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SUMMARY

This work is concerned with the two dimensional capillary gravity water waves of finite

depth x2 ∈ (−h, 0) linearized at a uniformly monotonic shear flow U(x2). We focus on the

eigenvalue distribution and linear inviscid damping. Unlike the linearized Euler equation

in a fixed channel at a shear flow where eigenvalues exist only in low wave numbers k

of the horizontal variable x1, we first prove that the linearized capillary gravity wave has

two branches of eigenvalues −ikc±(k), where the wave speeds c±(k) = O(
√
|k|) for

|k| � 1 have the same asymptotics as the those of the linear irrotational capillary gravity

waves. Under the additional assumption of U ′′ 6= 0, we obtain the complete continuation of

these two branches, which are all the eigenvalues of the linearized capillary gravity waves

in this (and some other) case(s). In particular, −ikc−(k) could bifurcate into unstable

eigenvalues at c−(k) = U(−h). In general the bifurcation of unstable eigenvalues from

inflection values of U is also obtained. Assuming there are no singular modes, i.e. no

embedded eigenvalues for any horizontal wave number k, linear solutions (v(t,x), η(t,x1))

are considered in both periodic-in-x1 and x1 ∈ R cases, where v is the velocity and η the

surface profile. Each solution can be split into (vp, ηp) and (vc, ηc) whose k-th Fourier

modes in x1 correspond to the eigenvalues and the continuous spectra of the wave number

k, respectively. The component (vp, ηp) is governed by a (possibly unstable) dispersion

relation given by the eigenvalues, which is simply k → kc±(k) in the case of x1 ∈ R and

is conjugate to the linear irrotational capillary gravity waves under certain conditions. The

other component (vc, ηc) satisfies the linear inviscid damping as fast as |vc1|L2
x
, |ηc|Lx2 =

O( 1
|t|) and |vc2|L2

x
= O( 1

t2
) as |t| → ∞. Furthermore, additional decay of tvc1, t2vc2 in L2

xL
q
t ,

q ∈ (2,∞], is obtained after leading asymptotic terms are singled out, which are in the

forms of t-dependent translations in x1 of certain functions of x. The proof is based on

detailed analysis of the Rayleigh equation.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

The chief purpose of this thesis is to study the long-time asymptotic behavior of incom-

pressible inviscid gravity-capillary water wave in R2. Particularly, the focus is on mono-

tone shear flows. The results in this thesis include the eigenvalue distribution and invis-

cid damping. In this chapter, we present our frame work, some background about the

two-dimensional incompressible Euler equation, and some classical results about the linear

instability of shear flows.

1.1 2d incompressible inviscid capillary gravity water wave

In our frame work, the fluid is assumed to be incompressible, inviscid and has finite depth

under the influence of gravity and surface tension. The density of the fluid is constant. It is

normalized to be 1.

Figure 1.1: Capillary gravity water wave

In this two dimensional capillary gravity water wave problem, we let

Ut = {(x1,x2) ∈ TL × R | −h < x2 < η(t,x)}, TL := R/LZ, L > 0,
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or

Ut = {(x1,x2) ∈ R× R | −h < x2 < η(t,x)}.

be the fluid domain at time t ≥ 0. Here TL := R \ LZ, L is the period. We consider the

case where the free surface St is given as the graph of a smooth function η.

St = {(t,x)|x2 = η(t,x1)}.

The constant h > 0 is fixed and describes the location of water bed. For x ∈ Ut, let

v = (v1(t,x), v2(t,x)) ∈ R2 denote the fluid velocity and p = p(t,x) ∈ R be the pressure.

By the Newtonian’s second law, they satisfy the following 2d Euler equations:

∂tv + (v · ∇)v +∇p+ g~e2 = 0, x ∈ Ut, (1.1.1a)

where g > 0 is the gravitational acceleration. By the incompressibility of the fluid, v

satisfies divergence free condition.

∇ · v = 0, x ∈ Ut, (1.1.1b)

The motion of the surface satisfies the kinematic boundary condition which means that v

restricted to the free surface St is a boundary velocity.

∂tη(t,x1) = v(t,x) · (−∂x1η(t,x1), 1)T , x ∈ St. (1.1.1c)

We also impose the dynamic boundary condition.

p = σκ(t,x), x ∈ St, (1.1.1d)

where σ > 0 is a fixed material constant, κ(t,x) = − ηx1x1

(1+η2x1 )
3
2

is the mean curvature of St
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at x which corresponds to the surface tension. The rigidity of the water bed implies the slip

boundary condition.

v2(t,x1,−h) = 0, x2 = −h. (1.1.1e)

The local well-posedness theory of the water wave system has been studied extensively.

Nalimov [58] proved a local well-posedness result for irrotational gravity waves in the case

of infinite depth with small initial data in Sobolev spaces. Without surface tension, Ebin

[17] proved that the problem is ill-posed without the Rayleigh-Taylor stability condition.

In the breakthrough works of Wu [65, 66], she established the well-posedness for irrota-

tional gravity wave without surface tension in Sobolev spaces locally in time in both two

and three dimensions. Later, Lindblad [45] proved the local existence of solutions for the

rotational water wave equations in the absence of surface tension. Coutand and Shkoller

[15] proved the local well-posedness of rotational fluids with surface tension and without

surface tension. Other references include [8, 1, 2, 14, 54, 55, 36, 53, 69, 49, 37]. Wu

[67] and Germain-Masmoudi-Shatah [21] proved the global well-posedness without sur-

face tension for irrotational small data. Ionescu-Pusateri [33] proved the global regularity

for the 2d irrotational water waves problem with surface tension for irrotational small data.

Other references about global well-posedness for irrotational small data include [32, 3, 25,

28, 59, 33, 60].

1.2 Linearization near shear flows

It is well known that shear flow is a class of steady state of incompressible Euler equation.

In a shearing flow, adjacent layers of the fluid move parallel to each other. Particularly, we

consider the following parallel shear flows in x1-direction.

v∗ :=
(
U(x2), 0

)T
, S∗ := {(t,x)|x2 = η∗(x1) ≡ 0}, ∇p∗ = −g~e2. (1.2.1)
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Our primary goal is to analyze the capillary gravity water wave system linearized at a

monotone shear flow satisfying

U ∈ C l0([−h, 0]), l0 ≥ 3, U ′(x2) > 0, ∀x2 ∈ [−h, 0]. (H)

The two aspects of this linearized system are the eigenvalue distribution and inviscid damp-

ing. We first derive the linearized system of (1.1.1) at the shear flow (v∗ = (U(x2), 0)T , η∗ =

0) given in (1.2.1) satisfied by the linearized solutions which we denote by (v, η, p). Let

(Sεt , v
ε(t,x), pε(t,x)) be a one-parameter family of solutions of (1.1.1) with

(S0
t , v

0(t,x), p0(t,x)) = (S∗, v∗, p∗).

Differentiating the Euler equation (1.1.1a) and (1.1.1b) with respect to ε and then evaluating

it at ε = 0 yield

∂tv + U(x2)∂x1v + (U ′(x2)v2, 0)T +∇p = 0, ∇ · v = 0, x2 ∈ (−h, 0). (1.2.2a)

Taking its divergence and also evaluating the above linearized Euler equation at x2 = −h,

we obtain

−4p = 2U ′(x2)∂x1v2, x2 ∈ (−h, 0), and ∂x2p|x2=−h = 0. (1.2.2b)

From the kinematic boundary condition (1.1.1c), we have

∂tη = v2|x2=0 − U(0)∂x1η. (1.2.2c)

Finally differentiating (1.1.1d), where the left side is pε(t,x1, ηε(t,x1)), and using ∂x2p∗ =

−g, we obtain

p = gη − σ∂2
x1
η, at x2 = 0. (1.2.2d)

The above ((1.2.2a) – (1.2.2d)) form the linearization of the capillary gravity water wave
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problem (1.1.1) at the shear flow (v∗,S∗, p∗) with initial values (v10(x), v20(x), η0(x1)). In

fact it can be reduced to an evolutionary problem of the unknowns (v, η), while p can be

recovered by the boundary value problem of the elliptic system (1.2.2b) and (1.2.2d).

1.3 Backgrounds and motivations

Due to its physical and mathematical significance there have been extensive studies of the

Euler equation linearized at shear currents. Many of these works were done for a finite

channel flow which satisfies

(1.1.1a)–(1.1.1b) with g = 0, (1.3.1a)

and slip boundary conditions

v2(t,x1, 0) = v2(t,x1,−h) = 0, (1.3.1b)

and some of the results have been extended to free boundary problems such as the gravity

waves. The spectral analysis is naturally a crucial part of such linear systems. Eigenvalues

yield linear solutions exponential or oscillated in time, while the continuous spectra often

lead to algebraic decay of solutions, the so-called inviscid damping due to the lack of a

priori dissipation mechanism of the Euler equation.

• Eigenvalues. Since the variable coefficients in the linearized Euler system depend

only on x2, the subspace of the k-th Fourier mode is invariant under the linear evolution for

any k ∈ R. Hence it is a common practice to seek eigenvalues and eigenfunctions in the

form of

v(t,x) = eik(x1−ct)
(
v10(x2), v20(x2)), η(t,x1) = eik(x1−ct)η0(x1), (1.3.2)

in the free boundary case, where apparently the eigenvalues take the form λ = −ikc with
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the wave speed c = cR + icI ∈ C. The linear system is spectrally unstable if there exist

such c, which appear in conjugate pairs, with cI > 0 and k > 0. Solutions in the above

form with c ∈ U([−h, 0]) are in a subtle situation and are referred to as singular modes

(see Definition 2.2.1 and Remark 4.1.1 for singular and non-singular modes). In seeking

solutions in the form of (1.3.2), the wave number k ∈ R is often treated as a parameter.

Classical results on the spectra of the Euler equation (1.3.1) in a channel linearized at a

shear flow include:

• Unstable eigenvalues are isolated for any wave number k ∈ R and do not exist for

|k| � 1.

• Rayleigh’s necessary condition of instability [51]: unstable eigenvalues do not exist

for any k if U ′′ 6= 0 on [−h, 0] (see also [18]).

• Howard’s Semicircle Theorem [24]: for any k 6= 0, eigenvalues exist only with c in

the disk (
cR − 1

2
(Umax + Umin)

)2
+ c2

I ≤ 1
4
(Umax − Umin)2. (1.3.3)

Particularly, the unstable wave speed must lie in an upper semicircle.

Figure 1.2: Howard’s Semicircle Theorem

• Unstable eigenvalues may exist with c near inflection values of U (Tollmien [57]

formally, also [38]).

Many classical results can be found in books such as [16, 46] etc. For a class of shear

flows, the rigorous bifurcation of unstable eigenvalues was proved, e.g., in [19, 39, 41,

42]. In particular, Friedlander and Howard demonstrated the instability of Kolmogorov
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flow U(x2) = cos(mx2). This is also an example of a nonlinearly unstable inviscid flow

according to [20]. Lin showed that for a certain class of shear flows, the neutral limiting

wave speed must be an inflection value of the velocity profile and proved the global bifur-

cation of unstable modes from neutral modes rigorously. He also provided some sufficient

conditions of linear instability for several classes of shear flows.

It has been extended to the linearized free boundary problem of gravity waves (i.e.

g > 0 and σ = 0 in (1.1.1)) at shear flows (see [68, 26, 52, 27] etc.) that: a.) assuming

U ′ > 0 and U ′′ 6= 0 on [−h, 0], there are no singular neutral modes in U
(
(−h, 0)

)
(i.e.

solution in the form of (1.3.2) with c ∈ U
(
(−h, 0)

)
); b.) the semicircle theorem still

holds; and c.) for a class of shear flows, singular neutral modes may exist at inflection

values of U and the bifurcation and continuation of branches of unstable eigenvalues were

also obtained. Compared to channel flows with fixed boundaries, new phenomena of the

linearized gravity waves include: a.) in addition, critical values of U , where U ′ = 0, and

c = U(−h) may be limiting singular neutral modes; and b.) there are non-singular neutral

modes, i.e. c ∈ R\U([−h, 0]). Another related result is Miles’ critical layer theory [48, 11]

on the instability of shear flows in two-phase fluid interface problem due to the resonance

between the temporal frequency of the linear irrotational capillary gravity waves at the

completely stationary water and the shear flow in the air in the above.

• Inviscid damping. The analysis of the inviscid damping phenomenon started with the

Euler equation in a fixed periodic channel (1.3.1) linearized at the Couette flowU(x2) = x2.

In 1907, Orr [50] observed that the linearized vertical velocity v2(t,x) tends to zero as

t→∞. Some explicit calculations were done by some mathematicians(see, e.g., [12, 43]).

It has been proven that under the assumption
∫ 0

−h v10(x1,x2)dx1 = 0, which means that the

7



shear flow component of the linear solutions is removed, as t→∞,

ω0 ∈ L2 =⇒ |v|L2 = o(1),

ω0 ∈ H1 =⇒ |v|L2 = O( 1
|t|),

ω0 ∈ H2 =⇒ |v2|L2 = O( 1
|t|2 ),

(1.3.4)

where ω0 denotes the initial vorticity. More general shear flows in a fixed channel have also

been studied extensively. For a class of general stable shear flows, Bouchet and Morita [9]

predicted similar decay estimates of the linearized velocity as well as the vorticity depletion

phenomenon. For monotone shear flows without infection points, an O(|t|−ν) decay of the

stream function was proved in [56] and then the (1.3.4) type decay in [70, 71] under a

smallness assumption of LU ′′ (also ω0|x2=−h,0 = 0 in order for the O(t−2) decay of v2). A

significant contribution is [61] by Wei-Zhang-Zhao where the (1.3.4) type estimates were

obtained for general monotone shear flows without singular modes. In the follow-up works

[62, 63, 64], vorticity depletion and velocity decay (as well as an L2
t decay if ω0 ∈ L2

only) were also obtained for a class of non-monotone shear flows. As the decay rates in

(1.3.4) are basically optimal, some leading order effects from both the interior and the

boundary were identified for the stream function and velocity in [70, 35]. In the absence of

boundary impact, for compactly supported initial vorticity, linear inviscid damping near a

class of monotone shear flows was also obtained in Gevrey spaces [34]. In [23], a different

approach using methods from the study of Schrödinger operators was successfully adopted

to analyze inviscid damping. See also [6, 31] for important developments for the linear

inviscid damping at circular flows in R2.

While we focus on the linearized capillary gravity waves at shear flows, among the

rich literatures on the related nonlinear dynamics of the 2-d Euler equation on fixed do-

mains we refer the readers to [4] for nonlinear Lyapunov stability of steady states based

on energy-Casimir functions by Arnold. In recent years, there are some results on the non-

linear instability of steady states. Under a spectral condition, Friedlander-Strauss-Vishik
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[20] proved that linear instability in L2 implies nonlinear instability in Hs, s > d
2

+ 1 in

d−dimensional space. For a class of shear flows, of which the maximal Lyapunov expo-

nent is zero, Grenier [22] proved that in two dimension, linear instability implies nonlinear

instability with growth in L2 and L∞. Bardos-Guo-Strauss [5] proved nonlinear instability

reflected in growth of the vorticity in L2 if the linear growth rate is higher than the maximal

Lyapunov exponent of the steady flows defined on bounded domains in two dimension.

Lin improved this result and showed nonlinear instability in Lp-norm of velocity (p > 1)

without any restriction on the growth rate [40, 42] in 2D. Lin-Zeng [44] proved, in any di-

mensions, the existence of the unique local unstable manifold of a steady state under certain

conditions and thus its nonlinear instability. There are also some results on the remarkable

asymptotic stability of shear flows in Gevrey class [7, 29]. Recently, Ionescu–Jia [30] and

Masmoudi–Zhao [47] independently proved nonlinear inviscid damping for more general

monotonic shear flows in two dimenson, with compactly supported vorticity, in Gevrey

class based on the linear inviscid damping.

• Intuitions and goals on linearized capillary gravity waves. Whether the Euler equa-

tion is in a fixed domain or with free boundaries, the vorticity is transported by the fluid

flow in the interior of the domain, hence it is natural to expect linear inviscid damping of

the linearized free boundary problem at a shear flow. In contrast to the linearized Euler

equation on a fixed domain where non-singular modes do not exist for large wave number

k, in the linear free boundary problems they exist for all |k| � 1, which can be seen in the

linear irrotational case – a dispersive problem. Therefore in the linearized free boundary

problems it is less reasonable to ignore these eigenfunctions of infinite dimensions to focus

on the inviscid damping only. For the linearized capillary gravity wave (1.2.2) at a shear

flow U(x2), our main goals are to obtain both the eigenvalue distribution and the linear

inviscid damping of the solutions after projected to the components corresponding to the

continuous spectra.

For an illustration, some explicit computations of the linearized capillary gravity wave

9



(1.2.2) at the Couette flow U(x2) = x2 are given in Section subsection 2.1.2. There it is

easy to see that, on the one hand, the linear inviscid damping (1.3.4) holds for the rota-

tional part of the solutions. On the other hand, there exist two branches of neutral modes

c±(k) (see (2.1.4)) approaching infinity at the same rate as (2.1.5) of the linear irrotational

capillary gravity wave. They form two branches of the dispersion relations of irrotational

waves contained in the linearized water wave system at the Couette flow, which is linearly

stable. At a general shear flow U(x2), natural questions are a.) linear inviscid damping, b.)

what happens to these branches of non-singular modes, c.) where spectral instability could

occur, etc. Compared to purely gravity waves, it is natural to expect that spectral properties

with surface tension may be a.) similar if such properties are local in the wave number

k; and b.) different if large wave numbers are involved. Motivated by the results on the

linearized gravity waves [26, 52, 27], for monotone shear flows one may imagine unstable

modes arising from c = U(−h) and inflection values of U . The possible bifurcation of

unstable modes at the end point value U(−h) is particularly subtle due to the regularity

issues of the bifurcation equation.
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CHAPTER 2

MAIN RESULTS AND PRELIMINARIES

2.1 Main results

2.1.1 Eigenvalue distribution

We first give the main theorem on the eigenvalue distribution. The results on the linear

inviscid damping are somewhat more technical and only roughly outlined here. Their more

precise statements are given in Theorem 2.1.2 and Theorem 2.1.3 in subsection 2.1.3. See

Definition 2.2.1, Lemma 4.1.1(5), and Remark 4.1.1 for what are referred to as singular

and non-singular modes. Particularly, by slightly adjusting the same argument as in [24,

68], the Semi-circle Theorem still holds for the linearized system (1.2.2) of the capillary

gravity water waves at shear flows. We shall take this as granted in the rest of the paper.

Theorem 2.1.1. (Eigenvalues.) Suppose U ∈ C3 and U ′ > 0 on [−h, 0], then the following

hold.

1. There exists k0 > 0 such that for any k ∈ R with |k| ≥ k0, there are no singu-

lar modes and exactly two non-singular modes c+(k) ∈ (U(0), +∞) and c−(k) ∈

(−∞,U(−h)) which correspond to semi-simple eigenvalues −ikc±(k). Moreover,

(a) c±(k) are even and analytic in k and c+(k) can be extended for all k ∈ R with

c+(k) > U(0);

(b) lim|k|→∞ c
±(k)/

√
σ|k| = ±1;

(c) if U(−h) is not a singular mode for any k ∈ R, then c−(k) can also be extended

to be even and analytic in all k ∈ R with c−(k) < U(−h); and

(d) if singular modes do not exist ∀ k ∈ R, then c±(k) are the only non-singular

modes of (1.2.2) which is linearly stable.
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(e) c+(k) (and c−(k) < U(−h) as well if it can be extended for all k ∈ R) has

either none or exactly one non-degenerate critical point for k > 0 under con-

ditions (4.1.14) and (4.1.15), respectively. Consequently, if c−(k) can also be

extended for all k ∈ R and (4.1.14) holds for both c±(k), then on the closed

invariant subspace in {(v, η) ∈ Hn×Hn+1}, 0 ≤ n ≤ l0− 1, generated by the

eigenfunctions of −ikc±(k) for all k ∈ R, through an isomorphism, the linear

system (1.2.2) is conjugate to the irrotational capillary gravity waves linearized

at zero.

2. There exists g# ≥ 0 depending only on U and σ such that the following hold.

(a) If g > g#, then the non-singular modes c−(k) < U(−h) can also be extended

to be even and analytic in all k ∈ R and ±(c±(k))′ > 0 for k > 0;

(b) g# = 0 if and only if

σ ≥
∫ 0

−h

(
U(x2)− U(−h)

)2
dx2. (2.1.1)

3. If U ′′ 6= 0 on [−h, 0] is also satisfied, then there exists g# ≥ 0 such that the following

hold.

(a) The only possible singular mode is c = U(−h).

(b) If g > g# then there are no singular modes and c−(k) can be extended as an

even analytic function such that c−(k) < U(−h) for all k ∈ R. Moreover c±(k)

are the only non-singular modes and thus (1.2.2) is spectrally stable.

(c) If g = g# and U ∈ C6, then there exists k# > 0 such that c−(k) can be

extended as an even C1,α function (for any α ∈ [0, 1)) for all k ∈ R. Moreover

c−(k) < U(−h) is analytic for all k 6= ±k#, and c−(±k#) = U(−h). For each

k ∈ R, c±(k) are the only singular or non-singular modes and thus (1.2.2) is

spectrally stable.
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(d) If g < g# and U ∈ C6, then there exist k+
# > k−# > 0 such that we have the

following.

i. Assume U ′′ > 0 on [−h, 0], then c−(k) can be extended as an even C1,α

function (for any α ∈ [0, 1)) for all k ∈ R and analytic except at k = ±k±#

such that

c−(±k±#) = U(−h),

c−(k) < U(−h), ∀|k| /∈ [k−#, k+
#], c−I (k) > 0, ∀|k| ∈ (k−#, k+

#).

Moreover, for each k, all singular and non-singular modes are exactly

c+(k), c−(k), as well as c−(k) if |k| ∈ (k−#, k+
#). Consequently, (1.2.2)

is spectrally unstable iff A.) x1 ∈ R or B.) x1 ∈ TL and there exists m ∈ Z

such that 2πm
L
∈ (k−#, k+

#).

ii. Assume U ′′ < 0 on [−h, 0], then c−(k) can be extended as an even C1,α

real valued function (for any α ∈ [0, 1)) for |k| /∈ (k−#, k+
#), analytic in

k if |k| /∈ [k−#, k+
#], and c−(±k±#) = U(−h). Moreover, all singular and

non-singular modes are exactly c+(k) and c−(k), if |k| /∈ (k−#, k+
#), and

(1.2.2) is spectrally stable.

(e) g# = 0 if (2.1.1) holds and consequently the above (3b) holds.

4. If U ∈ C6 and U ′′(x20) = 0 for some x20 ∈ (−h, 0). Let c0 = U(x20).

(a) There exists σ0 > 0 such that for any σ ∈ (0,σ0), there exists k > 0, unique

among large k’s, such that c0 is a singular neutral mode for ±k.

(b) If U ′′′(x20) 6= 0 and c0 is a singular neutral mode for k0 > 0, then, under

a non-degenerate condition (verified by the one obtained in (4a) for small σ),

there exist unstable modes near c0 for k close to k0 on one side of k0.

Remark 2.1.1. Due to symmetry, the case of U ′ < 0 is completely identical except the
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signs of U ′′ in (3d) should be reversed. Theorem 2.1.2 and Theorem 2.1.3 on linear inviscid

damping also hold under U ′ 6= 0 on [−h, 0].

The existence of the unbounded branches of non-singular neutral modes c±(k) are in

contrast to the gravity waves or the Euler equation on fixed channels. In fact, the geomet-

ric multiplicity of −ikc±(k) occurs only among different k. These temporal frequencies

−kc±(k) are asymptotic to those (see (2.1.5)) of the irrotational capillary gravity waves lin-

earized at zero. Moreover, after normalizing the L2
x2

of the v component of the eigenfunc-

tion to be 1, the L2 and H1 differences in the v and η components, respectively, between

the eigenfunctions of (2.2.1) and the linearized irrotational waves are of order O(|k|− 3
2 )

as |k| → ∞ (see Remark 6.1.1). While the strong surface tension condition (2.1.1) en-

sures the branch c−(k) staying in (−∞,U(−h)), it might reach U(−h) otherwise. Subtle

bifurcation of c−(k) occurs at c = U(−h), the boundary of the domain of regularity of

the bifurcation equation. In particular, the sign of U ′′ determines whether c(k) becomes

unstable or disappears at U(−h).

The spectral stability in the case U ′′ < 0 can also be obtained by directly modifying the

usual proof of the Rayleigh theorem in the fixed channel flow case, as done in [68] for the

gravity wave. Our proof provides a complete picture of the eigenvalue distribution as in the

above theorem, however.

While U(0) is never a singular mode, just like the Rayleigh’s theorem in the channel

flow case the change of sign of U ′′ turns out to be necessary for the existence of interior

singular modes, which is also sufficient if σ � 1. In the contrast this may not be sufficient

if the stabilizing gravity g and surface tension σ are strong, see Remark 4.3.1.

Outline of the Proofs of Theorem 2.1.1

In the preliminary analysis in section 2.2, we first apply the Fourier transform in x1 to

(1.2.2), resulting in decoupled systems for each wave number k. The problem can be

further reduced to the evolution of v̂2(t, k,x2), the Fourier transform of v2. The Laplacian
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transform V2(k, c,x2) of v̂2(t, k,x2), where s = −ikc is the Laplace transform variable,

satisfies a non-homogeneous boundary value problem (2.2.6) of the Rayleigh equation,

solutions to the associated homogeneous problem of which correspond to eigenvalues and

eigenfunctions.

A careful analysis of the homogeneous Rayleigh equation (3.0.1), carried out in chap-

ter 3, lays the foundation of the study of both the eigenvalue distribution and the inviscid

damping. We first study the Rayleigh equation away from the singularity for |U(x2)− c| ≥

O(µ) where µ = 1
〈k〉 = (1 + k2)−

1
2 . Near the singularity for |U(x2)− c| ≤ O(µ), different

from those in, e.g., [61, 35], our approach is an improved version of the one in [11] based

on the ODE blow-up and invariant manifold method [13]. Solutions to the homogeneous

Rayleigh equation are expressed pointwisely through a transformation involving an explicit

log(U−c) and depending on (k, cR,x2) smoothly. We focus on a pair of fundamental solu-

tions y±(k, c,x2) to the homogeneous Rayleigh equation which satisfy the corresponding

homogeneous boundary conditions (2.2.6b)-(2.2.6c) in (2.2.6) at x2 = 0,−h, respectively

(boundary condition (2.2.6c) reflects the free boundary setting). For y±, we establish a.)

their a priori bounds; b.) the convergence to their limits y0±(k, cR,x2) as cI → 0+; and c.)

the smoothness of y0±, particularly, in cR. Recall U ∈ C l0 , we prove y0± is C l0−3 in cR

except at cR = U(−h),U(0). Due to the analyticity of y± in c with cI > 0, the estimates of

y0± also yield those of y± for cI > 0. Eventually general solutions to the non-homogeneous

boundary value problem (2.2.6) of the Rayleigh equation are expressed using y±. Finally,

the quantity Y (k, c) = ∂x2y−(k, c, 0)/y−(k, c, 0) related to the Reynolds stress is carefully

studied, which plays an important role in the analysis of the Rayleigh equation. This chap-

ter is a little lengthy, but we believe the studies on the Rayleigh equation could be widely

useful for various purposes.

In chapter 4 we prove the results on the eigenvalue distribution based on the detailed

analysis in chapter 3. We first obtain c±(k) for |k| � 1, followed by an argument based

on analytic continuation and index calculation. Bifurcations may occur at inflection values
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of U and particularly subtle at c = U(−h), which are on the boundary of the analyticity

of the bifurcation equation F (k, c) = 0. The regularity obtained in chapter 3 implies,

when restricted to cI ≥ 0, F ∈ C l0−3 at c ∈ U
(
(−h, 0)

)
and F ∈ C1,α at c = U(−h).

This makes the bifurcation analysis possible near c = U(−h) and much easier even in the

relatively classical case near inflection values of U .

Among the results in Theorem 2.1.1, in statement (1), c±(k) are obtained for large |k| in

Lemma 4.1.2(3) with more detailed estimates, the extension of c±(k) in Corollary 4.1.3.1,

and the semi-simplicity of the eigenvalues−ikc±(k) in Lemma 4.1.2(3), Proposition 4.1.4,

Corollary 4.1.3.1, and Corollary 6.1.2.1. Under the additional assumption of non-existence

of singular modes, the non-existence of other non-singular modes is proved in Proposi-

tion 4.1.4. The analysis of the critical points of c±(k) is given in Lemma 4.1.7. The

conjugacy to the linearized irrotational waves is proved in Proposition 6.3.2. See also

Remark 6.3.1. With the strong surface tension assumption (2.1.1) in statement (2), the

existence of g# is proved in Lemma 4.1.6, along with the existence of k# and/or k±# in

statement (3). The rest of statement (3) is proved at the end of section 4.2 after a series of

lemmas. Statement (4) is proved in section 4.3 with more details.

2.1.2 Motivation from the Couette flow

Before stating the main theorems we describe two main relevant properties using the Cou-

ette flow U(x2) = x2 as an illustration. The linearized velocity can be decomposed

uniquely into the rotational and irrotational/potential parts (see e.g. [54])

v = vir + vrot, where ∇ · vir,rot = 0,

where

vir = ∇ϕ, ∆ϕ = 0, x2 ∈ (−h, 0), and ∂x2ϕ|x2=−h = 0,
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and vrot satisfies

∇ · vrot = 0, vrot2 |x2=−h,0 = 0.

In particular, the rotational part can almost be determined by the vorticity ω in the same

way as in the Euler equation (1.3.1) in the fixed channel x2 ∈ (−h, 0) with slip boundary

condition

vrot = (−∂x2 , ∂x1)T∆−1ω + (a, 0)T , and ω = ∇× v = ∂x1v2 − ∂x2v1, (2.1.2)

where a is a constant and ∆−1 is the inverse Lapacian in the 2-d region x2 ∈ (−h, 0) (L-

periodic in x1 or x1 ∈ R) under the zero Dirichlet boundary condition along x2 = −h, 0. In

the periodic-in-x1 case, the constant a may be non-zero and is determined by the physical

quantity circulation.

I. Inviscid damping. From the 2-d Euler equation (1.1.1a), one often also consider the

corresponding vorticity formulation

∂tω + v · ω = 0. (2.1.3)

Linearizing it at ω∗ = −1 which is the vorticity of the Couette flow yields the linearized

vorticity

ω(t,x) = ω0(x1 − x2t,x2)

expressed in term of its initial value ω0. Since vrot component of the linearized capillary

gravity waves (1.2.2) at the Couette flow corresponds to the divergence free velocity field

determined by its vorticity ω by (2.1.2) which is the same way as in the fixed boundary

problem of the channel flow, the inviscid damping (1.3.4) of the latter (in the periodic-in-

x1 case) implies

∣∣∣vrot − 1

L

(∫ L
2

−L
2

v1dx1

)
~e1

∣∣∣
L2
≤ C(1 + |t|)−1|ω0|H2 , |vrot2 |L2 ≤ C(1 + |t|)−2|ω0|H2 .
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II. Singular and non-singular modes. Unlike the Euler equation in a fixed channel,

there is the additional surface profile η coupled to the irrotational part vir of the velocity,

which may not decay. In fact, for any k ∈ R, let

v(t,x) = (1 + k2)
1
4 eik(x1−c±(k)t))−|k|h(i cosh k(x2 + h), sinh k(x2 + h)

)
+ c. c.

η(t,x1) = i(1 + k2)
1
4 eik(x1−c±(k)t))−|k|h sinh kh/(kc±(k)) + c. c. ,

p(t,x) =i(1 + k2)
1
4 eik(x1−c±(k)t))−|k|h

(
(g + σk2)

sinh kh

kc±(k)

− k
∫ x2

0

(x′2 − c±(k)) sinh k(x′2 + h)dx′2

)
+ c. c.

=i(1 + k2)
1
4 eik(x1−c±(k)t))−|k|h

(
(g + σk2)

sinh kh

kc±(k)
− (x2 − c±(k)) cosh k(x2 + h)

− c±(k) cosh kh+ k−1(sinh k(x2 + h)− sinh kh)
)

+ c. c.

where “c.c.” denotes “complex conjugates” and

c±(k) =
−1±

√
1 + 4k(g + σk2) coth kh

2k coth kh

=⇒ F (k, c) = c2k coth kh+ c− (g + σk2) = 0.

(2.1.4)

Even though we write down these formulas based on Lemma 2.2.1 in the below, it is straight

forward to verify that they are solutions to ((1.2.2a)–(1.2.2d)) for the Couette flow. There-

fore −ikc±(k) are eigenvalues of the linearized systems associated with the above eigen-

functions. These solutions do not grow or decay as t → ∞, often referred to as neutral

modes.

It is worth paying slightly closer attention to the wave speed c±(k) and the function

F (k, c), all of which are even in k. We make the following observations.

1. limk→∞ c
±(k)/(σ|k|) 1

2 = ±1, so for |k| � 1 the dispersion relation kc±(k) is

asymptotic to those of the irrotational capillary gravity waves linearized at zero so-
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lution (system (1.2.2) with U ≡ 0 and ∇× v ≡ 0) given by −kc±ir with

c±ir(k) = ±
√
k−1(g + σk2) tanh kh, C−1 ≤ |c±ir(k)| ≤ C(1 + k2)−

1
4 , (2.1.5)

which can be obtained through direct calculation based on Fourier transform.

2. c+(k) > 0 for all k ∈ R, so it is a branch of non-singular neutral modes, namely,

wave speeds outside [−h, 0], the range of U .

3. While c−(k) < −h in (2.1.4) as seen in the above observation (1) for large k, it can

be happen c−(k) ∈ [−h, 0] for 0 < g,σ � 1 and thus becomes singular modes (those

in the range of U ).

4. Since k coth kh ≥ h−1 with “=” achieved at k = 0, for g,σ � 1, c±(k) ∼ c±ir(k) =√
g+σk2

k coth kh
and thus both c±(k) /∈ [−h, 0] are non-singular modes. Moreover, one

may verify d
dk
|c±(k)| > 0 for all k > 0 if σ � g � 1. In particular, in the case

of x1 ∈ R, this implies that a.) the dispersion relations k → −kc±(k) determine

a linear dispersive wave system formed by the superposition of these non-singular

modes and b.) this dispersive system is conjugate to the irrotational capillary gravity

waves linearized at zero, whose the wave speed is given by (2.1.5). The conjugacy

isomorphism can be constructed by associating the modes k±1 of (2.1.4) and k±2 of

(2.1.5) if they have the same temporal frequency k±1 c
±(k±1 ) = k±2 c

±
ir(k

±
2 ). Moreover,

−ikc±(k) would turn out to the only eigenvalues for the linearization at the Couette

flow for g,σ � 1 (see Proposition 4.1.4(2)).

Generalization to general shear flow U(x2)? From the above discussion, one sees

that solutions to the capillary gravity water waves linearized at the Couette flow exhibit

inviscid damping in their rotational parts while there are infinite non-singular modes with

irrotational eigenfunctions determined by two branches of dispersion relations. However,

several complications arise in the linearization at a general shear flow U(x2) including at
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least the following.

• The crucial function F (k, c) defined in (2.1.4) which determines the wave speed c

and consequently the dispersion relations, while analytic for all c ∈ C \ U([−h, 0]),

may become rather singular for c approaching U([−h, 0]). What regularity of F (k, c)

can one expect?

• Consequently, if a branch of non-singular modes approaches U([−h, 0]), possibly

very subtle bifurcations may occur at the boundary of analyticity of F . Can instability

be generated?

• The inviscid damping (still of the rotational parts?) becomes much more involved,

even in the case of the channel flow (see e.g. [61] Zillinger, Jia, ... ).

In this thesis, we address these issues, with some results even more explicit and detailed

than the above, through careful analysis starting at rather fundamental level under reason-

able assumptions.

2.1.3 Linear inviscid damping

In this subsection, assuming there are no singular modes, we present the theorems on

the splitting and linear inviscid damping of linearized system (1.2.2) of the capillary-

gravity water wave problem (1.1.1) at the shear flow (v∗,S∗, p∗). See Definition 2.2.1

Lemma 4.1.1(5), (4.1.5), and Remark 4.1.1 for singular and non-singular modes. Accord-

ing to Theorem 2.1.1(3e), (2.1.1) combined with U ′′ 6= 0 is sufficient to rule out singular

modes. In this case, we shall prove that any linear solution (v, η) to (1.2.2) can be decom-

posed into the parts (vp, ηp) corresponding to the non-singular modes and (vc, ηc) to the

essential spectra due to U([−h, 0]). This splitting is invariant under (1.2.2) and (vc, ηc) is of

the order O(|t|−1) (and the vertical component vc2 = O(t−2)) as |t| → ∞. In fact, we iden-

tify their asymptotic leading order terms so that the remainders decays even faster. These

leading order terms are in the form of horizontal translations of three functions Ωc, ΛB, and
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ΛT , which represent the contributions from the interior vorticity and the bottom and top

boundary conditions. Their Fourier transforms are given explicitly in (6.1.9), (6.1.16), and

(6.1.15), respectively, using the initial vorticity ω0, the fundamental solutions y±(k, c,x2)

to the homogeneous Rayleigh equation, and Ωc also by the Laplace transform of v2. The

results are stated for the cases of x1 ∈ TL and x1 ∈ R separately in the following.

Theorem 2.1.2. (Inviscid damping: periodic-in-x1 case) Suppose x1 ∈ TL. Assume

U ∈ C l0 , l0 ≥ 3, U ′ > 0 on [−h, 0], and there are no singular modes (see (4.1.5) and

Lemma 4.1.1(5)) for any k ∈ 2π
L
N. For any q1 ∈ [2,∞], q2 ∈ (2,∞], ε > 0, n1 ∈

R, and integers n0 ≥ 0, there exists C > 0 depending only on q1, q2, ε, and U , such

that, for any solution (v(t,x), η(t,x1)) of (1.2.2) with initial value (v0(x), η0(x1)) and the

corresponding initial vorticity ω0(x), there exist unique solutions (v†(t,x), η†(t,x1)), † =

p, c, to (1.2.2) and functions Ωc(x), ΛB(x), and ΛT (x) determined by (v0, η0) linearly

(depending on U as well) such that

(v, η) = (vc, ηc) + (vp, ηp)

and the following hold.

1. Assume U ∈ C4, then (vc, ηc) satisfy the following estimates

|∂n0
t v

c|Hn1
x1
L2
x2
L
q1
t (R) ≤C

(
|η0|

H
n0+n1+

1
2−

1
q1

x1

+ |v10(·, 0)|
H
n0+n1−

3
2−

1
q1

x1

+ |ω0|
H
n0+n1−

1
2−

1
q1

+ε

x1
L2
x2

)
,

|∂n0
t η

c|Hn1
x1
L
q1
t (R) ≤C

(
|η0|

H
n0+n1−1− 1

q1
x1

+ |v10(·, 0)|
H
n0+n1−2− 1

q1
x1

+ |ω0|
H
n0+n1−2− 1

q1
+ε

x1
L2
x2

)
,

∣∣t∂n0
t v

c
2

∣∣
H
n1−

3
2

x1
L2
x2
L
q1
t (R)

+ |t∂n0
t η

c|Hn1
x1
L
q1
t (R)
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≤C
(
|η0|

H
n0+n1−1− 1

q1
x1

+ |v10(·, 0)|
H
n0+n1−3− 1

q1
x1

+ |ω0|
H
n0+n1−2− 1

q1
+ε

x1
L2
x2

+ |∂x2ω0|
H
n0+n1−3− 1

q1
+ε

x1
L2
x2

)
,

∣∣∂n0
t

(
tvc1 − U ′(x2)−1∂−1

x1
Ωc(x1 − U(x2)t,x2)

)∣∣
H
n1
x1
L2
x2
L
q2
t (R)

+
∣∣∂n0
t

(
ωc − Ωc(x1 − U(x2)t,x2)

)∣∣
H
n1−1
x1

L2
x2
L
q2
t (R)

+
∣∣∂n0
t

(
∂2
x2
vc2 − ∂x1Ωc(x1 − U(x2)t,x2)

)∣∣
H
n1−2
x1

L2
x2
L
q2
t (R)

≤C
(
|η0|

H
n0+n1+

1
2−

1
q2

x1

+ |v10(·, 0)|
H
n0+n1−

3
2−

1
q2

x1

+ |ω0|
H
n0+n1−

1
2−

1
q2

+ε

x1
L2
x2

+ |∂x2ω0|
H
n0+n1−

3
2−

1
q2

+ε

x1
L2
x2

)
,

and if, in addition, U ∈ C6, then

∣∣∂n0
t

(
t2vc2 − U ′(x2)−2∂−1

x1
Ωc(x1 − U(x2)t,x2)− ΛB(x1 − U(−h)t,x2)

− ΛT (x1 − U(0)t,x2)
)∣∣
H
n1
x1
L2
x2
L
q2
t (R)

≤C
(
|η0|

H
n0+n1+

1
2−

1
q2

x1

+ |v10(·, 0)|
H
n0+n1−

3
2−

1
q2

x1

+ |ω0|
H
n0+n1−

1
2−

1
q2

+ε

x1
L2
x2

+ |∂x2ω0|
H
n0+n1−

3
2−

1
q2

+ε

x1
L2
x2

+ |∂2
x2
ω0|

H
n0+n1−

5
2−

1
q2

+ε

x1
L2
x2

)
.

2. Assume U ∈ C4, then for any n2 = 0, 1, and q ∈ [1,∞), it holds

|Ωc − ω0|Hn1
x1
L2
x2
≤ C

(
|η0|Hn1

x1
+ |v10(·, 0)|

H
n1−2
x1

+ |ω0|Hn1−1+ε
x1

L2
x2

)
,

|∂x2Ωc − ∂x2ω0|Hn1
x1
L2
x2
≤C
(
|η0|Hn1+1

x1
+ |v10(·, 0)|

H
n1−1
x1

+ |ω0|Hn1+ε
x1

L2
x2

+ |∂x2ω0|Hn1−1+ε
x1

L2
x2

)
,
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||k|n1∂n2
x2

Λ̂B|l2kLqx2 ≤ C|ω0(·,−h)|
H
n1+n2−1− 1

q
x1

, ||k|n1∂n2
x2

Λ̂T |l2kLqx2

≤ C(|ω0(·, 0)|
H
n1+n2−1− 1

q
x1

+ |η0|
H
n1+n2−1− 1

q
x1

),

where f̂(k,x2) denotes the Fourier transform of a function f(x1,x2) with respect to

x1. Moreover, Λ†, † = B,T , satisfy Λ̂†(k = 0,x2) = 0 and


−(U − U(0))∆ΛT + U ′′ΛT = 0, x2 ∈ (−h, 0),

ΛT (x1,−h) = 0, ∂x1ΛT (x1, 0) = U ′(0)−2
(
U ′′(0)η0(x1, 0)− ω0(x1, 0)

)
;

(2.1.6a)



−(U − U(−h))∆ΛB + U ′′ΛB = 0, x2 ∈ (−h, 0),

∂x1ΛB(·,−h) = −U ′(−h)−2ω0(x1,−h),(
U(0)− U(−h)

)
∂x2ΛB(x1, 0)−

(
U ′(0)(U(0)− U(−h)) + g − σ∂2

x1

)
ΛB(x1, 0)

= 0.

(2.1.6b)

3. There exist λ0 ≥ 0 and integer N ≥ 0 (given in (6.2.3)) such that, for any n1 ∈ R

and n2 ∈ [1, l0],

∣∣∂n1+1
x1

(
vp1(t, ·)− v̂10(k = 0, ·)

)∣∣
L2
x1
H
n2−1
x2

+ |∂n1
x1
vp2(t, ·)|L2

x1
H
n2
x2

≤Ceλ0|t|(1 + |t|N−1)
(
|η0|Hn1+n2+1

x1
+ |v10(·, 0)|

H
n1+n2−

1
2

x1

+ |ω0|Hn1+n2−1
x1

L2
x2

)
,

|ηp(t, ·)−η0(0)|Hn1
x1
≤ Ceλ0|t|(1+ |t|N−1)

(
|η0|Hn1

x1
+ |v10(·, 0)|

H
n1−

3
2

x1

+ |ω0|Hn1−2
x1

L2
x2

)
.

4. Let

X† = {(v†, η†)|t=0 | all (v0, η0)} ⊂ H1
(
TL × (−h, 0)

)
×H2(TL), † = c, p,
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then they are invariant closed subspaces of H1
(
TL × (−h, 0)

)
× H2(TL) under

(1.2.2). Moreover (1.2.2) is also well-posed in the L2 ×H1 completion of Xp.

Remark 2.1.2. 1.) The above estimates also imply pointwise-in-t decay of v and η as

t→∞. 2.) The function Ωc(x) is referred to as the scattering limit of the vorticity in [70,

61, 35]. 3.) The assumption of non-existence of singular modes is satisfied if the horizontal

period L is small (by Theorem 2.1.1(1)) or if U ′′ 6= 0 and (2.1.1) (by Theorem 2.1.1(2b)).

In the above results, the assumption of the non-existence of singular modes, which is

equivalent to the absence of embedded eigenvalues of (1.2.2) for each wave number k, turns

out to yield the spectral decomposition of the phase space of (1.2.2) into the invariant sub-

spaces corresponding to the non-singular modes/point spectra and the continuous spectra

−ikU([−h, 0]) for each k ∈ R.

The component (vc, ηc) corresponds to the continuous spectra and enjoys algebraic

decay as in the case (1.3.1) of the Euler equation in a fixed channel. Additional to the

above Lqt bounds, derivatives-in-t estimates are also given in Theorem 2.1.2 and Theo-

rem 2.1.3 which also imply pointwise-in-t decay. Compared with (1.3.4), these additional

Lqt estimates represent an improvement of roughly an order of O(t−
1
q ) (after appropriate

time-dependent translations in x1 of some asymptotic leading terms are identified and sin-

gled out in the cases of tvc1, t2vc2, etc.). For the Euler equation in a fixed channel (1.3.1), a.)

when ω0 ∈ L2, the |v|L2
t

estimates was also obtained in [62, 64]; b.) comparable asymptotic

leading terms were identified for the vorticity ω(t,x) in Lemma 3 of [70]; and c.) asymp-

totic leading terms were obtained for v(t,x) in Lemma 5.1 in [35]. The Fourier transforms

(in x1) of these leading terms Ωc, ΛT , and ΛB are given explicitly in (6.1.9), (6.1.16), and

(6.1.15), which represent the impact of the interior flow and the top and bottom bound-

aries, respectively. See also (2.1.6) for singular elliptic boundary value problems satisfied

by ΛT and ΛB. In particular, the free boundary effect is explicitly reflected in the boundary

conditions (2.2.6c) of the corresponding Rayleigh equation (2.2.6) and the form of ΛT .

From (6.1.16) and (6.1.15), (4.0.1), and Lemma 3.6.1(2), Λ̂B,T (0,x2) = 0 and the ellip-
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tic boundary value problem (2.1.6b) has a unique solution ΛB, while (2.1.6a) has a unique

solution ΛT under the assumption of the non-existence of singular modes. Moreover, ac-

cording to the definitions (6.1.15), (4.0.1), (3.3.1), (3.5.1), and Lemma 3.4.1, ∂x2ΛB and

∂x2ΛT exhibit logarithmic singularity at x2 = −h and 0, respectively. In particular, ΛB = 0

vanishes if the initial vorticity ω0|x2=−h = 0, while ΛT = 0 if U ′′(0)η0 − ω0|x2=0 = 0. The

error estimates in addition to these leading asymptotic terms also justify that the estimates

of tv1 and t2v2 in (1.3.4) are optimal. Moreover, the precise asymptotic leading terms could

also be useful for further anaysis.

It is also interesting to observe that, on the one hand, in the upper bounds of the damping

estimates the regularity assumption on the initial surface η0 and surface velocity v10|x2=0

remains unchanged while faster decay requires more regularity on the initial vorticity ω0.

On the other hand, in the higher regularity estimates of (vp, ηp), the requirement on the

regularity of ω0 in x2 remains in L2
x2

. Compared with the above example of the linearization

at the Couette flow, conceptually this phenomenon is due to the fact that the component

(vc, ηc) is mainly the rotational part of the solution which depends on the vorticity more

heavily, while (vp, ηp) more like the irrotational part. In this paper as we focus on the

damping estimates with additional Lqt decay of (v, η) after the leading order terms are

singled out, we adopted L2
x based norms to somewhat simplify the calculations. If the

decay in other Lrx or L∞x based norms is necessary, some basic estimates in these norms

are also given in section 5.1 and one may make an attempt following the procedure as in

chapter 5 and chapter 6. To avoid more technicality, the assumptions on the regularity of

ω0 in x1 in the theorem may not be close to optimal, particularly when q1 and q2 are away

from 2, see Remark 6.1.2(b). Moreover, the small ε may not be necessary, see e.g. [62, 64]

in the fixed boundary case. The assumptions on the more essential regularity of ω0 in x2

are optimal even in the existing results in the fixed boundary case.

The component (vp, ηp) are given by superpositions of the eigenfunctions of those non-

singular modes, which is governed by a (possibly unstable) multi-branched dispersion re-
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lation given by k → kc for all non-singular modes c of the k-th Fourier modes in x1. Ac-

cording to the above eigenvalue analysis, this dispersion relation is asymptotic to that of the

linear irrotational capillary gravity wave for |k| � 1. In the case of x1 ∈ R, in the absence

of singular modes, all non-singular modes are given by c±(k) which are neutral/stable. Un-

der the additional assumptions (2.1.1) and 0 ∈ U([−h, 0]), the conjugacy of (vp, ηp) to the

linear irrotational capillary gravity waves implies that it decays at a slower rate. Hence the

dynamics of (1.2.2) has two layers: faster inviscid decay of (vc, ηc) leaves the remaining

(vp, ηp) decaying at a slower rate due to the dispersion like a linear irrotational wave.

In the periodic-in-x1 case, as the non-existence of singular modes is assumed only

for k ∈ 2π
L
N, there can still be other non-singular modes besides c±(k) which may have

bifurcated from U(−h) or inflection values of U([−h, 0]) at some k /∈ 2π
L
N. In particular

instability may appear in finitely many dimensions in low wave numbers. In the estimates

of the component (vp, ηp), the possible exponential growth (if λ0 > 0) is caused by unstable

modes, where λ0 is the maximum real parts of the eigenvalues and N is the maximum

multiplicity of those eigenvalues of the maximal real parts. Due to Theorem 2.1.1(1),

growth does not occur for |k| � 1. It is also worth pointing out that the the regularity of

ηp is 3
2

order better than that of vp restricted to the surface x2 = 0, which is consistent with

the regularity results of capillary gravity waves in the existing literature.

The estimate in statement (3) at t = 0 implies the boundedness of the projection onto

Xp, whose kernal is Xc. Some more detailed information of this projection can be found in

Lemma 6.1.2 and Theorem 6.2.1. In fact the subspace Xp is generated by the eigenfunction

of all non-singular modes for all k ∈ R.

The inviscid decay estimates in the case of x1 ∈ R is slightly subtle due to the presence

of small wave number |k| � 1. Certain stronger decay for |k| � 1 (for long waves) is

assumed on the initial values, see Remark 2.1.3. We use similar notations in the following

theorem.

Theorem 2.1.3. (Inviscid damping: x1 ∈ R case) Suppose x1 ∈ R. AssumeU ∈ C l0 , l0 ≥
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3, U ′ > 0 on [−h, 0], and there are no singular modes (see (4.1.5) and Lemma 4.1.1(5))

for any k ∈ R. For any q1 ∈ [2,∞], q2 ∈ (2,∞], ε > 0, n1 ∈ R, and integers

n0 ≥ 0, there exists C > 0 depending only on q1, q2, ε, and U , such that, for any so-

lution (v(t,x), η(t,x1)) of (1.2.2) with initial value (v0(x), η0(x1)), there exist solutions

(v†(t,x), η†(t,x1)), † = p, c, to (1.2.2) and functions Ωc(x), ΛB(x), and ΛT (x) determined

by (v0, η0) linearly (depending on U as well) such that

(v, η) = (vc, ηc) + (vp, ηp)

and the following hold.

1. Assume U ∈ C4, then (vc, ηc) satisfy the following estimates

|∂n0
t ∂

n1
x1
vc1|L2

xL
q1
t (R) + |∂n0

t ∂
n1−1
x1

(1− ∂2
x1

)
1
2vc2|L2

xL
q1
t (R)

≤ C
(∣∣|∂x1 |n0+n1− 1

q1 η0

∣∣
H

1
2
x1

+
∣∣|∂x1|n0+n1− 1

q1 v10(·, 0)
∣∣
H
− 3

2
x1

+
∣∣|∂x1|n0+n1− 1

q1 ω0

∣∣
H
ε− 1

2
x1

L2
x2

)

|∂n0
t ∂

n1
x1
ηc|L2

x1
L
q1
t (R) ≤C

(∣∣|∂x1|n0+n1− 1
q1 η0

∣∣
H−1
x1

+
∣∣|∂x1 |n0+n1− 1

q1 v10(·, 0)
∣∣
H−2
x1

+
∣∣|∂x1|n0+n1− 1

q1 ω0

∣∣
Hε−2
x1

L2
x2

)

∣∣t∂n0
t ∂

n1
x1

(1− ∂2
x1

)
1
2vc2
∣∣
L2
xL

q1
t (R)

+ |t∂n0
t ∂

n1+1
x1

(1− ∂2
x1

)
3
4ηc|L2

x1
L
q1
t (R)

≤C
(∣∣|∂x1|n0+n1− 1

q1 η0

∣∣
H

3
2
x1

+
∣∣|∂x1 |n0+n1− 1

q1 v10(·, 0)
∣∣
H
− 1

2
x1

+
∣∣|∂x1|n0+n1− 1

q1 ω0

∣∣
H
ε+1

2
x1

L2
x2

+
∣∣|∂x1|n0+n1− 1

q1 ∂x2ω0

∣∣
H
ε− 1

2
x1

L2
x2

)

∣∣∂n0
t ∂

n1+1
x1

(
tvc1 − U ′(x2)−1∂−1

x1
Ωc(x1 − U(x2)t,x2)

)∣∣
L2
xL

q2
t (R)

+
∣∣∂n0
t ∂

n1
x1

(
ωc − Ωc(x1 − U(x2)t,x2)

)∣∣
L2
xL

q2
t (R)

27



+
∣∣∂n0
t ∂

n1−1
x1

(
∂2
x2
vc2 − ∂x1Ωc(x1 − U(x2)t,x2)

)∣∣
L2
xL

q2
t (R)

≤C
(∣∣|∂x1|n0+n1− 1

q2 η0

∣∣
H

3
2
x1

+
∣∣|∂x1|n0+n1− 1

q2 v10(·, 0)
∣∣
H
− 1

2
x1

+
∣∣|∂x1|n0+n1− 1

q2 ω0

∣∣
H
ε+1

2
x1

L2
x2

+
∣∣|∂x1 |n0+n1− 1

q2 ∂x2ω0

∣∣
H
ε− 1

2
x1

L2
x2

)
and if, in addition, U ∈ C6, then

∣∣∂n0
t ∂

n1+1
x1

(
t2vc2 − U ′(x2)−2∂−1

x1
Ωc(x1 − U(x2)t,x2)− ΛB(x1 − U(−h)t,x2)

− ΛT (x1 − U(0)t,x2)
)∣∣
L2
xL

q2
t (R)

≤C
(∣∣|∂x1 |n0+n1− 1

q2 η0

∣∣
H

3
2
x1

+
∣∣|∂x1|n0+n1− 1

q2 v10(·, 0)
∣∣
H
− 1

2
x1

+
∣∣|∂x1|n0+n1− 1

q2 ω0

∣∣
H
ε+1

2
x1

L2
x2

+
∣∣|∂x1|n0+n1− 1

q2 ∂x2ω0

∣∣
H
ε− 1

2
x1

L2
x2

+
∣∣|∂x1|n0+n1− 1

q2 ∂2
x2
ω0

∣∣
H
ε− 3

2
x1

L2
x2

)
.

2. Assume U ∈ C4, then for any n2 = 0, 1, and q ∈ [1,∞), it holds

|Ωc − ω0|Hn1
x1
L2
x2
≤ C

(
|η0|Hn1

x1
+ |v10(·, 0)|

H
n1−2
x1

+ |ω0|Hn1−1+ε
x1

L2
x2

)
,

|∂x2Ωc − ∂x2ω0|Hn1
x1
L2
x2
≤C
(
|η0|Hn1+1

x1
+ |v10(·, 0)|

H
n1−1
x1

+ |ω0|Hn1+ε
x1

L2
x2

+ |∂x2ω0|Hn1−1+ε
x1

L2
x2

)
,

||k|n1∂n2
x2

Λ̂B|L2
kL

q
x2
≤ C|∂n1−1

x1
ω0(·,−h)|

H
n2−

1
q

x1

,

||k|n1∂n2
x2

Λ̂T |L2
kL

q
x2
≤ C(|∂n1−1

x1
ω0(·, 0)|

H
n2−

1
q

x1

+ |∂n1−1
x1

η0|
H
n2−

1
q

x1

),

and ΛT and ΛB satisfy (2.1.6).

3. For any n1 ∈ R,
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∀n2 ∈ [0, l0 − 1],

|∂n1
x1
∂n2
x2
vp1(t, ·)|2L2

x
≤ C

(
|∂n1
x1
η0|2Hn2+1

x1

+ |∂n1
x1
v10(·, 0)|2

H
n2−

1
2

x1

+ |∂n1
x1
ω0|2Hn2−1

x1
L2
x2

)
,

∀n2 ∈ [0, l0],

|∂n1
x1
∂n2
x2
vp2(t, ·)|2L2

x
≤C
(
|∂n1+1
x1

η0|2Hn2
x1

+ |∂n1+1
x1

v10(·, 0)|2
H
n2−

3
2

x1

+ |∂n1+1
x1

ω0|2Hn2−2
x1

L2
x2

)
,

|ηp(t, ·)|2
Ḣ
n1
x1
≤ C

(
|η0|2Ḣn1

x1
+ |∂n1

x1
v10(·, 0)|2

H
− 3

2
x1

+ |∂n1
x1
ω0|2H−2

x1
L2
x2

)
.

4. Let

X† = {(v†, η†)|t=0 | all (v0, η0)} ⊂ H1
(
R× (−h, 0)

)
×H2(R), † = c, p,

then they are invariant closed subspaces of H1
(
R× (−h, 0)

)
×H2(R) under (1.2.2).

Moreover (1.2.2) is also well-posed in the L2×H1 completion of Xp. If, in addition,

(2.1.1) holds and 0 ∈ U([−h, 0]), then (1.2.2) restricted to the L2 ×H1 completion

of Xp, or Xp∩(Hn×Hn+1) with n ≤ l0−1, is conjugate through an isomorphism to

the irrotational capillary gravity waves linearized at zero (characterized by its wave

speed (2.1.5)).

Remark 2.1.3. Taking n1 = n2 = 0 in the above estimates, the |∂x1|
− 1
q applied to the

initial values indicates some stronger decay assumptions for wave number |k| � 1.

Outline of the Proofs of Theorem 2.1.2 and Theorem 2.1.3

The proof of Theorem 2.1.2 is completed in section 6.2. Under the assumption of the ab-

sence of singular modes, general solutions yB(k, c,x2) to the non-homogeneous boundary

value problem (2.2.6) of the Rayleigh equation are studied in chapter 5, which are expressed
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in the variation of parameter formula using y± obtained in chapter 3. We establish the basic

a priori and convergence (as cI → 0+) estimates in section 5.1. The latter is often referred

to as the limiting absorption principle (e.g. [62, 35]). For the inviscid damping estimates, it

is crucial to obtain the smoothness of yB in c (in section 5.2). Since singularity occurs along

c = U(x2), ∂jcyB, j = 1, 2, behaves badly there. Instead we apply a differential operator

Dc to the Rayleigh system (2.2.6) which differentiates along the direction of c = U(x2),

hence Dj
cyB satisfies another boundary value problem of the Rayleigh equation in the form

of (2.2.6) and enjoys better estimates. Essentially this approach is similar to those used in

[34, 64] for the Euler equation on fixed channels. The main results of section 5.2 are the

estimates of ∂j1c ∂x2yB, j1 = 1, 2 and j2 = 0, 1, with the most singular terms identified.

The splitting and the linear inviscid damping estimates of solutions (v, η) to the lin-

earized capillary gravity waves (1.2.2) are obtained in chapter 6. While the vorticity ω is

not sufficient to recover the whole solution (as in e.g. [71, 61]), the solutions are expressed

in terms of the inverse Laplace transform of V2(k, c,x2), where V2 is the Laplace trans-

form of v̂2(t, k,x2), which is estimated in chapter 5. We use the following Mellin’s inverse

formula to compute the inverse Laplace transform (see [10]).

f(t) = L−1{F (s)}(t) =
1

2πi
lim
β→∞

∫ γ+iβ

γ−iβ
estF (s)ds,

where γ is greater than the real part of all singularities of F . Unlike e.g. [61, 35], techni-

cally we do not immediately push the contour integral (in c) of the inverse Laplace trans-

form to the limit spectra set U([−h, 0]), but first keep it along the boundary of a small

neighborhood of it in the complex plane. This allows easy integration by parts in c to es-

tablish the decay estimates in t after the leading asymptotic terms are obtained by applying

the Cauchy integral theorem to the most singular terms of ∂jcV2, j = 1, 2. In fact, in deriv-

ing the decay estimates of v, η, tv2, and tη where the leading asymptotic terms were not

involved, a priori estimates, but not the limiting absorption principle, is sufficient.
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The above approach to obtain the inviscid decay also applies to the Euler equation in

a fixed channel linearized at a shear flow U(x2). Similarly, while the asymptotic leading

order terms of tv1, ω, and ∂2
x2
v2 are all generated by the asymptotic vorticity Ωc, that of

t2v2 involves two additional functions ΩT and ΩB due to the contributions from the top

and bottom boundaries. We give a brief summary of the results for the channel flow in

section 6.4 and see also Remark 6.4.1.

The proof of Theorem 2.1.3 is completed in section 6.3. Most of the remarks after

Theorem 2.1.2 are also valid. In particular, there are only two branches of non-singular

modes corresponding to eigenvalues ikc±(k) of both algebraic and geometric multiplicity

two, hence there is no growth at all. The conjugacy of the dynamics of (vp, ηp) to the linear

irrotational capillary gravity waves is basically a restatement of Theorem 2.1.1(2b).

2.2 Preliminary linear analysis

To analyze the linear system (1.2.2), we first reduce it to an evolution problem of the Fourier

transform of v2 in x1, which in turn determines v1, η, and p. We then apply the Laplace

transform in t to obtain a non-homogeneous boundary value problem of the well-known

Rayleigh equation in x2 ∈ (−h, 0) with a non-homogeneous Robin type boundary condi-

tion at x2 = 0 due the boundary conditions at the free boundary. The main analysis will

focus on the Rayleigh equation.

Consider the Fourier transforms of the unknowns (v(t,x), η(t,x1), p(t,x)) in x1

v(x) =
∑
k∈2π

L
Z

v̂(k,x2)eikx1 , η(x1) =
∑
k∈2π

L
Z

η̂(k)eikx1 , p(x) =
∑
k∈2π

L
Z

p̂(k,x2)eikx1 ,

in the case of x1 ∈ TL and

v(x) =
1

2π

∫
R
v̂(k,x2)eikx1dk,

η(x1) =
1

2π

∫
R
η̂(k)eikx1dk,
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p(x) =
1

2π

∫
R
p̂(k,x2)eikx1dk,

in the case of x1 ∈ R, where we skipped the variable t. The Fourier transform of the

linearized system (1.2.2) takes the form



∂tv̂ + ikU(x2)v̂ + (ikp̂, p̂′)T = 0, ikv̂1 + v̂′2 = 0, x2 ∈ (−h, 0)

(k2 − ∂2
x2

)p = 2ikU ′(x2)v̂2, x2 ∈ (−h, 0)

∂tη̂ = −ikU(0)η̂ + v̂2(t, k,x2 = 0),

p̂(t, k, 0) = (g + σk2)η̂,

v̂2(t, k,−h) = 0, p̂′(t, k,−h) = 0,

(2.2.1)

where ′ denotes the derivative with respect to x2 as in the rest of the paper. Due to the

divergence free condition on v and the boundary conditions, it is easy to see

v̂2(t, 0,x2) = 0, p̂(t, 0,x2) = g, v̂1(t, 0,x2) = v10(0,x2), η̂(t, 0) = η̂0(0). (2.2.2)

For k 6= 0, v̂1 can also be determined by v̂2 using the divergence free condition, η̂ by

the third equation of (2.2.1), while p̂ by v̂2 and η̂ by solving the elliptic boundary value

problem. So we shall mainly focus on v̂2.

Combining the equation of v̂2 acted by k2−∂2
x2

and the one of p̂ acted by ∂x2 , we obtain

(∂t + ikU)(k2 − ∂2
x2

)v̂2 + ikU ′′v̂2 = 0, x2 ∈ (−h, 0), (2.2.3a)

which is the linearized transport equation of the vorticity (as defined in (2.1.2))

ω̂ = ikv̂2 − v̂′1 = i
k
(k2 − ∂2

x2
)v̂2

in its Fourier transform. In addition to the above equation, we need its boundary infor-
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mation to completely determine v̂2. Applying ∂x2 to the first equation of (2.2.1), then

evaluating at x2 = 0, and using the equation of p̂, we have

(∂t + ikU(0))v̂′2(t, k, 0)− ikU ′(0)v̂2(t, k, 0) + k2(g + σk2)η̂(t, k) = 0.

Finally applying ∂t+ikU(0) to the above equation and using the third equation of ((2.2.1)),

we obtain

(
(∂t+ ikU)2v̂′2− ikU ′(∂t+ ikU)v̂2 +k2(g+σk2)v̂2

)∣∣
x2=0

= 0, v̂2|x2=−h = 0, (2.2.3b)

where we also included the boundary value of v̂2 at x2 = −h.

To analyze the evolutionary problem, we apply the Laplace transform L to the un-

knowns

V (s) = (V1(s),V2(s)) := L{v̂}(s), P (s) := L{p}(s), η̃ := L{η̂}(s). (2.2.4)

An often used change of variable for k 6= 0 is

c := is/k = cR + icI (2.2.5)

with cR and cI being the real and imaginary parts. From (2.2.3), our main unknown

V2(k, c,x2) satisfies the following non-homogeneous Rayleigh equation

−V ′′2 + (k2 +
U ′′

U − c
)V2 =

(k2 − ∂2
x2

)v̂20

ik(U − c)
= − ω̂0

U − c
, x2 ∈ (−h, 0), (2.2.6a)

with boundary condition

V2(−h) = 0, (2.2.6b)

where ω̂ = ω̂0(k,x2) is the Fourier transform of the initial vorticity and we skipped the k
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and c variables of V2. Similarly, the Laplace transform applied to the boundary equation

(2.2.3b) and evaluated at x2 = 0 imply

(
(U − c)2V ′2 − (U ′(U − c) + (g + σk2))V2

)∣∣
x2=0

=− 1
k2

(
∂tv̂
′
2 − ickv̂′2 + 2ikUv̂′2 − ikU ′v̂2

)∣∣
t=x2=0

=− 1
k2

(
(∂t + ikU)v̂′2 − ikU ′v̂2 + ik(U − c)v̂′2

)∣∣
t=x2=0

.

Therefore we obtain

(
(U−c)2V ′2−(U ′(U−c)+(g+σk2))V2

)∣∣
x2=0

= (g+σk2)η̂0− i
k
(U(0)−c)v̂′20(0), (2.2.6c)

The last boundary condition can be viewed as the dispersion relation which is highly non-

local. The Laplace transforms of V1 and η̃ of v̂1 and η̂ can be recovered from the divergence

free condition and the third equation of (2.2.1)

V1 = i
k
V ′2 , η̃(c, k) =

V2(c, k, 0) + η̂0(k)

ik
(
U(0)− c

) . (2.2.7)

Hence in the most of the paper we shall focus on the non-homogeneous boundary value

problem (2.2.6) of the Rayleigh equation. The main goals of the analysis are the eigenvalue

distribution of linear system (1.2.2) and the inviscid damping of its solutions.

System (2.2.6) is a boundary value problem of a non-homogeneous second order ODE

with coefficients analytic in k ∈ R and c ∈ C \ U([−h, 0]), so it has a unique solution

analytic in k and c except for those (k, c) for which the corresponding homogeneous system

of (2.2.6), where v̂20 = 0 and η̂0 = 0, has non-trivial solutions. Such singular (k, c) also

give the eigenvalues of (2.2.6) in the form of −ick. In fact we have the following lemma.

Lemma 2.2.1. For k ∈ R\{0}, there exists a non-trivial solution
(
c,V2(x2)

)
with c /∈

U([−h, 0]) to the corresponding homogeneous problem of (2.2.6) (namely, with v̂20 = 0

and η̂0 = 0) if and only if −ikc is an eigenvalue of the linearized capillary-gravity wave
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system (1.2.2) associated with the linear solution in the form of (1.3.2) given by

v1(t,x) =
i

k
eik(x1−ct)V ′2(x2), v2(t,x) = eik(x1−ct)V2(x2),

η(t,x1) = eik(x1−ct) V2(0)

ik(U(0)− c)
,

p(t,x) = eik(x1−ct)
( g + σk2

ik(U(0)− c)
V2(0)− ik

∫ x2

0

(U − c)V2dx
′
2

)
.

Proof. On the one hand, it is straight forward to verify that the above v, η, and p satisfy

(1.2.2c), (1.2.2d), ∂x2p|x2=−h = 0, and ∇ · v = 0. The Poisson equation of p in (1.2.2b) is

a consequence of the linearized Euler equation in (1.2.2a), the v2 equation of which is also

easily verified. Hence we only need to consider the v1 equation in (1.2.2a). In fact, that

equation holds for the above (v, η, p) if

−(U − c)V ′2 + U ′V2 +
g + σk2

U(0)− c
V2(0) + k2

∫ x2

0

(U − c)V2dx
′
2 = 0.

The x2-derivative of this function is equal to 0 due to the Rayleigh equation (2.2.6a) and its

boundary value equal is to 0 at x2 = 0 due to the boundary condition (2.2.6c).

On the other hand, suppose
(
k, c, v2(t,x), η(t,x1), p(t,x)

)
is a solution to (1.2.2) in

the form of (1.3.2) with k 6= 0 and c /∈ U([−h, 0]). Equation (2.2.3a) implies that V2

must be a solution to the corresponding homogeneous equation of (2.2.6a), while (2.2.3b)

yields the homogeneous boundary conditions of the types of ((2.2.6b)-(2.2.6c)). Therefore

(c,V2(x2)) have to be homogeneous solutions to (2.2.6). Subsequently, v1 is obtained from

∇ · v = 0, η from the third equation in (2.2.1), and p from the v2 equation in (2.2.1) along

with its boundary value at x2 = 0.

Definition 2.2.1. (k, c) is a non-singular mode if c ∈ C \ U([−h, 0]) and there exists a

non-trivial solution V2(x2) to the corresponding homogeneous problem of (2.2.6) (thus also

yields a solution to (1.2.2) in the form of (1.3.2)). (k, c) is a singular mode if c ∈ U([−h, 0])
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and there exists a H2
x2

solution y(x2) to

(U − c)(−y′′ + k2y) + U ′′y = 0 (2.2.8)

along with the corresponding homogeneous boundary conditions of ((2.2.6b)–(2.2.6c)).

(See also Remark 4.1.1.)

After acquiring good understanding on the homogeneous problem of the Rayleigh equa-

tion (2.2.6) (chapter 3) and its eigenvalues (chapter 4), we proceed to analyze the general

non-homogeneous problem of (2.2.6) (chapter 5), in particular, the dependence of solutions

on c. Finally in chapter 6 we apply the inverse Laplace transform to estimate the solution

to the linear system (1.2.2). Recall the inverse Laplace transform

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
estF (s)ds =

|k|
2π

∫ +∞+ iγ
k

−∞+ iγ
k

e−ikctF (−ikc)dc, (2.2.9)

where γ is a real number so that F (s) is analytic in the region Res > γ and the change

of variable (2.2.5) was used in the second equality. Due to the analyticity, the integral can

be eventually carried out along contours enclosing U([−h, 0]) ⊂ C and the non-singular

modes of (1.2.2). Assuming there is neither singular modes in U([−h, 0]) nor nearby non-

singular modes, we shall eventually obtain the decay in t of the component of the linear

solution corresponding to the integral along the contour surrounding U([−h, 0]) by inte-

gration by parts in c.
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CHAPTER 3

ANALYSIS OF RAYLEIGH EQUATION

In this chapter, we shall thoroughly analyze the homogeneous Rayleigh equation

−y′′(x2) +
(
k2 + U ′′(x2)

U(x2)−c

)
y(x2) = 0, x2 ∈ [−h, 0], (3.0.1)

where

k ∈ R, c = cR + icI ∈ C, ′ = ∂x2 .

Throughout this chapter (except for some lemmas in section 3.6), we assume

U ′(x2) > 0, ∀x2 ∈ [−h, 0]. (3.0.2)

As pointed out in the introduction, due to the symmetry of the reflection in x1 variable, the

case of U ′ < 0 can be reduced to the above one. Hence all results under (3.0.2) hold for all

uniformly monotonic U(x2), namely those U satisfying U ′ 6= 0 on [−h, 0].

To some extent, we will also consider the non-homogeneous Rayleigh equation

−y′′(x2) +
(
k2 + U ′′(x2)

U(x2)−c

)
y(x2) = φ

(
k, c,x2

)
, x2 ∈ [−h, 0]. (3.0.3)

More detailed forms and conditions of φ(k, c,x2) will be specified when we obtained de-

tailed estimates in chapters chapter 5 and chapter 6.As in typical problems of linear esti-

mates based on density argument, we shall mostly work on φ with sufficient regularity, but

carefully tracking its norms involved in the estimates.

The solutions to the Rayleigh equation (3.0.1) are obviously even in k and thus k ≥ 0

will be assumed mostly. Similarly complex conjugate of solutions also solve (3.0.1) with
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c replaced by c̄, so we will restrict our consideration to cI ≥ 0. We have to consider the

cases of c ∈ C away from U([−h, 0]), near U([−h, 0]), and then finally c ∈ U([−h, 0]),

separately. Due to small scales in x2 created by k � 1, the dependence of the estimates on

k � 1 will be carefully tracked. Recall U ∈ C l0 . For technical convenience we extend U

to be a C l0 function on a neighborhood [−h0 − h,h0] of [−h, 0], where

h0 = min
{h

2
,

inf [−h,0] U
′

4|U ′′|C0([−h,0])

}
> 0, (3.0.4)

such that, on [−h0 − h,h0],

U ′ ≥ 1
2

inf
[−h,0]

U ′(x2), |U ′|Cl0−1([−h0−h,h0]) ≤ 2|U ′|Cl0−1([−h,0]). (3.0.5)

In the analysis of the most singular case of c close to the range U([−h, 0]), we let xc2 be

such that

cR = U(xc2), if cR ∈ U([−h0 − h,h0]). (3.0.6)

We also extend the non-homogeneous term φ(k, c,x2) for x2 ∈ [−h0−h,h0] while keeping

its relevant bounds comparable.

3.1 Rayleigh equation in the regular region

In the initial step we consider the rather regular case where k2|U − c| is bounded from

below. For not so small k, we first transform the homogeneous Rayleigh equation (3.0.1)

into a system of first order (complex valued) ODEs. Let

z± = y′ ± |k|y,

and then (3.0.1) takes the form of the coupled equations

z′± = ±|k|z± + 1
2
β(k, c,x2)(z+ − z−), β(k, c,x2) = U ′′

|k|(U−c) . (3.1.1)
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Lemma 3.1.1. There exists C > 0 depending only on |U ′|C1 , and |(U ′)−1|C0 , such that for

any ρ ∈ (0, 1], k 6= 0, and I = [x2l,x2r] ⊂ [−h0 − h,h0] satisfying

∣∣∣∣ 1

U − c

∣∣∣∣ ≤ ρk2(1 + |U ′′|C0([−h0−h,h0]))
−1, ∀x2 ∈ I, (3.1.2)

and any solution z = (z+, z−)T to (3.1.1) with

|z+(x2l)| ≥ |z−(x2l)|, (3.1.3)

it holds, for x2 ∈ I, |z+(x2)| ≥ |z−(x2)| and

∣∣z+(x2)− e|k|(x2−x2l)z+(x2l)
∣∣+
∣∣z−(x2)− e−|k|(x2−x2l)z−(x2l)

∣∣
≤C|k|−1 log

(
1 + Cρk2(x2 − x2l)

)
e|k|(x2−x2l)|z+(x2l)|.

(3.1.4)

Moreover, for any solution with

|z+(x2r)| ≤ |z−(x2r)|, (3.1.5)

we have, for x2 ∈ I, |z+(x2)| ≤ |z−(x2)| and

∣∣z+(x2)− e|k|(x2−x2r)z+(x2r)
∣∣+
∣∣z−(x2)− e−|k|(x2−x2r)z−(x2r)

∣∣
≤C|k|−1 log

(
1 + Cρk2(x2r − x2)

)
e|k|(x2r−x2)|z−(x2r)|.

(3.1.6)

While (3.1.3) provides some technical convenience, indeed some assumption of this

type on the initial values is needed to ensure estimates of solutions such as (3.1.4). For

example, if |β| � k, the standard ODE theory implies that there are two solutions behaving

like e±k(x2−x2l) corresponding to the Lyapunov exponents close to ±k, then the decaying

solution may not satisfy (3.1.4) with C uniform in k � 1.

Proof. We start with the observation of a simple consequence of (3.1.2). Namely, one may
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compute straight forwardly

(|z+|2 − |z−|2)′ = 2|k|(|z+|2 + |z−|2) + Reβ|z+ − z−|2 ≥ 0. (3.1.7)

This monotonicity along with boundary conditions yields an order relation between |z±|

which can be used to control terms in (3.1.1).

We shall focus on the case under assumption (3.1.3), which ensures

|z+| ≥ |z−|, ∀x2 ∈ I. (3.1.8)

By factorizing z+ on the right side of (3.1.1), its solutions satisfy

z+(x2)− e|k|(x2−x2l)z+(x2l) =
(
e

1
2

∫ x2
x2l

β(k,c,x′2)
(

1− z−(x′2)
z+(x′2)

)
dx′2− 1

)
e|k|(x2−x2l)z+(x2l). (3.1.9)

If cR ∈ U([−h0 − h,h0]), let xc2 be defined as in (3.0.6) and we use (3.1.2) to estimate

∫ x2

x2l

|β(k, c,x′2)|dx′2 ≤
C

|k|

∫ x2

x2l

(|x′2 − xc2|2 + c2
I)
− 1

2dx′2

=
C

|k|

∣∣∣∣∣log
x2 − xc2 +

√
(x2 − xc2)2 + c2

I

x2l − xc2 +
√

(x2l − xc2)2 + c2
I

∣∣∣∣∣ ,
where the last equality is the exact integral. If xc2 ≤ x2l ≤ x2, then the numerator in the

logarithm is greater than the denominator. Applying the triangle inequality to x2, x2l and

c, we obtain

∣∣∣∣∣log
x2 − xc2 +

√
(x2 − xc2)2 + c2

I

x2l − xc2 +
√

(x2l − xc2)2 + c2
I

∣∣∣∣∣ ≤
∣∣∣∣log

(
1 +

C(x2 − x2l)

x2l − xc2 + |U(x2l)− c|

)∣∣∣∣
≤ log

(
1 + Cρk2(x2 − x2l)

)
.

If x2l ≤ x2 ≤ xc2, multiplying the top and bottom of the quotient by their conjugates and
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proceeding much as in the previous case, we have

∣∣∣∣∣log
x2 − xc2 +

√
(x2 − xc2)2 + c2

I

x2l − xc2 +
√

(x2l − xc2)2 + c2
I

∣∣∣∣∣ =

∣∣∣∣∣log
xc2 − x2l +

√
(x2l − xc2)2 + c2

I

xc2 − x2 +
√

(x2 − xc2)2 + c2
I

∣∣∣∣∣
≤ log

(
1 + Cρk2(x2 − x2l)

)
.

Finally, in the case x2l < xc2 < x2, by splitting the interval at xc2 and applying the above

estimates on the two subintervals, we obtain

∣∣∣∣∣log
x2 − xc2 +

√
(x2 − xc2)2 + c2

I

x2l − xc2 +
√

(x2l − xc2)2 + c2
I

∣∣∣∣∣
=

∣∣∣∣∣log
x2 − xc2 +

√
(x2 − xc2)2 + c2

I

|cI |
+ log

|cI |
x2l − xc2 +

√
(x2l − xc2)2 + c2

I

∣∣∣∣∣
≤ log

(
1 + Cρk2(x2 − xc2)

)
+ log

(
1 + Cρk2(xc2 − x2l)

)
≤ 2 log

(
1 + Cρk2(x2 − x2l)

)
.

Therefore the desired estimate (3.1.4) on z+ follows from (3.1.9) and (3.1.8) and

∣∣∣∣∣e 1
2

∫ x2
x2l

β(k,c,x′2)
(

1− z−(x′2)
z+(x′2)

)
dx′2 − 1

∣∣∣∣∣ ≤C
∫ x2

x2l

|β(k, c,x′2)|dx′2

≤C|k|−1 log
(
1 + Cρk2(x2 − x2l)

)
,

as C|k|−1 log
(
1 + Cρk2(x2 − x2l)

)
is bounded uniformly in all k 6= 0. If cR /∈ U([−h0 −

h,h0]), one can bound |β| by C
|k| min{1, ρk2} which is also bounded for all k 6= 0. If

ρk2 ≤ 1, then ρk2(x2 − x2l) is bounded by C log
(
1 + ρk2(x2 − x2l)

)
. If 1 ≤ ρk2, then

x2 − x2l ≤ C log
(
1 + x2 − x2l

)
≤ C log

(
1 + ρk2(x2 − x2l)

)
.

Therefore in both cases we have

∫ x2

x2l

|β(k, c,x′2)|dx′2 ≤ C
|k| min{1, ρk2}(x2 − x2l) ≤ C

|k| log
(
1 + ρk2(x2 − x2l)

)
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and thus (3.1.4) for z+ follows from (3.1.9) and (3.1.8).

Turning attention to z−, from the variation of parameter formula, we have

z−(x2)− e−|k|(x2−x2l)z−(x2l) =
1

2

∫ x2

x2l

e−|k|(x2−x
′
2)β(k, c,x′2)

(
z+(x′2)− z−(x′2)

)
dx′2,

(3.1.10)

which along with (3.1.2), (3.1.4) for z+, and (3.1.8), implies

|z−(x2)− e−|k|(x2−x2l)z−(x2l)| ≤ Ce|k|(x2−x2l)|z+(x2l)|
∫ x2

x2l

|β(k, c,x′2)|dx′2.

The desired estimate on z− follows from the above inequality on
∫
|β|. The estimates on

z±(x2) with initial condition z±(x2r) satisfying (3.1.5) can be derived in exactly the same

fashion.

In the following we use the above lemma to analyze some solutions to the homogeneous

and non-homogeneous Rayleigh equations (3.0.1) and (3.0.3).

Lemma 3.1.2. Consider

(Θ1, Θ2) ∈ {sinh, cosh}2 \ {(cosh, sinh)}.

There exists C > 0 depending only on |U ′|C1 and |(U ′)−1|C0 , such that, for any k 6= 0,

ρ ∈ (0, 1], C0 ≥ 0, and interval I = [x2l,x2r] ⊂ [−h, 0] satisfying (3.1.2),

1. if a solution y(x2) to (3.0.1) satisfies

∣∣|k|y(x2l)− sinh |k|s
∣∣ ≤ C0Θ1(|k|s), |y′(x2l)− cosh ks| ≤ C0Θ2(|k|s), s ≥ 0,

(3.1.11)

then it holds that, for all x2 ∈ I,

∣∣|k|y(x2)− sinh |k|(x2 − x2l + s)|
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≤C
(
C0 + (1 + C0)

(
ρ+ |k|−1 log(1 + Cρk2)

))
Θ1(|k|(x2 − x2l + s)),

|y′(x2)− cosh k(x2 − x2l + s)|

≤C
(
C0 + (1 + C0)

(
ρ+ |k|−1 log(1 + Cρk2)

))
Θ2(|k|(x2 − x2l + s));

2. if a solution y(x2) to (3.0.1) satisfies

∣∣|k|y(x2r)− sinh |k|s
∣∣ ≤ C0Θ1(|ks|), |y′(x2r)− cosh ks| ≤ C0Θ2(|ks|), s ≤ 0,

(3.1.12)

then it holds that, for all x2 ∈ I,

∣∣|k|y(x2)− sinh |k|(x2 − x2r + s)
∣∣

≤C
(
C0 + (1 + C0)

(
ρ+ |k|−1 log(1 + Cρk2)

))
Θ1(|k(x2 − x2r + s)|),

|y′(x2)− cosh k(x2 − x2r + s)|

≤C
(
C0 + (1 + C0)

(
ρ+ |k|−1 log(1 + Cρk2)

))
Θ2(|k(x2 − x2r + s)|).

3. Moreover, the solution y(x2) to (3.0.3) with y(x20) = y′(x20) = 0 for some x20 ∈ I

satisfies

∣∣∣|k|y(x2)−
∫ x2

x20

φ(k, c,x′2) sinh |k(x2 − x′2)|dx′2
∣∣∣

+
∣∣∣y′(x2)−

∫ x2

x20

φ(k, c,x′2) cosh k(x2 − x′2)dx′2

∣∣∣
≤C
(
ρ+ |k|−1 log(1 + Cρk2)

)∣∣∣ ∫ x2

x20

φ
(
k, c,x′2

)
sinh |k(x2 − x′2)|dx′2

∣∣∣.
(3.1.13)

Proof. We first consider the special solution y(x2) to the homogeneous (3.0.1) satisfying

(3.1.11) with C0 = 0, namely, with the initial values

y(x2l) = |k|−1 sinh |k|s, y′(x2l) = cosh |k|s, s ≥ 0,
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whose corresponding form in terms of z± with initial values z±(x2l) = e±|k|s satisfies the

assumptions of Lemma 3.1.1. On the one hand, for |k|(x2 − x2l) ≤ 1, it holds

|k|−1e|k|(x2−x2l) log
(
1 + Cρk2(x2 − x2l)

)
≤ Cρ|k|(x2 − x2l) ≤ Cρ sinh |k|(x2 − x2l),

while, for |k|(x2 − x2l) ≥ 1, we have

|k|−1e|k|(x2−x2l) log
(
1 + Cρk2(x2 − x2l)

)
≤ C|k|−1 log(1 + Cρk2) sinh |k|(x2 − x2l).

Therefore Lemma 3.1.1 and ρ ∈ (0, 1] imply

|z+(x2)− e|k|(x2−x2l+s)|+ |z−(x2)− e−|k|(x2−x2l+s)|

≤C
(
ρ+ |k|−1 log(1 + Cρk2)

)
e|k|s sinh |k|(x2 − x2l).

Recovering y(x2) and y′(x2) from z±(x2), we obtain the desired estimates in the case of

Θ1 = Θ2 = sinh under the additional assumption C0 = 0.

In the following we prove the estimates for a homogeneous solution y(x2) to (3.0.1)

under (3.1.11) with general C0 ≥ 0. Let Y1(x2) and Y2(x2) be solution to (3.0.1) with

initial values

Y1(x2l) = |k|−1 sinh 1, Y ′1(x2l) = cosh 1; Y2(x2l) = 0, Y ′2(x2l) = 1.

Clearly Y1 and Y2 satisfy the above estimates with s = |k|−1 and s = 0, respectively, and

y(x2) = |k|(sinh 1)−1y(x2l)Y1(x2) +
(
y′(x2l)− |k|(coth 1)y(x2l)

)
Y2(x2).

Therefore, for x2 ∈ I,

∣∣|k|y(x2)− sinh |k|(x2 − x2l + s)
∣∣
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=
∣∣∣(sinh 1)−1

(
|k|y(x2l)

(
|k|Y1(x2)− sinh(|k|(x2 − x2l) + 1)

)
+ (|k|y(x2l)− sinh |k|s) sinh(|k|(x2 − x2l) + 1)

)
+ (sinh 1)−1 sinh |k|s sinh(|k|(x2 − x2l) + 1)

+
(
y′(x2l)− (coth 1)|k|y(x2l)

)(
|k|Y2(x2)− sinh |k|(x2 − x2l)

)
+
(
y′(x2l)− cosh |k|s− (coth 1)(|k|y(x2l)− sinh |k|s)

)
sinh |k|(x2 − x2l)

+ (cosh |k|s− (coth 1) sinh |k|s) sinh |k|(x2 − x2l)− sinh |k|(x2 − x2l + s)
∣∣∣.

In the above summation, all the hyperbolic trigonometric combinations without y(x2l) or

Y1,2(x2) are eventually cancelled and the remaining terms can be estimated by the using the

assumptions on the initial values and the already obtained estimates on Y1 and Y2. We have

∣∣|k|y(x2)− sinh |k|(x2 − x2l + s)
∣∣

≤
(
(1 + C0)

(
ρ+ |k|−1 log(1 + Cρk2)

)
+ C0

)(
Θ1(|k|s) sinh(|k|(x2 − x2l) + 1)

+ cosh |k|s sinh |k|(x2 − x2l)
)

≤
(
(1 + C0)

(
ρ+ |k|−1 log(1 + Cρk2)

)
+ C0

)
Θ1|k|(x2 − x2l + s),

where the last inequality was obtained by considering the two possible cases of Θ1 spearately.

The inequality on y′(x2) can be obtained similarly as

∣∣y′(x2)− cosh |k|(x2 − x2l + s)
∣∣

≤
∣∣∣(sinh 1)−1

(
|k|y(x2l)

(
|k|Y ′1(x2)− cosh(|k|(x2 − x2l) + 1)

)
+ (|k|y(x2l)− sinh |k|s) cosh(|k|(x2 − x2l) + 1)

)
+ (sinh 1)−1 sinh |k|s cosh(|k|(x2 − x2l) + 1)

+
(
y′(x2l)− (coth 1)|k|y(x2l)

)(
|k|Y ′2(x2)− cosh |k|(x2 − x2l)

)
+
(
y′(x2l)− cosh |k|s− (coth 1)(|k|y(x2l)− sinh |k|s)

)
cosh |k|(x2 − x2l)

+ (cosh |k|s− (coth 1) sinh |k|s) cosh |k|(x2 − x2l)− cosh |k|(x2 − x2l + s)
∣∣∣
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and thus

∣∣y′(x2)− cosh |k|(x2 − x2l + s)
∣∣

≤
(
(1 + C0)

(
ρ+ |k|−1 log(1 + Cρk2)

)
+ C0

)(
Θ1(|k|s) cosh(|k|(x2 − x2l) + 1)

+ cosh |k|s sinh |k|(x2 − x2l) + Θ2(|k|s) cosh |k|(x2 − x2l)
)

≤
(
(1 + C0)

(
ρ+ |k|−1 log(1 + Cρk2)

)
+ C0

)
Θ2|k|(x2 − x2l + s).

This proves the desired estimates under the assumption (3.1.11). The proofs of the inequal-

ities under assumption (3.1.12) are similar and we omit the details.

Using the variation of parameter formula, we can write the solution y(x2) with y(x20) =

y′(x20) = 0 to the non-homogeneous Rayleigh equation (3.0.3) as

y
y′

 (x2) =

∫ x2

x20

φ
(
k, c,x′2

)
S(x2,x′2)

0

1

 dx′2

where S(x2,x′2) is the 2× 2 fundamental matrix of the homogeneous equation (3.0.1) with

initial value S(x′2,x′2) = I . Therefore,

S(x2,x′2)

0

1

 =

 ỹ(x2,x′2)

ỹ′(x2,x′2)


where ỹ(·,x′2) is the solution to (3.0.1) whose initial value is given by ỹ(x′2,x′2) = 0 and

ỹ(x′2,x′2) = 1. The desired estimates follow from applying the above estimates in the

homogeneous case with s = 0 = C0 and Θ1 = Θ2 = sinh.

Practically the above estimates are more effective for k bounded from below. To end

this section, we give the following simple estimate of the Rayleigh equation for k bounded
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from above, which compares y(x2) to the free solution (where the U term is removed)

yF (x2) =
(

cosh k(x2 − x20)
)
y(x20) + k−1

(
sinh k(x2 − x20)

)
y′(x20).

Here k−1 sinh ks|k=0 = s is understood.

Lemma 3.1.3. For any k∗,M > 0, there exists C > 0 depending only on h, k∗, and M

such that for any |k| ≤ k∗, C0 > 0, x20 ∈ I = [x2l,x2r] ⊂ [−h, 0] satisfying

∣∣∣∣ 1

U − c

∣∣∣∣ ≤ C0 ≤M , ∀x2 ∈ I,

and any solution y(x2) to (3.0.3), it holds

|y(x2)− yF (x2)|+ |y′(x2)− y′F (x2)| ≤ C
(
C0

(
|y(x20)||x2 − x20|+ |y′(x20)||x2 − x20|2

)
+
∣∣∣ ∫ x2

x20

|φ(k, c,x′2)|dx′2
∣∣∣).

Proof. The proof is based on some straight forward elementary argument and we shall only

outline it. Let ỹ = y − yF . We can write the solution y(x2) using the variation of constant

formula  ỹ(x2)

ỹ′(x2)

 =

∫ x2

x20

(
U ′′yF
U − c

− φ
)

(x′2)

k−1 sinh k(x2 − x′2)

cosh k(x2 − x′2)

 dx′2

+

∫ x2

x20

(
U ′′ỹ

U − c

)
(x′2)

k−1 sinh k(x2 − x′2)

cosh k(x2 − x′2)

 dx′2.

It implies

|ỹ(x2)|+ |ỹ′(x2)| ≤C
(
C0

(
|y(x20)||x2 − x20|+ |y′(x20)||x2 − x20|2

)
+

∣∣∣∣∫ x2

x20

|φ(k, c,x′2)|dx′2
∣∣∣∣ )+ CC0

∣∣∣∣∫ x2

x20

|ỹ(x′2)|dx′2
∣∣∣∣
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and the estimates on y− yF and y′− y′F follow immediately from the Gronwall inequality.

3.2 Rayleigh equation near singularity and its convergence as cI → 0+

In the rest of the chapter, we shall mostly focus on the case when (1 +k2)
1
2 |U − c| is small,

so

cR = U(xc2), xc2 ∈ [−1
2
h0 − h, 1

2
h0], (3.2.1)

will always be assumed, while the domains of U and φ have been extended to [−h0 −

h,h0]. Due to complex conjugacy, we only need to consider cI ≥ 0. In particular, if

xc2 ∈ (−h,x2), the strong singularity in (3.0.1) will lead to y
(
cR + i(0+), k,x2

)
/∈ R even

if y(−h), y′(−h) ∈ R. Even though some estimates are stated for cI > 0, most of the

inequalities are mostly uniform as cI → 0+ and thus hold for the limits.

In order to obtain estimates uniform in k ∈ R, rescale

µ = 〈k〉−1 = 1√
k2+1

, x2 = xc2 + µτ , cI = µε, w = (w1,w2)T = (µ−1y, y′)T ∈ C2,

(3.2.2)

where xc2 satisfies (3.2.1) as well as in the above. Equation (3.0.1) becomes

wτ =

 0 1

1− µ2 +
µ2U ′′(xc2+µτ)

U(xc2+µτ)−c 0

w −

 0

φ̃(µ, c, τ)

 , (3.2.3)

where

φ̃(µ, c, τ) = µφ
(
k, c,xc2 + µτ

)
.

We shall consider this ODE on intervals τ ∈ [−M ,M ] such that

[xc2 − µM ,xc2 + µM ] ⊂ [−h0 − h,h0], (3.2.4)
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is that U is well-defined when |τ | ≤ M . As cI → 0+, one would naturally expect w(τ) to

converge to solutions to

Wτ =

 0 1

1− µ2 +
µ2U ′′(xc2+µτ)

U(xc2+µτ)−cR
0

W −

 0

φ̃
(
µ, cR, τ

)
 . (3.2.5)

However, this limit equation becomes singular at τ = 0 and conditions have to be specified

there.

• Fundamental matrix of the homogeneous Rayleigh equation. Its construction is

adapted from the one used in [11]. Let

Γ(µ, cR, ε, τ) = (1−µ2)τ +
µU ′′(xc2)

2U ′(xc2)
log(Ũ2 + ε2) +γ(µ, cR, ε, τ) +

∫ τ

−M

iµεU2(τ ′)

Ũ(τ ′)2 + ε2
dτ ′,

(3.2.6)

where, for j = 1, 2,

Uj(cR,µ, τ) =( dj

dxj2
U)(xc2 + µτ), Ũ(cR,µ, τ) = 1

µ

(
U(xc2 + µτ)− cR

)
= 1
µ

(
U(xc2 + µτ)− U(xc2)

)
,

(3.2.7)

and the remainder γ of Γ is given by

γ(µ, cR, ε, 0) = 0, γτ =
µ
(
U1(0)U2 − U2(0)U1

)
Ũ

U1(0)(Ũ2 + ε2)
, =⇒ Γτ = 1− µ2 +

µU2

Ũ − iε
.

(3.2.8)

It is not hard to see that γ(µ, cR, 0, τ) is C l0−2 in τ and µ and C l0−3 in cR. We often skip
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writing the explicit dependence on those variables other than τ . Denote

Γ0(µ, cR, τ) = lim
ε→0+

Γ(µ, cR, ε, τ)

=(1− µ2)τ +
µU ′′(xc2)

U ′(xc2)
log |Ũ(τ)|+ γ(µ, cR, 0, τ)

+
iπµU ′′(xc2)

2U ′(xc2)

(
sgn(τ) + 1

)
,

(3.2.9)

where we note that the integrand of the imaginary part of Γ converges to a delta mass

as ε → 0+ and produces a jump in Γ0 at τ = 0 (see Lemma 3.2.1 in the below). Let

B̃(µ, cR, ε, τ) be a 2× 2 matrix given by

B̃τ =

 Γ(µ, cR, ε, τ) 1

−Γ(µ, cR, ε, τ)2 −Γ(µ, cR, ε, τ)

 B̃, B̃(µ, cR, ε, 0) = I2×2, (3.2.10)

and

Φ̃(µ, c, τ) =

Φ̃1(µ, c, τ)

Φ̃2(µ, c, τ)

 =

∫ τ

−M
φ̃(µ, c, τ ′)B̃(µ, cR, cI

µ
, τ ′)−1

0

1

 dτ ′. (3.2.11)

It is worth pointing out that Γ0 is real for τ < 0 and imaginary for τ > 0. To keep the

notations simple we often skip the arguments other than τ . In the following lemma we

collect some basic estimates of Γ and B̃ where we often bound the log |τ | singularity in Γ

by |τ |−α, α > 0, for simplicity.

Lemma 3.2.1. For any M > 0 satisfying (3.2.4) and α,α′ ∈ (0, 1) with α + α′ < 1,

there exists C > 0 depending only on M , α, α′, |U ′|C2 , and |(U ′)−1|C0 , such that, for any

0 < ε < M , the following hold for |τ | ≤M ,

det B̃ = 1, |B̃ − I| ≤ e|τ |+C(|τ |3+µ2|τ |α) − 1, |B̃−1 − I| ≤ 4(e|τ |+C(|τ |3+µ2|τ |α) − 1).

(3.2.12)
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|Γ(ε, τ)− Γ0(τ)| ≤ Cµ
(
µε| log ε|+ ε

ε+|τ | + log(1 + Cε2

τ2
)
)

(3.2.13)

∣∣∣B̃(ε, τ)− B̃0(τ)
∣∣∣ ≤ Cµmin{εα(|τ |1−α + µ|τ |α′), ε(1 + | log ε|+ µ log2 ε)} (3.2.14)

where B̃0(µ, cR, τ) = limε→0+ B̃(µ, cR, ε, τ). Moreover, general solutions of (3.2.3) with

cI > 0 is given by

µ−1y(x2)

y′(x2)

 = w(τ) =

 1 0

Γ(µ, cR, ε, τ) 1

 B̃(µ, cR, ε, τ)
(
b− Φ̃(µ, c, τ)

)
,

b =

b1

b2

 ∈ C2.

(3.2.15)

Remark 3.2.1. Even though ε > 0 is assumed in the above and the remaining statements

in this and the next sections, as C > 0 is independent of ε = 〈k〉cI ∈ (0,M ] in a priori

estimates and thus they hold even as ε→ 0+.

Expression (3.2.15) essentially is the variation of parameter formula including the fun-

damental matrix of the Rayleigh equation. Due to det B̃ = 1, it is possible to extend the

definition of B̃ to include all x2 ∈ [−h0 − h,h0], but its bound would be non-uniform in

k � 1 for |x2 − xc2| � µ.

Proof. Since Γ has a logarithmic singularity at the worst even if ε = 0, B̃ is obviously

well-defined. The zero trace value of the coefficient matrix in (3.2.10) yields detB = 1.

The form (3.2.15) of general solutions of (3.2.3) for cI > 0 follows from straightforward

verifications.
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Equation (3.2.10) implies

|(B̃ − I)τ | ≤ 1 + Γ2 + (1 + Γ2)|B̃ − I|,

where 1 + Γ2 is the operator norm of the coefficient matrix. From Gronwall inequality, we

obtain

|B̃ − I| ≤ e|τ+
∫ τ
0 Γ2dτ ′| − 1.

It is clear from the definition of γ that

|γτ | ≤ Cµ2,

∣∣∣∣∫ τ

−M

iµεU2(τ ′)

Ũ(τ ′)2 + ε2
dτ ′
∣∣∣∣ ≤ Cµ.

The definition of Γ, the boundedness of |Ũ |, and the estimate on γτ imply that, for τ ∈

[−M ,M ],

∣∣∣∣∫ τ

0

Γ2dτ ′
∣∣∣∣ ≤ C(|τ |2 + µ2)|τ |+ Cµ2

∣∣∣∣∫ τ

0

log2(|τ ′|+ ε)dτ ′
∣∣∣∣ ≤ C(|τ |3 + µ2|τ |α),

where C is a generic constant determined by M and k∗ and the Hölder inequality was

used to obtain |τ |α, for any α ∈ (0, 1). The desired estimate in (3.2.12) on B̃ − I follows

immediately which along with detB = 1 in turn yields the estimate on B̃−1 − I .

The definition of γ implies

|γ(ε, τ)− γ(0, τ)| ≤
∣∣∣∣∫ τ

0

Cµ2ε2

(τ ′)2 + ε2
dτ ′
∣∣∣∣ = Cµ2ε tan−1 |τ |

ε
.

Regarding the imaginary part of Γ, we observe

∫ τ

−M

∣∣∣∣ U2(τ ′)

Ũ(τ ′)2 + ε2
− U2(0)

U1(0)2(τ ′)2 + ε2

∣∣∣∣ dτ ′
≤
∫ τ

−M

∣∣∣U2(τ ′)
(
U1(0)2(τ ′)2 + ε2

)
− U2(0)

(
Ũ(τ ′)2 + ε2

)∣∣∣(
Ũ(τ ′)2 + ε2

)(
U1(0)2(τ ′)2 + ε2

) dτ ′
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≤Cµ
∫ τ

−M

|τ ′|
(τ ′)2 + ε2

dτ ′ ≤ Cµ(1 + | log ε|),

where we used the smoothness of U1 and U2 in µτ . It implies

∣∣∣∣∫ τ

−M

µεU2(τ ′)

Ũ(τ ′)2 + ε2
dτ ′ − µU2(0)

U1(0)

(
tan−1 U1(0)τ

ε
+
π

2

)∣∣∣∣ ≤ Cµε(1 + µ| log ε|), (3.2.16)

and thus

∣∣∣∣∫ τ

−M

µεU2(τ ′)

Ũ(τ ′)2 + ε2
dτ ′ − πµU2(0)

2U1(0)

(
sgn(τ) + 1

)∣∣∣∣ ≤Cµ(µε| log ε|+ min{1, ε|τ |−1}
)

≤Cµ
(
µε| log ε|+ 1

1 + |τ |
ε

)
.

The error estimate (3.2.13) follows consequently.

Proceeding to consider B̃(ε, τ)− B̃0(τ) where B̃0(µ, cR, τ) = B̃(µ, cR, 0, τ), we have

∂τ
(
B̃(ε, τ)− B̃0(τ)

)
−

 Γ0(τ) 1

−Γ0(τ)2 −Γ0(τ)

(B̃(ε, τ)− B̃0(τ)
)

=

 Γ(ε, τ)− Γ0(τ) 0

−Γ(ε, τ)2 + Γ0(τ)2 −Γ(ε, τ) + Γ0(τ)

 B̃(ε, τ).

Recalling that B̃0(τ) is the elementary fundamental matrix of the above corresponding

homogeneous ODE system, the variation of parameter formula implies

∣∣∣B̃(ε, τ)− B̃0(τ)
∣∣∣

=

∣∣∣∣∣∣∣
∫ τ

0

B̃0(τ)B̃0(τ ′)−1

 Γ(ε, τ ′)− Γ0(τ ′) 0

−Γ(ε, τ ′)2 + Γ0(τ ′)2 −Γ(ε, τ ′) + Γ0(τ ′)

 B̃(ε, τ ′)dτ ′

∣∣∣∣∣∣∣
≤C

∣∣∣∣∫ τ

0

(
1 + |Γ(ε, τ ′)|+ |Γ0(τ ′)|

)
|Γ(ε, τ ′)− Γ0(τ ′)|dτ ′

∣∣∣∣
≤C

∣∣∣∣∫ τ

0

(
1 + µ

∣∣ log |τ ′|
∣∣)|Γ(ε, τ ′)− Γ0(τ ′)|dτ ′

∣∣∣∣
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≤C
∣∣1 + µ| log(·)|

∣∣
L

1
1−α
|Γ(ε, ·)− Γ0(·)|

L
1
α

.

The second desired upper bound in (3.2.14) of B̃ − B̃0 follows from direct estimating the

above integral without using the Hölder inequality. For the first upper bound there we use,

for any |τ1|, |τ2| ≤M ,

|Γ(ε, ·)−Γ0(·)|Lρ[τ1,τ2] ≤ Cµε
1
ρ , ρ ∈ (1, +∞); |Γ(ε, ·)−Γ0(·)|L1[τ1,τ2] ≤ Cµε(1+ | log ε|),

(3.2.17)

which can be verified by straight forward computation. The proof of the lemma is complete.

• A priori estimates. A direct corollary of the form (3.2.15) of the general solution to the

Rayleigh equation (3.2.3) is an estimate of w(τ) in terms of b and Φ̃. Let Γ̃(τ) denote

Γ̃(τ) =
µU ′′(xc2)

U ′(xc2)

(1

2
log(Ũ(τ)2 + ε2) + tan−1 U

′(xc2)τ

ε
+
π

2

)
.

Corollary 3.2.1.1. For b ∈ C2 and |τ | ≤M , let

b̃(τ) =

 1 0

Γ(τ) 1

 B̃(τ)b, b̃0(τ) =

 1 0

Γ0(τ) 1

 B̃0(τ)b,

then under the same assumptions of Lemma 3.2.1, it holds, for any α1 ∈ [0, 1− α),

|b̃1(τ)− b1| ≤ C(|τ |+ µ2|τ |α)|b|,
∣∣b̃2(τ)−

(
b2 + b1Γ̃(τ)

)∣∣ ≤ C
(
|τ |+ µ(|τ |α + εα)

)
|b|

|b̃1(τ)− b̃01(τ)| ≤ Cµεα
(
|τ ||b|+ min{|τ |1−α, ε1−α(1 + | log ε|)}|b1|

)
,

|b̃2(τ)− b̃02(τ)| ≤ Cµ
(
εα|τ |α1|b|+

(
ε

ε+|τ | + log
(
1 + Cε2

τ2

))
|b1|
)
.

Proof. The estimates on b̃ follows from straight forward calculation based on (3.2.16) and
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the bound on B̃ − I given in Lemma 3.2.1 and we omit the details.

Regrading b̃(τ)− b̃0(τ), let B̃jl denote the entries of B̃. Using Lemma 3.2.1 where the

estimates are uniform in ε > 0, we have

|b̃2(τ)− b̃02(τ)| ≤ (1 + |Γ0|)|B̃ − B̃0||b|+ |Γ− Γ0|(|B̃11||b1|+ |B̃12||b2|)

≤C
(
(1 + µ

∣∣ log |τ |
∣∣)|B̃ − B̃0||b|+ |Γ− Γ0|(|b1|+ (|τ |+ µ|τ |α′)|b2|)

)
≤Cµ

(
εα|τ |α1|b|+

(
ε

ε+|τ | + log
(
1 + Cε2

τ2

))
(|b1|+ |τ |α

′|b2|)
)
.

Since

|τ |β
(

ε
ε+|τ | + log

(
1 + Cε2

τ2

))
≤ Cεβ, β ∈ (0, 1], (3.2.18)

the upper on b̃2(τ)− b̃02(τ) follows accordingly.

To derive the estimate on b̃1(τ)− b̃01(τ), we notice b̃1(0) = b̃01(0) = b1 and the desired

estimate follows from integrating ∂τ (b̃1 − b̃01) = b̃2 − b̃02 using (3.2.17).

Remark 3.2.2. The above estimates imply, that for any solution w(τ) to (3.2.3)

∣∣w1(τ)−
(
b1 − Φ̃1(τ)

)∣∣ ≤ C(|τ |+ µ2|τ |α)
∣∣b− Φ̃(τ)

∣∣, (3.2.19)∣∣∣w2(τ)−
(
b2 − Φ̃2(τ) + Γ̃(τ)

(
b1 − Φ̃1(τ)

))∣∣∣ ≤ C
(
|τ |+ µ(|τ |α + εα)

)∣∣b− Φ̃(τ)
∣∣.

(3.2.20)

The following lemma gives another estimate of w(τ) in terms of some initial value

w(τ0) which we shall used mainly for τ0 away from 0.

Lemma 3.2.2. For any M > 0 satisfying (3.2.4) and α ∈ (0, 1), there exists C > 0

depending only on M , α, |U ′|C2 , and |(U ′)−1|C0 , such that, for any 0 < ε < M , and

55



τ0, τ ∈ [−M ,M ], the following hold for any solution w(τ) to (3.2.3):

∣∣w1(τ)− w1(τ0)
∣∣ ≤C|τ − τ0|

(
|w(τ0)|+ µ

∣∣ log
(
τ 2

0 + ε2
)∣∣|w1(τ0)|

)
+ Cµ|τ − τ0|α

(
|w(τ0)|+

∣∣Φ̃1(·)− Φ̃1(τ0)
∣∣
L∞[τ0,τ ]

)
+ C

∣∣Φ̃(·)− Φ̃(τ0)
∣∣
L1[τ0,τ ]

,

(3.2.21a)

∣∣w2(τ)−
(
w2(τ0) + Φ̃2(τ0)− Φ̃2(τ)− Γ̃(τ0)w1(τ0) + Γ̃(τ)(w1(τ0) + Φ̃1(τ0)− Φ̃1(τ))

)∣∣
≤ C

(
(|τ |α + µεα)

∣∣Φ̃(τ0)− Φ̃(τ)
∣∣+
(
µεα + |τ |α + |τ0|α(1 + µ| log(τ 2 + ε2)|)

)
|w(τ0)|

+ µ|τ |α| log(τ 2
0 + ε2)||w1(τ0)|

)
.

(3.2.21b)

Proof. We shall first estimate b − Φ̃(τ0) based on w(τ0) and then apply Corollary 3.2.1.1.

From (3.2.15) and det B̃ = 1 which allows us to write B̃−1 explicitly, we have

b− Φ̃(τ0) =

 B̃22 −B̃12

−B̃21 B̃11


 1 0

−Γ 1

w
∣∣∣
τ0

=

 B̃22 + ΓB̃12 −B̃12

−B̃21 − ΓB̃11 B̃11

w
∣∣∣
τ0

.

(3.2.22)

Using Lemma 3.2.1, one may estimate

|b1 − Φ̃1(τ0)− w1(τ0)| ≤ C(|τ0|+ µ|τ0|α)|w(τ0)|, (3.2.23)

|b2 − Φ̃2(τ0) + Γ̃(τ0)w1(τ0)− w2(τ0)| ≤ C
(
|τ0|+ µ(|τ0|α + εα)

)
|w(τ0)|, (3.2.24)

where we also used (3.2.16). Combining these inequalities and Corollary 3.2.1.1, we obtain

∣∣w2(τ)−
(
w2(τ0) + Φ̃2(τ0)− Φ̃2(τ)− Γ̃(τ0)w1(τ0) + Γ̃(τ)(w1(τ0) + Φ̃1(τ0)− Φ̃1(τ))

)∣∣
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≤C
(
|τ |+ µ(|τ |α′ + εα

′
)
)∣∣b− Φ̃(τ)

∣∣+ C
(
|τ0|+ µ(|τ0|α + εα)

+ |Γ̃(τ)|(|τ0|+ µ|τ0|α)
)
|w(τ0)|

≤C(|τ |α′ + µεα
′
)
(∣∣Φ̃(τ0)− Φ̃(τ)

∣∣+ |w(τ0)|+ |Γ̃(τ0)||w1(τ0)|
)

+ C
(
µεα + |τ0|α(1 + µ| log(τ 2 + ε2)|)

)
|w(τ0)|

≤C
(

(|τ |α + µεα)
∣∣Φ̃(τ0)− Φ̃(τ)

∣∣+
(
µεα + |τ |α + |τ0|α(1 + µ| log(τ 2 + ε2)|)

)
|w(τ0)|

+ µ|τ |α| log(τ 2
0 + ε2)||w1(τ0)|

)
,

where α′ ∈ (α, 1). This yields inequality (3.2.21b) of w2(τ). The estimate of w1(τ) is

obtained through integrating that of w2(τ) = w1τ (τ).

• Convergence estimates as cI → 0+. As ε = µ−1cI = 〈k〉cI → 0+, from Lemma 3.2.1,

it is natural to expect that the limit of solutions to the non-homogenous Rayleigh equation

(3.0.3) is also given by formula (3.2.15) with Γ, B̃, and Φ̃ replaced by Γ0, B̃0, and Φ̃0 =

limε→0+ Φ̃.

With the above preparations, we are ready to obtain the convergence and error esti-

mates of solutions to the Rayleigh equation (3.2.5). While the limits of non-homogeneous

Rayleigh equation under appropriate assumptions on φ(k, c,x2) can be studied in the frame-

work in this chapter, we shall just focus on the homogeneous case, i.e. with φ ≡ 0+, and

leave the non-homogeneous one to chapter 5. In fact, (3.2.9) and Lemma 3.2.1 imply

that, as cI → 0, w1(τ) would converge to a Hölder continuous limit, while w2(τ) devel-

ops a jump proportional to w1(0) and a logarithmic singularity at τ = 0. More precisely,

the limit W (τ) of solutions should (see the proposition in the below) satisfy the Rayleigh

equation (3.2.5) with c ∈ R for τ 6= 0 and satisfy at τ = 0,


W1 ∈ C0

(
[−M ,M ]

)
, W2 ∈ C0

(
[−M ,M ]\{0}

)
,

limτ→0+

(
W2(τ)−W2(−τ)

)
=

iπµU ′′(xc2)

U ′(xc2)
W1(0).

(3.2.25)
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It is worth pointing out that the existence of the limit of W2(τ)−W2(−τ) does not imply a

simple jump discontinuity of W2, which actually has a symmetric logarithmic singularity.

In the distribution sense, the limit homogeneous Rayleigh equation (3.2.5) (with φ = 0)

along with (3.2.25) can be written as

Wτ =(P .V . )τ

 0 1

1− µ2 +
µ2U ′′(xc2+µτ)

U(xc2+µτ)−c 0

W +

 0

iπµU ′′(xc2)

U ′(xc2)
W1(0)

 δ(τ). (3.2.26)

Here δ(τ) denotes the delta function of τ and “(P .V . )τ” indicate the principle value when

the corresponding distributions are applied to test functions of τ . They occur in W2τ only.

In terms of the original unknown y(x2), the limit of (3.0.3) as cI → 0+ is

−y′′ + k2y + (P .V . )x2
(
U ′′y
U−c

)
= − iπU ′′(xc2)

U ′(xc2)
y(xc2)δx2(x2 − xc2), (3.2.27)

where the subscript ·x2 indicates the distributions as generalized functions of x2. For

cI → 0−, the parallel results hold except with the complex conjugate. It also means that

homogeneous Rayleigh equation takes different limit as cI → ±0.

Lemma 3.2.3. General solutions of homogeneous (3.2.5) (with φ = 0) along with (3.2.25)

are

W (τ) =

 1 0

Γ0(µ, cR, τ) 1

 B̃0(µ, cR, τ)b0, b0 =

b01

b02

 ∈ C2. (3.2.28)

Moreover, W (τ) ∈ C0 if W1(0) = 0.

Proof. On [−M , 0) and (0,M ], (3.2.5) is regular and thus Lemma 3.2.1, in particular the

form (3.2.15) of the general solutions implies the above (3.2.28) with parameters b±0 =

(b±01, b±02)T ∈ C2. The continuity of W1(τ) and the estimates of Γ and B̃ in Lemma 3.2.1

immediately yields b+
01 = b−01. Finally b+

02 = b−02 follows from the jump condition of W2(τ)

at τ = 0 after writing b±02 using (3.2.22) and again using the estimates of Γ and B̃.
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Finally, the continuity ofW (τ) under the assumptionsW1(0) = 0 follows from (3.2.28),

the Hölder continuity of B̃, and the logarithmic upper bound of Γ0.

The following proposition provides the convergence estimates.

Proposition 3.2.4. For any M > 0 satisfying (3.2.4) and α,α′ ∈ (0, 1), there exists C > 0

depending only on M , α, α′, |U ′|C2 , and |(U ′)−1|C0 , such that, for any 0 < ε < M ,

τ ∈ [−M ,M ], and solutions w(τ) and W (τ) to (3.2.3) and (3.2.5) (with φ = 0) in the

forms (3.2.15) and (3.2.28) with parameters b, b0 ∈ C2, respectively, the following hold:

|w1(τ)−W1(τ)− (w1(0)−W1(0))| ≤ C
(
|τ |(|b2 − b02|+ µεα|b02|)

+ (|τ |+ µ|τ |α)|w1(0)−W1(0)|+ εα
′
µ|τ |1−α′|W1(0)|

)
,

(3.2.29)

|w2(τ)−W2(τ)|

≤C
(
µεα|τ |

1−α
2 (|W1(0)|+ |b02|) + (1 + µ

∣∣ log(|τ |+ ε)
∣∣)|w1(0)−W1(0)|

+ |b2 − b02|+ µ
(

ε
ε+|τ | + log

(
1 + Cε2

τ2

))
|W1(0)|

)
.

(3.2.30)

Moreover, for any τ , τ0 ∈ [−M ,M ], let τ∗ = min{|τ |, |τ0|} > 0, we have

|w1(τ)−W1(τ)− (w1(τ0)−W1(τ0))|

≤Cµεα|τ − τ0||W (τ0)|+ C|τ − τ0|α|w(τ0)−W (τ0)|

+ Cµ
(
|τ − τ0|

(
ε

ε+|τ0| + log
(
1 + Cε2

τ20

))
+ εα

′ |τ − τ0|1−α
′
)

×
(
|W1(τ0)|+ |τ0|α|W (τ0)|

)
,

(3.2.31)
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|w2(τ)−W2(τ)| ≤C
((

1 + µ| log(ε+ |τ |)
∣∣)|w(τ0)−W (τ0)|

+ µεα|W (τ0)|+ µ
(

ε
ε+τ∗

+ log
(
1 + Cε2

τ2∗

))(
|W1(τ0)|+ |τ0|α|W (τ0)|

))
.

(3.2.32)

Remark 3.2.3. When the above convergence estimate is applied in the rest of the manuscript,

it always holds that |W1(τ0)| ≤ M |τ0|α0 for some α0 > 0 which makes the right sides of

(3.2.31) and (3.2.32) converging to 0 as ε→ 0 locally uniformly in τ 6= 0.

Proof. We first work on the error estimates in terms of W1(0) and b2. Let

w̃(τ) =

 1 0

Γ(µ, cR, ε, τ) 1

 B̃(µ, cR, ε, τ)b0.

Controlling w2 − w̃2 and w̃2 −W2 by Corollary 3.2.1.1 (w2 − w̃2 by (3.2.19) and (3.2.20)

in particular), where we recall the estimates are uniform in ε > 0, we have

|w2(τ)−W2(τ)| ≤ |w2(τ)− w̃2(τ)|+ |w̃2(τ)−W2(τ)|

≤C
(
|b− b0|+ |Γ̃(τ)||b1 − b01|+ µεα|τ |α1|b0|+ µ

(
ε
|τ |+ε + log

(
1 + Cε2

τ2

))
|b01|

)
≤C
(
|b2 − b02|+ (1 + µ

∣∣ log(|τ |+ ε)
∣∣)|w1(0)−W1(0)|

+ µ
(

ε
ε+|τ | + log

(
1 + Cε2

τ2

))
|W1(0)|+ µεα|τ |α1

(
|W1(0)|+ |b02|

))
.

(3.2.33)

where α1 ∈ [0, 1− α) and we also used

W1(0) = b01, w1(0) = b1.

This completes the proof of inequality (3.2.30). The estimate (3.2.29) onw1−W1 is derived

by integrating ∂τ (w1 −W1) = w2 −W2 and using (3.2.17) and (3.2.13).
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In the following, based on (3.2.33) we establish the error estimates in terms of initial

values given at some τ0 6= 0. From formula (3.2.22) we have

b− b0 −
(
Γ0(τ0)W1(τ0)− Γ(τ0)w1(τ0)

)
(0, 1)T

=
(
B̃−1(w −W ) + (B̃−1 − B̃−1

0 )W +
(

Γ0(W1 − w1)(B̃−1
0 − I) + Γ0w1(B̃−1

0 − B̃−1)

+ (Γ0 − Γ)w1(B̃−1 − I)
)

(0, 1)T
)∣∣∣

τ0
.

From (3.2.18) and Lemma 3.2.1, one may estimate

|Γ0(τ0)||B̃(τ0)−1 − I| ≤ C
(
1 + µ

∣∣ log |τ0|
∣∣)(|τ0|+ µ2|τ0|α

′
) ≤ C(|τ0|+ µ|τ0|α),

|Γ0||B̃−1
0 − B̃−1|

∣∣
τ0
≤ C

(
1 + µ

∣∣ log |τ0|
∣∣)µεα(|τ0|1−α + µ|τ0|α1) ≤ Cµεα|τ0|α1 ,

|Γ0 − Γ||B̃−1 − I|
∣∣
τ0
≤Cµ(|τ0|+ µ2|τ0|α

′
)
(
µε| log ε|+ ε

ε+|τ0| + log(1 + Cε2

τ20
)
)

≤Cµεα|τ0|α1 ,

where α1 ∈ [0, 1− α). Therefore we obtain

∣∣b2 − b02 −
(
Γ0(τ0)W1(τ0)− Γ(τ0)w1(τ0)

)∣∣+
∣∣b1 − b01

∣∣
≤C
(
|(w −W )(τ0)|+ µεα|τ0|α1|W (τ0)|

)
.

Applying (3.2.23) and (3.2.24) to control b0 in (3.2.33), we can estimate

|w2(τ)−W2(τ)| ≤C
((

1 + µ
∣∣ log(ε+ |τ |)

∣∣)(|w(τ0)−W (τ0)|+ µεα|τ0|α1|W (τ0)|
)

+ |(Γ0W1 − Γw1)(τ0)|+ µεα
(
|W (τ0)|+ µ

∣∣ log |τ0|
∣∣|W1(τ0)|

)
+ µ
(

ε
ε+|τ | + log

(
1 + Cε2

τ2

))(
|W1(τ0)|+ |τ0|α|W (τ0)|

))
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Inequality (3.2.32) is obtained by simplifying the above. In particular, we used

εα| log τ∗| ≤ Cεα
′

if τ∗ ≥ min{1, ε2} and

log
(
1 + Cε2

τ2∗

)
≥ log

(
ε2

τ∗
1
τ∗

)
≥ | log τ∗| if τ∗ ≤ min{1, ε2},

to absorb the term µ2εα
∣∣ log |τ0|

∣∣|W1(τ0)|.

Again we integrate (3.2.32) to derive (3.2.31). The only non-trivial terms are those

involving τ∗

∣∣∣∣∫ τ

τ0

ε
ε+min{|τ ′|,|τ0|} + log

(
1 + Cε2

min{|τ ′|,|τ0|}2
)
dτ ′
∣∣∣∣

≤Cεα|τ − τ0|1−α +
∣∣|τ | − |τ0|

∣∣( ε
ε+|τ0| + log

(
1 + Cε2

τ20

))
≤Cεα|τ − τ0|1−α + |τ − τ0|

(
ε

ε+|τ0| + log
(
1 + Cε2

τ20

))
,

which are obtained by considering whether |τ ′| ≥ |τ0| and using (3.2.17).

3.3 Two fundamental solutions to the homogeneous Rayleigh equation

In this section, we analyze and derive the basic estimates of two fixed solutions y±(k, c,x2)

to the homogeneous equation (3.0.1) with initial values

y−(−h) = 0, y′−(−h) = 1,

and y+(0) =
(U(0)− c)2

g + σk2
, y′+(0) = 1 +

U ′(0)(U(0)− c)
g + σk2

,
(3.3.1)

which also depend on parameters k and c ∈ C. The initial condition of y+ at x2 = 0 is

motivated by the linearized capillary gravity water wave problem (2.2.6). (If it had been

the linearized Euler equation at a shear flow in the channel, then naturally the boundary

condition would be y+(0) = 0 and y′+(0) = 1.) As throughout this chapter, we often skip

the arguments rather than x2. Particularly when working near xc2 = U−1(cR), we shall

continue using the notations introduced in section 3.2, like cR,µ, ε, etc. The following
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lemma is standard. Due to conjugacy, we only consider cI ≥ 0.

Lemma 3.3.1. For c /∈ U([−h, 0]) and x2 ∈ [−h, 0], the solutions y±(k, c,x2) are even in

k, analytic in k2 and c, and is C l0+2 in x2. Moreover y±(k, c̄,x2) = y±(k, c,x2).

In the next step we give a priori estimates of y±(k, c,x2). In particular, we consider up

to three subintervals,

I2 := (x2l,x2r) =

{
x2 ∈ [−h, 0] :

1

|U(x2)− c|
> ρ0µ

− 3
2

}
, ρ0 =

4

h0 inf [−h0−h,h0] U ′
,

(3.3.2)

I1 = [−h,x2l), I3 = (x2r, 0]. (3.3.3)

Here µ = 〈k〉−1 as in (3.2.2). Clearly [−h, 0] = I1 ∪ I2 ∪ I3 and any of these subintervals

may be empty. If I2 = ∅, then [−h, 0] is considered as I1 for y− and as I3 for y+ in

the statement of the following lemma. The choice of the above constant ρ0 and the fact

0 ≤ µ ≤ 1 ensure

cR ∈ U([−1
4
h0 − h, 1

4
h0]) if I2 6= ∅. (3.3.4)

Lemma 3.3.2. For any α ∈ (0, 1
2
), there exists C > 0 depending only on α, M , |U ′|C2 , and

|(U ′)−1|C0 , such that, for any c ∈ C\U([−h, 0]), the following hold:

|µ−1y−(x2)− sinh(µ−1(x2 + h))| ≤ Cµα sinh(µ−1(x2 + h)), (3.3.5)

|µ−1y+(x2)− sinh(µ−1x2)| ≤ C
(
µα + µ|c|2

)
cosh(µ−1x2), (3.3.6)

for all x2 ∈ [−h, 0]. Moreover, if I2 = ∅, then for all x2 ∈ [−h, 0],

|y′−(x2)− cosh(µ−1(x2 + h))| ≤ Cµα sinh(µ−1(x2 + h)), (3.3.7)
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|y′+(x2)− cosh(µ−1x2)| ≤ C
(
µα + µ|c|2

)
cosh(µ−1x2). (3.3.8)

If otherwise I2 6= ∅, then

|y′−(x2)− cosh(µ−1(x2 + h))| ≤


Cµα sinh(µ−1(x2 + h)), x2 ∈ I1

Cµα cosh(µ−1(x2 + h)), x2 ∈ I3

(3.3.9)

|y′+(x2)− cosh(µ−1x2)| ≤ Cµα cosh(µ−1x2), x2 ∈ I1 ∪ I3, (3.3.10)

and for x2 ∈ I2,

∣∣y′−(x2)− cosh(µ−1(x2 + h))− U ′′(xc2)

U ′(xc2)
y−(x2l) log |U(x2)− c|

∣∣
≤ Cµα

(
1 + µ

∣∣ log |U(x2)− c|
∣∣) cosh(µ−1(x2 + h)),

(3.3.11)

∣∣y′+(x2)− cosh(µ−1x2)− U ′′(xc2)

U ′(xc2)
y+(x2r) log |U(x2)− c|

∣∣
≤ Cµα

(
1 + µ

∣∣ log |U(x2)− c|
∣∣) cosh(µ−1x2).

(3.3.12)

Remark 3.3.1. Even though the lemma assumes c ∈ C\U([−h, 0]), the estimates are

uniform in c and thus they also hold for the limits of solutions as cI → 0+, while the limits

as cI → 0− are the conjugates of those as cI → 0+.

It is possible that xc2 /∈ [−h, 0] as the domain of U has been extended. However, the

constant C in (3.3.7), (3.3.8), (3.3.9), and (3.3.10) are independent of the extensions of U

satisfying (3.0.5).

Proof. The estimates of y± can be derived in exactly the same procedure by reversing the

direction of the variable x2. We shall focus on y−(k, c,x2) and give a brief description
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on the argument for y+ afterwards. The cases of x2 close to and away from xc2 will be

considered differently based on Lemma 3.1.2 and Proposition 3.2.4, respectively.

Step 1. Assume I1 6= ∅. We consider k in two cases. The first on is for those larger |k|

such that

ρ := ρ0µ
− 3

2k−2(1 + |U ′′|C0([−h0−h,h0])) ≤ min{1,Cµ
1
2}, (3.3.13)

where (3.1.2) is satisfied and Lemma 3.1.2 is applicable. Observe

µ−1 − k =
√

1 + k2 − k = 1
µ−1+k

∈ (0,µ), (3.3.14)

and

| sinh(µ−1(x2 + h))− sinh(k(x2 + h))| =2 sinh x2+h
µ−1+k

cosh(1
2
(µ−1 + k)(x2 + h))

≤Cµ sinh(µ−1(x2 + h)),

(3.3.15)

where the last inequality could be derived by considering whether µ−1(x2 + h) ≥ 1. The

same upper bound also holds for cosh. Therefore applying Lemma 3.1.2 on I1 with s = 0

and C0 = 0, we immediately obtain the desired estimates (3.3.5), (3.3.7), (3.3.9) on y− and

y′− on I1, respectively. Otherwise in the case of smaller |k|, the desired estimates follows

from Lemma 3.1.3 with φ = 0.

Step 2. Assume I2 6= ∅ and x2r > x2l otherwise step 1 has completed the proof. In this

case, xc2 ∈ [−h0
4
− h, h0

4
] due to (3.3.4). Let

M = ρ−1
0 |(U ′)−1|C0 = 1

4
h0, (3.3.16)

which implies

I2 ⊂ [xc2 − µM ,xc2 + µM ] ⊂ [xc2 − 2µM ,xc2 + 2µM ] ⊂ [−h0 − h,h0]. (3.3.17)
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Therefore results in section 3.2 in the corresponding rescaled variables w1,2(τ) and x2 =

xc2 + µτ given in (3.2.2) are applicable. Moreover the definition of I2 further yields

|τ | = µ−1|x2 − xc2| ≤ Cµ
1
2 , ∀x2 ∈ I2.

Let

τ0 = µ−1(x2l − xc2).

Lemma 3.2.2 (with φ = 0) implies that, for any x2 ∈ I2

∣∣∣y′−(x2) +
U ′′(xc2)

U ′(xc2)
y−(x2l) log |U(x2l)−c|

|U(x2)−c| − y
′
−(x2l)

∣∣∣
≤C
(
1 + µ

α′
2

∣∣ log |U(x2l)− c|
∣∣)|y−(x2l)|

+ C
(
µ
α′
2 + µ|τ0|α

′∣∣ log |U(x2)− c|
∣∣)(µ−1|y−(x2l)|+ |y′−(x2l)|

)
,

for any α′ ∈ (0, 1). Moving the log |U(x2l)− c| term to the right side, we obtain

∣∣∣y′−(x2)− U ′′(xc2)

U ′(xc2)
y−(x2l) log |U(x2)− c| − y′−(x2l)

∣∣∣
≤C
(
1 +

∣∣ log |U(x2l)− c|
∣∣)|y−(x2l)|

+ C
(
µ
α′
2 + µ|τ0|α

′∣∣ log |U(x2)− c|
∣∣)(µ−1|y−(x2l)|+ |y′−(x2l)|

)
.

(3.3.18)

Notice that, no matter whether I1 = ∅ or not, (3.3.5) and (3.3.7) are satisfied at x2l due

to either the initial condition of y−(x2) or the above step 1. On the one hand, regarding

the above first term on the right side, it holds that either y−(x2l) = 0 if x2l = −h or

µ
3
2 ≤ C|xc2 − x2l| if x2l > −h, hence this term would only contribute an error term of at

most O(µ−α
′′ |y−(x2l)|), for any α′′ > 0, in the upper bounds. On the other hand, 0 ≤ x2 −

x2l ≤ Cµ
3
2 implies that replacing the above µ−1y−(x2l), y′−(x2l) and cosh(µ−1(x2l+h)) by

cosh(µ−1(x2+h)) would also only produce an error terms of at mostO
(
µ
α′
2 cosh(µ−1(x2+
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h))
)

in the upper bounds. Therefore we have

∣∣y′−(x2)− cosh(µ−1(x2 + h))− U ′′(xc2)

U ′(xc2)
y−(x2l) log |U(x2)− c|

∣∣
≤ C

(
µ
α′
2 + µ|τ0|α

′∣∣ log |U(x2)− c|
∣∣) cosh(µ−1(x2 + h)),

(3.3.19)

and thus (3.3.11) follows by letting α′ = 2α.

Integrating (3.3.19) over [x2l,x2] ⊂ I2, we have, for α′ ∈ (2α, 1),

|µ−1y−(x2)− sinh(µ−1(x2 + h))|

≤Cµα sinh(µ−1(x2l + h)) +
C

µ

∫ x2

x2l

|y−(x2l)|
(
1 +

∣∣ log |x′2 − xc2|
∣∣)

+
(
µ
α′
2 + µ|τ0|α

′∣∣ log |x′2 − xc2|
∣∣) cosh(µ−1(x2l + h))dx′2

≤Cµα sinh(µ−1(x2 + h)) + C|τ0|α
′
cosh(µ−1(x2l + h))

∫ x2

x2l

∣∣ log |x′2 − xc2|
∣∣dx′2.

where we used (3.3.5), |x2−x2l| ≤ Cµ
3
2 , and and the first term of the right side of (3.3.18)

was incorporated into others as remarked just below (3.3.18). For |x2− x2l| ≤ 1
2
|x2l − xc2|,

we have

|τ0|α
′
∫ x2

x2l

∣∣ log |x′2 − xc2|
∣∣dx′2 ≤µ−α′|x2l − xc2|α

′ |x2 − x2l|
(
1 +

∣∣ log |x2l − xc2|
∣∣)

≤Cµα|x2 − x2l|,

while for |x2 − x2l| ≥ 1
2
|x2l − xc2|,

|τ0|α
′
∫ x2

x2l

∣∣ log |x′2 − xc2|
∣∣dx′2 ≤ Cµ−α

′|x2l − xc2|α
′|x2 − x2l|1−

1
3

(α′−2α) ≤ Cµα|x2 − x2l|.

Therefore we obtain

|µ−1y−(x2)− sinh(µ−1(x2 + h))|
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≤Cµα
(

sinh(µ−1(x2 + h)) + |x2 − x2l| cosh(µ−1(x2l + h))
)

≤Cµα sinh(µ−1(x2 + h))

which proves (3.3.5) on I2.

Step 3. Assume I3 = [x2r, 0] 6= ∅, which implies x2r > −h. In this case, surely

I2 6= ∅ either and µ
3
2 ≤ C|U(x2r)− c|. With (3.3.5) for y− and (3.3.11) for y′− established

at x2 = x2r, y−(x2) satisfies assumption (3.1.11) for the interval I3 with Θ1 = sinh,

Θ2 = cosh, and C0 = Cµα.

As in the step 1, for larger |k| so that (3.3.13) holds, the desired estimates (3.3.5) and

(3.3.11) in I3 follow directly from (3.3.14), (3.3.15), and Lemma 3.1.2.

For smaller k, say, |k| ≤ k1, we express y−(x2) and y′−(x2) in terms of w(τ), τ ∈

[µ−1(−h− xc2),−µ−1xc2], as in (3.2.2). Let

M = (1 + k2
1)

1
2 (2h0 + h), τ0 = µ−1(−h− xc2).

Since I2 6= ∅, otherwise [−h, 0] = I1 for y−(x2), it along with (3.3.4) and |k| ≤ k1 implies

xc2 ∈ [−h0−h,h0] =⇒ |h+xc2|, |xc2| ≤ 2h0+h =⇒ [µ−1(−h−xc2),−µ−1xc2] ⊂ [−M ,M ].

Namely, the domain of w(τ) is contained in [−M ,M ]. Applying (3.2.21b) (with φ = 0),

using w1(τ0) = 0, w2(τ0) = 1, and

I3 6= ∅ =⇒ ρ−1
0 µ

3
2 = |U(x2r)− c| ≤ |U(x2)− c|, ∀x2 ∈ I3,

we obtain |y′−(x2)| ≤ C on I3. It in turn implies

|µ−1y−(x2)− sinh(µ−1(x2 + h))|

≤µ−1|y−(x2)− y−(x2r)|+ |µ−1y−(x2r)− sinh(µ−1(x2r + h))|
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+ | sinh(µ−1(x2r + h))− sinh(µ−1(x2 + h))|

≤C
(
|x2 − x2r|+ sinh(µ−1(x2r + h))

)
≤ C sinh(µ−1(x2 + h)).

Therefore (3.3.5) and (3.3.9) hold on I3 due to |k| ≤ k1.

Estimating y+ Finally, we give a brief sketch of the argument for y+, for which we

proceed from I3 to I1.

Suppose I3 6= ∅. The initial values of y+ at x2 = 0 satisfy (3.1.12) with Θ1 = Θ2 =

cosh and C0 = C(1 + |c|2)µ. For larger |k| so that (3.3.13) holds, the desired estimates

(3.3.6) and (3.3.8) in I3 follow directly from (3.3.14), (3.3.15), and Lemma 3.1.2. The

estimates for smaller k is again a consequence of Lemma 3.1.3.

Suppose I2 6= ∅ which implies |c| ≤ C. Inequality (3.3.18) with x2l replaced by x2r

still follows from exactly the same argument, namely, for x2 ∈ I2 and any α′ ∈ [0, 1),

∣∣∣y′+(x2)− U ′′(xc2)

U ′(xc2)
y+(x2r) log |U(x2)− c| − y′+(x2r)

∣∣∣
≤C
(
1 +

∣∣ log |U(x2r)− c|
∣∣)|y+(x2r)|

+ C
(
µ
α′
2 + µ|τ0|α

′∣∣ log |U(x2)− c|
∣∣)(µ−1|y+(x2r)|+ |y′+(x2r)|

)
.

If x2r = 0, then

∣∣ log |U(x2r)− c|
∣∣|y+(x2r)| =

∣∣ log |U(0)− c|
∣∣|y+(0)| ≤ Cµ2 coshµ−1x2.

Otherwise, x2r < 0 and thus, for any α′ ∈ (0, 1),

|U(x2r)− c| = ρ−1
0 µ

3
2 =⇒

∣∣ log |U(x2r)− c|
∣∣|y+(x2r)| ≤ µα

′
coshµ−1x2,

where (3.3.6) at x2 = x2r was also used. These estimates, along with (3.3.6) and (3.3.8)

at x2 = x2r yield (3.3.12) on I2. Inequality (3.3.6) follows from direct integrating the

estimate on y′+, actually without going through the technical argument at the end of step 2
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for y− since the cosh, instead of sinh, is in the upper bound in (3.3.6).

Suppose I1 6= ∅ where it must hold I2 6= ∅ and |c| ≤ C. From step 2, y+(x2) satisfies

assumption (3.1.12) for the interval I1 with Θ1 = Θ2 = cosh, and C0 = Cµα. For larger

|k|, the desired estimates (3.3.6) and (3.3.10) follow from Lemma 3.1.2 and for smaller |k|

from Lemma 3.1.3.

3.4 Limits of solutions to the homogeneous Rayleigh equation with cI = 0+

Now that the convergence of solutions of the Rayleigh equation as cI → 0+ has been

established in Proposition 3.2.4, in this section, we shall focus on the analysis of the limit

equation (3.2.5) along with the jump condition (3.2.25) at the singularity τ = 0. In this

section we consider c = U(xc2) ∈ U
(
[−1

2
h0 − h, 1

2
h0]
)

unless otherwise specified. As

transformation (3.2.15) was rather helpful in the proof of Proposition 3.2.4, its limit would

also turn out to be an effective tool in the study of (3.2.5). However B̃(τ) as well as

B̃0(τ) appears only Hölder in τ , or equivalently in x2. In the notations given in (3.2.2)

in section 3.2, we first prove the following lemma to isolate the singularity in B̃0. Recall

U ∈ C l0 , xc2 and cR correspond to each other via (3.0.6), Ũ ,U1 ∈ C l0−1, and U2 ∈ C l0−2

are defined in (3.2.7), and Γ0(µ, c, τ) = Γ(µ, c, ε = 0, τ) in (3.2.9).

Lemma 3.4.1. There exists a unique continuous real 2× 2 matrix valued B(µ, c, τ) satis-

fying

Bτ =

 0 1

1− µ2 + µU2

Ũ
0

B −B

 0 0

1− µ2 + µU2

Ũ
0

 , B(µ, c, 0) = I2×2. (3.4.1)

Moreover the following hold.
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1. The matrix B(µ, c, τ) is C l0−2 in cR ∈ U
(
[−1

2
h0 − h, 1

2
h0]
)
, τ , and µ and

detB = 1, Bτ (µ, c, 0) =

 −µU ′′(xc2)

U ′(xc2)
1

−2
µ2U ′′(xc2)2

U ′(xc2)2
µU ′′(xc2)

U ′(xc2)

 ,

B(0, c, τ) =

cosh τ − τ sinh τ sinh τ

sinh τ − τ cosh τ cosh τ

 =

cosh τ sinh τ

sinh τ cosh τ


 1 0

−τ 1

 .

Moreover for any M > 0 satisfying (3.2.4), there exists C > 0 depending only on

|U ′|Cl0−1 and |(U ′)−1|C0 , such that |B|Cl0−2 ≤ C.

2. B and B̃0 are conjugate, namely,

B(µ, c, τ) =

 1 0

Γ0(µ, c, τ) 1

 B̃0(µ, c, τ)

 1 0

−Γ0(µ, c, τ) 1

 . (3.4.2)

3. General solutions to (3.2.5) satisfying (3.2.25) are

W (τ) =

W1(τ)

W2(τ)

 = B(µ, c, τ)

 1 0

Γ0(µ, c, τ) 1

(b− Φ̃0(µ, c, τ)
)
,

=

(B11 + Γ0B12)(b1 − Φ̃01) +B12(b2 − Φ̃02)

(B21 + Γ0B22)(b1 − Φ̃01) +B22(b2 − Φ̃02)

 ,

b =

b1

b2

 ∈ C2,

(3.4.3)

where Bj1j2 are the entries of B and Φ̃0 = (Φ̃01, Φ̃02)T = limε→0+ Φ̃ with Φ̃ given in

(3.2.11).

4. If φ ≡ 0, the general solution W (τ) to (3.2.5)–(3.2.25) with b ∈ C2 as in (3.4.3)
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satisfies W1 ∈ Cα′

loc for any α′ ∈ (0, 1), W1(0) = b1, and

lim
τ→0

(
W2(τ)− b2 −W1(0)

µU ′′(xc2)

U ′(xc2)

(
log(U ′(xc2)|τ |) +

iπ

2
(sgn(τ) + 1)

)
= 0.

5. Finally, W (τ) are C l0−2 in µ, cR, and τ if φ ≡ 0 and b1 = W1(0) = 0.

Remark 3.4.1. If needed, higher order Taylor expansions of B can be obtained based on

(3.4.4) through rather standard calculations in the analysis of local invariant manifolds.

One is reminded that both Γ0(τ) has a logarithmic singularity and a jump at τ = 0 which

leads to such singularities of W2(τ) there even in the homogeneous case. Since Γ0 /∈ R

for τ > 0, B̃0 should not be real for τ > 0. Hence it is a non-obvious statement that this

conjugate matrix B is real. The above lemma isolates the singularity of B̃0 into the explicit

Γ0 along with the smooth B. Conceptually, the smoothness of B in cR is related to the

smoothness of the spectral resolution of the identity with respect to the spectral parameter,

and thus would play crucial role in proving the partial inviscid damping to the linearized

Euler equation at the shear flow U(x2).

Proof. The construction ofB(µ, c, τ) is adapted from the one in [11], where the main issue

is to handle the singularity caused by Ũ(µ, c, 0) = 0. We first make (3.4.1) autonomous by

changing the independent variable an auxiliary one s such that τs = τ and thus we have


Bs =

 0 τ

(1− µ2)τ + µτU2

Ũ
0

B −B

 0 0

(1− µ2)τ + µτU2

Ũ
0

 ,

τs = τ .

(3.4.4)

Obviously solutions to (3.4.1) corresponds (up to a translation in s) to those to the C l0−2

ODE system (3.4.4) of 5-dim which converge to (I2×2, 0) as s → −∞, namely those on

the unstable manifold of the steady state (I2×2, 0). The linearized system of (3.4.4) is given
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by


Bs =

µU ′′(xc2)

U ′(xc2)
AB + τ

0 1

0 0

 , where AB =

0 0

1 0

B −B

0 0

1 0

 ,

τs = τ .

It is easy to compute that, on the one hand, an eigenvector associated to the eigenvalue 1 is

(B1, 1), B1 =

 −µU ′′(xc2)

U ′(xc2)
1

−2
µ2U ′′(xc2)2

U ′(xc2)2
µU ′′(xc2)

U ′(xc2)

 .

On the other hand, one may verify

esAB =

1 0

s 1

B

 1 0

−s 1


which implies that in the 4-dim center subspace {τ = 0} there is no any decay backward

in s. Therefore there exists a unique C l0−2 unstable manifold of 1-dim which corresponds

a unique solution B(µ, c, τ) satisfying B(µ, c, 0) = I and Bτ (µ, c, 0) = B1 and C l0−2 in

all its variables. In fact, the 4-dim center subspace {τ = 0} is also invariant under the

nonlinear system (3.4.4), where the flow is given by the above non-decaying linear flow

of conjugation. Therefore this B(µ, cR, τ) is the only solution to (3.4.1) decaying to I as

s→ −∞, or equivalently τ → 0+. Even though this construction is local in τ , the domain

of B can be extended due to the linearity of equation (3.4.1). The property detB = 1

follows directly from its equation (3.4.1).

With the existence of the C l0−2 solution B(µ, c, τ) to (3.4.1) established, letting µ = 0
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in (3.4.4) and then transforming back to (3.4.1), we have

Bτ (0, c, τ) =

0 1

1 0

B(0, c, τ)−B(0, c, τ)

0 0

1 0

 , B(0, c, 0) = I2×2.

This equation can be solved explicitly to yield

B(0, c, τ) =

cosh τ sinh τ

sinh τ cosh τ


 1 0

−τ 1

 =

cosh τ − τ sinh τ sinh τ

sinh τ − τ cosh τ cosh τ

 .

The conjugation relation is the consequence of the facts that both B and the right side

of (3.4.2) a.) both are equal to I at τ = 0, b.) both satisfy the same ODE system (3.4.1)

for τ 6= 0, c.) are both continuous in τ due to the construction of B and (3.2.12) in

Lemma 3.2.1, and d.) the uniqueness of solutions to (3.4.1) satisfying a.)–c.), which is

obtained in the above construction based on the local invariant manifold theory.

Formula (3.4.3) of the general solutions follows from the conjugacy relation (3.4.2)

and Lemma 3.2.3. Under the assumption φ ≡ 0, since W2(τ) has at most logarithmic

singularity at τ = 0 and W1τ = W2, the Hölder continuity of W1 in τ follows. From

formula (3.4.3) and |B(µ, c, 0)− I| = O(|τ |), we obtain W1(0) = b1. The limit property of

W2(τ) − b2 also follows from similar calculation. Finally, the C l0−3 smoothness of W (τ)

under the assumptions φ ≡ 0 and b1 = W1(0) = 0 is again obvious from the representation

of the solution (3.4.3). The proof of the lemma is complete.

For c ∈ U([−h0
2
−h, h0

2
]), with the help ofB(µ, c, τ) and Lemma 3.4.1 we shall analyze

the 2× 2 fundamental matrices in two different forms of the homogeneous problem (3.2.5)
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with the condition (3.2.25) at τ = 0

S0(µ, c, τ) = B(µ, c, τ)

 1 0

Γ0(µ, c, τ) 1

 ,

S(µ, c, τ , τ0) = B(µ, c, τ)

 1 0

Γ0(µ, c, τ)− Γ0(µ, c, τ0) 1

B(µ, c, τ0)−1,

(3.4.5)

where τ0 in S is the initial value of the independent variable and hence S(µ, c, τ0, τ0) = I .

To analyze S0 and S, let

S̃0(µ, c, τ) =B(µ, c, τ)

0 0

1 0

 =

B12(µ, c, τ) 0

B22(µ, c, τ) 0

 ,

S̃(µ, c, τ , τ0) =B(µ, c, τ)

0 0

1 0

B(µ, c, τ0)−1

=

B12(µ, c, τ)B22(µ, c, τ0) −B12(µ, c, τ)B12(µ, c, τ0)

B22(µ, c, τ)B22(µ, c, τ0) −B22(µ, c, τ)B12(µ, c, τ0)

 ,

(3.4.6)

where detB = 1 was used to compute the more explicit form of S̃ in the above, and

S0
err = S0 −

cosh τ sinh τ

sinh τ cosh τ

− µU ′′(xc2)

U ′(xc2)

(
log |τ |+ iπ

2

(
sgn(τ) + 1

))
S̃0,

Serr = S −

cosh(τ − τ0) sinh(τ − τ0)

sinh(τ − τ0) cosh(τ − τ0)


− µU ′′(xc2)

U ′(xc2)

(
log | τ

τ0
|+ iπ

2

(
sgn(τ)− sgn(τ0)

))
S̃.

(3.4.7)

The following lemma provides some very basic estimates on S. More detailed ones on Sjl

will be derived when needed.

Lemma 3.4.2. Assume U ∈ C l0 , l0 ≥ 3. The fundamental matrices S0(µ, c, τ) and
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S(µ, c, τ , τ0) and their entries S0
jl and Sj1j2 satisfy the following.

1. S0 is C l0−3 in its variables if τ 6= 0 and S is C l0−3 in its variables if τ 6= 0 and

τ0 6= 0.

2. S0
11, S0

12, and S0
22 are Cα in τ and C l0−3 in µ and c. If τ0 6= 0, then S11 and S12 are

Cα in τ and C l0−3 in µ, c, and τ0.

3. If τ 6= 0, then S12 and S22 are Cα in τ0 and C l0−3 in µ, c, and τ .

4. S12 and τ0S11 are Cα in τ0 and τ and C l0−3 in µ and c.

5. Serr and S0
err are C l0−3 in their arguments.

6. Assume l0 ≥ 5. For any M satisfying (3.2.4), there exists C > 0 depending only on

M , |U ′|Cl0−1 , and |(U ′)−1|C0 such that for any τ , τ0 ∈ [−M ,M ],

|∂j1µ D1 . . . Dj2Serr| ≤ C|τ − τ0|, |∂j1µ ∂j2c S0
err| ≤ C|τ |,

for 1 ≤ j1 ≤ l0 − 4, 0 ≤ j2 ≤ l0 − 4 − j1, and D1, . . . Dj ∈ {∂c, 1
U ′(xc2)

(∂τ + ∂τ0)},

and

|D1 . . . Dj2Serr| ≤ Cµ|τ − τ0|, |∂j2c S0
err| ≤ Cµ|τ |,

for 1 ≤ j2 ≤ l0 − 5.

The reason we consider ∂τ + ∂τ0 of S instead of individual ∂τ or ∂τ0 is not only that

it yields better estimate. Recall the change of variables τ = µ−1(x2 − xc2). The above

fundamental matrix is in the form of S
(
µ, c,µ−1(x2− xc2),µ−1(x20− xc2)

)
. Therefore ∂c−

∂τ+∂τ0
µU ′(xc2)

corresponds to the partial differentiation with respect to c in the (c,x2) coordinates.

Here we also used

∂cx
c
2 = 1

U ′(xc2)
. (3.4.8)
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Proof. The argument for S0 and S are very similar and we shall mainly focus on S. Let

S#(µ, c, τ , τ0) = B(µ, c, τ)

 1 0

g#(µ, c, τ , τ0) 1

B(µ, c, τ0)−1, (3.4.9)

where

g#(µ, c, τ , τ0) =Γ0(µ, c, τ)− Γ0(µ, c, τ0)− µU ′′(xc2)

U ′(xc2)

(
log
∣∣ τ
τ0

∣∣+ iπ
2

(
sgn(τ)− sgn(τ0)

))
=(1− µ2)(τ − τ0) + γ(µ, c, 0, τ)− γ(µ, c, 0, τ0)

+
µU ′′(xc2)

U ′(xc2)
log
∣∣∣ τ0τ U(xc2+µτ)−U(xc2)

U(xc2+µτ0)−U(xc2)

∣∣∣ .
Clearly we have

S = S# +
µU ′′(xc2)

U ′(xc2)

(
log
∣∣ τ
τ0

∣∣+ iπ
2

(
sgn(τ)− sgn(τ0)

))
S̃. (3.4.10)

The C l0−3 (and C l0−2 in µ) smoothness follows from that of Γ0 and B. The Cα Hölder

regularity in statements (2)–(4) is due to B12(µ, c, 0) = 0.

From the definition (3.2.8) of γ, we have γ ≡ 0 if µ = 0. Straight forward computation

based on Lemma 3.4.1 yields

S#(0, c, τ , τ0) =

cosh(τ − τ0) sinh(τ − τ0)

sinh(τ − τ0) cosh(τ − τ0)

 , S#(µ, c, τ0, τ0) = I.

Therefore

Serr(µ, c, τ , τ0) = S#(µ, c, τ , τ0)− S#(0, c, τ , τ0).

By mimicking f(µ, s) = f(0, s) + µ
∫ 1

0
fµ(θ1µ, 0) + s

∫ 1

0
fµs(θ1µ, θ2s)dθ2dθ1, we have

|S#(µ, c, τ , τ0)− S#(0, c, τ , τ0)|
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=µ|τ − τ0|
∣∣∣∣∫ 1

0

∫ 1

0

∂µ∂τS
#(θ1µ, c, τ0 + θ2(τ − τ0), τ0)dθ2dθ1

∣∣∣∣
≤Cµ|τ − τ0|.

Moreover, for 1 ≤ j2 ≤ l0 − 5 and D1, . . . Dj2 ∈ {∂c, 1
U ′(xc2)

(∂τ + ∂τ0)}, we have

D1 . . . Dj2S
# = 0, if µ = 0, ∂µD1 . . . Dj2S

# = 0, if τ = τ0.

A similar procedure yields

|D1 . . . Dj2S
#(µ, c, τ , τ0)|

=µ|τ − τ0|
∣∣∣∣∫ 1

0

∫ 1

0

∂µ∂τD1 . . . Dj2S
#(θ1µ, c, τ0 + θ2(τ − τ0), τ0)dθ2dθ1

∣∣∣∣
≤Cµ|τ − τ0|.

Finally, since S# is C l0−3 in all variables, for l0 ≥ 5, 1 ≤ j1 ≤ l0 − 4, and 0 ≤ j2 ≤

l0−j1−4, the estimate on ∂j1µ D1 . . . Dj2Serr follows from its C1 smoothness and vanishing

at τ = τ0.

To analyze S0, parallelly we consider

S#
0 (µ, c, τ) = B(µ, c, τ)

 1 0

g0#(µ, c, τ) 1

 ,

where

g0#(µ, c, τ) =Γ0(µ, c, τ)− µU ′′(xc2)

U ′(xc2)

(
log |τ |+ iπ

2
(sgn(τ) + 1)

)
=(1− µ2)τ + γ(µ, c, 0, τ) +

µU ′′(xc2)

U ′(xc2)
log
∣∣∣U(xc2+µτ)−U(xc2)

µU ′(xc2)τ

∣∣∣ .
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Subsequently we have

S0 = S#
0 +

µU ′′(xc2)

U ′(xc2)

(
log |U ′(xc2)τ |+ iπ

2
(sgn(τ) + 1)

)
S̃,

S#
0 |µ=0 =

cosh τ sinh τ

sinh τ cosh τ

 , S#
0 |τ=0 = I.

The rest of the proof follows exactly as in the case of S.

Recall the expressions (3.4.3) of a solution W (τ) to the non-homogeneous Rayleigh

equation (3.2.5) along with (3.2.25) at τ = 0. We can use this formula to solve for the

parameter b from W (τ0) for some τ0 ∈ [−M ,M ] and then rewrite W (τ) using the funda-

mental matrix S(µ, c, τ , τ0) as

W (τ) =S(µ, c, τ , τ0)W (τ0)−B(µ, c, τ)

 1 0

Γ0(µ, c, τ) 1

(Φ̃0(µ, c, τ)− Φ̃0(µ, c, τ0)
)
.

(3.4.11)

3.5 Dependence in c and k of the fundamental solutions with cI = 0+

In this section we revisit the two fundamental solutions to (3.0.1)

y0±(k, c,x2) = lim
cI→0+

y±(k, c+ icI ,x2), x2 ∈ [−h, 0], (3.5.1)

of the homogeneous Rayleigh equation (3.0.1) for c ∈ U([−h0
2
− h, h0

2
]) satisfying initial

conditions (3.3.1). We often skip the dependence on c and k (or equivalently, on µ =

(1 + k2)−
1
2 ) when there is no confusion. The following lemma is a summary of results

from Proposition 3.2.4, Lemma 3.4.1, and Remark 3.2.2, where xc2 is defined in (3.0.6).

Lemma 3.5.1. Assume U ∈ C l0 , l0 ≥ 3. For c ∈ U([−h0
2
− h, h0

2
]) and x2 ∈ [−h, 0], the

following hold.

79



1. As cI → 0+, y±(k, c+ icI ,x2)→ y0±(k, c,x2) uniformly in x2 and c.

2. As cI → 0+, y′± → y′0± locally uniformly in {U(x2) 6= c} and also in L∞c L
r
x2

and

L∞x2L
r
c for any r ∈ [1,∞).

3. For each c, y0−(x2) ∈ R if U(x2) ≤ c, y0+(x2) ∈ R if U(x2) ≥ c, y0± ∈ Cα([−h0
2
−

h, h0
2

]) for any α ∈ [0, 1) and C l0 in x2 6= xc2.

4. Moreover,

 1
µ
y0±(x2)

y′0±(x2)

 = B
(
µ, c, 1

µ
(x2 − xc2)

) 1 0

Γ0

(
µ, c, 1

µ
(x2 − xc2)

)
1


 1

µ
y0±(xc2)

b2±

 ,

where

b2± = lim
x2→xc2

(
y′0±(x2)−U ′′(xc2)

U ′(xc2)
y0±(xc2)

(
log
(U ′(xc2)

µ
|x2−xc2|

)
+ iπ

2
(sgn(x2−xc2)+1)

))
,

exists.

Remark 3.5.1. When c takes the end point values U(−h), according to the above repre-

sentation formula and the smoothness of B, actually y0− ∈ C l0([−h0 − h,h0]).

Remark 3.5.2. Suppose c ∈ U
(
(−h, 0)

)
and y(k, c,x2) = limε→0+ y(k, c + iε,x2) where

y(k, c + iε,x2) is a solution to the homogeneous Rayleigh equation (3.0.1) with y(−h),

y′(−h) ∈ R. The above analysis in section 3.2 implies that a.) y(k, c,x2) ∈ R for x2 ∈

[−h,xc2]; and b.) if U ′′(xc2) 6= 0, an imaginary part Im y(k, c,x2) occurs for x2 > xc2 which

satisfies the homogeneous Rayleigh equation (3.0.1) for x2 ∈ [xc2, 0] with initial condition

Im y(xc2) = 0, Im y′(xc2) =
πU ′′(xc2)

U ′(xc2)
y(xc2).

The main goal of this section is to analyze the differentiation of y0− in c. Even though

most of the results also hold for y0+, the proof is slightly more technical. We shall skip
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those analysis of y+ as they are not necessary for the rest of the paper. See Remark 3.5.3.

The proof of the following lemma would be embedded in those of the three subsequent

lemmas, actually mainly Lemma 3.5.4.

Lemma 3.5.2. Assume U ∈ C l0 , l0 ≥ 4. For k, c ∈ R, it holds that

a.) y0− is locally Cα in both k and c for any α ∈ [0, 1);

b.) (y0−, y′0−) are locally Cα in both k and c for any α ∈ [0, 1) at any (k, c,x2) satisfying

U(x2) 6= c;

c.) (y0−, y′0−) are C l0−3 in both k and c at any (k, c,x2) satisfying U(x2) 6= c and c 6=

U(−h);

d.) y0−(k, c,xc2) is C l0−3 in c and k if c ∈ U([−h, 0]);

e.) (y0−, y′0−) are C l0−2 in k, at any (k, c,x2) except for y′0− at c = U(x2);

f.) assume l0 ≥ 5, then, for any l = 0, 1, j1, j2 ≥ 0, j1 + j2 ≤ l0 − 4, r ∈ [1,∞), and

x2 ∈ [−h, 0],

(U(−h)− c)j2∂j1k ∂
j2
c ∂

l
x2
y0−(k, c,x2),

are locally L∞k W
1,r
c in c for c near U(−h).

To obtain the estimates, for fixed c ∈ R near U([−h, 0]), as in Lemma 3.3.2, we divide

[−h, 0] into subintervals

I2 := (x2l,x2r) =
{
x2 ∈ [−h, 0] : 1

|U(x2)−c| >
ρ0
µ

}
, I1 = [−h,x2l], I3 = [x2r, 0],

(3.5.2)

where ρ0 is defined as in (3.3.2). I2 is an interval due to the monotonic assumption of U .

Clearly [−h, 0] = I1 ∪ I2 ∪ I3 and any of these subintervals may be empty. If I2 = ∅,

then [−h, 0] is considered as I1 for y0− and as I3 for y0+. If I2 6= ∅, then (3.3.4) holds and

xc2 ∈ [−1
2
h0 − h, 1

2
h0] is well defined. In the next three lemmas, we obtain the estimates

on y0− on subintervals in the order of I1, I2, and I3. The proof of Lemma 3.5.2 is mainly

contained in that of Lemma 3.5.4 as the smooth dependence of solutions to the Rayleigh
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equation on k and c and the initial values is trivial on I1 and I3. While we mainly focus

on y0− in the following lemmas, we shall also just outline the estimates on ∂cy0+, which

would be enough for the rest of the paper.

Lemma 3.5.3. Assume l0 ≥ 3 and I1 6= ∅. For any k ∈ R and any c ∈ R, the following

estimates hold for x2 ∈ I1 and j1, j2 ≥ 0 with j1 + j2 > 0,

µ−1|∂j1k ∂
j2
c y0−(x2)|+ |∂j1k ∂

j2
c y
′
0−(x2)| ≤Cj1,j2µ

(
|U(x2)− c|−j2 + |U(−h)− c|−j2

)
×
(
1 + µ−j1(x2 + h)j1

)
sinh(µ−1(x2 + h))

≤Cj1,j2µ
1−j1−j2 sinh(µ−1(x2 + h)),

(3.5.3)

where Cj1,j2 > 0 depends only on j1, j2, |U ′|C2 , and |(U ′)−1|C0 . Moreover, it also holds,

for any x2 ∈ I3

µ−1|∂cy0+(x2)|+ |∂cy′0+(x2)| ≤ C(sinhµ−1|x2|+ µ(1 + |c|) coshµ−1x2).

The above estimate holds in a neighborhood of I1 actually.

Proof. It is obvious that, for x2 ∈ I1, y0− is analytic in c and k. Let K = k2 = µ−2 − 1.

One may compute that ∂j1K∂
j2
c y0−(x2) satisfies the non-homogeneous Rayleigh equation

(3.0.3) in the form of

−∂j1K∂
j2
c y
′′
0− +

(
K +

U ′′

U − c
)
∂j1K∂

j2
c y0− = −j1∂

j1−1
K ∂j2c y0− −

j2−1∑
j′=0

mj2,j′U
′′

(U − c)j2+1−j′ ∂
j1
K∂

j′

c y0−,

(3.5.4)

with some constants mj2,j′ . Note that the definition of I2 implies that (3.1.2) is satisfied on

I1 with

ρ = ρ0µ
−1k−2(1 + |U ′′|C0([−h0−h,h0])) = ρ0k

−1
√

1 + k−2(1 + |U ′′|C0([−h0−h,h0])). (3.5.5)
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We shall estimate the derivatives of y0− with respect to c and k for large k and small k

separately.

For any k∗ ≥ 1 sufficiently large so that ρ ≤ 1, we shall apply (3.1.13) with x02 = −h

to prove

µ−1|∂j1K∂
j2
c y0−(x2)|+ |∂j1K∂

j2
c y
′
0−(x2)|

≤Cj1,j2µ(x2 + h)j1
(
|U(x2)− c|−j2 + |U(−h)− c|−j2

)
sinh(µ−1(x2 + h)),

(3.5.6)

for any |k| ≥ k∗, j1, j2 ≥ 0 with j1 + j2 > 0. The proof is a simple mathematical induction

in j1 + j2.

Since (3.5.6) does not include the case j1 = j2 = 0, there are two base cases (j1, j2) =

(0, 1) and (j1, j2) = (1, 0), which we have to consider separately. For ∂cy0−, from (3.5.4),

(3.1.13), Lemma 3.3.2, and the definition of I2, we have, for any x2 ∈ I1,

k|∂cy0−(x2)|+ |∂cy′0−(x2)| ≤C
∫ x2

−h
cosh(µ−1(x2 − x′2))

µ sinh(µ−1(x′2 + h))

(U(x′2)− c)2
dx′2

≤Cµ sinh(µ−1(x2 + h))

∫ x2

−h

1

(U(x′2)− c)2
dx′2

≤Cµ
(
|U(x2)− c|−1 + |U(−h)− c|−1

)
sinh(µ−1(x2 + h)),

where (3.3.14) and (3.3.15) are also used for k ≥ k∗ to convert the estimates in terms of k

into those in terms of µ. Similarly, ∂Ky0− satisfies

k|∂Ky0−(x2)|+ |∂Ky′0−(x2)| ≤Cµ
∫ x2

−h
cosh(µ−1(x2 − x′2)) sinh(µ−1(x′2 + h))dx′2

≤Cµ(x2 + h) sinh(µ−1(x2 + h)).

With the estimates in the base cases established, for j1 + j2 > 1, using the induction

assumption (and Lemma 3.3.2 for j1 = j′ = 0 in (3.5.4)) and proceeding much as in the
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above, we obtain

k|∂j1K∂
j2
c y0−(x2)|+ |∂j1K∂

j2
c y
′
0−(x2)|

≤Cµ sinh(µ−1(x2 + h))

∫ x2

−h
j1(x′2 + h)j1−1

(
|U(x′2)− c|−j2 + |U(−h)− c|−j2

)
+ (x′2 + h)j1 |U(x′2)− c|−2

(
|U(x′2)− c|1−j2 + |U(−h)− c|1−j2

)
dx′2,

and (3.5.6) follows consequently.

For |k| ≤ k∗, as µ ∼ 1, we apply Lemma 3.1.3 to (3.5.4) on [−h,x2] with

C0 = max{(U(−h)− c)−1, (U(x2)− c)−1} ≤ ρ0µ
−1 ≤ C.

Following a similar induction procedure and using Lemma 3.1.3, we obtain, for x2 ∈ I1,

l = 0, 1, and j1, j2 ≥ 0 with j1 + j2 > 0,

|∂j1K∂
j2
c ∂

l
x2
y0−(x2)| ≤Cj1,j2(x2 + h)j1

(
|U(x2)− c|−j2 + |U(−h)− c|−j2

)
.

Therefore (3.5.6) holds for all k ∈ R.

Since

∂k = 2k∂K =⇒ ∂jk =
∑

0≤l≤ j
2

m̃j,lk
j−2l∂j−lK

for some constants m̃j,l, (3.5.6) implies (3.5.3) on I1 (actually in a neighborhood of I1).

Estimating ∂cy0+ on I3. Let y1(x2) be solutions to the homogeneous Rayleigh equa-

tion (3.0.1) with initial values

y1(0) = −2(U(0)− c)/(g + σk2), y′1(0) = −U ′(0)/(g + σk2),

and y2(x2) be the solution to the initial value problem of the non-homogeneous Rayleigh
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equation

−y′′2 +
(
k2 + U ′′

U−c

)
y0+ = − U ′′

(U−c)2y0+, y2(0) = y′2(0) = 0.

On I3, y2 can be estimated much as y0− on I1, while y1 much as in the proof of Lemma 3.3.2.

When Lemma 3.1.2 is used to estimate y1 for large |k, we set s = 0, Θ1 = Θ2 = cosh, and

C0 = Cµ(1 + |c|). The desired inequality on ∂cy0+ follows from ∂cy0+ = y1 + y2.

Lemma 3.5.4. Assume U ∈ C l0 , l0 ≥ 4, and I2 6= ∅, then Lemma 3.5.2a.)–e.) hold for

x2 ∈ I2. Moreover, if l0 ≥ 6, then there exists C > 0 depending only on |U ′|Cl0−1 , and

|(U ′)−1|C0 , such that, for any k ∈ R and any c ∈ R, the following estimates hold.

1. For any x2 ∈ I2, we have

µ−1|∂cy0−(x2)| ≤C
(

1 +

∣∣∣∣log
|U(x2)− c|
|U(x2l)− c|

∣∣∣∣) sinh(µ−1(x2 + h)), (3.5.7)

∣∣∣∂cy′0−(x2) +
U ′′(xc2)

U ′(xc2)

(
(P .V . )c(

1

U(x2)− c
) + iπδc(U(x2)− c)

)
y0−(xc2)

∣∣∣
≤C
(

1 +
∣∣∣ log

|U(x2)− c|
|U(x2l)− c|

∣∣∣) cosh(µ−1(x2 + h)),

(3.5.8)

µ−1|∂cy0+(x2)| ≤ C

(
1 +

∣∣∣∣log
|U(x2)− c|
|U(x2r)− c|

∣∣∣∣) cosh(µ−1x2),

∣∣∣∂cy′0+(x2) +
U ′′(xc2)

U ′(xc2)

(
(P .V . )c(

1

U(x2)− c
) + iπδc(U(x2)− c)

)
y0+(xc2)

∣∣∣
≤C
(

1 +
∣∣∣ log

|U(x2)− c|
|U(x2r)− c|

∣∣∣) cosh(µ−1x2),

and for 2 ≤ j ≤ l0 − 5 and c 6= U(x2) and c 6= U(−h),

µ−1|∂jcy0−(x2)| ≤C(|U(x2)− c|1−j + |U(−h)− c|1−j) sin(µ−1(x2 + h)), (3.5.9)
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|∂jcy′0−(x2)| ≤Cµ|U(x2)− c|−1(|U(x2)− c|1−j

+ |U(−h)− c|1−j) sinh(µ−1(x2 + h)).

(3.5.10)

2. For 1 ≤ j ≤ l0 − 5,

|∂jc
(
y0−(k, c,xc2)

)
| ≤ Cµ1−j cosh(µ−1(xc2 + h)), if xc2 ∈ [−h, 0]. (3.5.11)

In the above lemma δ(·) denotes the delta mass supported at 0 and (P .V . )c and δc

emphasize them as distributions of the variable c. Near U(x2) = c or U(−h) = c, singular

distributions of ∂jcy0− and ∂jcy
′
0− at the level comparable to those negative exponents in

(3.5.9) and (3.5.10) would occur. The quantities with log upper bounds are Lp functions

for any p ∈ [1,∞).

Proof. Since I2 6= ∅, it is easy to prove that (3.3.4) holds and xc2 ∈ [−1
4
h0 − h, 1

4
h0]

is well defined. Let M be defined as in (3.3.16) and (3.3.17) still holds. This allows

us to work in the τ = µ−1(x2 − xc2) coordinate and apply Lemma 3.4.1, Lemma 3.4.2,

and Lemma 3.5.1. It is natural to express y0− using the fundamental matrix S(µ, c, τ , τ0)

defined in (3.4.5). One is reminded that x2l depends on c. To study the regularity of y0−

and y′0− with respect to c at some c∗ ∈ U([−1
2
h0−h, 1

2
h0]), we fix some x20 ∈ [−h,x2l(c∗)]

in a O(µ) neighborhood of x2l(c∗). For c near c∗, x2 ∈ I2, we can write

µ−1y0−(k, c,x2)

y′0−(k, c,x2)

 = S
(
µ, c, τ , τ0

)µ−1y0−(k, c,x20)

y′0−(k, c,x20)

 ,

τ =
x2 − xc2
µ

, τ0 =
x20 − xc2

µ
.

(3.5.12)

Note that τ = µ−1(x2−xc2) = 0 iff U(x2) = c and τ0 = µ−1(x20−xc2) = 0 iff U(x20) = c,

the latter of which happens iff U(−h) = c∗. Clearly y−(x20) and y′−(x20) are smooth in c
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and k either due to the initial conditions or due to the smoothness of the Rayleigh equation

on I1. Hence the regularity statement (c) of Lemma 3.5.2 follows from statement (1) in

Lemma 3.4.2. If c 6= U(x2) is close to U(−h), then we could fix x20 = −h. In this case,

y0− and y′0− involve only S12 and S22 due to y0−(−h) = 0, and thus statement (b) follows

from statement (3) in Lemma 3.4.2. When c is close to U(x2), the Cα regularity of y0− in

k and c is a consequence of statement (2) in Lemma 3.4.2, unless c = U(x2) = U(x20) =

U(−h). Near the last exceptional case, the Cα regularity of y− in k and c is due to (4)

of Lemma 3.4.2. Statement (e) of the C l0−2 in k of (y0−, y′0−) also following from the

properties of S given in Lemma 3.4.2.

We shall derive the estimates of the differentiation by ∂c at c∗ in two cases.

* Case 1: x2l(c∗) ≥ µ − h. In this case, let x20 = x2l(c∗) which implies −Cτ0 ≥

1. Hence sgn(τ0) = −1 and log |τ0| as well as its derivatives are of order O(1) when c

varies slightly. Therefore the τ0 related terms can be estimated easily. From the estimate

at x20 derived in Lemma 3.5.3 (or from the initial condition at x2 = −h), (3.4.8), and

Lemma 3.4.2, for 1 ≤ j ≤ l0 − 5, it holds on I2,

∂jc

µ−1y0−(x2)

y′0−(x2)


=

j∑
j′=0

(
∂c −

∂τ+∂τ0
µU ′(xc2)

)j′(µU ′′(xc2)

U ′(xc2)

(
log | τ

τ0
|+ iπ

2
(sgn(τ)− sgn(τ0))

)
S̃(τ , τ0)

)

× ∂j−j′c

µ−1y0−(x20)

y′0−(x20)

+O
(
µ1−j sinh(µ−1(x2 + h))

)

=

j∑
j′=0

(
∂c −

∂τ+∂τ0
µU ′(xc2)

)j′(µU ′′(xc2)

U ′(xc2)

(
log |τ |+ iπ

2
sgn(τ)

)
S̃(τ , τ0)

)
∂j−j

′

c

µ−1y0−(x20)

y′0−(x20)


+O

(
µ1−j sinh(µ−1(x2 + h))

)
,

where S̃ is given in (3.4.6) and the constant C in the O(·) terms depends only on |U ′|C6
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and |(U ′)−1|C0 . We also used that sinh and cosh are comparable at x2+h
µ

for x2 ∈ I2 in this

case.

For j = 1, keeping the most singular terms arising from the derivatives of log and sgn

in the distribution sense, we have

∂c

µ−1y0−(x2)

y′0−(x2)

 =− U ′′(xc2)

U ′(xc2)2

(
P .V . ( 1

τ
) + iπδ(τ)

)
S̃(τ , τ0)

µ−1y0−(x20)

y′0−(x20)


+O

((
1 +

∣∣ log |U(x2)−c|
µ

∣∣) sinh(µ−1(x2 + h))
)
.

Using (3.4.6), (3.4.3), the smoothness of B and B(µ, c, 0) = I , one may compute

(
B22(τ0),−B12(τ0)

)(
µ−1y0−(x20), y′0−(x20)

)T
= µ−1y0−(xc2), (3.5.13)

S̃(τ , τ0)

µ−1y0−(x20)

y′0−(x20)

 =µ−1y0−(xc2)

B12(µ, c, τ)

B22(µ, c, τ)


=µ−1y0−(xc2)


0

1

+O(|τ |)

 ,

(3.5.14)

Due to the Hölder continuity of y0− in x2 and

δ(τ) = δc
(x2−xc2

µ

)
= δc

(
U(x2)−c
µU ′(xc2)

)
= µU ′(xc2)δc(U(x2)− c), (3.5.15)

where δc(·) emphasizes the delta function with the variable c, we obtain the desired esti-

mates for j = 1 in this case.

Similarly, at x2 6= xc2 for 2 ≤ j ≤ l0− 5, keeping the worst term and using (3.5.14), we
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have

∂jc

µ−1y0−(x2)

y′0−(x2)

 =
((
− ∂τ

µU ′(xc2)

)j
log |τ |

)µU ′′(xc2)

U ′(xc2)
S̃(τ , τ0)

µ−1y0−(x20)

y′0−(x20)


+O

(
µ1−j|τ |1−j sinh(µ−1(x2 + h))

)
=µ1−j sinh(µ−1(x2 + h))

O(|τ |1−j)

O(|τ |−j)

 .

The desired inequality (3.5.9) in case 1 follows.

To finish the analysis in this case, we consider y0−(k, c,xc2). From (3.5.13) we obtain

C l0−2 smoothness in k and c. Differentiating (3.5.13) in c and using Lemma 3.4.1 and

Lemma 3.5.3, one may estimate, for 1 ≤ j ≤ l0 − 5,

∣∣∂jc(y(c,xc2)
)∣∣ ≤ ∣∣∣∣∣

j∑
j′=0

((
(∂c − ∂τ

µU ′(xc2)
)j−j

′
B22

)
(c, τ0)∂j

′

c y0−(c,x20)

−µ
(
(∂c − ∂τ

µU ′(xc2)
)j−j

′
B12

)
(c, τ0)∂j

′

c y
′
0−(c,x20)

)∣∣∣
≤Cµ1−j cosh(µ−1(xc2 + h)),

which proves (3.5.11) in case 1.

* Case 2: −h ≤ x2l(c∗) ≤ µ − h. In this case, let x20 = −h. While we have to deal

with possibly very small τ0 in (3.5.12), the initial values of (y0−(x20), y′0−(x20)) = (0, 1).

Hence from Lemma 3.4.2 we obtain, for 0 ≤ j ≤ l0 − 5, x2 ∈ I2,

∂jc

µ−1y0−(x2)

y′0−(x2)

 =
(
∂c −

∂τ+∂τ0
µU ′(xc2)

)jS12(τ , τ0)

S22(τ , τ0)


=
(
∂c −

∂τ+∂τ0
µU ′(xc2)

)j(µU ′′(xc2)

U ′(xc2)

(
log | τ

τ0
|+ iπ

2
(sgn(τ)− sgn(τ0))

)S̃12(τ , τ0)

S̃22(τ , τ0)

)

+O(µ1−j|τ − τ0|).

(3.5.16)
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From (3.4.6) and Lemma 3.4.1, S̃12

ττ0
and S̃22

τ0
are C l0−4 and C l0−3 functions, which could

be used to reduce some singularity. As µ|τ − τ0| = |x2 + h|, one can compute for j = 1,

µ−1∂cy0−(x2) =− U ′′(xc2)

U ′(xc2)2
S̃12

ττ0
(∂τ + ∂τ0)

(
ττ0

(
log | τ

τ0
|+ iπ

2
(sgn(τ)− sgn(τ0))

))
+O

(∣∣ττ0

(
log | τ

τ0
|+ iπ

2
(sgn(τ)− sgn(τ0))

)∣∣)+O(µ−1|x2 + h|).

We use the following elementary inequalities to handle the above log terms:

∣∣ log | τ
τ0
|
∣∣ =

∣∣∣∣∣
∫ |τ0|
|τ |

1
τ ′
dτ ′

∣∣∣∣∣ ≤
∣∣|τ | − |τ0|

∣∣
min{|τ |, |τ0|}

, |τ |+ |τ0| ≤ |τ − τ0|+ 2 min{|τ |, |τ0|},

which also imply

∣∣ττ0 log | τ
τ0
|
∣∣ ≤ C|τ − τ0|, (|τ |+ |τ0|)

∣∣ log | τ
τ0
|
∣∣ ≤ |τ − τ0|

(
2 +

∣∣ log | τ
τ0
|
∣∣).

The delta functions produced by differentiating sgn are cancelled by ττ0. Finally sgn(τ)−

sgn(τ0) 6= 0 only when−h ≤ xc2 ≤ x2 which implies µ(|τ0|+ |τ |) = x2 +h. Summarizing

these estimates we obtain

|µ−1∂cy0−(x2)| ≤ Cµ−1|x2 + h|
(
1 +

∣∣ log | τ
τ0
|
∣∣).

If µ − h ≥ x2l(c∗) > −h, then 1
C
µ ≤ xc2(c∗) − x2l(c∗) ≤ −µτ0 ≤ Cµ, while µ|τ0| =

|x2l(c∗)− xc2(c∗)| if x2l(c∗) = −h. Hence
∣∣ log |µτ0| − log |x2l(c∗)− xc2(c∗)|

∣∣ ≤ C, which

along with the estimate in case 1 yields (3.5.7).

Much as in the above, we estimate ∂cy′0−(x2) in case 2 using (3.4.6) and Lemma 3.4.1

∂cy
′
0−(x2) =− U ′′(xc2)

U ′(xc2)2
S̃22

τ0
τ0(∂τ + ∂τ0)

(
log | τ

τ0
|+ iπ

2
(sgn(τ)− sgn(τ0))

)
+O

(
1 +

∣∣ log | τ
τ0
|
∣∣)

=− U ′′(xc2)

U ′(xc2)2
S̃22

(
P .V . ( 1

τ
) + iπδ(τ)

)
+O

(
1 +

∣∣ log | τ
τ0
|
∣∣)
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=
U ′′(xc2)

U ′(xc2)2
B12(τ0)

(
P .V . ( 1

τ
) + iπδ(τ)

)
+O

(
1 +

∣∣ log | τ
τ0
|
∣∣).

It along with (3.5.15) and (3.5.13) implies (3.5.8).

Similarly, for τ 6= 0, τ0 6= 0, and 2 ≤ j ≤ l0 − 5, one may compute

∂jc

µ−1y0−(x2)

y′0−(x2)


≤Cµ1−j

( j∑
j′=0

∣∣∣∣∣∣∣(∂τ + ∂τ0)
j′
(

log | τ
τ0
|+ iπ

2
(sgn(τ)− sgn(τ0))

ττ0

τ0

)
∣∣∣∣∣∣∣+ |τ − τ0|

)
.

For j ≥ 3, we have

|(∂τ + ∂τ0)
j
(
ττ0 log | τ

τ0
|
)
≤C(|τ 2−j − τ 2−j

0 |+ |τ + τ0||τ 1−j − τ 1−j
0 |+ |ττ0||τ−j − τ−j0 |)

≤C|ττ0||τ−1 − τ−1
0 |(|τ |1−j + |τ |2−j|τ0|−1 + . . .+ |τ0|1−j)

≤C|τ − τ0|(|τ |1−j + |τ0|1−j).

If j = 2, the first term on the right side of the first inequality would be log | τ
τ0
| which as

shown previously also satisfies the above final estimate. Similarly, one can also calculate,

for τ 6= 0, τ0 6= 0, and j ≥ 2,

|(∂τ + ∂τ0)
j
(
τ0 log | τ

τ0
|
)
≤C(|τ 1−j − τ 1−j

0 |+ |τ0||τ−j − τ−j0 |)

≤C|τ0||τ−1 − τ−1
0 |(|τ |1−j + |τ |2−j|τ0|−1 + . . .+ |τ0|1−j)

≤C|τ |−1|τ − τ0|(|τ |1−j + |τ0|1−j).

The cases of j = 0, 1 have been considered earlier and would only make minor contribu-

tions. Therefore (3.5.9) and (3.5.10) are satisfied in case 2 as well.

Regarding y0−(k, c,xc2), much as in case 1, but with much simpler initial value at τ0 =
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−h−xc2
µ

, we have

y(k, c,xc2) = −µB12(µ, c, τ0)

which also yields its C l0−2 smoothness. Differentiating in c and using Lemma 3.4.1 and

Lemma 3.5.3, one may estimate, for 1 ≤ j ≤ l0 − 5,

∣∣∂jc(y(k, c,xc2)
)∣∣ =µ

∣∣((∂c − ∂τ
µU ′(xc2)

)jB12

)
(µ, c, τ0)

∣∣ ≤ Cµ1−j.

which proves (3.5.11) in case 2.

Estimating ∂cy0+ on I2. In this case I2 6= ∅ implies |c| ≤ C. Much as in the above

argument for y0−, we consider the estimates related to ∂cy0+ at some c∗ ∈ [−1
2
h0−h, 1

2
h0].

Observe that, as an expression of solution to the homogeneous Rayleigh equation, (3.5.12)

also applies to y0+ on I2 with x20 chosen near x2r(c∗). In the case of x2r(c∗) ≤ −µ, the

same arguments yields the desired estimates of ∂cy+.

In the case of x2r(c∗) ∈ [−µ, 0], we take x20 = 0 and proceed roughly as in the above

case 2. Due to the initial condition (3.3.1), equation (3.5.16) is replaced by

∂c

µ−1y0+(x2)

y′0+(x2)

 =
(
∂c −

∂τ+∂τ0
µU ′(xc2)

)S(τ , τ0)

µ−1y0+(0)

y′0+(0)




=
(
∂c −

∂τ+∂τ0
µU ′(xc2)

)µU ′′(xc2)

U ′(xc2)

(
log | τ

τ0
|+ iπ

2
(sgn(τ)− sgn(τ0))

)
S̃(τ , τ0)

µ−1y0+(0)

y′0+(0)




+O(|τ − τ0|),

where (3.4.7) and Lemma 3.4.2 are used. Let

W (τ , τ0) = (W1,W2)T = S(τ , τ0)
(
µ−1y0+(0), y′0+(0)

)T
.
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Recall from initial condition (3.3.1)

|y0+(0)| ≤ Cµ2τ 2
0 , |y′0+(0)− 1| ≤ Cµ2|τ0|.

On the one hand, from (3.4.6),, and Lemma 3.4.1, we have that

(W1

ττ0

,
W2

τ0

)
=
(B12(τ)

τ
,B22(µ)

)(
B22(τ0)

y0+(0)

µτ0

− B12(τ0)

τ0

y′0−(0)
)

are smooth function with bounds uniform in c and µ. Hence the estimate on ∂cy′0+(x2) is

obtained much as that of ∂cy′0+(0). On the other hand, as (3.5.14) and (3.5.13) also apply

to y0+, it holds

W2 = µ−1y0+(xc2)B22(τ) = (1 +O(|τ |))µ−1y0+(xc2).

With these estimates, the desired estimate on ∂cy′0+(x2) follows much as that of ∂cy′0+(x2).

This completes the proof.

Lemma 3.5.5. Assume l0 ≥ 4, I2 6= ∅, and I3 6= ∅, then Lemma 3.5.2a.)–e.) hold for

x2 ∈ I3. Moreover, if l0 ≥ 6, then there exists C > 0 depending only on |U ′|Cl0−1 and

|(U ′)−1|C0 , such that, for any k ∈ R and any c ∈ R, the following estimates hold for

x2 ∈ I3

µ−1|∂cy0−(x2)|+ |∂cy′0−(x2)| ≤ C
(

1 + log
µ

min{µ, |U(−h)− c|}

)
cosh(µ−1(x2 + h)),

(3.5.17)

and for 2 ≤ j ≤ l0 − 5,

µ−1|∂jcy0−(x2)|+ |∂jcy′0−(x2)|

≤C
(
µ1−j + µ−1|U(−h)− c|2−j + µ2−j|U(−h)− c|−1

)
cosh(µ−1(x2 + h)).
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Moreover, if I2 6= ∅ and I1 6= ∅, then it also holds for x2 ∈ I1,

µ−1|∂cy0+(x2)|+ |∂cy′0+(x2)| ≤ C
(

1 + log
µ

min{µ, |U(0)− c|}

)
cosh(µ−1x2).

Proof. The assumption I2 6= ∅ and I3 = [x2r, 0] 6= ∅ imply x2r > −h and µ−1
(
U(x2r)−c

)
is uniformly bounded from above and below away from 0. The regularity of y0− and y′0− in

c and k for x2 ∈ I3 follow directly from such smoothness at x2r obtained in Lemma 3.5.4.

Their estimates at x2r can be summarized into

µ−1|∂cy0−(x2r)|+ |∂cy′0−(x2r)| ≤ C
(

1 + log
µ

min{µ, |U(−h)− c|}

)
cosh(µ−1(x2r + h)),

and for 2 ≤ j ≤ l0 − 5

µ−1|∂jcy0−(x2r)|+ |∂jcy′0−(x2r)| ≤ C
(
µ1−j + |U(−h)− c|1−j

)
cosh(µ−1(x2r + h))

where we also used 1 ≤ µ−1(x2r + h) as x2l > −h. Much as the proof of Lemma 3.5.3,

we shall obtain the estimates inductively in j by considering the cases of small and large k

separately.

As ρ0 > 0, we take k∗ ≥ 1 such that ρ < 1 (defined in (3.5.5)) for |k| ≥ k∗ and

thus (3.1.2) is satisfied on I3 with ρ < min{1,Cµ}. We shall obtain the estimates for this

case of |k| ≥ k∗ by splitting ∂cy0− into homogeneous and non-homogeneous parts. For

j ≥ 1, let y1(x2) be the solution to the homogeneous Rayleigh equation (3.0.1) with initial

condition

y1(x2r) = ∂jcy0−(x2r), y′1(x2r) = ∂jcy
′
0−(x2r),

and y2(x2) be the solution to the non-homogeneous Rayleigh equation (3.0.3) with the zero

initial conditions at x2 = x2r and the non-homogeneous term given by the right side of
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(3.5.4) (with j1 = 0 and j2 = j). Clearly it holds

∂jcy0− = y1 + y2, on I3. (3.5.18)

Using the the above estimates on ∂cy0− at x2r, we apply Lemma 3.1.2 to y1 with

Θ1 = Θ2 = cosh, s = 0, C0 = µ−1|∂jcy0−(x2r)|+ |∂jcy′0−(x2r)|+ 1

to obtain, for x2 ∈ I3,

µ−1|y1(x2)|+ |y′1(x2)| ≤ C
(
µ−1|∂jcy0−(x2r)|+ |∂jcy′0−(x2r)|+ 1

)
coshµ−1(x2 − x2r).

Concerning y2(x2), Lemma 3.1.2 and the same computation as in the proof of Lemma 3.5.3

implies, for any x2 ∈ I3,

|µ−1y2(x2)|+ |y′2(x2)| ≤ C

j−1∑
j′=0

∫ x2

x2r

cosh(µ−1(x2 − x′2))

|U(x′2)− c|j+1−j′ |∂
j′

c y0−(x′2)|dx′2.

The desired estimate for j = 1 follows from (3.5.18), Lemma 3.3.2, and direct integration.

For j ≥ 2, one may compute inductively using the above estimates and (3.5.12),

|µ−1y2(x2)|+ |y′2(x2)| ≤ C

j−1∑
j′=0

(U(x2r)− c)j
′−j |∂j′c y0−(x2r)|

coshµ−1(x2r + h)
coshµ−1(x2 + h)

≤C
(
µ1−j + µ−1|U(−h)− c|2−j + µ1−j log

µ

min{µ, |U(−h)− c|}

)
coshµ−1(x2 + h).

If |U(−h) − c| ≥ µ, the desired estimate follows immediately, otherwise it follows from

the fact log x ≤ x for any x ≥ 1.

In the case k ≤ k∗, µ ∼ 1 and Lemma 3.1.3 yields the estimates through a similar

induction. The estimates on ∂cy0+ is also obtained much as ∂cy0− using Lemma 3.1.2 and

Lemma 3.1.3 based on the estimates of ∂cy0+ at x2l obtained in Lemma 3.5.4. In particular,
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the fact that I2 6= ∅ also implies |c| < C is also used. We skip the details.

The following lemma proves Lemma 3.5.2(f) and (the case of x2 = 0) will be used in

analyzing the eigenvalues.

Lemma 3.5.6. Assume U ∈ C l0 . For any k ∈ R and x2 ∈ [−h, 0], there exists R, C̃ > 0

such that

|U(−h)− c|j|∂j1k ∂
j2
c ∂

l
x2
y0−(k, c,x2)| ≤ C̃

(
1 +

∣∣ log |U(−h)− c|
∣∣), j = max{0, j2− 1},

(3.5.19)

for any |c − U(−h)| ≤ R, l = 0, 1, j1, j2 ≥ 0, j1 + j2 ≤ l0 − 3. Here C̃ can be taken

independent of k for k in any bounded set.

Unlike in most other lemmas, the constants R and C̃ may depend on k and x2.

Proof. The lemma is trivial if x2 = −h, so we assume x2 > −h. Since the lemma is

concerned with c close to U(−h) where R and C̃ may depend on x2 and k, we consider

c = U(xc2), xc2 ∈ [−h0 − h, (−h+ x2)/2] =⇒ τ = µ−1(x2 − xc2) ≥ µ−1(x2 + h)/2 > 0.

Let τ0 = −µ−1(xc2 + h). From formula (3.5.16) and the C l0−3 smoothness of Serr due to

Lemma 3.4.2, we have

τ j0∂
j1
k ∂

j2
c

µ−1y0−(x2)

y′0−(x2)


=τ j0

(
∂c −

∂τ+∂τ0
µU ′(xc2)

)j2 ( log | τ
τ0
|+ iπ

2
(sgn(τ)− sgn(τ0))

)
∂j1k

(
µU ′′(xc2)

U ′(xc2)

S̃12(τ , τ0)

S̃22(τ , τ0)

)


+O(1)

where we also used that log | τ
τ0
| + iπ

2
(sgn(τ) − sgn(τ0)) is independent of k. The desired
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inequality (3.5.19) follows from straight forward calculations using the C l0−3 smoothness

of S̃12

τ0
, S̃22

τ0
, and U(−h)−c

τ0
.

Remark 3.5.3. Most of the above regularity results and estimates also hold for y0+(k, c,x2).

Since y+ plays a less substantial role as y− in the rest of the paper, we only gave the basic

estimates on y+.

In the above ∂cy± was considered only for c ∈ U([−h0
2
− h, h0

2
]). To end this section,

we extend some estimate for c ∈ C using the analyticity of y± in c in the following lemma.

Lemma 3.5.7. Assume U ∈ C6. The following hold.

1. For any c ∈ C with cI > 0, it holds

∂cy−(k, c,x2) =
1

2πi

∫
R

∂cy0−(k, c′,x2)

c′ − c
dc′,

(U(x2)− c)∂cy′−(k, c,x2) =
1

2πi

∫
R

(U(x2)− c′)∂cy′0−(k, c′,x2)

c′ − c
dc′.

∂cy+(k, c,x2)

(U(x2)− c+ i)2
=

1

2πi

∫
R

∂cy0+(k, c′,x2)

(U(x2)− c′ + i)2(c′ − c)
dc′,

(U(x2)− c)∂cy′+(k, c,x2)

(U(x2)− c+ i)3
=

1

2πi

∫
R

(U(x2)− c′)∂cy0+(k, c′,x2)

(U(x2)− c′ + i)3(c′ − c)
dc′.

2. For any r ∈ (1,∞),

(a) there exists C > 0 depending only on r, |U ′|C5 , and |(U ′)−1|C0 , such that for

any k ∈ R, x2 ∈ [−h, 0], cI > 0,

µ−1|∂cy−(k, c,x2)|LrcR (R) + |(U(x2)− c)∂cy′−(k, c,x2)|LrcR (R)

≤C coshµ−1(x2 + h);

(b) as cI → 0+, ∂cy− and (U − c)∂cy′− converge to ∂cy0− and (U − cR)∂cy
′
0− in

LrcR(R), respectively, for any x2 ∈ [−h, 0]. Moreover, the convergence also

holds in LrcR,x2
(R× [−h, 0]).
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3. For any r ∈ (1,∞) and compact interval I ⊂ R,

(a) there exists C > 0 depending only on r, I, |U ′|C5 , and |(U ′)−1|C0 , such that for

any k ∈ R, x2 ∈ [−h, 0], cI > 0,

µ−1|∂cy+(k, c,x2)|LrcR (I) + |(U(x2)− c)∂cy′+(k, c,x2)|LrcR (I)

≤C coshµ−1(x2 + h);

(b) as cI → 0+, ∂cy+ and (U − c)∂cy
′
+ converge to ∂cy0+ and (U − cR)∂cy

′
0+

in LrcR(I), respectively, for any x2 ∈ [−h, 0]. Moreover, the convergence also

holds in LrcR,x2
(I × [−h, 0]).

Proof. Due to the conjugacy of y− in c, we only consider cI > 0. Let Bh0 ⊂ C be the open

disk with diameter segment U([−h0
2
− h, h0

2
]). For any c /∈ Bh0 , let

ρ = k−2(1 + |U ′′|C0) max
[−h,0]

|U − c|−1 ≤ Ck−2(1 + |c|)−1.

There exists k∗ > 0 such that ρ < 1 for any |k| ≥ k∗. Lemma 3.1.2 (with x2l = −h,

I = [−h, 0], C0 = 0, and Θ1 = Θ2 = sinh) implies, for |k| ≥ k∗ and c /∈ Bh0 ,

∣∣y−(k, c,x2)− |k|−1 sinh |k|(x2 + h)
∣∣+ µ

∣∣y′−(k, c,x2)− cosh |k|(x2 + h)
∣∣

≤Cµk−1(1 + |c|)−1 sinh |k|(x2 + h).

(3.5.20)

For |k| < k∗, Lemma 3.1.3 implies that the above inequality still holds for c /∈ Bh0 .

From equation (3.5.4) (j1 = 0 and j2 = 1) of ∂cy−, applying (3.1.13) with φ =

− U ′′

(u−c)2y− and using Lemma 3.3.2, we have for |k| ≥ k∗ and c /∈ Bh0 ,

µ−1|∂cy−(k, c,x2)|+ |∂cy′−(k, c,x2)| ≤Cµ(1 + |c|)−2 sinhµ−1(x2 + h). (3.5.21)
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For |k| ≤ k∗, Lemma 3.1.3 implies that the above inequality still holds for c /∈ Bh0 .

For any c ∈ C with cI > 0, the analyticity of ∂cy− and its O(|c|−2) decay as |c| → ∞

imply, for any β ∈ (0, cI),

∂cy−(k, c,x2) =
1

2πi

∫
R+iβ

∂cy−(k, c′,x2)

c′ − c
dc′ =

1

2πi

∫
R+iβ

y−(k, c′,x2)

(c′ − c)2
dc′,

where the boundary terms at infinity in the above integration by parts vanish due to the

uniform-in-c bound on |y−| given in (3.5.20). Letting β → 0+, the same bound and

Lemma 3.5.1 yield

∂cy−(k, c,x2) =
1

2πi

∫
R

y0−(k, c′,x2)

(c′ − c)2
dc′ =

1

2πi

∫
R

∂cy0−(k, c′,x2)

c′ − c
dc′

=− 1

2πi

∫
R

∂cy0−(k, c′,x2)

(cR − c′) + icI
dc′,

where we integrated by parts again. The desired estimate on |∂cy−|LrcR follows from

the boundedness of the convolution kernel 1
c′+icI

on Lr(R), (3.5.21) for |c| � 1, and

Lemma 3.5.3–Lemma 3.5.5.

The results for ∂cy′− are derived in the same manner. In fact

(U(x2)− c)∂cy′−(k, c,x2) =
1

2πi

∫
R+iβ

(U(x2)− c′)∂cy′−(k, c′,x2)

c′ − c
dc′

=
1

2πi

∫
R+iβ

(U(x2)− c)y′−(k, c′,x2)

(c′ − c)2
dc′ =

1

2πi

∫
R

(U(x2)− c)y′0−(k, c′,x2)

(c′ − c)2
dc′

=
1

2πi

∫
R

(U(x2)− c′)∂cy′0−(k, c′,x2)

c′ − c
dc′,

where we used (3.5.20) to cancel the two boundary terms at infinity in the above both inte-

grations by parts and also used the integrability of (U(x2)−c)∂cy′−(k, c,x2) near U(x2) = c

given in Lemma 3.5.4. The latter also yields the estimate on (U − c)∂cy′−.

In statement (2b), the pointwise-in-x2 convergence in LrcR is standard due to the con-

vergence of the convolution kernel 1
c′+icI

on Lr(R) as cI → 0+, as well as the analyticity
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of y− for cI > 0. The convergence in LrcR,x2
follows from the pointwise-in-x2 convergence

in LrcR , the L∞x2L
r
cR

bounds in statement (2a), and the dominant convergence theorem.

Finally, ∂cy+ can be analyzed similar. However, the initial values (3.3.1) induce an

O(|c|2) growth in y+ and y′+, and an O(|c|) growth of ∂cy+ and ∂cy
′
+, for |c| � 1

(Lemma 3.1.3). Instead we consider, for cI > 0,

∂cy+(k, c,x2)

(U(x2)− c+ i)2
=

1

2πi

∫
R+iβ

∂cy+(k, c′,x2)

(U(x2)− c′ + i)2(c′ − c)
dc′,

which holds for any β ∈ (0, cI). From this Cauchy integral formula we proceed much as

in the above and obtain the integral representation in term of ∂cy0+. The derivation of the

corresponding formula of ∂cy′+ is also similar. The desired convergence and estimates of

∂cy+ and ∂cy′+ in LrcR(I) on a compact interval I again follow from the properties of the

convolution by the kernel 1
c′+icI

.

3.6 An important quantity Y

To end this chapter, we analyze a quantity related to the Reynolds stress, which is crucial

for the linearized water wave problem:

Y (k, c) = YR(k, c) + iYI(k, c) :=
y′−(k, c, 0)

y−(k, c, 0)
, c = cR + icI ∈ C \ U([−h, 0]),

Y (k, c) = lim
ε→0+

Y (k, c+ iε) =
y′0−(k, c, 0)

y0−(k, c, 0)
, c ∈ U

(
[−h, 0)

)
,

(3.6.1)

where y−(k, c,x2) is the solution to homogeneous Rayleigh equation (3.0.1) satisfying

y−(−h) = 0 and y′−(−h) = 1 defined in section 3.3 and y0−(k, c,x2) = limε→0+ y−(k, c+

iε,x2) for c ∈ R. Due to Remark 3.3.1, y−(k, cR + icI ,x2) satisfies estimates uniform in

0 < ε � 1. With slight abuse of notations, we would not distinguish y0− from y− in the

rest of this chapter. Apparently the domain of Y (k, c) is given by

D(Y ) = {(k, c) ∈ R× C | c 6= U(0), y−(k, c, 0) 6= 0},
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and those excluded points (except c = U(0)) exactly are the eigenvalues of of the linearized

Euler equation in the fixed channel x2 ∈ [−h, 0] at the shear flow (U(x2), 0). Y is not

defined at c = U(0) since y′−(x2) has singularity at x2 = 0. We first summarize some basic

or standard properties of y−(k, c, 0) in the following lemma.

Lemma 3.6.1. Assume U ∈ C3. The following hold.

1. For any k ∈ R, y−(k, c,x2) > 0 for any x2 ∈ (−h, 0] and c ∈ R \ U
(
(−h, 0)

)
.

2. There exists C > 0 depending on U such that, for any k ∈ R and c ∈ U
(
(−h, 0]

)
, it

holds

(Ck)−1 sinh k(x2 + h) ≤ y−(k, c,x2) ≤ Ck−1 sinh k(x2 + h), ∀x2 ∈ [−h,xc2].

(3.6.2)

3. There exists C > 0 depending only on U such that, for any c = U(xc2), xc2 ∈ [−h, 0),

it holds, for any k ∈ R,

C−1µ2|U ′′(xc2)| sinhµ−1(xc2 + h) sinhµ−1|xc2|

≤ |Im y−(k, c, 0)| ≤ Cµ2|U ′′(xc2)| sinhµ−1(xc2 + h) sinhµ−1|xc2|.

4. There exists k∗ > 0 and C > 0 depending only on M > 0, |U ′|C2 and |(U ′)−1|C0

such that, if |k| ≥ k∗ or |c− (U(−h) + U(0))/2| ≥M + (U(0)− U(−h))/2 then

|y−(k, c, 0)| ≥ (Ck)−1 sinh kh. (3.6.3)

5. Suppose a closed subset S ⊂ C satisfies y−(k, c, 0) 6= 0 for all c ∈ S and k ∈ K

where K = R or 2π
L
Z, then there exists C > 0 depending only on S and U such that

(3.6.3) holds for all k ∈ K and c ∈ S.

Remark 3.6.1. According to Lemma 3.1.3 and Lemma 3.3.2, the assumption y−(k, c, 0) 6=

0 on S in Statement (5) is automatically satisfied except possibly a compact set of (k, c) ⊂
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K × S. In particular, due to statement (3), it is satisfied for S = C if U ′′ 6= 0 on [−h, 0].

We also recall y−(k, c, 0) = 0 is equivalent to that −ikc is an eigenvalue of the linearized

Euler equation at the shear flow U on the fixed channel x2 ∈ (−h, 0) associated with an

eigenfunction v2(x2) = eikx1y−(k, c,x2).

Proof. We first claim the following standard result.

Claim. Let y(x2) is a solution to the homogeneous Rayleigh equation (3.0.1) on an

interval I = (x2l,x2r) ⊂ [−h, 0] with c ∈ R \ U(I) such that (y(x20), y′(x20)) ∈ {0} ×

(R \ {0}) at some x20 ∈ I, then y(x2) ∈ R \ {0} at any x2 ∈ I \ {x20}.

If U(x20) 6= c, then the claim y(x2) ∈ R and y is in Cα on I are obvious since the

coefficients of (3.0.1) are real. If U(x20) = c /∈ U(I), then it must hold x20 ∈ {x2l,x2r}

and Lemma 3.4.1 implies that y ∈ C1(I) and W = (µ−1y, y′)(· + x20) satisfies (3.4.3)

with W1(0) = 0 and Φ̃0 ≡ 0. This formula yields y ∈ R. Finally, suppose y(x21) = 0 at

some x21 ∈ I \ {x20}. Let y = (U − c)ξ. Again ξ ∈ C0(I) due to Lemma 3.4.1 and it is

standard to verify

−
(
(U − c)2ξ′

)′
+ k2(U − c)2ξ = 0, x2 ∈ I. (3.6.4)

Multiplying it by ξ and integrating it between x20 and x21 leads to a contradiction. Hence

the claim is proved.

For c ∈ R, applying the above claim to y− on the interval [−h, 0] if c /∈ U
(
(−h, 0)

)
and on [−h,xc2] if c ∈ U

(
(−h, 0)

)
, respectively, implies that y−(x2) ∈ R does not change

signs on these intervals. Hence we obtain statement (1) and y−(x2) > 0 for x2 ∈ [−h,xc2]

if c ∈ U
(
(−h, 0)

)
. The latter along with (3.3.5) and the continuity of y−(k,c,x2)

µ sinhµ−1(x2+h)
also

yields Statement (2).

In the view of Lemma 3.5.1, Remark 3.5.2, and statement (1), y(x2) = Im y−(x2) is

also a solution on [xc2, 0] satisfying y(xc2) = 0 and y′(xc2) =
πU ′′(xc2)

U ′(xc2)
y−(xc2). Statement (3)

follows from statement (2) applied to y− on [−h,xc2] and to Im y− on [xc2, 0].
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From (3.3.5) and Remark 3.3.1, there exists k∗ > 0 such that (3.6.3) holds for all

|k| ≥ k∗ and c ∈ C. For |k| ≤ k∗, the restriction on c involving M > 0 ensures

y−(k, c, 0) 6= 0 due to the semicircle theorem and thus we obtain (3.6.3) from Lemma 3.1.3,

which completes the proof of statement (4).

Finally assume y−(k, c, 0) 6= 0 for all k ∈ K and c ∈ S. Recalling the convergence

estimates (3.2.31) and the locally Hölder continuity of y− in c ∈ R (Lemma 3.5.2), we

obtain the continuity of y− in c ∈ C for cI ≥ 0. Lemma 3.1.3 and Lemma 3.3.2 along with

the continuity of y−(k, c, 0) and the non-vanishing assumption imply that (3.6.3) holds for

all k ∈ K and c ∈ S with cI ≥ 0. As y−(k, c̄,x2) = y−(k, c,x2), statement (5) follows and

it completes the proof of the lemma.

In the following we give some basic properties of Y (k, c).

Lemma 3.6.2. Assume U ∈ C l0 , l0 ≥ 4. It holds that Y (k, c̄) = Y (k, c) and Y is a.)

analytic in both (k, c) ∈ D(Y ) \ (R × U([−h, 0])), and, when restricted to cI ≥ 0, b.)

C l0−3 in (k, c) ∈ D(Y ) \ (R × {U(−h),U(0)}), and c.) C l0−3 in k and locally Cα in

(k, c) ∈ D(Y ) for any α ∈ [0, 1). Moreover,

1. Y (k,U(−h)) ∈ R and Y (0,U(−h)) = U ′(0)
U(0)−U(−h)

.

2. There exists C, ρ > 0 depending only on α and U such that

|Y (k, c)| ≤ C
(
µ−1 +

∣∣ log min
{

1, |U(0)− c|
}∣∣), ∀k ∈ R, |c− U(0)| ≤ ρ.

3. For any α ∈ (0, 1
2
), there exist k0 > 0 and C > 0 depending only on α, |U ′|C2 , and

|(U ′)−1|C0 such that,

|Y (k, c)−k coth kh| ≤ C(µα−1+| log min{1, |U(0)−c|}|), ∀|k| ≥ k0, c 6= U(0).

4. For any M > 0 and k∗ > 0, there exists C > 0 depending only on k∗ and M such
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that

|Y (k, c)− k coth kh| ≤ C

dist(c,U([−h, 0]))
, ∀|k| ≤ k∗,∣∣∣c− U(−h) + U(0)

2

∣∣∣ ≥M +
U(0)− U(−h)

2
.

Proof. The analyticity and the conjugacy property of Y are obvious from its definition. The

property Y (k,U(−h)) ∈ R is a direct corollary of Lemma 3.6.1(1). The C l0−3 smooth-

ness of Y follows from Lemma 3.5.2. The Hölder continuity of Y is again a corollary

of Lemma 3.5.2 for c varying along R and Proposition 3.2.4 for c varying along iR. The

explicit form of Y
(
0,U(−h)

)
is a direct consequence of the observation

y−
(
0,U(−h),x2

)
=
(
U(x2)− U(−h)

)
/U ′(−h). (3.6.5)

To end the proof of the lemma, we obtain the quantitive estimate on Y (k, c). From

Lemma 3.6.1, y−(k,U(0), 0) 6= 0 for any k ∈ R. Along with Lemma 3.3.2, it implies

that (3.6.3) holds for |c − U(0)| ≤ ρ for some ρ > 0 depending only on U . Statement (2)

follows from the upper bound of |y′−(k, c, 0)| given in Lemma 3.3.2. Statement (3) is also

a direct consequence of Lemma 3.3.2 where k0 is involved to ensure y−(k, c, 0) 6= 0. In

statement (4), the restriction on c guarantees y−(k, c, 0) 6= 0 due to the semicircle theorem

and the desired inequality follows Lemma 3.1.3.

The analyticity of Y in c allows us to use the Cauchy integral to analyze Y (k, c). For

r > 0, let

Dr = B
(
U([−h, 0]), r

)
⊂ C (3.6.6)

be the r-neighborhood of U([−h, 0]) ⊂ C.

Lemma 3.6.3. Assume U ∈ C3. There exists k0 > 0 depending only on |U ′|C2 and

|(U ′)−1|C0 such that for any |k| ≥ k0, 0 < r < dist
(
c,U([−h, 0])

)
, and n ≥ 1 such
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that

Y (k, c) = k coth kh− 1

2πi

∮
∂Dr

Y (k, c′)

c′ − c
dc′, ∂nc Y (k, c) = − n!

2πi

∮
∂Dr

Y (k, c′)

(c′ − c)n+1
dc′,

(3.6.7)

where
∮

denote the integral along the contours counterclockwisely.

Here ∂cY = 1
2
(∂cR − i∂cI )Y denotes the derivative of Y as a function of the complex

variable c and thus ∂cY = ∂cRY = −i∂cIY due to its analyticity.

Proof. According to Lemma 3.3.2 and Lemma 3.6.1, there exist k0 and C > 0 such that,

for any |k| ≥ k0, the domain D(Y (k, ·)) = C. For any r′ � 1, the analyticity of Y in

c /∈ U([−h, 0]) implies

Y (k, c) =
1

2πi

(∮
∂Dr′
−
∮
∂Dr

)
Y (k, c′)

c′ − c
dc′. (3.6.8)

For |r′| � 1, applying Lemma 3.1.3 on I = [−h, 0], x20 = −h, with k∗ = k and C0 � 1

for any c ∈ ∂Dr′ uniformly, we obtain

|y−(k, c, 0)− k−1 sinh kh|+ |y′−(k, c, 0)− cosh kh| ≤ C̃C0,

C̃ may depend on k, but independent of c, which implies

|Y (k, c)− k coth kh| ≤ C̃C0, ∀c ∈ ∂Dr′ .

Since C0 → 0 as r′ → +∞, we have

lim
r′→+∞

(
1

2πi

∮
∂Dr′

Y (k, c′)

c′ − c
dc′ − k coth kh

)
= 0

and thus the desired integral formula of Y (k, c) follows. The representation of ∂nc Y simply

follows from direct differentiation.
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Remark 3.6.2. Though not needed in the rest of the paper, this lemma could be modified

for general k and c /∈ U([−h, 0]). In this case, 0 < r < dist
(
c,U([−h, 0])

)
should be

chosen so that y−(k, c, 0) 6= 0 at any point along ∂Dr. The integral representation formula

would involve the residue at those roots of y−(k, ·, 0) outsideDr. The estimates should also

be modified accordingly.

To analyze the remaining integral in (3.6.7) (actually also for general k ∈ R instead of

just large |k|),in the rest of the section, we assume y−(k, c, 0) 6= 0 so that Y is well-defined.

We start with the imaginary part YI of Y .

Lemma 3.6.4. YI(k, c) = 0 for c ∈ R\U
(
(−h, 0]

)
. Assume U ∈ C3, c = U(xc2) ∈

U
(
(−h, 0)

)
, and y−(k, c, 0) 6= 0, then

YI(k, c) =
πU ′′(xc2)y−(k, c,xc2)2

U ′(xc2)|y−(k, c, 0)|2
, c ∈ U

(
(−h, 0)

)
.

Proof. The vanishing of YI(k, c) for c ∈ R\U([−h, 0]) is obvious from its definition and

Lemma 3.6.1(1). To derive the expression of YI(k, c) for c = U(xc2) with xc2 ∈ (−h, 0) and

y−(k, c, 0) 6= 0, we may consider y(ε,x2) = y−(k,c+iε,x2)
y−(k,c+iε,0)

, ε > 0, which is also a solution

to the homogeneous Rayleigh equation with y(ε,−h) = 0 and y(ε, 0) = 1. It is straight

forward to calculate

Im y′(ε, 0) =
1

2i

∫ 0

−h
∂x2(y

′ȳ − yȳ′)dx2 =

∫ 0

−h

εU ′′|y|2

|U − c|2 + ε2
dx2.

Applying the convergence estimates (3.2.31) and the Hölder continuity of y0−(k, c,x2) ∈ R

in x2, we obtain the desired

YI(k, c) = lim
ε→0+

Im y′(ε, 0) =
πU ′′(xc2)y−(k, c,xc2)2

U ′(xc2)|y−(k, c, 0)|2
.

This completes the proof of the lemma.

The above formula yields some refined estimates of YI for c ∈ U([−h, 0]).

106



Lemma 3.6.5. Assume U ∈ C l0 , l0 ≥ 4, k0 ∈ R, and y−(k0, c, 0) 6= 0 for all c ∈

U([−h, 0]), then the following hold for YI(k, c) and k in a neighborhood of k0.

1. YI(k, c) is C l0−3 in k and c ∈ U
(
(−h, 0)

)
. Moreover, for any q ∈ [1,∞), j1, j2 ≥ 0,

j2 ≤ 2, and j1 + j2 ≤ l0 − 4, ∂j1k ∂
j2
cR
YI is L∞k W

1,q
c locally in k ∈ R and c ∈

U
(
[−h, 0)

)
.

2. Moreover, assume U ∈ C6, then there exists C > 0 depending only on |U ′|C5 and

|(U ′)−1|C0 such that, for any k ∈ R and c ∈ U
(
(−h, 0)

)
, we have

lim
c→U(0)−

YI(k, c) =
πU ′′(0)

U ′(0)
, lim

c→U(−h)+
∂2
cR
YI(k, c) =

2πU ′′(−h)

U ′(−h)3|y−(k,U(−h), 0)|2
,

sinh2(µ−1(xc2 + h))

C sinh2(µ−1h)
≤ YI

(
k, c
)
≤ C sinh2(µ−1(xc2 + h))

sinh2(µ−1h)
,

|∂cRYI(k, c)| ≤C sinh(2µ−1(xc2 + h))

µ sinh2(µ−1h)

+ C
sinh2(µ−1(xc2 + h))

sinh2(µ−1h)

∣∣ log min{1, |µ−1(U(0)− c)|}
∣∣,

where µ = 〈k〉−1 = (1 + k2)−
1
2 .

Proof. Lemma 3.5.2 implies the C l0−3 smoothness of y−(k, c, 0) in k and c ∈ U
(
(−h, 0)

)
and that of y−(k, c,xc2) in c ∈ U([−h, 0]), which also yields y−(k, c,xc2) = O(|c−U(−h)|)

for 0 ≤ c − U(−h) � 1. Hence YI is C l0−3 in k and c ∈ U
(
(−h, 0)

)
. Despite the

logarithmic singularity of ∂cy−(k, c, 0) at c = U(−h), we obtain the regularity of YI for c

near U(−h) from the vanishing of y−(k, c,xc2) and Lemma 3.5.2(f) which also leads to the

regularity of YI for c 6= U(0).

The upper bound estimate of YI and its limits as c approaches U(0)− and U(−h)+ are

direct corollaries of Lemma 3.3.2 and Lemma 3.6.1(5) and Remark 3.3.1, as well as (3.6.2)

and (3.6.3). In particular,

∂cR(y−(k, c,xc2)) = ∂cRy−(k, c,x2) + U ′(xc2)−1y′−(k, c,xc2)→ U ′(−h)−1,
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as c→ U(−h)+, implies the limit of ∂2
cR
YI as c→ U(−h)+. In

∂cRYI(k, c) =∂c

(
πU ′′(xc2)

U ′(xc2)

)
y−(k, c,xc2)2

|y−(k, c, 0)|2
+

2πU ′′(xc2)y−(k, c,xc2)∂c
(
y−(k, c,xc2)

)
U ′(xc2)|y−(k, c, 0)|2

−
2πU ′′(xc2)y−(k, c,xc2)2

(
y−(k, c, 0) · ∂cy−(k, c, 0)

)
U ′(xc2)|y−(k, c, 0)|4

,

∂c
(
y−(k, c,xc2)

)
is estimated by (3.5.11). The other key term ∂cy−(k, c, 0) will be con-

sidered in three possible cases of c ∈ U([−h, 0]) according to the division of [−h, 0] =

I1∪I2∪I3 defined in (3.5.2) in section 3.5. Observing c ∈ U([−h, 0]) implies I2 6= ∅ and

x2 = 0 ∈ I2 ∪ I3.

* Case 1: x2 = 0 ∈ I3 and x2l = −h. The former happens if and only if c ≤

U(0)− ρ−1
0 µ, while x2l = −h if and only if c ≤ U(−h) + ρ−1

0 µ. Lemma 3.5.5 implies

|∂cy−(k, c, 0)| ≤ Cµ
(
1 +

∣∣ log
(
µ−1(c− U(−h))

)∣∣) coshµ−1h.

* Case 2: x2 = 0 ∈ I3 and x2l > −h which occurs if and only if U(−h) + ρ−1
0 µ ≤ c ≤

U(0)− ρ−1
0 µ. Also from Lemma 3.5.5, we have

|∂cy−(k, c, 0)| ≤ Cµ coshµ−1h.

* Case 3: x2 = 0 ∈ I2 which happens iff U(0) − c ≤ ρ−1
0 µ and x2r = 0. From the

definitions (3.5.2) of I2, (3.3.2) of ρ0, and (3.0.4) of h0, it holds

0 ≤ U(x2r)− U(x2l) ≤ 2ρ−1
0 µ ≤ 1

2
h0 inf U ′ =⇒ −x2l = x2r − x2l ≤ 1

2
h0 =⇒ x2l > −h.

This in turn implies c− U(x2l) = ρ−1
0 µ and thus Lemma 3.5.4 yields

|∂cy−(k, c, 0)| ≤ Cµ
(
1 +

∣∣ log
(
µ−1(U(0)− c)

)∣∣) coshµ−1h.
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The desired estimates on ∂cRYI follow from (3.5.11), Lemma 3.6.1 and Lemma 3.3.2,

and the above estimates. In particular, in the above case 1, we also used

µ sinh |µ−1(xc2 + h)|
∣∣ log |µ−1

(
c− U(−h)

)
|
∣∣ ≤ Cµ cosh(µ−1(xc2 + h)),

which can be shown by considering whether |µ−1(c− U(−h))| ≤ 1 separately.

In the following we analyze Y (k, c) by writing it as a Cauchy integral of YI .

Lemma 3.6.6. Assume U ∈ C l0 , l0 ≥ 6, and k ∈ R satisfy that y−(k, c, 0) 6= 0 for all

c ∈ U([−h, 0]), then Y (k, c) and ∂j1k ∂
j2
cR
Y (k, c) is L∞k L

q
cR

locally in k ∈ R and cR in the

domain D(Y ) for any q ∈ (1,∞), 0 ≤ j2 ≤ 2, and 0 ≤ j1 ≤ l0 − 4 − j2. Assume, in

addition, y−(k, c, 0) 6= 0 for all c ∈ C, then, for any c /∈ U([−h, 0]),

Y (k, c) =
1

π

∫ U(0)

U(−h)

YI(k, c′)

c′ − c
dc′ + k coth kh, (3.6.9)

and for c ∈ U
(
[−h, 0)

)
,

Y (k, c) = −H
(
YI(k, ·)

)
(c) + iYI(k, c) + k coth kh. (3.6.10)

HereH denotes the Hilbert transform in c ∈ R, namely,

H
(
YI(k, ·)

)
(c) =

1

π
P.V.

∫
R

YI(k, c′)

c− c′
dc′ =

1

π
P.V.

∫ U(0)

U(−h)

YI(k, c′)

c− c′
dc′,

where P.V.
∫

represent the principle value of the singular integral. We also recall Y (k, c) =

Y (k, c+ i0) and Y (k, c− i0) = Y (k, c+ i0) for c ∈ R.

Proof. Let us first assume y−(k, c, 0) 6= 0 for all c ∈ C, then Y (k, c) is well-defined for all

c 6= U(0). The same argument as in the proof of Lemma 3.6.3 yields (3.6.7) for all k ∈ R,

c 6= U([−h, 0]), and 0 < r < dist
(
c,U([−h, 0])

)
. The contour ∂Dr is the union of two

segments [U(−h),U(0)]± ir, the left half circle centered at U(−h) with radius r, and the
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right half circle centered at U(0) with radius r. As r → 0+, due to the continuity of Y at

c 6= U(0) and its logarithmic upper bound near U(0) given in Lemma 3.6.2, the Cauchy

integrals along the two half circles converge to zero as r → 0+. Hence the integral form

(3.6.9) of Y (k, c) follows from taking the limit of (3.6.7) as r → 0+ and the conjugacy

Y (k, c′) = Y (k, c′).

For cI 6= 0, the integral form (3.6.9) can be rewritten as

Y (k, c) =
1

π

∫ U(0)

U(−h)

(c′ − cR + icI)

(c′ − cR)2 + c2
I

YI(k, c′)dc′.

A standard treatment of the above singular integral as cI → 0+, along with the regularity

of YI(k, c′) in c′ ∈ U
(
[−h, 0)

)
given in Lemma 3.6.4 and Lemma 3.6.5, yields (3.6.10).

From Lemma 3.6.5, even though YI is W 3,q locally in c ∈ U
(
[−h, 0)

)
if l0 ≥ 6, when

viewed as a function of k ∈ R and c ∈ R \ {U(0)}, we only have ∂j1k ∂
2
cR
YI ∈ L∞ due to

its jump at c = U(−h). The regularity of Y follows from that of YI and the boundedness

in Lq of the convolution by 1
c′+icI

with the parameter cI ≥ 0. Here the singularity of YI

near c = U(0) does not affect the regularity of Y away from U(0) due to the localization

property of this convolution operator.

Finally, if we only assume y−(k, c, 0) 6= 0 for c ∈ U([−h, 0]), then there would be

additional contour integrals of Y in (3.6.9) along contours in C enclosing the roots of

y−(k, ·, 0) outside U([−h, 0]). Those integrals in the analytic region of Y would not affect

the regularity of Y . The proof of the lemma is complete.

With the representation of Y in terms of Cauchy integrals, we may also calculate its

derivatives in more details.

Corollary 3.6.6.1. It holds, for c /∈ U([−h, 0]),

∂cY (k, c) =
1

π

∫ U(0)

U(−h)

YI(k, c′)

(c′ − c)2
dc′ =

1

π

∫ U(0)

U(−h)

∂cRYI(k, c′)

c′ − c
dc′ − U ′′(0)

U ′(0)
(
U(0)− c

) ,

(3.6.11)
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and for c ∈ U
(
[−h, 0)

)
,

∂cY (k, c) = −H
(
∂cRYI(k, ·)

)
(c) + i∂cRYI(k, c)− U ′′(0)

U ′(0)
(
U(0)− c

) . (3.6.12)

Using the regularity of and estimates on YI and ∂cRYI given in Lemma 3.6.5 , (3.6.11)

follows from direct differentiation and integration by parts, along with the explicit form of

YI
(
k,U(0) −

)
. Equality (3.6.12) is obtained by taking the limit of (3.6.11) as cI → 0+.

We omit the details of these straight forward calculations.
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CHAPTER 4

EIGENVALUES OF THE LINEARIZATION OF THE WATER WAVE AT SHEAR

FLOWS

In this chapter, we shall discuss the distribution of eigenvalues of the linearized gravity-

capillary water wave system (1.2.2) at the shear flow
(
U(x2), 0

)T . As (1.2.2) preserves

Fourier mode eikx1 for any k, the wave number k ∈ R would be treated as a parameter in

this chapter. According to Lemma 2.2.1, −ikc ∈ C, c ∈ C \ U([−h, 0]), is an eigenvalue

of (1.2.2) with parameter k if and only if

F(k, c) = FR + iFI := (g + σk2)y+(k, c,−h) = (g + σk2)(y+y
′
− − y′+y−)(k, c, 0)

=
(
U(0)− c

)2
y′−(k, c, 0)−

(
U ′(0)

(
U(0)− c

)
+ g + σk2

)
y−(k, c, 0) = 0,

(4.0.1)

where the last equal sign in the first row is due to the Wronskian structure of F. Let

F(k, c) = lim
ε→0+

F(k, c+ iε) = lim
ε→0+

F(k, c− iε), c ∈ U
(
[−h, 0]

)
.

It is easy to see that, if F(k, c) = 0, then y−(k, c,x2) also generates the associated eigen-

function of (1.2.2). In the literatures, those zero point c of F with cI > 0 are often referred

to as unstable modes, while those zero point c ∈ R as neutral modes. We recall that Yih

proved that the semicircle theorem also holds for free boundary problem [68], namely,

(1.3.3) holds for all unstable modes.

From the analysis in section 3.5, it is not clear whether F is C1 at c = U(−h) which

would be crucial for the bifurcation analysis of eigenvalues. We also consider an almost
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equivalent quantity

F (k, c) =y−(k, c, 0)−1F = FR + iFI

=Y (k, c)
(
U(0)− c

)2 − U ′(0)
(
U(0)− c

)
− (g + σk2) = 0,

(4.0.2)

where Y (k, c) is defined in (3.6.1), and

F (k, c) = lim
ε→0+

F (k, c+ iε) = lim
ε→0+

F (k, c− iε), ∀c ∈ U
(
[−h, 0]

)
.

Apparently F and F satisfy

F(−k, c) = F(k, c) = F(k, c̄), ∀c /∈ U
(
(−h, 0)

)
; (4.0.3)

F (−k, c) = F (k, c) = F (k, c̄), c ∈ D(Y ) \ U
(
(−h, 0)

)
. (4.0.4)

From Lemma 3.6.6 F is C1,α near c0 = U(−h) if y−(k, c, 0) 6= 0 for all c ∈ U([−h, 0]),

which is crucial for the bifurcation analysis.

4.1 Basic properties of eigenvalues

Apparently it holds that

F is analytic in k ∈ R& c /∈ U([−h, 0]) and F analytic in k ∈ R& c ∈ D(Y )\U([−h, 0]),

(4.1.1)

F(k, c) = 0⇐⇒ c is a non-singular or singular mode of (2.2.6).

In the following we first give some basic properties of F under minimal assumptions.

Lemma 4.1.1. Assume U ∈ C l0 , l0 ≥ 3, then for any k ∈ R, the following hold.

1. F is well defined for all k ∈ R and c ∈ C. When restricted to cI ≥ 0, F is C l0−3 in k
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and c /∈ {U(−h),U(0)} and if, in addition l0 ≥ 4, then F is also Cα in both k and c.

2. F (k, c) is well-defined for c close to U(−h) and U(0), C1 near c = U(0), and

F (k,U(−h)) ∈ R, F
(
0,U(−h)

)
= −g,

F
(
k,U(0)

)
= −g − σk2, ∂cF

(
k,U(0)

)
= U ′(0).

3. Assume l0 ≥ 6, then for any r ∈ (1,∞), there exists C > 0 determined only by r,

|U ′|C5 , and |(U ′)−1|C0 , such that, for any cI ≥ 0 and k ∈ R,

|∂cF(k, ·+ icI)|LrcR ≤ Cµ−1eµ
−1h, lim

cI→0+
|∂cF(k, ·+ icI)− ∂cF(k, ·)|W 1,r

cR
= 0,

where the norm is taken on cR ∈ [−1
2
h0 − h, 1

2
h0] and we recall µ = (1 + k2)−

1
2 .

4. F(k, c) 6= 0 if y−(k, c, 0) = 0. Hence {c | F(k, c) = 0} = {c | F (k, c) = 0} for any

k ∈ R.

5. F(k, c) = 0 iff there exists a C2 solution y(x2) to (2.2.8) satisfying the corresponding

homogeneous boundary conditions of ((2.2.6b)-(2.2.6c)).

6. For any x2 ∈ (0,−h), FI(k,U(x2)) 6= 0 if U ′′(x2) 6= 0.

Proof. For cR ∈ U
(
[−h, 0)

)
, the convergence of F(k, cR + icI) as cI → 0+ follows

from the convergence estimates given in Proposition 3.2.4. For c near U(0), the loga-

rithmic singularity in y′−(k, c, 0) is cancelled by (U(0) − c)2 and thus the convergence of

F(k,U(0)+icI) and the continuity of F at c = U(0) follow. The Cα and C l0−3 smoothness

of F is obtained from those of y−(k, c, 0) and y′−(k, c, 0) (Lemma 3.5.2 and Lemma 3.5.4)

as well as using the factor (U(0)− c)2 multiplied to y′−(k, c, 0).

From Lemma 3.6.1(1), y−(k,U(−h), 0), y−(k,U(0), 0) > 0 and thus F is well-defined

near c = U(−h),U(0). The property F (k,U(−h)) ∈ R and the value of F (0,U(−h))

are due to those of Y given in Lemma 3.6.2(1). The C1 smoothness of F for c near U(0)
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follows from Lemma 3.6.2(2) and the definition of F . The values of F and ∂cF at (k,U(0))

is obtained by direct computation.

Statement (3) is a corollary of Proposition 3.2.4, Lemma 3.5.7, and the definition of F.

Suppose y−(k, c, 0) = 0. Lemma 3.6.1(1) implies c 6= U(0). As a non-trivial solution

to the homogeneous Rayleigh equation (3.0.1), it must hold y′−(k, c, 0) 6= 0. Therefore

F(k, c) 6= 0.

To prove statement (5), we first observe that F(k, c) = 0 iff y− satisfies the correspond-

ing homogeneous boundary conditions of (2.2.6c), which happens only if y−(k, c, 0) 6= 0

and thus Y (k, c) and F (k, c) are well-defined. Moreover the statement is obvious for

c /∈ U
(
[−h, 0]

)
and also for c = U(−h) due to the smoothness of y− (Lemma 3.4.1), while

F (k,U(0)) 6= 0 due to statement (2). Hence we focus on c ∈ U
(
(−h, 0)

)
only. “=⇒”:

As c ∈ U
(
(−h, 0)

)
, F (k, c) = 0 implies YI(k, c) = 0 and consequently U ′′(xc2) = 0

according to Lemma 3.6.4. Consequently Lemma 3.4.1, particularly formula (3.4.3), and

the definition of Γ0 yield the smoothness of y− which apparently satisfies (2.2.8). “⇐=”:

This solution y(x2) has to be proportional to y− on [−h,xc2] which yields y(xc2) 6= 0 due to

Lemma 3.6.1(2). Hence the smoothness of y(x2) and equation (2.2.8) imply U ′′(xc2) = 0.

Consequently both (2.2.8) and the homogeneous Rayleigh equation (3.0.1) are regular on

[−h, 0] and are equivalent to each other. Therefore y−(x2) and y(x2) are proportional on

[−h, 0] and thus y− satisfies the boundary condition at x2 = 0.

To prove the last statement, let c = U(x2), x2 ∈ (−h, 0). According to Lemma 3.6.1,

Im y−(k, c, 0) 6= 0 if U ′′(x2) 6= 0 and thus Y (k, c) is well-defined. Lemma 3.6.4 yields

FI(k, c) =
(
U(0)− c

)2
YI(k, c) =

π(U(0)− c)2U ′′(x2)y−(k, c,x2)2

U ′(x2)|y−(k, c, 0)|2
6= 0, (4.1.2)

which prove statement (5). This is the same argument as in [68] in the case of gravity

waves.

Remark 4.1.1. The monotonicity assumption on U is used in the above proof of statement
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(5). If U is not monotonic, U−1(c) may contain several points in [−h, 0] for a root of F (k, ·)

and the corresponding solution y−(k, c,x2) may not be in H2
x2

. Therefore the set of roots of

F (k, ·), which is what really matters, may be larger than those defined as singular modes

in Definition 2.2.1.

In the next step, we consider F for |k| � 1. Unlike the linearized Euler equation on a

fixed channel where no eigenvalues exist for large k. Eigenvalues do exist for each large

k for the linearized water wave system. According to Lemma 4.1.2(2), we often consider

F (k, c) as well.

Lemma 4.1.2. Assume U ∈ C3, then the following hold for any α ∈ (0, 1
2
).

1. There exists C > 0 depending only on α, |U ′|C2 , and |(U ′)−1|C0 , such that

|F + σk2µ sinhµ−1h− (U(0)− c)2 coshµ−1h| ≤ C
(
µα−1 + |c|2µα

)
coshµ−1h,

where we recall µ = (1 + k2)−
1
2 .

2. For any k∗,M > 0, there exists C > 0 depending only on M , k∗, |U ′|C2 , and

|(U ′)−1|C0 , such that, for any |k| ≤ k∗ and c satisfying dist(c,U(−h, 0]) ≥M ,

|F− (U(0)− c)2 cosh kh| ≤ C
(
1 + |c|+ |U(0)− c|2dist(c,U([−h, 0])−1

)
.

3. There exist k0 > 0 and C > 0 depending only on |U ′|C2 , and |(U ′)−1|C0 , such that

for any |k| ≥ k0, (4.0.1) has exactly two solutions c±(k) ∈ C\U([−h, 0]) depending

on k analytically. Moreover they satisfy

c±(k) ∈ R, c±(−k) = c±(k),∣∣∣c±(k)∓
√
σ|k| − U(0)

∣∣∣ ≤ C,
∣∣∂cF(k, c±(k)

)
∓ 2
√
σ|k|

3
2

∣∣ ≤ C|k|.

Proof. The first statement follows directly from Lemma 3.3.2, where the factor (U(0) −
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c)2 is used to cancel the logarithmic singularity in the estimate of y′−, and the second

from Lemma 3.1.3 with C0 = dist(c,U([−h, 0])−1. We focus on the roots of F. From

Lemma 3.3.2,

∃k0 > 0, s .t. |y−(k, c, 0)| ≥ (1/2)µ sinhµ−1k > 0, ∀|k| ≥ k0, c ∈ C,

and thus we can work with F (k, c) and Y (k, c). Let

Sk = {c ∈ C | |c| ≥
√
σ|k|/2}.

From statement (1) and Lemma 3.6.2(3), it holds that there exist k0 > 0 such that, for any

|k| ≥ k0, F (k, c) = 0 only if c ∈ Sk. We may take larger k0 > 0 if necessary such that

dist
(
Sk,U([−h, 0])

)
≥ 1. From Lemma 3.6.6 and Lemma 3.6.5 and Corollary 3.6.6.1,

there exists C > 0 depending only on U such that, for all |k| ≥ k0, c ∈ Sk,

|Y (k, c)− k coth kh| ≤ C

(1 + |c|) sinh2 h
µ

∫ U(0)

U(−h)

sinh2 1
µ
(U−1(c′) + h)dc′,

|∂cY (k, c)| ≤ C

1 + |c|
+

C

(1 + |c|)µ sinh2 h
µ

∫ U(0)

U(−h)

sinh 2
µ

(
U−1(c′) + h

)
dc′.

By a substitution τ = 1
µ

(
U−1(c′) + h

)
we obtain

|Y (k, c)−k coth kh| ≤ C(|k|+1)−1(1+|c|)−1, |∂cY (k, c)| ≤ C(1+|c|)−1, ∀|k| ≥ k0.

On the other hand, viewing F (k, c) = 0 as a quadratic equation of U(0)− c, its roots also

satisfy

c = f±(k, c), where f±(k, c) = U(0)− U ′(0)

2Y (k, c)
±

√
U ′(0)2

4Y (k, c)2
+
g + σk2

Y (k, c)
.

Using the above estimates on Y and coth s = 1 + 2
e2s−1

, it is straight forward to verify that
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for any |k| ≥ k0 and c ∈ Sk,

∣∣∣f±(k, c)∓
√
σ|k| − U(0)

∣∣∣ ≤ C,

and

|∂cf±(k, c)| =

∣∣∣∣∣U ′(0)

2Y 2
∓ 1

2

(
U ′(0)2

4Y 2
+
g + σk2

Y

)− 1
2
(
U ′(0)2

2Y 3
+
g + σk2

Y 2

)∣∣∣∣∣ |∂cY | ≤ C

|k|
.

Therefore f±(k, ·) are contractions acting on Sk. Their fixed points c±(k), analytic in k, are

the only solutions to (4.0.1), or equivalently (4.0.2). These c±(k) ∈ R since f±(k, c) ∈ R

for c ∈ R which allows the iteration to be taken in R. Finally, one may compute

∂cF = (U(0)− c)2∂cY + 2(c− U(0))Y + U ′(0). (4.1.3)

Using the above estimates on Y − |k|, ∂cY , and c±(k), one may compute

∣∣∂cF(k, c±(k)
)
∓ 2
√
σ|k|

3
2

∣∣
=
∣∣2Y (c− U(0)

)
∓ 2
√
σ|k|

3
2 + ∂cY

(
U(0)− c

)2
+ U ′(0)

∣∣
c=c±(k)

≤ C|k|.

The evenness of c±(k) in k is due to that of F(k, c) and the uniqueness of the fixed points

of the above contractions. This completes the proof of the lemma.

We shall track the two roots c±(k) of the analytic function F (k, ·) as |k| decreases,

based on a standard analytic continuation argument.

Lemma 4.1.3. Assume U ∈ C3. Suppose k0 ∈ R and c0 ∈ C \ U([−h, 0]) satisfy

F(k0, c0) = 0 and ∂cF(k0, c0) 6= 0, then the following hold.

1. There exists an analytic function c(k) ∈ C \ U([−h, 0]) defined on an max interval

(k−, k+) such that F
(
k, c(k)

)
= 0 and ∂cF

(
k, c(k)

)
6= 0.

2. c(k) ∈ R for all k ∈ (k−, k+) if and only if c0 ∈ R.
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3. If k+ <∞ (or k− > −∞), then

(a) limk→(k+)− dist(c(k),U([−h, 0])) = 0 (or limk→(k−)+ dist(c(k),U([−h, 0])) =

0 if k− > −∞), or

(b) lim infk→(k+)−min{|c(k) − c| : ∀c s. t. F(k, c) = 0, c 6= c(k)} = 0 (or

lim infk→(k−)+ min{|c(k)− c| : F(k, c) = 0, c 6= c(k)} = 0 if k− > −∞).

Proof. We start the proof with a simple and standard consideration of the index of complex

analytic functions. Suppose F(k, c) 6= 0 at any c ∈ ∂Ω where Ω ⊂ C \ U([−h, 0]) is a

domain with piecewise smooth boundary ∂Ω, then the index

Ind
(
F(k, ·), Ω

)
:=

1

2πi

∮
∂Ω

∂cF(k, c)

F(k, c)
dc ∈ N ∪ {0} (4.1.4)

is equal to the number of zeros of F(k, ·) inside Ω, counting their multiplicities. Therefore

the analyticity of F in k and c implies that Ind
(
F(k, ·), Ω

)
is a constant in k as long as

F(k, c) = 0 does not occur on ∂Ω.

As a consequence, starting with the simple root c0 ∈ C\U([−h, 0]) of F(k0, ·), a unique

continuation of c(k) ⊂ C \ U([−h, 0]) of simple roots of F(k, ·) exists and is analytic in

k. The simplicity of c(k) is due to the fact Ind
(
F(k, ·), Ω

)
= 1 for any sufficiently small

neighborhood Ω of c(k) in the continuation procedure. For any c ∈ R \ U([−h, 0]), we

have F(k, c) ∈ R and ∂cRFR(k, c) = ∂cF(k, c) 6= 0. Therefore if c(k1) ∈ R \ U([−h, 0])

for some k1 along the continuation curve, then the unique extension c(k) coincides with

the (real) root of FR(k, cR) obtained by applying the Implicit Function Theorem to the real

function FR(k, cR). Hence c(k) ∈ R if and only if c0 ∈ R.

Let (k−, k+) be the max interval of the continuation c(k) ⊂ C \ U([−h, 0]) as simple

roots of F(k, ·) and we shall prove statement (3). Suppose k− > −∞, while the other

case k+ < +∞ can be analyzed similarly. As k → (k−)+, the solution curve c(k) is

bounded due to Lemma 4.1.2(2). Therefore there exists a sequence (kj)
∞
j=1 ⊂ (k−, k+)

such that limj→∞ kj = k− and c− = limj→∞ c(kj) ∈ C exists. Statement (2) implies that
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c(k) stays in the closure of either the upper or lower half of C and thus F(k−, c−) = 0.

Assume statement (3)(a) does not hold, then such a subsequence can be chosen such that

c− /∈ U([−h, 0]). Therefore c− is a root in the domain of analyticity of F(k−, ·). Clearly

c− is not a simple zero of F(k−, ·), otherwise c(k) can be extended beyond k−. Recall c−

has to be an isolated root of F(k−, ·) since all roots of non-trivial analytic functions are

isolated. Therefore, there exists a small neighborhood Ω of c− such that, for any k ≥ k−

sufficiently close to k−, it hold Ind
(
F(k, ·), Ω

)
≥ 2. Consequently, for each kj close to k−,

there exists at least another root c of F(kj, ·) in Ω and thus (3)(b) holds.

The semicircle theorem of Yih [68] states that all imaginary roots c of F(k, ·) are con-

tained in the circle with the diameter segment U([−h, 0]), so the only possibility for the

branches c±(k) of simple roots of F(k, ·) obtained in Lemma 4.1.2 can not be extended

for all k ∈ R is when they reaches U(0) or U(−h), respectively. As a corollary of

F
(
k,U(0)

)
6= 0 and we have

Corollary 4.1.3.1. (1) The branch c+(k) can be extended for all k ∈ R. Moreover c+(k) ∈

R is even in k, ∂cF
(
k, c+(k)

)
> 0, and c+(k) > U(0) + ρ0 for all k ∈ R, for some ρ0 > 0

independent of k.

(2) If F(k,U(−h)) 6= 0 for all k ∈ R, then c−(k) of simple roots of F(k, ·) obtained in can

also be extended for all k ∈ R. Moreover c−(k) ∈ R is even in k, ∂cF
(
k, c−(k)

)
< 0, and

c−(k) < U(−h)− ρ0 for all k ∈ R, for some ρ0 > 0 independent of k.

Proof. Let k0 be given in Lemma 4.1.2(3) and we only need to focus on |k| ≤ k0. We

may assume k0 is sufficiently large such that c+(k0) > U(0) and c−(k0) < U(−h). From

Lemma 4.1.2(2), there exists R > 0 such that F(k, c) 6= 0 for all k ∈ [−k0, k0] and

|c| ≥ R. Hence c+(k0) ∈ (U(0),R) and c−(k0) ∈ (−R,U(−h)) are the only roots of

F(±k0, ·), which are also simple with ±∂cF (k0, c±(k0)) > 0.

We first consider c+(k). Let

Ω = {c ∈ C | cR ∈ (U(0),R), cI ∈ (−1, 1)}.
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According to Lemma 4.1.1(2), F(k,U(0)) 6= 0 for any k. Hence the semicircle theorem

and the choice of R imply that a.) c+(k0) ∈ Ω and b.) F(k, c) 6= 0 for all |k| ≤ k0 and

c ∈ ∂Ω, and thus

Ind(F(k, ·), Ω) = Ind(F(k0, ·), Ω) = 1, ∀|k| ≤ k0.

Therefore none of the possibilities in Lemma 4.1.3(3ab) can happen to the extension c+(k) ∈

Ω starting from k = k0, so this branch of simple root of F(k, c)̇ can be uniquely extended

for all k ∈ [−k0, k0] with c+(k) ∈ (U(0),R) as the only root of F(k, ·) in Ω. The value

of this extension at k = −k0 has to coincide with c+(−k0) = c+(k0) as c±(−k0) are the

only roots of F(−k0, ·) while c−(−k0) < U(−h). Therefore the extensions starting from

c+(±k0) have to coincide. The evenness of c+(k) in k ∈ [−k0, k0] follows from that of

F and the uniqueness of its root in Ω. The sign of ∂cF
(
k, c+(k)

)
remains positive from

k = k0 as c+(k) is always simple. The existence of ρ0 > 0 is simple due to the continuity

of F. The same argument applies to c−(k) under the assumption F(k,U(−h)) 6= 0 all for

k. The proof is complete.

Based on the above analysis, we shall conclude that −ikc±(k) are the only eigenvalues

of the linearized capillary gravity wave under the additonal assumption of the absence of

singular modes

F(k,U(x2)) 6= 0, ∀k ∈ K, x2 ∈ [−h, 0], (4.1.5)

where K = R or 2π
L
N and L is the period of the water wave in the x1 direction.

Proposition 4.1.4. Assume U ∈ C3 and (4.1.5) for K = R or 2π
L
N, then there exists ρ > 0

such that

1. F0 , inf{(1 + k2)−
1
2 e−

h
µ |F(k, c)| | k ∈ K, cR ∈ [U(−h) − ρ,U(0) + ρ], cI ∈

[−ρ, ρ]} > 0.

2. Assume K = R, then {c | F(k, c) = 0} = {c±(k)}.

121



Proof. The first statement is a direct corollary of the continuity of F, its analyticity outside

U([−h, 0]), assumption (4.1.5), and Lemma 4.1.2.

Let us consider statement (2). Corollary 4.1.3.1 and (4.1.5) imply that both c+(k) ∈

(U(0), +∞) and c−(k) ∈ (−∞,U(−h)) can be extended as even analytic functions of

k ∈ R. Let k0,R > 0 be taken as in the proof of Corollary 4.1.3.1 and we only need to

focus on |k| ≤ k0. Assumption (4.1.5) also yields ρ > 0 such that

F(k, c) 6= 0, ∀dist
(
c,U([−h, 0])

)
= ρ, |k| ≤ k0.

Let

Ω = {c ∈ C | |c| < R, dist
(
c,U([−h, 0])

)
> ρ},

then we have F(k, c) 6= 0 for all |k| ≤ k0 and c ∈ ∂Ω. Therefore

Ind(F(k, ·), Ω) = Ind(F(k0, ·), Ω) = 2, ∀|k| ≤ k0,

and F(k, ·) does not have any other roots.

In order to obtain a more complete picture of the eigenvalue distribution we shall derive

some sign properties in the following lemma, where F and Y are viewed as function of c

and K = k2 ≥ 0. According to Lemma 3.6.1(1), F is well-defined for c in a neighborhood

of R \ U
(
(−h, 0)

)
.

Lemma 4.1.5. Assume U ∈ C3, then we have

∂2
K

(
F
(√

K, c
))
< 0, ∀k ∈ R, c ∈ R \ U

(
(−h, 0]

)
,

∂KF (0, c) < −σ +

∫ 0

−h

(
U(x2)− c

)2
dx2, ∀c ∈ R \ U([−h, 0]),

∂KF
(
0,U(−h)

)
= −σ +

∫ 0

−h

(
U(x2)− U(−h)

)2
dx2.
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Proof. For K ≥ 0 and c ∈ C with y−(k, c, 0) 6= 0 and cI ≥ 0, let

R = R(K, c) = −∂2
x2

+K +
U ′′(x2)

U(x2)− c
, ỹ(K, c,x2) =

y−(
√
K, c,x2)

y−(
√
K, c, 0)

, x2 ∈ [−h, 0],

(4.1.6)

be the differential operator in the Rayleigh equation (3.0.1) and the normalization of the

fundamental solution y− defined in (3.3.1) and (3.5.1). Clearly

ỹ(−h) = 0, ỹ′(−h) = y−(
√
K, c, 0)−1, ỹ(x2) > 0, x2 ∈ (−h, 0),

ỹ(0) = 1, Y (
√
K, c) = ỹ′(0),

where the sign properties follows from Lemma 3.6.1(1). It is straight forward to compute,

for c ∈ R \ U
(
(−h, 0)

)
and x2 ∈ (−h, 0),

R∂K ỹ = −ỹ < 0, R∂2
K ỹ = −2∂K ỹ,

where the smoothness of ỹ in K is ensured by Lemma 3.4.1. The following claim is used

to analyze these and some other functions.

Claim. Suppose y ∈ C0([−h, 0]) is a solution to (Ry)(x2) = f(x2) and y(−h) =

y(0) = 0 with c ∈ R \ U
(
(−h, 0)

)
, where f is C0 on [−h, 0], then we have the following

through direct computations

(ỹ′y − ỹy′)′ = ỹf ⇒y′(0) = −
∫ 0

−h
ỹfdx2,

y(x2) = ỹ(x2)

∫ 0

x2

1

ỹ(x′2)2

∫ x′2

−h
ỹ(x′′2)f(x′′2)dx′′2dx

′
2.

(4.1.7)

Applying this claim to ∂K ỹ and ∂KK ỹ implies

∂KY = ∂K ỹ
′(0) =

∫ 0

−h
ỹ2dx2 > 0,

∂2
KY = −2

∫ 0

−h
ỹ(x2)2

∫ 0

x2

ỹ(x′2)−2

∫ x′2

−h
ỹ(x′′2)2dx′′2dx

′
2dx2 < 0.

(4.1.8)
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The definition of F implies ∂2
KF < 0 for c ∈ R \ U

(
(−h, 0]

)
.

For k = 0, through direct calculation, one may verify, for c /∈ U([−h, 0]),

y−(0, c,x2) = (U(x2)− c)
∫ x2

−h

U(−h)− c
(U(x′2)− c)2

dx′2. (4.1.9)

For c ∈ R \ U([−h, 0]), from (4.1.8), we have

∂KY (0, c) =

∫ 0

−h
ỹ2dx2

=

∫ 0

−h

(U − c)2

(U(0)− c)2

(∫ x2

−h

dx′2
(U(x′2)− c)2

)2

dx2

(∫ 0

−h

dx′2
(U(x′2)− c)2

)−2

,

and thus

∂KF (0, c) =(U(0)− c)2∂KY (0, c)− σ

=

∫ 0

−h
(U − c)2

(∫ x2

−h

dx′2
(U(x′2)− c)2

)2

dx2

(∫ 0

−h

dx′2
(U(x′2)− c)2

)−2

− σ

<

∫ 0

−h
(U − c)2dx2 − σ.

(4.1.10)

For k = 0 and c = U(−h), we can use (3.6.5) to compute

ỹ
(
0,U(−h),x2

)
=
(
U(x2)− U(−h)

)
/
(
U(0)− U(−h)

)
. (4.1.11)

Consequently, one obtains explicitly

∂KY
(
0,U(−h)

)
=

∫ 0

−h

(
U(x2)− U(−h)

)2(
U(0)− U(−h)

)2 dx2,

which in turn yields the desired formula of ∂KF
(
0,U(−h)

)
.

The information on the derivatives of F leads to the following properties of the roots of

F .
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Lemma 4.1.6. Assume U ∈ C3, the following hold.

1. If

σ ≥
∫ 0

−h

(
U(x2)− U(−h)

)2
dx2 ⇐⇒ ∂KF

(
0,U(−h)

)
≤ 0, (4.1.12)

then F
(
k,U(−h)

)
≤ −g = F (0,U(−h)) for all k ∈ R.

2. Let

g# = max
{
Y
(
k,U(−h)

)(
U(0)− U(−h)

)2 − U ′(0)
(
U(0)− U(−h)

)
− σk2 | k ∈ R

}
= max

{
F
(
k,U(−h)

)
+ g | k ∈ R

}
,

then we have

(a) g# ≥ F
(
0,U(−h)

)
+ g = 0 and “=” in the “≤” holds if and only if (4.1.12)

holds.

(b) If g > g#, then F
(
k,U(−h)

)
< 0 for all k ∈ R.

(c) If 0 < g = g# , then there exists a unique k# > 0 such that F
(
±k#,U(−h)

)
=

0 and F
(
k,U(−h)

)
< 0 for all |k| 6= k#.

(d) If 0 < g < g#, then there exist k+
# > k−# > 0 such that

F
(
k,U(−h)

)
< 0, |k| /∈ (k−#, k+

#);

F
(
k,U(−h)

)
> 0, |k| ∈ (k−#, k+

#); ∓∂kF (k±#,U(−h)) > 0.

Proof. Statement (1) is a direct consequence of the concavity of F
(
k,U(−h)

)
in K = k2

and F
(
0,U(−h)

)
= −g < 0. Statement (2) is also an immediate implication of this

concavity and Lemma Theorem 4.1.2(1).

Along with statement (2b ) and Corollary 4.1.3.1, (Equation 4.1.12) provides an explicit
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sufficient condition ensuring that the branch c−(k) does not reach U([−h, 0]) and thus

staying in (−∞,U(−h)) for all k ∈ R.

To end this subsection we prove the following monotonicity of the even functions c±(k)

which will be used in obtaining the conjugacy between the irrotational linearized capillary

gravity water waves and the component of the solutions linearized at the shear U(x2). From

the definition of F and (Equation 3.6.5), we first compute, for c /∈ U([−h, 0]),

Y (0, c) =
U ′(0)

∫ 0

−h(U − c)
−2dx2 + (U(0)− c)−1

(U(0)− c)
∫ 0

−h(U − c)−2dx2

and thus

F (0, c) = (U(0)− c)2Y (0, c)− U ′(0)(U(0)− c)− g =
1∫ 0

−h(U − c)−2dx2

− g,

which is uniformly increasing on (−∞,U(−h)) and uniformly decreasing on (U(0), +∞).

Therefore F (0, ·) has two real roots

c+
0 ∈ (U(0), +∞), c−0 ∈ (−∞,U(−h)), s. t. F (0, c±0 ) =

1∫ 0

−h(U − c
±
0 )−2dx2

− g = 0,

(4.1.13)

which are unique in the above intervals.

Lemma 4.1.7. Assume U ∈ C3, then the following hold.

1. For † ∈ {+,−}, suppose c†(k) ∈ R \ U([−h, 0]) can be extended as simple roots of

F (k, ·) for all k ≥ k∗ ≥ 0, then (c†)′(k) = 0 has most one solution on (k∗, +∞),

where (c†)′′(k) 6= 0 is also satisfied.

2. For † ∈ {+,−}, suppose c†(k) ∈ R \ U([−h, 0]) can be extended as simple roots of

F (k, ·) for all k ∈ R. If, in addition

σ > g2

∫ 0

−h
(U − c†0)2

(∫ x2

−h

dx′2

(U(x′2)− c†0)2

)2

dx2, (4.1.14)
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with c†0 defined in (4.1.13), then (c†)′(k) 6= 0 for all k 6= 0. If

σ < g2

∫ 0

−h
(U − c†0)2

(∫ x2

−h

dx′2

(U(x′2)− c†0)2

)2

dx2, (4.1.15)

then c†(k) does have a unique critical point k0 > 0.

Proof. We shall work with c−(k), while the same proof works for c+(k). Observe that

the evenness of c−(k) yields (c−)′(0) = 0. Suppose there exists k0 > k∗ ≥ 0 such that

(c−)′(k0) = 0, then

2k0(∂KF )(k0, c−(k0)) = ∂kF (k0, c−(k0)) = −∂cF (k0, c−(k0))(c−)′(k0) = 0.

Computing the second order derivative at k0, we have

(c−)′′(k0) = −∂
2
kF (k0, c−(k0))

∂cF (k0, c−(k0))
= −4k2

0(∂2
KF )(k0, c−(k0)) + 2(∂KF )(k0, c−(k0))

∂cF (k0, c−(k0))
,

which along with Lemma 4.1.5 and ∂cF (k, c−(k0)) < 0 (Corollary 4.1.3.1) implies that

(c−)′′(k0) < 0. Hence k0 > k∗ has to be the only positive critical point of c−(k).

To prove Statement (2) where k∗ = 0, on the one hand, we first observe that since c−0

is the unique root of F (0, ·) in (−∞,U(−h) and c−(0) is also such a root, so c−(0) = c−0 .

Moreover, (4.1.10) implies that (4.1.14) and (4.1.15) are equivalent to ∓∂KF (0, c−(0)) >

0, respectively. On the other hand, From the evenness of F and c−(k) in k, one may

compute

(∂KF )(0, c−(0)) = ∂2
kF (0, c−(0))/2 = −∂cF (0, c−(0))

(
(c−)′′(0)

)
/2.

From Lemma 4.1.2(3), (c−)′(k) < 0 for some k � 1. Hence, on the one hand, (4.1.15),

∂cF (k, c−(0)) < 0, and the above identity implies (c−)′′(0) > 0. Along with (c−)′(0) = 0

due to the evenness of c−(k), it yields that c− has a critical point k0 > 0. On the other hand,
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through the same argument, (4.1.14) yields (c−)′′(0) < 0 while (c−)′(0) = 0. Therefore it

is impossible that there exists a unique critical point of c− where (c−)′′ < 0. The proof of

the lemma is complete.

4.2 Eigenvalue distribution of convex/concave shear flows

To analyze eigenvalues under less implicit assumptions than (4.1.5), particularly the gen-

eration of unstable modes from c = U(−h), we further assume U ′′ 6= 0 on [−h, 0]. Due

to Lemma 4.1.1(6), this rules out the possibility of roots of F on U
(
(−h, 0]) and provides

better smoothness of F for the bifurcation analysis.

Lemma 4.2.1. Assume U ∈ C l0 , l0 ≥ 6, and U ′′ 6= 0 on [−h, 0], then F (k, c) is well

defined for all k ∈ R and c ∈ C and

a.) F is analytic in both k ∈ R and c /∈ U([−h, 0]) and, when restricted to cI ≥ 0, is C l0−3

in both k ∈ R and c /∈ {U(−h),U(0)},

b.) F and ∂kF are locally C1,α in both k and c 6= U(0) with cI ≥ 0 for any α ∈ [0, 1),

c.) F is C1 in k and c with cI ≥ 0.

Remark 4.2.1. Note that, in the above statement, for fixed c ∈ U([−h, 0)), F is C l0−3 in k.

This stronger regularity in k follows from that of (y0−, y′0−) and Y (see Lemma 3.5.1 and

Lemma 3.6.6). Moreover, one could prove that F and ∂kF are also C1,α near c = U(0)

with cI ≥ 0 by estimating ∂2
cR
YI(k, c) = O

(
|c−U(0)|−1

)
using Lemma 3.5.3–Lemma 3.5.5

and Lemma 3.6.6 as well as Corollary 3.6.6.1.

Proof. The assumptionU ′′ 6= 0 implies that y−(k, c, 0) 6= 0 for all k and c (Lemma 3.6.1(5))

and thus F is well defined. The analyticity and the C l0−3 and C1,α (restricted to cI ≥ 0

for the latter two) regularity of F follow directly from those of Y given in Lemma 3.6.6

except at c = U(0). Near c ∈ U(0), the regularity and estimates on Y (Lemma 3.6.2,

Lemma 3.6.5, Lemma 3.6.6) and ∂cY (Lemma 3.6.5 and Corollary 3.6.6.1) yield the regu-

larity of F .
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As a corollary of the Lemma 4.1.3, Lemma 4.1.6 and Lemma 4.2.1 and the semicircle

theorem, we obtain a sufficient condition for (4.1.5) to hold for K = R.

Corollary 4.2.1.1. Suppose U ′′ 6= 0 on [−h, 0] and (4.1.12) hold, then (4.1.5) is true for

all k ∈ R.

Assuming U ′′ 6= 0, in general c = U(−h) is the only point outside the domain of

analyticity of F (k, ·) which might happen to be a root and also might be the end point of

branches of roots of F (k, ·), it is a crucial step to analyze zeros of F around U(−h).

Lemma 4.2.2. Assume U ∈ C6, then (a) ∂cF (k,U(−h)) < 0 for all k ∈ R if U ′′ > 0 on

[−h, 0]; and (b) if U ′′ < 0 on [−h, 0], then ∂cF (k,U(−h)) < 0 if F (k,U(−h)) = 0.

Proof. We shall use the notationsR and ỹ defined in the proof of Lemma 4.1.5 and F and

Y are also viewed as function of c and K = k2 ≥ 0. It is straight forward to compute, for

c < U(−h) and x2 ∈ (−h, 0),

R∂cỹ = − U ′′

(U−c)2 ỹ, R∂Kcỹ = −∂cỹ − U ′′

(U−c)2∂K ỹ.

Applying (4.1.7) we obtain that for c < U(−h),

U ′′(0)∂cY = U ′′(0)∂cỹ
′(0) = U ′′(0)

∫ 0

−h

U ′′ỹ2(
U − c

)2dx2 > 0, U ′′(0)∂KcY < 0. (4.2.1)

These integral representation of ∂cY still holds as c→ U(−h)−, and thus also its sign. For

k = 0 and c = U(−h), we can use (4.1.11) to compute

∂cY
(
0,U(−h)

)
=

U ′(0)− U ′(−h)(
U(0)− U(−h)

)2 =⇒ ∂cF
(
0,U(−h)

)
= −U ′(−h) < 0.

Finally we obtain the sign of ∂cF (k,U(−h)) in two cases separately, based on the sign

of U ′′. Suppose U ′′ > 0. The above (4.1.8) and (4.2.1) implies that, for c ≤ U(−h),
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Y (
√
K, c) is strictly increasing in K and ∂cY (

√
K, c) is strictly deceasing in K, and thus

∂cF = (U(0)− c)2∂cY − 2(U(0)− c)Y + U ′(0)

is also strictly decreasing in K. Letting c→ U(−h)−, this monotonicity yields

∂cF (k,U(−h)) ≤ ∂cF (0,U(−h)) = −U ′(−h) < 0.

In the other case of U ′′ < 0, suppose F (k,U(−h)) = 0 for some k ∈ R, which implies

Y (k,U(−h)) =
g + σk2

(U(0)− U(−h))2
+

U ′(0)

U(0)− U(−h)
.

Therefore

∂cF (k,U(−h)) =(U(0)− U(−h))2∂cY (k,U(−h))− 2(U(0)− U(−h))Y (k,U(−h))

+ U ′(0)

=(U(0)− U(−h))2∂cY (k,U(−h))− U ′(0)− 2(g + σk2)

(U(0)− U(−h))
.

We also have ∂cY (k,U(−h)) < 0 from taking the limit of (4.2.1). Hence we obtain

∂cF (k,U(−h)) < 0 and the proof of the lemma is complete.

In the next step we shall study the roots of F (k, ·) near c = U(−h).

Lemma 4.2.3. Assume U ∈ C6, and U ′′ 6= 0 on [−h, 0]. Suppose F
(
k0,U(−h)

)
= 0,

then there exist ε > 0, ρ ∈
(
0,U(0)− U(−h)

)
, and C ∈ C1,α

(
[k0 − ε, k0 + ε],C

)
for any

α ∈ [0, 1) such that C(k0) = U(−h), CI(k) ≥ 0, ∂cF (k, C(k)) 6= 0 at k 6= k0, and

F (k, c) = 0 with k ∈ [k0 − ε, k0 + ε], |cR − U(−h)| ≤ ρ, cI ∈ [0, ρ],

iff c = C(k) = CR(k) + iCI(k).
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Moreover, without loss of generality assume k0 > 0 (Lemma 4.2.1 implies k0 6= 0) and this

branch of roots of F satisfies

1. If ∂kF
(
k0,U(−h)

)
= 0, then C ′(k0) = 0, CI ≡ 0 and C(k) < U(−h) for all

0 < |k − k0| ≤ ε.

2. If ±∂kF
(
k0,U(−h)

)
> 0, then ±C ′R(k0) > 0 and

CR(k) < U(−h), CI(k) = 0, ∀ 0 < ±(k0 − k) ≤ ε,

and for some C̃ > 0 determined by k0 and U , ∀ 0 < ±(k − k0) ≤ ε,

CR(k) > U(−h),

∣∣∣∣∣ CI(k)

YI
(
k, CR(k)

) +

((
U(0)− U(−h)

)2

∂cF
(
k0,U(−h)

) ∣∣∣∣∣ ≤ C̃|k − k0|α,

which implies

0 < |CI(k)| ≤ C̃(k − k0)2, U ′′(0)CI(k) > 0, ∀ 0 < ±(k − k0) ≤ ε.

In the generic case ∂kF
(
k0,U(−h)

)
6= 0, locally the roots of F (k, c) consists of the

intersection of the graph of C(k) and the closure of the upper half complex plane, along

with its complex conjugate. In this case, however, one observes that dCI(k)/dCR(k) = 0

at k = k0. The following proof is based on both the Implicit Function Theorem and the

Intermediate Value Theorem.

Proof. According to Lemma 4.2.1, F is C1,α in k and c in the region cI ≥ 0. As FI is

not continuous at c ∈ U
(
(−h, 0]

)
⊂ C in general, let F̃ (k, c) = F̃R + iF̃I ∈ C be a C1,α

extension of F into a neighborhood of
(
k0,U(−h)

)
∈ R × C which coincides with F for
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cI ≥ 0. From Lemma 4.2.2, the 2× 2 Jacobian matrix of DcF̃ satisfies

DcF̃
(
k0,U(−h)

)
=

∂cRF̃R ∂cI F̃R

∂cRF̃I ∂cI F̃I

∣∣∣(
k0,U(−h)

) = ∂cF
(
k0,U(−h)

)
I2×2,

∂cF
(
k0,U(−h)

)
< 0,

where we used the Cauchy-Riemann equation and the fact F (k, c) ∈ R for all c < U(−h).

Therefore the Implicit Function Theorem implies that all roots of F̃ (k, c) near
(
k0,U(−h)

)
form the graph of a C1,α complex-valued function C(k) which contains

(
k0,U(−h)

)
. To

complete the proof of the lemma, we only need to prove that C(k) satisfies properties (1)

and (2).

Firstly we prove C(k) ∈ R if CR(k) ≤ U(−h) and thus F
(
k, C(k)

)
= F̃

(
k, C(k)

)
=

0 as well. As FR ∈ C1 and ∂cRFR
(
k0,U(−h)

)
= ∂cF (k0,U(−h)) < 0, the Implicit

Function Theorem yields a C1 real-valued function C̃(k) for k near k0 such that

C̃(k0) = U(−h), FR
(
k, C̃(k)) = 0. (4.2.2)

Since FI(k, c) = 0 if c ≤ U(−h), the uniqueness of solutions ensured by the Implicit

Function Theorem implies that C(k) = C̃(k) ∈ R if C̃(k) ≤ U(−h).

Next we consider the case ∂kF
(
k0,U(−h)

)
= 0. Along with

∂cRFR
(
k0,U(−h)

)
, ∂KKFR

(
k0,U(−h)

)
< 0, where K = k2,

it implies

FR(k0, c) > 0, ∀0 < U(−h)− c� 1, FR
(
k,U(−h)

)
< 0, ∀k ∈ R+ \ {k0}.

From the Intermediate Value Theorem, for k near k0, there exist real roots of FR(k, ·)

slightly smaller than U(−h), which must belong to C̃(k) due to the uniqueness of solutions
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ensured by the Implicit Function Theorem. Therefore along with the last step, we conclude

C(k) = C̃(k) < U(−h) for k 6= k0 close to k0.

Finally, we consider the case of ∂kF
(
k0,U(−h)

)
> 0, while the opposite case can be

handled similarly. The fact ∂cF
(
k0,U(−h)

)
< 0 yields

∂kC(k0) = ∂kC̃(k0) = −
∂kF

(
k0,U(−h)

)
∂cF

(
k0,U(−h)

) > 0,

where in the calculation of C̃(k0) we also used FI(k, c) = 0 for c ≤ U(−h) and the

smoothness of F . Hence we obtain C(k) = C̃(k) < U(−h) for k slightly smaller k0. In

the following we shall focus on k > k0 where CR(k) > U(−h). From the Mean Value

Theorem, there exists θ between 0 and CI(k) such that

0 = F̃I
(
k, C(k)

)
= FI

(
k, CR(k)

)
+ CI(k)∂cI F̃I

(
k, CR(k) + iθ

)
,

which along with the C1,α regularity of F and C(k) imply

CI(k) =−
FI
(
k, CR(k)

)
∂cI F̃I

(
k, CR(k) + iθ

) = −
YI
(
k, CR(k)

)(
U(0)− CR(k)

)2

∂cIFI
(
k, CR(k)

)
+O

(
|CI(k)|α

)
=−

YI
(
k, CR(k)

)(
U(0)− CR(k)

)2

∂cRFR
(
k, CR(k)

)
+O

(
|CI(k)|α

)
=−

YI
(
k, CR(k)

)(
U(0)− U(−h) +O(|k − k0|)

)2

∂cF
(
k0,U(−h)

)
+O

(
|k − k0|α

) .

The proof of the lemma is complete.

While the branch c+(k) ∈ (U(0), +∞) of neutral modes is global in k ∈ R and con-

tained in
(
U(0),∞

)
as addressed in Corollary 4.1.3.1, in the following we completes the

picture of the other branch c−(k) by combining Lemma 4.1.3 – Lemma 4.2.3 and finish the

proof of Theorem 2.1.1.

Proof of Theorem 2.1.1(3).
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Let g# ≥ 0, k#, and/or k±# be the thresholds given in Lemma 4.1.6.

Case 1. g > g#. The desired result follows from Lemma 4.1.6 and Corollary 4.1.3.1

immediately.

We start the rest of the proof much as in that of Corollary 4.1.3.1 and Proposition 4.1.4.

Namely, let k0 be given by Lemma 4.1.2(3) and we only need to focus on c−(k) for |k| ≤

k0. From Lemma 4.1.2(2), there exists R > 0 such that F (k, c) 6= 0 for all k ∈ [−k0 −

1, k0 + 1] and |c| ≥ R, which also implies c+(k) ∈
(
U(0),R) for all |k| ≤ k0 + 1 and

c−(k) ∈
(
−R,U(−h)

)
for all |k| ∈ [k0, k0 + 1].

Case 2. g = g#. One the one hand, for any k1 ∈ (k#, k0], Lemma 4.1.2, Lemma 4.2.1,

and Lemma 4.1.6 imply that there exists r0 > 0 such that

F (k, c) 6= 0, ∀k ∈ [k1, k0], c ∈ ∂Ω1 ∪ Dr0 , where Ω1 = {c ∈ C | |c| < R, c /∈ Dr0},

where the r-neighborhood Dr of U([−h, 0]) (see also (3.6.6)). Hence for all k ∈ [k1, k0],

we have Ind
(
F (k, ·), Ω1

)
=
(
F (k0, ·), Ω1

)
= 2, which is equal to the number of roots of

F (k, ·) in Ω1. According to Corollary 4.1.3.1, c+(k) ∈
(
U(0),R

)
, ∀|k| ≤ k0 + 1, is one

of them. Therefore neither cases in Lemma 4.1.3(3) can happen to the branch c−(k) and

the simple root c−(k) ∈
(
−∞,U(−h)

)
can be extended analytically for all k ∈ [k1, k0].

Therefore c−(k) can be extended to at least (k#,∞) which along with c+(k) are the only

roots of F (k, ·) for k ∈ (k#,∞). On the other hand, according to Lemma 4.2.3, there exists

a C1,α branch C(k) of the only roots of F (k, c) for |k − k#|, |c− U(−h)| � 1. Moreover

C(k) < U(−h) for 0 < |k − k#| � 1. Therefore c−(k) = C(k) for 0 < k − k# � 1

as c±(k) are the only roots of F (k, ·) for k > k#. In particular, c−(k) is thus extended to

|k# − k| � 1 as a C1,α function with c−(k) ∈ (−R,U(−h)) for 0 < |k# − k| � 1.

Moreover, on the one hand, c−(k) is the only root of F (k, ·) near U([−h, 0]) for k

near k# and it satisfies c−(k#) = U(−h). On the other hand, the continuity of c−(k)

implies that there exists ε1, r1 > 0 such that F (k, c) 6= 0 for any |k − k#| ≤ ε1 and
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dist
(
c,U([−h, 0])

)
= r1. It implies

Ind
(
F (k, ·), Ω2

)
= Ind

(
F (k# + ε1, ·), Ω2

)
= 1, ∀|k − k#| ≤ ε1,

due to the root c+(k), where

Ω2 = {c ∈ C | |c| < R, dist
(
c,U([−h, 0])

)
> r1}.

Therefore, c±(k) are the only root of F (k, ·) for k near k#, which are also simple. As

c−(k) ∈ (−∞,U(−h)) is away from c+(k), Lemma 4.1.3 implies that the branch c−(k)

of simple roots can be extended at least to (−k#, +∞) and remains in
(
− ∞,U(−h)

)
.

As F is even in k, we have c±(k) are also the only roots of F (−k, ·) for k ∈ (−∞, k#).

Therefore the extension c−(k) must be even on (−k#, k#) and we obtain the whole branch

c−(k) for k ∈ R.

Case 3a. g < g# and U ′′ > 0. Following the same arguments as in case 2, we obtain

that c−(k) = c−R(k) + ic−I (k) can be extended to a C1,α function on (k1, +∞) for some

k1 < k+
#, such that c±(k) and c−(k) are the only roots of F (k, ·) for all k ∈ (k1, +∞) and

c−I (k) > 0 for k ∈ (k1, k+
#). Let (k1, k+

#) also denote the maximal interval of the analytic

extension of c−(k) as a simple root of F (k, ·) inside C \ U([−h, 0]). The same above

index based argument (in case 1) applied to [k, k+
# − ε] for any k ∈ (max{k1, k−#}, k

+
#)

and 0 � ε < k+
# − k also implies that c±(k) and c−(k) are the only roots of F (k, ·) for

all k ∈ (max{k1, k−#}, k
+
#). According to Lemma 4.1.2 we have k1 ≥ −k0 > −∞. For

k ∈ (k1, k+
#), the semicircle theorem implies that c−(k) lies in the closed upper semi-disk

with the boundary diameterU([−h, 0]) and thus |c−(k)−c+(k)| > ρ0 where ρ0 > 0 is given

in Corollary 4.1.3.1. Moreover, since F (k, c) 6= 0 for any c ∈ U
(
(−h, 0]

)
(Lemma 4.1.1

and Lemma 4.2.1), we obtain from Lemma 4.1.3

lim
k→k1+

c−(k) = U(−h) =⇒ F
(
k2,U(−h)

)
= 0 =⇒ k2 ∈ {k−#, −k−#, −k+

#}.
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It must hold k2 = k−#, otherwise we must have c−(k−#) 6= U(−h), F
(
k−#,U(−h)

)
=

0, ∂kF
(
k−#,U(−h)

)
> 0, and Lemma 4.2.3 imply that there exists the fourth root near

U(−h) for 0 < k − k−# � 1. This contradicts that F (k, ·) has exactly three roots for all

k ∈ (max{k1, k−#}, k
+
#) and thus k2 = k−# and c−(k−#) = U(−h). For 0 < k−# − k � 1,

Lemma 4.2.3 yields the further extension of c−(k) back into
(
−∞,U(−h)

)
. From a similar

argument, we can extend this branch to k = −k−# with c−(−k−#) = U(−h). Finally, the

whole branch c−(k) for k ∈ R is obtained by the evenness c−(−k) = c−(−k).

Case 3b. g < g# and U ′′ < 0. Following the same arguments as in case 2, we

obtain that c−(k) = c−R(k) + ic−I (k) can be extended to a C1,α function on [k+
#, +∞) and

c−(k+
#) = U(−h). However, for 0 < k+

# − k � 1, Lemma 4.2.3 implies that there does

not exist any roots of F (k, ·) near U(−h) (as CI < 0 due to U ′′ < 0). The same index

argument further yields that c+(k) is the only root for k ∈ (k−#, k+
#). From Lemma 4.2.3,

we obtain another branch of roots in (−∞,U(−h)) of F (k, ·) for k ∈ (−k−#, k−#) which

along with the c+(k) are the only roots. The final conclusion again follows from the even

symmetry as in the above cases. �

Remark 4.2.2. As in [68] for the gravity wave, the spectral stability in the case U ′′ < 0

can also be obtained by directly modifying the usual proof of the Rayleigh theorem in the

fixed boundary case. Namely, multiplying (3.0.1) by ȳ, integrating on [−h, 0], using the

homogeneous boundary condition as in (2.2.6b) and (2.2.6c), and the semicircle theorem,

a contradiction occurs if an unstable mode c exists. Our above proof provides a complete

picture of the eigenvalue distribution, however.

4.3 Singular neutral modes at inflection values

To end this chapter, we discuss the spectrum near inflection values of U , which are the only

possible singular neutral modes other than U(−h) according to Lemma 4.1.1(6).

Proposition 4.3.1. Assume U ∈ C6, x20 ∈ [−h, 0), and U ′′(x20) = 0, then the following

hold for c0 = U(x20).
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1. For any α ∈ (0, 1
2
), there exist C > 0 depending only on U , g, and α, such that, with

k∗ = C max{1, (U(0)− c0)−2}, σ0 = (U(0)− c0)2/(2k∗),

for any σ ∈ (0,σ0), there exists a unique k0 ≥ k∗ such that F (k0, c0) = 0. Moreover

it satisfies

|k0 − (U(0)− c0)2/σ| ≤ C(U(0)− c0)−2,

|∂kF (k0, c0) + (U(0)− c0)2| ≤ C(U(0)− c0)−2ασα.

2. In addition, suppose x20 6= −h and

F(k0, c0) = 0, k0 > 0, ∂kF (k0, c0) 6= 0, U ′′′(x20) 6= 0,

then there exist C̃ > 0, δ > 0, and a C1 function c(k) defined for

0 ≤ |k − k0| ≤ δ, (k − k0)U ′′′(x20)∂kF (k0, c0) > 0,

such that c(k0) = c0, cI(k) > 0 for the above k 6= k0, and

F (k, c) = 0, |k − k0| ≤ δ and |c− c0| ≤ C̃δ iff c ∈ {c(k), c(k)}.

In the above statement (2), note that F(k0, c0) = 0 and Lemma 4.1.1(4) imply that

y−(k0, c0, 0) 6= 0 and thus Y (k, c0) is well-defined which is actually real due to U ′′(x20) =

0 and Lemma 3.6.4. Therefore it makes sense to talk about the sign of ∂kF (k0, c0). State-

ment (1) also implies that assumptions of statement (2) may be satisfied at inflection values

of U with |k| � 1 if σ is small.
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Proof. From Lemma 3.3.2 and Remark 3.3.1, there exists C0 > 0 such that

ky−(k, c,x2) ≥ (1/2) sinhµ−1(x2 + h) =⇒ y−(k, c, 0) 6= 0, ∀|k| ≥ C0, c ∈ C,

and thus F (k, c) and Y (k, c) are defined for all |k| ≥ C0. According to (4.1.2), FI(k, c0) =

0 for all k ∈ R and thus F (k, c0) ∈ R. Lemma 3.6.6 and Lemma 3.6.4 imply, for |k| ≥ C0

and c ∈ U([−h, 0)),

|YI(k, c)| ≤ C|U ′′(xc2)|e2µ−1xc2 =⇒
∣∣Y (k, c0)− |k|

∣∣ ≤ Cµ.

Therefore, for |k| ≥ C0, it holds

∣∣|k|−1F (k, c0)− (U(0)− c0)2 + σ|k|
∣∣ ≤ Cµ.

Let

k∗ = max{C0, 3C(U(0)− c0)−2} =⇒ C〈k∗〉−1 ≤ (U(0)− c0)2/3.

From the Intermediate Value Theorem, for every 0 < σ ≤ σ0, there exists a root k0 ∈

[k∗, +∞) of F (·, c0) close to (U(0)− c0)2/σ.

To estimate ∂kF (k0, c0) and obtain the uniqueness of k0, we analyze ∂kY (k0, c0) using

the same standard method used in the proof of Lemma 4.1.5. Let

y(k,x2) =
y0−(k, c0,x2)

y0−(k, c0, 0)

=⇒ − y′′ +
(
k2 +

U ′′

U − c0

)
y = 0, y(−h) = 0, y(0) = 1, Y (k, c0) = y′(0),
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where U ′′

U−c0 ∈ C
3([−h, 0]). Differentiating the above equation with respect to k yields

− ∂ky′′ +
(
k2 +

U ′′

U − c0

)
∂ky = −2ky, ∂ky(−h) = ∂ky(0) = 0,

∂kY (k, c0) = ∂ky
′(0),

=⇒ ∂kY (k, c0) =

∫ 0

−h
(∂ky

′y − ∂kyy′)′dx2 = 2k

∫ 0

−h
y(x2)2dx2.

From Lemma 3.3.2, we can estimate, for any α ∈ (0, 1
2
) and |k| > k∗,

∣∣∣∂kY (k, c0)− 2k

∫ 0

−h

(sinhµ−1(x2 + h)

sinhµ−1h

)2

dx2

∣∣∣
≤Cµα−1

∫ 0

−h

(sinhµ−1(x2 + h)

sinhµ−1h

)2

dx2

=⇒ |∂kY (k, c0)− sgn(k)| ≤ Cµα.

Therefore we obtain

∂kF (k, c0) = (U(0)− c0)2∂kY (k, c0)− 2σk = (U(0)− c0)2sgn(k)− 2σk +O(|k|−α),

which implies

∂kF (k0, c0) = −(U(0)− c0)2 +O(k−α0 ) if k0 ∈ (k∗,∞) and F (k0, c0) = 0.

The desired estimate on ∂kF (k0, c0) follows immediately, whose always negative sign also

implies the uniqueness of such k0 ∈ (k∗,∞).

Under the assumption in statement (2) of the proposition, Lemma 4.1.1(4) implies

y−(k0, c0, 0) 6= 0 and thus F (k, c) is C1 in (k, c) near (k0, c0) with cI ≥ 0. Much as in

the proof of Lemma 4.2.3, statement (2) can be proved by applying the Implicit Function

Theorem to F̃ (k, c), an extension of F (k, c) which is C1 in (k, c) in R × C near (k0, c0).

139



The Jacobi matrix of F̃ is

DcF̃ (k0, c0) =

∂cRF̃R ∂cI F̃R

∂cRF̃I ∂cI F̃I

∣∣∣
(k0,c0)

=

∂cRFR −∂cRFI

∂cRFI ∂cRFR

∣∣∣
(k0,c0)

,

where we also used the Cauchy-Riemann equation. According to Lemma 3.6.4, Y (k, c0) ∈

R and

∂cRFI(k0, c0) = (U(0)− c0)2∂cRYI(k0, c0) = (U(0)− c0)2πU
′′′(x20)y0−(k0, c0,x20)2

U ′(x20)2y0−(k0, c0, 0)2
6= 0,

and has the same sign as U ′′′(x20). Therefore DcF̃ (k0, c0) is invertible and thus there exist

δ > 0 and a C1 function c(k) = cR(k) + icI(k) defined for all |k − k0| ≤ δ such that

F̃ (k, c) = 0 for (k, c) ∈ R × C iff c = c(k). Consequently F (k, c) = 0 for (k, c) near

(k0, c0) iff c ∈ {c(k), c(k)} and cI(k) ≥ 0. Identifying complex numbers with 2-d column

vectors, since

∂kc(k0) = −(DcF̃ (k0, c0))−1∂kF̃ (k0, c0) = −∂kF (k0, c0)/∂cF (k0, c0)

implies cI(k)(k − k0)∂kF (k0, c0)U ′′′(x20) > 0 for k near k0, statement (2) follows readily.

Remark 4.3.1. In part (1) of the proposition, one may also seek k0 satisfying F(k0, c0) =

0 using the Intermediate Value Theorem instead. It is easy to see F(k, c0) ∈ R ap-

proaches −∞ as k → ∞. Therefore such k0 exists if supk≥0 F(k, c0) > 0 and only if

supk≥0 F(k, c0) ≥ 0, which may not the case if g and σ are sufficiently large. This is differ-

ent from the gravity waves (i.e. σ = 0), see [68, 26, 27]. It is also worth pointing out that

the smoothness of F for cI ≥ 0 based on chapter 3 made the analysis using the Implicit

Function Theorem in part (2) easier, compared with, e.g. [26].
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CHAPTER 5

BOUNDARY VALUE PROBLEMS OF THE NON-HOMOGENEOUS RAYLEIGH

EQUATION

In this chapter, using the fundamental solutions y±(k, c,x2) to the homogeneous Rayleigh

equation (3.0.1), we study the boundary value problem of the non-homogeneous Rayleigh

equation

−y′′ +
(
k2 +

U ′′

U − c
)
y =

ψ(c,x2)

U − c
, x2 ∈ (−h, 0); (5.0.1a)

y(−h) = ζ−(c),
(
U(0)−c

)2
y′(0)−

(
U ′(0)(U(0)−c)+g+σk2

)
y(0) = ζ+(c), (5.0.1b)

where the boundary conditions are from the linearized water wave system (2.2.6).

Using the two fundamental solutions y± to the homogeneous equation with zero bound-

ary values, for c ∈ C \ U([−h, 0]) it is standard to compute the solution to (5.0.1) in the

form

yB(k, c,x2) =
ζ+(c)

F(k, c)
y−(k, c,x2) +

ζ−(c)

y+(k, c,−h)
y+(k, c,x2) + ynh(k, c,x2), (5.0.2)

where ynh is the solution to (5.0.1a) with zero boundary values in (5.0.1b) given by

ynh(k, c,x2) =
y+(k, c,x2)

y+(k, c,−h)

∫ x2

−h

(y−ψ)(k, c,x′2)

U(x′2)− c
dx′2

+
y−(k, c,x2)

y+(k, c,−h)

∫ 0

x2

(y+ψ)(k, c,x′2)

U(x′2)− c
dx′2.

(5.0.3)
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Its derivative in x2 is given by

y′nh(k, c,x2) =
y′+(k, c,x2)

y+(k, c,−h)

∫ x2

−h

(y−ψ)(k, c,x′2)

U(x′2)− c
dx′2

+
y′−(k, c,x2)

y+(k, c,−h)

∫ 0

x2

(y+ψ)(k, c,x′2)

U(x′2)− c
dx′2.

(5.0.4)

Here the unique solvability condition of (5.0.1) is F(k, c) 6= 0, where F is defined in (4.0.1),

as the Wronskian of the fundamental solutions y±, which is a constant in x2, is given by

y+(k, c,−h) = (g + σk2)−1F(k, c) = (y+y
′
− − y′+y−)(k, c,x2). (5.0.5)

Throughout this chapter, we consider

c = cR + icI , cR ∈ I = U([−h− ρ0, ρ0]), |cI | ≤ ρ0,

where ρ0 ∈ [0,h0]. By choosing ρ0 smaller, we also have that, for some C > 0 depending

only on |U |C1 and |(U ′)−1|C0 ,

Re
(
g + σk2 + U ′(0)(U(0)− c)

)
≥ (1 + k2)/C, ∀k ∈ R, c ∈ I + i[−ρ0, ρ0]. (5.0.6)

This and boundary condition (5.0.1b) imply

|y(0)| ≤ Cµ2(|U(0)− c|2|y′(0)|+ |ζ+|), (5.0.7)

which will be used repeatedly to control y(0) in terms of y′(0).

Throughout this chapter, we assume that, there exists ρ0 > 0 such that

F0 = inf{(1 + k2)−
1
2 e−

h
µ |F(k, c)| | cR ∈ I = U([U(−h)− ρ0,U(0) + ρ0]),

|cI | ∈ [−ρ0, ρ0]} > 0.

(5.0.8)
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In this section, mostly we shall not vary k ∈ R, but carefully track the dependence of the

estimates on k, or equivalently µ = (1 + k2)−
1
2 . From Lemma 3.3.2, it is easy to compute

that, for any r1 ∈ [1,∞], r2 ∈ [1,∞), and |cI | ≤ ρ0,

µ
−(1+ 1

r1
)|y±|Lr1x2L∞cR + µ

− 1
r1 |y′±|Lr1x2Lr2cR + µ

− 1
r2 |y′±|L∞cRL

r2
x2

+ |y′+(−h)|Lr2cR + |y′−(0)|Lr2cR

≤Ceµ−1h,

where x2 ∈ [−h, 0] and cR ∈ I. This inequality will be used repeatedly in the rest of the

paper.

Solutions to this system are rather smooth away from c ∈ {U(x2), U(0), U(−h)}

and their singular behaviors near this set could be analyzed rather detailedly following

the approach in chapter 3, based on (3.2.15) and (3.4.3) and the estimates on B̃ and B.

However, for the purpose of this paper, it is sufficient just to obtain certain bounds of the

solutions based on the properties of the homogeneous solutions y±, which is carried out in

this chapter.

As a preparation, in section 5.1 we shall first consider (5.0.1) with zero boundary con-

ditions ζ± = 0 in (5.0.1b). Subsequently in section 5.2, we study the non-homogenous

Rayleigh system (5.0.1) with ζ± linear in c, particularly focusing on the derivatives of the

solutions on c ∈ I + i[−ρ0, ρ0]. We sometimes skip writing parameters k and c explicitly.

5.1 Non-homogeneous Rayleigh system (5.0.1) with zero boundary conditions ζ± = 0

The formulas (5.0.3) and (5.0.4) of ynh(k, c,x2) and y′nh(k, c,x2) are actually consistent

with (3.2.15) for x2 near xc2. In fact, (3.2.15) implies that

1 0

Γ 1

 B̃ is a fundamental

matrix of (3.0.1) and hence B̃ can be rewritten in terms of y± and Γ. A straight forward

calculation using (3.2.11) and (3.2.15) also yields (5.0.3). This solution also satisfy

ynh(k, c̄,x2) = ynh(k, c,x2) = ynh(−k, c,x2),
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so we mainly focus on cI ≥ 0. Assume ψ(cR + icI ,x2) → ψ0(cR,x2) as cI → 0+.

Due to the singularity of the non-homogeneous term at x2 = xc2 (as defined in (3.2.1) by

U(xc2) = cR) as cI → 0+, the limits of ynh and y′nh involve P .V . of integrals and delta

masses

ynh0(x2) =P .V .

∫ 0

−h
ψ0(x′2)

y0+(x2)y0−(x′2)χ{x′2<x2} + y0−(x2)y0+(x′2)χ{x′2>x2}

y0+(−h)(U(x′2)− cR)
dx′2

+
iπψ0(xc2)

U ′(xc2)

(y0+(x2)y0−(xc2)

y0+(−h)
χ{U(x2)>cR>U(−h)}

+
y0−(x2)y0+(xc2)

y0+(−h)
χ{U(0)>cR>U(x2)}

)
,

(5.1.1)

y′nh0(x2) =P .V .

∫ 0

−h
ψ0(x′2)

y′0+(x2)y0−(x′2)χ{x′2<x2} + y′0−(x2)y0+(x′2)χ{x′2>x2}

y0+(−h)(U(x′2)− cR)
dx′2

+
iπψ0(xc2)

U ′(xc2)

(y′0+(x2)y0−(xc2)

y0+(−h)
χ{U(x2)>cR>U(−h)}

+
y′0−(x2)y0+(xc2)

y0+(−h)
χ{U(0)>cR>U(x2)}

)
,

(5.1.2)

where χ is the characteristic function and we skipped the dependence on cR of ψ0, y0±,

and ynh0. Naturally, in the above the P .V . is taken only when there are singularities in the

integral.

We consider a priori and convergence estimates of ynh as cI → 0+ in the following

two cases of ψ(c,x2), motivated by the non-homogenous Rayleigh system (2.2.6) and its

differentiation in c.

• Case 1: ψ′(c, ·) ∈ Lrx2 , r ∈ (1,∞). While this case occurs in the linearized capillary

gravity wave (2.2.6) when some regularity is assumed on the initial vorticity, it is also a

crucial part of the analysis when (2.2.6) is differentiated in c.
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Lemma 5.1.1. Assume (5.0.8). For any ε > 01, there exists C > 0 depending only on r, ε,

F0, ρ0, |U ′|C2 and |(U ′)−1|C0 , such that the following hold.

1. For any k ∈ R, x2 ∈ [−h, 0], cI ∈ (0, ρ0], and cR ∈ I it holds

|ynh(k, c,x2)| ≤ Cµ1− 1
r
−ε(µ|ψ′|Lrx2 + |ψ|Lrx2 ),

|y′nh(k, c,x2)| ≤ Cµ−
1
r
−ε(1 +

∣∣ log |U(x2)− c|
∣∣)(µ|ψ′|Lrx2 + |ψ|Lrx2 ).

2. Assume ψ(· + icI , ·) → ψ(·, ·) in Lr1cRW
1,r
x2

as cI → 0+ with r1 ∈ (1,∞) and

r ∈ (1,∞), then

(a) ynh → ynh0 in Lq1cRL
∞
x2

for any q1 ∈ [1, r1) and y′nh → y′nh0 in Lq1cRL
q2
x2

for any

q1 ∈ [1, r1) and q2 ∈ [1,∞);

(b) at x̃2 = −h and x̃2 = 0, ynh(· + icI , x̃2) → ynh0(·, x̃2) and y′nh(· + icI , x̃2) →

y′nh0(·, x̃2) in Lq1cR for any q1 ∈ [1, r1). Moreover, and for any ε > 0, for any

k ∈ R, cI ∈ [0, 1],

|y′nh(c, x̃2)| ≤ C
(
µ−

1
r
−ε(µ|ψ′|Lrx2 + |ψ|Lrx2 ) +

(
1 +

∣∣ log |U(x̃2)− c|
∣∣)|ψ(x̃2)|

)
.

Even though the above formulas of ynh0 involve some subtlety at x2 = xc2, the regularity

of y′nh0 in x2 implies that ynh0 is Hölder continuous. In fact, the continuity of ynh0 at

x2 = xc2 can also be seen directly by using the rather precise local form of y0± near xc2

given in Lemma 3.4.1. Moreover, while the convergence is given in the integral norms, one

could attempt to obtain more detailed convergence estimates near xc2 using the tools given

in Lemma 3.2.1 and Proposition 3.2.4.

1Like the generic upper bound C > 0, the small constant ε > 0 in this and the next chapter may change
from line to line.
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Proof. Since cI > 0, no singularity is involved in (5.0.3) and (5.0.4), one can compute via

integration by parts

∫ x2

−h

y−ψ

U − c
dx′2 =

∫ x2

−h

y−ψ

U ′
(

log(U − c)
)′
dx′2

=
(y−ψ
U ′

log(U − c)
)
(x2)−

∫ x2

−h

(y−ψ
U ′
)′

log(U − c)dx′2.

The other integral can be handled similarly,

∫ 0

x2

y+ψ

U − c
dx′2 =

(y+ψ

U ′
log(U − c)

)∣∣∣0
x2
−
∫ 0

x2

(y+ψ

U ′
)′

log(U − c)dx′2.

Observing that the boundary terms at x2 are canceled and we have

ynh(x2) =− y+(x2)

y+(−h)

∫ x2

−h

(y−ψ
U ′
)′

log(U − c)dx′2 −
y−(x2)

y+(−h)

∫ 0

x2

(y+ψ

U ′
)′

log(U − c)dx′2

+
y−(x2)

y+(−h)

(y+ψ

U ′
log(U − c)

)
(0).

(5.1.3)

The above two integrals can be estimated similarly and we shall focus on the first one only.

Lemma 3.3.2 implies

∣∣(y−ψ
U ′
)′

log(U − c)
∣∣ =|U ′|−2

∣∣(y′−ψU ′ + y−ψ
′U ′ − y−ψU ′′) log(U − c)

∣∣
≤C cosh(µ−1(x2 + h))

(
µ|ψ′|+

(
1 + µ

∣∣ log |U − c|
∣∣)|ψ|)

×
(
1 +

∣∣ log |U − c|
∣∣).

Using the Hölder inequality we obtain

∣∣∣ ∫ x2

−h

(y−ψ
U ′
)′

log(U − c)dx′2
∣∣∣

≤C(µ|ψ′|Lrx2 + |ψ|Lrx2 )
∣∣ cosh(µ−1(x′2 + h))

(
1 +

∣∣ log |U(x′2)− c|
∣∣2)∣∣

L
r
r−1

x′2
([−h,x2])
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≤Cµ1− 1
r
−ε(|ψ|Lrx2 + µ|ψ′|Lrx2 ) coshµ−1(x2 + h).

From the initial condition (3.3.1) (in particular y+(0) = O(µ2|c−U(0)|2)) and (5.0.5), the

remaining boundary term can be estimated as

∣∣∣ y−(x2)

y+(−h)

(y+ψ

U ′
log(U − c)

)
(0)
∣∣∣ ≤ Cµ

|F(k, c)|
|ψ(0)| sinhµ−1(x2 + h).

The desired estimate on ynh follows from (5.0.8), (5.0.5), Lemma 3.3.2, the above inequal-

ities, and the standard Sobolev inequality

|ψ|L∞x2 ≤ C(µ1− 1
r |ψ′|Lrx2 + µ−

1
r |ψ|Lrx2 ). (5.1.4)

The estimate of y′nh can be obtained much as in the above. Integrating by parts and using

(5.0.5) to handle the boundary terms at x2, we have

y′nh(x2) =−
y′+(x2)

y+(−h)

∫ x2

−h

(y−ψ
U ′
)′

log(U − c)dx′2 −
y′−(x2)

y+(−h)

∫ 0

x2

(y+ψ

U ′
)′

log(U − c)dx′2

−
( ψ
U ′

log(U − c)
)
(x2) +

y′−(x2)

y+(−h)

(y+ψ

U ′
log(U − c)

)
(0).

(5.1.5)

The desired estimate on y′nh follows from (5.0.4), (5.1.4), the above estimate on the inte-

grals, and Lemma 3.3.2.

To consider the convergence of ynh, we first note that, for cI > 0, the imaginary part of

log(U(x2)− c) belongs to (−π, 0) and as cI → 0+,

log(U(x2)− c)→ log |U(x2)− cR|+ iπ
2

(
sgn(U(x2)− cR)−1

)
in L∞cRL

q
x2

, ∀q ∈ [1,∞).

(5.1.6)

Using expression (5.1.3), the estimates thereafter, bounds on y± in Lemma 3.3.2, and the
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convergence of y± to y0± as cI → 0 in Lemma 3.5.1, it is straight forward to obtain

ynh(x2)→

− y0+(x2)

y0+(−h)

∫ x2

−h

(y0−ψ0

U ′
)′

log |U − cR|dx′2 −
y0−(x2)

y0+(−h)

∫ 0

x2

(y0+ψ0

U ′
)′

log |U − cR|dx′2

+
iπψ0(xc2)

U ′(xc2)

(y0+(x2)y0−(xc2)

y0+(−h)
χ{U(x2)>cR>U(−h)} +

y0−(x2)y0+(xc2)

y0+(−h)
χ{U(0)>cR>U(x2)}

)
+

y0−(x2)

y0+(−h)

(y0+ψ0

U ′
log |U − cR|

)
(0),

in Lq1cRL
∞
x2

for any q1 ∈ [1, r1), where, for cR > U(0), two other terms involving sgn(U −

cR) (one from upper limit term from the second integral and the other from the boundary

term in (5.1.3)) cancelled each other. Here the loss of the integrability in cR in the con-

vergence is due to the last logarithmic term. Since (log |U − cR|)′ = P .V . U ′

U−cR
in the

distribution sense, the above limit is equal to ynh0 after integration by parts. The conver-

gence of y′nh is obtained using (5.1.5) along with (5.0.5) in a similar fashion

y′nh(x2)→

−
y′0+(x2)

y0+(−h)

∫ x2

−h

(y0−ψ0

U ′
)′

log |U − cR|dx′2 −
y′0−(x2)

y0+(−h)

∫ 0

x2

(y0+ψ0

U ′
)′

log |U − cR|dx′2

+ iπ
(y′0+(x2)y0−(xc2)ψ0(xc2)

y0+(−h)U ′(xc2)
χ{U(x2)>cR>U(−h)} −

ψ0(x2)

U ′(x2)
χ{cR>U(x2)}

+
y′0−(x2)y0+(xc2)ψ0(xc2)

y0+(−h)U ′(xc2)
χ{U(0)>cR>U(x2)}

)
−
((ψ0

U ′
log |U − cR|

)
(x2)− iπψ0(x2)

U ′(x2)
χ{cR>U(x2)}

)
+

y′0−(x2)

y0+(−h)

(y0+ψ0

U ′
log |U − cR|

)
(0)

where again two other terms involving sgn(U − cR) cancelled each other for cR > U(0).

Here the convergence in the slightly weaker norm Lq1cRL
q2
x2

, for any q1 ∈ [1, r1) and q2 ∈

[1,∞) is due to the logarithmic singularity both explicitly outside the integrals and in y′±
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(see also Lemma 3.5.1). The limit can be simplified to

−
y′0+(x2)

y0+(−h)

∫ x2

−h

(y0−ψ0

U ′
)′

log |U − cR|dx′2 −
y′0−(x2)

y0+(−h)

∫ 0

x2

(y0+ψ0

U ′
)′

log |U − cR|dx′2

+
iπψ0(xc2)

U ′(xc2)

(y′0+(x2)y0−(xc2)

y0+(−h)
χ{U(x2)>cR>U(−h)} +

y′0−(x2)y0+(xc2)

y0+(−h)
χ{U(0)>cR>U(x2)}

)
−
(ψ0

U ′
log |U − cR|

)
(x2) +

y′0−(x2)

y0+(−h)

(y0+ψ0

U ′
log |U − cR|

)
(0),

which is equal to y′nh0 after an integration by parts.

At the end point x2 = −h, 0, ynh(x̃2) and y′nh(x̃2) have only one integrals and, unlike

for general x2 ∈ (−h, 0), the terms y+(0), y′+(0) and y′−(−h) outside the integrals are pre-

scribed in (3.3.1) without any singularity. Hence the same above argument yields slightly

better estimates and convergence. One may make the following computations using (5.0.3)

and (5.0.4),

y′nh(0) =
y′+(0)

y+(−h)

∫ 0

−h

y−ψ

U − c
dx′2

=−
y′+(0)

y+(−h)

∫ 0

−h

(y−ψ
U ′
)′

log(U − c)dx′2 +
(y′+y−ψ)(0)

U ′(0)y+(−h)
log(U(0)− c),

y′nh(h) =
1

y+(−h)

∫ 0

−h

y+ψ

U − c
dx′2 =− 1

y+(−h)

∫ 0

−h

(y+ψ

U ′
)′

log(U − c)dx′2

+
1

y+(−h)

(y+ψ

U ′
log(U − c)

)∣∣∣0
−h

.

The desired inequalities follow from (3.3.1) and the above estimates, which completes the

proof of the lemma.

Assuming ψ ∈ L2
cR
H1
x2

, in the following we estimate ynh and y′nh as well as their

derivatives in x2 in L2
cR,x2

, in particular their dependence on k, by an energy estimate

approach.

Lemma 5.1.2. Assume (5.0.8). For any ε ∈ (0, 1), there exists C > 0 depending only on ε,
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F0, ρ0, |U ′|C2 , and |(U ′)−1|C0 , such that for any cI ≥ 0 and k ∈ R, it holds

|y′nh|2L2
cR,x2

+ µ−2|ynh|2L2
cR,x2

≤ C(|ψ|2L2
cR,x2

+ µ2−ε|ψ′|2L2
cR,x2

), (5.1.7)

where the norms are taken for cR ∈ I and x2 ∈ [−h, 0].

Proof. We first assume cI > 0 and drop the subscript ·nh for notation simplification. Mul-

tiplying the Rayleigh equation (5.0.1a) by ȳ and integrating in both cR and x2, we have

∫
I

∫ 0

−h
|y′|2 + k2|y|2dx2dcR =

∫
I
y′ȳdcR

∣∣∣
x2=0

+

∫
I

∫ 0

−h

ψȳ − U ′′|y|2

U − c
dx2dcR

=

∫
I
y′ȳdcR

∣∣∣
x2=0

+

∫
I

∫ 0

−h

U ′

U − c

((ψȳ − U ′′|y|2
U ′

)(
c,x2)−

(ψȳ − U ′′|y|2
U ′

)(
c,xc2)

)
dx2dcR

+

(∫ U(− 1
2
h)

U(−h− 1
2
ρ0)

+

∫ U( 1
2
ρ0)

U(− 1
2
h)

)(ψȳ − U ′′|y|2
U ′

)(
c,xc2)

×
(

log(U(0)− c)− log(U(−h)− c)
)
dcR ,

4∑
j=1

Aj.

The first term A1 of boundary contribution can be estimated by Lemma 5.1.1(2b) and

(5.0.7) with ζ± = 0, as well as (5.0.6), (5.0.8) and (5.1.4),

|A1| ≤
∣∣∣ ∫
I
y′ȳdcR

∣∣∣
x2=0

∣∣∣ ≤Cµ2
∣∣∣ ∫
I
|U(0)− c|2|y′(0)|2dcR

∣∣∣
≤Cµ1−ε(µ|ψ′|L2

cR,x2
+ |ψ|L2

cR,x2
)2.

Concerning the last integral A4, we first split it as

|A4| ≤
∫ U( 1

2
ρ0)

U(− 1
2
h)

(∣∣(ψȳ − U ′′|y|2)(c, ·)
∣∣
Cαx2
|xc2|α +

∣∣(ψȳ − U ′′|y|2)(c, 0)
∣∣)

×
(
1 +

∣∣ log |U(0)− c|
∣∣)dcR.
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The above terms at x2 = 0 can estimated much as A1 and we obtain

∫ U( 1
2
ρ0)

U(− 1
2
h)

∣∣(ψȳ − U ′′|y|2)(c, 0)
∣∣(1 +

∣∣ log |U(0)− c|
∣∣)dcR

≤C
∫ U( 1

2
ρ0)

U(− 1
2
h)

(µ2|ψ|2 + µ2|y′|2)(c, 0)|U(0)− c|dcR ≤ Cµ1−ε(µ|ψ′|L2
cR,x2

+ |ψ|L2
cR,x2

)2.

We shall estimate all the remaining terms using the Hölder norms of ψȳ and |y|2. For any

H1 function f(x) on an interval, it holds

|f |Cα ≤ C|f |
1
2
−α

L2 |f |
1
2

+α

H1 , α ∈ [0, 1
2
], (5.1.8)

which applies to ψȳ and |y|2. In the f |H1 can be replaced by |f ′|L2 if f vanishes somewhere

in the interval. Hence for each fixed c with cI > 0 and cR ∈ I,

∣∣|y|2∣∣
Cαx2
≤ C|y|Cαx2 |ȳ|C0

x2
≤ C|y|1−αL2

x2

|y′|1+α
L2
x2

,

|ψȳ|Cαx2 ≤ C
(
|ψ|

1
2
−α

L2
x2

|ψ|
1
2

+α

H1
x2

|y|
1
2

L2
x2

|y′|
1
2

L2
x2

+ |ψ|
1
2

L2
x2

|ψ|
1
2

H1
x2

|y|
1
2
−α

L2
x2

|y′|
1
2

+α

L2
x2

)
.

For any α ∈ (0, 1
2
] and k > 0, using y(c,−h) = 0 and the above estimates, we obtain

|y′|2L2
cR,x2

+ k2|y|2L2
cR,x2

≤C
∫
I

∫ 0

−h

∣∣(ψȳ − U ′′|y|2)(c, ·)
∣∣
Cαx2
|x2 − xc2|α−1dx2dcR

+ C

∫ U(− 1
2
h)

U(−h− 1
2
ρ0)

∣∣(ψȳ − U ′′|y|2)(c, ·)
∣∣
Cαx2
|xc2 + h|α

(
1 +

∣∣ log |U(−h)− c|
∣∣)dcR

+ C

∫ U( 1
2
ρ0)

U(− 1
2
h)

∣∣(ψȳ − U ′′|y|2)(c, ·)
∣∣
Cαx2
|xc2|α

(
1 +

∣∣ log |U(0)− c|
∣∣)dcR

+ Cµ1−ε(µ|ψ′|L2
cR,x2

+ |ψ|L2
cR,x2

)2

≤C
∫
I

(
|ψ|

1
2
−α

L2
x2

|ψ|
1
2

+α

H1
x2

|y|
1
2

L2
x2

|y′|
1
2

L2
x2

+ |ψ|
1
2

L2
x2

|ψ|
1
2

H1
x2

|y|
1
2
−α

L2
x2

|y′|
1
2

+α

L2
x2

+ |y|1−αL2
x2

|y′|1+α
L2
x2

)∣∣
c
dcR

+ Cµ1−ε(µ|ψ′|L2
cR,x2

+ |ψ|L2
cR,x2

)2
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≤C
(
|ψ|

1
2
−α

L2
cR,x2

|ψ|
1
2

+α

L2
cR
H1
x2

|y|
1
2

L2
cR,x2

|y′|
1
2

L2
cR,x2

+ |ψ|
1
2

L2
cR,x2

|ψ|
1
2

L2
cR
H1
x2

|y|
1
2
−α

L2
cR,x2

|y′|
1
2

+α

L2
cR,x2

+ |y|1−αL2
cR,x2

|y′|1+α
L2
cR,x2

)
+ Cµ1−ε(µ|ψ′|L2

cR,x2
+ |ψ|L2

cR,x2
)2

≤1
2
|y′|2L2

cR,x2
+ (C + 1

2
k2)|y|2L2

cR,x2
+ C

(
|ψ|2L2

cR,x2
+ k−2(1−2α)|ψ′|2L2

cR,x2

)
.

By choosing α = ε/2, we have that, there exists k0 > 0 such that for any |k| ≥ k0 and

cI > 0, y(·+icI , ·) satisfies (5.1.7). To obtain the estimates for ynh0 and y′nh0 in the limiting

case cI = 0+, for cI > 0, let y(c,x2) and y′(c,x2) be defined by (5.0.3) and (5.0.4), which

satisfy the desired estimates uniform in cI > 0. For |k| ≤ k0 and cI > 0, the desired

estimates simply follows from the estimates and convergence obtained in Lemma 5.1.1.

Finally we consider the case cI = 0. Given ψ(cR,x2) ∈ L2
cR
H1
x2

, let ynh(k, cR+icI ,x2)

be given by (5.0.3) with c = cR + icI with 1 � cI > 0, which solves (5.0.1a). From

Lemma 5.1.1, it holds that y(· + icI , ·) → ynh0 and y′(· + icI , ·) → y′nh0 in L
3
2
cRL

2
x2

as

cI → 0+. Therefore ynh0 and y′nh0 are also the weak limit of y and y′ in L2
cR,x2

as cI → 0+

and thus also satisfy (5.1.7).

• Case 2:

ψ(c,x2) = f(c,x2)ψ0(x2), f(·+ icI , ·) ∈ Lr1cRC
α
x2

, ψ0 ∈ Lr, r > 1, r1 ∈ [ r
r−1

,∞],α > 0.

(5.1.9)

Again we start with rough estimates on ynh and y′nh.

Lemma 5.1.3. Assume (5.0.8) and (5.1.9). For any q ∈ [1, rr1
r+r1

), the following hold for

x2 ∈ [−h, 0] and cR ∈ I.

1. There exists C > 0 depending only on r, r1, q, α, F0, ρ0, |U ′|C2 , and |(U ′)−1|C0 , such

that for any k ∈ R and cI ∈ (0, ρ0], it holds

|y′nh(k, ·+ icI , ·)|L∞x2LqcR + µ−1|ynh(k, ·+ icI , ·)|
L∞x2L

rr1
r+r1
cR

≤Cµ−α|f(·+ icI , ·)|Lr1cRCαx2 |ψ|Lr .
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2. Assume f(·+ icI , ·)→ f0(·, ·) in Lr1cRC
α
x2

as cI → 0+, then

(a) ynh → ynh0 in L∞x2L
rr1
r+r1
cR and y′nh → y′nh0 in L∞x2L

q
cR

, where ynh0 and y′nh0 are

given by (5.1.1) and (5.1.2) with ψ0 replaced by f0ψ0;

(b) at x̃2 = −h, 0, y′nh(k, · + icI , x̃2) → y′nh0(k, ·, x̃2) in L
rr1
r+r1
cR . Moreover, and for

any ε ∈ (0, 1
r
) with ε ≤ α, for any k ∈ R, cI ≥ 0, it holds

|y′nh(·+ icI , x̃2)|
L

rr1
r+r1
cR

≤ Cµ−ε|f |Lr1cRCαx2 |ψ|Lr ,

where C also depends on ε > 0.

Proof. Since the desired estimates are stronger and with weaker assumptions if α ∈ (0, 1)

is smaller (with possibly greater C > 0), without loss of generality, we may assume α < 1
r
.

In the following we shall need the modification x̃c2 determined by cR ∈ I:

x̃c2−(c,x2) =


min{x2,xc2}, if cR > U(−h),

−h, if cR ≤ U(−h),

,

x̃c2+(c,x2) =


max{x2,xc2}, if cR < U(0),

0, if cR ≥ U(0).

(5.1.10)

For cI > 0, we first split ynh into

y1(x2) =
y+(x2)

y+(−h)

(y−f
U ′
)
(x̃c2−)

∫ x2

−h

ψ0U
′

U − c
dx′2 +

y−(x2)

y+(−h)

(y+f

U ′
)
(x̃c2+)

∫ 0

x2

ψ0U
′

U − c
dx′2,

and

y2(x2) =
y+(x2)

y+(−h)

∫ x2

−h

((y−f
U ′
)
(x′2)−

(y−f
U ′
)
(x̃c2−)

) ψ0U
′

U − c
dx′2

+
y−(x2)

y+(−h)

∫ 0

x2

((y+f

U ′
)
(x′2)−

(y+f

U ′
)
(x̃c2+)

) ψ0U
′

U − c
dx′2,
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where we skipped all the dependence on c and k. Clearly ynh = y1 + y2.

To estimate y1, we can rewrite its integral part as

∫ x2

−h

ψ0U
′

U − c
dx′2 =

∫
R

χU([−h,x2])(ψ0 ◦ U−1)

τ − cR − icI
dτ = −

(( 1

τ + icI

)
∗ ψ̃−(x2, ·)

)
(cR).

where

ψ̃−(x2, τ) = χU([−h,x2])(ψ0 ◦ U−1)(τ), ψ̃+(x2, τ) = χU([x2,0])(ψ0 ◦ U−1)(τ).

The operator of convolution by 1
τ+icI

is bounded onLr uniformly in cI > 0 and converges to

π(H+iI) strongly in Lr as cI → 0+, whereH is the Hilbert transform and I is the identity.

The other integral can be treated similarly and we obtain from (5.0.8) and Lemma 3.3.2

|y1|
L∞x2L

rr1
r+r1
cR

≤C
(∣∣y+(x2)y−(x̃c2−)

y+(−h)

∣∣
L∞cR,x2

+
∣∣y−(x2)y+(x̃2+)

y+(−h)

∣∣
L∞cR,x2

)
|f |Lr1cRL∞x2 |ψ0|Lr

≤Cµ|f |Lr1cRL∞x2 |ψ0|Lr .

Moreover, since x2 → ψ̃±(x2, ·) are two uniformly continuous mapping from [−h, 0] to

Lr(R) and the above convolution
(

1
τ+icI

)
∗ is bounded on LrcR(R) uniformly in cI > 0,

we have that
(

1
τ+icI

)
∗ ψ̃±(x2, ·) are two families (with parameter cI) of equicontinuous

functions (of x2) from [−h, 0] to LrcR . As cI → 0+, they converge pointwisely (in x2) to

π(H + iI)ψ̃±(x2, ·) ∈ LrcR which are also uniformly continuous in x2. The equicontinuity

and the compactness of [−h, 0] imply that the convergence is uniform in x2. Therefore,

along with the L∞cR,x2
convergence of y± as cI → 0+ (Lemma 3.5.1), we obtain that, as

cI → 0+, in L∞x2L
rr1
r+r1
cR ,

y1(cR + icI ,x2)→π y0+(cR,x2)

y0+(cR,−h)

(y0−f0

U ′
)
(cR, x̃c2−)

(
(H + iI)ψ̃−(x2, ·)

)
(cR)

+ π
y0−(cR,x2)

y0+(cR,−h)

(y0+f0

U ′
)
(cR, x̃c2+)

(
(H + iI)ψ̃+(x2, ·)

)
(cR).
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The other part y2 can be estimated by the Hölder continuity of f and y± in x2 as

|y2(c,x2)| ≤C
(∣∣∣ y+(x2)

y+(−h)

∣∣∣|y−f |Cα
x′2

([−h,x2])

∫ x2

−h

|U − U(x̃c2−)|α

|U − c|
|ψ0|U ′dx′2

+
∣∣∣ y−(x2)

y+(−h)

∣∣∣|y+f |Cα
x′2

([x2,0])

∫ 0

x2

|U − U(x̃c2+)|α

|U − c|
|ψ0|U ′dx′2

)
≤Cµ1−α|f |Cαx2

∫
R

|τ − cR|α

|τ − c|
(
χU([−h,0])(|ψ0| ◦ U−1)

)
(τ)dτ ,

where we also used

|y−f |Cα
x′2

[−h,x2] ≤ C|y−|Cα
x′2

([−h,x2])|f |Cαx2 ≤ Cµ1−αeµ
−1(x2+h)|f |Cαx2 .

and a similar estimate for |y+f |Cα
x′2

([x2,0]) due to Lemma 3.3.2. Since |τ |α
|τ+icI |

is a weak-L
1

1−α

function of τ with norm uniformly bounded in cI > 0, the weak Young’s inequality yield

|y2|L∞x2L
r2
cR
≤ Cµ1−α|f |Lr1cRCαx2 |ψ0|Lr , where 1

r2
= 1

r1
+ 1

r
− α < 1

r1
+ 1

r
.

To obtain the convergence of y2 as cI → 0, using the L∞cR,x2
convergence of y± and the

L∞cRL
q̃
x2

and L∞x2L
q̃
cR

, ∀q̃ ∈ (1,∞), convergence of y′± (Lemma 3.5.1), one may easily

reduce the problem to the convergence of

∆̃ =
∣∣∣ y0+(x2)

y0+(−h)

∫ x2

−h

((y0−f0

U ′
)
(x′2)−

(y0−f0

U ′
)
(x̃c2−)

)( 1

U − c
− 1

U − cR
)
ψ0U

′dx′2

∣∣∣
L∞x2L

r2
cR

≤Cµ1−α
∣∣∣|f0|LCαx2

∫
R

∣∣ |τ − cR|α
|τ − c|

− |τ − cR|α−1
∣∣∣(χU([−h,0])(|ψ0| ◦ U−1)

)
(τ)dτ

∣∣∣
L
r2
cR

and that of a similar term of the other integral. It is easy to see via a rescaling that, for

s ∈ [1, 1
1−α),

∣∣∣ |τ |α|τ + icI |
− |τ |α−1

∣∣∣
Ls

= |cI |α−1
∣∣γ( τ

cI

)∣∣
Ls

= |cI |
1
s
−1+α|γ|Ls ,

where γ(τ) = |τ |α
|τ+i| − |τ |

α−1, while with the weak-L
1

1−α norm equal to |γ|
w−L

1
1−α

. Hence
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∣∣∣∣∣∣∣ |τ |α|τ + icI |
− |τ |α−1

∣∣∣ ∗ ϕ∣∣∣∣
L

1
1
r−α
→ 0, as cI → 0,

for any ϕ ∈ Lr̃ with r̃ > r. Through a standard density argument and using the above

uniform bound on the weak-L
1

1−α norm of the convolution kernel, this convergence also

holds for any ϕ ∈ Lr. Therefore, we obtain ∆̃→ 0 and thus

y2(cR + icI ,x2)→ y0+(cR,x2)

y0+(cR,−h)

∫ x2

−h

((y0−f0

U ′
)
(cR,x′2)−

(y0−f0

U ′
)
(cR, x̃c2−)

) ψ0U
′

U − cR
dx′2

+
y0−(cR,x2)

y0+(cR,−h)

∫ 0

x2

((y0+f0

U ′
)
(cR,x′2)−

(y0+f)

U ′
)
(cR, x̃c2+)

) ψ0U
′

U − cR
dx′2.

The above estimates of y1 and y2 together yield the desired estimates of ynh and its

convergence as cI → 0. The analysis on y′nh also follows from the above estimates with

minor modifications, mostly replacing some |y±|L∞cR,x2
by |y′±|L∞x2LscR or |y′±|L∞cRLsx2 outside

the integrals, needed to control its logarithmic singularity caused by y′±. We omit the

details.

Finally, as in Lemma 5.1.1, stronger estimates and convergence can be obtained at

x2 = −h, 0 due to prescribed boundary values (3.3.1).

In fact,

y′nh(0) =
y′+(0)

y+(−h)

∫ 0

−h

y−fψ0

U − c
dx′2

=
y′+(0)

y+(−h)

(y−f
U ′
)
(x̃c2−)

∫ 0

−h

ψ0U
′

U − c
dx′2

+
y′+(0)

y+(−h)

∫ 0

−h

((y−f
U ′
)
(x′2)−

(y−f
U ′
)
(x̃c2−)

) ψ0

U − c
dx′2

implies

|y′nh(0)|
L

rr1
r+r1
cR

≤C
(
|f |Lr1cRL∞x2

∣∣∣ ∫ U(0)

U(−h)

ψ0

τ − c
dτ
∣∣∣
LrcR
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+ µ−1e−µh|y−|
L

1
ε
cR
Cεx2

|f |Lr1cRCεx2

∣∣∣ ∫ U(0)

U(−h)

|ψ0|
|τ − c|1−ε

dτ
∣∣∣
L

r
1−εr
cR

)
.

From the same procedure as in estimating y1 and y2 in the above, we obtain the desired

estimate. Its convergence follows much as that of ynh. The same argument applies to

y′nh(c,−h) and the proof of the lemma is complete.

The following is an estimate ynh0 and y′nh0 in L2
cR,x2

and their dependence on k.

Lemma 5.1.4. In addition to (5.0.8) and (5.1.9), assume 1
2
≥ 1

r
+ 1

r1
. For any ε ∈ (0, 1),

there exists C > 0 depending only on ε, r, r1, F0, ρ0, |U ′|C2 , and |(U ′)−1|C0 , such that for

any k ∈ R and cI ≥ 0, it holds

|y′nh|2L2
cR,x2

+ µ−2|ynh|2L2
cR,x2

≤ Cµ1−ε|f |2
L
r1
cR
Cαx2
|ψ0|2Lr .

where the norms are taken for cR ∈ I and x2 ∈ [−h, 0].

Proof. As in the proof of Lemma 5.1.2, we first consider for cI > 0 and drop the sub-

script ·nh for notation simplification. Multiplying the Rayleigh equation (5.0.1a) by ȳ and

integrating in both cR and x2, we have

∫
I

∫ 0

−h
|y′|2 + k2|y|2dx2dcR =

∫
I

∫ 0

−h

fψ0ȳ − U ′′|y|2

U − c
dx2dcR +

∫
I
y′ȳdcR

∣∣∣
x2=0

=

∫
I

∫ 0

−h

U ′ψ0

U − c

((fȳ
U ′
)(
c,x2)−

(fȳ
U ′
)(
c,xc2)

)
dx2dcR

+

∫
I

(fȳ
U ′
)(
c,xc2)

∫ 0

−h

U ′ψ0

U − c
dx′2dcR −

∫
I

∫ 0

−h

U ′′|y|2

U − c
dx2dcR +

∫
I
y′ȳdcR

∣∣∣
x2=0

,I1 + I2 + I3 + I4.

The term I4 can be estimated much as in the proof of Lemma 5.1.2 using Lemma 3.3.2

and Lemma 5.1.3(2b)

|I4| ≤ Cµ2
∣∣∣ ∫
I
|U(0)− c|2|y′(0)|2dcR

∣∣∣ ≤ Cµ2−ε|f |2
L
r1
cR
Cαx2
|ψ0|2Lr .
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Choose α1 and r2 such that

0 < α1 ≤ max{ ε
2
,α, 1

r
+ 1

r1
}, 1

r2
= 1 + α1 − 1

r
− 1

r1
∈ (1

2
, 1],

which is possible due to our assumption on α, r, and r1. The integral I1 can be controlled

by the Hölder continuity of f and y in x2, the weak Young’s inequality, and the (5.1.8) type

interpolation inequality as

|I1| ≤C
∫
R

∫
R

(
χI |(fȳ)(cR, ·)|Cα1x2

)
|τ − cR|α1−1|(χU([−h,0])ψ0 ◦ U−1)(τ)|dτdcR

≤C|fȳ|
L

1

1+α1−
1
r

cR
C
α1
x2

|ψ0|Lr ≤ C|f |Lr1cRCα1x2 |y|Lr2cRCα1x2 |ψ0|Lr

≤C|f |Lr1cRCα1x2
∣∣|y′| 12+α1

L2
x2

|y|
1
2
−α1

L2
x2

∣∣
L
r2
cR

|ψ0|Lr ≤ C|f |Lr1cRCα1x2 |y
′|

1
2

+α1

L2
cR,x2

|y|
1
2
−α1

L
r3
cR
L2
x2

|ψ0|Lr

where r3 < 2 is determined by
1
2

+α1

2
+

1
2
−α1

r3
= 1

r2
. Therefore we obtain

|I1| ≤ 1
4

(
|y′|2L2

cR,x2
+ k2|y|2L2

cR,x2

)
+ Ck−(1−2α1)|f |2

L
r1
cR
C
α1
x2
|ψ0|2Lr .

The estimate of I2 is much as in the proof of Lemma 5.1.3 based on the boundedness of the

convolution operator on Lr

|I2| ≤C|ψ|Lr |(fȳ)(cR,xc2)|
L

r
r−1
cR

≤ C|ψ|Lr
∣∣|f |L∞x2 |y| 12L2

x2

|y′|
1
2

L2
x2

∣∣
L

r
r−1
cR

≤C|ψ|Lr |f |Lr4cRL∞x2 |y|
1
2

L2
cR,x2

|y′|
1
2

L2
cR,x2

,

where r4 = 2r
r−2
≤ r1. Hence

|I2| ≤ 1
4

(
|y′|2L2

cR,x2
+ k2|y|2L2

cR,x2

)
+ Ck−1|f |2

L
r1
cR
C
α1
x2
|ψ|2Lr .

Finally I3 can be estimated exactly as in the proof of Lemma 5.1.2 (and also applying
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Lemma 5.1.3(2b)) and we have

|I3| ≤ 1
4
|y′|2L2

cR,x2
+ C

(
|y|2L2

cR,x2
+ µ4−ε|f |2

L
r1
cR
Cαx2
|ψ0|2Lr

)
.

Therefore, there exists k0 > 0 such that y and y′ satisfy the desired estimates for |k| ≥

k0 and cI > 0. For those |k| ≤ k0, the |y|2L2
cR,x2

term in the upper bound of I3 can be

controlled by Lemma 5.1.3 directly and thus the desired estimates are also satisfied by y

and y′. The estimate in the limiting case of cI = 0+ can be obtained through the same

weak convergence argument as in the proof of Lemma 5.1.2.

Remark 5.1.1. In some sense the L2
cR,x2

assumption on ψ and ψ′ in the Lemma 5.1.2 is the

(unreachable) borderline case of Lemma 5.1.4. In fact, ψ(cR,x2) can be written as ψ · 1,

where the former belongs to L2
cR
C

1
2
x2 with r1 = 2. As r < ∞ and 1

r
+ 1

r1
= 1

2
are assumed

in (5.1.9) and Lemma 5.1.4, it does not apply in this case.

5.2 Differentiation in c of solutions to non-homogeneous Rayleigh system

Based on the analysis of the non-homogeneous Rayleigh equation (5.0.1) with zero bound-

ary conditions, in this section we shall mainly consider (2.2.6c) type non-zero boundary

conditions, in particular the estimates of the derivative of solutions yB(k, c,x2) given in

(5.0.2) with respect to c.

Through straight forward calculations and applying Lemma 3.3.2, we obtain

Lemma 5.2.1. Assume (5.0.8) and c ∈ I + i[−ρ0, ρ0]. For any 1 < r1 < r2 < ∞, there

exists C > 0 depending only on r1, r2, F0, ρ0, |U ′|C2 , and |(U ′)−1|C0 , such that for any

|cI | ≤ ρ0, the unique solution yB(k, c,x2) to (5.0.1) satisfies

|yB|L2
cR,x2

≤ C
(
|ynh|L2

cR,x2
+ µ

5
2 |ζ+|L2

cR
+ µ

1
2 |ζ−|L2

cR

)
,

|y′B|L2
cR,x2

≤ C
(
|y′nh|L2

cR,x2
+ µ

3
2 |ζ+|L2

cR
+ µ−

1
2 |ζ−|L2

cR

)
,
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|y′B(−h)|Lr1cR ≤ C
(
|y′nh(−h)|Lr1cR + µ−1|ζ−|Lr1cR + |ζ−|Lr2cR + µe−µ

−1h|ζ+|Lr1cR
)
,

|y′B(0)|Lr1cR ≤ C
(
|y′nh(0)|Lr1cR + µ|ζ+|Lr1cR + µ2|ζ+|Lr2cR + µ−1e−µ

−1h|ζ−|Lr1cR )
)
,

where the norm is taken on cR ∈ I and x2 ∈ [−h, 0].

We shall also consider the limit

yB0 = yB|cI=0+ = lim
cI→0+

yB = b0−y0− + b0+y0+ + ynh0, (5.2.1)

which exists for appropriateψ(c,x2) and satisfies the same estimates as yB (see section 5.1).

In the rest of the section, we shall focus on the special case motivated by (2.2.6):

ψ = ψ0(x2), ζ−(c) = ξ−, ζ+(c) = ξ1 + (U(0)− c)ξ2, (5.2.2)

where ψ0, ξ−, ξ1, and ξ2 are all independent of c. Our goal is to obtain the estimates of the

derivatives of the solution yB(k, c,x2) to (5.0.1) in cR.

Proposition 5.2.2. Assume U ∈ C4, (5.0.8), and (5.2.2). For any ε ∈ (0, 1), r ∈ (1,∞),

there exists C > 0 depending on ε, r, F0, ρ0, |U ′|C3 , and |(U ′)−1|C0 such that the solution

yB(k, c,x2) to (5.0.1) satisfies that for any |cI | ≤ ρ0 and k ∈ R,

|yB|L2
cR,x2

+ µ|y′B|L2
cR,x2

+ µ
3
2 |y′B(0)|L2

cR
+ µ

1
2 |yB(0)|L2

cR

≤Cµ
5
2

(
µ−1−ε|ψ0|L2 + |ξ1|+ |ξ2|+ µ−2|ξ−|

)
,

|∂cRyB|L2
cR,x2

+ µ|∂cRy′B + 1
U ′(xc2)

y′′B|L2
cR,x2

+ µ
3
2 |(∂cRy′B + 1

U ′(xc2)
y′′B)(0)|L2

cR

+ µ
1
2 |∂cRyB(0)|L2

cR

≤Cµ
3
2

(
µ−1−ε|ψ0|L2 + µ−ε|ψ′0|L2 + |ξ1|+ |ξ2|+ µ−2|ξ−|

)
,

160



and, if U ∈ C5, then

|ỹB|L2
cR,x2

≤ Cµ
1
2

(
µ−1−ε|ψ0|L2 + µ−ε|ψ′0|L2 + µ1−ε|ψ′′0 |L2 + |ξ1|+ |ξ2|+ µ−2|ξ−|

)
,

where C also depends on |U ′|C4 and

ỹB = ∂2
cR
yB +

1

U ′(xc2)2

(
− y′′B +

g + σk2

F(k, c)

(
y′′B(−h)y+ − y′′B(0)y−

))
,

and all the norms are taken on (cR,x2) ∈ I×[−h, 0]. Moreover, as cI → 0+, the following

hold.

1. Assume ψ0 ∈ L2, then for any r ∈ [1, 2), yB → yB0 in L∞x2L
2
cR

, y′B → y′B0 in L∞x2L
r
cR

,

and y′B(0)→ y′B0(0) in L2
cR

.

2. Assume ψ0 ∈ H1, then for any r ∈ [1, 2) and q ∈ [1,∞), ∂cRyB → ∂cRyB0 in

L∞x2L
r
cR

, ∂cy′B+ 1
U ′(xc2)

y′′B → ∂cy
′
B0+ 1

U ′(xc2)
y′′B0 inLqx2L

r
cR

, and (∂cy
′
B+ 1

U ′(xc2)
y′′B)(0)→

(∂cy
′
B0 + 1

U ′(xc2)
y′′B0)(0) in LrcR .

3. Assume ψ0 ∈ H2, then for any r ∈ [1, 2), ỹB also converges in L∞x2L
r
cR

to its limit

ỹB0.

Since yB is holomorphic in c /∈ U([−h, 0]), ∂cyB = ∂cRyB. From the Rayleigh equa-

tion, singularity at the level of delta mass appears in y′′B along U(x2) = cR, x2 ∈ [−h, 0], as

cI → 0+. Therefore ∂2
c yB and ∂cy′B also display such singularities which are singled out

in the above estimates. The y′′B involved in the singular terms will be substituted by using

the Rayleigh equation (5.0.1a) whenever necessary.

Proof. The L2
cR,x2

estimates on yB and y′B, as well as the LrcR estimate of y′B(0) with r ∈

(1,∞), follow readily from (5.0.8), (5.2.2), Lemma 3.3.2, Lemma 5.1.4, Lemma 5.1.3

(with r = 2, r1 = ∞, and f0 = 1), and Lemma 5.2.1. The estimate of yB(0) is simply

obtained from those of yB and y′B. Moreover, for the rest of the proof of the proposition
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we shall also need the following inequality for r ∈ (1,∞) which is also derived form

Lemma 5.1.3 and Lemma 5.2.1 and uniform in cI ∈ [0, ρ0]

|y′B(0)|LrcR ≤ C(µ−ε|ψ0|Lr + µ(|ξ1|+ |ξ2|) + µ−1e−µ
−1h|ξ−|),

|y′B(−h)|LrcR ≤ C(µ−ε|ψ0|Lr + µe−µ
−1h(|ξ1|+ |ξ2|) + µ−1|ξ−|).

(5.2.3)

The convergence of yB, y′B, and y′B(0) follows directly from the continuity of function

F (Lemma 4.1.1) and the convergence of y± and y′± (Lemma 3.5.1) and ynh (Lemma 5.1.3).

Moreover, we also have the convergence of y′B(−h) in L2
cR

.

In the following differentiations in cR are all carried out for cI > 0. The convergence

analysis based on the convergence results of y± and those of ynh in section 5.1 ensure that

the estimates hold also for cI = 0+. Directly differentiating the Rayleigh equation (5.0.1a)

in cR directly would cause worse singularity in the equation. Instead we first consider

Dc = U ′(xc2)∂cR + ∂x2 , ∂cR = U ′(xc2)−1(Dc − ∂x2), [Dc, ∂x2 ] = 0, (5.2.4)

where xc2 is defined by U(xc2) = cR as in (3.0.6). It satisfies

Dc

(
1

U(x2)−c

)
= −U ′(x2)−U ′(xc2)

(U(x2)−c)2 , D2
c

(
1

U(x2)−c

)
=

2(U ′(x2)−U ′(xc2))2

(U(x2)−c)3 − U ′′(x2)−U ′′(xc2)

(U(x2)−c)2 , (5.2.5)

where the singularity remains at the same level.

• Estimating ∂cRyB. Applying Dc to (5.0.1a) and simplifying, we obtain

−(DcyB)′′+
(
k2 +

U ′′

U − c
)
DcyB =

ψ′0(x2) + f1(c,x2)ψ0(x2) + ψ1(c,x2)

U − c
; (5.2.6a)

where

ψ1 =
(U ′′(U ′ − U ′(xc2))

U − c
− U ′′′

)
yB, f1 = (U − c)Dc

( 1

U − c
)

= −U
′ − U ′(xc2)

U − c
,
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and boundary conditions

DcyB(−h) = ζ1− , y′B(−h); (5.2.6b)

(
U(0)− c

)2
(DcyB)′(0)−

(
U ′(0)(U(0)− c) + g + σk2

)
DcyB(0) = ζ1+(c) (5.2.6c)

where

ζ1+ =− ξ2U
′(xc2)− (U(0)− c)ψ0(0) +

(
(2U ′(xc2)− U ′(0))(U(0)− c)− g − σk2

)
y′B(0)

+
(
k2(U(0)− c)2 + U ′′(0)(U(0)− c)− U ′(xc2)U ′(0)

)
yB(0).

Let ỹ1(c,x2) and ỹ2(c,x2) be the solution to the non-homogeneous Rayleigh equation

(5.0.1a), but with zero boundary values in (5.0.1b), with ψ(c,x2) replaced by ψ1 and ψ′0 +

f1ψ0, respectively. Both are given by the formula (5.0.3). Using the estimates of yB derived

in the above and apply Lemma 5.1.2, we have

|ỹ1|L2
cR,x2

+ µ|ỹ′1|L2
cR,x2

≤Cµ
(
|yB|L2

cR,x2
+ µ1− ε

4 |y′B|L2
cR,x2

)
≤Cµ

5
2
−ε(µ|ξ1|+ µ|ξ2|+ |ψ0|L2 + µ−1|ξ−|

)
.

Moreover, from Lemma 5.1.1(2b) and (5.0.1b), (5.0.7), and (5.2.2), one can compute

|ỹ′1(c, 0)| ≤Cµ−
1
2

(1+ε)(|yB|L2
x2

+ µ|y′B|L2
x2

)

+ Cµ2
(
1 +

∣∣ log |U(0)− c|
∣∣)(|ζ+|+ |U(0)− c|2|y′B(c, 0)|),

where yB(0) was substituted by using (5.0.1b). It along with the above estimates on yB

implies

|ỹ′1(0)|L2
cR
≤Cµ−

1
2

(1+ε)(|yB|L2
cR,x2

+ µ|y′B|L2
cR,x2

) + Cµ2(|ξ1|+ |ξ2|+ |y′B(0)|L2
cR

)
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≤Cµ1−ε(µ|ξ1|+ µ|ξ2|+ |ψ0|L2 + µ−1|ξ−|
)
.

The estimate at x = −h based on Lemma 5.1.1(2b) is similar

|ỹ′1(c,−h)| ≤ Cµ−
1
2

(1+ε)
(
|yB|L2

x2
+ µ|y′B|L2

x2

)
+ C

(
1 +

∣∣ log |U(−h)− c|
∣∣)|ξ−|,

which yields

|ỹ′1(−h)|L2
cR
≤Cµ−

1
2

(1+ε)(|yB|L2
cR,x2

+ µ|y′B|L2
cR,x2

) + C|ξ−|

≤Cµ1−ε(µ|ξ1|+ µ|ξ2|+ |ψ0|L2 + µ−1|ξ−|
)
.

From the convergence of yB and Lemma 5.1.1, as cI → 0+, we have the convergence of

ỹ1 in LrcRL
∞
x2

, ỹ′1 in LrcRL
q
x2

, and ỹ′1(0) in LrcR , for any r ∈ [1, 2) and q ∈ [1,∞).

Due to the smoothness of f1, we apply Lemma 5.1.4 and Lemma 5.1.3 instead to esti-

mate ỹ2

|ỹ2|L2
cR,x2

+ µ|ỹ′2|L2
cR,x2

≤ Cµ
3
2
−ε|ψ0|H1 , |ỹ′2(−h)|L2

cR
+ |ỹ′2(0)|L2

cR
≤ Cµ−ε|ψ0|H1 .

Again from Lemma 5.1.3, as cI → 0+, we have the convergence of ỹ2 in L∞x2L
2
cR

, ỹ′2 in

L∞x2L
r
cR

, for any r ∈ [1, 2), and ỹ′2(0) in L2
cR

.

Finally, from (5.2.3) and (5.0.7), we have, for any r ∈ (1,∞),

|ζ1−|LrcR ≤ C
(
µ−ε|ψ0|Lr + µe−µ

−1h(|ξ1|+ |ξ2|) + µ−1|ξ−|
)
,

|ζ1+|LrcR ≤ Cµ−1
(
|ξ1|+ |ξ2|+ µ|ψ0(0)|+ µ−1−ε|ψ0|Lr + µ−2e−µ

−1h|ξ−|
)
,

where again we substituted yB(0) by (5.0.1b) and (5.0.7). Moreover, from the convergence

of yB and y′B, we have the convergence of ζ1± in L2
cR

.

As ỹ1+ỹ2 plays the role of ”ynh” in the representation ofDcyB as given in Lemma 5.2.1,
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the above estimates imply

|DcyB|L2
cR,x2

+µ|Dcy
′
B|L2

cR,x2
≤ C

(
µ

3
2 |ξ1|+µ

3
2 |ξ2|+µ−

1
2 |ξ−|+µ

1
2
−ε|ψ0|L2 +µ

3
2
−ε|ψ′0|L2

)
,

(5.2.7)

where the ψ0(0) term was bounded by the other norms of ψ0 via interpolation. The de-

sired L2
cR,x2

estimates on ∂cRyB and ∂cRy
′
B follow from that of y′B, (5.2.4), and the above

inequality. We also obtain the L2
cR

estimate of DcyB(0) from (5.2.7) which in turn yields

the L2
cR

bound on ∂cRyB(0). The convergence of ∂cRyB is a direct consequence of those of

ỹ1, ỹ2, ζ1±, and the representation formula given in Lemma 5.2.1. Moreover, we also have

the convergence of Dcy
′
B|x2=0,−h in LrcR for any r ∈ [1, 2).

To complete the estimates on ∂cRyB and also for the next step, we also need the follow-

ing inequalities which are also derived from the above estimates and Lemma 5.2.1

|Dcy
′
B(−h)|L2

cR
≤C
(
µ−1|ψ0|L2 + |ψ0|Lr + |ψ′0|L2 + µ2−ε(|ξ1|+ |ξ2|)

)
+ Cµ−2|ξ−|

≤Cµ−ε
(
µ2(|ξ1|+ |ξ2|) + µ−1|ψ0|L2 + |ψ′0|L2

)
+ Cµ−2|ξ−|,

|Dcy
′
B(0)|L2

cR
≤C
(
µ−1|ψ0|L2 + |ψ0|Lr + µ|ψ0(0)|+ |ψ′0|L2 + |ξ1|+ |ξ2|

)
≤C
(
|ξ1|+ |ξ2|+ µ−1−ε|ψ0|L2 + µ−ε|ψ′0|L2 + µ−ε|ξ−|

)
,

where the terms involving |ψ0(0)| and |ψ0|Lr , r > 2, are bounded by other norms of ψ0.

• Estimating ∂2
cR
yB. In order to analyze ∂2

cR
yB, we still first applyDc to (5.2.6). Due to

the commutativity (5.2.4) between Dc and ∂x2 , the Rayleigh equation (5.0.1a) and (5.2.2)

imply

−(D2
cyB)′′ +

(
k2 +

U ′′

U − c
)
D2
cyB =

ψ′′0 − U (4)yB − 2U ′′′DcyB
U − c

+ 2Dc

( 1

U − c
)(
ψ′0 −Dc(U

′′yB)
)
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+D2
c

( 1

U − c
)
(ψ0 − U ′′yB).

We can write

−(D2
cyB)′′ +

(
k2 +

U ′′

U − c
)
D2
cyB =

ψ′′0(x2) + f2(c,x2)ψ0(x2) + 2f1(c,x2)ψ′0(x2)

U − c

+
ψ2(c,x2)

U − c
,

(5.2.8a)

where f1 was defined in (5.2.6) and

f2 = (U − c)D2
c

( 1

U − c
)
, ψ2 = −(2U ′′′ + U ′′f1)DcyB − (U (4) + U ′′′f1 + U ′′f2)yB.

From (5.2.5) and the assumption U ∈ C4, it holds f2 and f3 are C1 in x2 and cR with

bounds uniform in |cI | ≤ ρ0. At x2 = −h, one can compute using (3.4.8),

(D2
cyB)(−h) =

(
U ′(xc2)2∂2

cR
yB + U ′′(xc2)∂cRyB + U ′(xc2)∂cRy

′
B + (DcyB)′

)∣∣
x2=−h.

From (5.2.2) and (5.0.1a), we can write

(D2
cyB)(c,−h) = ζ2−(c) ,

(
2(DcyB)′ − y′′B

)
(−h) = 2(DcyB)′(−h) +

ψ0(−h)

U(−h)− c
.

(5.2.8b)

At x2 = 0, we write

(
U(0)− c

)2
(D2

cyB)′(0)−
(
U ′(0)(U(0)− c) + g + σk2

)
D2
cyB(0) = ζ2+(c). (5.2.8c)

One may compute ζ2+ using (5.2.4) and (5.2.6c)

ζ2+ =U ′(xc2)
(
∂cRζ1+ + 2(U(0)− c)(DcyB)′(0)− U ′(0)DcyB(0)

)
+
(
U(0)− c

)2
(DcyB)′′(0)−

(
U ′(0)(U(0)− c) + g + σk2

)
(DcyB)′(0).
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On the one hand, the U ′(xc2)∂cRζ1+ turns out to involve some of the most singular terms in

ζ2+,

U ′(xc2)∂cRζ1+ =− ξ2U
′′(xc2) + U ′(xc2)ψ0(0)

+
(
2U ′′(xc2)(U(0)− c)− U ′(xc2)(2U ′(xc2)− U ′(0))

)
y′B(0)

+ U ′(xc2)
(
(2U ′(xc2)− U ′(0))(U(0)− c)− g − σk2

)
∂cRy

′
B(0)

+ U ′(xc2)
(
k2(U(0)− c)2 + U ′′(0)(U(0)− c)− U ′(xc2)U ′(0)

)
∂cRyB(0)

+
(
U ′(xc2)(2k2(c− U(0))− U ′′(0))− U ′′(xc2)U ′(0)

)
yB(0).

We shall use (5.2.4) to replace ∂cRyB and ∂cRy
′
B by DcyB and (DcyB)′, the latter of which

would produce y′′B(0). All those y′′B(0) multiplied byU(0)−c can be substituted by (5.0.1a),

but we keep other y′′B(0) terms in the expression. On the other hand, we use (5.2.6a) to

substitute (DcyB)′′(0) in ζ2+, which turns out to be rather regular due to the multiplier

(U(0)− c)2. Finally, we can write

ζ2+ =− ξ2U
′′(xc2) + f3(c)ψ0(0) + f4(c)ψ′0(0) + f5(k, c)yB(0) + f6(k, c)y′B(0)

+ f7(k, c)DcyB(0) + f8(k, c)(DcyB)′(0) + (g + σk2)y′′B(0),

where the functions fj(k, c,x2), j = 3, . . . , 8, are

f3 = (c− U(0))f1 + 3U ′(xc2)− U ′(0), f4 = c− U(0),

f5 = k2
(
(4U ′(xc2)− U ′(0))(c− U(0))

)
+ U ′′′(0)(U(0)− c)− 2U ′′(0)U ′(xc2)

− U ′(0)U ′′(xc2),

f6 = −k2(U(0)− c)2 + (2U ′′(xc2)− U ′′(0))(U(0)− c)− 2U ′(xc2)(U ′(xc2)− U ′(0)),

f7 = 2
(
k2(U(0)− c)2 + U ′′(0)(U(0)− c)− U ′(xc2)U ′(0)

)
,

f8 = 2
(
(2U ′(xc2)− U ′(0))(U(0)− c)− g − σk2

)
,
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and are at least C1 in cR and x2.

The terms y′′B(−h) in ζ2− and y′′B(0) in ζ2+ generate the most singular part of D2
cyB

which, based on Lemma 5.2.1, takes the form

yS(x2) =− y′′B(−h)

y+(−h)
y+(x2) +

(g + σk2)y′′B(0)

F(k, c)
y−(x2)

=
g + σk2

F(k, c)

(
− y′′B(−h)y+(x2) + y′′B(0)y−(x2)

)
.

Let

ỹ = D2
cyB − yS.

Clearly, it satisfies the same non-homogeneous Rayleigh equation (5.2.8a) and boundary

conditions

ỹ(c,−h) = ζ̃2−(c) , 2(DcyB)′(c,−h) (5.2.9)

(
U(0)− c

)2
ỹ′(0)−

(
U ′(0)(U(0)− c) + g + σk2

)
ỹ(0) = ζ̃2+(c) , ζ2+ − (g + σk2)y′′B(0).

(5.2.10)

Let ỹ3 and ỹ4 be the solutions to (5.2.8a) with zero boundary values in (5.0.1b) and non-

homogeneous terms
ψ2

U − c
,

ψ′′0 + f2ψ0 + 2f1ψ
′
0

U − c
,

respectively. Using the above estimates of yB and DcyB and applying Lemma 5.1.2, we

obtain

|ỹ3|L2
cR,x2

+ µ|ỹ′3|L2
cR,x2

≤Cµ
(
|yB|L2

cR,x2
+ |DcyB|L2

cR,x2
+ µ1−ε|y′B|L2

cR,x2

+ µ1−ε|(DcyB)′|L2
cR,x2

)
≤Cµ

5
2
−ε(|ξ1|+ |ξ2|+ µ−1|ψ0|L2 + |ψ′0|L2 + µ−2|ξ−|

)
.
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As cI → 0+, the convergence of yB and DcyB implies that of ψ2 in LrcRW
1,r
x2

for any

r ∈ [1, 2). From Lemma 5.1.1(2a), we obtain the convergence of ỹ3 in LrcRL
∞
x2

.

Again we apply Lemma 5.1.4 to estimate ỹ4

|ỹ4|L2
cR,x2

+ µ|ỹ′4|L2
cR,x2

≤ Cµ
3
2
−ε(|ψ0|L2 + |ψ′0|L2 + |ψ′′0 |L2

)
.

As cI → 0+, Lemma 5.1.4(2a) implies that ỹ4 converges in L∞x2L
2
cR

.

The boundary values of ỹ satisfy

|ζ̃2−|L2
cR
≤ Cµ−ε

(
µ2(|ξ1|+ |ξ2|) + µ−1|ψ0|L2 + |ψ′0|L2

)
+ Cµ−2|ξ−|,

|ζ̃2+|L2
cR
≤C
(
|ξ2|+ |ψ0(0)|+ |ψ′0(0)|+ µ−2

(
|yB|L2

cR
+ |DcyB|L2

cR
+ |y′B|L2

cR

+ |(DcyB)′|L2
cR

)∣∣
x2=0

)
≤C
(
|ψ′0(0)|+ µ−2

(
|ξ1|+ |ξ2|+ µ−1−ε|ψ0|L2 + µ−ε|ψ′0|L2 + µ−ε|ξ−|

))
,

where we also used the boundary conditions of yB and DcyB to express them in terms of

y′B and Dcy
′
B at x2 = 0. As cI → 0+, the convergence of yB and DcyB at x2 = 0,−h

implies that of ξ± in LrcR for any r ∈ [1, 2).

As ỹ3+ỹ4 plays the role of ”ynh” in the representation ofD2
cyB as given in Lemma 5.2.1,

the above estimates and Lemma 5.2.1 imply

|ỹ|L2
cR,x2

+ µ|ỹ′|L2
cR,x2

≤ C
(
µ

1
2 |ξ1|+ µ

1
2 |ξ2|+ µ−

1
2
−ε|ψ0|L2 + µ

1
2
−ε|ψ′0|L2 + µ

3
2
−ε|ψ′′0 |L2

)
,

where the ψ′0(0) term was bounded by the other norms of ψ0 via interpolation. Finally,

using (5.2.4) one can compute

∂2
cR

= U ′(xc2)−2(D2
c − 2∂x2Dc + ∂2

x2
)− (U ′(xc2))−3U ′′(xc2)(Dc − ∂x2). (5.2.11)
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This relationship and the definition of ỹB and ỹ yield

ỹB =∂2
cR
yB +

1

U ′(xc2)2

(
− y′′B +

g + σk2

F(k, c)

(
y′′B(−h)y+ − y′′B(0)y−

))
=

1

U ′(xc2))2

(
ỹ − 2(DcyB)′ − U ′′(xc2)

U ′(xc2)
(DcyB − y′B)

)
.

Therefore the desired estimate on ỹB follows from those of ỹ, yB, and DcyB. The conver-

gence of ỹB is also obtained much as that of DcyB.
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CHAPTER 6

SOLUTIONS TO THE EULER EQUATION LINEARIZED AT SHEAR FLOWS

In this chapter, we finally return to the linearized flow of the capillary gravity water waves

at the shear flow U(x2) in both the horizontally L-periodic (in x1) case and the x1 ∈ R case.

Under the assumption (4.1.5) of the absence of singular modes for all k, we shall show that

a.) inviscid damping occurs to a large component (remotely related to the rotational part) of

the solutions and b.) what is left in the solutions are superpositions of non-singular modes

(smooth eigenfunctions). The latter is a linear dispersive flow which is asymptotic to the

linear irrotational flow for high spatial wave numbers k.

6.1 Estimating each Fourier mode of the linear solutions

Based on (2.2.6) and the formula of the inverse Laplace transform, we first derive some

integral representation formulas of the linear solution
(
v̂(t, k,x2), η̂(t, k,x2)

)
of (2.2.1) for

a fixed wave number k 6= 0 satisfying (5.0.8). This procedure is essentially obtaining the

linear solution group from contour integrals of the resolvents of the linear operator defined

by the linearized water wave problem at the shear flow. Subsequently estimates of solutions

are obtained using these formulas. Due to the conjugacy relation v̂(t,−k,x2) = v̂(t, k,x2)

and η̂(t,−k) = η̂(t, k), we shall mostly work on estimates for k > 0 in this section, unless

otherwise specified.

Recall F defined in (4.0.1). Denote the set of non-singular modes

R(k) = {c /∈ U([−h, 0]) | F(k, c) = 0} (6.1.1)

Throughout this section, we fix k 6= 0 and assume (5.0.8). We shall also use (5.0.6),

possibly after choosing smaller ρ0. The continuity of F and (5.0.8) imply that R(k) is a
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finite set, which consists of only simple roots c±(k) for large k due to Lemma 4.1.2(3). We

shall work on the following type of neighborhoods of U([−h, 0]) ⊂ C

Dr1,r2 = [−r1 + U(−h),U(0) + r1] + i[−r2, r2] ⊂ R(k)c, r1, r2 ∈ (0, ρ0), (6.1.2)

where ρ0 is given in (5.0.8).

Recall the Laplace transform V2(k, c,x2) of v̂2(t, k,x2), defined by (2.2.4) and (2.2.5),

is the solution of the boundary value problem (2.2.6) of the Rayleigh equation, or equiva-

lently, the solution to (5.0.1) and (5.2.2) with

ψ = −ω̂0(k,x2) = −ik−1(k2 − ∂2
x2

)v̂20,

ξ− = 0, ξ1 = (g + σk2)η̂0(k), ξ2 = −ik−1v̂′20(k, 0),

(6.1.3)

and ω̂0(k,x2), η̂0(k) and v̂20(k,x2) are the Fourier transforms with respect to x1 of the

initial values ω0(x), η0(x1) and v20(x). The solution V2(k, c,x2) to (2.2.6) is still given by

Lemma 5.2.1 along with (5.2.2) and (6.1.3). More explicitly, if F(k, c) 6= 0, then

V2(k, c,x2) =
(g + σk2)η̂0(k)− i

k
(U(0)− c)v̂′20(k, 0)

F(k, c)
y−(k, c,x2) + ynh(k, c,x2),

(6.1.4)

where y± are solutions to the homogeneous Rayleigh equation (3.2.5) satisfying initial

conditions (3.3.1) and ynh the solution to (5.0.1) given by (5.0.3) with ζ± = 0 and ψ =

ω̂0(k,x2). The Laplace transform η̃(k, c) of η̂(t, k) can be computed by using (2.2.7) and

the boundary condition (5.0.1b) along with (5.2.2), (6.1.3), and (5.0.6)

η̃(k, c) =
V2(k, c, 0) + η̂0(k)

ik(U(0)− c)
=
V ′2(k, c, 0)(U(0)− c) + U ′(0)η̂0(k) + i

k
v̂′20(k, 0)

ik
(
U ′(0)(U(0)− c) + g + σk2

) , k 6= 0.

(6.1.5)
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We shall also need the following quantities

b(t, k, c∗,x2) = −(ik)Res
(
V2e

−ik(c−c∗)t, c∗
)
,

bS(t, k, c∗) = −(ik)Res
(
η̃e−ik(c−c∗)t, c∗

)
= −Res

(
V2(k, c, 0)e−ik(c−c∗)t/(U(0)− c), c∗

)
(6.1.6)

where Res(f(z), z∗) is the residue of a meromorphic function f(z) at z∗. Apparently b =

bS = 0 unless F(k, c∗) = 0, or equivalently c∗ ∈ R(k). The following lemma is obtained

from applying the inverse Laplace transform.

Lemma 6.1.1. Assume U ∈ C3 and k > 0 satisfies (5.0.8), then for any r1, r2 ∈ (0, ρ0),

we have

v̂2(t, k,x2) = v̂c2 + v̂p2 , −
k

2π

∮
∂Dr1,r2

e−ikctV2(k, c,x2)dc+
∑

c∗∈R(k)

e−ic∗ktb(t, k, c∗,x2),

η̂(t, k) = η̂c + η̂p , − k

2π

∮
∂Dr1,r2

e−ikctη̃(k, c)dc+
∑

c∗∈R(k)

e−ic∗ktbS(k, c∗).

From Lemma 4.1.2, c∗ ∈ R(k) implies y−(k, c, 0) 6= 0 and thus F (k, c) is well-defined

for c near c∗. In part (2), similar types of formula and estimates of bS can be obtained from

those of b and (6.1.6). In the subsequent analysis, the limits of the above contour integrals

as Dr1,r2 shrinks to U([−h, 0]) will be taken and estimated whenever needed.

Proof. From the definition (2.2.4) and the inverse Laplace transform formula (2.2.9), we

have

v̂2(t, k,x2) =
k

2π

∫ +∞+iγ

−∞+iγ

e−ikctV2(k, c,x2)dc,

where γ > 0 is chosen such that the above integrand is analytic for cI > γ. Apparently

V2 is analytic in c /∈
(
U([−h, 0]) ∪ {F = 0}

)
. In order to analyze V2 for |c| � 1, we first

consider y+ and then ynh for |c| � 1. From Lemma 3.1.3 and initial conditions (3.3.1), it
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holds that

0 < lim inf
|c|→∞

|y+(k, c,x2)|/(1 + |c|2) ≤ lim sup
|c|→∞

|y+(k, c,x2)|/(1 + |c|2) <∞.

Along with (6.1.3) and Lemma 3.3.2 which yields the boundedness of y− for |c| � 1, it

implies

lim sup
|c|→∞

|c||ynh(k, c,x2)| <∞.

From Lemma 4.1.2(2) and again Lemma 3.3.2, we obtain1

lim sup
|c|→∞

|c||V2(k, c,x2)| <∞.

As |e−ikct| = ektIm c, the Cauchy integral theorem yields

∫ +∞−iγ

−∞−iγ
e−ikctV2(k, c,x2)dc = 0,

v̂2(t, k,x2) =
k

2π

(∫ +∞+iγ

−∞+iγ

−
∫ +∞−iγ

−∞−iγ

)
e−ikctV2(k, c,x2)dc.

The desired expression of v̂2 follows immediately from the residue calculation.

Concerning η̂, one first obtains

η̂(t, k) =
k

2π

(∫ +∞+iγ

−∞+iγ

−
∫ +∞−iγ

−∞−iγ

)
e−ikctη̃(k, c)dc.

Using the first expression in (6.1.5), the desired formula for η̂ is derived via the same

arguments as in the above. In particular, the η̂0 term does not contribute to the residue as

R(k) is away from U([−h, 0]) due to assumption (5.0.8).

From the divergence free condition on the velocity, it holds that the Fourier transform

(in x1) of the velocity field satisfies ikv̂1 = −v̂′2. Therefore, we have

1Through a more careful analysis we may obtain a Taylor expansion of V2 in terms of 1
c as |c| → ∞.
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Corollary 6.1.1.1. Under the assumptions of Lemma 6.1.1, we have

v̂1(t, k,x2) = v̂c1 + v̂p1 , −
i

2π

∮
∂Dr1,r2

e−ikctV ′2(k, c,x2)dc+
∑

c∗∈R(k)

i

k
e−ic∗ktb′(t, k, c∗,x2).

In the following lemma, we give some basic properties of b(t, k, c,x2) and bS(t, k, c)

at some c∗ ∈ R(k). Since c∗ is away from U([−h, 0]) and F(k, ·) and F (k, ·) are analytic

in a neighborhood of c∗, the assumption (5.0.8) is not needed.

Lemma 6.1.2. Assume U ∈ C l0 and k > 0. Let c∗ ∈ R(k) be a root of F(k, ·) (or

equivalently, of F (k, ·) defined in (4.0.2)) of degree n ≥ 1, then the following hold.

1. e−ikc∗tb(t, k, c∗,x2) is a solution to (2.2.3).

2. b(t, k, c∗,x2) is a linear combination of tl1∂l2c y−(k, c∗,x2), 0 ≤ l1 + l2 ≤ l = n− 1,

and bS(t, k, c∗) a linear combination of tl, 0 ≤ l ≤ n−1, with coefficients depending

on k and c∗. The leading terms of b(t, k, c∗,x2) with l1 + l2 = n− 1 are given by

(n!)(−ik)l1+1

l1!l2!∂nc F (k, c∗)

(
(g + σk2)η̂0(k)− i

k
(U(0)− c∗)v̂′20(k, 0)

+
(U(0)− c∗)2

y−(k, c∗, 0)

∫ 0

−h

(y−ω̂0)(k, c∗,x
′
2)

U(x′2)− c∗
dx′2

)tl1∂l2c y−(k, c∗,x2)

y−(k, c∗, 0)
,

(6.1.7)

and the leading terms of ik(U(0) − c∗)bS(t, k, c∗) is given by the above expression

evaluated at x2 = 0.

3. If c∗ is a simple root of F(k, ·), i.e., n = 1, then b and ik(U(0) − c∗)bS are given

by the above expression and there exists C > 0 determined only by |U ′|Cl0−1 and

|(U ′)−1|C0 such that

|∂n2
x2
b(k, c∗,x2)| ≤C|∂cF (k, c∗)|−1

(
|k|µ−2|η̂0(k)|+ (1 + |c∗|)|v̂′20(k, 0)|

+
|k|µ 3

2 eµ
−1h(1 + |c∗|2)|ω̂0(k)|L2

x2

dist(c∗,U([−h, 0]))|y−(k, c∗, 0)|

)∣∣∣µ1−n2eµ
−1(x2+h)

y−(k, c∗, 0)

∣∣∣,
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for any n2 ∈ [0, l0], where we recall µ = (1 + k2)−
1
2 .

Proof. According to Lemma 4.1.1(4), F(k, c∗) = 0 implies y−(k, c∗, 0) 6= 0 and thus

F (k, c) is analytic in c for c near c∗ and the degree of c∗ as a root of both F (k, ·) and

F(k, ·) is n ≥ 1. By the definition of R(k) and the analyticity of F (k, ·), c∗ ∈ R(k) is an

isolated root of F (k, ·). Let 1 � R > 0 such that there are no other roots of F (k, ·) in the

disk B(c∗,R) centered at c∗ with radius R. Using the fact that V2(k, c,x2) solves (2.2.6),

one may compute

(∂t + ikU)(k2 − ∂2
x2

)(e−ikc∗tb(t, k, c∗,x2))

=
∂t + ikU

2π

∮
∂B(c∗,R)

ke−ikct(k2 − ∂2
x2

)V2(k, c,x2)dc

=
ik2

2π

∮
∂B(c∗,R)

e−ikct(U − c)(k2 − ∂2
x2

)V2(k, c,x2)dc

=− ik2U ′′

2π

∮
∂B(c∗,R)

e−ikctV2(k, c,x2)dc

=− ikU ′′e−ikc∗tb(t, k, c∗,x2),

and thus (2.2.3a) is satisfied. Similar calculation also proves the boundary condition (2.2.3b)

at x2 = 0. The zero boundary value at x2 = −h is obvious from that of V2 at x2 = −h.

Therefore statement (1) is proved.

To analyze b in more details, let

F1(c) = (c− c∗)−nF (k, c) =⇒ F1(c∗) = ∂nc F (k, c∗)/(n!) 6= 0,

and

ỹ(c,x2) = y+(k, c,x2)− (U(0)− c)2

(g + σk2)y−(k, c, 0)
y−(k, c,x2).
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From the initial conditions (3.3.1) of y±, it is straight forward to verify

ỹ(c, 0) = 0, ỹ′(c, 0) = − F (k, c)

g + σk2
= O(|c− c∗|n)

=⇒ y+(x2) =
(U(0)− c)2y−(x2)

(g + σk2)y−(0)
+O(|c− c∗|n).

Using the above expression to substitute y+(k, c,x2) in the residue (in the definition

of b) and observing that the O(|c − c∗|n) term cancels the singularity of y+(k, c,−h) for

|c − c∗| � 1 which results in an analytic function contributing nothing to the residue, we

have

Res(ynh(k, c,x2)e−ik(c−c∗)t, c∗)

=Res
((U(0)− c)2y−(k, c,x2)e−ik(c−c∗)t

(g + σk2)y−(k, c, 0)y+(k, c,−h)

∫ 0

−h

(y−ω̂0)(k, c,x′2)

U(x′2)− c
dx′2, c∗

)
.

From definitions (5.0.3), (4.0.1), and (4.0.2), of ynh, F, and F , (6.1.3), we have

Res(ynh(k, c,x2)e−ik(c−c∗)t, c∗)

=Res
((U(0)− c)2y−(k, c,x2)e−ik(c−c∗)t

(c− c∗)nF1(c)y−(k, c, 0)2

∫ 0

−h

(y−ω̂0)(k, c,x′2)

U(x′2)− c
dx′2, c∗

)
=

1

(n− 1)!
∂n−1
c

((U(0)− c)2y−(k, c,x2)e−ik(c−c∗)t

F1(c)y−(k, c, 0)2

∫ 0

−h

(y−ω̂0)(k, c,x′2)

U(x′2)− c
dx′2

)∣∣∣
c=c∗

=
n−1∑
l=0

∂lcy−(k, c∗,x2)

l!(n− l − 1)!
∂n−l−1
c

((U(0)− c)2e−ik(c−c∗)t

F1(c)y−(k, c, 0)2

∫ 0

−h

(y−ω̂0)(k, c,x′2)

U(x′2)− c
dx′2

)∣∣∣
c=c∗

.

Therefore this residue is a linear combination of tl1∂l2c y−(k, c∗,x− 2), 0 ≤ l1 + l2 ≤ n− 1,

with coefficients depending on k and c∗. The coefficients for l1 + l2 = n− 1 are given by

(∂l1c e
−ik(c−c∗)t)|c=c∗
l1!l2!tl1

(U(0)− c∗)2

F1(c∗)y−(k, c∗, 0)2

∫ 0

−h

(y−ω̂0)(k, c∗,x
′
2)

U(x′2)− c∗
dx′2

=
(n!)(−ik)l1(U(0)− c∗)2

l1!l2!∂nc F (k, c∗)y−(k, c∗, 0)2

∫ 0

−h

(y−ω̂0)(k, c∗,x
′
2)

U(x′2)− c∗
dx′2.

The contributions of the terms involving η0(k) and v̂′20(k, 0) can be analyzed similarly
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(actually simpler as y+ is not involved) and we obtain the desired statement (2) on the form

of b and bS .

If c∗ ∈ R(k) is a simple root of F(k, ·), i.e. n = 1, then b and bs have only one term

with l1 = l2 = 0 and are constants in t as given in statement (2). It along with Lemma 3.3.2

readily leads to its estimate.

Corollary 6.1.2.1. v̂c2 is also a solution to (2.2.3). Moreover if c∗ is a simple root of F (k, ·),

then the corresponding eigenvalue−ikc∗ is algebraically simple in the subspace of the k-th

Fourier modes.

Based on the above lemmas, it is natural to define

P(k, c∗) : (v̂0, η̂0)→
(
ib(0, k, c∗, ·)′/k,b(0, k, c∗, ·),bS(0, k, c∗)

)
,

X(k, c∗) = range(P(k, c∗)).

(6.1.8)

The following lemma gives that P(k, c∗) defines the invariant spectral projection to the

eigenspace X(k, c∗) of −ikc∗ spanned by ∂lcy−(k, c∗, ·), 0 ≤ l ≤ n− 1.

Lemma 6.1.3. Assume the same conditions as in Lemma 6.1.2, then

X(k, c∗) =span
{(
i∂lcy

′
−(k, c∗, ·)/k, ∂lcy−(k, c∗, ·), ∂lcy−(k, c∗, 0)/(ik(U(0)− c∗)

)
| l = 0, . . . ,n− 1},

is an invariant subspace of (2.2.1) and

P(k, c∗) : (v̂0, η̂0)→
(
ib(0, k, c∗, ·)′/k,b(0, k, c∗, ·),bS(0, k, c∗)

)
is an invariant projection operator of (2.2.1) to X(k, c∗) with

ker
(
Σc∗∈R(k)P(k, c∗)

)
=
{(
v̂c(0, k, ·), η̂c(0, k)

)
| all initial values v̂0(k, ·), η0(k)

}
.

Proof. The statement of the lemma is rather standard in the operator calculus and Laplace
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transform, while constructing solutions to (2.2.1) using Laplace transform is equivalent to

using contour integrals of the resolvent operators in the complex spectral plane. We shall

only outline the proof and skip some details.

Due to the translation invariance in t of solutions to (2.2.1), the t = 0 in the definition

of X(k, c∗) can be replaced by any t ∈ R. From Lemma 6.1.2, all solutions (ib′/k,b,bS)

are polynomials of t of degree no more than n − 1. It is standard to show inductively that

X(k, c∗) consists of all possible coefficients of tl, which can be computed to be generated

by ∂lcy−(k, c∗, ·), 0 ≤ l ≤ n − 1, using (6.1.7) and the relationship between b and bS .

The invariance of X(k, c∗) under (2.2.1) is due to the fact that (ib/k,b,bs) are solutions to

(2.2.1). To show P(k, c∗)
2 = P(k, c∗), let (û0, ν̂0) = P(k, c∗)(v̂0, η̂0) ∈ X(k, c∗). With this

initial value, the solution (û(t), ν̂(t)) is simply the (ib/k,b,bS) component of the solution

with the initial value (v̂0, η̂0). Hence (û(t), ν̂(t)) takes the form given in Lemma 6.1.2(2).

Its Laplace transform is analytic at all c 6= c∗ and thus the (ib/k,b,bS) component of

(û(t), ν̂(t)) is equal to itself. Therefore we obtain P(k, c∗)(û0, ν̂0) = (û0, ν̂0). Finally

the description of the kernel of
∑

c∗∈R(k) P(k, c∗) is obvious due to the fact that both

(ib/k,b,bS) and (v̂c(t), η̂c(t)) are solutions.

Remark 6.1.1. In particular, if

v̂20(k,x2) = y−(k, c∗,x2), η̂0 = y−(k, c∗, 0)/
(
ik(U(0)− c∗

)
,

then straight forward verification yields

V2(k, c,x2) =
y−(k, c∗,x2)

ik(c∗ − c)
, v̂c = 0,

b = y−(k, c∗,x2) = v̂20, bS =
y−(k, c∗, 0)

ik(U(0)− c∗)
= η̂0.

From Lemma 2.2.1, −ic∗k is an eigenvalue (with the above eigenfunctions generated by

y−(k, c∗,x2)) of the linearized capillary gravity water wave at the shear flow, which has to

be geometrically simple when restricted to the k-th Fourier mode in x1. Its algebraic mul-
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tiplicity is equal to the degree of the root c∗ of F(k, ·). The eigenfunctions of the linearized

irrotational capillary gravity wave are generated by 1
k

sinh k(x2+h). From Lemma 3.1.2(1)

(with ρ = O(k−
5
2 ), s = 0, C0 = 0, and Θ1 = Θ2 = sinh) and Lemma 4.1.2(3), it is straight

forward to estimate that, after normalizing the L2 norm of v2 to be 1, the L2 and H1 dif-

ferences in the v and η components, respectively, between the eigenfunctions of (2.2.1) and

the irrotational capillary gravity waves linearized at zero is of order O(k−
3
2 ) as |k| → ∞.

In the rest of this section we consider v̂c(t, k,x2) and η̂c(t, k). We shall always work

on c ∈ [U(−h)− ρ0,U(0) + ρ0] + i[−ρ0, ρ0]. We first present some properties of V2 and η̃.

Let us keep in mind that for analytic functions, ∂c and ∂cR are equivalent.

Lemma 6.1.4. It holds that V2 and η̃ are analytic in c ∈ C \
(
U([−h, 0]) ∪ R(k)

)
and

satisfy

V2(−k, c̄,x2) = V2(k, c,x2), η̃(−k, c̄,x2) = η̃(k, c,x2).

Assume U ∈ C4 and (5.0.8), then the following hold.

1. For any ε > 0, there existsC > 0 determined only by ε, F0, ρ0, |U ′|C3 , and |(U ′)−1|C0

(independent of k ∈ R) such that for any cI ∈ [0, ρ0],

|η̃|L2
cR
≤ C

(
|k|−1µ|η̂0(k)|+ |k|−2µ2|v̂′20(k, 0)|+ |k|−1µ2−ε|ω̂0(k)|L2

x2

)
,

|∂cR η̃|L2
cR
≤C
(
|k|−1|η̂0(k)|+ |k|−2µ2|v̂′20(k, 0)|+ |k|−1µ1−ε|ω̂0(k)|L2

x2

+ |k|−1µ2−ε|ω̂′0(k)|L2
x2

)
,

|V2|L2
cR,x2

+ µ|V ′2 |L2
cR,x2

+ µ
3
2 |V ′2(0)|L2

cR
+ µ

1
2 |V2(0)|L2

cR

≤C
(
µ

1
2 |η̂0(k)|+ |k|−1µ

5
2 |v̂′20(k, 0)|+ µ

3
2
−ε|ω̂0(k)|L2

x2

)
,
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|∂cRV2|L2
cR,x2

+ µ|∂cRV ′2 +
V ′′2
U ′
|L2
cR,x2

+ µ
3
2

∣∣(∂cRV ′2 +
V ′′2
U ′

)
(0)
∣∣
L2
cR

+ µ
1
2 |∂cRV2(0)|L2

cR

≤C
(
µ−

1
2 |η̂0(k)|+ |k|−1µ

3
2 |v̂′20(k, 0)|+ µ

1
2
−ε|ω̂0(k)|L2

x2
+ µ

3
2
−ε|ω̂′0(k)|L2

x2

)
,

and if U ∈ C5, then

|Ṽ2|L2
cR,x2

≤C
(
µ−

3
2 |η̂0(k)|+ |k|−1µ

1
2 |v̂′20(k, 0)|+ µ−

1
2
−ε|ω̂0(k)|L2

x2

+ µ
1
2
−ε|ω̂′0(k)|L2

x2
+ µ

3
2
−ε|ω̂′′0(k)|L2

x2

)
,

where C also depends on |U ′|C4 and

Ṽ2(x2) = ∂2
cR
V2(x2)− V ′′2 (x2)

U ′(x2)2
+
g + σk2

F(k, c)

( V ′′2 (−h)

U ′(−h)2
y+(x2)− V ′′2 (0)

U ′(0)2
y−(x2)

)
,

and all the norms are taken on (cR,x2) ∈ [U(−h)− ρ0,U(0) + ρ0]× [−h, 0].

2. As cI → 0+, on [−r1 + U(−h), r1]

V20(k, cR,x2) , lim
cI→0+

V2(k, cR + icI ,x2), η̃0(k, cR,x2) , lim
cI→0+

η̃(k, cR + icI ,x2)

exist and the following hold.

(a) Assume ω̂0(k) ∈ L2, then for any r ∈ [1, 2), V2 → V20 in L∞x2L
2
cR

, V ′2 → V ′20 in

L∞x2L
r
cR

, and V ′2(0)→ V ′20(0) and η̃ → η̃0 in L2
cR

.

(b) Assume ω̂0(k) ∈ H1, then for any r ∈ [1, 2) and q ∈ [1,∞), ∂cRV2 → ∂cRV20

in L∞x2L
r
cR

, ∂cRV
′

2 +
V ′′2
U ′
→ ∂cRV

′
20 +

V ′′20
U ′(x2)

in Lqx2L
r
cR

, and
(
∂cRV

′
2 +

V ′′2
U ′

)
(0)→(

∂cRV
′

20 +
V ′′20
U ′

)
(0) and ∂cR η̃ → ∂cR η̃0 in LrcR .

(c) Assume ω̂0(k) ∈ H2, then for any r ∈ [1, 2), Ṽ2 converges to its limit Ṽ20 in

L∞x2L
r
cR

.

Compared to Proposition 5.2.2, the modifications in the definition of Ṽ2 is to make it
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analytic in c which will make it more convenient in applying Lemma 6.1.5 in the below.

Proof. The estimates of V2, V ′2 , V ′2(0), ∂cRV2, and their convergences are all direct corol-

laries of (6.1.3) and Proposition 5.2.2. The estimate of η̃ and its convergence follows from

the second expression of (6.1.5) and the above properties of V2.

We also notice that, compared to Proposition 5.2.2, in the definition of Ṽ2 as well as

in the estimate related to ∂cRV
′

2 , the U ′(xc2) in front of V ′′2 , V ′′2 (−h), and V ′′2 (0) had been

replaced by U ′(x2), U ′(−h), and U ′(0), respectively. This modification brings at most

minor changes to the upper bounds. In fact,

∣∣(U ′(xc2)−n − U ′(x2)−n
)
V ′′2
∣∣
L2
cR,x2

≤C
∣∣|U(x2)− c||V ′′2 |

∣∣
L2
cR,x2

≤C
(
µ−2|V2|L2

cR,x2
+ |ω̂0(k)|L2

x2

)
,

for n = 1, 2, where the Rayleigh equation was also used. This error bound and the estimate

on V2 are then used to obtain the desired inequality on ∂cRV
′

2 . The term V ′′2
U ′(x2)2

in Ṽ2 is

handled by the same argument. Similarly,

∣∣(U ′(xc2)−1 − U ′(0)−1
)
V ′′2 (0)

∣∣
L2
cR

≤C
∣∣|U(0)− c||V ′′2 (0)|

∣∣
L2
cR

≤C
(
µ−2|V2(0)|L2

cR
+ |ω̂0(k, 0)|

)
,

and this along with the estimate on V2(0) yields the estimate on
(
∂cRV

′
2 +

V ′′2
U ′

)
(0). It remain

the consider the modifications to the correction terms in Ṽ2 at x2 = −h and x2 = 0.

Similarly,

∣∣(U ′(xc2)−2 − U ′(0)−2
)
V ′′2 (0)y−(x2)

∣∣
L2
cR,x2

≤ C
(
µ−2|V2(0)|L2

cR
+ |ω̂0(k, 0)|

)
|y−|L∞cRL2

x2

which is controlled using |y−|L∞cRL2
x2
≤ Cµ

3
2 e

h
µ due to Lemma 3.3.2. The last remaining

modification fromU ′(xc2)−2 toU ′(−h)−2 can be justified by the same argument (even easier

as V2(−h) = 0.)
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Finally we consider ∂cR η̃ for in c ∈ Dρ0,ρ0 . From (6.1.5), one may compute

∂cR η̃ = 1
ik

(
U ′(0)(U(0)− c) + g + σk2

)−2

×
(
∂cRV

′
2(0)(U(0)− c)

(
U ′(0)(U(0)− c) + g + σk2

)
− (g + σk2)V ′2(0) + U ′(0)

(
U ′(0)η̂0(k) + i

k
v̂′20(k, 0)

))
= 1
ik

(
U ′(U − c) + g + σk2

)−2

×
((
∂cRV

′
2 +

V ′′2
U ′
− 1

U ′

(
k2V2 + U ′′V2+ω̂0

U−c

))
(U − c)

(
U ′(U − c) + g + σk2

)
− (g + σk2)V ′2 + U ′

(
U ′η̂0(k) + i

k
v̂′20(k, 0)

))∣∣∣
x2=0

where we used the Rayleigh equation (5.0.1a) in the last step. Therefore from Proposi-

tion 5.2.2 we have, for any k ∈ R and cI ∈ [0, r2],

|∂cR η̃|L2
cR
≤C
(
|k|−1µ4|η̂0(k)|+ |k|−2µ4|v̂′20(k, 0)|+ |k|−1µ2

∣∣(∂cRV ′2 +
V ′′2
U ′

)
(0)
∣∣
L2
cR

+ |k|−1µ2|(k2(U(0)− c) + U ′′(0))V2(0) + ω̂(k, 0)|L2
cR

+ |k|−1µ2|V ′2(0)|L2
cR

)
≤C
(
|k|−1|η̂0(k)|+ |k|−2µ2|v̂′20(k, 0)|+ |k|−1µ1−ε|ω̂0(k)|L2

x2

+ |k|−1µ2−ε|ω̂′0(k)|L2
x2

+ |k|−1µ2|ω̂0(k, 0)|
)
.

The last terms can be controlled by the previous two terms, which completes the estimate

on ∂cR η̃. The convergence of ∂cRη also follows from those of V2(0), V ′2(0) and
(
∂cRV

′
2 +

1
U ′(xc2)

V ′′2
)
(0).

The following lemma will be used in the decay estimates.

Lemma 6.1.5. Suppose n ≥ 0 is an integer, q ∈ [2,∞], f(c) and f1(c) are analytic

functions on

D \ I0 ⊂ C, where D = I + i[−ρ, ρ], I0 $ I = [b1, b2] ⊂ R, ρ > 0,
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and there exists M > 0 such that |(f (n) − f1)(· + icI)|
L

q
q−1 (I)

≤ M for all 0 < |cI | ≤ ρ,

then there exists C > 0 depending only on b2 − b1 such that, for any k 6= 0,

∣∣∣ ∮
∂D
e−ickt

(
tnf(c)− (ik)−nf1(c)

)
dc
∣∣∣
Lqt (R)

≤ C|k|−n−
1
qM .

Proof. Integrating by parts we have, for any 0 < |r| ≤ ρ,

∫
I+ir

tne−icktf(c)dc =erkt
(

(ik)−n
∫
I
e−icRktf (n)(cR + ir)dcR

−
n∑
l=1

tn−l(ik)−lf (l−1)(c)
∣∣c=b2+ir

c=b1+ir

)
.

For any T > 0, the L
q
q−1 → Lq boundedness (for q ∈ [2,∞]) of the Fourier transform

implies

∣∣∣ ∫
I
e−icRkt(f (n) − f1)(cR + ir)dcR

∣∣∣
Lqt ([−T ,T ])

≤C|k|−
1
q |(f (n) − f1)(·+ ir)|

L
q
q−1 (I)

≤C|k|−
1
qM .

From this inequality and the Cauchy integral theorem, we obtain, for any r ∈ (0, ρ],

∣∣∣ ∮
∂D
e−ickt

(
tnf(c)− (ik)−nf1(c)

)
dc
∣∣∣
Lqt ([−T ,T ])

=
∣∣∣ ∮

∂(I+i[−r,r])
e−ickt

(
tnf(c)− (ik)−nf1(c)

)
dc
∣∣∣
Lqt ([−T ,T ])

≤C|k|−n−
1
q er|k|TM +

∣∣∣( ∫ b1−ir

b1+ir

+

∫ b2+ir

b2−ir

)
e−ickt

(
tnf(c)− (ik)−nf1(c)

)
dc

+
n∑
l=1

tn−l(ik)−l
(
erktf (l−1)(c)

∣∣c=b2+ir

c=b1+ir
− e−rktf (l−1)(c)

∣∣c=b2−ir
c=b1−ir

)∣∣∣
Lqt ([−T ,T ])

.

Letting r → 0, the analyticity assumption of f and f1 implies all those terms on the vertical

boundary of D vanish and the above estimates on the integrals along the horizontal edges

yield ∣∣∣ ∮
∂D
tne−ickt

(
tnf(c)− (ik)−nf1(c)

)
dc
∣∣∣
Lqt ([−T ,T ])

≤ C|k|−n−
1
qM .
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The lemma follows by letting T → +∞.

Remark 6.1.2. In the following applications of this lemma, we often use the L2 norm to

control the L
q
q−1 norm. This leads to fact that the regularity requirements in x1 (i.e. the

exponents of k) may not be close to optimal.

Applying the above lemma, we first obtain the decay of v̂c(t, k,x2) and η̂c(t, k).

Lemma 6.1.6. Assume U ∈ C4 and (5.0.8), then for any ε ∈ (0, 1), q ∈ [2,∞], and integer

m ≥ 0, there exists C > 0 determined only by ε, q, m, F0, ρ0, |U ′|C3 , and |(U ′)−1|C0

(independent of k 6= 0) such that

|∂mt v̂c2(k)|L2
x2
Lqt (R) + |k|µ|∂mt v̂c1(k)|L2

x2
Lqt (R) + µ|∂mt (v̂c2)′(k)|L2

x2
Lqt (R)

≤C|k|m+1− 1
q
(
µ

1
2 |η̂0(k)|+ |k|−1µ

5
2 |v̂′20(k, 0)|+ µ

3
2
−ε|ω̂0(k)|L2

x2

)
,

|∂mt η̂c(k)|Lqt (R) ≤ C|k|m−1− 1
q
(
|k|µ|η̂0(k)|+ µ2|v̂′20(k, 0)|+ |k|µ2−ε|ω̂0(k)|L2

x2

)
,

|t∂mt v̂c2(k)|L2
x2
Lqt (R) ≤C|k|m−

1
q
(
µ−

1
2 |η̂0(k)|+ |k|−1µ

3
2 |v̂′20(k, 0)|+ µ

1
2
−ε|ω̂0(k)|L2

x2

+ µ
3
2
−ε|ω̂′0(k)|L2

x2

)
,

|t∂mt η̂c(k)|Lqt (R) ≤C|k|m−2− 1
q
(
|k||η̂0(k)|+ µ2|v̂′20(k, 0)|+ |k|µ1−ε|ω̂0(k)|L2

x2

+ |k|µ2−ε|ω̂′0(k)|L2
x2

)
.

Proof. The estimates of ∂mt v̂
c
2, t∂mt v̂

c
2, ∂mt (v̂c2)′, ∂mt v̂

c
1, ∂mt η̂

c, and t∂mt η̂
c are based on

the definitions of v̂c(t, k,x2) and η̂c(t, k) from direct application of Lemma 6.1.4 and

Lemma 6.1.5 on Dρ0,ρ0 with f1 = 0 and f being cmV2 (with n = 0, 1), cmV ′2 , cmη̃ (with

n = 0, 1), respectively. We omit the details.

In the following we shall focus on t∂mt v̂
c
1(t, k,x2), t2∂mt v̂

c
2(t, k,x2), and ∂mt ω̂

c(t, k,x2),

where ω̂c is the Fourier transform (in x1) of the vorticity ωc = ∂x1v
c
2 − ∂x2vc1 of vc(t,x). In
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order to characterize their asymptotic behavior, define

Ω̂c(k,x2) =ω̂0(k,x2) + 1
2
U ′′(x2)

(
(1 + sgn(kt))V20(k,U(x2),x2)

+ (1− sgn(kt))V20(−k,U(x2),x2)
)
.

(6.1.9)

In the above expression, exactly one of 1 + sgn(kt) and 1 − sgn(kt) is equal to 2 and

the other equal to 0. The dependence of Ω̂c on t is only through its sign, so we skipped

specifying the t dependence. We also notice that V2 may not be C0 at c ∈ U([−h, 0]) ⊂ C.

The available conjugacy properties of V2 are not sufficient to imply V20(−k,U(x2),x2) =

V20(k,U(x2),x2). We shall see that Ω̂c provides the asymptotic profile of the vorticity ω̂c.

We first give the following some basic properties of Ω̂c.

Lemma 6.1.7. Assume U ∈ C4 and (5.0.8), then Ω̂c(−k,x2) = Ω̂c(k,x2) and, for any ε ∈

(0, 1), there exists C > 0 determined only by ε, F0, ρ0, |U ′|C3 , and |(U ′)−1|C0 (independent

of k 6= 0) such that

|Ω̂c − ω̂0|L2
x2
≤ C

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
),

|(Ω̂c)′ − ω̂′0|L2
x2
≤ Cµ−1

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
.

Proof. The conjugacy relation of Ω̂c is clear from its definition. According to Lemma 6.1.4,

V20 satisfies the same estimates as V2 for |cI | ∈ (0, ρ0]. We have, for x2 ∈ [−h, 0] and

c ∈ U([−h, 0]),

|V20(k,U(·), ·)|L2
x2
≤C|V20|

1
2

L2
cR,x2

|V20|
1
2

L2
cR
H1
x2

≤C
(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
),

(6.1.10)

which implies the estimate of Ω̂c. Apparently the estimate of (Ω̂c)′ depends on that of

∂x2
(
V20(k,U(x2),x2)

)
= (DcV20)(k,U(x2),x2),
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where Dc was defined in (5.2.4). From (5.2.7) and (6.1.3), we have

∣∣∂x2(V20(k,U(·), ·)
)∣∣
L2
x2

≤C|DcV20|
1
2

L2
cR,x2

|DcV20|
1
2

L2
cR
H1
x2

≤Cµ−1
(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2

+ µ2−ε|ω̂′0(k)|L2
x2

)
,

which yields and completes the proof of the lemma.

In the following lemma, we obtain the leading order terms of tv̂c1, (v̂c2)′′, and ω̂c.

Lemma 6.1.8. Assume U ∈ C4 and (5.0.8), then, for any ε ∈ (0, 1), q ∈ (2,∞], and

integerm ≥ 0, there existsC > 0 determined only by ε, q,m, F0, ρ0, |U ′|C3 , and |(U ′)−1|C0

(independent of k 6= 0) such that

k2
∣∣∂mt (tv̂c1(t, k,x2) + ik−1U ′(x2)−1e−ikU(x2)tΩ̂c(k,x2)

)∣∣
L2
x2
Lqt (R)

+ |k|
∣∣∂mt (ω̂c(t, k,x2)− e−ikU(x2)tΩ̂c(k,x2)

)∣∣
L2
x2
Lqt (R)

+
∣∣∂mt ((v̂c2)′′(t, k,x2)− ike−ikU(x2)tΩ̂c(k,x2)

)∣∣
L2
x2
Lqt (R)

≤C|k|m+1− 1
qµ−

3
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
.

Remark 6.1.3. This lemma also implies, for any integer m ≥ 1,

|t∂mt
(
eikU(x2)tv̂c1(t, k,x2)

)∣∣∣
L2
x2
Lqt (R)

≤C|k|m−1− 1
qµ−

3
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|

+ µ1−ε|ω̂0(k)|L2
x2

+ µ2−ε|ω̂′0(k)|L2
x2

)
.

while there is a limit term as t→∞ for m = 0. The form in the lemma is more consistent

with other estimates including that of t2v̂c2 to be given in the following, however.
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Proof. The definition of v̂c implies, for each x2 ∈ [−h, 0] and r1, r2 ∈ (0, ρ0],

t∂mt v̂
c
1(t, k,x2) =

−i(−ik)m

2π

∮
∂Dr1,r2

te−ikctcmV ′2(k, c,x2)dc,

∂mt
(
(ikω̂c + k2v̂c2)(t, k,x2)

)
= ∂mt (v̂c2)′′(t, k,x2)

=
−k(−ik)m

2π

∮
∂Dr1,r2

e−ikctcmV ′′2 (k, c,x2)dc.

Applying Lemma 6.1.5 with n = 1 and f = cmV ′2 and f1 = − cm

U ′(x2)
V ′′2 and Lemma 6.1.4,

we obtain

∣∣∣t∂mt v̂c1(t, k,x2)−
∮
∂Dr1,r2

(−i)mkm−1cm

2πU ′(x2)
e−ikctV ′′2 (k, c,x2)dc

∣∣∣
L2
x2
Lqt (R)

≤C|k|m−1− 1
q sup
|cI |∈(0,r2]

(∣∣∂cRV ′2 + U ′(x2)−1V ′′2
∣∣
L2
cR,x2

+ |V ′2 |L2
cR,x2

)
≤C|k|m−1− 1

qµ−
3
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
.

(6.1.11)

In the rest of the proof, we shall focus on the integral involving V ′′2 which also yields

the other desired estimates. Substituting the term V ′′2 by the Rayleigh equation (2.2.6a) and

applying the Cauchy Integral Theorem yield

∮
∂Dr1,r2

cme−ikct

U ′(x2)
V ′′2 dc =

∮
∂Dr1,r2

cme−ikct

U ′(x2)

(
k2V2 +

U ′′(x2)V2 + ω̂0(k,x2)

U(x2)− c
)
dc

=

∮
∂Dr1,r2

e−ikct

U ′(x2)

(
k2cm +

( U(x2)m

U(x2)− c
+
cm − U(x2)m

U(x2)− c
)
U ′′(x2)

)
V2dc

− 2πiU(x2)mω̂0(k,x2)

U ′(x2)
e−ikU(x2)t

Since k2cm + cm−Um
U−c U ′′ is bounded by Cµ−2 on Dr1,r2 , we can control those terms using
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Lemma 6.1.5 and obtain

∣∣∣ ∮
∂Dr1,r2

(−i)mkm−1cm

2πU ′(x2)
e−ikctV ′′2 (k, c,x2)dc+

(−ik)m−1U(x2)m

U ′(x2)
e−ikU(x2)t

(
ω̂0(k,x2)

− iU ′′(x2)

2π

∮
∂Dx2r1,r2

1

c
e−ikctV2(k, c+ U(x2),x2)dc

)∣∣∣
L2
x2
Lqt (R)

≤C|k|m−1− 1
qµ−

3
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
,

(6.1.12)

where we also changed the variable c− U(x2)→ c in the last integral and

Dx2r1,r2
= Dr1,r2 − U(x2). (6.1.13)

It remains to handle this integral term and we shall identify its leading terms.

Fix T > 0. We first let

w(k, c,x2) = V2(k, c+ U(x2),x2)− V20(k, cR + U(x2),x2)

=⇒ lim
cI→0+

|w(k, ·+ icI , ·)|L∞x2W
1,q1
cR

= 0,

for any q1 ∈ [1, 2), where ω̂0 ∈ H1
x2

, Lemma 6.1.4 was used. In the rest of the proof of

this lemma, we use ∂†Dx2r1,r2
, † = L,R,T ,B, to denote the left, right, top, bottom sides of

the rectangle Dx2r1,r2
with the counterclockwise orientation. For any r ∈ (0, r2] and k 6= 0,

and 1 ≤ q
q−1

< q1 < 2, integrating by parts and using the L
q
q−1 → Lq boundedness (for
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q ∈ [2,∞]) of the Fourier transform, we obtain

∣∣∣ ∮
∂TDx2r1,r

1

c
e−ikctwdc

∣∣∣
L2
x2
Lqt ([−T ,T ])

=
∣∣∣(e−ikctw log c)

∣∣U(−h)−U(x2)−r1+ir

U(0)−U(x2)+r1+ir

− ekrt
∮
∂TDx2r1,r

e−ikcRt(−iktw + ∂cRw) log c dc
∣∣∣
L2
x2
Lqt ([−T ,T ])

≤Ce|k|rT
(
T

1
q (1 + | log r1|)|w(k, ·+ ir, ·)|L2

x2
L∞cR

+ |k|−
1
q (1 + |k|T )|w(k, ·+ ir, ·)|

L2
x2
W

1,q1
cR

)
,

where log is taken along ∂TDx2r1,r which in the upper half plane. Next from Lemma 6.1.4

we have

∣∣∣ ∮
∂TDx2r1,r

1

c
e−ikct

(
V20(k, cR + U(x2),x2)− V20(k,U(x2),x2)

)
dc
∣∣∣
L2
x2
Lqt ([−T ,T ])

≤C|k|−
1
q e|k|rT |∂cRV20|L2

x2
L
q1
cR

≤C|k|−
1
qµ−

1
2 e|k|rT

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
.

The above error analysis implies that the main contribution of the integral along ∂TDx2r1,r

would come from the product

V20(k,U(x2),x2)f(r,x2, kt), where f(r,x2, τ) =

∮
∂TDx2r1,r

e−iτc

c
dc.

For any r ∈ (0, r2], on the one hand,

|f(r,x2, τ)| =erτ
∣∣− (e−iτcR log c)

∣∣U(0)−U(x2)+r1

U(−h)−U(x2)−r1
+ iτ

∮
∂TDx2r1,r

e−iτcR log c dc
∣∣

≤C(1 + |τ |)erτ ,
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which is useful for |τ | ≤ 1. On the other hand,

f(r,x2, τ) = −
(∫

R+ir

−
∫

(R+ir)\∂TDx2r1,r

)1

c
e−iτcdc.

The first integral can be evaluated as iπ(sgn(τ)+1) by using the Cauchy Integral Theorem.

Integrating the second integral (in the way opposite to the above) we obtain

∣∣∣ ∫
(R+ir)\∂TDx2r1,r

1

c
e−iτcdc

∣∣∣ =
erτ

|τ |

∣∣∣e−iτcR
c

∣∣U(−h)−U(x2)−r1
U(0)−U(x2)+r1

+

∫
(R+ir)\∂TDx2r1,r

e−iτcR

c2
dc
∣∣∣

≤Ce
rτ

|τ |
.

Therefore

|f(r,x2, τ)− iπ(sgn(τ) + 1)| ≤ C(1 + |τ |)−1er|τ |, ∀τ ∈ R.

Along with (6.1.10), we have

∣∣∣V20(k,U(x2),x2)
(∮

∂TDx2r1,r

1

c
e−ikctdc− iπ(sgn(kt) + 1)

)∣∣∣
L2
x2
Lqt ([−T ,T ])

≤C|k|−
1
q er|k|T

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2

)
.

The integrals along the vertical sides of ∂Dx2r1,r converge to 0 as r → 0+ as all the integrands

are smooth there. The integrals along ∂BDr1,r, r ∈ (0, r2], can be treated much as in the

above. Recall V2(k, c̄,x2) = V2(−k, c,x2). Letting r → 0+, the Cauchy Integral Theorem

and the above error analysis imply

∣∣∣ ∮
∂Dx2r1,r2

1

c
e−ikctV2(k, c+ U(x2),x2)dc− iπ

(
(1 + sgn(kt))V20(k,U(x2),x2)

+ (1− sgn(kt))V20(−k,U(x2),x2)
)∣∣∣
L2
x2
Lqt ([−T ,T ])

≤C|k|−
1
qµ−

1
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
.
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Taking T →∞, it follows from the above inequality and (6.1.12)

∣∣∣ ∮
∂Dr1,r2

(−i)mkm−1cm

2πU ′(x2)
e−ikctV ′′2 (k, c,x2)dc

+
(−ik)m−1U(x2)m

U ′(x2)
e−ikU(x2)tΩ̂c(k,x2)

∣∣∣
L2
x2
Lqt (R)

≤C|k|m−1− 1
qµ−

3
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
.

(6.1.14)

Along with (6.1.11) and Lemma 6.1.6 it implies the desired estimate of ∂mt (tv̂c1). The esti-

mates on ∂mt (v̂c2)′′ and ∂mt ω̂
c are also obtained from the above inequality and Lemma 6.1.6.

Finally we consider t2v̂2.

Lemma 6.1.9. Assume U ∈ C6 and (5.0.8), then, for any ε ∈ (0, 1), q ∈ (2,∞], and

integer m ≥ 0, there exists C > 0 determined only by ε, q, m, F0, |U ′|C5 , and |(U ′)−1|C0

(independent of k 6= 0) such that

∣∣∣∂mt (t2v̂c2(t, k,x2)

−
(
− ie−ikU(x2)t

kU ′(x2)2
Ω̂c(k,x2) + e−ikU(0)tΛ̂T (k,x2) + e−ikU(−h)tΛ̂B(k,x2)

))∣∣∣
L2
x2
Lqt (R)

≤C|k|m−1− 1
qµ−

3
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

+ µ3−ε|ω̂′′0(k)|L2
x2

)
,

where

Λ̂T (k,x2) = − i
k

U ′′(0)η̂0(k)− ω̂0(k, 0)

U ′(0)2y0−(k,U(0), 0)
y0−(k,U(0),x2), (6.1.15)

Λ̂B(k,x2) =
iω̂0(k,−h)y0+(k,U(−h),x2)

kU ′(−h)2y0+(k,U(−h),−h)
, (6.1.16)
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and they satisfy

|Λ̂T (k)|L2
x2
≤ C|k|−1µ

1
2 (|η̂0(k)|+ |ω̂0(k, 0)|), |Λ̂B(k)|L2

x2
≤ C|k|−1µ

1
2 |ω̂0(k,−h)|).

Remark 6.1.4. In the above lemmas, we also notice Λ̂†(−k,x2) = Λ̂†(k,x2), † = T ,B.

The leading order terms Λ̂B and Λ̂T represent the contribution from the rigid bottom and

the water surface, while the asymptotic vorticity Ω̂c from the fluid interior. In the fixed

boundary problem for x2 ∈ [−h, 0] with slip boundary condition on both horizontal bound-

aries, Ω̂c and Λ̂B would take similar forms and Λ̂T would be similar to Λ̂B. See section 6.4.

Proof. The definition of v̂c2 implies, for each x2 ∈ [−h, 0] and r1, r2 ∈ (0, ρ0],

t2∂mt v̂
c
2(t, k,x2) =

−(−i)mkm+1

2π

∮
∂Dr1,r2

t2e−ikctcmV2(k, c,x2)dc.

Let f = cmV2 and

f1 = cm
( V ′′2 (x2)

U ′(x2)2
− g + σk2

F(k, c)

( V ′′2 (−h)

U ′(−h)2
y+(x2)− V ′′2 (0)

U ′(0)2
y−(x2)

))
= cm(∂2

cR
V2 − Ṽ2),

with Ṽ2 defined in Lemma 6.1.4. Applying Lemma 6.1.5 with n = 2 and Lemma 6.1.4, we

obtain

∣∣∣t2∂mt v̂c2(t, k,x2)− (−i)mkm−1

2π

∮
∂Dr1,r2

e−ikctf1(k, c,x2)dc
∣∣∣
L2
x2
Lqt (R)

≤C|k|m−1− 1
q sup
cI∈(0,r2]

(∣∣Ṽ2|L2
cR,x2

+ |∂cRV2|L2
cR,x2

+ |V2|L2
cR,x2

)
≤C|k|m−1− 1

qµ−
3
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

+ µ3−ε|ω̂′′0(k)|L2
x2

)
.
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Substituting V ′′2 in f1 by using the Rayleigh equation (2.2.6a) yields

f1 = cm
( V ′′2 (x2)

U ′(x2)2
+

f1B

U(−h)− c
+

f1T

U(0)− c
+

(g + σk2)y−(x2)

U ′(0)2F(k, c)
k2V2(0)

)
,

where

f1B = −(g + σk2)ω̂0(−h)

U ′(−h)2F(k, c)
y+(x2) = − ω̂0(−h)y+(x2)

U ′(−h)2y+(−h)
,

f1T =
(g + σk2)

(
U ′′(0)V2(0) + ω̂0(0)

)
U ′(0)2F(k, c)

y−(x2).

Again the terms involving k2V2(0) not being divided by U − c can be estimated by using

assumption (5.0.8) and Lemma 6.1.5, Lemma 3.3.2, and Lemma 6.1.4 and we have

∣∣∣t2∂mt v̂c2(t, k,x2)

− (−i)mkm−1

2π

∮
∂Dr1,r2

e−ikctcm
( V ′′2 (x2)

U ′(x2)2
+

f1B

U(−h)− c
+

f1T

U(0)− c

)
dc
∣∣∣
L2
x2
Lqt (R)

≤C|k|m+1− 1
qµ

1
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

+ µ3−ε|ω̂′′0(k)|L2
x2

)
.

We shall identify the principle contributions from the terms f11, f1B, and f1T following

a similar strategy and use the same notations ∂†∂r1,r2 , † = T ,B,L,R, as in the proof of

Lemma 6.1.8, with necessary modifications to treat the contributions from the x2 = 0,−h.

Fix T > 0. We start with f1T by letting

f 0
1T (k, cR,x2) = lim

cI→0+
f1T (k, c,x2) =

(g + σk2)
(
U ′′(0)V20(0) + ω̂0(0)

)
U ′(0)2F(k, cR)

y0−(x2).

From assumption (5.0.8), Lemma 3.5.1, Lemma 3.5.7(2b), Lemma 4.1.2, and Lemma 6.1.4,

we have, for any q1 ∈ [1, 2),

|(f1T − f 0
1T )(k, ·+ cI , ·)|L∞x2W

1,q1
cR

→ 0, as cI → 0+.
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The next step is the same argument via integrating by parts in cR as in the proof of

Lemma 6.1.8, as r → 0+,

∣∣∣ ∮
∂TDr1,r

e−ikctcm
f1T (k, c,x2)− f 0

1T (k, cR,x2)

U(0)− c
dc
∣∣∣
L2
x2
Lqt ([−T ,T ])

=
∣∣∣(e−ikctcm(f1T − f 0

1T ) log(U(0)− c)
)∣∣U(−h)−r1+ir

U(0)+r1+ir

−
∮
∂TDr1,r

e−ikct(−ikt+ ∂cR)
(
cm(f1T − f 0

1T )
)

log(U(0)− c)dc
∣∣∣
L2
x2
Lqt ([−T ,T ])

→ 0.

From Lemma 3.3.2, Lemma 3.5.3–Lemma 3.5.5, Lemma 4.1.1(3), Lemma 4.1.2(1), and

(5.0.8), one may estimate,

|y0−/F|L2
x2
L∞cR

+ |∂cR(y0−/F)|L2
x2
L
q1
cR
≤ Cµ

5
2 , ∀q1 ∈ [1,∞).

Along with Lemma 6.1.4, it implies, for any q2 ∈ [1, 2),

|f 0
1T |L2

x2
L∞cR

+ |∂cRf 0
1T |L2

x2
L
q2
cR
≤Cµ−

1
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ |ω̂0(k)|L2

x2

+ µ2−ε|ω̂′0(k)|L2
x2
|
)
,

where |ω̂0(0)| and |V2(0)|L∞cR were bounded by the L2 norms of ω̂0(k), ω̂′0(k), |V2(0)|L2
cR

,

and |∂cRV2(0)|L2
cR

. Consequently, for any r ∈ (0, r2]

∣∣∣ ∮
∂TDr1,r

e−ikctcm

U(0)− c
f 0

1T (k, cR,x2)dc

− f 0
1T (k,U(0),x2)

∮
∂TDr1,r

e−ikctcm

U(0)− c
dc
∣∣∣
L2
x2
Lqt ([−T ,T ])

≤Cer|k|T |k|−
1
qµ−

1
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ |ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
.

As in the proof of Lemma 6.1.8, by considering contour integrals, we have

∣∣∣ ∮
∂TDr1,r

e−ikct

U(0)− c
dc+ iπ(1 + sgn(kt))e−ikU(0)t

∣∣∣ ≤ Cer|kt|

1 + |kt|
.
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Again, since cm−U(0)m

c−U(0)
is bounded for m ≥ 1, the above |f 0

1T |L2
x2
L∞cR

estimate implies

∣∣∣f 0
1T (k,U(0),x2)

(∮
∂TDr1,r

e−ikctcm

U(0)− c
dc

+ iπ(1 + sgn(kt))e−ikU(0)tU(0)m
)∣∣∣

L2
x2
Lqt ([−T ,T ])

≤Cer|k|T |k|−
1
qµ−

1
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ |ω̂0(k)|L2

x2
+ µ2|ω̂′0(k)|L2

x2

)
.

The contributions from the integral along ∂BDr1,r2 can be treated similarly and using the

conjugacy relation, while the integrals along the vertical boundaries of ∂Dr1,r2 vanish as

r → 0+. Using the Cauchy Integral Theorem, combining the above analysis, letting r →

0+, and then T → 0+, we obtain

∣∣∣ ∮
∂TDr1,r2

e−ikctcmf1T (k, c,x2)dc− 2πke−ikU(0)tU(0)mΛ̂T (k,x2)
∣∣∣
L2
x2
Lqt (R)

≤C|k|−
1
qµ−

1
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ |ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

)
,

where

Λ̂T (k,x2) = − i
2k

(
(1 + sgn(kt))f 0

1T (k,U(0),x2) + (1− sgn(kt))f 0
1T (−k,U(0),x2)

)
.

We give closer look at Λ̂T . From boundary condition (5.0.1b), (5.2.2), and (6.1.3),

V2(k,U(0), 0) = −ζ+(U(0))/(g + σk2) = −η̂0(k),

and thus

f 0
1T (k,U(0),x2) =

U ′′(0)η̂0(k)− ω̂0(k, 0)

U ′(0)2y0−(k,U(0), 0)
y0−(k,U(0),x2).

Since y0−(k,U(0),x2) ∈ R for x2 ∈ [−h, 0], we obtain that

f 0
1T (k,U(0),x2) = f 0

1T (−k,U(0),x2),
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and hence the desired form (6.1.15) of ΛT . The term involving f1B can be analyzed simi-

larly (actually slightly simpler due to V2(−h) = 0) using Lemma 3.5.3–Lemma 3.5.5 and

Lemma 3.5.7. The term involving f11 has been estimated in (6.1.14). Summarizing this

estimates we obtain

∣∣∣t2∂mt v̂c2(t, k,x2)− (−ik)m
(
− iU(x2)m

kU ′(x2)2
e−ikU(x2)tΩ̂c(k,x2)

+ U(0)me−ikU(0)tΛ̂T (k,x2) + U(−h)me−ikU(−h)tΛ̂B(k,x2)
)∣∣∣

L2
x2
Lqt (R)

≤C|k|m−1− 1
qµ−

3
2

(
|η̂0(k)|+ |k|−1µ2|v̂′20(k, 0)|+ µ1−ε|ω̂0(k)|L2

x2
+ µ2−ε|ω̂′0(k)|L2

x2

+ µ3−ε|ω̂′′0(k)|L2
x2

)
.

Combining it with Lemma 6.1.6, the desired estimate follows.

6.2 Linearized capillary gravity waves in the horizontally periodic case

In this section, we consider the case where the system is periodic in x1 with wave length

L > 0. In this case

k ∈ 2π
L
Z, v̂2(t, k = 0,x2) = 0,

where the latter properties is due to the divergence free condition on v. For † = c, p, let

v†2(t,x) =
∑
|k|∈2π

L
N

v̂†2(t, k,x2)eikx1 , ηc(t,x1) =
∑
|k|∈2π

L
N

η̂c(t, k)eikx1 ,

vc1(t,x) =
∑
|k|∈2π

L
N

v̂c1(t, k,x2)eikx1 ,

ηp(t,x1) = η̂0(0) +
∑
|k|∈2π

L
N

η̂p(t, k)eikx1 , vp1(t,x) = v̂1(0,x2) +
∑
|k|∈2π

L
N

v̂p1(t, k,x2)eikx1

where v† = (v†1, v†2), and v̂†1, v̂†2, and η̂† are defined in Lemma 6.1.1 and Corollary 6.1.1.1.

Here we used (2.2.2) that the zeroth modes v̂1(k = 0) and η̂(0) are invariant in t. Through-
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out this section, we assume (4.1.5) holds for K = 2π
L
N.

We first give the decay estimates of (vc, ηc) based on Lemma 6.1.6–Lemma 6.1.9. In

particular, for the estimates of tvc1 and t2vc2, recall Ω̂c(k,x2) and Λ̂†(k,x2), † = B,T defined

in (6.1.9), (6.1.16), and (6.1.15), respective. Let

Ωc(x1,x2) =
∑
|k|∈2π

L
N

Ω̂c(k,x2)eikx1 , Λ†(x1,x2) =
∑
|k|∈2π

L
N

Λ̂†(k,x2)eikx1 . (6.2.1)

Proof of Theorem 2.1.2(1–2). The assumption of the non-existence of singular modes is

given in the form of (4.1.5). According to Proposition 4.1.4, (4.1.5) for K = 2π
L
N implies

(5.0.8) holds for all k with constants ρ0 and F0 uniform in k. Therefore from the definition

of vc2 and Lemma 6.1.6, it is straight forward to estimate

|∂n0
t v

c|2
H
n1
x1
L2
x2
L
q1
t (R)

≤C
∑
|k|∈2π

L
N

µ−2n1|k|2n0+2− 2
q1

(
µ

1
2 |η̂0(k)|+ |k|−1µ

5
2 |v̂′20(k, 0)|

+ µ
3
2
−ε|ω̂0(k)|L2

x2

)2

≤C
∑
|k|∈2π

L
N

|k|2(n0+n1+1− 1
q1

)(|k|−1|η̂0(k)|2 + |k|−7|v̂′20(k, 0)|2

+ |k|2ε−3|ω̂0(k)|2L2
x2

)
≤C
(
|η0|2

H
n0+n1+

1
2−

1
q1

x1

+ |∂x2v20(·, 0)|2
H
n0+n1−

5
2−

1
q1

x1

+ |ω0|2
H
n0+n1−

1
2−

1
q1

+ε

x1
L2
x2

)
.

The desired inequality follows from ∂x2v20 = −∂x1v10. The estimates on ∂n0
t η

c, t∂n0
t v

c
2 and

t∂n0
t η

c are obtained similarly. The inequalities on ∂n0
t (tvc1) and ∂n0

t (t2vc2) are obtained by

applying Lemma 6.1.8 and Lemma 6.1.9 through a similar procedure. The estimates on Ωc

and Λ†, † = B,T , follow directly from the estimates on their each Fourier modes given in
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those lemmas and

|∂n2
x2
y0±(k, c, ·)/y0±(k, c, 0)|Lqx2 ≤ Cµ

1
q
−n2 , n2 = 0, 1, (6.2.2)

which is obtained using (5.0.8) and Lemma 3.3.2. The singular elliptic equations in (2.1.6)

are simply from the homogeneous Rayleigh equation with c = U(−h),U(0), satisfied by

y0± in (−h, 0). THe boundary conditions of ΛB and ΛT are simply corollaries of their

definitions and the boundary conditions (3.3.1) of y0±. �

Next we consider the (vp(t,x), ηp(t,x1)) part of the linear solution (v, η). Let

λ0 = max{Re (−ic∗k) | k ∈ 2π
L
N, c∗ ∈ R(k)} ≥ 0,

N = max{degree of root c∗ of F(k, ·) | k ∈ 2π
L
N, c∗ ∈ R(k), Re (−ikc∗) = λ0} ≥ 1,

(6.2.3)

where the lower bounds are obtained due to the roots c±(k) for large k (Lemma 4.1.2(3)).

Proof of Theorem 2.1.2(3). On the one hand, according to Lemma 4.1.2(3), there exists

k0 > 0 such that R(k) = {c±(k)} with simple roots c±(k) for all |k| ≥ k0. On the other

hand, (4.1.5) and Proposition 4.1.4 imply that (5.0.8) holds for all k ∈ 2π
L
N. Along with

Lemma 4.1.2(2), we obtain that, for all k ∈ 2π
L
N with |k| < k0, the set of roots R(k) is

contained in a subset in the domain of analyticity of F(k, ·) uniformly in such k. Hence

R(k) is a discrete set and the total algebraic multiplicity of c∗ ∈ R(k) for all k ∈ 2π
L
N with

|k| < k0 is finite. This proves λ0,N <∞.

For any k ∈ 2π
L
N and c∗ ∈ R(k), let n denote the degree of c∗ as a root of F(k, ·), then

b and bS are polynomials of t of degree n−1 (Lemma 6.1.2). Hence to prove the regularity

estimates, we only need to consider k ∈ 2π
L
N with |k| ≥ k0 where all roots of F(k, ·) are

simple. For such k, R(k) = {c±(k)} and Lemma 4.1.2(3) implies that there exists C > 0
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such that

|c∗| ≥ 1
C
|k|

1
2 , |∂cF (k, c∗)| ≥ 1

C
|k|

3
2 , ∀c∗ ∈ R(k), k0 ≤ |k| ∈ 2π

L
N.

From the homogeneous Rayleigh equation (3.0.1), (5.0.8), and Lemma 3.3.2, it holds,

|∂sx2y−(k, c∗, ·)|L2
x2
≤ Cµ

3
2
−s, ∀ s ∈ [0, l0], k ∈ R, c∗ ∈ R(k). (6.2.4)

Hence Lemma 6.1.1 and Lemma 6.1.2 and the definition of vp2 imply, for any n1 ∈ R and

n2 ∈ [0, l0],

∑
k0≤|k|∈

2π
L

N

µ−2n1 |v̂p2(t, k, ·)|2
H
n2
x2
≤ C

∑
k0≤|k|∈

2π
L

N

∑
c∗=c±(k)

µ−2n1|b(k, c∗, ·)|2Hn2
x2

≤C
∑

k0≤|k|∈
2π
L

N

|k|2(n1+n2)−4
(
|k|3|η̂0(k)|+ |k|

1
2 |v̂′20(k, 0)|+ |k||ω̂0(k, ·)|L2

x2

)2

≤C
(
|η0|2Hn1+n2+1

x1

+ |∂x2v20(·, 0)|2
H
n1+n2−

3
2

x1

+ |ω0|2Hn1+n2−1
x1

L2
x2

)
.

The desired inequality follows from the divergence free condition. The expression of vp1

involves y′− and thus it can be differentiated in x2 at most l0 − 1 times. The procedure to

obtain the estimates of vp1 and ηp are similar and we skip the details. �

Finally we give the invariant decomposition of the phase space which proves Theo-

rem 2.1.2(4).

Lemma 6.2.1. Let

Xp = span{range(eikx1P(k, c∗)) | c∗ ∈ R(k), k ∈ 2π
L
Z} ⊂ H1(TL×(−h, 0))×H2(TL),

P(v, η) = ⊕
c∗∈R(k),k∈2π

L
Z
eikx1P(k, c∗)

(
v̂(k), η̂(k)

)
,

Xc = kerP ⊂ H1(TL × (−h, 0))×H2(TL).

200



where P(k, c∗) was defined in (6.1.8), then the following hold.

1. P is a bounded projection operator from Hn(TL × (−h, 0)) × Hn+1(TL) to Xp ∩(
Hn(TL × (−h, 0))×Hn+1(TL)

)
for any n ∈ [1, l0 − 1].

2. Xp and Xc are both invariant subspaces of (2.2.1).

3. Moreover (2.2.1) is also well-posed on the L2 ×H1 completion of Xp and is a (pos-

sibly unstable) dispersive equation with the (multi-branches of) dispersion relation

given by kc∗ where c∗ ∈ R(k).

The boundedness of P follows from the estimates in Theorem 2.1.2 at t = 0. The

invariance of Xp and Xc is due to Lemma 6.1.2 and Corollary 6.1.2.1. The well-posedness

of (2.2.1) on the L2 × H1 completion of Xp is due to the fact that R(k) = {c±(k)} ⊂

R \ U([−h, 0]) except for finitely many k ∈ 2π
L
Z. Here we did not set Xp and Xc in

L2 ×H1 is due to the issue that we can not ensure v1(·, 0) ∈ H−
1
2

x1 for v ∈ L2.

6.3 Linearized capillary gravity waves in the horizontally infinite case

In this section, we consider the case where x1 ∈ R and thus k ∈ R. Throughout this

section, we assume (4.1.5) for K = R. For † = c, p, let

v†(t,x) =

∫
R
v̂†(t, k,x2)eikx1dk, η†(t,x1) =

∫
R
η̂†(t, k)eikx1dk, v† = (v†1, v†2),

(6.3.1)

where v̂†1, v̂†2, and η̂† are defined in Lemma 6.1.1 and Corollary 6.1.1.1.

We first carry out the decay estimates of (vc, ηc) based on Lemma 6.1.6–Lemma 6.1.9.

Let

Ωc(x1,x2) =

∫
R

Ω̂c(k,x2)eikx1dk, Λ†(x1,x2) =

∫
R

Λ̂†(k,x2)eikx1dk. (6.3.2)

Proof of Theorem 2.1.3(1–3). Again the assumption of the non-existence of singular modes
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is given in the form of (4.1.5). According to Proposition 4.1.4, assumption (4.1.5) for

K = R implies that (5.0.8) holds and R(k) = {c±(k)} with all these simple roots c±(k) of

F(k, ·) away from U([−h, 0]) for all k ∈ R. Moreover, Lemma 4.1.2 yields

|dist(c±(k),U([−h, 0]))| ≥ 1
C
µ−

1
2 , |∂cF (k, c±(k))| ≥ 1

C
µ−

3
2 , ∀k ∈ R.

Like in the periodic-in-x1 case, the proof of the decay of (vc, ηc) is also a direct verification

using Lemma 6.1.6–Lemma 6.1.9 along with (6.2.2) and the divergence free condition. We

omit the details.

From Lemma 6.1.1 and Lemma 6.1.2(3), we obtain b and bS are independent of t and

satisfy, for any n2 ∈ [0, l0],

|∂n2
x2
b(k, c±(k),x2)| ≤ C

(
|k|µ−

1
2 |η̂0(k)|+µ|v̂′20(k, 0)|+ |k|µ

3
2 |ω̂0(k)|L2

x2

)∣∣µ1−n2eµ−1(x2+h)

y−(k,c±(k),0)

∣∣,
|bS(k, c±(k))| ≤ C

(
|η̂0(k)|+ |k|−1µ

3
2 |v̂′20(k, 0)|+ µ2|ω̂0(k)|L2

x2

)
.

The desired estimates follow from (6.2.4), ikv̂1 = −v̂2, and direct computations. �

Similar to the periodic case, we also have the decomposition by invariant subspaces.

Lemma 6.3.1. Let

P(v, η) =

∫
R
P(k, c+(k))(v, η)dk +

∫
R
P(k, c−(k))(v, η)dk,

Xp = range(P) ⊂ H1(R×(−h, 0))×H2(R), Xc = kerP ⊂ H1(R×(−h, 0))×H2(R),

where P(k, c±(k)) was defined in (6.1.8), then the following hold.

1. P is a bounded projection operator from Hn(R × (−h, 0)) × Hn+1(R) to Xp ∩(
Hn(R× (−h, 0))×Hn+1(R)

)
for any n ∈ [1, l0 − 1].

2. Xp and Xc are both invariant subspaces of (2.2.1).
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3. In fact (2.2.1) is also well-posed on the L2×H1 completion of Xp and is a dispersive

equation with the dispersion relation given by kc±(k).

To end this section we show that, under assumptions (4.1.5) for K = R and (4.1.14),

due to the monotonicity of c±(k) in k > 0 (Lemma 4.1.7) and the asymptotics of c±(k) for

|k| � 1 (Lemma 4.1.2(3)), the dynamics of the non-singular modes is conjugate to that of

linear irrotational capillary gravity waves.

For k ∈ R, let

e±(k,x2) =(v1, v2, η)

=e−|k|h
(
µ−

1
2y′−(k, c±(k),x2),−ikµ−

1
2y−(k, c±(k),x2),− y−(k, c±(k), 0)

µ
1
2 (U(0)− c±(k))

)
,

e±ir(k,x2) = (v1, v2, η) = e−|k|h
(
µ−

1
2 cosh k(x2 + h),−iµ−

1
2 sinh k(x2 + h),

sinh kh

kµ
1
2 c±ir(k)

)
,

where c±ir(k) is the wave speed of the free linear capillary gravity wave (system (1.2.2) with

U ≡ 0 and ∇ × v ≡ 0) given in (2.1.5). Here e±(k) correspond to the two non-singular

modes in the k-th Fourier modes in x1, while e±ir the modes of irrotational linear capillary

gravity waters waves. Define

E±
(
f
)

=

∫
R
f(k)eikx1e±(k)dk, E±ir

(
f
)

=

∫
R
f(k)eikx1e±ir(k)dk,

X± = {E±(f) | f ∈ L2(R)}, X±ir = {E±ir (f) | f ∈ L2(R)}.

Clearly X+ ⊕X− is equal to the L2 ×H1 completion of Xp and E± : L2(R) → X± and

E±ir : L2(R)→ X±ir parametrize X± and X±ir by L2. The following proposition finishes the

proof of Theorem 2.1.1(2b) and Theorem 2.1.3(4).

Proposition 6.3.2. Assume U ∈ C3 and (4.1.5) for K = R, then the following hold.

1. The mappings E± and E±ir are isomorphisms. Moreover there exists C > 0 depending
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only on U such that forallk ∈ R, f ∈ L2(R),

C−1 ≤ |e±(k)|L2 , |e±ir(k)|L2 ≤ C, C−1|f |L2 ≤ |E±(f)|L2 , |E±ir (f)| ≤ C|f |L2 .

2. For any solution (v(t,x), η(t,x1)) to the capillary gravity wave linearized at the

shear flow U(x2), if its component (vp, ηp) as defined in (6.3.1) belongs to X+⊕X−,

then it takes the form

(vp, ηp) = E+(e−ikc
+(k)tf+(k)) + E−(e−ikc

−(k)tf−(k)), (6.3.3)

for some unique f± ∈ L2(R). Similarly, any solution (v(t,x), η(t,x1)) ∈ L2 to the

free linear capillary gravity wave (system (1.2.2) with U ≡ 0), then it takes the form

(v, η) = E+
ir (e

−ikc+ir(k)tf+(k)) + E−ir (e−ikc
−
ir(k)tf−(k)), f± ∈ L2. (6.3.4)

3. In addition, assume (4.1.14) and 0 ∈ U
(
[−h, 0]

)
, then there exist odd C1 functions

ϕ±(k) and C > 0 depending only on U such that

ϕ±(k)c±(ϕ±(k)) = kc±ir(k), C−1 ≤ |k|−1|ϕ±(k)|, (ϕ±)′(k) ≤ C, ∀k ∈ R.

Define Φ± : X± → X±ir as

Φ±
(
E±(f)

)
= E±ir (f ◦ ϕ±)

for any E±(f) ∈ X±, then Φ+ + Φ− is an isomorphism from (X+ ⊕X−) ∩ (Hn ×

Hn+1) to (X+
ir⊕X−ir)∩ (Hn×Hn+1) for any n ∈ [0, l0− 1]. Moreover flows (6.3.3)
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and (6.3.4) are conjugate through Φ+ + Φ−. Namely, for any f± ∈ L2, it holds

Φ+
(
E+(e−ikc

+(k)tf+(k))
)

+ Φ−
(
E−(e−ikc

−(k)tf−(k))
)

=E+
ir (e

−ikc+ir(k)tf+(ϕ+(k))) + E−ir (e−ikc
−
ir(k)tf−(ϕ−(k))).

(6.3.5)

Proof. The estimates on |e±(k)|L2 and |e±ir(k)|L2 are derived from direct computations

based on Lemma 3.3.2. In particular, since c±(k) ∈ R \ U([−h, 0]), formula (4.1.9) of

y− for k = 0 and the bound on ∂ky− are used in obtaining the lower bounds of |e±(k)|L2

for |k| close to 0. The estimates of |E±(f)|L2 and |E±ir (f)|L2 follow from those of e±(f) and

e±ir(f) and the Parseval’s identity. Statement (2) is a direct consequence of Lemma 2.2.1

and the definition of c±(k) and c±ir(k).

Since c±ir(0) =
√
gh 6= 0 and c±(0) /∈ U([−h, 0]), under the additional assumptions

(4.1.14) and 0 ∈ U
(
(−h, 0)

)
, Proposition 4.1.4 and Lemma 4.1.7 imply that a.) both

kc±(k) and kc±ir(k) are odd in k, b.) both ±kc±(k) and ±kc±ir(k) have positive derivative

for k > 0, and c.) both are of the order O(|k| 32 ) for |k| � 1 and of the order O(|k|)

for |k| � 1. Hence ϕ± exist and satisfy the estimates, which implies the boundedness of

Φ. The conjugacy relation (6.3.5) can be verified directly using (6.3.3), (6.3.4), and the

definition of ϕ±.

Remark 6.3.1. Under (4.1.14), 0 ∈ U([−h, 0]), and F (k,U(−h)) 6= 0 for all k ∈ R,

without assuming (4.1.5), X+ ⊕ X− may only be a closed subspace of Xp, but c±(k) ∈

R\U([−h, 0]) are still monotonic and isolated from the rest of the singular or non-singular

modes. The exactly same argument implies that the conclusions of the above proposition

still hold on X+ ⊕X−.
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6.4 A remark on the linearized Euler equation on a fixed 2d channel

We briefly comment on the 2-d Euler equation on a fixed channel x2 ∈ (−h, 0) with slip

boundary condition v2 = 0 at x2 = −h, 0. Let U(x2) be a shear flow and we assume

U ′ > 0 and there are no singular modes. (H)

As in the literatures, singular modes mean linearized solutions in the form of eik(x1−ct)v(x2)

with v ∈ H1
x2

and c ∈ U([−h, 0]).

The approach in this paper can be easily adapted to analyze this problem. While the

non-homogeneous term in the Rayleigh equation (2.2.6a) is still − ω̂0(k,x2)
U(x2)−c , the main mod-

ifications are: a.) replacing y+(k, c,x2) and V2(k, c,x2) by ỹ+(k, c,x2) and yE(k, c,x2)

which solve the homogeneous and non-homogeneous Rayleigh equations satisfying bound-

ary conditions

ỹ+(0) = yE(0) = yE(−h) = 0, ỹ′+(0) = 1,

respectively, and b.) replacing F(k, c) by y−(k, c, 0). For the simplification of notations,

we also use y−, ỹ+, and yE to denote their limits as cI → 0+. In this case of channel flow

with fixed boundary, obviously the set of non-singular modes (roots of y−(k, c, 0) outside

U([−h, 0])) for all k ∈ R is finite, actually empty if U ′′ 6= 0. Assuming (H), through the

same procedure as in Lemma 6.1.1, the solution v(t,x) to the linearized Euler equation at

the shear flow U(x2) can also be split into

v(t,x) = vc(t,x) + vp(t,x)

associated to the continuous spectra and point spectra. Under assumption (H), vp(t, ·)
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belongs to the eigenspace of unstable modes which is finite dimensional if x1 ∈ ZL. Let

Ω̂c(k,x2) =ω̂0(k,x2) + 1
2
U ′′(x2)

(
(1 + sgn(kt))yE(k,U(x2),x2)

+ (1− sgn(kt))yE(−k,U(x2),x2)
)
,

Λ̂T (k,x2) =
iω̂0(k, 0)y−(k,U(0),x2)

kU ′(0)2y−(k,U(0), 0)
, Λ̂B(k,x2) =

iω̂0(k,−h)ỹ+(k,U(−h),x2)

kU ′(−h)2ỹ+(k,U(−h),−h)
,

and Ωc and Λ†, † = B,T , be defined as in (6.2.1) for the L-periodic-in-x1 case and in

(6.3.2) for the case of x1 ∈ R.

Theorem 6.4.1. Assume U ∈ C l0 , l0 ≥ 4, and (H) holds for all k ∈ K where K = 2π
L
N or

K = R, then, for any q1 ∈ [2,∞], q2 ∈ (2,∞], ε > 0, n1 ∈ R, and integer n0 ≥ 0, there

exists C > 0 depending only on q1, q2, ε, and U such that any solution with v̂10(0,x2) = 0

satisfy

|∂n0
t ∂

n1
x1
vc1|L2

xL
q1
t (R) + |∂n0

t ∂
n1−1
x1

(1− ∂2
x1

)
1
2vc2|L2

xL
q1
t (R) ≤ C

∣∣|∂x1|n0+n1− 1
q1 ω0

∣∣
H
ε− 1

2
x1

L2
x2

,

∣∣t∂n0
t ∂

n1
x1

(1− ∂2
x1

)
1
2vc2
∣∣
L2
xL

q1
t (R)

+
∣∣∂n0
t ∂

n1
x1

(
ωc − Ωc(x1 − U(x2)t,x2)

)∣∣
L2
xL

q2
t (R)

+
∣∣∂n0
t ∂

n1+1
x1

(
tvc1 − U ′(x2)−1∂−1

x1
Ωc(x1 − U(x2)t,x2)

)∣∣
L2
xL

q2
t (R)

+
∣∣∂n0
t ∂

n1−1
x1

(
∂2
x2
vc2 − ∂x1Ωc(x1 − U(x2)t,x2)

)∣∣
L2
xL

q2
t (R)

≤C
(∣∣|∂x1|n0+n1− 1

q1 ω0

∣∣
H
ε+1

2
x1

L2
x2

+
∣∣|∂x1 |n0+n1− 1

q1 ∂x2ω0

∣∣
H
ε− 1

2
x1

L2
x2

)
,
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and if U ∈ C6,

∣∣∂n0
t ∂

n1+1
x1

(
t2vc2 − U ′(x2)−2∂−1

x1
Ωc(x1 − U(x2)t,x2)− ΛB(x1 − U(−h)t,x2)

− ΛT (x1 − U(0)t,x2)
)∣∣
L2
xL

q2
t (R)

≤C
(∣∣|∂x1 |n0+n1− 1

q1 ω0

∣∣
H
ε+1

2
x1

L2
x2

+
∣∣|∂x1|n0+n1− 1

q1 ∂x2ω0

∣∣
H
ε− 1

2
x1

L2
x2

+
∣∣|∂x1|n0+n1− 1

q1 ∂2
x2
ω0

∣∣
H
ε− 3

2
x1

L2
x2

)
.

Moreover, for any integer n2 = 0, 1, and q ∈ [1,∞), it holds

|Ωc − ω0|Hn1
x1
L2
x2
≤ C|ω0|Hn1−1+ε

x1
L2
x2

,

|∂x2Ωc − ∂x2ω0|Hn1
x1
L2
x2
≤ C

(
|ω0|Hn1+ε

x1
L2
x2

+ |∂x2ω0|Hn1−1+ε
x1

L2
x2

)
,

||k|n1∂n2
x2

Λ̂B|L2
kL

q
x2
≤ C|∂n1−1

x1
ω0(·,−h)|

H
n2−

1
q

x1

,

||k|n1∂n2
x2

ΛT |L2
kL

q
x2
≤ C|∂n1−1

x1
ω0(·, 0)|

H
n2−

1
q

x1

.

Finally, Λ†, † = B,T , satisfy Λ̂†(k = 0,x2) = 0 and


−(U − U(0))∆ΛT + U ′′ΛT = 0, x2 ∈ (−h, 0),

ΛT (x1,−h) = 0, ∂x1ΛT (x1, 0) = −U ′(0)−2ω0(x1, 0);


−(U − U(−h))∆ΛB + U ′′ΛB = 0, x2 ∈ (−h, 0),

∂x1ΛB(·,−h) = −U ′(−h)−2ω0(x1,−h), ΛB(x1, 0) = 0.

Remark 6.4.1. In the case of the Couette flow U(x2) = x2, assumption (H) is satisfied.

Obviously Ωc = ω0, which in fact gives the whole linearized vorticity ω(t,x) = ω0(x1 −

x2t,x2) and the leading asymptotic terms of tv1 and ∂2
x2
v2. However, t2v2 does also include

contributions ΛT and ΛB from the top and bottom boundaries. These asymptotic leading

order terms are essentially same as those obtained in [35] (after simplifications of (5.1) in
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Lemma 5.1 there), see also Lemma 3 in [70].
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