in a Soxhlet apparatus: benzene-ethanol
(2:1), 6 hr; ethanol, 6 hr; water, 2 hr.

2. Dioxane extraction, room temp., 3 hr to 6 days; and 60°C, 24 hr.

3. Dimethylformamide, 125°C, 27 hr.

4. Phenol, 90°C, 21 hr.



-35-

5. 78% Phosphoric acid, room temp., 3 hr.

6. 10% Chromic acid-10% nitric acid (1:1), room temp., 1½ hr.

7. 72% H2S04 , with and without polystyrene backing on wood
section (Appendix VI), room temp., ½ and 35 hr.

8. Dimethylsulfoxide (DMSO)-O.1 or 0.5% HC1, 150°C, 1 to 5 hr.

9. Hydrogen peroxide and acetic acid,varying concentrations
and proportions, room temp., 45°C or 90°C, 2 hr.

10. Chlorite delignification (86), 4.5% sodium chlorite (technical
grade), pH 4.0 with acetic acid, dark, room temp., 4 weeks,
wood treated as blocks.

11. 12.5% Sodium hydroxide, 4.1% sodium sulfide, 60°C, 2½ hr.

12. 17.5% Sodium hydroxide, 60°C, 2½ hr.

13. 0.1N Potassium hydroxide, 90°C, 2 hr.

14. 0.25% Digitonin (membrane-dispersing agent, product of
Nutritional Biochemical Corp.) in 95% ethanol, room
temp., 18 hr to 11 days.

15. 5.0M Urea, room temp., 3 hr to 6 days.

16. 4-Methylmorpholine 4-oxide [carbohydrate and lignin solvent (87)],
90°C, 22 hr.

17. Cadoxene [cellulose solvent (88)], room temp., 35 hr and 4 days.

18. NCS Tissue solubilizer (quaternary ammonium base in toluene,
product of Amersham/Searle), 50°C, 22 hr.

The action of the four following treatments was studied more extensively:

1. DMSO, 150°C, 1 to 15 hr, 10-ml DMSO.

2. Dioxane-0.5% HC1, 700C, 1 to 56 hr, 15-ml reagent.

3. 30% Hydrogen peroxide, room temp., 2 to 14 days, 25-ml reagent,
wood submerged under an inverted funnel to keep sections below
surface.

4. 3% Peracetic acid with 0.5% hydrogen peroxide, 60°C, 1-1/3 to
25 hr, 15-ml reagent.



-36-

For these four treatments, batches of 20 fir sections (about 50 mg) were

treated. Loblolly pine wafers were also treated with peracetic acid. The

change in ultrastructure as a result of the treatments was examined with the

TEM. -In early work, fir sections were extracted before treatment as specified

in Chemical Treatment No. 1. This prior extraction had no effect on subse-

quent reactivity of the warty layer; therefore, the procedure was discontinued.

Yield calculations were based on the dry weight of the wood before and

after treatment. The wood was vacuum-dried for 2 hr at either 105°C or 60°C,

allowed to cool in a vacuum desiccator over Drierite, and weighed. Klason

lignin determinations were made on the treated sections by using 1/20th pro-

portions of those specified in TAPPI Standard T 13 m-54. Apparent carbohydrate

portion was determined by difference. The treatment solutions containing dis-

solved wood components were subjected to various analyses described later.

When desired, the DMSO and dioxane-HC1 treatment solutions were concentrated

into a syrup by freeze drying with a New Brunswick Freeze Dryer. The concen-

trates were then redissolved in small amounts of DMSO or dioxane.

ENZYMATIC TREATMENTS

The action of various enzymes on the ultrastructure of fir wood was

explored. The known specificity of enzymes could make them a more desirable

treatment than most chemical reagents. Unless otherwise stated, the fir

sections were treated in 10 ml of enzyme solution. Before use in treatment,

the activity of each enzyme was checked using the substrate and conditions

suggested by the supplier. The enzyme, supplier, reported activity, buffer,

and conditions are as follows:
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1. Lipase 448 (Nutritional Biochemicals Corp.), 40 units/ml,
0.05M TRIS buffer, pH 7.8, 37°C, 18 hr.

2. Ribonuclease (Worthington Biochemical Corp.), 2700 units/ml,
phosphate buffer, pH 7.0, room temp., 4 to 20 days.

3. Trypsin (P-L Biochemicals, Inc.), 10,000 units/ml, 0.012M
CaCl 2, 0.05M TRIS buffer, pH 7.8, room temp., 2 hr.

4. Pepsin (Worthington Biochemical Corp.), 2,500 units/mi,
0.O1M HC1, room temp., 2 hr.

5. Lysozyme (Mann Research Laboratories), 9,000 units/ml,
phosphate buffer, pH 7.0, room temp., 2 hr to 20 days.

6. Hemicellulase (Nutritional Biochemicals Corp.), 5 units/ml,
citrate buffer, pH 4.5, 450C, 2 hr to 28 days.

7. Peroxidase (Nutritional Biochemicals Corp.), 3,000 units/ml,
0.003% to 0.3% H202 , 0.01M phosphate buffer, pH 6.0, room temp.,
8 to 95 hr; enzyme treatment on untreated wood and in combination
with an alkali pre- or posttreatment (0.1N KOH, 90°C, 2 hr).

8. Polyphenol oxidase (P-L Biochemicals, Inc.), 500 units/ml,
0.2M phosphate buffer, pH 6.5, room temp., 18 hr; enzyme
treatment on untreated wood and in combination with an alkali
pre- or posttreatment (0.1N KOH, 90°C, 2 hr).

9. Pectinase (Nutritional Biochemicals Corp.), 2 mg/ml (1 g of
enzyme reduces the viscosity of 1,500 g of pectin by 50% in
15 min), 0.05M acetate buffer, pH 3.7, 45°C; enzyme treatment on:

a) never-dried fir section, 2 hr to 28 days.

b) fir section infected with white-rot fungus (Trametes
suaveolens) for 8 weeks, enzyme treatment 18 hr.

c) loblolly pine wafer, 18 hr.

d) 0.5 g fir chlorite holocellulose (Chemical Treatment
No. 10), 25-ml enzyme solution, 18 hr.

Before the pectinase treatment of fir chlorite holocellulose, the enzyme was

dialyzed with a regenerated cellulose membrane to remove the glucose known to

be present in the preparation (89). After enzymatic hydrolysis of the

delignified fir, the supernatant was decanted and boiled to denature the

enzyme, which was subsequently sedimented by centrifugation at 12,100 x g for

20 min. The solution was then batch-treated with Amberlite IR 120 CP cation
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exchange resin to convert the buffer to acetic acid, followed by concentration

to dryness in a rotary vacuum evaporator at 55°C. (Water was added during the

evaporation step until the pH of the solution was at least 6 to ensure that

the acetic acid was azeotropically removed before concentration to complete

dryness.) Two control solutions, the supernatant of delignified fir wood in

buffer without enzyme and the enzyme solution alone, were worked up in a

similar fashion.

FUNGAL TREATMENTS

All white-rot fungi used were purchased from the American Type Culture

Collection, Rockville, Maryland. (Numbers with the fungi refer to the ATCC

strain numbers.) Before wood was added, the fungi were cultured aseptically

in shake flasks containing 50 ml of one of two different media, asparagine-

glucose (asp.-glu.) or malt (see Appendix VII). Firwood in the form of 100-um

radial sections was sterilized by autoclaving and then introduced to the cul-

tures after the rapid growth phases of the fungi had occurred 1C-3 weeks). The

white-rot fungi, the culture media, and the treatment durations are given

below:

1. Daedalea unicolor 9405, asp.-glu., 2 to 26 weeks.

2. Polyporus anceps 132 4 2 , asp.-glu., 2 to 26 weeks.

3. Schizophyllum commune 9418, asp.-glu., 2 to 26 weeks.

4. Trametes suaveolens 9417, asp.-glu. and malt, 2 to 14 weeks.

5. Poria subacida 12241, asp.-glu., 2 to 10 weeks.

6. Polyporus versicolor 12679, asp.-glu., 2 to 10 weeks.

After treatment, the wood sections were scraped with a dissecting needle to

remove the fungus from the sample surface before preparation for TEM study.
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THERMAL TREATMENT

The thermoplastic properties of the warty layer were investigated by

examining replicas of water-saturated wood that had been heated in an auto-

clave at 15 psi steam (121°C) for 2 hr and 2½ hr.

PHYSICAL ISOLATION METHODS

Several attempts were made to physically isolate the warty layer.

1. Firwood in the form of 20-um cross sections and 100-um radial

sections was ultrasonicated in water, 0.1N KOH, or pectinase

solution at 300 kc/sec for 2 hr at 30°C.in a General Electric

ultrasonic generator.

2. Wood blocks were macerated with a meat grinder and then

pulverized with a pestle and mortar containing fine sand.

The suspended wood particles were fractionated according to

size by differential centrifugation using increasing speeds

up to 37,000 x g for 15 min with the Sorvall Model RC 2-B

centrifuge.

3. The surfaces of radial wood sections were embedded in molten

polystyrene (Appendix VI). As much wood as possible was then

scraped away using a dissecting needle while observing with a

stereomicroscope. The polystyrene was then dissolved to free

the minute, embedded wood fragments.

The results of the physical isolation methods listed above were evaluated

with the TEM and SEM.
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ANALYSIS OF TREATMENT SOLUTIONS AND
PHYSICALLY ISOLATED WOOD FRAGMENTS

The pH values of extraction solutions were determined with a Beckman

Zeromatic pH meter with glass electrode. Where indicated, the ultraviolet

absorbance spectra of treatment solutions were determined with a Cary 15

spectrophotometer.

Centrifugation of selected DMSO treatment solutions was accomplished

with the Sorvall Model RC 2-B centrifuge with rotor SS-34 at 13,000 rpm

(20,200 x g) for 20 min. Ultracentrifugation was done with the Beckman

Model L-2 ultracentrifuge with rotor SW39L at 30,000 rpm (75,000 x g) for

90 min. These procedures were carried out to discover if perhaps the warts

were freed from the cell wall but not dissolved by the treatment. The sedi-

mentation coefficient of the material dissolved in the DMSO treatment was

determined by sedimentation velocity in a Beckman Model E ultracentrifuge.

The sample was rotated at 56,100 rpm (230,000 x g) for times up to 25 min.

Refractive indices of the DMSO treatment solutions were measured with an

Abbe refractometer at 18.80C.

Thin-layer chromatography was used to fractionate materials in the

pectinase hydrolyzate of chlorite-delignified firwood. Spots of 2 1l of the

concentrated hydrolyzate were applied on precoated Kieselguhr plates buffered

with 0.05M sodium acetate and developed with four repetitions with Solvent I,

ethyl acetate-isopropanol-water (8:2:1). Controls and reference compounds were

run simultaneously. Detection was accomplished by spraying with anisaldehyde

reagent (Appendix VIII).



The technique of descending paper chromatography using Whatman No. 1

paper was employed to fractionate both carbohydrate materials and lignin

materials in the treatment solutions. To develop carbohydrate materials, two

different solvent systems were employed, namely, either Solvent II, ethyl

acetate-acetic acid-formic acid-water (18:3:1:4) alone or Solvent III, ethyl

acetate-pyridine-water (8:2:1) to move the neutral sugars away from the acids,

followed by Solvent II. Spots of 2 ul (about 50 ug of dissolved material)

were applied. Controls and known reference compounds were run simultaneously.

Chromatograms were detected with p-anisidine hydrochloride (Appendix VIII).

The paper chromatographic fractionation of nonvolatile, low molecular

weight lignin material was attempted using Solvent IV, butanol-pyridine-water

(10:3:3). The paper was spotted with 4 ul of the concentrated treatment solu-

tions. Developed components were detected with either 2,4-dinitrophenylhydrazine

or diazotized p-nitroaniline (Appendix VIII).

Gas-liquid chromatography was used in an attempt to isolate semivolatile

components extracted from wood in the DMSO and dioxane-HC1 treatments. The

instrument used for the fractionation was a Varian Aerograph series 1400 gas

chromatograph fitted with a 6-ft column of 10% Carbowax 20M on a support of

Chromasorb W, AW-DMCS, 60/80 mesh. The operating conditions were as follows:

injector temp., 210°C; column temp., 150°C for 16 min, then programmed to

increase at 10°/min to 210°C where the temperature was held; detector temp.,

280°C; helium carrier gas flow was about 75 ml/min. The unit was equipped

with a flame ionization detector. The sample injection volume was 5 u1 of

the unconcentrated treatment solutions. The extraction solvents alone were

run as controls. Also, the retention times of known compounds, phenol,

guaiacol, and furfural, were determined.



Gel-filtration chromatography was used to fractionate treatment solutions

by molecular weight. Sephadex G-25 and DMSO were used as the gel-eluent sys-

tem. [Lundquist and Wesslen (90) have reported that, with this system, 21

lignin model compounds ranging in molecular weight from 124 to 512 were eluted

in approximate order of decreasing molecular weight.] The column was 1 cm in

diameter and 75-cm high. The boundaries of the included volume of the column

were determined by eluting acetone and a high molecular weight lignin sample

prepared according to Pepper, et al. (91). DMSO and dioxane-HCl treatment

solutions were freeze-dried and redissolved in a small amount of DMSO. One

half milliliter of the concentrated solution was loaded on the column. The

flow rate was maintained at about 0.8 ml/min. The column was constantly

monitored by recording absorbance of the eluent at 280 nm with a 1-mm flow

cell installed in a Cary 15 spectrophotometer. Pure DMSO in a stationary 1-mm

cell was used as a reference.

Wood fragments isolated by scraping polystyrene-embedded sections were

analyzed for elemental composition by monitoring characteristic x-rays emitted

under electron bombardment of the sample. An EDAX x-ray detector and analyzer

was used in combination with the SEM in this analysis. This instrument can

detect characteristic x-rays for elements with atomic number greater than ten.



-43-

RESULTS AND DISCUSSION

STRUCTURE OF BALSAM FIR

Wood, as a natural product, has a characteristic morphology at all levels

of examination. Figure 3 shows a corner view of a block of balsam fir, a

softwood. About 95% of the volume of balsam fir consists of one type of cell,

the longitudinal tracheid (77), which is a relatively long, prismatic element

with tapering, closed ends. The warty layer covers the inner cell wall surface

of these cells as shown in Fig. 4. (In this work, the tracheid axis in all

electron micrographs of replicas is parallel with the direction of the white

shadows.) Figure 5 depicts the warty layer in an ultrathin radial section of

the cell wall. Warts also line the cavities of bordered pits, but the dis-

tribution is sparse near the aperture (Fig. 6). Warts occur in the tracheids

of juvenile and adult wood in the roots, trunk, and branches. They were never

observed in xylem ray cells or in any cells of the phloem.

The warts in balsam fir appear as blunt cones with an average size of

about 0.1 um in diameter at the base and about 0.2 um in height. They are

slightly smaller in latewood cells and in bordered pit cavities. Their fre-

quency averages about 18 warts/pm2 in earlywood and slightly less in latewood.

Because of their protrusion from the cell wall, the total inner cell wall

surface area is about twice what it would be if no warts were present. From

average tracheid dimensions and some reasonable geometric approximations, it

was calculated that there are about eight million warts in a typical, mature

earlywood tracheid. The volume of the warts plus accompanying amorphous

encrustant makes up about 2% of the total cell wall volume.
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Figure 3. Corner View of a Balsam Fir Wood Block; SEM Plate 1037
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Figure 4. Warty Layer on the Inner Cell Wall Surface of a
Mature Balsam Fir Tracheid; Replica, TEM Plate 10245
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Figure 5. Radial Section of a Mature Balsam Fir Tracheid
Wall; KMnO 4-Stained UTS, TEM Plate 9170
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Figure 6. Inner Surface of a Typical Pit Border with Warts Sparse
Near the Pit Aperture; Replica, TEM Plate 10258

Figure 7. Warty Layer and Exposed Layers of Underlying Secondary
Wall; Replica, TEM Plate 10029
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The amorphous nature of the warty layer normally obscures the appearance

of the underlying secondary cell wall. However, if the wood is sectioned at

a slight angle to the radial cell wall, then both the warty layer and the

layers of the secondary wall are exposed (Fig. 7). The microfibrillar orienta-

tion of the S3 layer, immediately beneath the warty layer, is nearly perpendic-

ular to the fiber axis. Deeper into the cell wall the orientation makes in-

creasingly smaller angles with the fiber axis, and the transition from S3 to S2

is quite gradual. This wall structure has been described by Harada (92) and by

Berenzon and Bogomolov (47) for other softwoods.

While the microfibrils in the S2/S3 transition region appear as a spread

fan, it is not likely that there is a single lamella having a convergent

pattern. Rather, it is more plausible that this region consists of many over-

lapping lamellae, each with an orientation slightly different from the next (55).

DEVELOPMENT OF THE WARTY LAYER

The study of active cambial tissue can be quite valuable because the

sample provides an opportunity to observe wood cells at all stages of differenti-

ation. By examining a single radial file of cells from the cambial initial into

the mature xylem, one can observe the growth sequence a single cell would under-

go during maturation.

ULTRATHIN SECTIONS OF THE DEVELOPING CELL WALL

Cambial tissue was fixed chemically in an attempt to preserve the cytoplasm

as it existed in the living cells at the time of sampling. Such preservation

in the differentiating xylem was not always good. According to Robards and

Kidwai (93), it is not possible to obtain simultaneously perfect fixation in

all cells over the cambial zone because of intercellular variation in osmotic
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potential, which will result in partial plasmolysis of at least some cells.

While this explanation may be more of a rationalization than a fact, it is

supported by the results of the present study.

Of the fixatives used in this investigation, potassium permanganate proved

best for preservation of cytoplasmic membranes. The permanganate was also the

easiest fixative to prepare and use. The aldehyde fixatives were better then

permanganate for showing distinctness of the different cell wall layers and

for preserving the structure of the developing pit membrane. The Spurr formu-

lation (136) provided the best embedment because its lower viscosity permitted

faster penetration into the wood tissue.

As a stain for cut sections, potassium permanganate was very effective

in increasing the electron density of lignified tissue. Staining with lead

citrate before permanganate enhanced the overall contrast, especially in the

cytoplasm, but did not change the pattern of cell wall staining from that of

permanganate alone.

Figure 8 is a composite micrograph of the cambial zone and differentiating

cells of balsam fir during earlywood formation. The radial files of developing

tracheids are designated with Letters A-D. The cells of File C are numbered

sequentially from the fusiform initial toward the mature wood. Ray parenchyma

cells (RP) are also indicated.

Figure 8. Composite Micrograph of the Cambial Zone and
Differentiating Cells of Balsam Fir During Earlywood

Formation; Radial Files are Designated A-D; the
Developing Tracheids in File C are Numbered Sequentially
Toward the Mature Wood, Where 1 is the Cambial Initial;

Ray Parenchyma Cells (RP) are Also Indicated;
June 12 Sample, KMnO4-Fixed, Pb Citrate- and KMnO4-

Stained UTS, TEM Plates 9791-9795 and 9806-9819
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Developing earlywood provides more desirable experimental material than

latewood because cells are produced faster, and the differentiating zone,

therefore, includes more cells. The cambial zone in Fig. 8 can be seen as a

band of radially-narrow, thin-walled cells. Toward the top of the composite

is maturing phloem and toward the bottom is maturing xylem. It is difficult

to absolutely identify the fusiform initials in Fig. 8; however, based on

discussions by Mahmood (94) and Murmanis (95), reasonable assignments have

been made. The designated initials, those cells in tangential alignment with

Cell 1 of File C, have thicker tangential walls toward the phloem than toward

the xylem as they should since the initial is more active toward the xylem

and a complete new primary wall is deposited after each successive division

(94). The ray initial is undoubtedly the small ray cell in line with the

fusiform initials. Preservation of cytoplasm and organelles in ray cells was

generally superior to that in developing tracheids (Fig. 9), probably because

the rays are not as highly vacuolated (96).

Wart formation does not occur until the final stages of cell differentia-

tion. However, for a better understanding of the entire process, it is impor-

tant to follow the development of the cell wall from the initial division to

cell death when the living contents degrade and disappear.

Division from the cambial initial and subsequent subdivision of the newly

formed mother and daughter cells produces a radial file of new xylem cells

each of which is enclosed by primary walls and adjoined by an amorphous inter-

cellular layer, the true middle lamella. Figure 10 shows a wall formed by a

recent division in the cambial zone. The new wall indicated by arrow is much

thinner than those on either side.
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Figure 9. Newly-Formed Longitudinal Tracheids (T) and Ray Parenchyma
(RP) in Cambial Zone; June 12 Sample, KMnO4 -Fixed,
Pb Citrate- and KMnO 4-Stained UTS, TEM Plate 10006

Figure 10. Wall Formed (Arrow) by Recent Cell Division in the
Cambial Zone; June 12 Sample, KMnO4-Fixed, Pb

Citrate- and KMnO4-Stained UTS, TEM Plate 10053
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After a final division, cell enlargement begins during which the cells

increase in their radial dimensions and the secondary wall is deposited. The

latter process involves the synthesis and incorporation of polysaccharides

into the cell wall. According to Northcote (73), pectins and hemicelluloses

are synthesized within the Golgi bodies and transported as membrane-bound

material within associated vesicles across the plasmalemma by reverse pinocy-

tosis where they are packed into the wall. Cellulose microfibrils, on the

other hand, are probably deposited onto the wall by an enzymatic complex at the

external surface of the plasmalemma.

Secondary wall deposition is occurring in Cells 7-11 of File C in Fig. 8.

Figure 11 shows the concentration of organelles along a cell wall as secondary

deposition nears completion. Golgi bodies, mitochondria, endoplasmic reticulum

profiles, and associated vesicles can be observed along the developing tangen-

tial wall, between the two cytoplasmic membranes, the plasmalemma and the vacuole

tonoplast. Organelles may also be seen in a developing bordered pit of the

adjacent cell. [Identification of the organelles in Fig. 11 was based on a

discussion of plant cell contents by Clowes and Juniper (97).] The delamin-

ation in the cell corner is an artifact that sometimes occurs in sectioning

unlignified cell walls.

Bordered pit development, which also occurs during secondary wall depo-

sition, can be observed in the differentiating cells in Fig. 8, especially in

Files B and D. The pit borders in contiguous cells do not necessarily develop

symmetrically as illustrated in Cell 8 of File C. Figure 12 is a high magnifi-

cation portion of Fig. 8 depicting a nearly developed bordered pit before warts

are formed. Note that the pit membrane is a double primary wall structure

which is separated in this figure by swelling in the intercellular region.
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The large organelle is probably a plastid. The arrow in Fig. 12 indicates the

permanganate-stained lignin pattern extending into the initial pit border.

According to Schwarzmann (98), lignification proceeds within the initial pit

border before other areas of the secondary cell wall.

The major part of wood lignification occurs after secondary wall depo-

sition is complete and before wart formation. Lignin can be seen in ultrathin

wood sections because of its staining reaction with potassium permanganate,

which has been shown to be specific for the lignin component of the cell wall

(99, 103). The darkly stained walls of the last two or three maturing cells

of each file in Fig. 8 indicate completed lignification. In the next few cells

nearer the cambium, lignification had begun but was not complete.

After the intercellular region was lignified, wall lignification began in

the cell corners just inside the primary wall and proceeded through the walls

of a cell beginning in the S1 and continuing toward the lumen. Figure 13

shows the wall between Cells 9 and 10 of File C in Fig. 8. In the initial

stages of lignification the Sl appears more darkly stained than the primary

wall or the rest of the secondary wall (see arrow in Fig. 13). This has also

been shown in developing balsam fir tracheids by Schwarzmann (98). He reported

that lignification first extends along the tangential wall farthest from the

cambium, then proceeds along the radial walls and finally along the tangential

wall nearest to the cambium. Wardrop (100), however, reported that both

tangential walls appear to become lignified somewhat before the adjacent radial

walls. In the present study neither described pattern of wall lignification

was consistently observed. As could best be determined, lignification began

in the corners but then proceeded in all four walls of a cell nearly

simultaneously.
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Figure 13. Early Stage of Lignification in Tracheid Tangential Wall;
Intercellular Region and S1/S2 Interface (Arrow) Appear

More Darkly Stained than the Rest of the Wall; June 12

Sample, KMn04 -Fixed, Pb Citrate- and K~vnO4-Stained

UTS, TEM Plate 9800
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Figure 14. Double Tangential Wall Between Adjacent Tracheids Which

are in Different Stages of Lignification; June 12 Sample,
KMn04-Fixed, Pb Citrate- and KMnO4-Stained UTS,

TEM Plate 10247
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Two conflicting theories concerning the origin of lignin precursors are:

(l) they are formed in the cambial zone and are subsequently transported into

the matrix of secondarily thickened walls where polymerization takes place,

e.g., ClOl), and (2) they are synthesized within the individual differentiating

cells and then incorporated into the cell walls, e.g., (102). Figure 14

shows the double tangential wall between adjacent cells in radial File A of

Fig. 8. The wall farther from the cambium is more completely lignified as

shown by the darker permanganate staining. Since both polymeric lignin and its

monomeric precursors would presumably be stained with permanganate (103),

this micrograph is evidence that the introduction of precursors to the cell

wall is directed by the cell. If the introduction of lignin precursors were

directed from outside the cell, one would expect lignification to proceed

equally in both halves of a double cell wall. This evidence does not exclude

the possibility that one cell wall by some intracellular process is made more

receptive than another to lignin precursors produced and transported from

elsewhere. However, the most plausible explanation in light of the existing

data is that precursors and any lignification-controlling functions originate

within the individual cell and that the lignification process itself begins

and ends entirely under individual cell direction. According to this explana-

tion, the precursors, in moving from the cytoplasm to the lignification site

are too dilute to give a dark staining reaction.

No organelle was observed to be directly associated with lignin synthesis

or incorporation since none were characteristically present near the areas of

lignin deposition. Hepler, et al. (99) also could find no organelle or dis-

cernible cytoplasmic structure involved in the process of lignification.

Pickett-Heaps (104), however, contended that Golgi bodies and associated

vesicles may add tritiated lignin precursors to the wall.



-58-

Warts first develop at about the time cell wall lignification is complete.

Schwarzmann (98) has shown evidence that wart formation may occur before the

entire S3 layer is lignified; however, in the present study, wart formation was

observed only after S3 lignification was complete. In File C of Fig. 8, warts

first occur in Cell 11. Analogous to the lignin depositional pattern, warts

develop first in cell corners and then on the radial and tangential walls nearly

simultaneously. Warts form in pit cavities at about the same time that they are

forming in cell corners of the same tracheid. Interestingly, the distribution

of warts on the surface of the inner pit border (see Fig. 6) corresponds to the

extension of lignified areas within the pit border (see Fig. 12, arrow).

Warts seem to appear first as small mounds that stain slightly darker with

permanganate than the rest of the secondary wall (Fig. 15). (It is necessary

to examine all the developing warts on the cell wall in cross section to be sure

that they are actually small mounds and not tall, mature warts merely sectioned

off-center.) Warts continue to protrude into the lumen and, when mature, they,

along with the amorphous terminal layer, stain much more darkly than the rest of

the cell wall (see Fig. 5). Wart formation in developing latewood tracheids

follows the same course as in earlywood.

An important observation is that warts are developed exterior to the plasma-

lemma before the cytoplasm degenerates and is lost from the cell. Figures 16

and 17 show recently developed warty layers in living cells of earlywood and

latewood, respectively. It appears that some cytoplasmic contents have begun

to deteriorate, perhaps due to incomplete fixation, but it is clear that warts

are definitely formed while the cytoplasm is still present. The warty layer,

therefore, cannot consist of desiccated cytoplasmic membranes with organelles

trapped between to form the protrusions. This conclusion is consistent with

earlier studies (19, 65).
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Figure 15. Beginning of Wart Formation on the Cell Wall Exterior to the
Plasmalemma; June 12 Sample, KMnO 4-Fixed, Pb Citrate-

and KMnO4-Stained UTS, TEM Plate 10086

No organelle was found to be associated with wart formation, although

occasionally the plasmalemma appeared to retract slightly from the wart

structure, sometimes breaking, and giving the appearance of some vesicular

material (Fig. 15 and 18). This occurrence may have been a result of partial

plasmolysis in the imperfectly fixed cell or it may represent plasmalemma in-

vagination as described by Timell (96). There was no unique feature observed

within the cell wall beneath the forming wart.
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Figure 16A and 16B. Recently Developed Mature Warty Layers in Living
Earlywood Tracheids with Cytoplasm Still Present; 16A.

June 12 Sample, KMnO4-Fixed, Pb Citrate- and KMnO 4-
Stained UTS, TEM Plate 9805; 16B. June 12 Sample,

FAG-Fixed, Pb Citrate- and KMnO4-Stained UTS, TEM Plate 9770
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Figure 17. Recently Developed Mature Warty Layer in Living Latewood
Tracheid with Cytoplasm Still Present; July 13 Sample,

KMnO4-Fixed, Pb Citrate- and KMnO4-Stained UTS,
TEM Plate 10016

In mature tracheids, warts were more numerous and larger in the corners

than along the walls (Fig. 19). In a few cases, an interior, basal portion

of the warts along the cell wall stained less darkly with permanganate than

the rest of the wart structure (Fig. 20). This may indicate a two-component

composition for the warty layer.
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Figure 18. Newly-Formed Warty Layer with Plasmalemma Retracted and
Broken in a Few Places; June 12 Sample, KMnO4-Fixed,
Pb Citrate- and KMnO 4-Stained UTS, TEM Plate 9781

Figure 19. Micrograph Illustrating the Typical Situation Where Warts
are More Numerous and Larger in the Cell Corners than
Along the Walls; June 12 Sample, KMnO4 -Fixed, Pb
Citrate- and KMnO4-Stained UTS, TEM Plate 10246
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Figure 20. Mature Cell Wall with Interior of Some Warts not as
Darkly Stained as Outer Portion; July 13 Sample, GAG-Fixed,

Pb Citrate-and KMnO 4-Stained UTS, TEM Plate 10056

Wart formation was the last step in cell wall development. Shortly

after the warty layer was elaborated, the cytoplasm disappeared from the cell

without leaving any apparent, disorganized residue.



SURFACE EXAMINATION OF THE DEVELOPING CELL WALL

Additional evidence on the development of the cell wall in differentiating

balsam fir tracheids came from examination of surface replicas of cambial

tissue prepared by sectioning unfixed, collodion-embedded samples. Developing

earlywood provides the best experimental material for examining the inner sur-

face of differentiating cells since earlywood cells have a larger radial dimen-

sion than latewood cells. Figures 21A-21H show the inner surface of tracheids

as they develop in a radial file moving inward from the cambium. The wall

exposed in each cell is the last portion of the wall deposited when the sample

was taken. Figures 21A and 21B are of two adjacent tracheids, and the rest of

the series are of six adjacent tracheids from a different file. (Tracheid axis

is parallel with the long axis of each micrograph in Fig. 21.) The entire set

corresponds to Cells 5 or 6 through 12 in File C of Fig. 8. The series is

representative of the sequential cell wall layers deposited on a single tracheid

as it develops. (Refer to Fig. 1 for a model of the layers in a mature soft-

wood cell wall.)

Figure 21A shows the irregular orientation of the microfibrils on the

inner surface of the primary wall, which is deposited after the initial division

in the cambial zone. Figure 21B illustrates a lamella in the S1 layer with the

microfibrils oriented almost normal to the tracheid axis, following a flat

helical pattern. The microfibrils in the S2 layer CFig. 21C) display a steep

helical pattern oriented 10°-20° to the fiber axis. Figure 21D shows a more

interior part of the S2 layer with microfibrils oriented nearly the same as

in the preceding cell. In Fig. 21E is shown the S3 layer with microfibrils

oriented at about 70° to the fiber axis, forming a relatively flat helix.
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Figure 21A-21D. Inner Surface of Developing Tracheids in a Radial File
Moving Inward from the Cambium: A. Primary Wall,

B. S1 Layer, C. Exterior Part of S2 Layer,
D. Interior Part of S2 Layer; June 12 Sample,

Replica, TEM-Plates 10018, 10019, 10036, and 10037
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Figure 21E-21H. Inner Surface of Developing Tracheids in a Radial File
Moving Inward from the Cambium: E. S3 Layer,

F. Immature Warty Layer, G. Nearly-Mature Warty Layer,
H. Mature Warty Layer; June 12 Sample, Replica, TEM

Plates 10038-10041
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In the material examined, no developing cells were observed in which the

microfibrillar orientation of the last-deposited lamella was intermediate be-

tween the orientation of the Sl and S2 or between that of the S2 and S3.

Therefore, any intermediate lamellae are deposited and then covered quite

rapidly. Figure 21F exhibits the S3, partially encrusted, but the micro-

fibrillar orientation is still evident. This micrograph is a surface view

of the warts in an early stage of formation. Figure 21G shows a nearly

mature warty layer. The microfibrillar orientation of the underlying S3 layer

is now totally obscured. These two micrographs, Fig. 21F and 21G, confirm

the fact that mature warts develop over a period of time and do not appear

suddenly as reported by Wardrop, et al. (16). The next cell (Fig. 21H) dis-

plays the mature warty layer of a completely differentiated cell. The warts

here are more numerous, indicating that a few more are formed in this final

interval.

The radial face and corner inside a differentiating cell is shown in Fig.

22. Warts on the radial face appear as low mounds, while those in the corner

appear to protrude higher into the lumen. This micrograph illustrates and

confirms the fact that warts develop earlier in cell corners.

The electron micrographs, Fig. 21A-21H and 22, were purposely taken of

wall surface areas not obscured by plasmolyzed cytoplasm. Figures 23A and

23B show evidence of cytoplasm over developing warts and mature warts,

respectively. These micrographs provide further confirmation that the cell

is living when the warty layer forms. The desiccated cytoplasmic material

often appeared as strands aligned perpendicular to the fiber axis in the more

completely developed cells. The orientation was nearly parallel to the

orientation of the last-deposited S3 microfibrils. Such observation may

indicate a relationship between some organization in the cytoplasm, or its
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membranes, and the orientation of the deposited microfibrils. In cells

beyond the differentiating zone, there was no evidence of desiccated

cytoplasm anywhere on the cell wall. By this time all the cytoplasm and

associated organelles and membranes had degraded and left the cell. This

is contrary to Wardrop and Harada (105) who contended that the final layer

of the mature cell consists of denatured remnants of the cytoplasm.

;~~~~~~~ '-~~~~~~~~~~~~~·5~. ''3
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Figure 22. Radial Face and Corner Displaying Developing Warty
Layer; June 12:Sample, Replica, TEM Plate 10043
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Figure 23A and 23B. Cytoplasmic Remains over a Developing Warty Layer:
A. Immature Warts, B. Mature Warts; June 12 Sample,

Replica, TEM Plate 10042 and 10048
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In the study of the last-deposited cell wall in differentiating tissue,

no evidence was found for Wardrop and Harada's conclusion (105) that

secondary wall thickening begins near the center of cells and progresses to-

ward the cell tips. In all developing tracheids examined, the same micro-

fibrillar orientation occurred over the whole length of the cell visible.

(The sections were often slightly oblique, preventing examination of the

entire cell, tip to tip.) The present findings are consistent with Wooding

(106) who found that incorporation of both labeled glucose and phenylalanine

was simultaneous at all points along the wall.

In conjunction with the examination of the developing cell wall, membranes

in differentiating bordered pits were also studied. The sequential steps in

the development and perforation of the intertracheid pit membrane is shown in

Fig. 24A-24D. Figure 24A shows the primary wall pit structure and the be-

ginning of secondary thickening to form the pit border. Microfibrils in the

membrane region are randomly oriented and no torus is evident yet. From ultra-

thin sections, it is apparent that torus thickening begins shortly after the

time that secondary wall deposition and pit border formation begins (see Fig.

8). This is not to say, however, that the torus is similar to secondary wall

material. The origin of bumps observed on this early membrane structure (Fig.

24A) is unknown, though they could represent the beginning of torus formation.

Figure 24B shows the lumen-side view of a pit with the borders more developed.

Here the central torus is evident with circularly oriented microfibrils at the

periphery.. The outer-margo region remains unperforated. Because of membrane

encrustation, only the larger, radially apposed microfibrils are easily seen

in the developing margo.
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Figure 24A-24D. Stages in the Development and Perforation of the Membrane
in Intertracheid Bordered Pits: A. Primary Wall Pit

Structure, B. Developed Torus and Imperforate
Margo, C. Initial Perforation of Margo, D. Further

Perforation of Margo; June 12 Sample, Replicas,
TEM Plates 10244, 10139, 10210, and 10145
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Figure 24C shows a split wood section and initial perforation of the

margo region. This phenomenon does not proceed in membrane development until

after wart formation is complete on the dell wall. The perforation process

probably begins at the time of overall cell autolysis, shortly before the

cytoplasmic material is eluted from the cell. The process may involve a

combination effect of enzymatic action of the withdrawing cell contents and

later physical erosion by the intercellular transpiration stream (107).

Figure 24D shows further perforation in the margo region.

Figure 25 shows a mature pit membrane with perforation essentially com-

plete. The warts are visible through a torn portion of the membrane, on the

underlying pit border. Except for the tear this is presumably how the mature

pit membrane appears in vivo. However, drying and preparation procedures

for electron microscopy may have caused undetermined structural changes.

Additional illustration of membrane perforation was provided by ultra-

thin sections of differentiating tracheids. Figure 26A shows a pit in which

the secondary wall and the warty layer have already been formed. At this

stage there is still cytoplasm left in the cell, and the margo appears solid

throughout. Later, after the membrane is perforated the margo in cross

section is seen to consist of only two thin layers of microfibrils with a

dense annulus at the edge (Fig. 26B). This phenomenon was visible only with

aldehyde-fixed sections. With permanganate, the membrane of a bordered pit

swells and separates (see Fig. 14), and there is no difference in appearance

of the sectioned margo before and after preparation.

A more complete discussion of the development of the bordered pit

membrane is published elsewhere (107).
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Process of the Intertracheid Pit Membrane:
A. Before Perforation; June 12 Sample, FAG-Fixed,
Pb Citrate- and KMnO 4-Stained UTS, TEM Plate 9740,
B. After Perforation; July 13 Sample, GAG-Fixed,
Pb Citrate- and KMnO 4-Stained UTS, TEM Plate 10058, a, '' ' _ ~", *--:* ''t' * a, ,w' ," ':,
Pb Citrate- and KMnOs-Stained UTS, TEM Plate 10058

Figure 2
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RESULTS OF TREATMENTS ON THE WARTY LAYER
OF BALSAM FIR WOOD

The object in treating fir wood by different procedures and then assessing

the effect on the warty layer was twofold. First, the response of the warty

layer to various treatments gave some indication of the composition of this

structure. The more specific the action of the treatment, the more precise

the information that could be obtained. Second, if the warty layer was re-

moved from the wood by a certain treatment, both the residual wood and the

dissolved constituents were analyzed in an attempt to determine the chemical

constitution of the warty layer. A problem here, however, was that since the

warty layer makes up only about 2% of the total wood, the wart material often

represented a minority of the total isolated material of a given treatment.

Also, any treatment that dissolved the warty layer may have also altered it

chemically, making determination of its native structure extremely difficult.

CHEMICAL TREATMENTS

The results of numerous chemical treatments on the warty layer of balsam

fir are summarized in Table V. The effects caused by some of the treatments

are shown in Fig. 27-42. With some exceptions, the results of these treat-

ments were consistent with those of other workers presented in Tables IIIA

and IIIB. Treatments found by previous workers to remove the warty layer but

that had no effect on balsam fir warts were phosphoric acid (12) and neutral

solvent extraction (42). Generally, however, balsam fir warts were found to

exhibit the same reactivity as the warts of other species, both softwoods

and hardwoods.
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TABLE V

ACTION OF CHEMICALS ON THE WARTY LAYER
OF BALSAM FIR

Action

Soxhlet extraction with neutral
solvents

Dioxane, room temp., 6 days

Dioxane, 60°C, 24 hr

Dimethylformamide, 125°C, 27 hr

Phenol, 90°C, 21 hr

Phosphoric acid, room temp., 3 hr

Chromic acid-nitric acid, room
temp., 1 hr

Sulfuric acid, room temp., 35 hr
(surface of wood embedded with
polystyrene)

DMSO-HC1, all 150°C

0.1% HC1, 3 hr

0.1% HC1, 5 hr

0.5% HC1, 3 hr

No detected effect

No detected effect

No detected effect

No detected effect

No detected effect

No detected effect

Amorphous supporting layer is removed
exposing the S3, warts present but
smaller, appear as low mounds CFig. 29)

Amorphous layer present, warts slightly
smaller (Fig. 33)

Warts present but perhaps smaller

Warts removed in some areas, present
but smaller in others

Warts completely removed from the
lumen surface, small grains remain
(Fig. 30)

H202-Acetic

5%

15%

7.5%

15%

15%

30%

acid, all 2 hr

16.7%, room temp.

0%, room temp.

25%, 450C

50%, 45°C

50%, 90°C

0%, 90°C

Chlorite delignification, pH 4.0,
room temp., 4 weeks

No detected effect

No detected effect

No detected effect

Warts unchanged, some of the amorphous
layer may be dissolved

Warts and amorphous layer partially
dissolved CFig. 31A)

Warts and amorphous layer completely
dissolved (Fig. 31B)

Warts and amorphous layer completely
dissolved

Amorphous layer extensively dis-
solved, residual wart material
present as flat mounds (Fig. 32)

Treatment

7.5% 25%, 90°C
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TABLE V CContinued)

ACTION OF CHEMICALS ON THE WARTY LAYER
OF BALSAM FIR

Treatment Action

Sodium hydroxide-sodium sulfide, No detected effect
60°C, 2-2 hr

17.5% Sodium hydroxide, 60°C, No detected effect
22 hr

0.1N Potassium hydroxide, 90°C, Warts and amorphous layer slightly
2 hr dissolved, warts lying down CFig. 28)

Digitonin, room temp., 11 days No detected effect

Urea, room temp., 6 days No detected effect

4-Methylmorpholine 4-oxide, Cell wall indiscriminately eroded
90°C, 22 hr (Fig. 27)

Cadoxene, room temp., 4 days Warts unchanged, pit margo dissolved

Quaternary ammonium base, 50°C, No detected effect
22 hr

DMSO , 150°C Warts extensively dissolved after
10 hr (Fig. 34A-34D)

Dioxane-0.5% HC1 , 70°C Warts extensively dissolved after
161 hr (Fig. 36A-36D)

30% H202 , room temp. Warts extensively dissolved after
14 days (Fig. 38A-38D)

3% Peracetic acid , 60°C Loblolly pine warts dissolved after
1 1/3 hr (Fig. 40A-40B); small mounds
remain of balsam fir warts after 25 hr
(Fig. 41)

aThe results of these treatments are described more extensively in the text.
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Several deductions can be made concerning the composition of the warty

layer based upon the response of this structure to different chemical treat-

ments.

Neutral solvents do not remove the warty layer, so it is not likely that

wart structure consists of resinous deposits or other extractives. The

digitonin treatment had no effect whatsoever. As a membrane-dispersing agent,

it presumably would disrupt components found in a cytoplasmic membrane system.

The cellulose solvent, cadoxene, had no apparent effect on the warty

layer, though the radiating microfibrils of the margo portion of the bordered

pit membrane were dissolved. The tissue solubilizer, a quaternary ammonium

base, also had no effect on the wart structure. 4-Methylmorpholine 4-oxide

apparently eroded the entire wood structure including the warty layer (Fig.

27), but this chemical is not a specific solvent since it reportedly dissolves

cellulose, hemicellulose, and lignin (87).

Treatments with concentrated alkali had no effect on the warty layer.

The temperature for the treatments, 60°C, was probably not high enough for

them to be effective delignifying agents (108). At higher temperature (90°C)

and low alkali concentrations (O.1N), the warts were slightly affected (Fig.

28). Probably the major attack under these conditions occurs on the less

resistant carbohydrates (109). Other investigators (46) have shown that the

warty layer is removed under harsher conditions of kraft or soda pulping.

The following reagents can be classified as nonspecific, delignifying

treatments: DMSO-HC1 (110), chromic-nitric acid (111), acetic acid-hydrogen

peroxide (111), and hydrogen peroxide alone (111). Under mild conditions

these reagents can dissolve a portion of the warty layer, leaving small, flat
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Figure 27.' Mature Warty Layer Treated
with 4-Methylmorpholine

4-Oxide at 90°C for 22 Hr;
Replica, TEM Plate 10259

Figure 29. Mature Warty Layer Treated
with 10% Chromic Acid-10% Nitric
Acid (1:l) at Room Temperature

for 3 Hr; Replica,
TEM Plate 10256

Figure 28. Mature Warty Layer Treated
with 0.1N Potassium Hydroxide

at 90°C for 2 Hr; Replica,
TEM Plate 10119

Figure 30. Mature Warty Layer Treated
with.0.5% HC1 in DMSO at 150°C

for 3 Hr; Replica,
TEM Plate 9443
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mounds (Fig. 29, 31A). If harsher conditions are used, no wart remnants or

S3 encrustants remain (Fig. 30, 31B).

The chlorite treatment is known to extract nearly all the lignin portion

of wood while leaving the total carbohydrate fraction (86). Very small

patches are left on the lumen surface and in many pit borders of fir chlorite

holocellulose. The remnants are nearly flat with about the same diameter as

the base of untreated warts (Fig. 32). The S3 layer here remains slightly

encrusted, but the microfibrils are quite conspicuous. Interestingly, there

is a similarity between the residual warts of fir holocellulose (Fig. 32) and

the developing warts in differentiating tissue (see Fig. 21F).

Sulfuric acid shrinks the warts, but the amorphous layer and the protrud-

ing structures remain (Fig. 33). Treatment with this reagent is known to

hydrolyze polysaccharides, leaving "Klason lignin" (112, 113). Some carbo-

hydrate component from the interior of the wart structure may have been removed

or the lignin portion may have been condensed by the treatment to cause the

shrinkage. The majority of the wart structure and amorphous layer, however,

are clearly ligninlike in composition.

Only by embedding the surface of wood sections in polystyrene before

sulfuric acid treatment was the organization of the residue maintained and the

ultrastructure of the lumen surface distinguishable. It is not surprising,

therefore, that Scurfield and Silva (12) could not identify warts in wood

hydrolyzed with sulfuric acid because of the considerable breaking of the

unsupported cell wall. Thepolystyrene backing procedure used in this study

does not shield the warty layer from the acid since the wart material was

easily dissolved from the embedded section with sulfuric acid followed by

chromic-nitric acid in the replica preparation procedure. It is difficult
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Figure 31A and 31B. Warty Layer Treated with Hydrogen Peroxide-
Acetic Acid at 90°C for 2 Hr: A. 7.5% H20 2-25% Acetic

Acid, B. 15% H202-50% Acetic Acid; Replicas,
TEM Plates 9217 and 9216
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Figure 32. Warty Layer Treated with 4.5% Sodium Chlorite,
pH 4.0, at Room Temperature for 4 Weeks;

Replica, TEM Plate 10074

Figure 33. Warty Layer Treated with 72% Sulfuric Acid at
Room Temperature for 35 Hr; Replica, TEM Plate 10083
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to agree with Wardrop, et al. (16) that warts are unchanged after treatment

with sulfuric acid. Some shrinkage definitely occurs (Fig. 33).

From the response of the warty layer to the different chemical treatments,

it can be concluded that the major component of the warty layer is ligninlike.

Some nonmicrofibrillar polysaccharide material likely makes up the basal compo-

nent of the warts and the cell wall side of the accompanying amorphous layer.

These latter features remain after chlorite delignification.

Four chemical treatments were studied more thoroughly to obtain informa-

tion on the nature of the reactions that dissolve the warts. For each treat-

ment, preliminary work was carried out to establish conditions necessary to

extract the warty layer.

Dimethylsulfoxide (DMSO) Treatment

Dimethylsulfoxide is not a specific solvent for any single component in

the cell wall. There are reports that it has been used as a solvent for hemi-

cellulose (114) and lignin-carbohydrate complexes (115) and as an oxidant and

solvent for lignin (110).

Action of Dimethylsulfoxide CDMSO)

When firwood is treated with DMSO at 150°C, the warts are removed after

about 10 hr. Figures 34A-34D show the condition of the warty layer on the

lumen surface at different stages of the DMSO extraction. After 5 hr of treat-

ment, the amorphous layer and warts are still intact 9Fig. 34A). The only

change is that some warts are lying down. Such warts appear to coalesce with

the amorphous layer and with each other. This action probably involves thermal

softening and adhesive properties of the warts developed at the high tempera-

ture (116). After 10 hr of treatment the protruding warts are gone (Fig. 34B),
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Figure 34A-34D. Stages in Warty Layer Treatment with DMSO at
150°C: A. 5 Hr, B. 10 Hr, C. 13½ Hr, D. 15 Hr;

Replicas, TEM Plates 9506, 9500, 9462, and 9493
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but a granular substance remains on the amorphous layer in locations where

the warts were once present. This granular material was not extractable in

boiling water. The amorphous layer is still intact covering the S3.

The warts are extensively removed in a surprisingly short time range in

the period from about 9 to 11 hr. Generally, earlywood warts are removed

slightly before latewood warts. Warts on the lumen-side of intertracheid pit

borders are slightly less resistant than those on the rest of the cell wall,

while those in the pit cavity are slightly more resistant.

By 13.5 hr of treatment (Fig. 34C), much of the granular substance has

been removed. The amorphous layer is still plainly present. After 15 hr

(Fig. 34D), the remaining granular substance has been dissolved, and the

microfibrils of the S3 are now faintly visible.

Prior extraction of the wood with neutral solvents had no effect on the

rate or action of the DMSO solvolysis or on the results of other chemical

treatments studied. Because of this circumstance, and since balsam fir is so

low in extractive content anyway (117), wood samples were not usually extracted

before treatment.

When the wood was oven-dried in vacuo at 105°C before DMSO treatment as

it was here, the warts were removed in a slightly shorter time than if the

wood was not dried (10 hr as opposed to 13 hr). Apparently, heating the wood

under these conditions alters the structure or composition of the warty layer,

making it more susceptible to DMSO dissolution. It is likely that oven drying

in vacuo removes water of composition from wood constituents, thus forming

condensation products. It is difficult to explain, however, why this would

make the warts less resistant to the treatment.
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The yield of firwood during DMSO treatment is given in Fig. 35. Klason

lignin and apparent carbohydrate content determined by difference are also

plotted. One drawback to Klason lignin determinations of treated wood is

that some of the residual lignin in the wood may be modified by the treatment

so that it is no longer insoluble in sulfuric acid. This would result in lower-

than-actual values for the lignin content of treated wood. The Klason lignin

content of balsam fir was 32.8% of the extractive-free, dry wood.

Consistent with the reported multiple-specificity of DMSO, the lignin and

nonlignin portions of firwood are both extracted during the first 10 hr of

treatment. Consequently, there are few clues to the composition of the warty

layer from the analysis of residual wood. Still, an important observation that

can be made is that while the warty layer is the most accessible portion of the

cell wall to treatment solutions, it is not dissolved until 46% of the total

lignin and 25% of the nonlignin part of the wood is dissolved (Fig. 35). There-

fore, while the warty layer may be similar to lignin in its response to

different treatments, it was more resistant to DMSO than about half of the

lignin in wood. This difference in reactivity is probably due to a higher

degree of condensation of the lignin molecule in the wart structure compared

with lignin in the rest of the cell wall.

Analysis of Dimethylsulfoxide (DMSO) Extracted Material

Since so much material from the wood was solubilized by the DMSO treat-

ment by the time the warts were removed, it was impossible to determine the

composition of the warts by analyzing the total extraction solution. What

was sought instead was any abrupt difference in properties between the ex-

traction solutions immediately before and immediately after warts were removed.
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The same situation also existed for the dioxane-HCl extractions; consequently,

subsequent analyses of the latter series followed the same strategy.

The pH of DMSO, both as a pure solvent and in a dilute aqueous solution,

was slightly alkaline. During the first 6 hr of treatment, acidic groups were

extracted from the wood, and the pH of the extraction solutions fell to a

plateau value in the 3.5 to 4.0 range. Longer treatments resulted in no

further drop in pH.

The UV absorbance spectra of the DMSO extraction solutions showed a

definite peak at 277-278 nm and a shoulder at 315 nm. This absorbance is

characteristic of lignin. The spectrum is likely a composite of absorption

bands of different units that constitute the lignin polymer (118). The ab-

sorbance in the peak region is related to oxygen substitution on the aromatic

ring of lignin. The absorbance at longer wavelengths appearing as a shoulder

on the main peak can be attributed to the presence of carbonyl groups or double

bonds conjugated with the benzene ring (118). DMSO alone is transparent only

at wavelengths greater than 258 nm. The spectrum at lower wavelengths was,

therefore, confounded by the extracting solvent.

Absorbance of the treatment solutions increased with longer extraction

times as more lignin material was dissolved. However, there was no change

in the general features of the spectra when warts were removed. It is known

that the wart material absorbs UV light (16). Therefore, from the present

work it can be concluded that the DMSO-dissolved wart structure has a UV

absorbance similar to the extracted lignin, or if different, it is too dilute

to be distinguished.
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The refractive indices of the DMSO extraction solutions determined at

18.8°C increased gradually from 1.4790 for 0-hr treatment (pure DMSOI to

1.4794 for 14-hr treatment. There was no abrupt change in this property

when dissolved warts entered the DMSO solution. A gradual increase in re-

fractive index with longer treatments was not surprising since lignin has a

measured refractive index of 1.61 (112) and that of warts has been estimated

at 1.52 (16).

Centrifugation and ultracentrifugation of DMSO treatment solutions

produced no sediment, indicating that warts were in fact dissolved and not

merely freed during the treatment. Analytical ultracentrifugation of the

14-hr solution, which contained dissolved warts, gave a sedimentation coeffi-

cient of 0.18 s for the dissolved material in DMSO. This value is quite low

compared with those for other isolated lignins (119), indicating that a sub-

stantial amount of low molecular weight material was present in the extraction

solution. The 150°C, DMSO extraction was probably more than just a solvolysis

of wood constituents since some depolymerization apparently occurred. Some

extracted material could be precipitated from the DMSO solution with an excess

of water, and the freeze-dried material was only partially soluble in dioxane,

suggesting that high molecular weight material was also present.

Paper chromatography was used to isolate any low molecular weight lignin

or carbohydrate components in the DMSO treatment solutions. The concentrated

71- and 12¼-hr extractions were chromatographed in duplicate and detected.

These solutions represented treatment durations before and after the warts

were dissolved. The only clearly detectable substances found in the lignin

developing system, Solvent IV, were at Rf values of 0.86, 0.61, and at the

origin. Of these, the component at 0.61 appeared to be the most abundant.



-90-

The unknown component of greater mobility has an Rf value C0.86) and color

reaction similar to known samples of vanillin CRf = 0.85) and acetovanillone

CR = 0.86) chromatographed simultaneously. The other component had an Rf

value (0.61) in the range of ferulic acid (Rf = 0.57) and 4-hydroxy 3-methoxy-

phenylacetic acid (Rf = 0.65) but a different color reaction from these known

samples. The unknowns were detected in both extraction solutions using both

detection reagents, 2,4-dinitrophenylhydrazine and diazotized p-nitroaniline;

therefore, no unique material could be associated with the warts. From

chromatogram color concentrations, there appeared to be slightly more fraction-

ated material in the treatment of longer duration.

The same concentrated DMSO extraction solutions described above were

also chromatographed with Solvent II to attempt identification of any sugars.

No material migrated in either extraction solution, but there was" material

detected at the origin. Therefore, any carbohydrates present were probably

in the form of polysaccharides.

Gas chromatography was used to analyze semivolatile components in the DMSO

extractions. DMSO itself had a retention time of 3.4 min, which masked the

area of the chromatogram between 2.8 and 6.0 min. The DMSO as supplied had

three minor impurities with retention times on the column of 0.4, 0.5, and

9.0 min. The material at 9.0 min increased if DMSO alone was heated at 1500 C.

Two additional components were products extracted from the wood. Both in-

creased in amount with longer extraction times and were not necessarily

associated with the wart material. One, of the latter products was volatile

with a retention time of 1.8 min, indicating that it was definitely non-

phenolic. It may be furfural, a carbohydrate degradation product with a

retention time of 1.8 min also, under identical column conditions. The
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other component had a longer retention, 11.5 min, which is in the range of

phenolic compounds. Phenol itself had a retention time of 11.2 min; guaiacol,

7.0 min.

The technique of gel permeation chromatography was employed to approximate

the molecular weight distribution of any lignin materials extracted with DMSO.

The 7-, 8-, 12¼-, and 14-hr solutions were eluted with DMSO through a Sephadex

G-25 column, which has an exclusion limit of 5000 for aqueous systems. Dis-

solved warts were present in the latter two treatments. The peak for a lignin

sample of high molecular weight (91) identified the excluded volume and the

beginning of the included volume. The peak for acetone identified the end of

the included volume.

The elution properties of any solute in the fractionation range of a

particular column can be described by a distribution coefficient, Kd, defined

as the volume fraction of the included solvent in the gel particles that is

available to the solute (90). K can be calculated from (Ve-Vp)/Vi, where

Ve is the elution volume of the solute, Vp is the elution volume of excluded

polymeric material, and Vi is the included volume.

On fractionation, all four of the above DMSO treatment solutions pro-

duced material in both the excluded volume (high molecular weight) and the

included volume (low molecular weight). Division of this material between

the excluded and included regions and the distribution coefficient of the in-

cluded peak is given in Table VI.

The distribution coefficients of the included material, both before

and after warts are extracted, are within the range of those for monomeric

lignin components eluted in the same system by other workers (90). The
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molecular weight of the excluded material here remains unknown other than

presumably it is equal to or greater than the exclusion limit of the column,

5000.

TABLE VI

DISTRIBUTION OF MATERIALS IN DMSO EXTRACTION SOLUTIONS
ELUTED THROUGH SEPHADEX G-25

Extraction Time, hr Excluded Material Included Material K

7 1.9 1.1 0.71

8 2.1 1.0 0.79

12¼ warts removed 7.9 3.5 0.74

14 6.6 5.1 0.78

Relative amounts of material calculated from area under UV-monitored
elution curve and corrected for amount of wood extracted.

Over the period of time in which warts are dissolved by DMSO extraction

(between the 8 and 12¼ hr), both low molecular weight and high molecular

weight material increase appreciably. It is therefore impossible to discern

from this work in what form (molecular weight) the wart material dissolved.

Dioxane-HCl Treatment

The warts of fir also can be removed by treating the wood at elevated

temperatures with dioxane containing a small amount of concentrated hydro-

chloric acid. Such acidolysis is known to extract lignin from wood (112),

causing in addition both depolymerization and condensation reactions (113).

The action of the treatment, however, is not specific for lignin, judging

from the fact that carbohydrate content may be substantial in extractions

so obtained (121).



-93-

Action of the Dioxane-HC1

In a series of treatments of dioxane-0.5% HC1 on firwood at 70°C, warts

were found to be removed after about 16½- hr. Figures 36A-36D show the con-

dition of the warty layer at different stages of this extraction.

Figure 36A shows the warty layer after 4½ hr of treatment. The warts

are intact, but the amorphous layer is slightly dissolved, revealing some

microfibrils of the underlying S3 layer. Up to this time there was no

apparent alteration of the lumen surface. After 14 hr (Fig. 36B), the warts

were partially dissolved, and the S3 orientation was quite visible, though

some encrustant remained. Figure 36C shows the warty layer after 16½ hr

with most of the wart material gone except for small mounds. The S3 orienta-

tion is visible as before. After 19 hr essentially all of the wart material

was removed (Fig. 36D). Only small granular patches are evident where in-

dividual warts once were. The S3 layer is quite evident here with some re-

maining encrustant.

With extended dioxane-HCl treatment the condition of the lumen surface

does not undergo much further change. Even after 56 hr, the small granular

patches of residual wart material and the remaining S3 encrustant still persist.

The yield of firwood during dioxane-HCl treatment is given in Fig. 37.

By the time the wart material is dissolved, 46% of the total wood substance

is gone, including 65% of the Klason lignin and 38% of the apparent carbohy-

drate, even though the warty layer is the most accessible portion of the cell

wall. It is apparent that this extraction favors but is not strictly

specific for lignin, since during the first 5 hr of treatment significant

carbohydrate extraction takes place. From that point on, extraction of

carbohydrate continues but at a much slower rate. The rate of lignin
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Figure 36A-36D. Stages in Warty Layer Treatment with Dioxane-
0.5% HC1 at 70°C: A. 42 Hr, B. 14 Hr, C. 16½ Hr,

D. 19 Hr; Replicas, TEM Plates 10248-10251
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extraction is greatest during the first 15 hr of the treatment; however, it

also continues beyond this time at a slower rate.

The results presented in Fig. 37 are for wood vacuum-dried at 60°C before

treatment. When the wood was vacuum-dried at 105°C, the warty layer was not

dissolved, even after 60 hr of treatment. At 12 hr of treatment, the wood

dried in vacuo at the higher temperature had a total wood yield of about 73%.

Continued treatment resulted in no further weight loss. Evidently, vacuum

drying at 105°C changes the composition of the warty layer and other wood

constituents, rendering them resistant to the action of dioxane-HC1. A

reasonable explanation is that water of composition is removed at 105°C in

vacuo and not at 60°C. The condensation products thus formed at the higher

temperature are then apparently more resistant to the dioxane acidolysis

treatment.

Analyses of Dioxane-HC1 Extracted Material

The pH of the dioxane-HC1 extraction solutions was always below 0.5,

indicating that acid was in excess even at the longest treatment times.

Within the transparent range of the solvent, the UV absorbance spectra

of the dioxane-HC1 extraction solutions showed peaks in the 269-277 nm range

and shoulders at 315 nm. The maximum gradually shifted to longer wave-

lengths for the longer extraction times. This was perhaps due to an increase

of material absorbing in the 315 nm range at longer treatment times. The

ratio of absorbance at 315 nm to that of the main peak increased from 0.22 at

1 hr of treatment to 0.50 at 49 hr. Since the change in absorbance was gradual

over the treatment sequence, it could not be attributed solely to wart material.
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As with the DMSO treatment extractions, paper chromatography was also

used here to isolate any low molecular weight lignin or carbohydrate material

from the dioxane-HCl treatment. The concentrated 9½-, 14-, 19-, and 22 -hr

extraction solutions were chromatographed in duplicate and detected. These

solutions represent extractions before (9½- and 14-hr) and after (19- and 22½-

hr) wart removal. The major spots in the Solvent IV development system for

lignin monomers were at Rf values of 0.87, 0.72, 0.63, 0.54, 0.33, 0.24, 0.18,

and at the origin. Of these, the component at 0.63 appeared to be most

abundant. The component at Rf = 0.72 was detected only with 2,4-dinitrophenyl-

hydrazine and the component at R = 0.54 only with diazotized p-nttroaniline. The-f»

other spots were detected with both reagents. The fastest moving unknown

component had an Rf value (0.87) and color reaction similar to known samples

of vanillin (R = 0.85) and acetovanillone (Rf 0.86) chromatographed simul-

taneously. Components in the 0.55-0.65 Rf range had similar mobilities but

different color reactions compared to 4-hydroxy 3-methoxyphenylacetic acid

CRf = 0.65) and ferulic acid (Rf = 0.57). Several other workers (122, 123)

who have subjected dioxane acidolysis lignin to paper chromatographic analysis

have detected several monomeric phenylpropane derivatives plus vanillin. All

unknown components were found in all four extraction solutions and in about

the same amount; therefore, no unique material could be associated with the

warts.

The 14- and 22½2-hr dioxane-HCl extraction solutions were chromatographed

with Solvent II to identify any sugars present. Four fractionated components,

plus material at the origin were detected in both solutions. Two of the

components could be tentatively identified as glucose and mannose because of

their identical mobilities and color reactions to known samples. The other

two migrating components were likely disaccharides containing glucose or
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mannose or both. Within each solution the amounts of the four fractionated

components were nearly the same. There also was no obvious difference in

amount of components obtained from the longer extraction time (with dissolved

warts) compared to the short extraction time (without dissolved warts).

Gas chromatography was used to analyze semivolatile components in the

whole set of dioxane-HC1 extraction solutions. There was only slight quanti-

tative variation in the chromatograms for the different extraction periods.

There was no significant change in the pattern in those extraction solutions

in which the warts were dissolved.

Several peaks were present in the aforementioned chromatograms in addition

to solvent peaks at 0.5 and 0.6 min. Only two peaks, those at 1.4 and 19.2

min retention times, were products extracted from the wood. Both of these

were very small peaks and both were extracted in the early hours of the reaction

before the warts were removed, suggesting that low molecular weight components

were extracted early and that the warts are removed as high molecular weight

material. The origins of components representing the other peaks were deter-

mined by chromatographing several control solutions. The dioxane as supplied

had a minor contaminant perhaps arising from the 0.001% sodium diethyldithiocar-

bamate added by the supplier as a stabilizer.

Components at 3.7, 5.2, and 12.8 min represented dioxane-HCl reaction

products (or stabilizer-HC1 reaction products) that were formed when dioxane

and concentrated HC1 stood at room temperature. They were present in neither

the dioxane nor the HC1 used to make up the solvent. These components may

represent active species in the wood extraction because they were consumed

during the reaction with wood but were not diminished when the solvent was

heated alone. '
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Freudenberg (124) has suggested that the dissolution of lignin by

dioxane-HCl is due to some contaminant present in the dioxane. He was unable

to extract any lignin from sprucewood by heating it with a specially purified

dioxane in the presence of 1-2% HC1 at 110-120°C. While no confirmation of

this suggestion was attempted in the present work, the findings here indicate

that some reagent in addition to dioxane and HC1 may be involved in the ex-

traction.

The technique of gel permeation chromatography was used to approximate

the molecular weight distribution of the dioxane-HC1 extracted lignin material.

The 14- and 22'2-hr extractives were redissolved in DMSO and eluted through a

Sephadex G-25 column. The longer treatment contained dissolved warts while

the shorter treatment did not. Both treatment solutions had material in the

excluded and included portions of the eluted volumes with definite peaks or

shoulders in both regions. The division of material between the excluded and

included regions and the distribution coefficient of the included peak as

defined earlier are reported in Table VII.

TABLE VII

DISTRIBUTION OF MATERIALS IN DIOXANE-HC1 EXTRACTION
SOLUTIONS ELUTED THROUGH SEPHADEX G-25

Extraction Time, hr Excluded Materiala Included Materiala K
~d

14 7.7 6.9 0.72

2212 warts removed 12.0 6.5 0.70

Relative amounts of material calculated from area under UV-monitored
elution curve and corrected for amount of wood extracted.
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The distribution coefficients for the included material, like those for

the DMSO extracted material, are consistent with the values for monomeric

lignin components eluted from the same system (90).

Over the period of time in which the warts are extracted, the low molecu-

lar weight material in solution does not change appreciably; therefore, it

appears that warts are in fact extracted by dioxane-HCl as high molecular

weight material.

Hydrogen Peroxide Treatment

The warty layer of fir can be removed with 30% H202 at room temperature.

This reagent is a strong oxidant. At elevated temperatures the lignin macro-

molecule can be extensively degraded and dissolved by peroxide with the

primary attack directed at the aromatic nuclei (lll). At room temperature,

however, even prolonged treatments with H202 solution causes very little deg-

radation of lignin. Still, methylene groups may be converted into carbohyl

groups and these, in turn, are susceptible to conversion to carboxyl functions

(111).

Most warts were removed from the lumen surface by 14 days of treatment

with 30% H202 at room temperature. With the DMSO and dioxane-HCl treat-

ments, the warts were all dissolved over a relatively short period of time and

variation of wart structure from tracheid to tracheid was not great for a

given treatment time. With the H202 treatment, however, wart dissolution

was never uniform over a given wood section for a given treatment time.

After 7 days of treatment the warts and amorphous layer were completely dis-

solved in some places while in others the warty layer was apparently unchanged.

By 14 days most of the warts were dissolved, but there was still quite a range

of action. Small oxygen bubbles, which formed on the wood sections, may have

protected some areas and caused the inhomogeneous response.
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Figures 38A-38D show the typical condition of the warty layer at

different stages of the H202 extraction. After 7 days of treatment (Fig.

38A), the warts are smaller but still distinct. The amorphous layer re-

mains. In some areas it appears that the partially dissolved warts have a

doughnut morphology (Fig. 38B). Here, it could be that the interior parts

of the warts wereoxidized first by the peroxide, leaving small craters.

Figure 38C shows the action of the 11-day treatment. The warts are reduced

to flat patches, but again the amorphous layer remains intact. By 14 days

the warts are extensively removed (Fig. 38D). The S3 layer is still obscured

by an encrustant, but with still longer treatments, the amorphous layer can

also be dissolved consistently from every tracheid.

The yield of firwood during treatment with 30% H202 at room temperature

is plotted in Fig. 39. By 14 days when the warty layer is extensively dis-

solved, 20% of the total wood is extracted, including 16% of the Klason lignin

and 22% of the apparent carbohydrate material. The peroxide attacked both

lignin and carbohydrate at similar rates, although neither was attacked very

rapidly under the conditions used. With H202 the warts were removed at an

earlier part of the extraction, in terms of amount of material dissolved, when

compared with the DMSO and the dioxane-HC1 treatments.

The results presented in Fig. 39 are for wood dried at 60°C in vacuo

before treatment. When the wood was dried at 105°C in vacuo there was no

apparent effect on the ultrastructure of wood, even on prolonged H202 treat-

ment. The wood yield remained unchanged at about 92% beyond 6 days of treat-

ment. Vacuum drying at 105°C rendered the warts and other wood constituents

resistant to oxidation by peroxide just as it made them resistant to acidolysis

by dioxane-HC1. This phenomenon did not occur at 60°C. Again, a possible

explanation is that resistant condensation products may be formed at the higher

drying temperature when water of composition is driven from the wood.
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Since the entire warty layer was not dissolved uniformly over a short

time range, further analyses of the peroxide treatment solutions were not

attempted. In any event, it would have been difficult to determine the

useful UV spectrum of the treatment extractives because 30% H202 itself ab-

sorbs very strongly below 330 nm.

Peracetic Acid Treatments

Two species of wood, balsam fir and loblolly pine, were treated with 3%

peracetic acid at 60°C. In experimental softwood pulping studies this re-

agent has been shown to be highly specific in its attack upon lignin with only

small losses of hemicellulose (125).

Figures 40A and 40B show the lumen surface of loblolly pine tracheids

before and after treatment with peracetic acid, respectively. The untreated

warts of this species appear as low mounds lying directly on the microfibrillar

S3 layer with very little or no additional encrustant (Fig. 40A)*. After 80

min of treatment with peracetic acid, warts were removed from the lumen surface

of loblolly pine (Fig. 40B). Warts in the pit borders of this species were

somewhat more resistant, but they also were extensively dissolved by 4 hr of

treatment. Albrecht (84) found that the initial solubilized reaction products

of peracetic acid on loblolly pine were largely low molecular weight lignin

fragments.

With balsam fir, the warts are not dissolved until after 25 hr of treat-

ment with peracetic acid (Fig. 41). Even here remnants of the wart structure

remain though the major part of the amorphous layer is removed. As with the

*Note the similarity between mature, untreated loblolly pine warts and the
immature warts in differentiating fir (Fig. 21F).
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Figure 40A and 40B. Warty Layer of Loblolly Pine: A. Before
and B. After Treatment with 3% Peracetic Acid at 60°C

for 80 Min; Replicas, TEM Plates 9571 and 9548



chlorite delignification, the remnant material is probably carbohydrate.

Therefore, in addition to being different in structure, the warts in balsam

fir were different in their response to treatment with peracetic acid. The

warts in loblolly pine were among the first wood components removed by the

treatment, while the warts in fir were still partially present even after

prolonged treatment. This difference in reactivity can be explained by sug-

gesting that the lignin portion of the warty layer in balsam fir is more highly

polymerized than the lignin in the warts of loblolly pine. Also, the warts

in this latter species very likely have little or no carbohydrate component.

.. -

Figure 41. Warty Layer of Balsam Fir Treated with 3% Peracetic
Acid at 60°C for 25 Hr; Replica, TEM Plate 10023
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The yields of fir- and pinewood during treatment with peracetic acid are

plotted in Fig. 42. By the time the warts are extensively removed from fir,

26% of the wood is dissolved, including 55% of the Klason lignin and 12% of

the apparent carbohydrate. The specificity for lignin in this reaction is

obviously high, as reported, especially during the first stages of the re-

action.

With peracetic acid, delignification is much slower for fir than for pine.

The nature of the innermost cell wall layer may be responsible for this differ-

ence. Wood structure is most easily accessible to treatment solutions through

the empty cell lumen. The innermost lamella of pine is an open, microfibrillar

structure with flat warts directly on the S3 layer (see Fig. 40A). In fir, on

the other hand, the S3 layer is completely covered by a very resistant amor-

phous layer in addition to the warts (see Fig. 4). It is quite reasonable to

propose that this amorphous layer is highly condensed and acts as a barrier to

the penetration of peracetic acid into the cell wall, contributing to the re-

duced rate of delignification in fir.

ENZYMATIC TREATMENTS

Many pure enzymes would be ideal treatment agents because of their strict

specificity; however, none of the commercial enzymes listed in the Materials

and Methods had any effect on the structure of the warty layer of mature,

untreated firwood. Peroxidase and tyrosinase in combination with an alkali

pre- or posttreatment of the wood also had no apparent effect.

Pectinase had no apparent effect on the warts of untreated loblolly

pine or balsam fir. The enzyme did, however, catalyze the dissolution of

the remnants of the warty layer in fir remaining after chlorite delignifi-

cation. The normal structure of the lumen surface in fir chlorite
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holocellulose is shown in Fig. 32. After pectinase treatment, the patchlike

wart remnants and the remaining S3 encrustant are completely dissolved (Fig.

43). Another effect of the enzyme was to dissolve some intercellular substance

that served to bind the delignified fir tracheids together. After pectinase

treatment the tissue separated more easily into individual fibers. This is

not surprising since the intercellular region has been shown to contain a high

percentage of pectic material (126). An important consideration in the sub-

sequent analysis of the pectinase-holocellulose hydrolyzate, therefore, is that

material in addition to the dissolved wart remnants is present.

**4-; '- ;- o..- ' *-. ._- - :*- .-- -V :.. -.~ :^...--
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-- ~~ccccccccccccccccccc-j7iI

* -*~ 4~ -~

~~ 1 pm~~~-

Fiue43 asmFrWry ae rae it oimClrt
thnPciae elcTM lt 02



-110-

Timell (89) reported that the same pectinase enzyme preparation as used

in the present work had wide specificity, hydrolyzing the following poly-

saccharides with formation of mono- or oligosaccharide products: an arabino-

4-0-methylglucuronoxylan, a hardwood glucomannan, a water-soluble and an ·

alkali-soluble softwood galactoglucomannan, an ivory nut mannan, citrus and

bark pectin, and starch. Cellulose suffered hardly any breakdown. Because

of this wide range of enzyme specificity, all that can be concluded before

further analysis of the hydrolyzate is that the wart remnant material left in

fir chlorite holocellulose likely consists of a noncellulosic polysaccharide.

Thin-layer and paper chromatography were used to analyze the products in

the pectinase-holocellulose hydrolyzate. Thin-layer chromatography with

Solvent I showed the following components in the hydrolyzate: xylose, arabin-

ose, mannose, glucose, and galactose, each estimated to be about 0.5-1.0% of

the original holocellulose. These components were tentatively identified by

comparison with the color reaction and mobility of known sugars run simultane-

ously. Amounts were estimated by comparison with the visual intensity of

known concentrations. In addition to these named components, at least two

slower moving components were also fractionated but could not be identified

from knowns.

Paper chromatography with both Solvents II and III confirmed the presence

of the same aforementioned neutral sugars. These were present in nearly equal

amounts with mannoseslightly more and glucose slightly less than the rest.

From control chromatograms it was determined that some of the glucose was

actually from the enzyme itself, being incompletely removed by the dialysis

purification procedure. Therefore, the amount of glucose from the holo-

cellulose may be considerably less than the other sugars. Other components

were fractionated but not positively identified. There were fractionated
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spots of low mobility that gave color reactions of pentosans or uronic acids.

These materials were present in amounts similar to the neutral sugars. Ref-

erence compounds indicated that the following components were not present in

the hydrolyzate: galacturonic acid, glucuronic acid, 4-O-methylglucuronic

acid, aldobiuronic acid, or aldotriuronic acid. Components possibly present

included di- and triuronic acids, aldotetrauronic acid (or higher oligomers),

esterification products of uronic acids with themselves, or pentosans.

The pectinase-holocellulose hydrolyzate, which contained dissolved wart

remnants, gave a negative test for characteristic lignin groups with 2,4-di-

nitrophenylhydrazine (120) and diazotized p-nitroaniline (127).

The pectinase dissolution of the wart remnants after chlorite delignifi-

cation and the subsequent analyses indicate that this material is most likely

pectin or a pentosan-containing hemicellulose. This is consistent with the

results of Meier (126) who found that glucuronoarabinoxylan content is very

high in the S3 layer of softwoods.

FUNGAL TREATMENTS

Six different species of white-rot fungi* were investigated with regard

to their effects on wood ultrastructure. White-rot fungi degrade lignin,

hemicellulose, and sometimes at a later stage, cellulose (128). It has been

shown that different white rots vary considerably in the comparative rates

of carbohydrate and lignin degradation (130). The species of fungi used in

*Liese (128) distinguished between white-rot fungi, which preferentially
attack lignin and hemicellulose, and "simultaneous-rot" fungi, which de-
compose all substances of the lignified cell wall. In the present dis-
cussion, these two types are both considered as white-rot fungi as is
traditionally done (129, 130).



-112-

the present work and their action on firwood sections, as observed with the

TEM and SEM, are presented in Table VIII.

TABLE VIII

ACTION OF WHITE-ROT FUNGI ON BALSAM FIR SECTIONS

Fungi Action

Daedalea unicolor

Polyporus anceps

Polyporus versicolor

Poria subacida

Schizophyllum commune

Trametes suaveolens

Fungus growth slow, little initial contact with
wood, first bore holes through cut cell wall and
pit membrane, later bore holes more numerous,
through warty layer, no surface dissolution
(Fig. 45)

Fungus growth rapid, engulfs wood, frequent bore
holes through the warty layer and pit immediately,
initial bore holes 1 gm in diameter, may expand to
8 um with longer treatment, no surface dissolution
(Fig. 46)

Fungus growth fast, bore holes usually numerous,
trails of partially dissolved warts associated
with hyphal contact leads to surface dissolution
(Fig. 47 and 48)

Fungus growth fast, bore holes rare at first but
more numerous with longer treatments, no surface
dissolution

Moderate fungal growth, bore holes fairly numerous,
0.5-3.0 um in diameter, initial bore holes usually
through pit membranes, later more through warty
layer, no surface dissolution (Fig. 44A and 44B)

Fungus growth very slow, little initial contact
with wood, bore holes extremely rare, initial
surface dissolution with warts partially dissolved
in every tracheid without apparent hyphal contact
(Fig. 49)

Action of Fungi

All six rots had at least some effect on the micromorphology of the cell

wall. The attacks had two general forms: bore hole formation and surface

dissolution. The localized action of bore hole formation allows the fungus

to penetrate from one cell to another. All fungi investigated formed these
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bore holes, but the frequency varied considerably. With Trametes, bore hole

formation was extremely rare.

Figure 44A shows the tip of a branched hypha of Schizophyllum in the

process of forming a bore hole. Figure 44B shows many bore holes through the

cell wall caused by the same fungus after a longer incubation period. Bore

holes are often formed first through the pit membranes which seemingly would

be a path of less resistance (Fig. 45). It may be that the warty layer itself

presents a temporary barrier to bore hole formation through the cell wall.

When bore holes go through the entire cell wall, the warty layer must be dis-

solved before other cell wall constituents. The boring process is probably

accomplished by enzymatic action localized at the tip of the advancing fungal

hypha (128); however, the exact specificity of the enzymeCs) involved is not

known. In Polyporus anceps., once the bore holes are formed, they can increase

in diameter (Fig. 46), but this may occur by a different process than the

initial formation.

The second type of attack of the fungi on the wood is surface dissolution,

which may or may not involve intimate contact with the fungal hyphae. With

white-rot fungi, cell wall dissolution proceeds from the lumen outward into

the cell wall, and the first stage.necessarily involves dissolution of the

warty layer. Again, the specificity of the enzymes involved in this action

is not known (128). This type of action was seen for both Polyporus versi-

color and Trametes. Figure 47 shows a path of lytic action caused by

Polyporus versicolor. Partial dissolution of the wart structure was caused

probably by ectoenzymes secreted by the fungus (128). Figure 48 illustrates

both localized bore hole formation and general cell wall dissolution by

Polyporus versicolor. When cell wall dissolution is associated with fungal
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Figure 44A and 44B.
Fungus:

Warty Layer Treated with Schizophyllum commune
A. 1 Week, B. 3 Weeks; Replicas,
TEM Plates'10067 and 10068
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Figure 45. Warty Layer Treated with
Daedalea unicolor Fungus for
3 Weeks; Replica, TEM Plate

10070

Figure 47. Warty Layer Treated with
Polyporus versicolor Fungus for

10 Weeks; Replica, TEM Plate
10257

Figure 46. Warty Layer Treated with
Polyporus anceps Fungus for
7 Weeks; Replica, TEM Plate

10126

Figure 48. Warty Layer Treated with
Polyporus versicolor Fungus for

10 Weeks; Replica, TEM Plate
10231



contact, the condition of the warty layer can vary from tracheid to tracheid,

depending on the proximity of fungal hyphae.

Trametes was unique in its action in that it dissolved the warty layer

from the lumen surface without apparent fungal contact (Fig. 49). The enzymes

responsible for this action no doubt came from the fungus, but they apparently

diffused throughout the nutrient medium and remained active. This was sus-

pected since very few hyphae were seen along the cell wall, yet the dissolution

of the warty layer was extensive in every lumen. Also, bore hole formation,

which is necessary for migration of the fungus within the wood structure, was

extremely rare.

The action of Trametes enzymes on the warty layer was similar to the

action of H202. (Compare Fig. 49 and 38C.) Doughnut warts were also seen in

the Trametes-treated fir as in the H202 treatment.

Since the Trametes took 3 to 5 weeks to develop a wart-dissolving ability,

synthesis of the enzyme could have been induced by the presence of the wood

substrate once some nutrient source in the medium was exhausted. There was no

additional dissolution of the warty layer after the initial action even

though not all of the structure was dissolved, indicating that perhaps the

enzyme was active for only a limited time.

The wood exposed to Trametes culture for 8 weeks was subsequently treated

with pectinase. The pectinase appeared to promote some continued dissolution

of the warts, but it did not catalyze the removal of the amorphous layer

(Fig. 50) as it did in fir holocellulose (see Fig. 43).

-116-
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Figure 49. Warty Layer Treated with Trametes suaveolens Fungus for
8 Weeks; Replica, TEM Plate 10133
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Analysis of Trametes Extract

The medium was separated from the Trametes by centrifugation and ultra-

filtration. The UV spectrum of the medium from a culture that had contained

wood vs. the medium from a culture without wood had increasing absorbance at

wavelengths decreasing from 340 nm. There were shoulders at 264, 286, 305,

and 315 nm, which are in the range of lignin chromophores. A paper chromato-

graphic analysis, however, failed to show any ligninlike monomers in the medium.

Fresh wood was introduced to the fungus-free culture medium, but no

further enzyme activity was observed. The Trametes pellet from the centri-

fugation was resuspended in fresh asparagine-glucose nutrient. Unfortunately,

the fungus had become contaminated with bacteria and was discarded.

Trametes from the stock source was again cultured in the presence of fir

sections in an effort to repeat the enzymatic dissolution of the warty layer.

Both asparagine-glucose and malt nutrient media were used. In none of five

different cultures were the warts dissolved as extensively as in the original

Trametes culture. The warts were partially dissolved in places, but they were

more commonly unchanged. It is not known why the original results could not

be repeated. Perhaps the enzyme system was active in the second set of tests

but only for a very short period, producing only very limited attack on the

warty layer. Otherwise, it is possible that the Trametes in the first culture

underwent some mutation from the stock solution such that it gained a special

wart-dissolving ability.

THERMAL TREATMENT

It is apparent that the warty layer undergoes thermal softening. When

firwood was autoclaved at 121°C for 2½ hr, the warts showed signs of viscous
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flow. They fell over from their natural protruding position and appeared to

coalesce either with the amorphous layer or with other warts (Fig. 51). There

was little noticeable effect with only ½ hr of this treatment.

Figure 51. Warty Layer Treated with Steam at 121°C for 2- hr;
Replica, TEM Plate 10138

Goring (116) has determined the softening temperature for dry and moist

isolated components of the cell wall. Of the moist samples, lignin softens at

about 90-100°C, hemicellulose at.50-60°C, and cellulose at over 230°C. The

behavior of the warty layer under autoclaving conditions is consistent with a

composition of lignin or both lignin and hemicellulose.

Results of some of the other chemical-physical treatments probably also

reflected thermal softening to some extent. During the first few hours of

treatment with DMSO at 150°C, some of the warts could be seen lying down before

any dissolution of the structure was apparent (Fig. 34A). With the alkali

treatment, O.iN KOH at 90°C, the warts also appeared to have melted-over to
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coalesce with the amorphous layer (Fig. 28). Such action probably resulted

from a combination of both thermal softening and reaction with the alkali,

since there was no such effect on the wart structure when wood was treated

with boiling water or with high alkali concentration at 60°C.

PHYSICAL ISOLATION

To chemically analyze the composition of the warty layer it would be most

desirable to isolate it from the wood without chemical alteration. The basic

obstacle here is that the warty layer is similar in its composition to other

cell wall constituents. Dissolution of the warty layer, therefore, necessarily

involves removal of other wood material, unless the warty layer can be isolated

preferentially by virtue of its accessibility. This, however, did not prove to

be the case for treatments investigated. Even when warts were removed, the

treatments were never mild enough to ensure that the native chemical composition

of the warts had been preserved. A successful method of physical isolation is

apparently the only way to obtain uncontaminated, unaltered wart material.

Three different procedures were attempted as described below, but none proved

very successful.

Evaluation of Physical Isolation Techniques

Mechanical maceration of the wood and subsequent differential centrifuga-

tion up to 37,000 g for 15 min produced two distinct types of wood fragment

in each fraction: numerous small angular pieces and some rodlike pieces.

As was expected, higher rates of centrifugation sedimented smaller particle

sizes, but the general particle shapes were similar in each fraction. At the

highest centrifugation rates, the wood fragments had dimensions of 0.1 um or

less, but these particles resembled neither individual warts nor small frag-

ments of the warty layer.
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Ultrasonication of firwood in water, weak alkali, or pectinase did not

free the warty layer from exposed tracheid lumens in either thin, transverse

or thicker, radial sections.

The fragments isolated from scraped samples of polystyrene-embedded sec-

tions frequently included small patches of the amorphous layer with warts

attached (Fig. 52). The isolated material also contained some microfibrillar

substance. Such isolated fragments were, therefore, not pure warty layer com-

ponents, but they were at least enriched with wart material.

Figure 52. Warty Layer Isolated by Scraping Polystyrene-Embedded Wood
Section; Replica, TEM Plate 9585

X-Ray Analysis

The yield from the polystyrene scraping was too small to permit chemical

analyses. Also, since the material did not represent pure wart material, it

would have been difficult to interpret the results of any such analysis.
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Specific areas, however, could be selected with the SEM and analyzed for

elemental composition with the EDAX x-ray detection unit. The elements,

calcium, potassium, silicon, chlorine, and occasionally sulfur and phosphorus

were found in trace amounts in the wood fragments. The areas of the warty

layer alone seemed to be richer in chlorine and potassium then other fragments

of the cell wall. These elements function in the normal living cell to maintain

osmotic and ionic equilibrium (131). It could be that they are transported

across the cell membrane at the same time that the warts are formed. These

elements are presumably combined in a water-insoluble form since the wood was

saturated with distilled water during sectioning and storage. Young and Guinn

(132), studying balsam fir trunkwood, reported finding most of the elements

found here but no chlorine. Ellis (133), however, lists this element as a

constituent of grand fir. He questioned the essentiality of chlorine but

noted that it was always present.

TAXONOMIC SIGNIFICANCE OF THE WARTY LAYER

On examination of the wood morphology of American beech, a hardwood

species, it was found that warts were present but occurred only in the smaller

latewood vessel elements. Furthermore, all the wartless vessels had simple

perforation plates, while warted vessels had either simple or scalariform

perforation plates. Ohtani and Ishidi (41) recently reported a similar re-

lationship in Japanese beech (Fagus crenata B1.).

Figure 53A is an SEM micrograph of a radial section of American beech

wood showing both a small and large vessel element with scalariform and simple

perforation plates, respectively. Figure 53B is a high magnification view of

the small vessel element showing the prominent warts on the lumen surface.

Figure 53C is a similar view of the larger vessel element with a smooth surface.
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Figure 53A-53C. American Beech Vessel Elements: A. Scalariform (SC) and
Simple (SI) Perforation Plates, B. Warty Layer of
Vessel Element with Scalariform Perforation Plate,
C. Smooth Surface of Simply Perforated Vessel;

SEM Plates 634, 637, and 639
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This relationship between the occurrence of warts and type of perforation

plate in beech led to a study of other hardwood species that contain both

simple and scalariform perforation plates.

It has been established that gymnosperms are the forerunners of angio-

sperms, which in an evolutionary sense have arisen comparatively recently

C134). Hardwood cell types have, therefore, evolved from the conifer tracheid,

and among the hardwood vessel elements, those with simple perforations are

considered to be more advanced than those with scalariform perforations (134).

Most wood species have exclusively either one perforation plate type or the

other. Only a limited number of species exhibit both the more advanced and

more primitive vessel types (32).

Fourteen species reported to have both plate types were examined, in

order to determine if there is a correlation between cell morphology and the

presence of warts and, therefore, a possible phylogenetic trend. This list

included all of the North American species in this category listed by Panshin

and de Zeeuw (77). Presented in Table IX are the results of the survey. In

some of the species only one vessel perforation type was found (usually only

simple). In each case the absent type was reported to be rare (77).

Within hardwoods containing both vessel elements with scalariform perfora-

tion plates (more primitive) and simple perforation plates (more advanced),

warts, when present, were most often associated with only the former vessel

type. Figure 54 depicts the warts on the scalariform perforation bars of

sycamore. Figure 55 shows two small, warted vessel elements of sassafras also

with scalariform end plates. Warts are always absent from the simply perfor-

ated vessel elements of sycamore and very rare in the simply perforated vessel

elements of sassafras.
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TABLE IX

OCCURRENCE OF THE WARTY LAYER IN ANGIOSPERM CELL TYPES

Vessels
Simple

Perforation
Scalariform
Perforation

Corylaceae

Carpinus caroliniana

Ostrya virginiana

Cunoniaceae

Ceratopetalum apetalum

Fagaceae

Castanopsis chrysophylla

Castanea dentata
Fagus grandifolia

Fagus orientalis
Fagus sylvatica
Nothofagus moorei

No warts
No warts

No warts

Very small
warts, rare
No warts
Warts rare
(Fig. 53C)
Warts rare
No warts
No warts

a__

No warts

No warts

Always warted
(Fig. 53B)
Always warted
Usually warted
Usually warted

No warts
No warts

No warts

Very small
warts, common
No warts
No warts

Small warts
No warts
No warts

Lauraceae

Sassafras albidum Warts very
rare

Always warted
(Fig. 55)

Magnoliaceae

Magnolia acuminata
Magnolia grandiflora

Platanaceae

Platanus occidentalis

No warts

No warts

No warts

Usually warted
(Fig. 54)

No warts
No warts

Small warts

Ericaceae

Oxydendrum arboreum No warts No warts

aThis vessel type not observed in the samples examined.

Species
Fiber

Elements

No warts

No warts
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Figure 54. Warts on Scalariform Perforation Bars of American
Sycamore; SEM Plate 654

Figure 55. Warted Vessel Elements of Sassafras with Scalariform
Perforation Plates; SEM Plate 715
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In hardwood fibers, another highly specialized but imperforate cell type,

only a few species displayed a warty layer, and then the wart structure was

smaller than that found in the vessels. There was a complete absence of warts

from the axial and ray parenchyma cells of all woods examined. No pit vestures

were found in any of the species, though this structure has been associated

with vessel warts (14, 37, 39).

A more complete discussion on the evolutionary significance of the

presence of warts in angiosperm wood is presented elsewhere (34).
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CONCLUSIONS

The warty layer in balsam fir is developed during the final stages of

cell differentiation. After the microfibrils of the S3 layer have been de-

posited, the interior cell wall surface becomes slightly encrusted with an

amorphous material and low mounds appear. The warty layer continues to

develop until the S3 layer is completely covered with amorphous encrustant

and the warts protrude into the lumen as blunt cones.

Most of the cell wall lignification process precedes wart formation.

Judging from the permanganate staining reaction, when the developing warts

are in the initial stage as low mounds, they are slightly more lignified than

any portion of the adjoining secondary wall. In the final stage when warts

protrude into the lumen, the warty layer appears much richer in lignin than

the secondary wall. In a few cases, a two-component nature of the warty

layer is observed where the outer portion is very darkly stained while the

basal components of the individual warts is lighter.

Warts develop first at the tracheid corners and on the inner surface of

the bordered pits and then on all walls over the whole length of the cell

nearly simultaneously. This sequence in the wart formation pattern is analogous

to the lignification pattern within the wall. The warts are formed exterior to

the plasma membrane of the living cell before the cytoplasm has disappeared.

No organelle or membrane other than the plasmalemma was found to have a specific

association with wart formation, though this is not to say that no such

association could exist. Also, no activity was observed within the cell wall

directly beneath the point of wart formation. After warts are formed, the

living cell contents degrade and flow from the tracheid, leaving no apparent,

disorganized residue on the inner cell wall surface.
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In conjunction with the study of developing tissue it was observed that

the permeable margo region of the mature bordered pit arises from a gradual

perforation of an initially solid membrane. The process occurs at the end

of cell differentiation, after wart formation is complete, and is likely

associated with the withdrawal of cytoplasm from the cell. Large, radially

oriented microfibrils in the margo are present at an early stage of pit

development when the membrane is still solid and do not arise as a result of

aspiration of the mature pit.

From the response of the warty layer to many different treatments, it

is concluded that the warty layer in balsam fir consists largely of a highly

condensed ligninlike material. The interior, basal component of the individual

warts and some of the encrusting layer consist of a noncellulosic carbohydrate,

probably a pentosan or a pectic substance. Staining in cross section and

direct surface examinations indicate that this basal component, and the slight

S3 encrustant as well, are formed first by the cell and that the ligninlike

covering is deposited later to complete the warty layer.

While the bulk of the warty layer is definitely ligninlike in reactivity,

it is more resistant than, and thus different from, at least some of the other

lignin in the cell wall. Depending on the treatment, from 16 to 65% of the

lignin in wood was extracted before the warty layer, even though the warty

layer was the cell wall component most accessible to the treatment solutions.

From the results, it is concluded that the lignin in the warty layer is more

concentrated and more condensed than the lignin in the rest of the cell wall.

In view of its chemical composition, it is not surprising that no

chemical treatment was found that removed the warty layer exclusively.

Analyses of the solutions in the different extraction series yielded little
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additional information. Different chromatographic methods detected no unique

monomeric unit associated exclusively with the lignin portion of the warty

layer. The warty layer was extracted by some treatments as high molecular

weight material confirming that this structure is probably of high molecular

weight in the cell. No great change in UV absorbance or refractive index

could be detected in the extraction solutions at the point that the warts

were dissolved. There were changes in these latter properties as an extraction

proceeded, but these changes were gradual over the entire treatment period and

not just at the point where warts were extracted. Therefore, such changes

could not be attributed to any specific cell wall structure.

The chemical reactivity of the warty layer, as well as that of other cell

wall components, is altered by vacuum drying at 105°C. Under these conditions,

irreversible dehydration and further condensation probably occurs to tighten

the molecular structure, thereby diminishing accessibility and eliminating

reactive sites. DMSO extraction is an exception, and the warty layer is some-

what more easily removed by this treatment after vacuum drying at 105 C.

The commercial enzymes used in this work had no effect on the mature,

untreated warty layer. Different white-rot fungi attack the warty layer during

localized bore hole formation or general cell wall dissolution. However, since

the specificity of the enzymes involved is unknown, no conclusion can be drawn

concerning the specific composition of the warty layer.

Thermal softening of the warty layer during steam heating is consistent

behavior for the largely-lignin composition of the warts. Attempts at

physical isolation of the warty component were not successful in producing

material pure enough and in high enough yield for a definitive analysis.
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From the results and conclusions on the development and composition of

the warty layer, three hypotheses are offered to explain the formation of this

structure in the tracheids of balsam fir:

1. Warts represent sites of material transport from the cytoplasm

to the developing cell wall. When wall formation is complete,

excess deposition causes the formation of the amorphous warts.

2. Warts are formed by deposition exterior to the plasmalemma of

autolysis products of the dying cell with no relation to sites

of previous deposition of cell wall components.

3. The wart structure is due to an eruption of material from the

cell wall into the lumen caused by localized areas of high osmotic

potential. These high pressure areas could develop as a result of

a localized concentration of molecules exterior to the plasmalemma,

possibly associated with cellulose microfibril synthesis and

deposition or even the ends of small bundles of cellulose micro-

fibrils. These areas of high osmotic potential act against the

semipermeable cytoplasmic membrane, permitting wart formation.

The third hypothesis is intriguing and should not be discounted, but it

is least satisfying of the three. Seemingly, any areas of high osmotic

potential could be dissipated throughout the cell wall or at least evenly

along the cell wall/plasmalemma interface, eliminating any localized eruption.

Of the first two hypotheses, there are no results to present from this work or

in work done elsewhere that would favor one over the other. Also, it is not

unreasonable that some combination of the hypothesized processes operate to

produce the total wart structure.
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Some conclusions secondary to the main objectives of this work can be

drawn regarding the significance of the wart structure, both in the pro-

cessing of woody tissue and as a phylogenetic feature of wood. Balsam fir

tracheids have a relatively heavy and resistant amorphous layer lining the

lumen. Fir also was delignified with peracetic acid at a slower rate than

loblolly pine, the tracheids of which have flat warts on an exposed S3 layer.

The presence of a complete warty layer, therefore, may act as a barrier to

the penetration of delignifying agents into the cell wall. It is risky to

draw general conclusions from the study of the action of one delignifying

reagent on only two species, but this explanation is certainly plausible and

worthy of additional study.

In conjunction with this work, it was observed that the warts in mature

loblolly pine are morphologically similar to the developing warts in fir.

It is possible that the development of warts in pine follows the same initial

stage as in fir but then stops.

In hardwood species that contain both vessels with scalariform perfora-

tion plates and vessels with simple perforation plates, the presence or

absence of a warty layer follows a trend that can be associated with the

degree of phylogenetic advancement of the xylem cell. The primitive-type

vessels, those with scalariform perforation, are usually warted in those

species that have warts. In the same species, the moreadvanced, simply

perforated vessels only rarely-exhibit warts. In hardwood fibers, another

specialized but imperforate cell type, warts are also rare and very small

when present.
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GLOSSARY AND SPECIAL ABBREVIATIONS

Bordered Pit - intercellular opening with overhanging margins of the
secondary wall and a membrane within the resulting chamber

Cambium - actively dividing layer of cells that lies between, and gives
rise to, the xylem and phloem

Fusiform Initial - cambial initial that, through repeated division, gives
rise to a radially directed row of longitudinal elements of xylem
and phloem

Holocellulose - total carbohydrate fraction of wood remaining after the
removal of lignin and substances extractable with neutral solvents

Lignin - random polymer of hydroxylated and methoxylated phenylpropanoid
residues encrusting the cellulose framework of certain plant cell walls

Lumen - internal cavity of a wood cell formed when the living contents

degrade and flow from the cell

Lumen Surface - lumen/cell wall interface; i.e., inner surface of the
cell wall

Margo - peripheral region of the pit membrane lying between the torus and

the border in bordered pits of softwoods

Pectic Substances - arabinans, galactans, and galacturonans

Phloem - inner bark tissue formed external to the cambium

Plasmalemma (plasma membrane) - unit membrane surrounding the cell cytoplasm

Ray Initial - cambial initial that gives rise to ray cells through repeated
division

Ray Parenchyma - radially oriented, brick-shaped cells with generally
simple pits

Scalariform Perforation Plate - perforated cell wall region consisting of
multiple, parallel bars between longitudinally contiguous vessel
elements in hardwoods

Simple Perforation Plate - cell wall region consisting of a single, large,
round opening between longitudinally contiguous vessel elements in
hardwoods

Tonoplast - unit cytoplasmic membrane enclosing a vacuole

Torus - central, thickened portion of the pit membrane in a bordered pit

Tracheid - longitudinally oriented, fibrous cell with bordered pits and
imperforate ends

Warty Layer - amorphous structure containing numerous protuberances and
covering the inner cell wall surface



Xylem - wood tissue inward from the cambium

dbh - diameter of tree at breast height

DMSO - dimethylsulfoxide, (CH3)2SO

EDAX - energy dispersive x-ray analyzer used with scanning electron microscope

FAG - chemical fixative with 2% formaldehyde, 2% acrolein, 3% glutaraldehyde,
and 0.5% glucose in buffer

GAG - chemical fixative with 1% glutaraldehyde, 2.5% acrolein, and 0.5%
glucose in buffer

S1,S2,S3 - outer, middle, and innermost layers, respectively, of the
secondary wall of a wood cell

SEM - scanning electron microscope

TEM - transmission electron microscope

t x r x 1 - tangential by radial by longitudinal dimensions of a cut wood block

UTS - ultrathin section
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SUGGESTIONS FOR FUTURE RESEARCH

The research presented here answers some old questions and poses some new

ones. Several areas of future research are suggested by the results of this

investigation.

It is hypothesized that the warty layer may be vestigial sites of material

transport from the cytoplasm to the developing cell wall. If this is the case,

one might expect to find a distinct pattern on the exterior surface of the

plasmalemma that corresponds to the wart distribution. Applying freeze-etching

techniques to differentiating cambial tissue could prove successful in exposing

the exterior plasmalemma surface for examination with.the electron microscope.

An alternate approach might be to enzymatically dissolve the cell wall in the

cambial zone to free individual protoplasts and permit examination of the

membrane surface for any such pattern of material transport sites.

Autoradiography at the electron microscope level may prove useful in

identifying radioactively-labeled precursors that eventually are incorporated

into the warty layer. Both the development and the composition of the warty

layer could be followed by this procedure.

No monomers uniquely associated with the warty layer were found by

chromatographic analyses of the chemical extraction solutions. However, if

the wart material is present in the extraction solutions only as a high

molecular weight material, it may be necessary to first break the material

down into monomers before analysis. This can be accomplished by several

methods, including nitrobenzene oxidation to form characteristic aldehydes

or ethanolysis to form so-called "Hibbert's ketones."



-136-

Further work could be done to identify the active agent(s) in the

dioxane-HCl extraction of lignin from the wood.

It has been suggested in this work, without a great deal of documentation,

that a chemically resistant warty layer may act as a barrier to the penetration

of pulping liquors into the cell wall of certain species and thereby cause a

decreased delignification rate. An experimental program could be developed to

determine any relationship between the nature of the interior lining of the

cell wall and the rate of liquid penetration into the wall.

Work could be carried out to follow up and confirm the EDAX x-ray analysis

of warty layer fragments which tentatively showed that the warty layer was

richer in chlorine and potassium than other cell wall components.

None of the commercially prepared enzymes used in this study had any

apparent effect on the warty layer in mature wood. It is possible that with

aging over several seasons the wart structure becomes more condensed and more

resistant to attack. By using selected enzymes to treat a mature but only

recently developed warty layer in the current annual increment, perhaps some

specific action can be observed. The unknown enzyme activity from the white-

rot fungi that dissolved the warty layer also could be investigated with

respect to characterization.

The pectinase, which dissolved remnants of the warty layer from fir

chlorite holocellulose, could be used to treat a similar residual structure

in fir peracetic acid holocellulose to determine if the action is similar.

A more specific polysaccharide-hydrolyzing enzyme than the pectinase used in

this investigation could also be employed in an attempt to better specify

the nature of the carbohydrate component of the warty layer.
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Other interesting work to augment and extend the present investigation

would be to study the development and composition of the warty layer in

another softwood species, such as loblolly pine, in which the warts are

structurally quite different than those in balsam fir. It would also be

interesting to conduct a similar study of a hardwood species that contains

warts in every vessel element or in a species, such as American beech, that

contains warts only in some vessels. A study of the latter wood type might

give some clues as to why some vessels develop warts (and often have scalari-

form perforation plates) while others have smooth cell wall linings (and

simple perforation plates).
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APPENDIX I

CAMBIUM SAMPLING PROCEDURE

The outer bark was scraped away from about an 8 cm by 8 cm area of the tree

trunk, 1½ m above ground level. Razor blade cuts were made down into the mature

wood and a m -shaped section of the tree was chiseled out as shown in Fig. 56.

Figure 56. Diagram of Cambium Sampling Procedure

rIf
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Vertical razor cuts 1 mm apart were made through the isolated region of

the wood. The cuts were deep enough so that there was about 2 mm of phloem

and 2 mm of xylem bordering the jellylike cambial layer. After 8 to 10

vertical cuts, resulting slices were carefully chiseled out in a group and

placed immediately into the desired fixative solution (Appendix II). The pro-

cedure was repeated until the entire isolated region had been sliced and

chiseled out.

Wider cambial samples Cabout 7 mm in the tangential direction) were also

obtained in the same manner. These blocks were placed immediately in 30%

ethanol for later collodion embedment (Appendix V).

After the cambial samples were removed, the cut areas were completely

covered with rubber cement to prevent entry of any insect or pathogen. When

more samples were needed, another 8 cm by 8 cm patch was cut above and to the

side of the previous region and the procedure was repeated. Care was taken not

to completely girdle the tree.

In the laboratory, the cambial slices were trimmed in Betri dishes while

still in the primary fixative. About 2 mm was cut from each end and all but about

1 mm of the xylem and 1 mm of the phloem was trimmed away. Each slice was then

cut transversely in half, leaving two slices about 1 mm x 2 mm x 5 mm Ct x r x 1)

containing the cambial tissue. The complete fixation schedule is outlined in

Appendix II.
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APPENDIX II

FIXATIVES

A. KMn04 fixative

1. Primary fixative - 2 hr, room temp., ±vacuum*

2% KMn04, unbuffered

2. Rinse with water, dehydrate, embed (see Appendix III)

B. FAG fixative sequence (135)

1. Primary fixative - 3 hr, room temp., vacuum

2% formaldehyde

2% acrolein

3% glutaraldehyde

0.5% glucose

all in 0.05M sodium cacodylate buffer, pH 7.2

2. Rinse with buffer

3. 1st Postfixative - 2 hr, 0°C

2% KMn0 4 in buffer

4. Rinse with buffer, then water

5. 2nd Postfixative - 3 hr, 0°C

0.5% uranyl acetate, unbuffered

6. Rinse with water, dehydrate, embed (see Appendix III)

C. GAG fixative sequence

1. Primary fixative - 3 hr, room temp., vacuum

1% glutaraldehyde

2.5% acrolein

*Vacuum applied several times intermittently to ensure penetration.
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0.5% glucose

all in 0.05M sodium cacodylate buffer, pH 7.2

2. Rinse with buffer

3. 1st Postfixative - 3 hr, room temp.

1% glutaraldehyde

0.5% glucose

all in buffer

4. Rinse with buffer

5. 2nd Postfixative - 12 hr, room temp.

2% Os04 in buffer

6. Rinse with buffer, then water

7. 3rd Postfixative - 8 hr, room temp.

aqueous saturated uranyl acetate, unbuffered

8. Rinse in water, dehydrate, embed (see Appendix III)
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APPENDIX III

DEHYDRATION AND EMBEDMENT FOR ULTRATHIN SECTIONS

It is extremely important that all water is removed from tissue before

embedment. Fixed cambial samples were, therefore, dehydrated according to the

following sequence:

Solution

15% Ethanol
30% "

50% "
70% "
90% "
95%. "

Absolute "

it i,

Propylene oxide

i, itir nr

Minimum Time

15 min
15 min
15 min
15 min
15 min
15 min
5 min

15 min
Overnight

3 hr
3 hr

Overnight

A. Spurr embedment ¢136)

4.0 g DER 736 Cdiglycidyl ether of polypropylene glycol) for "hard"

embedment

(6.0 g DER 736 for "firm" embedment)

10.0 g ERL 4206 (vinyl cyclohexene dioxide)

26.0 g NSA (nonenyl succinic anhydride)

0.4 g S-1 (dimethylaminoethanol)

The schedule for the infiltration of the fixed, dehydrated cambial samples

with Spurr resin was as follows:

Propylene Oxide:Resin (v/v)

1:1
1:2
0:1
0:1

Time

4 hr
4 hr

Overnight
8 hr +vacuum
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The resin was then polymerized at 65°C for 12 hr and then allowed to cool

before sectioning.

B. Araldite 502 (137)

15.2 g Araldite 502 resin

11.3 g DDSA (dodecenylsuccinic anhydride)

0.375 g DMP-30 (2,4,6-trimethylaminomethyl phenol)

The procedure for infiltration and embedment of the fixed, dehydrated

cambial samples with resin was as follows:

1. Place samples in Araldite:propylene oxide (1:1) for 12 hr, covered.

2. Uncover and allow to thicken to approximate consistency of pure

resin (3 to 4 hr).

3. Transfer specimens to template, fill with undiluted Araldite, and

allow to stand uncovered for 2 hr.

4. Cover and let stand at room temp. for 4 days, aspirating occasionally.

5. Complete polymerization at 60°C for 12 hr.

6. Cool for 12 hr before sectioning.

C. Epon-Araldite resin (138)

6.25 g Epon 812

3.75 g Araldite 502

13.75 g DDSA

0.75 g dibutylphthalate

0.5 g DMP-30 (add last)

mix thoroughly before use

The schedule for infiltration and embedment of the fixed, dehydrated

cambial samples was as follows:
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1. Propylene oxide:Epon-Araldite (2:1), 4 hr.

2. Propylene oxide:Epon-Araldite (1:2), 4 hr.

3. Epon-Araldite, overnight.

4. Epon-Araldite, 4 hr.

5. Transfer wood slices to filter paper for draining, then to fresh

Epon-Araldite in embedding mold. Aspirate to remove air bubbles.

6. Polymerize at 60°C overnight, and allow to cool before sectioning.
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APPENDIX IV

STAINING PROCEDURES

After the fixed and embedded cambial samples had been sectioned with the

ultramicrotome and placed on grids, they were stained by one or both of the

following procedures:

A. 0.5% Lead citrate, pH 12.

1. Put drops of stain onto a wax bottom Petri dish with a few
pellets of KOH nearby to reduce CO2 contamination. Avoid
breathing on drops.

2. Float grids on the drops, section side down, for 10 to 20
min in the covered dish.

3. Rinse successively in 0.02N NaOH and then three vessels of
distilled water with 20 rapid dips into each vessel.

B. 2% Potassium permanganate.

1. Pipet stain from under solution surface and drop onto wax
bottom Petri dish.

2. Float grids on the stain, section side down, for 10 to 20
min in the covered dish.

3. Rinse in three successive vessels of distilled water, 20
rapid dips each.

After staining and rinsing, grids were dried by blotting the very edge

with lens paper. The water was thereby drawn off by capillary action.
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APPENDIX V

COLLODION EMBEDMENT,FOR MICROTOME SECTIONING C139)

Cambial sample blocks which included about 2 mm of tissue on either

side of the cambium band were dehydrated and embedded in collodion for sub-

sequent sectioning. The samples were trimmed to about 1 cm x 0.5 cm x 1 cm

(t x r x 1) before the following dehydration and embedding schedule:

Solution

30% Ethanol
50% "
70% "
85% "
90% "

Absolute "

i,1 t
i t

Ethanol:ether (1:1)
2% Collodion*, 100 psi

2% Collodion, atm. pressure
12% Collodion, 100 psi

12% Collodion, atm. pressure

Time

2 hr
1 hr
1l hr
12 hr

2 hr
2 hr

Overnight
1 hr
4 hr
8 hr
1 week
8 hr
1 week

The collodion-embedded block was then hardened and sectioned as follows:

1. Thicken collodion to a heavy syrup by evaporation of solvent from
uncovered vessel.

2. Remove wood samples and plunge them into about 10 volumes of
chloroform for 12 hr to harden the collodion.

3. Section the embedded wood radially with a sliding microtome at
about 100 pm.

4. Dissolve collodion from the sections using ethanol:ether Cl:l)
with three 1-hr changes.

5. Dry sections from ether.

6. Prepare sections for electron microscopy.

*Collodion solutions were prepared with Parlodion Ca highly purified cellulose
nitrate produced by Mallinckrodt) dissolved in absolute ethanol:ether C1:l).
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APPENDIX .VI

POLYSTYRENE BACKING

Wood sections were hacked with molten polystyrene with the apparatus de-

scribed by Dunning (43). The technique was used in this investigation for

three different purposes:

1. The original purpose was to give support to replicated surfaces

while the wood was being dissolved.

2. Wood sections were backed during the harsh 72% H2SO4 treatment to

maintain the organization of any cell wall features not dissolved.

3. In an attempted physical isolation of the warty layer, wood

sections were backed with molten polystyrene, and all of the

wood was then carefully scraped away with a dissecting needle,

hopefully leaving only the minute warts from the interior cell wall

surface embedded in the polystyrene.

Schematically, these situations should exist before and after treatment:

Before After

Polystyrene Poystyrene

Rada 1, 2, or 3Wood Section °

Cross section view of Polystyrene, plus:
polystyrene backed wood 1) carbon replica after
section dissolution of wood,

or 2) residue left after
H2S04 treatment,

or 3) embedded fragments left
after wood scraped away.

Numbers correspond to the pro-
cedures listed above
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APPENDIX VII

CULTURE MEDIA

The following media were used as nutrient solutions for the culture of

white-rot fungi;

A. Asparagine-glucose medium (140)

Glucose 20.0 g Citric acid 1.4 mg

L-asparagine 2.0 g FeS04'7H 20 1.0 mg

KH2P04 3.0 g Thiamine'HCl 1.0 mg

MgS0 4'7H20 0.5 g CuS04*5H20 0.4 mg

CaCl 2 3.4 mg MnS04'H 20 0.3 mg

ZnS04'7H 20 1.8 mg CNH4)6Mo7024'4H20 0.3 mg

bring to 1 liter with distilled water

B. Malt medium

1.5% Malt extract (product of Difco Laboratories) in water.



APPENDIX VIII

DEVELOPING SOLVENTS AND DETECTION REAGENTS
FOR THIN-LAYER AND PAPER CHROMATOGRAPHY

Spotted chromatograms were developed with one of the following solvent

systems:

Solvent I - Ethyl acetate-isopropanol-water (8:2:1). This solvent

was used to fractionate sugars on thin-layer plates.

Solvent II - Ethyl acetate-acetic acid-formic acid-water (18:3:1:4).

This solvent was used to fractionate sugars on paper.

Solvent III - Ethyl acetate-pyridine-water (8:2:1). This solvent was

also used to fractionate sugars on paper.

Solvent IV - Butanol-pyridine-water (10:3:3). This solvent was used

to fractionate lignin monomers on paper.

All solvent ratios were based on volume at room temperature.

Developed chromatograms were allowed to dry and were then detected by

spray reagent.

I. Carbohydrate detection reagents

A. Anisaldehyde reagent (141)

0.5 ml anisaldehyde

0.5 ml coned. H2SO4

0.1 ml glacial acetic acid

9.0 ml 90% ethanol

Chromatograms were sprayed with a freshly prepared solution,

air dried, and heated at 100°C for 5 min. Different monosaccharides

gave distinguishing color reactions (142).



B. p-Anisidine-hydrochloride (143)

Mix in the following order:

0.5 g p-anisidine hydrochloride

5 ml water

10 ml 95% ethanol

85 ml n-butanol

Chromatograms were sprayed, air dried, and heated at 105°C for

5 min. The pentoses and uronic acids appeared pink to red and the

hexoses appeared brown.

II. Lignin detection reagents

A. 2,4-Dinitrophenylhydrazine (127)

Chromatograms were sprayed with a saturated solution of 2,4-

nitrophenylhydrazine in 2N HC1 and air dried. Carbonyl groups

were detected as orange or brown spots on a light yellow background.

B. Diazotized p-nitroaniline (120)

After drying, the developed chromatogram was exposed to ammonia

vapor and sprayed immediately with a 0.05% solution of the diazo

salt of p-nitroaniline in water. After air drying and recording

of any color spots, the chromatogram was sprayed with a saturated

solution of sodium carbonate in water and allowed to air dry.

Phenolic compounds and aromatic amines gave characteristic colors

(120).


