CHEMICALLY REACTING FLOWS IN POROUS MEDIA

A THESIS

Presented to

The Faculty of the

Division of Graduate Studies

by

Allen Charles Merritt

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Chemical Engineering

Georgia Institute of Technology
May, 1976

CHEMICALLY REACTING FLOWS IN POROUS MEDIA

Dr. C. W. Gorton, Chairman

Dr. W. Z. Black

Dr. H. C. Ward

Date Approved by Chairman: June 4,1976

ACKNOWLEDGMENTS

The author wishes to thank his thesis advisor, Dr. C. W. Gorton, for his guidance and suggestions which were invaluable to the completion of this work.

In addition, Dr. W. Z. Black and Dr. H. C. Ward served on the thesis reading committee. Their constructive comments have certainly improved the quality of this work.

Thanks are also due to Continental Oil Company for a fellowship received during the early part of this study. The Georgia Institute of Technology Engineering Experiment Station also provided laboratory space for preliminary experiments.

Numerous people contributed to the conduct of this investigation and the author is grateful to them. The staff of the Rich Electronic Computer Center provided frequent assistance. Mr. Tomas F. Camacho provided many helpful suggestions. The clerical staff of the Gold Kist Engineering Department, especially Ms. Patty Woodall, Ms. Eva Rodum, and Ms. Elizabeth Farrow, typed the many drafts of this text.

TABLE OF CONTENTS

	Pa	ge
ACKNOW	LEDGMENTS	i
LIST 0	F TABLES	٧
LIST 0	F ILLUSTRATIONS	i
SUMMAR	Y	i
NOMENC	LATURE	x
Chapte	r	
I.	INTRODUCTION	1
11.	TRANSPORT PHENOMENA IN POROUS MEDIA	6
	Equation of Motion Equation of Continuity Equation of Continuity Species i	
III.	ANALYSIS OF PACK CEMENTATION	3
	Porous Media Description Transport Equations Auxiliary Equations and Further Assumptions Finite Difference Equations Stability and Convergence Boundary and Initial Conditions Computer Program	
IV.	IMPLEMENTATION OF THE NUMERICAL SOLUTION AND RESULTS	9
	Thermodynamic and Transport Properties of the Gas Species Thermodynamic and Transport Properties of the Solid Further Modification of the Momentum Equation Input Data Results Accuracy of Results	

TABLE OF CONTENTS (CONTINUED)

Chapter		Page
٧.	CONCLUSIONS AND RECOMMENDATIONS	81
APPEND I	x	82
I.	CONTINUITY EQUATION FOR POROUS MATERIAL	82
II.	BINARY DIFFUSION COEFFICIENT FOR POROUS MEDIA	85
III.	COMPARISON OF VARIOUS FORMS FOR THE BINARY DIFFUSION EQUATION IN POROUS MEDIA	88
IV.	MULTICOMPONENT DIFFUSION EQUATION FOR POROUS MEDIA	90
٧.	MULTICOMPONENT ENERGY CONSERVATION EQUATION FOR POROUS MEDIA	93
VI.	CALCULATION OF THE SUBSURFACE TEMPERATURE	97
VII.	INTERFACE CONTINUITY EQUATION AND THICKNESS CALCULATION	99
VIII.	CALCULATION OF INTERFACE MASS FRACTIONS BOUNDARY CONDITIONS	104
IX.	CALCULATION OF INTERFACE TEMPERATURE BOUNDARY CONDITIONS	107
Х.	CALCULATION OF THE OVERALL DIFFUSIVITY AND OVERALL THERMAL CONDUCTIVITY FOR THE CORE INTERFACE	113
XI.	COMPUTER PROGRAM	117
XII.	PROPERTIES FOR GAS PHASE SPECIES	162
XIII.	PROPERTIES FOR SOLID SPECIES	163
XIV.	CALCULATION OF THE AVERAGE PRESSURE	164
LITERATU	URE CITED	166
VITA		172

LIST OF TABLES

Table								P	age
1	Input Data			•		•	٠		48
2	Results of the Solution for the Multicomponent Case after 100 Seconds								50
3	Results of the Solution for the Multicomponent Case after 1,000 Seconds						•		52
4	Results of the Solution for the Multicomponent Case after 1,900 Seconds						•		54
5	Results of the Solution for the Multicomponent Case after 2,000 Seconds	•					•		56
6	Results of the Solution for the Case Where All Binary Diffusivities are Equal with No Knudsen Diffusion after 100 Seconds		•		•				60
7	Results of the Solution for the Case Where All Binary Diffusivities are Equal with no Knudsen Diffusion after 1,000 Seconds								62
8	Results of the Solution for the Case Where All Binary Diffusivities are Equal with no Knudsen Diffusion after 1,900 Seconds	•	•		•				64
9	Results of the Solution for the Case Where All Binary Diffusivities are Equal with no Knudsen Diffusion after 2,000 Seconds	•		•	•	•			66

LIST OF ILLUSTRATIONS

Figure	e	Page
1.	Schematic Representation of a Volume Element of Coated Porous Media	. 11
2.	Mole Fraction of HCl versus Station at Times Shown for the Multicomponent Case	. 59
3.	Comparison of Diffusivity for the Multi- Component Case and the Case of Equal Binary Diffusivities After 300 Seconds	. 68
4.	Diffusivity versus Station After 1,900 Seconds	. 69
5.	Comparison of Coating Deposited versus Time for Diffusion Cases with No Knudsen Diffusion	. 70
6.	Mole Fraction of HCl versus Station for Times and Pore Radii Shown for the Multicomponent Case	. 72
7.	Mole Fraction of HCl versus Station for Times and Pore Radii Shown for the Equal Binary Diffusivities Case	. 73
8.	Diffusivity versus Station for Pore Radii Shown at 1,900 Seconds	. 74
9.	Coating Thickness versus Time for Pore Radii Shown for the Multicomponent Case	. 75
10.	Coating Thickness versus Time for Pore Radii Shown for the Equal Binary Diffusivities Case	. 76
11.	Arnold Solution versus the Multicomponent Solution at Early Times	. 78
12.	Steady State Solution versus the Multicomponent: Solution at 1,900 Seconds	. 79
13.	Schematic Representation of the Porous Media Core Gap	. 100

SUMMARY

In order to study the domains of Chemical Vapor Deposition in the industrial process of pack cementation, a comprehensive analytical model describing simultaneous transport phenomena in porous media is developed. Distinction is made between consolidated and unconsolidated media. Particular attention was paid to the models in the literature which described specific aspects of transport phenomena in porous media. In this work a novel approach to the equation of continuity is developed by using a single representation for effects in the solid and gas phases. Since no work previously discussed multicomponent diffusion in porous media, a model extending the "dusty gas theory" of Evans et al. is derived.

The specific problem in pack cementation chosen for study is the hydrogen reduction of $\mathrm{HS_iCl_3}$ to produce a silicon coating on an inert substrate. In this study, the substrate is also the wall of the pack cementation container. One of the objectives of this study is to show that coatings can be deposited on inert substrates due to the inherent advantages of the transient heat transfer, which exists early in the pack process. The generalized porous media transport equations are tailored to meet the constraints of the specific pack process chosen. These equations are then solved as an initial value problem through standard numerical techniques on a CDC digital computer. Due to depletion and deposition of a solid phase by chemical reaction at the walls and throughout the porous media, special boundary conditions and transport properties in the vicinity of the wall are developed.

Results are presented which show the effects of Knudsen diffusion on the amount of coating deposited and composition profiles. The effects of multicomponent diffusion are compared with those for equal binary diffusivities. Since actual experimental results are not available, accuracy of the numerical results is difficult to project. However, stability and convergence tests are used. In addition, results of the numerical mole flux calculations are compared to those from the Stephan-Maxwell equation. Early time results are compared to an analytical solution derived by Arnold.

The most important conclusion reached from the results of this thesis is that the model chosen for multicomponent diffusion will provide a successful solution for initial value problems in multicomponent mass transfer. The second important conclusion is that the assumption of equal binary diffusivities will provide a reasonable solution, thus greatly simplifying calculations. And finally, Knudsen diffusion can be a significant contribution to mass transfer in porous medium.

Several areas of further work and development in this area are evident from the results of this thesis. A nested iterative scheme to better calculate the molar concentrations in the porous media when deposition occurs should be developed. Laboratory experiments should be conducted to provide actual data for comparison with the model. And finally, experimental work to better relate porous media properties to transport properties should be conducted.

NOMENCLATURE

æ	fraction of gas molecules diffusely reflected from capillary walls (dimensionless)
c	molar density (lb-mole/ft ³)
c'	number of molecules per unit volume (molecules/ ft^3)
C.	number of molecules of gas species i per unit volume (molecules/ft 3)
Sp	number of molecules of solid species p per unit volume (molecules/ft 3)
Ĉp; ĉp	molar heat capacity of the gas species (BTU/lb-mole °F)
ĉp	heat capacity (BTU/1b-°F)
	\widehat{c}_{pp} of solid substrate p
	\widehat{c}_{PC} of coating c
	$\hat{c}_{p_{\epsilon}}$ of gas species i
Ny	binary diffusivity for species pair ij (ft ² /hr)
Dij Dij Dije	effective binary diffusivity for dusty gas theory (ft^2/hr)
Di	binary diffusion coefficient for dusty gas theory (ft^2/hr)
	effective multicomponent diffusion coefficient in porous media for gas species i (ft²/hr)
Dim	overall diffusivity for the core interface (ft ² /hr)
DI	deposition index defined by equation 3-5 (dimensionless)
Dei	Knudsen diffusivity for gas species i (ft ² /hr)
$ar{\mathcal{D}}_{m{\mathcal{P}}}$	average particle diameter (µ)
Ī	acceleration due to body force on fluid (ft/sec ²)
Н	constant defined by equation 2-20 (b)

```
Ĥ
          enthalpy (BTU/lb)
          Ĥ;
                of the gas species i
         Îlo
                of the solid substrate p
         Ĥc
                of the coating c
Ŧ.*
          molar flux with respect to molar average velocity
          (lb-mole/hr-ft<sup>2</sup>)
          effective molar flux with respect to molar average
          velocity (lb-mole/hr-ft<sup>2</sup>)
Ji.
          effective mass flux with respect to mass average velocity (lb-mole/hr-ft<sup>2</sup>)
Kp
          equilibrium constant (dimensionless)
Ž,
          porous media shape factor (dimensionless)
Ŕ
          tortuousity factor (dimensionless)
k
          Boltzmann Constant
ke
          static effective thermal conductivity of the porous
         media (BTU/hr-ft-°F)
          overall thermal conductivity for the core interface
          (BTU/hr-ft-°F)
k-
         apparent thermal conductivity of the porous media due
          to radiation (BTU/hr-ft-°F)
k.
         radiation contribution to k, defined by equation 2-21b
          thermal conductivity of the solid substrate material
Kρ
          (BTU/hr-ft-°F)
          k:
                of the gas species i
          k_{\mathcal{L}}
                of the fluid
          Ks
                of the shell or core material in a pack concentration
                model
4
         actual length of a pore channel along a tortuous path (ft)
LPWPI
         integer signifying the node point nearest the core-porous
         medium interface
Le
         linear depth of a porous substrate (ft)
```

```
length of the cylinder containing the pack (ft)
 Lo
 Mus
          molecular weight of a gas mixture (lb-mole)
          Mi
                 of gas species i
          Mi
                 of element i
          molecular mass of species i (lb/molecule)
mi
          reduced molecular mass (dimensionless)
ñ
          mass of the solid substrate and coating at time t (1b)
mp
                of the solid substrate at initial time
          mc
                 of coating c
          molar flux of species i in a capillary (lb-mole/hr-ft<sup>2</sup>)
āli.
Ne
          effective molar flux of gas species i (lb-mole/hr-ft<sup>2</sup>)
Np
          effective molar flux of solid species p (lb-mole/hr-ft<sup>2</sup>)
ñ,e
          effective mass flux of species i (lb/hr-ft<sup>2</sup>)
ħ+
          total mass flux in the porous medium for dusty gas
          theory (lb/hr-ft<sup>2</sup>)
ñ.e
          total effective mass flux (lb/hr-ft<sup>2</sup>)
ni
          number of molecules of the gas species i per unit
          volume (molecule/cu ft)
          number of molecules of the solid species i per unit
n_{P}
          volume (molecule/cu ft)
          sum of gas species molecules
n
n'
          sum of gas and solid molecules
P
          pressure (psf)
P°
          reference pressure (psf)
\bar{P}
          average pressure in a porous medium (psf)
          represents solid species p
	ilde{q}
          total energy flux (BTU/hr-ft<sup>2</sup>)
```

```
generation term of species i (lb/hr-ft<sup>3</sup>)
 ri
 2c
          radius of the core material (ft)
 Rρ
          radius of the porous material (ft)
 Ŕρ
          average radius of a particle (\mu)
 Ē
          average radius of the pore (A)
 R
          universal gas constant (cal/gm-mole-°K)
          distance variable (ft)
          specific surface of the particles of porous media (ft^2)^{-1}
 50
 7
          temperature (°R)
          critical temperature of species i(°K)
Tci
£
          time variable (hr)
Vc.
          critical volume of species i (cm<sup>3</sup>/gm-mole)
          volume of solid substrate (ft<sup>3</sup>)
Vρ
          total unit volume of porous medium (ft<sup>3</sup>)
٧ŧ
          superficial velocity through porous media (ft/hr)
Ve
 V
          actual velocity within a pore (ft/hr)
Χ
          total amount of elemental hydrogen (1b)
Kc.
          mole fraction of species i (dimensionless)
          incremental distance between the core and porous
srp
          medium interface (ft)
          incremental distance between the shell and porous
APC
          medium interface (ft)
          incremental radius (ft)
50
Δť
          incremental time (hr)
          thermal diffusivity (ft<sup>2</sup>/hr)
\propto
          porosity or void volume of the porous medium (dimensionless)
E
```

```
volume fraction of solid substrate and coating in
\varepsilon_P
         a porous medium (dimensionless)
                of solid substrate only
         emissivity (dimensionless)
\epsilon
         term defined by equation 4-5b
Ø
         permeability of porous media (ft<sup>2</sup>)
K
         permeability coefficient of porous media (ft^4/lb_{r}-sec)
E
Ē,
         shape factor representative of a specific porous
         medium (dimensionless)
 \lambda_o
         mean free path at reference pressure Po (ft)
         mean free path of a gas species i (ft)
λi
\mu
         viscosity of the fluid (lb/ft-hr)
         pi
                of the gas species i (1b/ft-hr)
         density of the fluid (lb/ft3)
ρ
               of the coating c
          Pc
               of the gas species i
               of the solid substrate p
               of the solid substrate at initial time
          PB.
               of the core or shell material
σċ
         collision diameter for the species i (ft)
         collision diameter for the pair ij (ft)
~
         tortuousity of the porous medium (dimensionless)
         term defined by equation 2-9c
         diffusion collision integral for the pair ij
         (dimensionless)
         collision integral for viscosity of the gas species i
         (dimensionless)
```

- wi mass fraction of gas species i (dimensionless)

 cuci of coating species i
- number of gas phase species (dimensionless)

CHAPTER I

INTRODUCTION

In the early stages of the multi-year program, "A Study of Interfacial Phenomena," sponsored at the Georgia Institute of Technology by the United States Air Force as part of the Project Themis, a search of the technical literature and a survey of the defense and space-oriented industry was conducted in the specific area of high temperature, oxidation resistant surface and diffusion coatings. 1 This study was undertaken to identify technology gaps and to determine research needs in this special coatings field. One of the recommendations resulting from this study was to investigate the domains of chemical vapor deposition as a coating mechanism. Chemical vapor deposition (CVD) is a basic coating process which may include both homogeneous gas phase and heterogeneous chemical reactions to produce a coating on a heated substrate material. In response to this particular recommendation, an experimental and analytical investigation of the CVD process was undertaken. The chemical system chosen for this research was the hydrogen reduction of silicon tetrachloride to elemental silicon and hydrogen chloride. At the time of this study, silicide coatings were of considerable interest to the aerospace industry for protection of refractory metals in severe thermal environments under oxidizing conditions. 1,2 One technique used for the deposition of these coatings is CVD.^{3,4} Coincidentally, considerable effort had also been spent during this period by the semi-conductor industry in the production of single crystals and epitaxial thin-films of pure silicon on suitable

substrates by CVD for use in electronic components manufacturing. In both of these coatings-oriented industries, analysis and improvement of the CVD coating process were approached with experiment techniques. Many associated technical papers dealt with metallurgical implications. 6,7,8 In most of the thin-film and single crystal work, theoretical considerations were limited to thermodynamic predictions. 9,10 Only a few papers concerned with coating or thin-film characterizations and performance analysis considered the aspects of transport phenomena in the production of the coating. 11,12,13 This omission was also particularly evident in the analysis of the production of diffusion coatings by CVD. While the solid-solid diffusion of the coating material into the substrate to produce an alloy is an essential part of the overall deposition process, in many cases this phenomena may not be the controlling mechanism.

Specifically, the research program mentioned above was a parametric study of the deposition rate of silicon on a tungsten wire. The important parameters, besides deposition rate, were wire temperature, gas phase flow rate, gas phase composition, and wire diameter. This first CVD study was conducted in a simple glassware system composed of a drying tube, two condensers, a bubbler flask, and a deposition tube. The substrate was electrically heated. Enough data were obtained from this preliminary experimental work to design and build a more substantial CVD apparatus. The construction of this system allowed for operation under partial vacuum or in positive pressures. This equipment was also constructed so that either a gas-liquid, a gas-gas, a gas-solid, or a solid-solid feed system could be utilized. The solid-solid feed system required that one of the components decompose into gaseous products which would react with the other solids to

give the desired reaction gases. In this apparatus, CVD coatings could be deposited on inert oxide substrates. Several experiments were conducted with this experiment. Coatings were obtained on tungsten wires and on inert alumina substrates.

Because of production related problems, the pure CVD process was found to be used in limited, often laboratory, situations. In more common industrial coating operations, other techniques incorporating CVD concepts were prevalent. One such technique in wide use is termed "pack cementation."14 This name described a process that has changed considerably in basic concept since its inception. Originally, "pack cementation" implied that coatings were produced by diffusion from metal powders in physical contact with the substrate surface at elevated temperatures. 15 Examples of this process are the early cementation coatings of aluminum, zinc, or chromium on iron in the steel industry. In the chromizing process, pieces of iron or steel were packed in a retort surrounded by chromium powders. 16 The pack was heated in a furnace at a temperature of 1300°C for four hours. To avoid excessive sintering of the coating material, inert refractory powders were mixed with the finely divided chromium. In 1927, Marshall modified the pack design in the chromizing process to include carrier gases which combined with chromium in the solid phase to form a gas phase species. 17 This gas then reacted with the iron surface to produce a coating. The reaction of a carrier gas with the substrate is almost universal in modern pack cementation processes, thus chemical vapor deposition has become the basic coating mechanism in this operation. Several descriptions of the pack process for uses other than chromium coatings on iron may be found in references

18 through 22. In addition, workers have more recently used pack cementation successfully to produce complex coatings containing several elements which are deposited simultaneously. 23,24

The pack cementation process has been generally limited to diffusion coatings produced by solid-solid reactions or substitution reactions between the coating element and substrate, where the entire bulk of the material within the retort is maintained at constant temperature. Although very desirable, no results have been found in the literature which indicate pack cementation coatings can be produced on inert substrates. In pure CVD processes, however, inert substrates may be coated by surface reaction if the substrate temperature is sufficiently high. This phenomena may occur in a pack process during the transient period when the mass is heated from ambient to furnace temperatures.

In this thesis, the possibility of the production of a coating on an inert substrate is analyzed. In the past, only a few researchers have considered aspects of depletion, heat transfer, or flow within the pack. 24,25 Any attempt to analyze this process will require an understanding of transport phenomena in porous media. A search of the literature did not reveal any considerations of pack cementation or other porous media related processes that incorporated flow, heat transfer, and mass transfer simultaneously. Several researchers have discussed separate aspects of transport phenomena in porous media, particularly the development of diffusivity and thermal conductivity. These discussions have been included in a general set of equations describing transport phenomena for porous media. These equations are presented in detail in the next chapter. The nature of this development is not limited just to the analysis of pack

cementation. Application can be found for these theories in several seemingly diverse fields including grain drying or aeration, shale oil recovery, and catalyst performance prediction.

In Chapter III, the general transport equations for porous media presented in Chapter II are applied to the specific problem in pack cementation mentioned above. Results of a digital computer solution to this problem based on finite difference equations are discussed in Chapter IV. Recommendations and conclusions follow in Chapter V.

CHAPTER II

TRANSPORT PHENOMENA IN POROUS MEDIA

Analytical analysis of simultaneous heat, mass, and momentum transport in porous media is relatively undeveloped. As was mentioned in the Introduction, certain aspects of the individual conservation equations have been studied by researchers of different disciplines. For example, hydrologists have investigated flow through sand beds and have proposed empirical relations for the steady state equation of motion. Chemical engineers have experimented with diffusion in catalyst pellets and have proposed semi-empirical relations for the diffusion coefficient. Because most of the reported work is experimental in nature, the resulting relationships are practically oriented and not readily suited to theoretical application. A good example of this deficiency concerns studies of heat transfer with flow through a porous medium in which the convective effect and the Knudsen effect are treated as conduction and included in the apparent thermal conductivity.

Comparison of the various relations describing transport phenomena in porous media is further complicated because substantially different models were chosen to characterize the media. In many flow and heat transfer studies, media structures have been classified as either "consolidated" or "unconsolidated." Unconsolidated media are formed from randomly oriented particles. Consolidated media are those media which may have closed ended or completed closed pores. These media could have originated from

an unconsolidated structure which could have sintered or undergone some other process to close the pores. Much of the literature involved with flow and heat transfer studies concerns the porous media characterizations with different models for the pore size distribution within a given structure. In diffusion studies, especially where catalyst pellets have been formed from porous particles, the structure has not been classified. However, different models are used to describe the pore size.

In the discussions of this chapter, a comprehensive analytical model describing simultaneous transport phenomena in porous media will be developed. Because results of the present study might be applied to either of the two general classifications of porous structure, the following discussions will include consolidated and unconsolidated media. Effects of the various pore size models will also be discussed where appropriate. The development of each transport equation will be separately shown. The particular transport properties associated with porous media will also be discussed in each appropriate section. Equations for calculation of the properties not influenced by porous media effects, such as gas density and gas heat capacity, will be presented later.

Equation of Motion

The equation of motion for flow through porous media is an expression of the experimental results of several workers. Notable among them is Darcy. His work has been formulated into an equation which bears his name and is given below as equation 2-1. This relation and its historical development are well documented. 26,27,28

$$\vec{\mathbf{V}}_{\mathbf{e}} = -\frac{\mathbf{K}}{\mu} \left(\nabla P - \rho \bar{g} \right) \tag{2-1}$$

where

is the superficial velocity of the fluid flowing in the porous medium

K is the permeability

 μ is the fluid viscosity

abla P is the pressure gradient

 ρ is the fluid density

 \bar{q} is the body force on the fluid.

Darcy's Law differs considerably from the classical equation of motion (as it appears in Bird et al. 29 for example); however, this relation applies to macroscopic rather than microscopic observations of a fluid passing through fine channels in porous media. Although no transient terms appear in Darcy's Law, this equation is used in the solution of time dependent problems. 29 To better describe certain specific problems such as in flow through a porous mass and an adjoining empty space, Brinkmann has proposed a modification to equation 2-1 which reduces to Darcy's Law for low values of the permeability. 30 This relation was more rigorously derived by Slattery. 31

Since Darcy's Law was determined experimentally for flow through unconsolidated porous media with a uniform pore size, a correction must be made for application to consolidated porous media. The accounting for the different types of porous media is incorporated in the value used for the permeability. Carman has discussed methods for the determination of this property and other problems encountered in the characterization of porous media for flow in detail. Results of his efforts and others

are presented briefly below for both consolidated and unconsolidated media.

Carman based his work on the earlier studies of Blake 32 and Kozeny. 33 These independent efforts were among the first to apply the concept of a hydraulic radius to the viscous flow of fluids through unconsolidated porous media with uniform pore size. Carman chose to describe flow through the porous medium in terms of the superficial velocity \vec{v}_e and the bed depth \vec{l}_e instead of the actual quantities, \vec{v} and \vec{l}_e , for the individual capillaries of the medium. In doing so, he defined a new variable, \vec{v} , called the tortuousity, to represent the ratio $\frac{\vec{l}_e}{\vec{l}_e}$. Then he modified the results of Dupuit 34 , which relate actual velocity, \vec{v}_e , to include the tortuousity. These modifications have been included in the definition of the permeability which is given below:

$$K = \frac{\mathcal{E}^3}{\mathcal{K} S_o^2 (1-\mathcal{E})^2}$$
 (2-2)

where

is the porosity or the void fraction

So is the specific surface of the particles

 \vec{k} is the tortuousity factor which is a function of z^z and a shape factor \vec{k} .

All of the quantities in equation 2-2 may be determined experimentally with relative ease with the exception of the tortuousity factor, \overline{K} . Carman has reported results of many experiments to evaluate this quantity. Carman has also stated that for most unconsolidated media, the value of K is approximately 5.0 inches².

Evaluation of the quantities in equation 2-2 for consolidated

porous media is more difficult. Usual experimental procedures to determine the value of S_0 (e.g., nitrogen absorption) are not applicable since these procedures include closed ended pores where flow does not occur. Wyllie and Rose have proposed a relation to calculate the tortuousity factor of consolidated media. The result of their work as reported by Carman is given below:

$$\vec{k} = 2.5 \, \text{e}^{-2}$$
 (2-3)

Experimental values reported in Carman indicate that this relation is adequate for the porosities expected for consolidated media. As with the definition for the permeability for unconsolidated media, experiments are required to arrive at a value for \mathcal{T} . Carman also mentions the problem of a nonuniform pore size and provides, as a solution, an integral technique for the range of particle sizes under consideration.

Recent results of diffusion studies in catalyst pellets imply that the tortuousity can be simply related to porosity for specific types of porous media. These results will be discussed in detail in a following section of this chapter.

Equation of Continuity

In general, the equation of continuity for flow through porous media has been written in two parts, one for the gas phase and one for the solid phase.³⁶ In the present study, the porosity will be allowed to change, so, for convenience, a single continuity equation for both phases will be derived.

A volume element composed of solid particles and gas is shown in Figure 1. The solid particles are assumed to be composed of a substrate

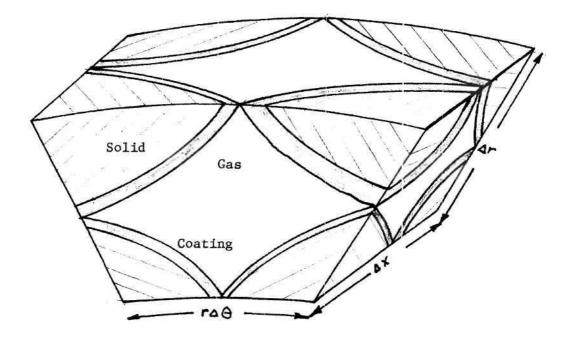


Figure 1. Schematic Representation of a Volume Element of Coated Porous Media.

with constant density ρ_{R} and a film of coating with constant density ρ_{C} . After suitable mathematical manipulation (see Appendix I for details), the density of the solid particle composed of the original substrate plus the coating may be determined as follows:

$$\rho = \rho_{c} + (\rho_{b} - \rho_{c}) \frac{\varepsilon_{p_{b}}}{\varepsilon_{p}}$$
 (2-4)

where

Ep is the volume fraction of solid per unit volume of solid and gas for any time.

is the initial volume fraction of solid per unit volume of solid and gas.

The equation of continuity for a volume composed of both solid particles and gases where the mass velocity of the solid is zero is also derived in Appendix I. The result of this development is given below:

$$\mathcal{Z}_{\varepsilon}(\varepsilon \rho) + \mathcal{Z}_{\varepsilon}(\varepsilon \rho \rho_{\rho}) + \nabla \cdot \rho \tilde{V}_{e} = 0 \qquad (2-5)$$

where t is time.

Substitution of equation 2-4, the expression for the density of the solid particles, into equation 2-5 yields:

$$\frac{2}{3\epsilon} (\mathcal{E}\rho) + \frac{2}{3\epsilon} (\rho (\mathcal{E}\rho - \mathcal{E}\rho)) + \nabla \cdot \rho \bar{\nu} = 0$$
 (2-6)

Noting that the change in the initial porosity with time is zero, equation 2-6 may be reduced to the continuity equation used in this work which is presented below:

$$\frac{\partial}{\partial t}(\varepsilon \rho) + \rho \frac{\partial \varepsilon \rho}{\partial t} + \nabla \cdot \rho \bar{\nu} e = 0 \qquad (2-7)$$

Equation of Continuity Species i

The equation of continuity for species i is derived in a manner similar to that for the overall continuity equation and is given below:

$$\mathcal{Z}_{\varepsilon}(\varepsilon \rho \omega_{i}) + \rho \tilde{\sigma}_{\varepsilon}^{\varepsilon}(\varepsilon \rho \omega_{ci}) + \nabla \cdot \tilde{n}_{i}^{\varepsilon} = r_{i}^{\varepsilon} \qquad (2-8)$$

where

is the mass fraction of the species i in the gas phase

ri is the generation term for species i

is the effective mass flux of species i based on a unit area of both solid and gas

 $\omega_{c_{i}}$ is the mass fraction of the species i in the coating.

Over the last several years, many papers have been published on methods used to determine values for the diffusion coefficient for use in the mass or mole flux relationship. Much of this work was generated by the increased interest in catalyst pellets formed by pressing together small porous particles. At low pressures, the usual pore size distribution was such that both normal diffusion and Knudsen diffusion occurred. As previously mentioned, all of the publications reviewed involved only binary diffusion. However, Evan, Watson and Mason proposed a diffusion model for constant pressure and temperature based on a "dusty gas" theory that offered promise for adaptation to a multi-component system. ³⁷ In this model, the Stefan-Maxwell equations were written to include the solid as a giant molecule with zero mass velocity. This approach resulted in an equation which conformed to the accepted relations describing the

transition region between normal diffusion and free molecular flow. ³⁸
This equation also reduced to the proper form for conditions at either limiting case. The results of the work by Evans et al. are given below as equation 2-9a. A brief summary of the derivation of these equations is presented in Appendix II.

$$\bar{N}_{i}^{e} = -D_{i}^{e} \frac{\partial n_{i}}{\partial z} + \frac{n_{i}}{n} \bar{N} \delta_{i} \qquad (2-9a)$$

where

$$D_i^e = \frac{n_i}{n} \delta_i D_{ij}^{e'}$$
 (2-9b)

$$\Delta_{L} = \left(1 + \frac{n_{d}}{n} \frac{D_{ij}}{D_{ip}} \right)^{-1}$$
 (2-9c)

and

is the molecular flux of species i based on a cross-sectional area of both solid and gas

n: is the number of molecules of the gas phase species i per unit total volume

n is the total number of gas phase molecules per unit total volume

np is the number of molecules of the solid per unit
total volume

n' is the sum of n and $n_{\rm p}$

is the effective diffusion coefficient for a porous medium

 $\mathcal{D}_{ip}^{e'}$ is the effective Knudsen diffusivity for a porous medium.

The effective diffusion coefficients are related to the normal diffusivities by the generally accepted relationship given in equation 2-10. 37 Through the definition of τ , specific contributions to the diffusion by consolidated or unconsolidated media can be made.

$$D_{ij}^{e'} = \frac{\varepsilon}{7} \mathcal{A}_{ij}^{e'} \tag{2-10}$$

where

is the porosity

is the tortuousity

 \mathcal{A}_{j} is the binary diffusivity for the dusty gas theory.

The binary diffusivity for the gas phase species can be obtained from the following equation: 29

$$\mathcal{D}_{ij}' = \left(\frac{16}{3}n'\left(\frac{\bar{m}}{2\pi kT}\right)^{\frac{1}{2}}\left(\pi\sigma_{ij}^{2}\Omega_{ij}\right)\right)^{-1}$$
 (2-11a)

where

$$\bar{m} = \frac{m_i m_j}{m_i + m_j} \tag{2-11b}$$

and

me is the molecular mass of species i

k is the Boltzmann constant

T is the absolute temperature

 $\sigma_{\mathcal{H}}^{\omega}$ is the collision diameter

is the collision integral. The diffusivity, D_{φ} , representing the interaction between the solid and gas species is equivalent to a Knudsen diffusivity. 37 Based on assumptions provided by Evans et al., this diffusivity is calculated by assuming the reduced mass, \bar{m} , becomes m_i , and the collision diameter, $\sigma_{\mathscr{H}}$, becomes \overline{R}_{P} , the radius of the solid particles. According to Epstein, as reported by Evans et al., the collision integral, Ω_{φ} , reduces to $(/+\frac{\alpha i\pi}{8})$. The equation for D_p thus becomes:

$$D_{ip}^{e'} = \frac{E}{7} \left(\frac{16}{3} n' \left(\frac{m_i}{2\pi k T} \right)^2 (\pi \bar{R}_p^2) (1 + \frac{(2i\pi)}{8}) \right)^{-1}$$
 (2-12)

where \vec{R}_P is the radius of the solid particles

is the fraction of species i diffusely scattered by the wall.

According to Schmitt, again as reported in Evans et al., α is usually equal to unity. ⁴⁰ Independently, Rothfield derived a similar expression for equation 2-9a based on momentum balances. ⁴¹ In this model, a special definition for the Knudsen diffusivity was used which contained a bulk flow term. Scott and Dullien, in their analysis of mixed mode diffusion in porous media, first derived a diffusion equation for a single circular capillary where both normal and Knudsen diffusion applied. ⁴² To extend their model to porous media, they also used a value determined by the ratio $\frac{\xi}{C}$ to express the effects of porous media on the binary diffusivity. Integrated forms of the equation of Evans et al., Scott and Dullien, and Rothfield have all been shown to be equal. ⁴³ These equations are discussed further in Appendix III.

From first appearances, the definition for the effective Knudsen diffusivity derived by Evans et al., as shown in equation 2-12, will allow for direct calculation from basic porous media property data. With the more common definition (see for example Pollard and Present 44), diffusion studies are required to evaluate a constant in the Knudsen diffusivity equation, K_{\bullet} , which accounts for the porous media effects. In comparing their equation to these earlier works, Evans et al. state that the collection of terms $\frac{F}{E} n' \frac{F}{E} (r' \frac{G}{E})$ must be evaluated from diffusion experiments rather than calculated directly. In effect, Evans et al. have simply expanded the definition for the experimental constant K_{\bullet} .

Most of the later papers on diffusion in porous media have been concerned with modifications of the early work to better account for the

effect of actual porous structures on the diffusivities. These models have utilized either experimental diffusion data or porous media characterization data to predict results for new diffusion conditions. For example, several papers published by J. M. Smith and his co-workers were based on diffusion in catalyst pellets assumed to have a bi-disperse, randomly oriented, non-continuous pore structure. 45,46,47 Johnson and Stewart developed a different model to show the effect of pore geometry on the effective diffusivity.⁴⁸ This modification also assumed randomly oriented circular pores but considered the distribution to be continuous rather than bi-disperse and non-continuous. The results of Johnson and Stewart and Smith and co-workers are consistent. Brown et al. compared the two techniques with experimental data and reached a similar conclusion. 49 The results of Smith and co-workers are particularly important to the present study. According to these workers, if the porous media has a single mode pore size distribution with a single radius, 💆 would be equal to $oldsymbol{arepsilon}^2$ in the local diffusion equation. Thus the need for experimental determination of ${\mathcal T}$ is eliminated. For a bimodal distribution, the definition of the ratio $\frac{\mathcal{E}}{\mathcal{E}}$ would be more complex. Considerable data are presented in Carman which can be used to show that $\frac{\mathcal{E}}{\mathcal{F}}$ is approximated by In addition, Smith and coworkers show that pore size distribution data can be used to calculate the Knudsen diffusivity without results from prior diffusion studies. 45

Smith and co-workers have also extended their work on pure diffusion processes in porous media to include the effects of chemical reaction and of absorption on the diffusion phenomena. $^{50-54}$ Wakao and Smith proposed a modification for the effective diffusion coefficient in which reaction

or absorption is occurring. 53 Scott has proposed a similar model to account for the effect of reaction during diffusion in porous media. 55

As was previously mentioned, no work has yet been presented for multi-component diffusion in porous media. The approach used in this work to analyze such a problem is based on an extension of the method given by Evans et al. In addition, the benefit of the later work by Smith and co-workers and Johnson and Stewart which provides better definitions for the term $\frac{\mathcal{E}}{\mathcal{E}}$ and the Knudsen diffusivity will be utilized. The results of the derivation of the multi-component mass flux term $\tilde{\mathcal{E}}$ is presented below.

By rearranging the basic diffusion equation proposed by Evans et al. in terms of concentrations based on a unit volume of both solid and gas molecules, the following equation results:

$$\nabla x_{i} = \sum_{k \neq i}^{q} \left(\left(c' D_{ij}^{e'} \right)^{-1} \left(x_{i} N_{j}^{e} - x_{j} N_{i}^{e'} \right) \right) + \left(c' D_{ij}^{e'} \right)^{-1} \left(\overline{c} N_{j}^{e} - \overline{c} N_{i}^{e'} \right)$$
(2-13)

where

 $oldsymbol{c}$ is the molar concentration of the gas and solid

is the number of solid molecules per unit volume

 \varkappa is the mole fraction of the gas species i

 $\overline{\mathcal{N}_{\epsilon}^{e}}$ is the molar flux of the gas species i

 \mathcal{N}_{p}^{e} is the molar flux of the solid species.

The derivation of this equation is presented in Appendix IV. The molar flux of the solid, \sqrt{c} , is assumed to be identically equal to zero. Further, the quantity $c^2 + c^2 + c^$

$$c'\hat{\mathcal{D}}_{ip}' = c\,\hat{\mathcal{D}}_{ip}'$$
 (2-14)

Insertion of these results into equation 2-13 gives:

$$\nabla \mathbf{V}_{i} = \sum_{k=1}^{N} \left(\left(c' D_{ij}^{k} \right)^{-1} \left(\mathbf{K}_{i} N_{j}^{k} - \mathbf{K}_{j} N_{k}^{k} \right) \right) - \left(c D_{ip}^{k} \right)^{-1} \tilde{N}_{k}^{k}$$

$$(2-15)$$

For the gas phase species, the term $c'O''_{j'}$ is equal to $cO''_{j'}$. If the molar flux of species i is defined as follows:

$$\bar{N}_{i}^{e} = \bar{J}_{i}^{*e} + \chi_{i} \bar{N}^{e} \qquad (2-16a)$$

where

$$\mathcal{J}_{i}^{*e} = -c \mathcal{L}_{in}^{e} \nabla \mathcal{K}_{i} \qquad (2-16b)$$

equation 2-15 and 2-16a may be combined to give:

$$c \mathcal{L}_{im} = \left(\frac{\sum_{i=1}^{2} \left(\left(cD_{ij}^{\bullet}\right)^{-1}\left(x_{i}\tilde{A}_{j}^{\bullet} - y_{i}\tilde{A}_{i}^{\bullet}\right)\right) + \left(cD_{ip}^{\bullet}\right)\tilde{A}_{i}^{\bullet}}{\tilde{A}_{i}^{\bullet} - y_{i}\tilde{A}_{i}^{\bullet}}\right)^{-1} (2-17)$$

The mass flux is obtained from the following relation:

$$\vec{n}_{L}^{e} = \left(-\rho \frac{\hat{N}_{im}^{e}}{M_{W}} \nabla \hat{K}_{i} + \hat{K}_{i} \tilde{N}^{e}\right) M_{i} \qquad (2-18)$$

where

 \mathcal{M}_{ω} is the molecular weight of the mixture \mathcal{M}_{ω} is the molecular weight of the gas species i.

Equation of Energy

The derivation of the equation for energy conservation in porous media begins with a generalized form in which potential and kinetic terms are neglected. This relation must be modified to include the contributions

of both the solid and gas phases. Therefore the change in enthalpy within a unit volume composed of a solid and flowing gas is assumed to reflect both the change of the enthalpy of the gas and solid on an additive basis. The generalized equation is further modified by assuming that the velocity of the solid is zero and that the change in solid density with time is zero. The modified energy equation is given below as equation 2-19. This derivation is presented in detail in Appendix V.

$$\begin{split} & \left(\mathcal{E} \rho^{c} \rho + \mathcal{E} \rho_{b} \rho_{b}^{c} + \left(\mathcal{E} \rho - \mathcal{E}_{b} \right) \rho_{c}^{c} \rho_{b}^{c} \right) + \rho \left(\hat{H} - \hat{H}_{c} \right) \frac{\partial \mathcal{E}}{\partial t} \\ & + \mathcal{E} \rho \left(\hat{H}_{i} \frac{\partial \omega_{i}}{\partial t} \right) = - \rho c \rho \tilde{v}^{e} \cdot \nabla T - \rho \tilde{v}^{e} \cdot \tilde{L} \left(\hat{H}_{i} \tilde{v} \omega_{i} \right) \\ & - \nabla \cdot \tilde{L} \left(\hat{H}_{i} \tilde{J}^{e} \right) + \mathcal{E} \frac{\partial \rho}{\partial t} + \nabla \cdot k_{e} \nabla T \end{split}$$

$$(2-19)$$

where

Hi is the mass enthalpy of the gas species i

 $\hat{\mathcal{H}}_{\!m{c}}$ is the enthalpy of the coating

ke is the effective thermal conductivity.

In a manner analogous to the previous section, the effect of the porous media on heat conduction is expressed in the thermal conductivity.

Considerable literature has been published describing various models for the thermal conductivity in porous media. A number of studies have dealt with heat transfer in a porous solid filled with a static fluid. $^{56-62}$ Studies have also been conducted for heat transfer in porous media with flowing fluids. 63,64,65 In many of these publications, considerations have also been made for the difference between consolidated and unconsolidated materials. One paper included the effects of gas-solid

reactions on the thermal conductivity. 66 Recently, Huang proposed that for porous rock, the static thermal conductivity be given by the following equations: 67

$$k_e = \varepsilon_p k_p \exp\left(\frac{n}{\varepsilon_p}\right) + \varepsilon\left(k_r + k_r\right) \exp\left(\frac{n}{\varepsilon}\right) + \mu^2 \left(1 - \exp\left(\frac{n}{\varepsilon}\right)\right)^{-1}$$
 (2-20a)

where
$$H = 1 - \varepsilon \exp(\frac{-n}{\varepsilon}) - \varepsilon_p \exp(\frac{-n}{\varepsilon_p})$$
 (2-20b)

and

is the porosity

17 is the pore geometric factor

kp is the solid thermal conductivity

 $k_{\!f}$ is the fluid thermal conductivity

 \mathcal{L}_{r} is the apparent radiation thermal conductivity.

Huang based his derivation on a probability argument for a model combining three mechanisms: heat transfer by conduction through the solid, heat transfer through the solid and fluid in series by conduction and radiation, and heat transfer through the fluid phase by conduction and radiation. This relation is applicable to both consolidated and unconsolidated porous media through the value chosen for \boldsymbol{n} .

Various relations have also been proposed to calculate k_r, k_p , and k_f . Schotte has proposed the following relation for k_r in packed beds: 60

$$k_r = \left(\frac{1-\varepsilon}{\frac{1}{k_p} + \frac{1}{k_r}}\right) + \varepsilon k_r$$
 (2-21a)

where
$$k_r^0 = 0.692 \in Q_r \left(\frac{7}{100}\right)^3$$
 (2-21b)

and

is the emissiuity

 \mathcal{D}_{P} is the particle diameter.

Schotte compared his results with the experimental data of Yagi and Kunii 57 with good success.

The term kp is the thermal conductivity of the solid material and can be found in specific literature related to that material. The term k_{Γ} , which is the fluid conductivity, must be corrected for pore size if the fluid is a gas with a low pressure. Huang has proposed the following realtion: 67

$$k_{f}^{*} = k_{f} \left(1 + \frac{1}{5P} \right)$$
 (2-22a)

where

$$S = \frac{2\overline{R}_{\rho}}{\lambda_{\rho}P^{\bullet}}$$
 (2-22b)

and

otag is the conductivity of the gas mixture

 \mathcal{P} is the pressure

 ρ° is the reference pressure

 $\lambda_{m{o}}$ is the gas mean free path at the reference pressure

 $ar{\mathcal{R}}_{\!oldsymbol{arphi}}$ is the mean particle radius.

For a multi-component gas mixture, an averaging technique must be used to calculate the mean free path. The multi-component gas conductivity, μ , will be calculated as described in the next chapter.

CHAPTER III

ANALYSIS OF PACK CEMENTATION

As was mentioned in the Introduction, the specific problem chosen for analysis in this thesis is the deposition of solid silicon on an inert alumina shell by the pack cementation process. In order to postulate a problem whose solution can be obtained with a realistic amount of computer time while still preserving all of the essential features, a single chemical vapor deposition reaction based on the hydrogen reduction of trichlorosilisic acid to form hydrogen chloride and solid silicon is specified. In the past, workers concerned with this chemical system chose silicon tetrachloride as the predominant gas phase silicon bearing species (see for example, reference 68). Recent studies by Harper and Lewis have shown that the particular species chosen for this thesis are predominant. ⁶⁹

In the proposed process, a ceramic cylinder, filled with a porous pack material with a solid silicon core at the center, all at constant temperature, is placed in a hot furnace. The porous mass is assumed to contain a mixture of hydrogen, hydrogen chloride, and trichlorosilisic acid. At the start, heat is added to the outside surface of the alumina shell. As the temperature of the system rises, hydrogen chloride reacts with the silicon at the core surface to form trichlorosilisic acid and hydrogen. As the species diffuse outward toward the hot alumina shell and attain a higher temperature, the equilibrium shifts so that solid silicon is deposited as a coating. ⁶⁹

For this problem, all transport phenomena effects are assumed to

be symmetrical about the cylindrical axis. The analysis of this process is based on a reduced set of the generalized transport equations for consolidated porous media as presented in Chapter II. The specific equations are given below. In addition, the remaining constraints necessary for analysis of the proposed problem are presented below. Unfortunately, analytical techniques for the simultaneous solution below of these relations are not available. As is typical of many such problems, numerical solution schemes using a digital computer have been combined to provide an algorithm which may be used to predict events in pack cementation. In this chapter, details of this algorithm are also presented. Boundary and initial conditions are discussed in terms of their numerical representations.

Porous Media Description

The hypothetical porous media selected for this study is assumed to be consolidated and made from pressed alumina powder with a single pore radius. These assumptions allow for the calculation of the tortuosity from the porosity without experimental determination and thus simplify the porous media effect on both the diffusivity and permeability as previously discussed. The actual material properties selected are those used in many previous diffusion and heat conduction studies as reported in Smith et al. 45 Pertinent data are summarized as follows:

Material Al₂0₃-H₂0

Particle diameter 90µ

Macropore radius To be determined

Particle density 2.45 gm/cc

The value for \boldsymbol{n} in equation 2-20 for this material as reported by Huang is approximately 1.0. 67

Transport Equations

The general transport equations for porous media presented in the previous chapter may be simplified for the analysis of this pack coating process. Because the coating is composed of a single component, silicon, and because this species does not exist in the gas phase, the conservation of silicon represented by equation 2-8 becomes:

$$-\beta_{si}\frac{\partial \mathcal{E}}{\partial t} = r_{si} \tag{3-1}$$

Equation 2-8 for the continuity of the gas phase species also reduces as follows:

$$\tilde{\mathcal{Z}}(\varepsilon \rho \omega i) + \nabla \cdot \bar{n}_i^e = r_i \tag{3-2}$$

Application of the assumptions mentioned in the previous paragraph to equation 2-19 gives the equation for energy conservation,

$$(\varepsilon \rho c_p + \varepsilon_{\mathcal{B}} \rho_{\mathcal{B}} c_{\mathcal{B}} + (\varepsilon_p - \varepsilon_{\mathcal{B}}) \rho_{\mathcal{B}} c_{\mathcal{B}}) \stackrel{\mathcal{D}}{\Rightarrow} c_{\mathcal{B}} (\hat{\mathcal{H}} - \hat{\mathcal{H}}_{\mathcal{B}}) = (3-3)$$

$$-\rho c_p \overline{v} e \cdot \nabla T - \rho \overline{v} e \cdot \overline{f} (\hat{\mathcal{H}}_{\mathcal{A}} \overline{v} u u) - \overline{v} \cdot \overline{f} (\hat{\mathcal{H}}_{\mathcal{A}} \overline{f}_{\mathcal{B}}^{2}) + \overline{v} \cdot k_e \overline{v} T + \varepsilon_{\mathcal{A}}^{\mathcal{D}} + \rho \overline{\sigma} c_{\mathcal{B}}^{\mathcal{D}}$$

For this problem, the equation of motion remains as equation 2-1. The overall equation of continuity, equation 2-7, also remains the same as previously derived.

The only transport equation needed to describe both the core material and the inert shell for the problem chosen for this work concerns

conservation of energy. Even though the shell is composed of a ceramic material, temperatures anticipated in this problem are not sufficient to cause changes in pressure with time or distance. The equation used to describe the conservation of energy for either the shell or the core is given below:

$$\mathcal{E}^{c}_{S} \frac{\partial T}{\partial t} = \nabla \cdot \mathcal{E}_{S} \nabla T \tag{3-4}$$

Auxiliary Equations and Further Assumptions

One of the more interesting aspects of the present problem lies in the deposition of a condensed phase by chemical reaction. Unfortunately, experimental data of sufficient accuracy are not available to obtain a reliable empirical relationship to predict condensation rates for the chemical system considered in the present study. In addition, theories for condensation kinetics are not well developed so theoretical results are also not available. Thus, the assumption is made that the gas phase is in equilibrium with the condensed phase, should one be present. The implication in this assumption is that the condensation kinetics are infinite or at least so rapid that species transport processes are rate controlling. The extent to which assumption is valid must rest on experimental data obtained under conditions in which the diffusional and equilibrium conditions have been precisely determined. In order to determine when condensation occurs, the following procedure is followed in the present study. For convenience a deposition index, DI, is defined as:

$$DI = \frac{P \chi_{NCI}^{3}}{\chi_{NS} \chi_{NSiCI_{2}}}$$
 (3-5)

The numerical value of DI is compared with the numerical value of the equilibrium constant, K_p , for the specific gas phase-condensed phase equilibrium. If DI is less than K_p , the thermodynamic implication is that a condensed phase is formed. The gas phase composition is calculated accordingly. Use of the appropriate continuity equation results in a prediction of the amount of the solid phase deposited.

In addition to this major point, several other relationships must be used to analyze the pack cementation process. These equations are discussed in the following paragraphs.

The ideal gas law needed to calculate the systems pressure is presented below in equation 3-6:

$$P = \frac{\rho \, \mathcal{Q} \, T}{M \omega} \tag{3-6}$$

Another set of constraints which must be satisfied concerns the conservation of the elements. Equations are given below for the specific chemical system at hand.

$$2\frac{\overline{M}_{H}}{M_{Hz}}r_{Hz} + \frac{\overline{M}_{H}}{M_{HCI}}r_{HCI} + \frac{\overline{M}_{N}}{M_{HSi}Cl_{3}}r_{HSi}Cl_{3} = 0$$
 (3-7)

$$3\frac{\overline{McI}}{M_{HS_1CI_3}}\Gamma_{HS_1CI_3} + \frac{\overline{McI}}{M_{HCI}}\Gamma_{HCI} = 0$$
 (3-8)

$$\frac{M_{si}}{M_{HSeCl_g}} \Gamma_{HSiCl_g} + \Gamma_{Si} = 0$$
 (3-9)

The final equation used in the mathematical description of this pack cementation problem satisfies the requirement that the sum of the mass fractions in the gas phase must equal unity. This relation is mathematically represented below:

$$\sum_{i=1}^{J} \omega_i = /$$
 (3-10)

Finite Difference Equations

The initial step in the solution to the problem for this thesis concerns the representation of the partial differential equations and the accompanying boundary conditions as numerical relations. In the method selected, the derivative terms in the partial differential equations are replaced by finite difference ratios. Detailed discussions of this technique to solve differential equations are presented by Mickley et al. 70 The following is a brief summary of the approach used here.

Finite difference ratios are easily derived from a Taylor's series. As an example, the time derivative of temperature, \mathcal{F} , where temperature is both a function of space and time can be considered. A Taylor's series expansion of temperature at a fixed point with time as a variable is given below:

$$T(r,t+\Delta t) = T(r,t) + \Delta t \frac{\partial T}{\partial t} + \frac{\Delta t^2 \partial^2 T}{2} + \frac{\Delta t^3 \partial^2 T}{\partial t^2} + \cdots$$
 (3-11)

If time increments are sufficiently small, terms in Δt of second order of higher may be neglected. Thus the derivative of temperature with respect

to time may be approximated as:

$$T(r, t + st) = T(r, t) + st \frac{\partial T}{\partial t}$$
 (3-12)

This equation is described as "forward marching" in time. For partial derivatives of temperature with respect to the position variable r, third order terms of ar are neglected and two series approximations combined to give:

$$\frac{\partial T}{\partial r} = \frac{T(r+ar, t) - T(r-ar, t)}{2ar}$$
(3-13)

For second derivatives with respect to $m{r}$, suitable manipulation of the two series yields:

$$\frac{\partial^2 T}{\partial r^2} = \frac{T(r+\Delta r, t) - 2T(r, t) + T(r\Delta r, t)}{\Delta r^2}$$
(3-14)

Equations 3-13 and 3-14 are described as "centered" difference relations. In some cases, the space variable increments may not be equal. To obtain a finite difference relation, two series equations with different incremental distances are utilized to give:

$$\frac{\partial T}{\partial r} = \frac{\frac{\Delta K}{\Delta S} \left(T(r+\Delta S, t) - T(r, t) \right) + \frac{\Delta S}{\Delta K} \left(T(r, t) - T(r-\Delta K, t) \right)}{\Delta K + \Delta S}$$
(3-15)

Similar manipulations of the Taylor's series expansions will yield a finite difference equation for the second derivative of temperature with respect

to the space variable where the incremental space variables are not identical.

The choice of a "forward marching" difference equation for the time derivative and a "centered" difference equation for the space derivatives is typical for the solution of initial value problems. In this case, values for all variables are known at the initial time. Values at the next time may be calculated by the algebraic solution of the suitable finite temperature at time tr dt, as for example the equation for transient heat conduction with constant properties:

$$T(r,t+\Delta t) = T(r,t) + \frac{\Delta t k}{\rho S \rho} \left(\frac{T(r+\Delta r,t) - 2T(r,t) + T(r-\Delta r,t)}{\Delta r^2} \right) (3-16)$$

Other, more accurate difference equations may be derived from alternate forms of the Taylor's series expansion. For example, the time derivative may be based on *tr2at*, or higher terms may be included. However, these equations require an iterative scheme for solution. As a result, these alternatives will use greater amounts of computer time for solution for the same increment size. In any finite difference representation of a differential equation, the accuracy of the solution will be determined by the size of the increments of the numerical solution if both stable and convergent. These two basic criteria are discussed further below.

Stability and Convergence

If there is an exact solution for a given partial differential equation, there is an exact solution for any given finite difference equation used to represent this partial differential equation. Any difference between these two solutions is known as the truncation error. If the exact solution to the finite difference equation approaches the solution to the partial differential equation in the limit as the incremental variable approaches to zero, the finite difference equation is said to be convergent. 71

In a practical solution of a given problem utilizing finite difference equations, only a finite number of significant figures can be carried in the computations. The difference between the exact solution of the finite difference equations and this practical solution is known as the numerical error. Generally, these errors are predominantly errors of round-off. A practical solution to a difference equation in which the numerical error does not increase as the solution progresses is said to be stable. 71 Unless a proposed numerical solution is both stable and convergent, or unless the instability is predictable, the accuracy of the results is unknown. Several tests have been published which may be used to determine the stability and convergence of the special class of numerical schemes which represent linear partial differential equations with constant coefficients. 71 For the transient heat conduction equation with constant properties, stability is insured if a modulus, defined as $\propto \frac{\Delta t}{\Delta r^2}$, is less than 0.5. If stability is assured, the solution will also be convergent and the accuracy will only be a function of the increment sizes chosen.71

In such cases where variable properties or nonlinear equations are involved, the modulus $\propto \frac{\Delta \mathcal{L}}{\Delta \mathcal{L}^2}$ cannot be used to predict stability and convergence. However, this concept may serve as a guide to test a proposed solution. If a solution exhibits oscillation or unreasonable physical results, the modulus can be changed and the new results studied. Results

using several grid spacings can also be studied to check for convergence.

Boundary and Initial Conditions

For the solution to the problem of pack cementation, conditions at three interfaces must be specified. In the following paragraphs, boundary conditions for the shell-furnace interface and the center of the core are presented first. These discussions are followed with derivations for the relations which apply at the core-porous medium interfaces. Relationships for the second porous medium interface will be similar and will not be given here.

At the interface between the surface of the shell and furnace environment, only heat is transferred across the boundary, so only energy related conditions are required. For this boundary, the shell surface temperature is assumed to be known as a function of time. Determination of these values is readily done experimentally. A Hermite interpolation polynomial is used to generate additional values between postulated experimental data points. To improve the accuracy of the numerical solution in the vicinity of the surface, a special calculation for the temperature at the station just inside the shell surface is used. This technique ensures that the heat flux predicted by the finite difference solution at this interior station is consistent with the implied heat flux resulting from an experimental surface temperature. The development of this equation is given in Appendix VI. This procedure has been used in other work. 72

Assuming symmetry, the heat flux at the center of the silicon core must be zero. The value for the temperature at this location is assumed to be equal to the temperature at the station nearest the center. As with the surface of the shell and the furnace, only energy related boundary

conditions apply at this interface.

At the interface between the porous medium and the core material, or between the porous medium and the shell, unusual boundary conditions are required. In this numerical solution, an interface is treated as an increment rather than a surface of zero thickness. As a result, volume element terms must be included in the derivation of the equations which describe the boundary conditions. For the mass boundary condition between the porous medium and the core, a storage term and a generation term are required. The equation representing these considerations is presented below. A similar equation is needed for the other interface.

$$\frac{2}{3\epsilon}(2\pi R(LCW)L_o(\Delta rp-\Delta rp_o)pwi+2\pi R(LCW)L_o\Delta rp_opioi+ (3-17)$$

$$2\pi R(LCWPI)L_o\tilde{n}_o^2(LCWPI)=2\pi R(LCW)L_o\Delta rp_opioi+ (3-17)$$

where $\vec{n}_i^e(\omega p_i)$ is the mass flux of species i as evaluated at the station in the porous medium nearest the interface

is the cylinder length د

is the incremental distance between the core material interface and the first node point in the porous material

is the initial value of arp.

Because chemical reactions at the interfaces may either deplete or deposit solid silicon, the incremental distance between the core interface and the first node point in the porous medium will vary with time. An equation has been developed to calculate the change in thickness and equation of continuity for this increment. Details of these derivations are given in Appendix VII. Results are given below for the thickness of the increment between the porous medium and the core. A similar equation is used

for the increment between the porous medium and the shell.

$$\Delta rp(t+\Delta t) = \Delta rp(t) - \frac{\Delta t}{\beta i} (\alpha rp(t) rsi + \beta \Delta rp_0 = 0$$
 (3-18a)

$$\Delta pr(t+\Delta t) = \Delta pr(t) - \frac{\Delta t \left(\Delta pr_0 r_{3i} + P_{si} \Delta pr(t) \frac{\partial e}{\partial x}\right)}{P_{si}(\epsilon - \epsilon_0 + 1)}$$
(3-18b)

where Δp_0 is the initial value for Δp_1

Because the boundary condition is most conveniently used in terms of concentration rather than as a derivative, equation 3-17 is used in the definition of a finite difference time derivative to calculate the value. This resulting relation is presented below in equation 3-19. As mentioned above, large differences in the derivatives between any two successive times are not expected to occur. However, at early times when reaction does occur, substantial inaccuracies in derivative calculations can be created because of the nature of the numerical solution. To minimize the effect, time derivatives of the species calculations are averaged.

$$ω_{\epsilon}(\iota cω, t+st) = (ω_{\epsilon}(\iota cω, t) + \frac{st}{2} \frac{ω_{\epsilon}}{ω_{\epsilon}} + \frac{st}{2} (\frac{srp}{srp} r_{\epsilon}) + (3-19)$$

$$\frac{R(\iota cωp)}{R(\iota cω)} \rho(\iota cωp), \iota_{i}st) \rho(\iota_{i}cωp) \rho(\iota_{i}cωp), \iota_{i}st) \rho(\iota_{i}cωp) \rho(\iota_{i}cωp), \iota_{i}st) \rho(\iota_{i}cωp) \rho(\iota_{i}cωp), \iota_{i}st) \rho(\iota_{i}cωp) \rho(\iota_{i}c$$

$$\begin{array}{l} \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \left(\frac{\Delta r}{\Delta r \rho} / (\Delta r \iota sr \rho) M \omega (\iota cw, t) \right) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \left(\frac{\Delta r}{\Delta r \rho} - \iota \right) \right) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \right) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\ \left(\int_{cm}^{e} (\iota cw \rho_{i}, \iota st) / M \omega (\iota cw \rho_{i}, t) \\$$

As before, a similar equation is used for the other interface and is presented in Appendix VIII.

In addition to equation 3-17, two other constraints must be satisfied simultaneously at the boundaries between the solid layers. Equilibrium is assumed to exist at all times and the sum of the mass fractions must equal unity.

When reaction does not occur, the velocity at the wall is equal to zero. When reaction does occur, the velocity is calculated as follows:

$$\vec{V}_{e} = \frac{\sum_{i=1}^{2} \vec{n}_{i}^{e}}{\rho}$$
 (3-20)

The calculation for the energy related boundary conditions at the two solid interfaces are performed in a manner similar to the method described above for mass considerations. This equation is presented below:

$$T(LCW, t+\delta t) = (T(LCW, t) + \delta t) \left(\frac{R(LCWPI)}{R(LCWPI)} \left(-\frac{1}{L} \tilde{n}_{\perp}^{c} \right) \right)$$

$$(LCWPI, t+\delta t) \hat{H}_{L}(LCWPI, t+\delta t) + k(LCWPI, t+\delta t) T(LCWPI, t+\delta t) / (LCWPI, t+\delta t) / (LCWPI,$$

The equations for the other interface and the arguments are shown in Appendix IX.

Because the depletion of solid silicon at the interface between the core and the porous medium will create a gap, the thermal conductivity and the diffusivity for the increment between the interface and the first node point in the porous medium must be modified to include the contribution due to the gap. The approach used in this thesis is to calculate an overall diffusivity and an overall thermal conductivity in a similar manner as an overall heat transfer coefficient is calculated for heat conduction through composite materials. The development of these equations is given in Appendix X. Results are given below in equations 3-22 and 3-23.

$$\overline{Q_{im}} = \overline{R_c} \left(\frac{l_c \cdot \Delta rp}{l_c \cdot \Delta rp - \Delta rp} \right), l_n \left(\frac{R_c \cdot \Delta rp - \Delta rp}{R_c} \right)^{-1}$$

$$\overline{Q_{im}} \left(\frac{l_c \cdot \Delta rp}{l_c \cdot \Delta rp - \Delta rp} \right), l_n \left(\frac{R_c \cdot \Delta rp - \Delta rp}{R_c} \right)^{-1}$$

$$\overline{Q_{im}} \left(l_c \cdot \Delta rp - \Delta rp \right)$$

$$\overline{Q_{im}} \left(l_c \cdot \Delta rp - \Delta rp \right)$$

$$\overline{Q_{im}} \left(l_c \cdot \Delta rp - \Delta rp \right)$$
(3-22)

where

is the overall diffusivity for the composite.

$$\bar{k}_{e} = \frac{\delta r p}{R_{c}} \left(\frac{R_{c} + \delta r p}{R_{c} + \delta r p} - \delta r p_{o} \right), \quad h_{c} \left(\frac{R_{c} + \delta r p}{R_{c}} - \delta r p_{o} \right)^{-1}$$

$$k_{e} \left(\frac{R_{c} + \delta r p}{R_{c}} - \delta r p_{o} \right), \quad h_{c} \left(\frac{R_{c} + \delta r p}{R_{c}} - \delta r p_{o} \right)$$

$$k_{e} \left(\frac{R_{c} + \delta r p}{R_{c}} - \delta r p_{o} \right), \quad h_{c} \left(\frac{R_{c} + \delta r p}{R_{c}} - \delta r p_{o} \right)$$

$$(3-23)$$

is the overall thermal conductivity for the composite. where

Computer Program

The computer program for the numerical solution of the equations describing the pack cementation problem is divided into several elements. Element I reads input data and establishes initial conditions such as temperature and concentration profiles. The remaining elements of the program constitute a primary loop with time as the incremental stepping variable. Element 2 calculates the temperature profile in the core material. Element 3 calculates the temperature, concentration, and velocity profiles for the porous media. Element 4 calculates the boundary conditions for the interface between the core material and the porous media. Element 5 calculates the temperature profile in the shell material, and Element 6 calculates the boundary conditions for the interface between the porous media and the shell material. The remaining portion of the program calculates the pressure in the porous medium, the amount of core depleted, and the amount of coating deposited. Also calculated are normalized values of concentration and distance for comparison with the Arnold Solution as discussed later. Finally, old values of certain variables are established and output data generated.

With knowledge of all variables at the initial time, the program calculates values for all variables at the next time by starting at the center of the core and progressing outward to the surface. At the surface, the program requires the temperature to be input from experimental data or from a proposed profile. In actual practice, the pack cementation device would be placed in a furnace and the surface temperature measured as discrete points in time. The program receives these discrete points as input data and interpolates additional values as may be required. After values

for all variables have been calculated, the computer returns to Element 2 and begins computation again for a new time. A copy of the software is included as Appendix XI. For convenience, values for the diffusivity are calculated in a sub-routine to the main program. Software for this procedure is also included in Appendix XI.

In order to increase the usefulness of the results of the present study, the computer program has been written in a general way to accommodate practical dimensions and other actual physical data for a system composed of three gas phase species and a single coating species. For example, thermodynamic properties of chemical components may be easily changed as long as these data fit the polynomial equations used in the computer program. In addition, the program will process problems with radii greater than exact multiples of the selected stepping increment.

CHAPTER IV

IMPLEMENTATION OF THE NUMERICAL SOLUTION AND RESULTS

In Chapter III, the specific transport equations describing the deposition of solid silicon on an alumina substrate during pack cementation were presented. Also proposed was a digital computer program to obtain the numerical solution to the transport equations. In this chapter, the results of the numerical solution are presented. This discussion is preceded by a description of the relations for the various component and mixture physical and transport properties. Even though considerable time was spent reviewing recent developments in this area, relationships for the gas mixture properties and the individual species properties were selected to some extent on a basis of convenience in the numerical solution as increased accuracy in this area will not significantly improve the results of the primary goal of analysis of the pack cementation problem. Also presented is a discussion of the transport and thermodynamic properties of the solid materials. Other input data are shown later.

Thermodynamic and Transport Properties of the Gas Species

The equations used to calculate the heat capacity and enthalpy of the gas mixture are given below:

$$\hat{c\rho} = \underbrace{\sum_{i=1}^{d} (\chi_i \, \tilde{c}_{\rho_i})}_{M\omega} \tag{4-1}$$

$$\hat{H} = \frac{\sum_{i=1}^{N} \int_{T_b}^{T} K_i \, \tilde{Cp}_i \, d\tau + K_i \, \Delta \tilde{H}_f^{*}}{M \omega}$$
 (4-2)

The generalized equation for the heat capacity of the individual gas phase species is given below in units of Kcal/mole °K. This equation represents a regression analysis of experimental data as a function of temperature in degrees Kelvin over the range 273 to 1500° K.

$$\tilde{c}p_{i} = A + BT + CT^{2} + DT^{3} + \frac{E}{T^{2}}$$
 (4-3)

Values for the constants in equation 4-3 are reported in Appendix XII for each of the species. Also included are values for the standard heat of formation at 298.16° K, in units of Kcal/mole, and the reference to the values for the heat capacity constants. The standard heats of formation used are those reported in reference 73.

The thermodynamic value for the equilibrium constant for the reaction proposed above is obtained from data presented in reference 73. These data have been fitted to an equation as a function of temperature as shown below.

$$\log_{10} K_p = A + \frac{8}{7} \tag{4-4}$$

Values for the constants in equation 4-4 are presented in Appendix XII.

The equation used to calculate the viscosity of the gas mixture is based on an extension of the Chapman-Enskog theory by Curtis and Hirschfelder and further modified by Wilke. 75 This equation is given below:

$$\mu = \sum_{i=1}^{N} \left(\sum_{\substack{j=1 \ i\neq j}}^{N} \left(x_{j} \phi_{ij} \right) \right) \tag{4-5a}$$

where

$$\phi_{ij} = \sqrt{8} \left(1 + \frac{M_i}{M_j} \right)^{\frac{1}{2}} \left(1 + \left(\frac{\mu_i}{\mu_j} \right)^{\frac{1}{2}} \left(\frac{M_j}{M_i} \right)^{\frac{1}{4}} \right)^2$$
 (4-5b)

and

μω is the species viscosity.

The equation used to calculate the viscosity of the individual gas species is given below in equation 4-6. This relation has been previously reported in Bird et al. 29 for both monatomic and polyatomic gases.

$$\mu_i = 2.6933 (10^{-5}) \frac{\sqrt{MiT}}{\sqrt{L^2 \Omega_{\mu i}}}$$
 (4-6)

where

 \mathcal{O}_{*} is the collision diameter

 $\mathcal{Q}_{\mu\dot{\mu}}$ is the collision integral for viscosity.

The collision integral has been tabulated as a function of reduced temperature by Hirschfelder et al. 76 Values for this integral in the reduced temperature range 1.4 to 30 have been fit to the following equation: 77

where

$$\mathcal{T}_{r} = \left(\frac{e}{e}\right)\mathcal{T}$$
 (4-7b)

and $(\frac{e}{k})_i$ is a constant unique for each species. Several techniques have been proposed to calculate σ_i and $(\frac{e}{k})_i$ and are

reviewed in reference 29 and 78. The method used in this work is given below:

$$\left(\frac{e}{k}\right)_{i} = 0.77 T_{ci} \tag{4-8a}$$

and

$$\mathcal{O}_{i} = 0.841 \, \widetilde{V}_{ci} \, \stackrel{f}{\cancel{5}} \tag{4-8b}$$

where

 \mathcal{T}_{c_c} is the critical temperature for species i \mathcal{T}_{c_c} is the critical molar volume for species i.

Values for $\overline{\mathcal{I}_{c}}$ and $\widetilde{\mathcal{V}_{c}}$ are given in Appendix XII.

The equation for the gas mixture thermal conductivity is based on a modification by Bird et al., 29 of an equation first proposed by Mason and Saxena. This equation is given below:

$$k_{f} = \sum_{i=1}^{N} \left(\frac{\chi_{i} k_{i}}{Z_{i}(\chi_{j} \phi_{ij})} \right)$$
 (4-9)

where

k is the species thermal conductivity.

Equations to calculate the thermal conductivity of monatomic gases have been proposed which are similar to those used for the viscosity. ^{29,76} Extension of these equations for use with polyatomic gases has not been as successful. ²⁹ A model used in this work was proposed by Mason and Monchick and is presented below. ⁷⁹

$$k_{z} = (\tilde{c}_{p}^{2} + 1.25 R) \mu i$$
 (4-10)

A considerable number of papers have been published on ways to calculate the binary diffusion coefficients of gas species combinations. 29,76,80-88 Values for this property are needed for calculation of the effective diffusion coefficient discussed in the previous chapter. The method used in this work is that reported by Hirschfelder, Curtis, and Bird and is given below in equation 4-lla. Even though this method is one of the earlier works, most of the newer methods do not give significantly better accuracy for a majority of combinations. In addition, this method is consistent with those used to calculate and the comparison of the several methods is given in reference 88 along with experimental data.

$$\mathcal{A}_{ij} = 1.8583 (10^{-3}) \frac{\sqrt{M7^{-3}}}{Poj \Omega_{ij}}$$
 (4-11a)

where

$$\bar{\Lambda} = \left(\frac{1}{M_i} + \frac{1}{M_j} \right) \tag{4-11b}$$

and

 G_g is the collision diameter for the pair ij Ω_g is the collision integral for the pair ij.

The collision integral for diffusion is calculated by a similar method to that for viscosity based on specific table values for diffusion reported by Hirschfelder et al. ⁷⁶ The equation for the diffusion collision integral is given below for the reduced temperature in the range 1.4 to 30.

For these calculations $(\frac{2}{k})_{ij}$ and $(\frac{2}{k})_{ij}$ are calculated as suggested in reference

29 as follows:

$$\left(\frac{e}{k}\right)_{ij} = \left(\left(\frac{e}{k}\right)_{i}\left(\frac{e}{k}\right)_{j}\right)^{\frac{1}{2}}$$
 (4-13)

$$\sigma_{ij} = \frac{1}{2}\sigma_{i}\sigma_{j} \tag{4-14}$$

The value for the Knudsen diffusivity for the gas phase species is calculated from an equation reported by Youngquist. 43 This relation may be modified to include the results of Smith and coworkers to calculate a value for the pore radius. 45

$$D_{ip}^{e} = \frac{2}{3} \bar{R} \left(\frac{8RT}{\pi M_{i}} \right)^{1/2} \left(\frac{2-a_{i}}{a_{i}} \right)$$
 (4-15)

where

 $ar{\mathcal{Q}}$ is the average pore radius.

As mentioned in Chapter II, & is probably equal to unity so the last term in equation 4-15 is also equal to unity.

Thermodynamic and Transport Properties of the Solid

The equation for the heat capacity of solid silicon is given below in equation 4-16. This relation is reported to represent experimental values in units of cal/mole °K for the temperature range 273.16° to 1173°K.

$$\widetilde{Cp} = 5.74 + 0.614 (10^{-3})T - 1.01 (10^{5})/T^{2}$$
 (4-16)

The equation for the heat capacity of alumina, which comprises both the porous media substrate and the outer shell, is given in equation 4-17.

This relation is reported to represent experimental values in units of BTU/lb°-F for temperature in degrees Fahrenheit over the range 325° F to 2930° F. 90 Similar values were reported in three other independent observations and compiled in reference 91.

$$\hat{cp} = 0.239 + 0.0402 (10^{-3}) T$$
 (4-17)

Jakob has shown that the thermal conductivity of non-metallic crystaline materials is inversely proportional to the temperature and would fit an equation of the following form: 92

$$k_{s} = A + \frac{B}{T} \tag{4-18}$$

Values of the constants for the solid materials used in this work are presented in Appendix XIII.

<u>Further Modification of the Momentum Equation</u>

Even though the stability moduli for the heat and mass transfer equations were maintained at very low values, the instability persisted. Finally, the problem was identified in the use of the momentum equation. Even though the momentum equation, given as equation 2-1, does not contain a second derivative or a time derivative term, values for the pressure are calculated from values of the mixture density which is calculated from the continuity equation. Thus, a third stability modulus must be considered. The time increment to produce a stable solution from the momentum equation based on the third stability modulus was estimated to be less than 10^{-4} seconds. In comparison, the value for the increment which will satisfy the other moduli

is only less than 10^{-2} seconds. As a result, the pressure can be assumed to be independent of position. If this assumption is used, the momentum equation is not needed. In addition this assumption implies that a change in pressure at any point, as a result of other transport or reaction phenomena, very quickly changes the pressure throughout the porous media. This assumption changes the initial algorithm. The velocity at any point is now calculated as follows:

$$\bar{\mathbf{V}}_{\mathbf{e}} = \frac{\sum_{i=1}^{N} \bar{n}_{i}^{\mathbf{e}}}{\rho}$$
 (4-19)

The density is calculated from the ideal gas law. The pressure is allowed to vary with time, but its value is the same at all node points at any instant. Values for the instantaneous pressure are calculated from the equation below. This equation is based on the assumption that the total amount of elemental hydrogen throughout the entire porous media does not change.

$$\bar{P} = \frac{X}{L_0} \frac{R}{Z\Pi} \left(\int_{R_c}^{R_P} \frac{EM\omega}{T} \left(\frac{\omega_{MCI}}{M_{HCI}} + \frac{2\omega_{M_0}}{M_{M_0}} + \frac{\omega_{MS,Cl_0}}{M_{MS,Cl_0}} \right) r dr \right)$$
(4-20)

where $\frac{1}{2}$ is a constant.

The derivation of equation 4-20 is given in Appendix XIV. In order to estimate the reliability of the assumption that the gradient of pressure is small, the gradient is calculated in the computer solution from the

momentum equation. Results of the calculation, as well as other results of the numerical solution are discussed in a following section.

Input Data

Because many iterations are required to reach a solution to the problem at hand, considerable computer time is used for each run. In order to conserve computer time, the decision was made after observing results from early runs to set the initial temperature of the system at 300° F, rather than ambient, as would occur in actual practice. In addition, the surface temperature of the shell was input at 1000° F for all time. Input values which determine the properties of the shell were set so that the properties were also held constant. Constants which determine the thermal conductivity of the porous substrate were arbitrarily multiplied by ten. These constraints allowed the temperature of the porous medium to rise faster than would normally occur, thus causing interface reaction at an earlier time. Since the performance of the shell heat transfer relations were shown to be successful in another work. 72 these constraints were not thought to compromise the study of important phenomena of diffusion and reaction in the porous medium.

One other constraint has been placed on the solutions presented herein. In actual practice for pack cementation, only hydrogen chloride would probably be injected into the pack at time zero. This case cannot be studied in this work due to limitations of the computer program. Values for all species must be greater than zero or indefinite numbers occur. In addition, early runs using small values of H₂ and HSiCl₃ resulted in dramatic changes in mixture molecular weight at the core interface producing an instability similar to that encountered with the continuity equation as discussed in

the previous section. To overcome this problem, excess hydrogen is used for all runs. Initial composition and other input data are summarized in Table 1.

Table 1. Input Data

Item	Value
Initial temperature	300° F.
Base temperature	70° F.
Surface temperature	1000° F.
Total pack radius	12.60 in.
Core radius	4.75 în.
Porous medium radius	10.70 in.
Pore radius	Variable
Particle diameter	90.00µ
Space increment	0.50 in.
Emissivity	0.50
Initial porosity	0.51
Time increment	Variable
Initial species mass concentration:	
н ₂	0.618
HC1	0.001
HSiCl ₃	0.381

Results

The primary objective of this work is to show that the relations proposed in previous chapters do indeed provide a solution to the problem of pack cementation. Since no experiments were performed with an actual system, no true conclusion as to the results of the solution can be presented. Considerable experimental results have already been presented for the heat transfer and binary diffusion aspects of the porous material selected. In this light, the important considerations of this thesis thus become the performance of the relations regarding multicomponent diffusion and Knudsen diffusion. In the following paragraphs, results are presented which show that a solution to the multicomponent diffusion problem does exist. These results are then compared to the special case of equal binary diffusivity. And finally, results are presented which show the effects of Knudsen diffusion on pack cementation.

In the following Tables 2 through 5, results of the solution for the multicomponent case are presented after 100 seconds, 1,000 seconds, 1,900 seconds, and 2,000 seconds in the furnace. The pore radius specified is 90,000 Å and is not sufficient to produce a significant contribution due to Knudsen diffusion. While the program ran for 3,600 seconds, which was designated as the end of the run, data after 1,900 seconds are not valid. At approximately 1,920 seconds, temperatures and concentrations in the porous medium were sufficient to cause deposition of silicon in the pores. Apparently this phenomena could not be adequately accounted for in the algorithm proposed for the step size used, and the solution became unstable. Attempts to promote a more stable solution by reduction of the diffusion modulus were unsuccessful. More will be said about this problem in the next section.

Table 2. Results of the Solution for the Multicomponent Case After 100 Seconds

				-				
STATION	I		¥	RFC	d S	>	ETA	DELP
	£	DEG	U/FT/HR	ઝ	(BTU/LE/F)	(FT/SEC)	: :	(ATA/FT)
+1	000	00.0	.461E+0	£.5.	•2146			
~	. 500	03.0	. 4615+0	ij	+2146			
כיו	1.0000	300.005	8.4612+61	145.4300	.2146			
. T	.500	1.00	. 4 61E+0	T,	.2146			•
µ١	0 0 3	00.0	.4 E1E+0	4	.2146			
Ψ	.500	0.00	.4 £1E+0	4	9412*			
~	000.	99	. 4 E1E+0	4	.2146			٠
: &v	.500	000	.4 E1E+D	ij	.2146			
ψ	. 000	000	.4E1E+0	T)	.2146			
	.500	000	.461E+0	45	,2146			
	152	000	. 5 C4 E-D	•	2+4740	-4.54E-07	105-0	Ċ
	.000	50	.359E-D	.063	2.4739	.21C-	10E-0	0
	. 590	000	.359E-6	• 0000	2.4738	165-0	10E-0	0
7	• 000	000	359E-0	. 6669	2.4736	-4.4.E-07	5 . 13E-01	0000+
	.500	3.00	.359E-0	.0050	.4735	25-0	10E-0	ು
	. 030	::	.3535-0	.0060	44734	10E-0	136-0	0
	.530	0.00	.359E-0	. 0060	.4733	0-39	136-0	Ü
	. 000	600	.3585.	0903.	.4732	48	100-0	C
	9.00	8.00	3497-0	. 0060	.4733	3E - 0	105-0	9
	000.	7.50	.311E-D	.0530	4774.	15-0	135-0	3
	.5000	17.	.1545-0	6633•	.4795	75-0	10E-0	c
	0.630	64.1	.646E-D	. 0355	•4983	띪	105-0	0
-	0.500	0.80	.4016-0	2500 *	•5585	0-30	1 JE-0	63
	9,700	44.0	0-3445.	• 0641	.6178	띯	106-0	3
	1.000	6.00	0+3630.	•>	100			
	1.500	3,5	. 0 C 3E + 0	œ	.3017			
	2)g•	52.1	.066+0	248,3509	.3017			
	2,500	7.62	0+3000.	œ.	13017			
	2.600	0.0	0 COE+0		.3017			

Table 2 (Continued). Results of the Solution for the Multicomponent Case After 100 Seconds

STATION	ä	820 820	200	KOFLX1	MOFLX2		MOFLX3	TOTMOF
	GFT	4717	(SQFT/HR)		CHOLE/F12	A CHOL	/FT2/HR)	/HR
	* 186E + C	.011E+B	.473E-C	2	-5.564	-07	.075E-0	1.314E-C
	.152E+0	+ 852E-0	3-3204°	60.	-5.275	-05	.3065-0	.0 68 E- 0
	.157E+E	+852E-D	.461E-C	918	-4.7¢6	-07	+948E-0	547E-3
	.153E+D	.852E-8	-411E-C	.5 U S	-4.262	-0 -	*35 BE-0	0-3625
	.150E+C	*852E-1	+370E-0	.63	-3.8t2	-C.7	*847E-0	.057E+6
16	.1356+6	0 +3	3.150E-01	.07	~	۲	.232E-4	7676-5
	- 1225+0	4 853E-0	*844E-0	5.15	-3.393	- 20-	.123E-0	9705-0
	• 6976 • 0	.856E-0	.169E-G	.806	-3.516	-1.7	10048-0	.907c-i
	• 485E+0	.871E-D	.531E-0	.681	-4.116	-07	+82eE-0	-288E-0
	1093540	9446-0	.3395-6	.537	+5.4.29	-07	.6425-0	0116-0
	.1388+6	0+3420*	-210E-C	.356	-7.666	-67	.428E-0	£285-1
	.285E+C	.1332.+0	•251E-	178	-1.132	97-	.11 EE-0	41075-1
	.743E+C	.495E+0	.154E	1.86	-1.572	-0.6	-144E-6	278F-
	.198£ +£	1.872E+00	.734E-	6.9	-1.767		m	. 617E
						,		
STALLON	, x	12 X	XX XX	16571	TEST2	TEST3	KEO	CINCEX
11	90975055	0000546	0 5624398	· •	.746E-D1 9	•		1.750541
12	93975169	0000000	009023150	00 + 300g +	00+B000	+40000		1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5.4	393961275	0017943	09323786	. CCOE + 00 1	005E+00	3656	1.8666-1	# 22 OF -1
7 11	9083158	145350000	70 90 18594	1 60+310n	00+3900	-998E-	A 894F-1	7.44.55
15	90945953	3327233	09616813	. CG1E+00 1	000100	+996E-	.891E-1	5.575F=1
# #	4 9938361609	.0000457347	.0050150744	1. (C1E+00 1	• 0003000*	.990E	891E-1	9
~	90832836	000053500	609613923	* C03E+00 T	00+3000	+984E-	* 854E-1	1.6255-1
۲. ا	58926243	0000061116	0.9312636	F - 52+3031+	0043000	-3636-	1-3115.	2.461E-1
U' -	951918895	0 000 6 5 1 7 7	05011927	. 000E+00 1	00+300c	-9616-	+0055-1	3.5635-1
0 1	760606#5V	000012875	009618685	* [[[[] +]]]	CODE + CO	+3700*	. 524E-1	5.469E-1
**	90896731	508250000	98988456	.996E-01 1	00+330	+000E+	* 364E-1	8 - 85 35 - 1
.V 1	91979445	0114155	56293050	1 00 4 E03 a.*	00+3000	. C 01E+	. 330E-1	1.3935-1
r) .	50855625	288271010	039061795	. 061E+00 1	00043000	+3000*	.273E-1	3.0955-1
7.7	90846152	0154661	0 8959186	. CC1E+00 1	00E+0	•	-301E-1	3.9615-1

Table 3. Results of the Solution for the Multicomponent Case After 1000 Seconds

CATH/FT)	
ш с	
V CFT/SEC1	
CF (2147 .2147 .2147 .2147 .2147 .2147 .2147 .2147 .2147 .2147 .2147 .2147 .2147	**************************************
11459.46000 14459.46000 14459.46000 14459.46000 14459.46000 14459.46000 14459.46000 14459.46000	20000000000000000000000000000000000000
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
F-000000000000000000000000000000000000	3000 3000 3000 3000 3000 3000 3000 300

Table 3 (Continued). Results of the Solution for the Multicomponent Case After 1000 Seconds

OTMOF VET2/UD	3,185	.217E-0	.942E-0	.737E-C	.564E-C	4448E-0	-310E-0	3016-3	*269E-C	2 54E - 0	-241E-C	225E-0	1836-6	.168E-C	DINDEX	1-4576-1	6.719F-1	1.5116-0	6.111E-0	1.4595-6	2.72	4.3736-0	6.3415-0	8.612E-0	1.1006-6	1 . 35 SE - 0	1.60 EE-0	1.871E-C	1.969E-0
MOFLX3 F/FT?/HR1	1.53 EE-06	0-3555	.296E-0	.174E-0	.3645-0	.765E-0	. 90 1E-0	3056-0	.674E-0	. 20 3E - 0	0-3569*	3356-0	*89EE - 0	.761E-0	KEQ .	2.392E-1	3.6346-1	8.70GE-1	2.386E-1	8.2 E 8E-1	m)	2.6896-1	2-731E-1	4.0365-1	8.1276-1	1.5815-0	4. SE1E-0	1.0545-0	3.233E-0
2 7 H B	5E-05	5E+0	8E-0	0-34	2E-0	2E-0	80	16-6	46-0	4.5 +0	2E-0	0 E-0	7E-0	3E+0	TEST3	1-39½2÷	.00JE+0	.0005+6	.000E+C	.603E+0	1.0000+00	0+3€0 g*	10035+0	.0005+0	•0006+0	.0005+6	• C 03E • C	.000E+0	•00CE+0
MOFLX 4MOLEZET2	; =	-147		-1.4	-1.3	-1.2	-1.1	-1.0	-1.0	-6-	0.0-	60	-8.2	-8-0	TEST2	0-3942*	0+3000*	+ 60 0E+0	*000E+0	0+3000.	1+000E+00	• 00 8E+8	•0006+0	*D000	• 60 SE+0	.000E+0	*000E+0	.00CE+0	• \$00E+0
OF L X1 /F T 2/HR	5.036E-4	.7885-0	.370E-0	.053€+0	.7795-0	.583E-0	0-3698.	.298E-0	.206E-0	3-3651.	.081E-0	.0 28E-0	9-35+6*	.917E-0	1EST 1	.7475-01	. 050E+00	00+3000+	00+3733*	* COCE + OD	1.5CCE+00 1	00+±0000+	00+3000*	• 000E • 00	00+3010*	* C E O E + O G	. C C C E + 30	* C C C C + 0 0	• 00ce + 00
D3M (SQFT/HE)	758E-C	.719E-C	.783E-0	.862E-0	•962E-C	.103E-0	.293E-C	.561E-1	.917E-E	*465E-C	+032E-0	.855E-0	.827E-0	.260	£Χ	95348925	30680250	0 5237545	005172367	09115461	+0050637335	005018162	18977538	008941427	08610366	0645238	08855224	0 6837469	08820169
523 (SOFT ZHR)	.216	.117E-0	0-354E-0	.641E-0	0-3410*	.5176-0	.02054	+113E+0	.238E+0	•406E+0	+628E+0	. 912E+0	*260E+0	.4146+0	iu X	1660000	03195486	00561581	85525833	01190383	.0014622200	01765837	01932281	C212€938	02316545	51238423	0.2622058	02156457	02802825
D18 SCFI/HR	5925	.4675-0	17235-0	. 603E+0	• 644E+0	.1(CE+0	.175E+0	.279E+C	.419E+0	3+3959*	. 853t+C	.170E+C	.55 BE+C	.725E+C	x1	93650513	90491607	93200873	46032668	83694134	• 3854740460	89272636	89096183	483621634	38774685	83635546	48518717	83406673	88367005
STATION	##														STATION	11	12	<u>2</u> 1			1 6								

Table 4. Results of the Solution for the Multicomponent Case After 1900 Seconds

OELP.	
₹ . ₩	
(FT/SEC)	
00 00 00 00 00 00 00 00 00 00 00 00 00	$\begin{array}{c} g \otimes G \otimes$
**************************************	teoetttakungettadagen teoettadagen memmedagen
	60000000000000000000000000000000000000
450000000000	00000000000000000000000000000000000000
	20000000000000000000000000000000000000
	9 まくすみのもでからじまえけんほほできせままままままままままままままままままままままままままままままままままま

Table 4 (Continued). Results of the Solution for the Multicomponent Case After 1900 Seconds

. 6656-0 . 4486-6 . 7726-0 . 7726-0	, o c c c c c c c c c c c c c c c c c c	### ### ##############################
X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100 100 100 100 100 100 100 100 100 100	50.74 E B B B B B B B B B B B B B B B B B B
RS CRO CO CO CO CO CO CO CO CO CO CO CO CO CO		44.00000000000000000000000000000000000
MOFLX2 (MOLE/FIZ/H -1.914E- -1.620E- -1.520E-	1	TEST2 122 124 125 126 126 127 127 127 127 127 127
77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	######################################
.5671/HR .5671/HR .9672 .9516 .49516	14 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X
028 *898E-0 *955E-0 *504E-0		**************************************
	1	XX
	ままままごごごご とでのでひまささら とこれ	N 00 H 40 M 40 M M M M M M M M M M M M M M M M

Table 5. Results of the Solution for the Multicomponent Case After 2000 Seconds

STATION	10	TEMPERATURE	æ	RFC	g.	>	ETA	DELP
	z	_	(ETU/FI/HK)	(LB/CUFT)	(BTU/LE/F)	(FT/SEC)		(ATM/FT)
₩.	000	~	+ 4 E 1 E + 0	45.4	.2155		-	-
~	500	Ñ	.4 E1E+0	45.4	.2155		-	
m	1.0000	324.34745	61E +	145.4000	42155			
, -J	506	≈	.4E1E+0	45.4	.2155			
ĸ	.000	~	.4 E1E+0	4504	.2155			
Ψ	. 50 B	7	.4616+6	45.4	.2156			
~	.000	Ñ	+461E+0	40.4	.2156			
#	500	~	.461E+0	45.4	.2156			
o,	.000	Ñ	. 4 £ 1 £ + D	45.460	*2156			
	.530	2	.461E+0	45.400	.2156			
-	.750	Ñ	12882·	·	.4573	51E-1	.13E-0	• 0 0 0 3
	. 630	3	+ 8 81E-0	. 0078	4604	2CE-0	.10E-0	9
	.530	~	.543E-0		4715	948-0	105-0	
	.000	8	.214E-0	*0072	ູ	77E-0	136-0	
15	.500	4	. BEBE-D	6909		-1.936-05	5.13E-01	0030
	000.	8	.554E-0	هب	ī,	785-0	.13E-0	
	. 500	n	+217E-0	\supset	~	68E-0	.10E-D	C 4
	. 690	8	•869E	.0060	~	07E-E	.10E-0	Ċ
	1 200	7	.5256=0	• 8056	74	356+0	1.136-0	CJ
	B 2 2 •	=	•175E+D	•000•		965-0	.10E-G	123
	. 500	õ	-848E-0	6400.	~	138-0	.10E-0	C)
	0000.0	ř	.526E-0	8403.	t)	666-1	.10E-D	r)
	0.500	Š	+250E-0	. 5043	173	91E-0	.10E-0	
	0.700	õ	.143E-D	3	89	53E-0	105-0	•
	4 . 23.5	ö	0+5000"	108.484	_	1		•
	1.500	8	.0 43030.	48.300	.3017			
	000.	õ	.000E	248.3060	.3017			-
	2,500	š	.0000	48+360	.3017			
	2.600	ă	0+3050 ·	48+360	.3017			

Table 5 (Continued). Results of the Solution for the Multicomponent Case After 2000 Seconds

STATION	17	[2M	E CO	MOFL X1	MOFLX	_	OFLX	TOTROF
	GFT/HR	SGFT/HR	SQFT/HR	F T 2/HR	(MOLE/FT2	R) (RQL	ZH.	¥
**	+ C19E-C	-3006-	.292E-0	6.796E-0	-2.105	<u>س</u>	.472E-0	4.839E-C
	.2785-0	.967E-0	.643E-0	•215E-0	-1.877	52	.653E-0	.504E-6
13	# 6.3 9E - 0	.5396-0	.170E-0	** 77E-0	642.5	53	.22EE-0	.351E-C
1 t	.145E+0	.147E-0	.714E-0	8385-0	-1.459	r.	.1058-6	.590E+D
15	.123E+f	0-3558.	.942E-0	0-35 4 2	-2.154	ın.	0-2505	.732E-0
u) +1	36E+0	.061E+0	•855E-E	19529·	-1.119	5.5	192e-4	3-3682.
17	0+3866*	.158E+0	.861E-0	.385ë-D	-2.210	0.5	.68SE-4	3445.
න ස ්	•358E+0	.253E+0	.257E-0	0-3466*	-8.058	90	. 504E-0	.5455+6
U' +4	. 6316 + C	343966.	1-3256.	1-3992+	-2,322	i. Si	3-3965·	.144E-C
20	4 255E-0	0+3495*	.9395-0	.392E-0	-5.218	90	+282E-0	.328E-0
12	0+3029*	.722E+0	.3922-C	+289E-0	-2.425	9	\$20CE+0	.084E-0
22	938€	-	•0C6E+	\$-390G+	-2.492	9	.066E-0	263E-0
53	* 504E+0	141600	•041E-C	8734-0	-2.479	in co	3686-0	6.30E-5
古り	.2345+0	ď	35E+0	1.148E-03	-9.778	15 P	9.942E-07	.0516
								•
STATION	π× TX	10 X	X	16511	15512	1.5513	KEO	DINCEX
	98565435	00000000	95433655	.7475-01	465-01	.7435+0		5.7395-1
	90375819	00228311	0 5355869	09+3000*	0005+00	* 6 0 0 E + C	. 132E	9.125E-1
13	.9901467296	.0005453277	82452025004	1.005+00 1	0005+30	9.997E-01	2.333E-1	S.
	89557541	11183688	009258771	• 559E + 61	0005400	.000E+0	- E49E-	1.2915-0
	85723€15	01152473	009123911	• CO0E+C3	0043000	0+3000*	. 17 GE-	1.211E-C
	88839720	0.2045448	009115831	• 556E - 91	000000	.000E+0	. £38E-	6.773E-0
	70800509 70800509	001588665	06641686	00+3000+	00-300	0+3000+	-3272	3 - 248E+0
	86168541	02871232	0989E0228	.975E-01	0005+00	• C D O E + O	. 560E-	1.5085-0
	85457292	001884222	086658574	. CC0E+CO	3305+09	C 43CO 3.	.760E-	5.577E-0
	87532680	003673000	08754315	• 6612 + 69	00E+00	0+3606*	. 698	4+072E+0
	89555811	C206C523	108379665	604 3000	0095+00	* C 00E + 0	-3734*	7.535E-0
	86931159	04436558	282629301	+ 0 0 2 E + 0 C	00+300	• C 30E + D	• 588E-	7.3356-0
	89768670	02142401	0 80 54 527	. 6865 + 69	000000	*000E+	.717ē-	8.7776-6
	6315153	52711424	0 6137316	. 57 8E - 01	00E+00	. C 00E+C	•470E-	1.769E-0

In order to show that the multicomponent solution is successful, concentration profiles are presented in Figure 2 for the species HCL at several times. The results are considered stable because the profiles do not oscillate. Profiles for the other species are not plotted because they do not exhibit significant change. As was previously mentioned, concentrations for these species were set in excess initially.

In many engineering applications, the use of a single binary diffusivity in a multicomponent diffusion problem is expedient, provided errors are small. For this reason, a solution was obtained for the hypothetical case where the binary diffusivities for each specie pair were set equal to the value for $D_{1,2}$ and any effects due to Knudsen diffusion were not allowed through an option in the software. Results of this solution are presented in Tables 6 through 9 at 100 seconds, 1,000 seconds, 1,900 seconds and 2,000 seconds. Concentration profiles of the species HCl were nearly identical to those for the multicomponent case and thus are not plotted. Comparison of the effective diffusivities for the multicomponent and the equal binary diffusion cases is presented in Figure 3 at 100 seconds and in Figure 4 at 1,900 seconds. As can be easily seen, there is significant difference between the values for the multicomponent case and those for the special case. As another comparison, the amount of coating deposited is plotted for each case as a function of time in Figure 5. There is some difference in the coating deposition rates.

In order to determine the effect of Knudsen diffusion on the algorithm several runs were made with different pore radii for the multicomponent case and the case where all binary diffusivities are equal to $D_{1,2}$. As in discussions above, results are presented below in terms of

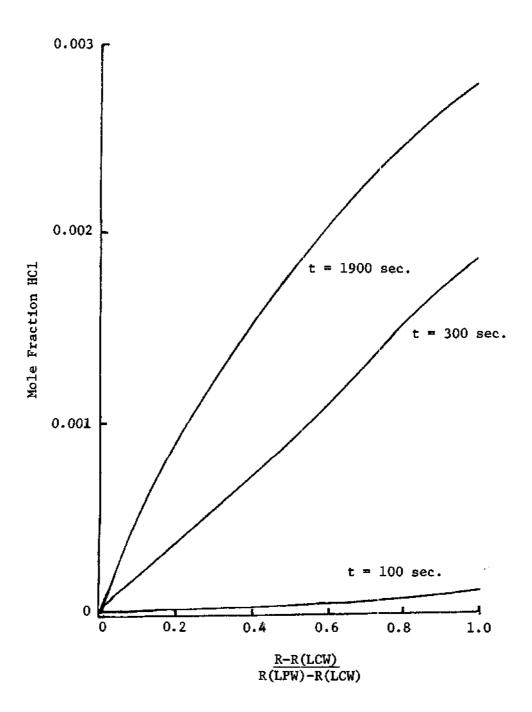


Figure 2. Mole Fraction of HCl versus Station at Times
Shown for the Multicomponent Case.

Table 6. Results of the Solution for the Case Where All Binary Diffusivities

are Equal with No Knudsen Diffusion After 100 Seconds

1 145.4400	1879	SPATERS	¥ .	REC		> 1	ETA	DELP
**************************************	(1 520)			CLEZCUFT	(ETU/LE/F)	(FT/SEC)		(ATP/FT)
*#file*v1 145.4500 *2146 *2146 *2146 *446 *446 *4616 *2146 *2146 *4616 *2146 *2146 *4616 *2146 *2146 *4616 *2146 *2146 *4616 *4616 *	36.64618	~	* + E 1 E *	145.4.60	,2146			•
186 + 0.1 186 + 0.0 2146 21	87320*08	E.	.4612+01	145.4623	.2146			
18 + 0.1 1 4 5 4 6 4 7 7 7 8 4 7 7 7 8 4 7 7 7 8 7 7 7 7 7	8 61533139		4618+01	からかけ かんせん	.2146			
18:01 145:4000	00.0000	ď	4616+01	145.46.00	.2146			•
12.01 145.40.0	2t.16122 B		401546	115.4664	,214c			
18 + 01	30.00025 B		4618+0	145.48.18	. 2146		-	
## # # # # # # # # # # # # # # # # # #	54.5(.28 B.		461648	145.4[[3	.2146	•		
1146.44.19 1146.44.19 1146.44.19 1146.44.19 1146.44.19 1146.44.19 1146.44.19 1146.44.19 1146.49 1146.49 114	00,00033 8,		461E+6	144.4503	.2146			
### ### #### #########################	90.Eits? A.		_	145.4.1.	.214c			
######################################	36.00043 8.		_	145.4500	+2146		٠	
98-101	.0 34,33,40,			\$93 0.	5474.5	- 3/5	136-0	;3
98-101	6 253 0.00			60000	2.4743	12E-	0-3610	3 ر
98-71	6 84700*35			£323.	0474.2	516-	6-3(T.	Ö
96-51	6 85100*00			.0360+	2.4738	9.1.	-10E-	(4
3E - 01	JC.C3552 9.			. CG3	2.4736	405-	0-301.	
######################################	366,00650 9,			6 G * 5 G	2.4735	-311	9-3110	. 1
88-01 .0009 2.4732 -4.278-07 8.106-01 .000 86-01 .0008 2.4733 -46.278-07 8.168-01 .000 86-01 .0008 2.4733 -46.768-07 8.168-01 .000 86-01 .0009 2.4734 -6.768-07 8.108-01 .000 86-01 .0009 2.4584 -46.868-07 8.108-01 .000 86-01 .0047 2.6374 -48.868-00 8.108-01 .000 86-01 248.3000 .3017 -3.028-00 8.108-01 .000 86-01 248.3000 .3017 -3.028-00 8.108-01 .000	306+02873 9.			.3463	2.4733	-378	. 1 JE - C	00
92-91	35.15200 9.			(13)•	2 + 4.732	275-	0-101.	7
65-61 .0459 2.4744 -6.768-07 5.155-01 .050 46-61 .0459 2.4754 -5.568-07 5.155-01 .050 66-91 .0559 2.4754 -1.485-06 5.156-01 .050 58-41 .0547 2.5582 -2.376-06 5.106-01 .050 68-41 .0441 2.8174 -3.026-06 5.106-01 .050 68-41 .248.3550 .3017 -3.026-06 5.156-01 .050 68-41 .248.3550 .3017 -3.026-06 3.106-01 .050	C. +82134 9.			• cceu	E & 7 4 4	07E-	. 1 .E - 3	0
######################################	34.08673 9.				5 4 2 4 4	705-	0-3211	3
0E-01 .0005 2.4984 -1.48E-56 9.10E-51 .000 1E-51 .0047 2.5582 -2.37E-06 5.10E-01 .600 4E-61 .0041 2.6174 -3.02E-06 5.10E-01 .600 08-401 248.3000 .3017 -3.02E-06 5.10E-01 .000 00-401 248.3000 .3017 .3017	17,37230 9,			6650.	5.4754	568-	135-0	د.
15-51 .0047 2.5582 -2.375-06 5.105-01 .600 46-61 .0041 2.6174 -3.025-05 5.105-01 .000 85-41 2.8.300 .3017 96-61 248.3000 .3017 96-51 248.3000 .3017 96-51 248.3000 .3017	64.19(85 B.			9480.	1857.3	485	.10£+3	0
4E-01 .0641 2.E174 -3.02E-06 5.1E-01 .000 08+41 248.3000 .3017 08+61 248.3000 .3017 08+61 248.3000 .3017	08.57745 7			₹ 5 00°	2,5582	37E-	.10E-0	ري
08+01 248-0550 .3017 08+61 248-0500 .3017 04+31 248-0500 .0017 08+01 248-0500 .3017	44.44621 6.		5 1 1 1 1 1 1	. 0641	2.E174	\$2E-	1105-1	0
06+61 248.4800 CC+61 248.4800 CS+61 248.8000 CS+61 248.8000	65.2(867 3,		0+30	3	\$33.17			
06+91 248,3838 .8+01 248,3688 06+51 248,3889	44.81.870 3.		94.45	18435	4102.			
.8+01 248,3000 .5+51 248,3000	52,16(74 3,		4 2 3	48.30	.3517			
54-51 248-3660	5.4533 3.		0+27	48,30	.3017			
	30.56600 3.			48.36	.3647			

Table 6 (Continued). Results of the Solution for the Case Where All Binary Diffusivities are Equal with No Knudsen Diffusion After 100 Seconds

Table 7. Results of the Solution for the Case Where All Binary Diffusivities are Equal with No Knudsen Diffusion After 1000 Seconds

OELP (ATRZFT)		0000000
ETA		######################################
(FT/SEC)	111111 2007 2007 2007 2007 2007 2007 200	0000000 0000000 00000000 00000000 000000
CP (ETU/LB/F) . 2147 . 2147 . 2147 . 2147 . 2147 . 2147 . 2147 . 2147 . 2147 . 2147 . 2147 . 2147 . 2147 . 2147	20.00 20.00	0000000 014600000000000 014600000000000 01460000000000
	4.0000000	24 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
**************************************	10000000000000000000000000000000000000	77777777777777777777777777777777777777
PER	23.24.98 (13.24.98 (13.24.98 (21.92.98 (21.92.98 (21.92.98 (21.98 (21.98) (21.	6921. 6921.
H Z O J O J O J O J O J O J O J O J O J O	27.382.824	14444444444444444444444444444444444444
2. 405489750	04007897 444444	# # # # # # # # # # # # # # # # # # #

Table 7 (Continued). Results of the Solution for the Case Where All Binary Diffusivities are Equal with No Knudsen Diffusion After 1000 Seconds

PITTON	¥.	E 53	3. M	CF	L	×	OFLX	TOTMOF
9	SUFTIF	SUF17HX	SOFTIHE	7FT 2/HK	5	SZHED CE	7FT27HR	7FT2/HF
	-11111	- 300E -	3-563	1.8263-3	7.1.	1 E-1	0-3050-4	4.2056-1
(2)	3. 53. 53. B	1	3-16	5-5392.	P • • • • • • • • • • • • • • • • • • •	2-55	.5155-6	. cd8E-1
		315077	1-3591.	.5736-6	-1.7	35-1	3-3585.	E - 824E-1
	- 1365.	3655.	7-5264.	7-3854.	5.4	25-32	3-5742*	1.216E-1
	4.0000	. A. S. S. S.	3-76524	. 3365-	-11-	1-36	.13151.	2.7946-1
	+ .0.0.4	047Cng.	3+3050.	1-27+2.	***	3-31	5-344J.	3.112E-1
	+ -+ 17 .	11111	3+3777.	1.555-1.	-1.2	1-38	5-0666.	4.5332-1
	. 215.	1.23513.	J+3677.	3-7965.	77	5-36	0-3725.	11425-1
		111111	.351E+6	9-2823.	-1:1	25-3	.266c-L	1.2522-1
	77. 7.	146283	.5335+0	3-2387.	0.1-	1-33	.75CE-0	1-30+0.
	+ 12.22.	**3075.	3 + 72 / 1.	.2311-0	0	32-1	3-1112.	.1155-1
	.385.	. 4 2 2 3 0 .	D. 1131.	3-2128.	2.0.	2-37	. 825E	1-2873.
	60+1055t.	3+3864.	3+3934.	.3065-	5.	39	3745-6	1.4546-1
	•	.625		3522	5.3	95-36	6.2365-07	V
					3	*		
: 01	X.3	2 x	N) X	1521	12572	21231	, 3,7×	. CINCEX
	52525366	20005	54772050	.THEE - UI	.746E-C	-7465-	1 2.3525	7 1.4575-1
	P7712686	60019976	34183630	€3+3101.	.3333E+C	+3()).	3.6346-	7 6.9332-1
	. 390408E	05290000	1620500	000E+50	1.00 CE + 00	1.0000	23 8.77.9E-1	7 1.5528-03
	19101010	5926900	4275002724	C0+3530.	0+3195.	+3.000	3 2.396E-	6 6.2455-3
2	91632678	119177	527576300	. CO+ECO:	D+5050.	* E 20 G *	* 36.35 · 8	6-13-04-1 B
	\$ 6451 193	50145587	5036359 0	00+0074.	1+353).	+3750.	J 3.520E-	5 2.7025-6
	20617525	00171157	505955350	. CC0 = + CC	0+3000.	+300°*	J 2.6885-	4 4.4255-5
	DEE 1 1 5 1 6	00193431	0.3982347	73+5030.	. SCLE+3	. 03E+	3 2.735E-	3-3.04.9
	01200110000000000000000000000000000000	6 0218912	019367073	00+7022.	0+50000	.503E+	-3653.4 0	2 8.57cE-6
	2200750	3231713	08052819	. CC+5413.	3+3J86*	+300g.	3 8.1255-	1 1.1555-0
	98963358	57585277	535166370	. DIDE + CO	1+3000.	+3000.	J 1.982E-	9 1,3045-0
	4.510360	18029703	5 - 8871571	10000+00	3+3,30.	+3000.	3 4.56.5-	8 1,50,95-0
	96037865	10592250	003461960	. 0000 + 33	9+350%·	+3717.	1.0535-	5 1.372E-C
	36522836	200510	10000000000000000000000000000000000000	00+3000.	0+3600.	+1177	3.6335-0	6 1.90se-1

Table 8. Results of the Solution for the Case Where All Binary Diffusivities are Equal with No Knudsen Diffusion After 1900 Seconds

STATICN	840108	4	¥	F	S.	>	ĘTA	OELP
	(NI)	550	U/FT/HR	(LE/CLFT)	(ETU/LE/F)	(FT/SEC)	•	(ATM/FT)
	0.0000	21.45	.4616+0	-	.2154		•	
"	u,	Ť	8,4615+61	145.4000	.2154			
۰,		21.45	6+3734*	-	• < 154			
		75.15	*4615+0	-	.2154			•
u r		21.66	.4616+0	-	+2154			
w	"	21.30	* 4 6 1 2 + 5		.2154			
~	٠	26.17	.461E+0	-	4.155			
e)	w	51.52	.4615+0	~	.2155			
u•	-	22.14	.4 t.1 E + (-	2155			
1 E		26.72	4 € 1 € + û	-	12155			
77	7	22.87	13855.		2.4751	. 7 uE - S	1-301.	ننه د
7.5	٠.	37.65	.922t-@	10077	2.4769	2 E-3	.1 JE -0	د د
۲, ۲	Ψ,	10.63	0-3855	+603.	2,4019	.61ë-0	.106-0	ر
7 ~		50.20	.27212.		2.4884	3-345.	111-0	(1)
	m.	38.30	3-2596.	6000.	2.4971	. 43E-C	. 1 3E - n	(3
		75.447	.6136-0	95.56	2.5083	. 458+3	0+35 T*	0
		23.45	.2778-5	10 C C *	6.522c	1425+1	8 + 3 C 4 *	,
	.,	78.21	.9265-6	6712.	7.5404	-1.420-05	6.1001.0	1300
	41	30.58	.5656-8	15.37	2.5622	7-1174	.10E-3	0
	۲.	07.68	12148-0	.0053	2,5882	4 4 ZE - 2	105-9	9
	•	84.48	.8681-0	.080	2.6:86	. 435-6	.136-3	
		68.Ei	.5426-8		2.0531	.47E+0	01 U 01 U 1	9
۱۰,		77.0	5-035F4	4400.	2.6904	3+36++	.10E-5	9
		24.46	11366-0	50043	2.7564	+ 5 1 E+ D	.155-0	40
	.;	95.34	0+3.301	-	. 3017			
	•	44.00	0.0000	-	.3517			•
23	.,	1 to 10 to	443030.	246.5500	.3017			
	2.5	22.55	.643540		.3217			
		30.20	.0[6=+5		2405*			

Table 8 (Continued). Results of the Solution for the Case Where All Binary Diffusivities are Equal with No Knudsen Diffusion After 1900 Seconds

	50							
10111110) : C	ک: ده ده	2. 21	1	OFL	(2	OFLX	O
	ゼエン! ほごつ	SUFT/RE	SCETZER	T 2/HR	(MCLEZET	/HK) (F	/FT2/HR	/F12/HR
	3 - 63 2 - 62	71.00	Lit	1.9285-5	-2.39	61-3	1.7735-0	-8.0308-1
	1-12-1.	0-5372.	-718c-	1.8348-0		1	.6125-3	5.2158-1
	J = 01 + 14 + 14 + 14 + 14 + 14 + 14 + 14 +	1 1 1 1 1 1 1	3-3225.	6-339	-1.51	1	0-2854.	2.210F-1
	. 37725	7-57.05.	3-3/36.	0-329	11.65	1	.3152-3	1.7655-1
	. On SE + C	1+3000.	3+389c.	135-1	-1.53	-1	-2012·	.6415-1
	5.12261.	153.+5	\$ 1000 t.	0-361	-1.42		3-33-4.	8.553-1
	. 252242	1.251.47	0+1717.	0-242	-1.32		0-3710.	4.8.40.1
	. 5:3. + .	40010.	3 E 9 . + C	1-1/6	-1.25	-	3-3525°	2305-1
	C+3805.	3 5 5 5 F C	3+383G.	0-276	-1.17	i.	7548-9	1.9045-1
) + TO / 9 .	3+37/3+	.0724.	7-312	-1.11	-	D-5522.	7.375
	·	C+303a.	3+3530.	125.	41.0		5-1289.	1 - 1 - 1 - 1 - 1
	1+2256.	2+3763.	3+3226.	0.350	• 1		2315-0	
(·1	1 + 355	0.5255.	1+3535.	9-3-6	10.46	-	3-5137.	- 10年のの
	. + 272+ .	. 427	3+7225.	3,13740.9	-9.56	ر ريا ريا	6.5815-07	-4.2503-12
						(.e.)		
7011	*·	2.4	N X	18571	TESTE	15313	KEO	. DINCE X
	527005	06367844	252577500	10-2071.	.7465-0	-7465-	1 G : 1 - 2 - 2 - 1	1-3577.4 7
7.5	9903643	002t4153	09129484	66+5003.	0+3300.	÷ 1. 6. 7.	. Z.+87E-	6 7.1807-1
· ,	1 1 1 1 0 5	00.71834	350001592	\$1+H123.	0+11000	+3080.	3 1.7425-	5 1.5230
-1 T (33004	37851406	200210000	10+1111.	1+5111	+3333.	J 1.176E-	4 60001-1
10.	12018-6	2720210	711050500	23+3273.	0+0000-	+3200	3 8.1768-	4 1.465E-3
u)	ghana: o	001/12/h100	0 18 3 5 0 5 C		C+123.11	+ 3.00	1 5.0245-	3 2 5 5 5 5 5
:1	3 = 27 4 5	55231219	032010600	C:+E:1)•	0+1000.	. JJE+	-3313·4 0	2 4.15 95-1
	22/0583	56272610	526256300	00-2000-	0+3636.	+110000	3.5656-	1 5.3435-0
U1	C 8383 C	22-02:20	205016900	60+30m3*	0+3000.	.C03E+	-3453.5	9 7.828c-5
1,3	9887267	31:0:T8	20 99 66 0 2	. u + 1:27:	0+10000	+573.4.	3.3475-	9-35 45 - 6
***	4385754	52-10-13	00 8954091	(1) + 11 - 7 7 .	0+30004	+300 n.	3 2. E83E-	3 1.2245-6
(O)	5-5127-5556	.60.5.3.00.	h69 00	T 55+5% 3+T	00+40000	1.000E+C	3-3485-5	7 1.455
	0.818.88.5	027502.7	000033000	10 + E1111.	0+E350.	+3000°	1.6698-	5-3593.1 6
5.5	882805	21683/30	0 83 10 458	874 ∃r93•	*CC3E+	• 0 30E+	3.4578-	6 1.78tE-0

Table 9. Results of the Solution for the Case Where All Binary Diffusivities are Equal with No Knudsen Diffusion After 2000 Seconds

STATION	SACIUS	43	¥	.π Ω±	Ω		£1.A	DELP
	(14)	(T 2G F)	IETL/F1/HK	7	(ETU/LB/F)	(FT/SEC)		(LTP/FT)
44	3	24.35	8.46.22+0	7	.2155			•
7	20	24.35	3+2134*8	3	.2155			
⊢ ;	8	36.45	8.4615+0	145.4(1)	-2155			
4	95.	22.23	8+461E+2	3	10 m			
ψı		25.42	8 • 4 € 1 £ + Ū	-	.2155			
w	'n	24.7	8 - 4 - 1 - 7	3	,2156			
~	-	24.85	8.4618+1	4	,215t			
€0	ŝ	25.15	8 - 4 1 1 5 + 5	-3"	.215			
v	()	25.30	8 + 4 € 1 € + 0		2256			
	Ç,	25.69	8 + 4 E + E + P		+2156			
	. 75	25.81	9.2925-0		7.4.934	-2.235-0	. 1 3k - 3	: 1
	60.	41.42	8 - 8 - 6 - 5	1233	のするちゃん	-1.7+6-0	. 4 JE -	()
	~	73.93	B. 24751	4600.	2.4927	12.5	5 - 101	(3) (7) (4) (4)
	5.0	30.23	8.2165-3	.0072	8684.2	-7.[cE-ù	.13c-0	دى د
	ń	27.54	7 - 8 5) 2 - 0	. (069	2.5.28	-2.235-0	0-307	و. س
	5	87.57	7.555E+7	9903*	2 + 5 3 4 3	3-236-0	.136-0	G
	u1	52.53	7.2198-0	. tiez	29454.2	-2.272-6	.13E-0	0.00
	ų •	e7.12	E-3768-3		2.52.68	1.435-1	4 1 3E + 5	6
	i,	17.45	6+5266+0	• (.55	2,5953	-2.575-0	.135-3	30.00
	1	15,34	6.1765-0	5528	2.5667	2.635-0	.135-0	0
	35+	94.71	9.848E-1	6.35.	2.6617	-3.05E-0	1.15-1	(T)
	3	72.67	5.5265-0	10 T 10 T	2.6187	3.925-6	.138-0	(C)
	13.0	55.41	5.2096-0	15 TO 12 *	2.743	+3. toE-4	11 - 21 0 K +	9
	3.10	94.62	5.14.15-0	2590	2,7399	-3.178-0	105-4	
	1,03	95.51	3.000.8	4	2702			
	55.4	\$6.35	C+3010+9	4	43617			
5.7	12 : 30 00	~)	###### 0 1 0 · c	248.3163	71900			
	2.50	27.55	2.0(324)	3	2002			
	2 • E J	04.00	0+3000-9	3	3917			

Table 9 (Continued) Results of the Solution for the Case Where All Binary Diffusivities are Equal with No Knudsen Diffusion After 2000 Seconds

STATION	. 4	152	147	SFL X	UFLX	3.	1	TCTROF
	SCF T/FF	1/FK	TCFT/FF	/FT 2/48	E/F12	HK) (MCLE	FTZZHR	JF 12 /# R
	11	7-3323.	0-3669.	2.2040-5	-2.335	-1.5	22.60-8	-8.5025-4
	.7232-7	7-5827	-7283-D	0-3266.	2.277	- III	7462-5	5.4705-1
	1-0076.	34.55-3	0-372.	3640-0	2.515	(A)	0-2134	1-10025
	1.0012+8	C+9100.	. 901L+D	1.3328-1	B. 10	5 60-	812=-C	2.4.3
1'1	1.0762.C	.0765+5	.0752+0	-134ET.	2.352	-(5	0-3913	.Cst.E-1
	.1628+	.1628+0	0+3291.	8.0172-5	1.243	E. 31	3-2514	7.1.1.
	1+1292.	.262.+0	.262:+0	1-352-1.	5.4.3	-15 2	1 1 1 2 3 7	.5775-
	3 + 30 - 2 .	443085.	. 180± ¢	. 3801-9	0 4 5 5		3-3500	2 - 2 - 2 - 2
ن. ۱۱	.51814	.5185+0	0 - 1819.	.2655-0	10 to	2	3-2383	1000
	.680.+2	0+1029.	0+3089.	0-312-	130.2	9.1	3-2522	1 7 1
	. 8675.	. 867E+0	136/5+0	.3525-6	3.628	8	7520-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3+50 80 ·	. 080=+ 5	.080.+0	3165-0	115.		7-3552	
	3+7712.	.3:4:+0	3+-772.	2.4145-0	2.694	13 1	7-35-1	3.1681.3
	.412:413	2.4-2:+33	12:+	1-1705-04	14 00 7	2- 53-	97-1245.	4.9229
						500		
NOILEIS	×	:2 X	2 ×	1531	158,72	TEST3	¥≘6	KECALC
	5556505	305395	05039184	6 TO- 3050.	746E-01	.7405-7	1.2921	5-74-5-3
	9:37:43 cs	250122	05025220	1 00 + 5000 T	100 ± 10 € 00	3+3.00.	12.35.54	.7
	735 74 05 9	329259	9552550	1 00+E007.	13 + 150 10	44000	100	10.00
	dyellog	D01204435	6 : 9696 : B	: (3+:020.	00004000	14 TF 00.	H - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	73273836	1160440	308367682	1 03+5000.	030E+50	1+=020.	.1716-1	3 - 27 72 - 5
	96301742	002078525	36853812	1 00+7040.	0000:000	0 + H C 0 0 .	1-2043.	7.2475-5
	9:366620	55222	889821888	1 0000 + C3 T	0 3 ± 4 € 0	3+3 D0 0.	2-3445.	3.3333.5
	59525436	092930314	\$68600300	. COD=+030 1	0007+00	3+2003.	. 560c-1	3-325-5
	5622360	6018:6331	77208050	1 50+30b*	0045400	3+30 53*	.7c35-1	5.7388-0
	9=756507	003713595	D04724528	1 2000 + 21 1	C0+0000	.+2000.	1-185C.	1310101
	85:00:23	074570	367674:4	* 4405+0° ±	0000-100	3+308a.	3-37:7.	7.65 85 -3
	93567773	421817400	39265930	.000c+20	0043000	1.000	3-30cc.	7-5115-6
23	.96528-2530	.002:57305c	. 3082579261	10000 + 01 1	1 00+0000°	.830£+CD	3-3/1/01	73-3787.8 6
	2257120	122827	0:-99571	. 400E+Ct 1	. 60+3000	3*2000.	.473E-E	1.7552-5

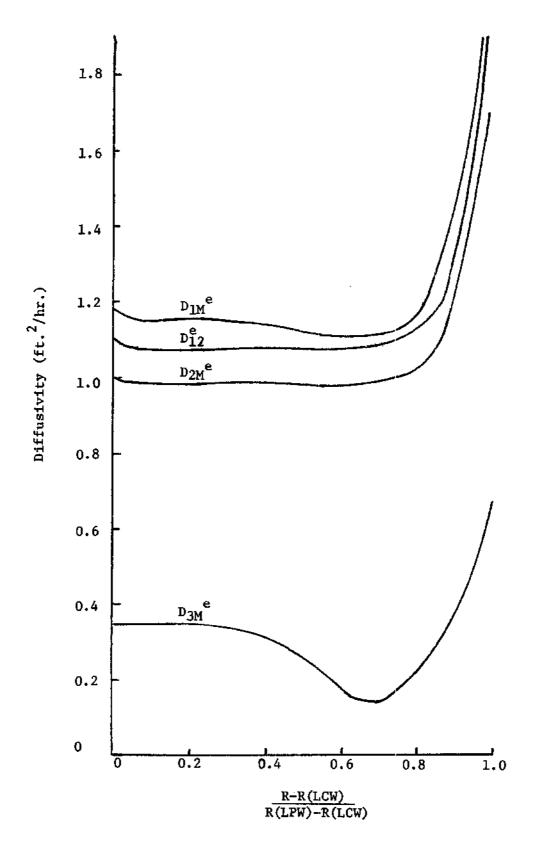


Figure 3. Comparison of Diffusivity for the Multicomponent Case and the Case of Equal Binary Diffusivities After 300 Seconds.

Figure 4. Diffusivity versus Station After 1,900 Seconds.

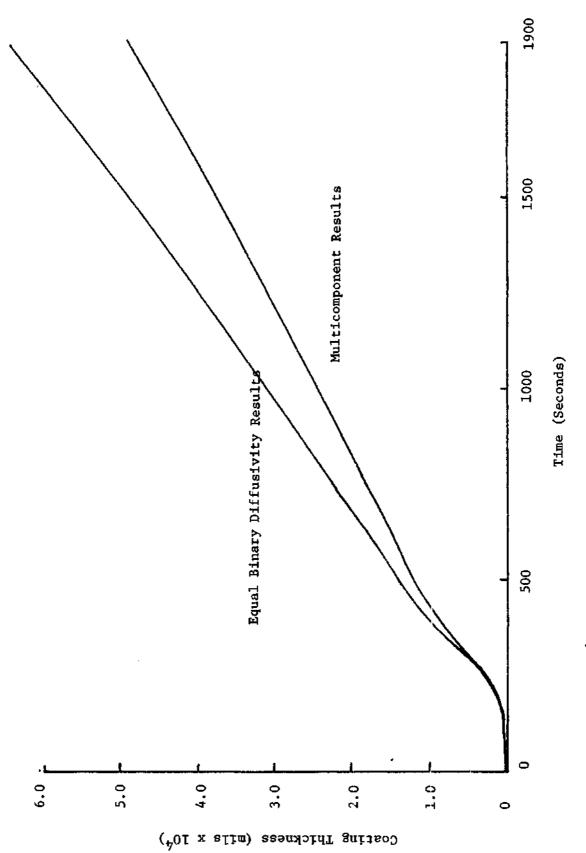


Figure 5. Comparison of Coating Deposited versus Time for Diffusion Cases with No Knudsen Diffusion.

concentration profiles, diffusivity, and coating deposition. The mole fraction of HCl is plotted in Figure 6 versus station for several times and for several pore radii for the multicomponent case. Results after 100 seconds could not be distinguished for any pore radii studied. After 300 seconds, runs with pore radii less than 50,000 Å produced oscillations in the HCl profiles indicating instability. Diffusion moduli were also consistently greater than 0.5 further indicating instability. More will be said about this indicator in the next section. After 1,900 seconds results are only available for pore radii equal to 90,000 Å and 50,000 Å. Other runs with smaller pore radii were so unstable that indefinite numbers had already been produced in the calculations, thus stopping the run through an error exit on the computer. Figure 7 is a plot of similar results for the special case for equal binary diffusivities. As with results for the multicomponent case, the HCl profile is very similar after 100 seconds for all pore radii studied. After 300 seconds, results for a pore radius of 30.7 Å are not valid. Much smaller pore radii can be studied for the special case of equal binary diffusivity because the multicomponent effect does not magnify the problem.

In order to show the Knudsen diffusion effect on diffusivity, effective diffusivities are plotted in Figure 8 for the different pore radii at 1,900 seconds for the special case of equal binary diffusivity. Because all binary diffusivities are equal to $D_{1,2}$, the difference in the effective diffusivity values is a result of the Knudsen component.

The effect of pore radius on the amount of coating deposited versus time is shown for each case and for each different pore radius in Figures 9 and 10. Broken line curves represent results from unstable

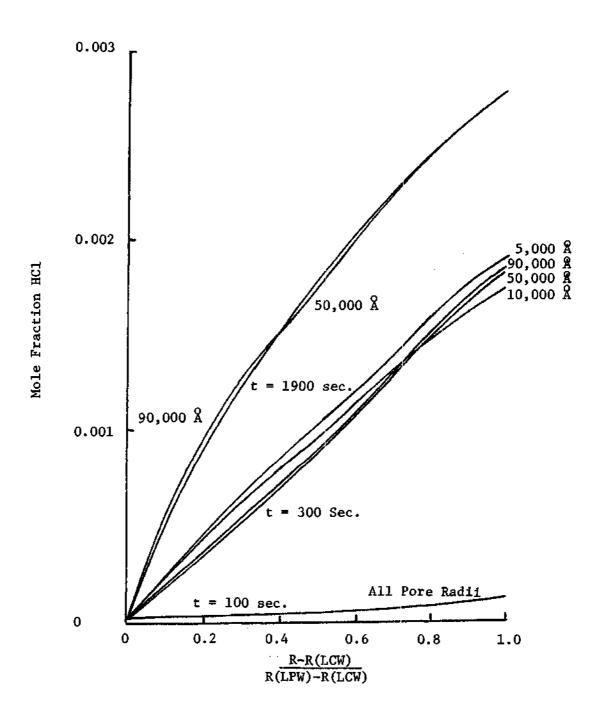


Figure 6. Mole Fraction of HC1 versus Station for Times and Pore Radii Shown for the Multicomponent Case.

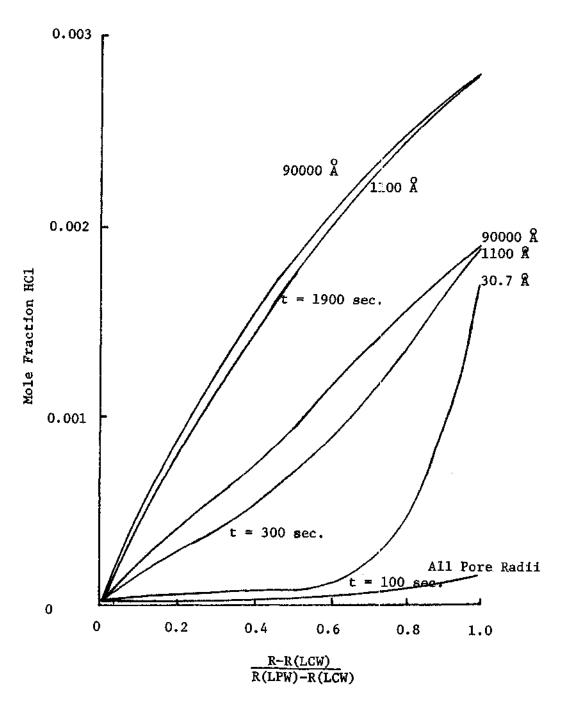


Figure 7. Mole Fraction of HCl versus Station for Times and Pore Radii Shown for the Equal Binary Diffusivities Case.

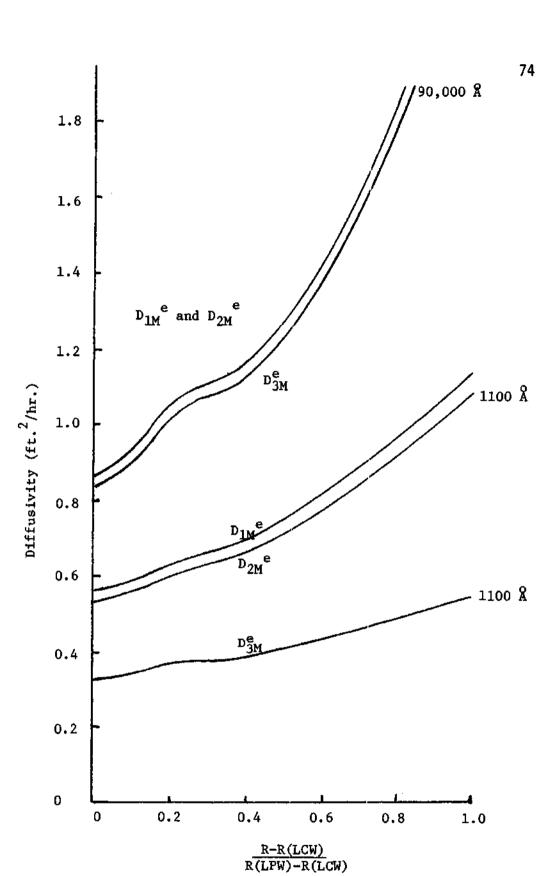


Figure 8. Diffusivity versus Station for Pore Radii
Shown at 1,900 Seconds.

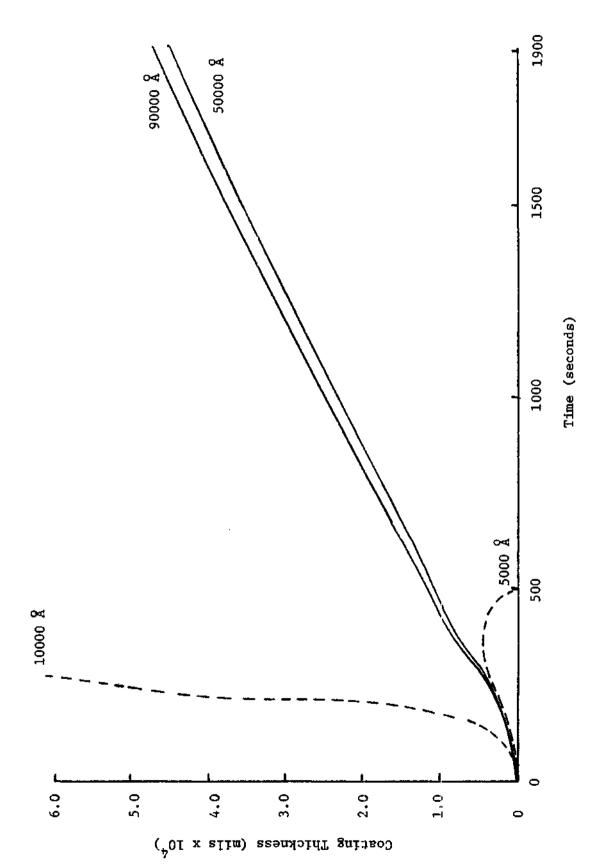


Figure 9. Coating Thickness versus Time for Pore Radii Shown for the Multicomponent Case.

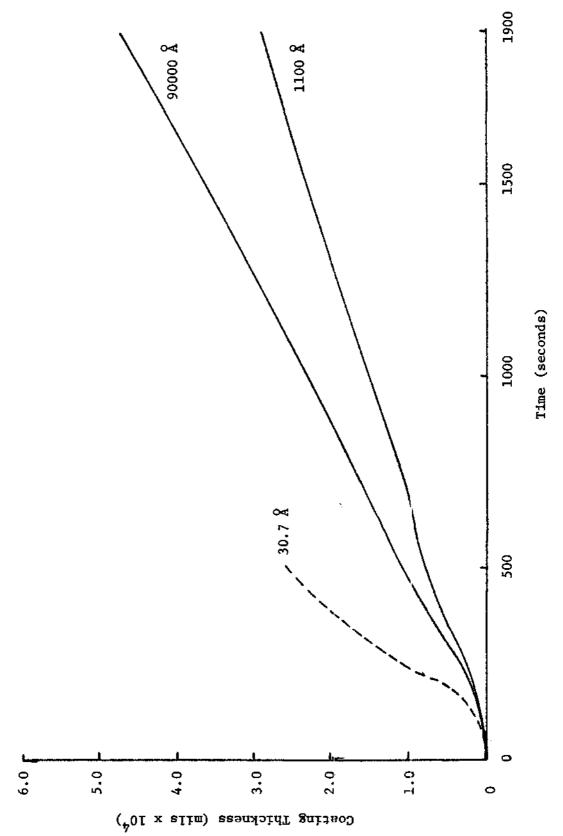
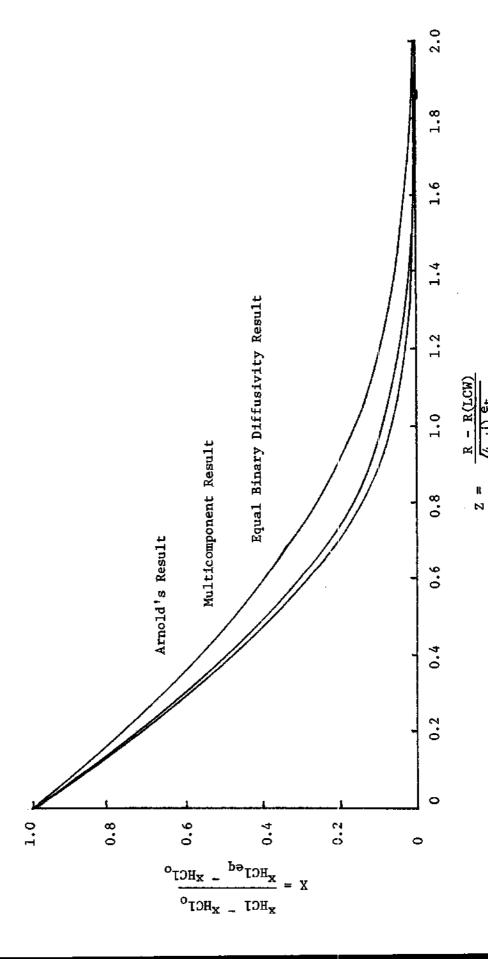


Figure 10. Coating Thickness versus Time for Pore Radii Shown for the Equal Binary Diffusivities Case.


solutions.

Accuracy of Results

The accuracy of results to the solutions discussed above is a function of time spacing, distance step size, and stability. As was previously mentioned, runs with smaller step sizes will provide more accurate solutions provided stability is maintained. Due to lack of computer time, results with smaller step sizes were not obtained. Stability was checked on each run by monitoring stability moduli for both heat and mass transfer as was discussed in Chapter III. Should any modulus exceed 0.5, the value of the modulus, the iteration, and the station were printed as a warning.

One good method to test accuracy of the numerical solutions is to compare results with those from an analytical solution. Unfortunately, such solutions are not available for this pack cementation problem. However, for very early times, the Arnold solution reported in Bird et al. 29 can be assumed to approximate results expected from the numerical solutions. In Figure 11, results of Arnold are compared to the multicomponent case and the special case of equal binary diffusivities. If the assumptions are made that at 1900 seconds the multicomponent solution has reached steady state and that the bulk flow term is negligible, a simple analytical solution results. The product of product of product of the steady state solution and those for the multicomponent case at 1900 seconds are shown in Figure 12.

In the macroscopic sense a test for accuracy is that the product of the radius and coating thickness deposited should be little less than the product of the core radius and the thickness of core material depleted. Results at 1900 seconds for the multicomponent case are $5.1606 (10^{-3})$

 $L = \sqrt{4 \ \text{Al} \cdot \text{et}}$ Figure 11. Arnold Solution versus the Multicomponent Solution at Early Times.

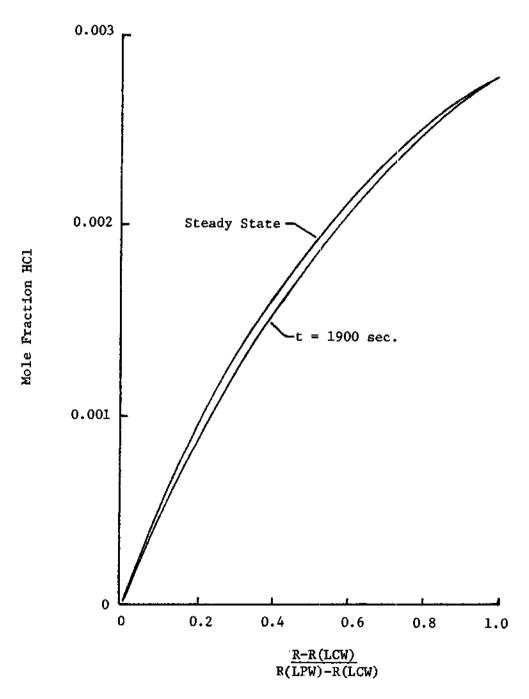


Figure 12. Steady State Solution versus the Multicomponent Solution at 1900 Seconds.

mil-inches and $5.4102(10^{-3})$ mil-inches respectively.

Perhaps the most significant measure of the accuracy of results from solutions presented herein concern the values listed in various tables under the heading "TEST." This parameter represents the ratio of the molar concentration gradient as calculated from the Stephan-Maxwell equation to the same gradient as calculated from the numerical solution. Since the Stephan-Maxwell equation is exact, the fact that values for the "TEST" parameters are very close to unity is indicative that the numerical solution is both reasonable and accurate.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The most important conclusion reached from the work discussed herein is that the model chosen for multicomponent diffusion will provide a successful solution for initial value problems in multicomponent mass transfer. The second important conclusion is that the assumption of equal binary diffusivities will provide a reasonable solution, thus greatly simplifying calculations. And finally, Knudsen diffusion can be a significant contribution to mass transfer in porous medium.

Several areas of further work and development in this area are evident from the results of this thesis. A nested iterative scheme to better calculate the molar concentrations in the porous media when deposition occurs should be developed. Laboratory experiments should be conducted to provide actual data for comparison with the model. And finally, experimental work to better relate porous media properties to transport properties should be conducted.

APPENDIX I

CONTINUITY EQUATION FOR POROUS MATERIAL

Consider a small volume of porous material, V_{ℓ} , composed of substrate particles covered with a thin coating and a gas-filled void. Let the mass of the substrate particle be defined as:

$$m_{P_0} = \rho_0 \sqrt{P_0}$$
 (A1-1)

where

is the volume of porous media occupied by the substrate particles

 \mathcal{C}_{R} is the density of the substrate.

and the mass of the coating be defined as:

$$m_{c} = \rho \left(V_{p} - V_{p_{0}} \right) \tag{A1-2}$$

where

? is the density of the substrate coating

is the volume of the porous media occupied by the solid particles.

The density of the solid composite may be calculated as follows:

$$P = \frac{m\rho_0 + m_c}{VP}$$
 (A1-3)

$$= \underbrace{P_{p_0} V_{p_0} + P_{c} (V_{p} - V_{p_0})}_{V_{p}}$$
(A1-4)

$$\frac{-}{r} \rho_c + \frac{\sqrt{\rho_0}}{\sqrt{\rho}} \left(\rho_0 - \rho_c \right) \tag{A1-5}$$

If the porosities of the media are defined as:

$$\mathcal{E}_{P_0} = \frac{\sqrt{P_0}}{\sqrt{4}} \tag{A1-6}$$

and

$$\varepsilon_P = \frac{\sqrt{p}}{\sqrt{4}} \tag{A1-7}$$

where

 V_ℓ is the total volume of porous media

Then

$$\frac{\sqrt{R}}{\sqrt{\rho}} = \frac{\mathcal{E}R}{\mathcal{E}\rho} \tag{A1-8}$$

And P becomes:

Now the continuity equation for a two-phase mixture of solid composite and gas is written as follows:

$$\frac{\partial \rho}{\partial E} + \nabla \cdot \hat{n} = 0 \tag{A1-10}$$

where

R is the density of the porous medium

 \bar{n} is the mass flux in the porous medium.

But ρ_{i} is $\epsilon \rho + \epsilon \rho$, where ϵ is the gas filled volume and ρ is the density of the gas. Also $\bar{n}_{i} = \bar{n}_{i} + \sum_{i=1}^{n} \bar{n}_{i}^{\epsilon}$ where \bar{n}_{i}^{ϵ} is the mass flux of the gas species i. Assuming that the mass flux of the composite, \bar{n}_{ρ} , is zero, the continuity equation becomes

$$\frac{\partial}{\partial x}(\varepsilon \rho) + \frac{\partial}{\partial x}(\varepsilon \rho \rho) + \nabla - \left[\bar{n}_{i}^{c} = 0 \right]$$
(A1-11)

Now

$$\varepsilon_{\rho}\rho_{\rho} = \varepsilon_{\rho}\rho_{c} + (\rho_{e} - \rho_{c})\varepsilon_{\rho}$$
 (A1-12)

For a coating with a constant density, the time derivative of ϵ_{p} will be:

$$\frac{\partial}{\partial t}(\varepsilon_{P}\rho_{P}) = \rho_{c} \frac{\partial \varepsilon_{p}}{\partial t}$$
 (A1-13)

And the continuity equation for the porous medium becomes

$$\tilde{\mathcal{A}}(\varepsilon \rho) + \rho \tilde{\mathcal{A}} + \rho \tilde{\mathcal{A}} + \rho \tilde{\mathcal{A}} = 0$$
 (A1-14)

APPENDIX II

BINARY DIFFUSION COEFFICIENT FOR POROUS MEDIA

Evans, Watson, and Mason have proposed a model for the binary diffusion equation in porous media which begins with a modified form of the Stefan-Maxwell equation for constant temperature and pressure. 37 Evans et al. proposed their relation in terms of molecules rather than the customary molecular qualities. In addition, these workers have treated the solid particles of the porous medium as large molecules with a zero mole velocity. The general form of this equation is given below.

$$\sum_{i \neq j} \frac{n_i n_j}{n'^2 D_j'} (\bar{V}_j - \bar{V}_i) = \frac{1}{n'} \frac{\partial n_i}{\partial z}$$
(A2-1)

where

is the number of molecules of species i for the total unit volume of solid and gas

n' is the total number of molecules, solid and gas, for the total unit volume

 $\mathcal{D}_{\mathcal{Y}}^{\prime}$ is the effective diffusion coefficient

 ∇_{c} is mass velocity of species i

 υ' is the number of gas and solid i species.

In this equation, effects of the porous media on the diffusion path are incorporated in the definition of the diffusion coefficient as follows:

$$D_{ij}^{\epsilon'} = \frac{\epsilon}{7} \mathcal{D}_{ij}^{\epsilon'} \tag{A2-2}$$

where

 \mathcal{E} is the porosity

 \mathcal{T} is the tortuosity

is the binary diffusion coefficient.

If the molecular flux of species i, \sqrt{l} is defined as the product $n_i \sqrt{l}$ then equation A2-1 may be rearranged to give:

$$\sum_{\substack{i=1\\i\neq j}}^{n} (n'D_{ij}^{n'})^{-1} (n_i N_j - n_j N_i) = \frac{\partial n_i}{\partial z}$$
(A2-3)

For two gaseous species and one solid species p equation A2-3 becomes:

$$ni N_j - n_j \bar{N}i + ni \bar{N}p - np \bar{N}i = n \frac{\partial n_i}{\partial z}$$

$$Dij \qquad Dip \qquad = n \frac{\partial n_i}{\partial z}$$
(A2-4)

Assuming that the solid species p has a zero mass velocity, \mathcal{K}_p would also be equal to zero. Equation A2-4 could then be arranged to give:

$$\tilde{N}i\left(1+\frac{n_{p}}{n}\frac{D_{ij}^{e}}{D_{ip}^{e}}\right)=-\frac{n_{i}^{e}}{n_{i}}\frac{\partial n_{i}}{\partial z}+\frac{n_{i}^{e}}{n_{i}N_{i}}$$
(A2-5)

If δ_{λ} is defined as follows:

$$\mathcal{J}_{i} = \left(1 + \frac{n_{p}}{n} \frac{D_{ij}^{e}}{D_{ip}^{e}}\right)^{-1} \tag{A2-6}$$

Then equation A2-5 may be arranged to give:

$$\vec{N}_{i} = -D_{i}^{e} \frac{\partial n_{i}}{\partial z} + \frac{n_{i}}{n} \mathcal{J}_{i} \vec{N}$$
(A2-7)

$$\mathcal{D}_{i}^{e} = \frac{n}{n} \mathcal{D}_{ij}^{e'} \mathcal{S}_{i}$$
 (A2-8)

and

$$n'D_{ij}^{\alpha'} = \left(\frac{16}{3} \frac{\tau}{\epsilon} \left(\frac{\bar{m}}{\epsilon \pi k T}\right)^{\frac{1}{2}} \pi O_{ij} \Omega_{ij}\right)^{-1}$$
 (A2-9)

The quantity $n_p D_p$ is calculated from a modification of equation A2-9. For a mixture of a gas and solid, the reduced mass \bar{m} may be approximated by the mass of the gas species, m_i . The collision diameter reduces to the radius of the solid particle and the collision integral becomes $(/+\frac{2m_i}{8})$. The term a_i is the fraction of species i diffusely scattered by the solid and for most gases is approximately equal to unit. Therefore, the diffusivity for interaction between the solid and gas is given below:

$$n'D_{ip}^{e'} = \left(\frac{16}{3} \frac{T}{E} \left(\frac{m_i}{2\pi kT}\right)^{\frac{1}{2}} R_p^{e'} \left(\mu \frac{\alpha_i \pi}{8}\right)\right)^{-1} \quad (A2-10)$$

This equation is used by Evans et al. to represent the effect of Knudsen diffusion.

APPENDIX III

COMPARISON OF VARIOUS FORMS FOR THE BINARY DIFFUSION EQUATION IN POROUS MEDIA

Evans, Watson and Mason have proposed the following equations for the binary diffusion equation in porous media. 37

$$\vec{\mathcal{N}}_{i} = -D_{i}^{e} \frac{\partial \underline{n}_{i}}{\partial z} + \frac{\underline{n}_{i}}{\underline{n}} \mathcal{S}_{i} \cdot \vec{\mathcal{N}}$$
 (A3-1)

where

$$D_{i}^{e} = \frac{n'}{n} D_{ij}^{e'} \mathcal{S}_{i}^{e}$$
 (A3-2)

and

$$\mathcal{S}_{i} = \left(1 + \frac{n_{p}}{n} \frac{D_{ij}}{D_{ip}} \right)^{-1}$$
 (A3-3)

If the mole fraction of species i, V_i , is defined as the ratio $\frac{n_i}{n_i}$ then equation A3-1 may be rearranged to give:

$$\overline{N}_{i} = \frac{-D_{i} \frac{\partial n_{i}}{\partial Z}}{1 - \alpha \sqrt{i} \frac{\partial i}{\partial z}}$$
(A3-4)

where

$$\alpha = 1 + \frac{\bar{N}}{\bar{N}_c} \tag{A3-5}$$

Because $n'D_{ij}^{e'}$ is equal to nD_{ij}^{e} , equation A3-2 may be rearranged to

give:

$$\mathcal{S}_{i} = \frac{D_{i}^{e}}{D_{ij}^{e}} \tag{A3-6}$$

Combining this result with equation A3-4 and rearranging yields:

$$\bar{N}_{i} = \frac{-D_{ij}^{*} \frac{\partial n_{i}}{\partial z}}{1 + D_{ij}^{*} - \alpha k_{i}}$$
(A3-7)

Equation A3-7 is the form suggested by Rothfield 41 and Scott^{42} .

APPENDIX IV

MULTICOMPONENT DIFFUSION EQUATION FOR POROUS MEDIA

For non-constant pressure and temperature, the Stephan-Maxwell equation written in the terminology of Evans et al. is given as follows:

$$\sum_{\substack{i=1\\i\neq j}}^{p'} \frac{n_i n_j^e}{n_i^e} \left(D_{ij}^{e'} \right)^{-1} \left(\bar{\nu}_j^e - \bar{\nu}_i^e \right) = \sqrt{\frac{n_i}{n_i}}$$
(A4-1a)

where

$$n'=n+n_P \tag{A4-1b}$$

$$n = \sum_{i=1}^{e} n_i \tag{A4-1c}$$

$$\mathcal{D}_{ij}^{e'} = \tilde{\mathcal{Z}} \mathcal{A}_{ij}^{e'} \qquad (A4-1d)$$

$$Q_{ij}' = \left(\frac{16}{3}n'\left(\frac{\bar{m}}{2\pi kT}\right)^{\frac{1}{2}}\pi\sigma_{ij}^{2}\Omega_{ij}\right)^{-1}$$
(A4-1e)

and

ne is the molecules per unit total volume of the gas species i

np is the molecules per unit total volume of the solid species

is the apparent molecular average velocity for the gas species i or the solid species p.

By dividing the number of molecules per unit volume by Avogadro's number

equation A3-la may be converted to an equation based on the number of moles per unit total volume as follows:

$$\sum_{i \neq j} \frac{c_i c_j}{c_i} \left(c_i' D_j^{e_i'} \right)^{-1} \left(\bar{v}_j^{e_i} - \bar{v}_i^{e_j'} \right) = \nabla \left(\frac{c_i}{c_i'} \right) \tag{A4-2}$$

This equation is further expanded to give:

$$\sum_{i=1}^{2^{\prime}} \frac{c_i c_i^{\prime}}{c_i^{\prime}} \left(c^{\prime} D_{ij}^{e^{\prime}} \right)^{-1} \left(\overline{v_i^{e^{\prime}}} - \overline{v_i^{e^{\prime}}} \right) = \frac{1}{c_i^{\prime}} \nabla c_i^{\prime} - \frac{1}{c_i^{\prime}} \frac{c_i^{\prime}}{c_i^{\prime}} \nabla c^{\prime}$$
(A4-3)

If the molar flux of gas species i is defined as:

$$\bar{\mathcal{N}}_{i}^{e} = c_{i}\bar{\mathcal{V}}_{i}^{e}$$
 (A4-4)

equation A3-3 becomes:

$$\sum_{i=1}^{N'} \frac{\operatorname{cic}_{i}}{c^{i}} \left(c^{i} \mathcal{O}_{i}^{i'} \right)^{-1} \left(\frac{N_{i}^{i}}{c_{i}^{i}} - \frac{N_{i}^{i}}{c_{i}^{i}} \right) = c^{i} \operatorname{PC}_{i} - c^{i} \stackrel{G}{\subset}_{i} \operatorname{PC}_{i}^{i'}$$
(A4-5)

If only one species exists in the solid phase, the term which accounts for the interaction between the solid and the gas species i may be separated from the summation in equation A3-5 and the mass fraction of the gas species i substituted for the ratio of C_{ϵ} to C to give:

$$\sum_{\substack{i=1\\i\neq j}}^{\mathcal{C}} \frac{C}{C} \left(\frac{1}{C} \frac{1}{J_{j}^{e}} \right)^{-1} \left(\frac{1}{K} \frac{1}{N_{i}^{e}} - \frac{1}{K} \frac{1}{N_{i}^{e}} \right) - \left(\frac{1}{C} \frac{1}{N_{i}^{e}} \right)^{-1} \left(\frac{1}{C} \frac{1}{N_{i}^{e}} - \frac{1}{C} \frac{1}{N_{i}^{e}} \right)^{-1} \left(\frac{1}{C} \frac{1}{N_{i}^{e}} - \frac{1}{C} \frac{1}{N_{i}^{e}} - \frac{1}{C} \frac{1}{N_{i}^{e}} \right)^{-1} \left(\frac{1}{C} \frac{1}{N_{i}^{e}} - \frac{1}{C} \frac{1}{N_{i}$$

where
$$\chi_{i} = \frac{C_{c}}{C}$$
 (4-6b)

Now $\triangle C'$ equals $\triangle C$ because the number of solid molecules does not change. In addition, C' may be factored and canceled to give:

$$\sum_{i \neq j}^{N} c(c_{i}A_{j}^{e_{j}^{i}})^{-1}(x_{i}A_{j}^{e_{i}^{i}} - x_{j}A_{i}^{e_{i}^{i}}) + (c_{i}^{e_{j}^{i}})^{-1}(c_{i}A_{j}^{e_{i}^{i}} - c_{j}A_{i}^{e_{i}^{i}}) = c_{i}A_{i}^{e_{i}^{i}} + x_{i}(i - \frac{c_{i}^{e_{i}^{i}}}{c_{i}^{i}})_{VC}$$
(A4-7)

For most situations $\frac{c}{c}$, is nearly unity. Thus, equation A4-7 becomes:

$$\nabla \mathcal{K} = \sum_{i=1}^{d} \left(c_i \mathcal{L}_{ij}^{e} \right)^{-1} \left(x_i \mathcal{K}_{j}^{e} - x_j \mathcal{K}_{i}^{e} \right) + \left(c_i \mathcal{D}_{ip}^{e} \right)^{-1} \left(\frac{C_{ij}}{c_i \mathcal{K}_{p}} - \frac{C_{p}}{c_i \mathcal{K}_{e}} \right)$$

$$(A4-8)$$

APPENDIX V

MULTICOMPONENT ENERGY CONSERVATION EQUATION FOR POROUS MEDIA

Neglecting kinetic and potential energy, the equation for energy conservation of a homogeneous mixture is:

$$\vec{\partial}_{t}(\rho \hat{H}_{t}) + \nabla \cdot \rho \vec{v}_{e} \hat{H}_{t} = -\nabla \cdot \vec{q} + \vec{\partial}_{t}$$
 (A5-1)

where \mathcal{H} is the enthalpy of the mixture.

Assuming that the porous medium is a mixture of solid and gases which may be represented by the "dusty gas" model used in previous derivations, equation A5-1 may be modified to give equation A5-2 below. As with other relations based on this model, the velocity of the solid is assumed to be zero. In addition, the solid is assumed to be incompressible so that changes in pressure only occur in the void volume.

$$\mathcal{Z}_{\epsilon}(\epsilon\rho\hat{A}) + \mathcal{Z}_{\epsilon}(\epsilon_{\rho}\rho_{\rho}\hat{A}_{\rho}) + P \cdot \rho\bar{\nu}_{\epsilon}\hat{A} = -\nabla \cdot \bar{q} + \mathcal{Z}_{\epsilon}(\epsilon\rho)$$
 (A5-2)

where \hat{H} is the enthalpy for the gas mixture \hat{H}_P is the enthalpy for the solid phase.

Equation A5-2 can be expanded to give:

$$\epsilon p \stackrel{2}{\mathcal{H}} + \hat{\mathcal{H}} \stackrel{2}{\mathcal{H}} (\epsilon p) + \stackrel{2}{\mathcal{H}} (\epsilon p) + \stackrel{2}{\mathcal{H}} (\epsilon p) + P \cdot p \tilde{\mathcal{H}} = -P \cdot q \stackrel{2}{\mathcal{H}} (\epsilon p)$$
 (A5-3)

According to the continuity equation:

$$\frac{\partial}{\partial t}(\varepsilon \rho) + \nabla \cdot \rho \vec{v}_{e} = -\frac{\partial}{\partial t}(\varepsilon_{\rho} \rho_{\rho}) \tag{A5-4}$$

Inserting this result in equation A5-3 and combining terms yields:

If the solid material is composed of a substate particle and a coating of a single species and if the density of the coating does not change with time, the derivative of the product with respect to time can be represented as shown in equation A5-6. Details of this derivation are shown in Appendix I.

$$\vec{\mathcal{J}}_{\ell}(\varepsilon_{\rho}\rho_{\rho}) = -\rho \vec{\mathcal{J}}_{\ell}^{\ell} \tag{A5-6}$$

Inserting these results into equation A5-5 yields:

$$\varepsilon \rho \stackrel{\partial \hat{H}}{\partial t} + \stackrel{\partial}{\mathcal{A}} (\varepsilon \rho \rho_{\rho} \hat{H}_{\rho}) + \rho \stackrel{\partial \hat{H}}{\partial t} = -\rho \tilde{u} \cdot \nabla \hat{H} - \nabla \cdot \bar{q} + \varepsilon \stackrel{\partial P}{\partial t} + \rho \stackrel{\partial E}{\partial t} (A5-7)$$

In order to express the energy equation in terms of temperature, the following equation is used:

$$\hat{A} = \sum_{i=1}^{N} \omega_i \hat{H}_i$$
 (A5-7a)

$$\hat{\mathcal{H}}_{i} = \int_{T_{b}}^{T} C \rho_{i} dT + \hat{\mathcal{H}}_{i}^{2}$$
 (A5-7b)

and

is the enthalpy of the gas species i at the base temperature

76 is the base temperature.

The relation describing the enthalpy of the solid phase can also be expanded to give:

$$\mathcal{E}_{p} \hat{P}_{p} \hat{H}_{p} = \mathcal{E}_{p_{o}} \hat{P}_{p_{o}} \hat{H}_{p_{o}} + (\mathcal{E}_{p} - \mathcal{E}_{p_{o}}) \hat{P}_{c} \hat{H}_{c}$$
 (A5-8a)

where

$$\hat{\mathcal{H}}_{c} = \int_{T_{c}}^{T} c_{p} d\tau + \hat{\mathcal{H}}_{c}^{\circ} \qquad (A5-8b)$$

and

$$\hat{\mathcal{H}}_{p} = \int_{T_{b}}^{T} c_{p} dT + \hat{\mathcal{H}}_{p}^{o} \qquad (A5-8c)$$

Assuming that the density of the solid substrate and of the coating are constant in time, application of these definitions for the individual enthalpies to equation A5-7 results in a conservation of energy equation based on the local temperature of the porous media. This equation is given below:

$$\begin{aligned} & \mathcal{E}_{p} \mathcal{E}_{p} + \mathcal{E}_{p} \mathcal{E}_{h} \mathcal{E}_{h} \mathcal{E}_{h} + \mathcal{E}_{p} \mathcal{E}_{h} \mathcal{$$

Now the flux of energy into the system, \overline{q} ,can be expanded as follows:

$$\bar{q} = -k_e \, \mathcal{D} \mathcal{T} + \sum_{i=1}^{N} \hat{H}_{i} \bar{f}_{i}^{e} \tag{A5-10}$$

Inserting these results into equation A5-9 and combining terms yields the following equation for energy conservation in porous media:

$$\begin{split} &(\mathcal{E}_{p}C_{p}+\mathcal{E}_{g}C_{p}C_{p}+(\mathcal{E}_{p}-\mathcal{E}_{p})\mathcal{E}_{g}C_{p})\mathcal{F}_{e}+\mathcal{E}_{e}(\mathcal{H}-\mathcal{H}_{e})\mathcal{F}_{e}^{\mathcal{X}} &(A5-11) \\ &+\mathcal{E}_{p}\mathcal{E}_{h}\mathcal{F}_{e}\mathcal{F}_{e}^{\mathcal{X}} &=-\mathcal{F}_{e}\mathcal{E}_{p}\mathcal{F}_{e}\mathcal{F}_{e}\mathcal{F}_{e}^{\mathcal{X}} &+\mathcal{F}_{e}\mathcal{F}_{e}^{\mathcal{X}}\mathcal{F}_{e}\mathcal{F}_{e}^{\mathcal{X}}\mathcal{F}$$

APPENDIX VI

CALCULATION OF THE SUBSURFACE TEMPERATURE

T(L,t) is defined as the temperature of the grid point just inside the shell surface. In the algorithm arranged for solution of this problem, the spacing between this point and the surface can be very much smaller than the spacing for the other grids. As a result, space derivative calculations can be inaccurate. In addition, the value for the surface temperature is specified or experimentally determined. As a result, the value calculated for T(L,t) must be consistent with the value for the heat flux at this point as implied by specification of the surface temperature. In order to provide increased accuracy and to satisfy the constraint on the heat flux, an implicit equation is used to calculate T(L,t). This method is possible at this point because the value of the surface temperature is known at all times. The equation is developed below:

$$T(c,t,d) = T(c,t) + \frac{\Delta t}{2} \left(\frac{\partial T}{\partial t} \right) + \frac{\partial T}{\partial t} \left(\frac{\partial T}{\partial t} \right)$$
 (A6-1)

where $\frac{\partial T}{\partial t}/t$ is the time derivative of temperature at time $\frac{\partial T}{\partial t}/t$ is the time derivative of temperature at time. The equation for the time derivative of temperature at time tratis given below. This equation uses values for all physical and transport properties evaluated at the previous time, t. In this respect, the use of this

method is not totally implicit, but the values for these variables will not change significantly in the range of the calculation.

$$\frac{\partial T}{\partial t}|_{t+at} = \frac{2}{(\Delta S + \Delta T)} \left(\frac{T(S, t+at)}{\Delta S} + \frac{T(L-1, t+at)}{\Delta T}\right) - \frac{2T(L, t+at)}{\Delta S} \left(\frac{L}{L}\right) \left(\frac{$$

where $T(s,t+\Delta t)$ is the temperature at the surface at time $t+\Delta t$ $O_{S}(t+\Delta t)$ is the thermal of diffusivity

 $T(L-1,\ell rat)$ is the temperature two points inside the surface at time 4 + 4 t

is the spacing for a normal grid

is the spacing for the last grid point and surface.

and
$$\frac{\partial k_{s}}{\partial r} = \left(\frac{\Delta r}{\Delta s} k_{s}(L+1,t) - \frac{\Delta s}{\Delta r} k_{s}(L-1,t)\right) / (\Delta r+\Delta s) \cdot k_{s}(L,t) \frac{\Delta r-\Delta s}{\Delta r\Delta s}$$
 (A6-2b)

Application of equation A6-2a and A6-2b to A6-1 yields after rearranging terms:

$$T(l, l+\Delta l) = (T(l, l) + \frac{\Delta l}{2} \frac{\partial T}{\partial t} |_{l} + \frac{\Delta l}{2} \left(\Delta S + \Delta K\right) \left(\frac{\partial S(l, l)}{\partial L(l)} + (A6-3)\right)$$

$$+ \frac{\partial L}{\partial r} |_{l} (p(l, l) c g(l, l)) |_{l} \left(\frac{\Delta r}{\Delta S} T(l+l, l+\Delta l) - \frac{\Delta S}{\Delta r} T(l-l, l+\Delta l)\right) + 2 \mathcal{O}_{S}(l, l) \left(\frac{T(l+l, l+\Delta l)}{\Delta S} + \frac{T(l-l, l+\Delta l)}{\Delta S}\right) |_{l} \left(1 + \frac{\Delta l}{2} \left(\frac{l}{\Delta r \Delta S}\right)\right)$$

$$\left(\left(\frac{\partial S(l, l)}{\partial L(l)} + \frac{\partial L}{\partial r}\right) |_{l} \left(p(l, l) c g(l, l)\right) \right) \left(\frac{\Delta r}{\Delta S} - \frac{\Delta S}{\Delta r}\right) + 2 \cdot O_{S}(l+l) \left(\frac{L}{\Delta S} + \frac{L}{\Delta r}\right)\right)\right)$$

APPENDIX VII

INTERFACE CONTINUITY EQUATION AND THICKNESS CALCULATION

Because chemical reaction may consume or deposit solid silicon at an interface, the distance between the solid surface and the first node point in the porous medium will vary and a gap will form. As a result, a speical calculation for grid thickness and the continuity equation must be developed. As was previously stated, storage terms are necessary because the interface is treated as a volume element in a numerical solution. The derivations begin with the continuity equation. Dimensions used in these derivations are shown in Figure 13.

$$\frac{3}{3}(2\pi Re Lo \Delta C r_{Si} + 2\pi Re Lo (\Delta rp - \Delta rp_o) p + 2\pi Re Lo \Delta rp_o \in p + (A7-1)$$

$$2\pi Re Lo \Delta rp_o (Ep - Ep_o) e_S = -2\pi (Re + \Delta rp) lo p Ve |_{CCMP1}$$

Dividing by EnRe Lo yields:

$$\frac{\partial}{\partial t} \left(\Delta C r \rho_{si} + (\Delta r \rho - \Delta r \rho_{si}) \rho + \Delta r \rho_{si} \left(\epsilon_{\rho} - \epsilon_{\rho} \right) \rho_{si} \right) = \frac{R(\alpha u \rho_{si})}{R_{c}} \rho_{si} \left(A7 - 2 \right)$$

But, $\Delta r p_o$ is the initial distance from the interface to the node point just inside the porous media which is constant; so

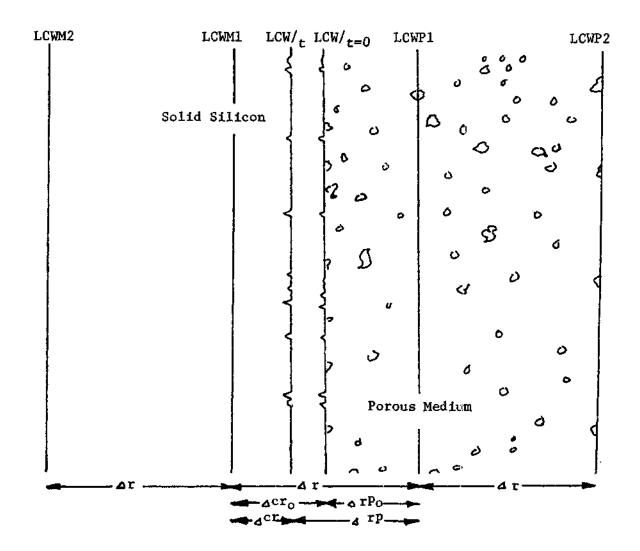


Figure 13. Schematic Representation of the Porous Media--Core Gap.

Expanding and combining terms yields:

But Acr = Ar- Arp and Ar is constant so:

Combining terms and dividing by arp gives the final form of the continuity equation used in this work.

Results of a similar derivation for the other interface are:

The thickness of the partial grid between the core and the first node point in the porous medium will change due to depletion of the core. The thickness of this partial grid is calculated from a mass balance on the species, silicon, in the original grid as follows:

The last term in equation A7-8 represents the net generation (or depletion) of silicon in the grid of thickness ΔP . The other term represents depletion in the porous material and the depletion of the core to form a gap. Dividing by $\Delta R \mathcal{L}_0$ and expanding terms gives:

$$\Delta r p_{o} g_{i} \frac{\partial E}{\partial t} - p_{si} \frac{\partial \Delta r}{\partial t} = \Delta r p_{si}$$
 (A7-9)

But $\varepsilon_P = I - \varepsilon$ so equation A9-8 becomes:

Solving for of yields:

$$\frac{\partial \Delta rP}{\partial t} = -\frac{\Delta rP f si}{f si} + \frac{\partial f}{\partial s} \frac{\partial f}{\partial t}$$
(A7-11)

A similar equation can be derived for the shell interface. The results are shown below:

 $\frac{\partial \Delta \rho r}{\partial z} = -\frac{\Delta \rho r_0 r_{Si} + \beta_{Si} \Delta \rho r_{Si}}{\beta_{Si} (E - E_0 + I)}$ (A7-12)

APPENDIX VIII

CALCULATION OF INTERFACE MASS FRACTIONS BOUNDARY CONDITIONS

In the solution to a differential equation, derivatives of the mass fluxes at the solid boundary must be zero. Also, a boundary has zero thickness so there is no storage term in the mass balance. For a finite difference approximation, a finite volume is used so a storage term and a flux term are needed. For the interface between the core and the porous medium, the following mass balance applies:

where \mathcal{R}_{c} is the radius of the interface

Electron) is the radius at

LCWPI is one point beyond the interface

arp is the thickness of the interval between Lewand Lewp/

arpo is the initial value for orp.

Equation A8-1 can be expanded to give:

$$\frac{\partial \mathcal{L}}{\partial t} \left(\varepsilon \rho \omega i \right)^{\dagger} \varepsilon \rho \omega i \frac{\partial \Delta r \rho}{\partial t} + \left(\Delta r \rho - \Delta r \rho \right) \frac{\partial \mathcal{L}}{\partial t} \left(\rho \omega i \right)^{\dagger} + \left(\Delta R - 2 \right)$$

$$\rho \omega i \frac{\partial \Delta r \rho}{\partial t} \cdot \frac{R(\iota c \omega \rho i)}{Rc} \tilde{\Pi}_{i}^{e} \Big|_{\iota c \omega \rho i} = \Delta r \rho r i$$

In the algorithm for the problem at hand, $\omega_{c}(\omega_{c})$ is calculated from a Taylor's series as follows:

$$\omega_i(lc\omega, t+\Delta t) = \omega_i(lc\omega, t) + \frac{\Delta t}{Z} \left(\frac{\partial \omega_i}{\partial t} \middle|_t + \frac{\partial \omega_i}{\partial t} \middle|_{t+\Delta t} \right)$$
 (A8-3)

As with the calculation of the subsurface temperature (see Appendix VI), the fact that Arp can be very small, thus producing inaccurate derivatives, warrants the use of an implicit solution for ω : (ω , ω). The derivative $\frac{\partial \omega}{\partial t}/t$, ω is obtained from equation A8-2 and is shown in the expanded form below:

$$\frac{\partial \omega}{\partial t}\Big|_{t+\Delta t} = \left(\frac{\Delta r\rho}{\Delta r\rho}\Gamma_{i}\Big|_{t} - \omega_{i}(lc\omega, t+\Delta t)\left(E(lc\omega, t) + \frac{\Delta r\rho}{\Delta r\rho_{o}} - 1\right)\frac{\partial \rho}{\partial t}\Big|_{t} (A8-4)$$

$$- \int_{t}^{l} (lc\omega, t+\Delta t) \omega_{i}(lc\omega, t+\Delta t)\left(\frac{\partial E}{\partial t}\Big|_{t} + \frac{\partial \Delta r\rho}{\partial t}\Big|_{t} \Delta r\rho_{o}\right) - \bar{n}_{i}^{e}(lc\omega, t)$$

$$\frac{R(lc\omega, \rho)}{\Delta r\rho_{o}}\Big|_{t}^{l} \left(\rho(lc\omega, t+\Delta t)\right) = (lc\omega, t+\Delta t) + \frac{\Delta r\rho}{\Delta r\rho_{o}} - 1\Big)$$

Insertion of equation A8-4 into A8-3 and collecting terms yields the following equation for $\omega_i(\omega_i,t_{1\Delta}t)$:

A similar equation can be developed for the interface between the porous medium and the shell. The results are:

wi (LPW, t+st) = (wi (LPW,t) +
$$\frac{1}{2} \frac{1}{2} \frac{1}{$$

APPENDIX IX

CALCULATION OF INTERFACE TEMPERATURE BOUNDARY CONDITIONS

The calculation of the interface boundary condition is based on an energy balance over a portion of the porous section on one side of the interface. To improve the accuracy of the numerical solution, an implicit calculation of the interface temperature values is used. The method used to calculate $\mathcal{T}(\omega\omega)$, the temperature of the interface between the core and the porous medium, is shown below. Results for a similar derivation are also given for $\mathcal{T}(\omega)$, the temperature at the other interface. The derivation begins with the following energy balance:

$$\frac{3}{8}(\epsilon\rho\Delta r\rho\hat{U}) + \frac{3}{8}(\epsilon\rho\rho_{\rho}\Delta r\rho\hat{U}_{\rho}) + \frac{3}{8}((\epsilon\rho - \epsilon\rho)\rho\Delta r\rho\hat{U}_{c}) + (A9-1)$$

$$\frac{3}{8}((\Delta r\rho - \Delta r\rho)\rho\hat{U}) + \frac{3}{8}(\rho\Delta r\hat{U}_{c}) = \frac{R(\iota c\omega\rho)}{R(\iota c\omega\rho)} + \frac{2}{6}(\iota c\omega\rho)$$

$$\frac{R(\iota c\omega\rho)}{R(\iota c\omega\rho)} + \frac{R(\iota c\omega\rho)}{R(\iota c\omega\rho)} + \frac{R(\iota c\omega\rho)}{R(\iota c\omega\rho)} + \frac{2}{6}(\iota c\omega\rho)$$

The first term is the accumulation of internal energy of the gas phase in the partial increment next to the interface. The second term is the accumulation of internal energy of the porous substrate next to the interface. The third term represents the accumulation of internal energy on the core material deposited on the porous substrate. The fourth term is the change in internal energy of the gas in the gap between the core and porous

medium. The fifth term is the accumulation of internal energy of the core material near the interface. The remaining two terms represent the flux of energy due to diffusion and conduction. For the problem at hand, the density of the solids does not change in time and the internal energy of the solid can be represented in terms of $\widehat{c\rho}$ so Equation A9-1 becomes:

Substituting the definition for $\hat{\mathcal{U}}$ and expanding and combining terms gives:

arp
$$St(\epsilon p\hat{H})$$
 - arp $St(\epsilon p)$ + $\epsilon p(\hat{H} - \frac{p}{p})$ St + (orp-arp) $St(\hat{H}p)$ (A9-3)

- (arp-arp) St + $p(\hat{H} - \frac{p}{p})$ St + (ϵp ϵp ϵp + (ϵp ϵp) ϵp arp ϵp + ϵp ϵp ϵp ϵp + ϵp ϵp ϵp + ϵp ϵp ϵp ϵp + ϵp ϵp + ϵp ϵp ϵp + ϵp ϵp + ϵp ϵp ϵp + ϵ

Application of the definition of \hat{H} and expansion of terms gives:

+
$$\frac{E_R}{R}$$
 $\frac{P_R}{R}$ $\frac{P_R}{R}$

Assuming is and combining terms based or derivatives yields:

$$(arp(\hat{H}p-P)-arp(\hat{H}_{e}p-\frac{1}{0.3676}))\stackrel{\partial E}{\partial t} + \hat{H}(arp(1.01E)-arp) (A9-5)$$

$$\stackrel{\partial E}{\partial t} + (E(p\hat{H}-P)+\hat{H}p-P-\hat{H}_{e}p+\frac{1}{0.3676})\stackrel{\partial Arp}{\partial t} - (arp(1+E)-arp)$$

$$\stackrel{\partial P}{\partial t} + (Epcp+p(arp-arp)cp+Epf_{e}arp,cp+(Ep-Ep)f_{e}arp,cp)$$

$$\stackrel{\partial T}{\partial t} = \frac{R(ccwpi)}{Re} \stackrel{\partial}{f_{i}} (ccwpi) \stackrel{\partial}{H_{i}} (ccwpi) + \frac{R}{Re} \stackrel{\partial}{f_{in}} - \frac{R}{Re} \stackrel{\partial}{f_{out}}$$

For a numerical solution, values for $m{ar{7}}$ are defined as follows:

$$\bar{q}_{in} = -k(\iota cwm_i)(\tau(\iota cw) - \tau(\iota cwm_i))/\rho cr$$
(A9-6)

$$\overline{q}_{out} = -k(cc\omega\rho_I)(T(cc\omega\rho_I) - T(cc\omega))/\Delta r\rho$$
 (A9-7)

Further, if T(LCW, Erst) is defined as:

$$T(ccw, list) = T(ccw, l) + at $\overline{\partial}l_{list}$ (A9-8)$$

then an implicit numerical solution for Theorem can be found as follows:

 $T(LCW, t+\Delta t) = \left(T(LCW, t) + \frac{\Delta t}{2} \left(-\frac{R(LCWPI)^{2}}{R_{c}} \left(-\frac{R(LCWPI)^{2}}{R_{c}} \left(-\frac{R(LCWPI)^{2}}{R_{c}} \left(-\frac{R(LCWPI)}{R_{c}} \right) \right)\right)\right) \right) \right) \right)$

where

ARGETA = $\Delta rp(\hat{H}(LCW, t + \Delta t)) p(LCW, t + \Delta t)$ $= P(LCW, t) - \Delta rp(\hat{H}(LCW, t + \Delta t)) p(LCW, t + \Delta t)$ $= \frac{1}{0.3676}$ $= ARGRHO = \hat{H}(LCW, t + \Delta t)(\Delta rp + E(LCW, t) \Delta rp - \Delta rp)$ $= ARGRP = (p(LCW, t + \Delta t)) \hat{H}(LCW, t + \Delta t) - P(LCW, t)$ $= (E(LCW, t) + 1) - p(LCWM1, t + \Delta t) \hat{H}(LCWM1, t + \Delta t)$ $= \frac{1}{0.3676}$ $= ERC = \Delta rp E(LCW, t) p(LCW, t + \Delta t) cp(LCW, t + \Delta t)$ $= (\Delta rp - \Delta rp) + (1 - E_{\alpha}) p(LCW, t + \Delta t) cp(LCW, t + \Delta t)$ $= (\Delta rp - \Delta rp) + (1 - E_{\alpha}) p(LCW, t + \Delta t) cp(LCW, t + \Delta t) t$

(Arp - Arp) + (1- Es) po arp cp (LCW, tist) +

(Es - E (LCW, t)) p (LCW, tist) Arp cp (LCW, tist)

+ p (LCWMI, tist) cp (LCWMI, tist) ACT.

A similar equation can be derived for the interface between the porous medium and the shell. The results of that derivation are:

$$T(LPW, t \mid \Delta t) = \left(T(LPW, t) \mid \Delta t \left(\frac{R(LPWMI)}{R_{p}}\right)^{\frac{1}{2}} \stackrel{e}{\sim} (A9-9)\right)$$

$$\left(LPWMI, t \mid \Delta t\right) \stackrel{f}{H}_{i} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta P^{o}} \stackrel{k}{k} \left(LPWMI, t \mid \Delta t\right)$$

$$T(LPWMI, t \mid \Delta t) + \frac{R(LPWM)}{R_{p} \Delta r^{o}} \stackrel{k}{k} \left(LPWMI, t \mid \Delta t\right) T(LPWMI, t \mid \Delta t) - \frac{\partial^{2}}{R_{p} \Delta r^{o}} - ARGPR \stackrel{\partial^{2}}{\partial t} + ARGP \stackrel{\partial^{2}}{\partial t}) / EPC \right) / ARGETA \stackrel{\partial^{2}}{\partial t} - ARGPR \stackrel{\partial^{2}}{\partial t} + ARGP \stackrel{\partial^{2}}{\partial t}) / EPC \right) / \left(1 + \frac{R(LPWMI)}{R_{p} \Delta P^{o}} \stackrel{k}{k} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{k} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{k} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right) + \frac{R(LPWMI)}{R_{p} \Delta r^{o}} \stackrel{k}{l} \left(LPWMI, t \mid \Delta t\right)$$

where

ARGETA =
$$\Delta Pr(\hat{H}(LPW, t'st)p(LPW, t'st))$$

$$= \frac{P(LPW, t)}{0.3676} - \Delta pr_0(p(LPW, t'st))\hat{H}_c(LPW, t'st) \hat{H}_c(LPW, t'st) - \frac{1}{0.3676})$$

$$ARGRHO = E(LPW, t)\hat{H}(LPW, t'st) \Delta pr$$

$$ARGPR = E(LPW, t)(p(LPW, t'st))\hat{H}(LPW, t'st) - \frac{P(LPW, t)}{0.3676}) - (p(LPW, t'st))\hat{H}_c(LPW, t'st) - \frac{1}{0.3676})$$

$$ARGP = E(LPW, t) \Delta pr/0.3676$$

$$ERC = E(LPW, t) p(LPW, t'st) cp(LPW, t'st) \Delta pr_0 Cp(LPW, t'st) \Delta p$$

£1 st) 1 srso ρ(LPW, t1st) Cg (LPWP), t1 st) + (εο - ε(LPW, t)) ρ(LPW, t1st) spro + Cρ(LPW, t1st) + (spr - spro) Cρ(LPW, t1st) ρ(LPW, t1st)

APPENDIX X

CALCULATION OF THE OVERALL DIFFUSIVITY AND OVERALL THERMAL CONDUCTIVITY FOR THE CORE INTERFACE

Because the interface between the core and the porous medium may recede as a result of depletion of the core material, a special calculation must be made for the diffusivity and the thermal conductivity in the interval just beyond the interface. These calculations are based on a model which treats the intervals as a composite material composed of the gap, formed by recession of the core, and the porous material. The geometry and nomenclature used for this derivation are shown in Figure 13 with as the portion of the increment representing the gap and with as the portion representing the porous medium. The derivation for the diffusivity will be shown first.

If the assumption can be made that for any instant, the molar flux relative to the molar-average velocity in the gap is equal to that in the porous medium just beyond the gap and is only slightly dependent on distance over that interval, an overall diffusivity can be calculated as follows:

Upon integration, the following equations result:

$$V_{i} / R_{c} \cdot arp - arp_{o} - \chi_{i} / R_{e} = \frac{R_{c} J_{i}^{*} \cdot l_{n} \left(\frac{R_{c} + \Delta rp - \Delta rp_{o}}{R_{c}}\right)}{\frac{P_{c}}{M_{w}} \cdot l_{m} \cdot l_{R_{c}} \cdot arp - arp_{o}}$$
(A10-2a)

and
$$ki|_{Retarp-arg} = \frac{-ReJie'(n(Retarp-arg))}{\int_{Mw}^{e} \int_{lm}^{e} |Retarp-arg)}$$
 (A10-2b)

Adding equations A10-2a and A10-2b and rearranging terms yields:

This equation can be further rearranged to give:

If equation A10-4 is multiplied and divided by the space increment for the interval under consideration, a derivative can be created. If the remaining terms are collected, an overall diffusivity results as shown by equation A10-5a and A10-5b.

$$\overline{J_i}^{*} = -\frac{\rho}{m_w} \lim_{n \to \infty} \overline{\partial r}$$
 (A10-5a)

A similar logic can be used to derive an equation for the overall thermal conductivity for the composite formed from the gap and the porous medium in the interval just beyond the core interface. In this case, the heat flux in the gap is assumed to be independent of distance for the interval and the flux in the gap is assumed to equal that in the porous medium. This relation is represented as follows:

$$-rk_{e}|_{\tilde{\mathcal{O}}r}^{\tilde{\mathcal{T}}} = -rk_{e}|_{\tilde{\mathcal{O}}r}^{\tilde{\mathcal{T}}} = R_{c}\tilde{q}$$

$$R_{c} Iarp-arp_{o} R_{c} + arp}$$
(A10-6)

Upon integration, the following equations result:

$$T/R_{c+arp-arp_{o}} - T/R_{c} = R_{c} \frac{I_{m} \left(\frac{R_{c} + arp-arp_{o}}{R_{c}}\right)}{k_{c} I_{c+arp-arp_{o}}}$$
(A10-7a)

and

$$T/R_{ctarp} = T/R_{ctarp-arp} = Reg = \frac{ln\left(\frac{R_{c} + arp}{R_{c} + arp}\right)}{k_{e}/R_{c} + arp}$$
(A10-7b)

Adding equation A10-7a and A10-7b yields:

$$T/\frac{T}{R_{c} \cdot \text{larp}} = -R_{c} \frac{\left(\ln \left(\frac{R_{c} \cdot \text{larp}}{R_{c} \cdot \text{larp} \cdot \text{orp}} \right) + \ln \left(\frac{R_{c} \cdot \text{larp} \cdot \text{arp}}{R_{c}} \right) - I}{k_{c} \cdot |_{R_{c} \cdot \text{larp}}} \right) (A10-8)$$

Equation AlO-8 can be represented as a derivative equation by multiplying and dividing by Δrp . The overall thermal conductivity is then obtained by collecting terms as follows:

$$\vec{q} = -\vec{k}_e \frac{QT}{\partial r}$$
 (A10-9a)

where

$$\bar{k}_{e} = \left(\frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c} + \Delta r p - \Delta r p}\right) \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c}}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p - \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c} + \Delta r p}{R_{c} + \Delta r p}\right)}{R_{c}} \frac{l_{n}\left(\frac{R_{c}$$

APPENDIX XI

COMPUTER PROGRAM

Nomenclature

Program MAIN

Subroutine DIFF

NOMENCLATURE FOR THE COMPUTER PROGRAM

Real Variables:

ALPHAC (I)	Thermal diffusivity for the core material
ALPHAS (I)	Thermal diffusivity for the shell material
ARG	Argument used in time loop limit definition
ARGETA	Argument used in energy equation for either interface
ARGLP	Argument used in space loop limit definition
ARGGP	Argument used in energy equation for either interface
ARGPR	Argument used in energy equation for core interface
ARGRHO	Argument used in energy equation for either interface
ARGRP	Argument used in energy equation for shell interface
ARGX2	Argument used to calculate y_2 from equilibrium expression
CAPX (II)	Dimensionless concentration variable used in the Arnold Solution
CCA	Argument used in initial value calculation for the Arnold Solution
CCB	Argument used in initial value calculation for the Arnold Solution
СВО	Interpolation variable used in center line temperature profile calculation
CBI	Same as above
CB2	Same as above
CIDI	Constant for diffusion collision integral calculation
C1D2	Same as above

C1V1	Constant for viscosity collision integral calculation
CLAMB	Argument used in initial value calculation for the Arnold Solution
COATTH	Coating thickness at the shell-porous medium interface
COAT1	Coating thickness at the shell-porous medium interface during iteration \ensuremath{J}
COLIND (II, JJ)	Collision integral for diffusivity
COLINV (II)	Collision integral for viscosity
CONTH	Constant used in pressure calculation equal to
COREDP	Thickness of core depleted
CORE1	Thickness of core depleted during iteration J
CP (I)	Mixture Heat capacity
CPC	Heat capacity of the core material
CPC1	Constant for core heat capacity calculation
CPC2	Same as above
CPC3	Same as above
CPG (II)	Heat capacity of gas species II
CPG1 (II)	Constant for gas species II heat capacity calculation
CPG2 (II)	Same as above
CPG3 (II)	Same as above
CPG4 (II)	Same as above
CPG5 (II)	Same as above
CPP (I)	Heat capacity of the porous substrate material
CPP1	Constant for porous material heat capacity calculation
CPP2	Same as above

Same as above

CPP3

СРРО	Initial value of CPP
CPS	Heat capacity of shell material
CPS1	Constant for shell material heat capacity calculation
CPS2	Same as above
CPS3	Same as above
CS0	Interpolation variable used in surface temperature profile calculation
CS1	Same as above
CS2	Same as above
C00	Interpolation variable for centerline and surface temperature profile calculation
CO1	Same as above
C02	Same as above
C10	Same as above
C11	Same as above
C12	Same as above
C20	Same as above
C21	Same as above
C22	Same as above
DEGF	Point out variable for temperature
DELCR	Partial space increment between the last node in the core and the core radius
DELCRL	Old value of DELCR
DELCRO	Initial value of DELCR
DELK (I)	First derivative of K with respect to r
DELKC (I)	First derivative of KC with respect to r
DELKS (I)	First derivative of KS with respect to r
DELKDT	First derivative of the product K(I)*DELT(I) with respect to r at either interface

DELNIE (I)	First derivative of the mass flux of species l with respect to r
DELN2E (I)	First derivative of the mass flux of species 2 with respect to r
DELN3E (I)	First derivative of the mass flux of species 3 with respect to r
DELP (I)	First derivative of the pressure with respect to r
DELPR	Partial space increment between the porous medium and the node just inside the porous medium
DELPRL	Old value of DELPR
DELPRO	Initial value of DELPR
DELR	Space increment
DELROV (I)	First derivative of the produce $RHO(I)*V(I)$ with respect to r
DELRP	Partial space increment between the core radius and the node just inside the porous medium
DELRPL	Old value of DELRP
DELRPO	Initial value of DELRP
DELRS	Partial space increment between the porous medium radius and node just inside the shell
DELRS0	Initial value of DELRS
DELS	Space increment variable for the shell energy equation calculation equal to either DELR or DELSR $$
DELSR	Partial space increment between the last node in the shell and the shell radius
DELSUM (I)	First derivative of the sum of the product AG(II) V FLUXJII(I) with respect to r
DELT (I)	First derivative of $T(t)$ with respect to r
DELTAU	Time increment
DELVA	Space increment variable for the porous medium calculations equal to either DELR or DELPR

DELVAB	Same as above equal to either DELR or DELRP
DELW1 (I)	First derivative of W(1) with respect to r
DELW2 (I)	Same as above
DELW3 (I)	Same as above
DELX	Space increment variable for the shell energy equation calculation equal to either DELRS or DELR
DELX1 (I)	First derivative of X1(I) with respect to r
DELX2 (I)	First derivative of X2(I) with respect to r
DELX3 (I)	First derivative of X3(i) with respect to r
DG (II, JJ)	Binary diffusivity for the gas pair II, JJ
DIF (II, JJ)	Argument used in the multicomponent diffusivity calculation
DIFOPT	Diffusion model option indicator
DINDEX (I)	Index used to determine whether deposition should occur
DIST	Printout variable for radius
DIVNIE (I)	Divergence of NIE (I) with respect to r
DIVN2E (1)	Divergence of N2E (I) with respect to r
DIVN3E (I)	Divergence of N3E (I) with respect to r
DIVROV (I)	Divergence of the product $RHO(I)*V(L)$
DK (II)	Knudsen diffusivity for species II
DM (11,1)	Multicomponent effective diffusivity
DMOD1	Diffusion stability modulus for species 1
DMOD2	Diffusion stability modulus for species 2
DMOD3	Diffusion stability modulus for species 3
DPRDOT	Change in time of the partial increment DELPR
DRDS	Ratio of either DELR/DELS or DELX/DELS

DRLIM	Smallest value of the partial increment at the surface accepted equal to 0.01 DELR
DRPDOT	Change in time of the partial increment DELRP
DSDR	Ratio of either DELS/DELX or DELS/DELR
DTAU10	Variable used in surface and core temperature profile calculation
DTAU20	Variable used in surface and core temperature profile calculation
DTAU21	Variable used in surface and core temperature profile calculation
DTL1	Argument used in shell energy equation calculation
DTL2	Argument used in shell energy equation calculation
DUMM	Dummy variable equal to 1.0/3.0
DX	Sum of mole fractions for normalization
OIM (I)	Multicomponent diffusivity for species 1
D2M (I)	Multicomponent diffusivity for species 2
D3M (I)	Multicomponent diffusivity for species 3
E (II)	Lennard-Jones constant for gas species II
EOVERK(II, JJ)	Lennard-Jones constant for the gas species pair II, JJ
EPS (I)	Emissivity of porous particles
EQUIX (II)	Initial equilibrium concentration of gas species ${\bf II}$ at the core interface
ERC	Argument used in energy equation calculation for porous medium
ESP	Input value of EPS (I)
ETA (I)	Void fraction or porosity of the porous media
ETADOT (I)	First derivative of ETA (I) with respect to time
ETADTL (I)	Old value of ETADOT (I)
ETALAS (I)	Old value of ETA (I)

ETA0	Initial value of ETA (I)
F (I)	Function used to calculate P (I) equal to ETA(I)* $MW(I)*RAD(I)*WBAR1/T(I)$
FACTK (I)	Argument used to calculate KE (I)
FLUX	Output variable for the heat flux at the shell interface
FLUXJ1 (I)	Mass flux of gas species l
FLUXJ2 (I)	Mass flux of gas species 2
FLUXJ3 (I)	Mass flux of gas species 3
GEN7 (I)	Rate of production of species 1, H_2
GEN2 (I)	Rate of production of species 2, HCI
GEN3 (I)	Rate of production of species 3, $HSiCl_3$
GEN4 (I)	Rate of production of species 4, Si()
H (I)	Mixture enthalpy
HC (I)	Enthalpy of core material
нсо	Initial value of HC (I)
HEADG2	Input variable for heading
HEADG3	Input variable for heading
HEADG4	Input variable for heading
HEADG5	Input variable for heading
HEADG6	Input variable for heading
HEADG7	Input variable for heading
HG (IIO	Enthalpy of gas species II
HGVAPO (I)	Heat of vaporization of gas species I at 298° K
HS (I)	Enthalpy of shell
HS0	Initial value of HS (I)
KAPPA (I)	Permeability of porous medium

K (I)	Thermal conductivity
KC (I)	Thermal conductivity of core material
KE (I)	Effective thermal conductivity of porous medium
KEQ (I)	Equilibrium constant
KEQ1	Constants used to calculate KEQ (I)
KEQ2	Constants used to calculate KEQ (I)
KG (II)	Thermal conductivity of gas species II
KLAS (I)	Old value of K (I)
KLCW	Thermal conductivity of the core at station LCW
KM (I)	Mixture thermal conductivity
KP (I)	Thermal conductivity of the porous material
KR (I)	Effective thermal conductivity of the porous material due to radiation
KRO (I)	Thermal conductivity due to radiation of the porous material used to calculate $KR(I)$
KS (I)	Thermal conductivity of the shell
KSLPW	Thermal conductivity of the shell at station LPW
LAPLT (I)	Second derivative of T (I) with respect to r
LOGKEQ	Natural logarithm of KEQ (I)
M (II)	Molecular weight of gas species II
MBAR (II)	Function of M (II) used to calculate D (II, JJ)
ME1	Atomic weight of element 1
ME2	Atomic weight of element 2
ME3	Atomic weight of element 3
MOFLX (II, I)	Molar flux of gas species I
MP	Molecular weight of porous material
MU (1)	Mixture viscosity of gas species II

MW (I)	Mixture molecular weight
MWO	Initial value of MW (I)
M1	Molecular weight of gas species 1
M2	Molecular weight of gas species 2
м3	Molecular weight of gas species 3
NIE (I)	Mass flux of gas species 1
N2E (I)	Mass flux of gas species 2
N3E (I)	Mass flux of gas species 3
N1ELAS (I)	Old value of NIE (I)
N2ELAS (I)	Old value of N2E (I)
N3ELAS (I)	Old value of N3E (I)
OUTD	Print out value of RAD (I)
OUTTIME	Print out value of TIME
OUTP	Print out value of P (I)
OUTVR	Print out value of V (I)
P (I)	Pressure
PDOT (I)	First derivative of P(T) with respect to t
PARTD	Porous material particle diameter
PHI (I)	Function of molecular weight and viscosity used in mixture property calculation
PI	Constant equal to 3.14159
PLAS (I)	Old value of P (I)
PORER	Porous material pore radius
PO	Initial value of P (I)
R	Universal gas constant
RAD (I)	Radius -

RADC Radius of the core

RADIUS Radius of the shell

RADP Radius of the porous material

RHO (I) Mixture density

RHOC (I) Density of the core

RHOC1 (I) Constant used to calculate RHOC (I)

RHOC2 Constant used to calculate RHOC (I)

RHOC3 Constant used to calculate RHOC (I)

RHODOT (I) Change in time of the mixture density

RHOLAS (I) Old value of RHO (I)

RHOP (I) Density of the porous material

RHOPO Initial value of RHOP (I)

RHOS (I) Density of the shell

RHOS1 Constant used to calculate RHOS (I)

RHOS2 Constant used to calculate RHOS (I)

RHOS3 Constant used to calculate RHOS (I)

RHOVW (I) Product of RHO (I) and V (I) at the shell interface

RINC Argument used in pressure calculation

equal to either 2*DELR or DELR + DELRP

RZ (I) Dimensionless space and time variable used

in the Arnold Solution

SIG (II) Lennard-Jones constant for gas species II

SIGSQ (II,JJ) Mixture Lennard-Jones constant for the gas

species pair II, JJ

SMDF Argument used to calculate TOT MOF (I)

SUM Argument used to calculate TDOT (I)

SUMDIF (I) Argument used to calculate DM (II,JJ)

SUMGEL (I)	Old value of SUMGEN (I)
SUMGEN (I)	Sum used to determine if all coating has been removed
SUML3 (I)	Old value of SUM3 (I)
SUMXPH	Argument used to calculate mixture physical properties
SUM1 (I)	Argument used to calculate TDOT (I)
SUM2 (I)	Argument used to calculate TDOT (I)
SUM3 (I)	Argument used to calculate TDOT (I)
SUM4C	Argument used to calculate TDOT(I) in the core interface
SUM4S	Argument used to calculate $TDOT(I)$ in the shell interface
SO .	Specific surface of porous material
7 (1)	Temperature
TAU	Time limit of computer run
TAUO	Value of time used in surface and centerline profile interpolation routine
TAUI	Value of time used in surface and centerline profile interpolation routine
TAU2	Value of time used in surface and centerline profile interpolation routine
TBASE	Base temperature for thermodynamic calculations equal to 70.0°F
TB (J)	Centerline temperature
ТВО	Value of TB (I) used in centerline temperature interpolation routine
ТВ1	Value of TB (I) used in centerline temperature interpolation routine
TB2	Value of TB (I) used in centerline temperature interpolation routine
TCC1	Constant used to calculate KC (I)

TCC2	Constant used to calculate KC (I)
TCC3	Constant used to calculate KC (I)
TCP1	Constant used to calculate KP (I)
TCP2	Constant used to calculate KP (I)
TCP3	Constant used to calculate KP (I)
TCS1	Constant used to calculate KS (I)
TCS2	Constant used to calculate KS (I)
TCS3	Constant used to calculate KS (I)
TDOT (I)	Change in time of T (I)
TEST1 (I)	Ratio of DELX1 to value predicted by Stefan-Maxwell equation
TEST2 (I)	Ratio of DELX2 to value predicted by Stefan-Maxwell equation
TEST3 (I)	Ratio of DELX3 to value predicted by Stefan-Maxwell equation
TIME	Cumulative value of time since calculation began
TIME 2	Value of time used in surface and centerline temperature equation
TINIT	Initial value for the temperature profile
TLAS (I)	Old value of T (I)
TMOD (I)	Temperature stability modulus
TOPT	Input data printout option
TOTMOF (I)	Total mole flux
TR	Reduced temperature used to calculate DG(II,JJ)
TSURF	Surface temperature
TS0	Value of TSURF used in surface temperature interpolation routine
TS1	Value of TSURF used in surface temperature interpolation routine

TS2	Value of TSURF used in surface temperature interpolation routine
V (I)	Velocity
VLAS (I)	Old value of V (I)
VRGRDT	Product of V(I)*
W	Sum of mass fractions
W1 (I)	Mass fraction of species 1
W2 (I)	Mass fraction of species 2
W3 (I)	Mass fraction of species 3
WIINIT	Initial value of Wl (I)
W2INIT	Initial value of W2 (I)
W3INIT	Initial value of W3 (I)
WILAS (I)	Old value of Wl (I)
W2LAS (I)	Old value of W2 (I)
W3LAS (I)	Old value of W3 (I)
(I) TODIW	First derivative of W1 with respect to t
W2DOT (I)	First derivative of W2 with respect to t
W3DOT (I)	First derivative of W3 with respect to t
WBAR1	Elemental mass fraction of gas species l
W3DT	Old value of W3DOT(I)
X(II,I)	Mole fraction of gas species II
XCPG	Argument used to calculate GP
XHG	Argument used to calculate H
XINIT (II,I)	<pre>Initial value of X(II,I)</pre>
ХК	Argument used to calculate KM (I)
XLAMB	Argument used to calculate initial values for Arnold Solution

XLAS (II,I) Old value of X(II,I)

XMU Argument used to calculate MU (I)

XPHI Argument used to calculate PHI (I)

Integers:

I Integer used to indicate position

ICT1 Integer used to determine if reaction has occurred

II Integer used to indicate species

IMINUS I-1

IPLUS I+1

IPR Integer used to indicate station next to shell

interface inside the porous medium

IRP Integer used to indicate station next to core

interface inside the porous medium

I) I+1

I2 I+2

J Integer used to indicate time

JJ Integer used to indicate species

JJEND Integer used to indicate end of run

JJJ Integer used to indicate time

JPLUS J+1

JPRINT Integer used in print routine

KK Integer used to indicate species

KKK Integer used to indicate species

LC Integer used to indicate station next to core inside

the core

LCPLUS LC + 1

LCW Integer used to indicate the core interface

LCUM7 LCW - 1

LCWM2 LCW - 2

LCWP1 LCW + 1

LCWP2 LCW + 2

LMINUS LS ~ 1

LP Integer used to indicate the station next to the

shell interface inside the porous medium

LPW Integer used to indicate the shell interface

LPWM1 LPW - 1

LPWM2 LPW ~ 2

LPWP1 LPW + 1

LPWP2 LPW + 2

LS Integer used to indicate the surface

N Integer used to indicate time

NPRINT Integer used to indicate time in the print routine

NR LPW + 1

NRE LS ~ 1

NT Integer used to indicate the number of input

temperature profile data points.

PROGRAM MAIN

```
PROGRAM MAIN(DATA.DUTRUT.TAPE5=DATA.TAFE6=CUTRUT)
      COMMON I . KKK, J. LOW. LP. DIFOPT
      COMMON TOTMOF (50) . RHOP (50)
      COMMON MONE (13.17) . PLAS (50) . SIGSO (10.15) . M (20) . M (50)
      COMMON 840(50),405LY(10,50).EOVERK(10,10).TLAS(50)
      COMMON XLES(10.50).0M(10.50).01M(36).02M(36).03M(53).57ALAS(58)
      COMMON OK(10.50).DG(10.10).CGLING(10.10).DIF(10.10).SUMDIF(10.50)
      COMMON ME. GORES, CIG1, CID2, CILT (50), PAD (50)
      DIMENSION WILAS(50).WZLAS(50).W3LAS(50).W1(50).WZ(50).WZ(50)
      DIMENSION COLINV(10), MUG(10), MU(50)
      DIMENSION CPG(10), CPG1(12), CPG2(10), CPG3(10), CP(50)
      DIMENSION CPC(50), CPP(50), CPS(50), HS(10), H(50)
      DIMENSTON KG(18), K(50), KP(50), KS(50), KC(50), ALPHAC(50), ALPHAS(50)
      DIMENSION T (53) , VLAS (53) , V (50)
      DIMENSION LAFLT(50).TDOT(50).DELKC(50).DELK(50)
      DIMENSION DELP(53).P(50).ST4(53).KM(50).RHOO(50)
      DIMENSION_W100T(50), W200T(50), W300T(50). RHC00T(50)
      DIMENSION VESPEC (50) . HGVAPO (10) . HC (50) . HS (50)
      DIMENSION LOGKER (53) KEN (36) PLVSOV (53)
      DIMENSION PHI(19.17), XPHI(13)
      DIMENSION DELW1(50).DELW2(50).DELW7(50)
      DIMENSION CP34(10).CPG5(13).FF5(50).KP(50)
      DIMENSION KOD (30) . FACTK (30) . KE (30) . DELKS (30)
      DIMENSION CELX1(50). JELX2(53). TELX3(50)
      DIMENSION DELNIE (53) . OFLN28 (53) . OFLN38 (53)
      DIMENSION FLUX.11 (55), FLUX.12 (50), FLUX.13 (59)
      DIMENSION DELACV(50). TTADOT(50). SUMSEN(50). SUMGEL(51). TOT1(50)
      DIMENSION SUM1(50).GLN2(50).GEN3(50).GEN4(50)
DIMENSION SUM1(50),SUM2(50),SIG(10).E(10),KAP24(50)
      DIMENSION SUM3 (50) , KL 45 (50) . TEST1 (50) . TEST2 (50) . TEST? (F()
      DIMENSION SUML 7 (50) . X (10,50) . PELSUM (50)
      DIMENSION STADIL(50).ORNES(50).F(50).RHOLAS(50).RHOS(50)
DIMENSION DIVNIE(50).DIVNIE(50).ORNES(50)
      DIMENSION CMCC1 (50), DMCO2 (50), CMCC3 (50), TMC7 (50)
      DIMENSION EQUIX(10) . RZ(10,53) . XINIT(10) . CAPX(10.50)
      REAL LAPLT.M.KLAS.KED.KM.MUG.MU
      REAL K.KS.KC.KF.KPD.KE.KEG1.KEG2.LOGKED.M1.M2.M3
      REAL NIE, NZE, NZE, NIELAS, NZELAS, NZELAS, MOFLX
      REAL MEAP, MM. KE, KG, KAPPA, KLCW, KSLPW
      REAL MC. ME1. ME2. ME3. MWD
      DATA R/1.937/, V(1)/0.5/, VRGPDT(1)/0.0/, PI/3.14154/, T94SE/70.6/
C
      INFUT FORMATS
    2 FOFMAT (12AE)
      FORMAT (2F: 0.1)
C
      OUTPUT FCFMATS
C
   51 FORMAT (1H1)
   52 FORMAT (12AF)
   53 FORMAT (/, 17x, 10HIN=UT DATA, //,
     1 9x, 22HINITIAL TEMPERATURE = ,F6.1,6H DEG F./.
```

```
2 9X.224TOTAL PARTUS
                                      = .F6.3.34 IN./.
   3 9X-22HCOPS PARTHS
                                       = .F6.3.34 IN./.
  4 9X.224P. MIDIA SADIUS
                                      = .F6.3.34 IN./.
   5 9x,22400RE PACTUS
6 9x,2240APTICLE DIAM.
                                        +F6.1.44 ANG./.
                                      = .F6.3.4H MIC./.
  7 9X.22HEMISSIVITY
8 9X.22HD_LTA-R SPACING
                                        •F6:2•/•
                                      = +F6.3.3H IN./.
   TIMIL THITHSS, KP P
                                      = .55.1.44 S5C./.
  1 9X+22HTIMS INCREMENT
                                      = ,F6.3.4H SFC./. .
   2 9x, 22HINTERFOLATION POINTS= ,13./,
   3 9).22MPPINT.FACTOR
                                      = .15./,
  4 7X, ZZHINITIAL POPOSITY
                                      = ,F6.3./,
  5 9Y.22HSPECIES
                                      = .131
5. FOFMAT(/.9x.35HHFAT CAPACITY FOUNTION COFFETCIENTS./.
1 11x.7HCFC1 = .1FE10.3, 2x.74CPC2 = .E10.3, 2x.74CPC3 = .E10.3./.
  2 11x.7HCFP1 = .E10.3.2X.7HCFC2 = .E13.3.2X.7HCFC7 = .F16.3./.
3 11x.7HCFS1 = .F16.3.2X.7HCFS2 = .E10.3.2X.7HCFS3 = .F16.3./.
  4 15x,34CF1,8x,34CP2,8x,34CP7,8x,74CP4,8x,74CP5./.
                  .E10.3.1x.E10.3.1x.E10.7.1x.E16.3.1x.F10.3./.
  5 6X+58H2
  6 6x,8HHCL .E10.3,1x,210.3,1x,210.3,1x,210.3,1x,710.3,1x,710.7,.
7 6x,6HSHCL3,210.3,1x,210.3,1x,210.3,1x,710.3)
55 FORMATIV, 9X. 42HTHERMAL CONDUCTIVITY ECUATION COEFFICIENTS. /.
   1 11x.7HTCC1 = .19510.3.2x.7HTCC2 = .T10.3.2X.7HTCC3 = .510.3./.
    11x,7HTCP1 = ,F10.3.2x,7HTCP2 = ,E10.3,2x,7HTCP3 = ,F10.3,/,
11x,7HTCS1 = ,E10.3,2x,7HTCS2 = ,E10.3,2x,7HTCS3 = ,E10.3)
56 FORMATIV. OX. 27HKINETIC THEOPY COLFETCIENTS. /-
  1 15X,345ZK,15X,5HSIG4A,Z,
   2 EX-EFH2 -- F10.4-54 DEG K-1X-F6.2-44 ANG-/-
                   .F18.4.64 DEG K.1X.F5.2.4H ANG./.
   3 SX. SHHCL
  4 6x, 6HSIHCL 7, E10, 4, 6H, DEG K, 1X, E6, 2, 4H, ANG)
59 FORMATIV-11H END OF RUN-/-141)
<u>62 FORMAT (1H1.28HTIME</u>
                                                       = .FA.3.64 SEC./.
  1 20H PPESSURE
                                           # .1PE13.3.44 ATM. /-
  2 29H HEAT FLUX
                                           = ,E10.3.11H ATU/FT2/98./.
  3 29H DEPOSITION PATE
                                           = .E13.3.13H LR/HP/FT2./,
  4 294 COATING CEPCSITED = .E10.7.5H MILS./.
5 294 CEPCSITION THIS ITERATION = .F10.3.114 MILS*1.056./.
  6 20H CORE DELETION = .E10.3.54 MILS./.
7 29H CEPLETION THIS ITERATION = .E10.3.11H MILS*1.555)
<u>63 FORMATIZ, 9X, 174MOLICULAR WEIGHTS.Z.</u>
                 .FE.1.9H LB/FOLE./.
  1 6X+6H42
  2 6x,5H4CL .F6:1,4H L9/MOLE./.
3 6x,6HSI4CL3,F6:1,84 L9/MGLT./.
64 FORMAT (/.9x.21 PFLEMENT ATOMIC NEIGHT,/,
  1 68 . 5HH
                   .FE.1.4H LB/MCLF./.
                   .F6.1.94 LB/PGLE./.
  2 5X+EHCL
3 FX, 6HSI .FE.1. 9H LB/MOLT)
65 FOFMAT(/, 0Y.34MINITIAL SPECIES HASS CONCENTRATION./.
                 FE.1.9H LB/MOLT)
                   · F7 · 5 · / ·
    EX.EHH2
                  , 87.5,/,
  2 EXTEMPCL
  3 6X+6HSIHCL3+F7+5)
66 FORMAT (7.9X, 34HINITIAL SPECIES MOLE CONCENTRATION./.
                 .F7.5./s
   1 6X, 6H4Z
  2 6X,6HHCL ,F7.5./,
3 6X,6HSIMCL3 ,F7.5)
73 FORMAT (/.9x.21HGENSITY COEFFICIENTS../"
```

```
1 9X,2049ASE ENTHALPY SOLIO....
   2 9Y.16HINITIAL POROSITY./.
3 6X.8H-HOC1 = .1PEID.3.9H L7/CHFT./.
   4 6x.2HTHOC2 = .F19.3.9H LH/CUFT./.
5 6x.3H2HOC7 = .E10.3.9H LH/CUFT./.
    6 6x.9HP40S1 = .E10.3.9H LB/CUFT./.
7 6x.9HP40S2 = .E10.3.3H LB/CUFT./.
   8 6x, 9HFH053 = .510.3, 9H LOYCUFT./,
9 6x, 8HPH0F0 = .510.3, 8H LB/CUFT./,
   1 6X, 24400 = +09F10.4,74 0TU/L9./,
2 6X,54450 = +F10.4,74 0TU/L9./.
   3 6X - 8HTBASE = -19-10-3-5H DEG EY
 71 FORMAT(//.SX.7HSTATION.5X.54CAFX1.9X.3HRZ1.11X.54CAFX2.9X.
     THPZZ.11X.5HC4PY3.9X.3H2Z3./)
 72, FORMAT(3X+13+6X+19713.3,4X,E10.3.4X,E16.3.
     4x, £10, 3, 4x, £10, 3, 4x, £10, 3)
 AU FORMAT (7.3X.7HSTATION, 3X.5HPADIUS.5X.11HTEMBERATURE. 7X.1HK.
   1 10X 3HPHO, 10X 2HCP, L0X, 1HV, 11X, 3HETA, 9X, 4HDELP, /-
   2 14X,4H(IM),9X,7H(CEG F),3X,11H(3TU/FT/43),
   <u>3 2x,9H(L9/CUFT),4x,19H(PTU/LB/F).2x,9H(FT/SEG),15x,9H(ATH/FT))</u>
 A1 FORMAT (3x,13,6x,F7,4,5x,F11,5,3x,1PE18,2,0FF10,4,5x,F7,4,4x,
     <u> 1559.2,4X.59.7,4X.6967.4)</u>
 R2 FCPMAT (3x, 13, 6x, F7, 4, 5x, F11, 5, 3x, 1 = 10, 3, 0 FF10, 4, 2x, F10, 4)
 85 FORMAT (3X, 13,6X, 19516, 3,4X, 510, 3,4X,
   1 E10.3.4X.E10.3.4X.E10.3)
 57 FORMAT(/,9X,9HEELC? = .F10.5./.
1 9X,9HDELPR = .F10.5./.
   2 99. THOSUPR = .F10.5./.
   3 9x. EHCELPS = .F10.5./)
 1 GHMCFLX1.3X.GHMOFLX2.9X.GHMOFLX3.8X.GHTQTMOF.8X.GHGFN4./.
      3 1x,134(MOLE/FTZ/HP),1x.13H(MOLE/FTZ/H4).1X.
   <u>4 13H(HOLEZET2/4R),1X,13H(MOLEZETZ/MR),1X,11H(LR/4R/ETT))</u>
 89 FOFMAT (//-3X.74STATION: 8X.24X1.11X.24X2.11X.24X3.8X.
   <u>1 5HTEST1.6X.5HTEST2.6X.5HTEST3.7X.3HKE0.6X.3HQINDEX./)</u>
 92 FORMAT(/,3x,30MWARNING TEMPERATURE MOCULUS = .1PE10.3.
      13H AT ITERATION, GPIS, 12H AND STATION, ISI
 93 FOFMAT ( /. 9X, 354PA RITAL GRID SPACES AND KODE FOINTS. /.
   1 6X+5HLC = +13+2X+5HLP = +13+2X+5HLS = +13+2X+
2 6HLCH = +13+2X+5HLPW = +13+/}
 <u>94 FOEMAT(Z.9X.24HKINETIC THFOPY COASTANTS.Z.</u>
                                          ·F7.4./,
   1 6X+6HCIC1 +F7-4+/+6X+6HCIC2
                  +F7-4-/,5X,5HGIV2
                                          $ 77.65
   2 FX.6HCIV:
 95 FORMATIV. 9X. 71HEQUILIBRIUM CONSTANT PARAMETERS. /.
 1 5X.6HMED1 .F15.5,7.6X.6HMED2 .F13.5,6H FEG K)
96 FORMAT(7.3X.29-WAPNING DIFFUSION MODULUS # .IPE10.3.
   1 17H AT ITERATION . 1PIS . 12H AND STATIOM . 15)
 97 FORMAT (3X.13,6X.F12.18.1X.F12.10.1X.F12.10.1X.17515.3
1. 1X.ELC.3.1X.ELG.3.1X.E1G.3.1X.E1G.3.1X.F1G.3)

93 FORMAT(/.9x,44HALL BINARY DIFFUSIVITIES ARE EDUAL TO D(1.2))

101 FORMAT(/.9x,44HALL BINARY DIFFUSIVITIES ARE EDUAL TO D(1.2)./.
   1 9X.29HTHERE IS NO KNUDSEN DIFFUSION)
     EJECT FAGE AT START OF PROGRAM
```

```
C********* ELEMENT 1 **************
  100 WRITE (6.51)
      PEAD NUMBER OF INFUT POINTS, PRINT FACTOR, NUMBER OF SPECIES
      PRINT OPTION AND DIFFUSIVITY OFFICE
  110 READ(5.*INT.NPRINT.KKK.TOOT.DIFORT
      CHECK FOR END OF RUN
  120 IF(NT.LE.D)GO TO 2000
      PEAC AND WRITE OTHER INPUT DATA
      <u>READ(5.2)HEACKG. MEADG2.HEACG3.HEACG4.HFADG5.HEADG6.HEACG7</u>
      WRITE(6,52) HEARNG, HEADGZ, HEADGS, MEADG4, HEADG5, HEADG6, HEADG7
      IF(CIFO9T-1)125,126.127
  125 WRITE (5, 98)
      GO TC 123
  126 WRITE (6.161)
      <u>50 TO 129</u>
  127 WRITE (6,99)
 12º CONTINUE
      READ (5,*) PORFR, PARTD. ESP
      <u> PEAD (5.*) EADIUS, DELR, TINIT, TAU, DELTAU, RADC, PADR</u>
      DO 130 KK=1+KKK
      PEAG(5,*)CPG1(KK),CPG2(KK),CPG3(KK),CFG4(KK),CPG5(KK)
      REAG(5.+)HGVAFO(KK), E(KK).SIG(KK)
  <u> 130 CONTINUE</u>
      REAG(5,+)TCC1,TCC2.TCC3.C°C1.CFC2.C°C3
      ##AN(5,*) TCC1, TCP2, TCP3, CPF1, CFP2, CPP3
      READ(5.*)TCS1,TCS2,TCS3,CPS1,CFS2,CP33
      <u>read(5.*)E</u>TAC.W1<u>IN</u>IT,W2INIT.W3<u>IN</u>IT_
      WRITE(6,53) TINIT, RADIUS, PADC, RADP, PORER, PARTO, ESP.
     <u>i_celr,tau,deltau,uf,npqint,eta0,kkk_</u>
      WPITE(5.65)W1INIT.W2INIT.H3INIT
      <u>PEAO(5.*) M1.M2.M3.ME1.ME2.ME3.MP</u>
      READ(5,*)240C1.940C2.940C3, 2HOS1.2HOS2.940S7.9HO90.HG0.HS0
      READ(5.*)KEQ1,KEQ2
      READ(5.*)CID1.CID2.CIV1.CIV2
      FOR COMPLETE INPUT PRIMIOUT. TOPT MUST EQUAL
      IF(TC=T-0)146,140.141
  141 CONTINUE
      WRITE(5,94)CID1,CID2.CIV1,CIV2
      WRITE(6.95)KEQ1.KEQ2.
      WRITE(6.70) RHCC1. RHCC2. RHCC3. RHCS1. RHCS2. RHGS3. RHCG. HCG. HCG. TBASE
      <u> write (6,63) 41,02,43,4P</u>
      WEITE(6.64)ME1.ME2.ME3
      WRITE 16.551 TCC1. TCC2. TCC3, TC-1. TCF2, TCF3, TCS1, TCS2. TCS3
      WRITE(6,56) E(1), SIG(1), E(2) . SIG(2) . E(3), SIG(3)
      WRITE (6,54) CFC1.CPC2.CPC3.CPC1.CPP2.CPF7.CPS1.CPS2.CPS3.
     1 CFG1(1), CPG2(1), CPG3(1), CPG4(1), CPG5(1),
     3 CFG1(3).CFG2(3).CPG3(3).CFG4(7).CFG5(3)
  <u>140 CONTINUE</u>
```

C .	READ TIME AND SUPFACE TEMPERATURES FOR FIRST INTERVAL
TAYAMOU SECTED	READ(5,11) TAUD, TSD
	PEAD (5,11) TAU1,TS1
	READ (5,11) T4U2,TS2
c	
C	CONVERT TIME UNITS FROM SECONDS TO HOURS
<u> </u>	
	TAL=TAM/3600.0
	OELTAU=DELTAUZ3600.D
	TAU0=TAU0/3600.0
	TAU1=TAU1/3600.0 TAU2=TAU2/3600.0
^	AUZ=TAUZZZBUL-U
<u>c</u>	CONVERT DISTANCE UNITS FROM INCHES TO FEET
C	CONVERT STATES SALIS FROM INCHES TO FEET
<u> </u>	RADIUS=RADIUS/12.0
	RADC=RADC/12.0
	RADP=RADP/12.0
	OELR=CEL9/12.0 ·
С	
Č.	CONVERT TEMPERATURE UNITS FROM FAHRENHEIT TO RANKINE
C	
10 - 0	TBASE=TBASE+459.6
	TINIT=TINIT+459.6
	TSG=TSG+453.6
	TS0=TS0+450.6 TS1=TS1+450.6
c	TS1=TS1+459.6 TS2=TS2+459.6
c c	TS1=TS1+459.6
C C	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS
C C	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS ORLIM=0.61*DFLP
C C	TS1=TS1+459.6 TS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS ORLIM=0.01+0FLP LS=IFIX(PAGIUS/OELP)
c c	TS1=TS1+459.6 TS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS ORLIM=0.01*OFLP LS=IFIX(PACIUS/DELP) OFLS=RACIUS-FLOAT(LS)*DFLR
C C	TS1=TS1+459.6 TS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACTUS/DELP) 05159=RACTUS-FLOAT(LS)*DFLR 0 IF(OELSR-DPLIM)210.210.220
C C	TS1=TS1+459.6 TS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS ORLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLS==RACIUS-FLOAT(LS)*DFLR J IF(DELSR-DPLIM)210.210.220 D OFLS==CELSR+DELR
C C	TS1=TS1+459.6 IS2=IS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACTUS/DELP) OFLS=PACTUS-FLOAT(LS)*DFLR I F(DELSR-DPLIM)210,210,220 DELSP=CELSR+DELR LS=LS+1
2 C 2 C	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) 05LS==RACIUS-FLDAT(LS)*DFLR 0 IF(06LSR-DPLIM)210.210.220 0 D5LS==C5LSR+D6LR LS=LS+1 SO TO 230
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) 05_S5=RACIUS-FLDAT(LS)*DFLR 0 IF(06LSR-DPLIM)210.210.220 0 DFLS=CFLSR+0ELR LS=LS+1 SO TO 230 0 LS=LS+2
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLS==RACIUS-FLOAT(LS)*DFLR O IF(CCLSR-DPLIM)210.210.220 D OFLS==CGLSP+DELR LS=LS+1 GO TO 230 LS=LS+2 LS=LS+2
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS ORLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLS=PACIUS-FLOAT(LS)*DFLR O IF(OCLSR-DPLIM)210.210.220 O DFLS=CELSR+DELR LS=LS+1 SO TO 230 0 LS=LS+2 LS=LS+2 LMI*US=LS-1
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLS=PACIUS-FLOAT(LS)*DFLR O IF(OCLSR-DPLIM)210.210.220 O DELS=CELSR+DELR LS=LS+1
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS ORLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLSP=RADIUS-FLOAT(LS)*DFLR O IF(CELSR-DPLIM)210.210.220 OSLSP=CELSR+DELR LS=LS+1 SO TO 230 CLS=LS+2 LS=LS+2 LS=LS+2 LMI*US=LS-1 LC=IFIX(PACC/DELR) DELGF=RACC-FLOAT(LC)*DFLR
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLS=PACIUS-FLOAT(LS)*DFLR O IF (OCLSR-DPLIM) 210.210.220 OSLS=CELSR+DELR LS=LS+1
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLS=PACIUS-FLOAT(LS)*DFLR OFLS=CELSR+DELR LS=LS+1
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLS=PACIUS-FLOAT(LS)*DFLR O IF (OCLSR-DPLIM) 210.210.220 OSLS=CELSR+DELR LS=LS+1
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) OFLS=RADIUS-FLOAT(LS)*DFLR O IF(DELSR-DPLIM)210.210.220 DOLSP=CELSR+DELR LS=LS+1 SO TO 230 OLS=LS+2 LMINUS=LS-1 LC=IFIX(PACC/DELR) DELOR=RADC-FLOAT(LC)*DFLR DELOR=RADC-FLOAT(LC)*DFLR DELOR=RADC-FLOAT(LC)*DFLR DELOR=COFLCP LC=LC+1 APGLE=(DFLCR+RADP-RADC) LF=IFIX(APGLP/CELR)+LC
20 21	TS1=TS1+459.6 IS2=JS2+459.6 GOMFUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACTUS/DELP) OFLS=PACTUS-FLOAT(LS)*DFLR OFLS=PCELSR+DPLIM)210.210.220 DFLS=CELSR+DELR LS=LS+1 GO TO 230 LS=LS+2 LS=LS+2 LMI*US=LS-1 LC=JFIX/PAPO/DELR DELC=PACC-FLOAT(LC)*DFLR DELC=BACC-FLOAT(LC)*DFLR DELC=BACC-FLOAT(LC)*DFLR
20 21	TS1=TS1+459.6 IS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PADIUS/DELP) OFLS=RAGIUS-FLDAT(LS)*DFLR I IF(GELSR-DPLIM)210,210,220 DOLS=CELSP+DELR LS=LS+1 SO TO 230 0 LS=LS+2 LMINUS=LS-1 LC=IFIX/RADO/DELR) DELG=RAGC-FLOAT(LC)*DFLR DSLO=DFLCP LC=LC+1 APGLE=(OFLCR+RADP-RADC) LF=IFIX(APGLP/CELR)+LC DFLER=RADP-FLCAT(LP)*DFLR
20 21	TS1=TS1+459.6 TS2=TS2+459.6 COMPUTE LIMIT CE RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS DPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) DFLS=RADIUS-FLDAT(LS)*DFLR DFLOELSR-DPLIM)210.210.220 DSLS=CSLSP+DELR LS=LS+1 SO TO 230 D LS=LS+2 LMI*US=LS-1 LC=JFIX(PAPC/DELR) DELCE-RADC-FLOAT(LC)*DFLR DELCE-RADC-FLOAT(LC)*DFLR DELCE-RADC-FLOAT(LC)*DFLR DFLC=C+1 APGLE=(DFLCR+RADP-RADC) LF=IFIX(APGLP/C5LR)+LC DFLE=RADD-FLCAT(LP)*DFLR+DFLR DELC=RB=RADD-FLCAT(LP)*DFLR+DFLR
20 21	TS1=TS1+459.6 TS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=IFIX(PACIUS/DELP) DFLS=ERACIUS-FLOAT(LS)*DFLR OFLS=ERACIUS-FLOAT(LS)*DFLR OFLS=ERACIUS-FLOAT(LS)*DFLR DFLS=CELS+DELR LS=LS+1 GO TO 230 US=LS+2 LMI*US=LS-1 LC=IFIX(PACCADELR) DELG=RACC-FLOAT(LC)*DFLR DELG=RACC-FLOAT(LC)*DFLR DELG=RACC-FLOAT(LC)*DFLR DFLG=CELC+1 AGGLE=(OFLC+RADD-RADG) LF=IFIX(APGLP/CELR)+LC DFLE=RADD-FLCAT(LP)*DFLR+DFLR DFLE=CELC+DFLCR
20 21	TS1=TS1+459.6 TS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.61*DFLP LS=TFIX(PACTUS/DELP) DFLS=EACLUS-FLOAT(LS)*DFLR DFLGESR-DPLIM/210.210.220 DGLS=CGLSR+DELR LS=LS+1 GO TO 230 LS=LS+2 LMI*US=LS-1 LC=IFIX(PACC/DECR) DELGE=RADC-FLOAT(LC)*DFLR DSLGED=DFLCP LC=LC+1 APGLE=(DFLCR+RADD-RADC) LF=IFIX(APGLP/CELR)*LC DFLER=RADD-FLCAT(LP)*DGLR+DFLR DELGE=RADD-FLCAT(LP)*DGLR+DFLR DELGE=RADD-FLCAT(LP)*DGLR+DFLR
20 21	TS1=TS1+459.6 TS2=TS2+459.6 CONFUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS OPLIM=0.01*DFLP LS=TFIX(PADIUS/DELP) DFLS=RADIUS-FLOAT(LS)*DFLR OFLGS=-DPLIM)210.210.220 DFLS=CELSR+DELR LS=LS+1 GO TO 230 US=LS+2 LMINUS=LS-1 LC=IFIX(PADC/DELR) DELGE=RADC-FLOAT(LC)*DFLR DFLCS=DFLCS LC=LC+1 APGLE=(DFLCR+RADD-RADC) LF=IFIX(APGLP/CELR)+LC DFLS=RADD-FLCAT(LP)*DELR+DFLR DFLS=RADD-FLCAT(LP)*DELR+DFLR DFLS=RESER-DFLCR DFLS=RESER-DFLCR
20 21	TS1=TS1+459.6 TS2=TS2+459.6 COMPUTE LIMIT OF RADIUS AND TOTAL NUMBER OF DISTANCE STATIONS DPLIM=0.01*DFLP LS=TFIX(PACTUS/DELP) DFLSP=RACIUS/DELP) DFLSP=CCLSR-DPLIM)210.210.220 DFLSP=CCLSR+DELR LS=LS+1

	RAD(I)=0.0
	00 231 I=2.LG ,
	IMINUS=I+1
	940(I)=940(IMINUS)+DELP
2	1 CONTINUE
•	
	PAC (LCN) = PAGC
	NR=LCW+1
	00 2*2 I=NP.LP
	RAT(I)=2AD(LC)+FLQAT(I-LCH)+TELR
2 :	2
	9AG(LFM)=FADF
	NO. C C W + 1
	NRE=LS+1
	00 235 I=NP.NRE
	RAD(I)=RAD(LF)+FLOAT(I-LPH)*JELR
23	13 CONTINUS
	RAD(LS)=RADIUS
	70 300 I=1,45
	TLAS([]=TINIT
	RHODCT(I)=0.0
	IF (I-LC) 250, 250, 260
	3 KLAS(I)=TCC1+TCC2/TLAS(I)+TCC3+TLAS(I)
	GO TO 305
	0 1F(T-LF)270,270,290
. 27	B KLAS(I)=TCP1+TCP2/TLAS(I)+TCP3+TLAS(I)
	GO TC 300
26	3 KLAS(I)=ICS1+ICS2/ILAS(I)+TCS3*TLAS(I)
	0 CONTINIE
	KSLFN=KLAS(LFW)
	VOC- N-VE-DIG-BY
<u></u>	ALCON ATT NO. C. COLOTTONO
Ç	CALCULATE MOLE FRACTIONS
Ç	
	MWG=1.0/(W1INIT/M1+W2INIT/M2+W3INIT/M3)
	<u> </u>
	SMVORM*TIAISW=(S)TIAIX
	XINITESE PUBLICIT MODELS AND
	OX=XINIT(1)+XINIT(2)+XINIT(3)
	XIAIT(1)=XINIT(1)/OX
	XINIT(2)=XINIT(2)/6X
	XINIT(3) = XINIT(3) / OX
	WRITE (6.66) XINIT(1), XINIT(2), XINIT(3)
_	MKI15 (0 + 60) XIVI (() + XIVI (() + XIVI () ()
<u>_ç</u> _	
Ç	INITIALIZE VARTABLES
c	
	D@LPRL=05L930
	0fLffL=0fL220
	DELCRL=DSLC=D
	DPFCOT=0.0
	DPFSCT=0.0
	PD01=0.0
	DO 305 IFLCW.CFW
	ETALAS(I) = ETAU
	AT 2 (1) = 0 * L
	WILAS(I)=HIINIT
	w2Las(I)=w2INIT
	W3LAS(I)=W3INIT
	MW(I)=MW0

```
PLAS(I)=1.0
        XLAS(1.1) = XINIT(1)
        XLAS(2,I)=XINIT(2)
        XLAS(3,I)=XINIT(3)
        SUML3(I) =0.0
        D=0.7302
        RHOLAS(I)=FLAS(I) *MW(I)/(R*TLAS(I))
        N1ELAS(T)=0.0
        M2FL45(I)=0.0
        N3EL4S(I)=0.0
        TOTMOF(I)=0.8
        MOFLX(1,I) = 0.0
        MOFLx(2,1)=0.0
        MCFLX(3.1)=7.0
        GFN1(I)=0.0
        0.0=(I)=0.0_
        GEN3(I)=0.0
        GEN4(1)=0.0
        ETABTL(I)=3.0
        3.00-(I) =0.0
        SUMGEL (I) =0.0
        ICT1(I)=0
   305 CONTINUE
        CPP0=CFP1+CPPZ*TINIT-CPP3/TINIT**2.0
· c
        CALCULATE THE MULTICOMPONENT CONSTANTS
        M(1)=M1
        M(2)=M2
        11(3)=M3
        II = 0
    350 00 400 IT=1 . KKK
        J.J=0
        DO 360 JUE1 KKK
        2.5**((LL) 215+(11) 218) **.0) = (LL.11) 02212
        EOVERX(II.JJ) = (E(II) * E(JJ)) **0.5
        MBAR(II, JJ) = (H(II) + H(JJ)) / (H(II) * H(JJ))
   360 CONTINUE
   400 CONTINUE
 C
        SET REAL TIME COUNTERS AND INTERGERS
        JJENG=NT-2
        JFFINT=NPPINT
        APG=TAU/DELTAU
        N=INT (ARG)
        IF (NGRINT.EQ. D) GO TO 330
       JEN/NESINT
        L*141 F0,1=L
        IF(J-N)310,770,720
   310 N=J+KPRINT
       GO TC 330
   L=N DSE
   330 CONTINUE
        TIME=0.0
        TIME2=0.0
        JJJ=2
```

	••
C	
c	CALCULATE THE INITIAL SUPFACE TEMPERATURE
С	
	OTAU10=TAU1-TAU9
	07AU20=7412-74U0
	OTAUZ1=TCUZ-TAUL
	C2C=1.0/(OTAU13*0TAU20)
	C21=1.9/(0TAU1C*OTAU21)
	C22=1.0/(CTAU20*DTAU21)
	C16=C26*(TAU1+TAU2)
	C11=C31*(TAU0+TAU2)
	C12=C22*(TAUC+TAU1)
	COG=C20*TAU1*TAU2
	CB1=C21*TAUB*TAUZ
	C02=C22*TAC1*TAU0
	CSG=CGG*TSG+CG2*TS2-CG1*TS1
	CS1=C10*TSG+C12*TS2=C11*TS1
	CS2=C20#T50+C22#T52-C21#T51.
	15UPF=CS0
C	
С	CALCULATE THE PRESSURE CONSTANT
c	<u> </u>
	R=0.7302
	P0=1-0
•	WBARI=MEI/M2*W2INIT+2.0*M21/M1*W1INIT+ME1/M2*W7TWIT
	CONTHESTADE POR MAD / (9+TINIT) FREAR1 FPI+ (PADP++2.6-PACC++2.6)
С	
<u> </u>	BEGIN FORMARD MARCHING IN TIME
C	
	OHPM=1-073-7
450	80 1330 J=1.N
 .	JFLUS=J+1
	FIMES=TIMEZ+DELTAU
	IF(TAU2-TIME2)450,500,500
	IF(JJJ-JJEN3)488+478+500
470	4J4±JJJ+1
	TAUG=TAU1
	TAU1=TA92
	TS0=TS1
	TS1=TS2
_	OTAU10=DTAU21
	GO TO 492
490	1111=1111+5
	JALC=TAU2
	TS0=TS2
	?=4C(5,11)14U1,TS1
	TS1=TS1+459.6
	LAU1=[AU1/3500.0
	OTAULG=TAUG
<u> </u>	
C C	UPCATE INFUT SURFACE TEMPERATURE PROFILE
490	7EAG(5.11) TAU2.TS2
	TS2=TS2+459.F
	TAL2=TAU2/3500.0
	QT4U20=T4U2-T4U0
	DTAU21=TAU2-TAU1

```
C2C=1.0//CTAU10*0T4U20)
      C21=1.0/(PYAU16*0TAU21)
      C22=1.0/(CTAU20*0TAU21)
      C1G=C2G*(T4U1+TA112)
      C11=C21+(TA')C+TAH2)
      012=022*(TAUB+TAU1)
      C00=C20+TAU1+TAU2
      C02=C22*TAU1*TAU0
C02=C22*TAU1*TAU0
      CS0=C00*TS0+C02*TS2-C01*TS1
CS1=C1J*TS0+C12*TS2-C11*TS1
      CS2=C20*TSG+C22*TS2-C21*TS1
  500 TLAS(LS) =TSURF
      TSURF=CSO+TIME2*(CS2*TIME2-CS1)
       T(LS)=TSUPF
      T(1)=TLAS(2)
C+++++++++ EFEWENL S ++++++++++++++++
      SOLVE ENERGY COUATION FOR CORE MATERIAL
      00 600 I=2,LC
      IPLUS=I+1
      IMINUS=1-1
      COC(I) = CCC1+CFC2*TLAS(I)+CPC3/TLAS(I)**2.0
      940C(I)=F40C1+P40C2+TLAS(I)+PHCC3*TL45(I)+*2.0
      KC(1)=TCC1+TCC2/TLAS(1)+TCC3+TLAS(1)
      K(I)=KC(I)
      ALPHAC(I) = KC(I) / (R40C(I) * CFC(I))
      IMOD(I) = ALPHAC(I) + TEL TANVEELP ++ 2.1
      IF(I-LC)595,590,595
  500 DELVA=CELRE
      KLCH=TCC1+TCC2/TLAS(LCW)+TCC3*TLAS(LCW)
      DELKC(I) = ((KLCh-KLAS(I)) * TELE/FELVA+
     1 (KLAS(I)-KLAS(IMINUS)) *OELVA/DELR)/(DELVA+DELP)
      GO TO 536.
  595 DELVARCELP
      DELKC(I) = ((KLAS(IPLUS) - KLAS(I)) *DELP/DELVA+
     1 (KLAS(I)-KLAS(IMINUS))*DELVA/DELR)/(DELVA+DELR)
  595 DELT(I)=((TLAS(IPLUS)-TLAS(I))*DELR/DELVA+
     1 (TLAS(I)-TLAS(IMINUS)) * DELVA/DELR)/(DELVA+DELR)
      LARLI(I) =2.0/(CELR+DELVA) * ((TLAS(IPLUS)-TLAS(I))
     1 /DELVA-(TLAS(I)-TLAS(IMINUS))/DELR)
      TDCT(I)=ALPHAC(I)*(DELT(I)/3AD(I)+LAPLT(I))+1.3/(RHAC(I)*CPC(I))*
     1 DELKC(I) * OFLT(I)
  600 T(I)=TLAS(I)+DELTAU*TOOT(I)
      T(1)=T(2)
      RHOC(1) = RHOC(2)
      CFC(1) = CFC(2)
      K(1) = K(2)
C
C+++++++++ EFEWENT 3 ++++++++++++++++
C
      SOLVE TRANSPORT EQUATIONS FOR POROUS SECTION
C
      IRP=LCW+1
      IFR=LPW-1
```

·
LCPLUS=LC+2
00 735 IRLCOLUS.LO
1-f-U-S=I+2
ININUSEL-1
If(IMIAUS-LCW)610,611
610 DELVAREDELPR
60 FC 614
511 DELVAD=05LP
614 CONTINUE
IF(IPLUS-LPW)615,616,616
615 OSLVA=GELR
50. IC 6:7
616 OSLV4=OSLPP
E17 CONTINUE
C CALCULATE SEACE DESTRATIVES
C CALCULATE SEACE DERIVATIVES.
DELPCV(I)=((PHCLAS(IPLUS)*VLAS(IPLUS)-PHOLAS(I)*VLAS(I))*
1 DELVAP/DELVA+(RHOLAS(I)+VLAS(I)-RHOLAS(IMIVUS)+VLAS(IMIVUS))+
2 CELVA/OFLVAP) / (DELVA+DELVAP)
DIVROV(I)=DELRCV(I)+RHOLAS(I)*VLAS(I)/FAD(I)
QTLX1(T) = ((XLAS(1, IPLUS) - XLAS(1, I)) * 7FLVA3/DELVA+
1 TXLAS(1.I)-XLAS(1.IMINUS)) *PELVA/DELVAE)/(PELVA+ PELVAE)
DELX2(1) = ((XLAS(2.IPLUS) - XLAS(2.I)) *DELVAP/DELV4*
1 ()LAS(2.1)-XLAS(2.1MINUS))*OFLYARDTLYIRD/(DELVARDELVAR)
DELX3(I)=((XLAS(3.IPLUS)-XLAS(7.I))*CCLVA3/CELVA+
1 (XLAS(3.1)-XLAS(3.1MINUS))*DELVANCELVAR)/(DELVA+DELVAR)
Octation = ((42LASIDEUS) -MILAS(I)) * OCTATACA CALVA
1 +(WILAS(I)-WILAS(IMINUS))*DELVA/DELVAF)/(DELVA+DELVAF)
<u> </u>
1 + (W2LAS(I) - W2LAS(IMINUS)) * DELVA/DELVAMD/(CELVA+DELVAM)
Dalw3(I) = (U3LAS(IPLUS) -W3LAS(I)) "OBLU4P/CTLVA
1 +(W3LAS(I)-W3LAS(IMINUS))*DELVA/CELVA=)/(CELVA+GELVAB)
DELATE(I)=((MISLAS(IPLUS)=NITLAS(I))*OTLVAP/NTELVA+ 1 (NITLAS(I)=NITLAS(IMINUS))*OTLVAP(DELVAP)/(DELVA+TELVAB)
DEFNSE (I)=((ASEFVS(INFNORM) - MSEFVS(IN) + CLFARENCEFAR+
1 (N2ELAS(I) = N2ELAS(IMINUS)) *DELVA/CELYA9) / (DELVA+DELVAB)
DELNIE(I) # ((NICLAS(IPLUS) -NICLAS(IP) #BELYAP/BELYAP/BELYAP
1 (N3ELAS(I)+N3TLAS(IMINUS))*OELVA/CELVAR)/(TELVA+DELVAR)
DIVNIE(I) = DELNIE(I) + NIELAS(I) /PAD(I)
DIVNZE(I)="ELNZE(I)+NZELAS(I)/PAC(I)
DIVN15(I) #05LN75(I)+N75LAS(I)/740(I)
DELK(I)=((KLAS(IPLUS)-KLAS(I))+DELVAP/CELVA+
1 (KLAS(I)-KLAS(IMINUS)) *DELYA/PILYAP) / (PELYA+GELYA?)
DELT(I)=((TLAS(IPLUS)+FLAS(I))+D€LVA9/CELYA+
1 (TLAS(I)-TLAS(IMINUS))*DELVA/TELVAR)/(DELVAR+CELVA)
LAPLT(I)=((TLAS(IPLUS)-TLAS(I))/DELVA+(TLAS(IMINUS)-
OELSUM(I) = ((SUML3(IFLUS) + RAD(IFLUS) + SUML3(I) * RAD(II) *
1 DELYAR/DELVA+(SUML3(I) *RAD(I)-SUML3(IMINUS) *RAD(IMINUS)) *
2 DELVAZOELVARIZ(DELVAB+DELVA)ZRAR(I)
C OALCH ARE THE NEW DEACTTY AND THE NEW DOTTY
C CALCULATE THE NEW DENSITY AND THE VELOCITY
R=0.7362
GHC(I)=PLAS(I)*MH(I)/(R*TLAS(I))
V(I) = (N1ELAS(I) + N2ELAS(I) + N2ELAS(I))/RHO(I)
VALE TO THE BOOK A CONTRACTOR OF THE CONTRACTOR

C	•
<u>c</u>	SGINE SPECIES I CONSERVATION EQUATIONS
¢	
	RHOCCT(I)=1.0/SIALAS(I)*((RHOFQ-RHC(I))*SIAGIL(I)+GIVRGV(I))
	W1COT(I)=1.4/(ETALAS(I)*RHO(I))*(-W1LAS(I)*(ETALAS(I)*FPOGOT(I)
	1 +8HC(1) *STARTL(1) 1-DIVN1 S(1) +RSN1(1))
	W2COT(T)=1.0/(ETALAS(I)*RHO(I))*(-H2LAS(I)*(ETALAS(I)*PHODOT(I)
	1 +RHC(1)*FTACTL(1)}-DIVNZE(1)+GENZ(1)}
	W3DOT(I)=1.0/(ETALAS(I)=RHO(I))=(-NFLAS(I)=(ETALAS(I)=RHODGT(I)
	1 +FHC(I)*ETABTL(I))-DIVN3E(I)+GEN3(I))
C	
c	CALCULATE FLUXES
C	
	CALL CIFF
	DMOD1(I)=0:M(I)+DELTA9/OELR**2.0/ETALAS(I)
	DMQ52 <u>(1)</u> =F2M(1)*99LTAU/DEL9**3. <u>0/5</u> JA <u>LAS(1)</u>
	OMOC3(I)=C3M(I)*DELTAU/DELP**2.8/ETALAS(I)
	<u> </u>
	MOFLX(?, I) = -9HC(I) * P2H(I) / MN(I) * GELX2(I) + XLAS(2, I) * TCTMCF(I)
	MOFLX(3.1)=-6H0(1)*D3H(1)/MN(1)*D5LX3(1)*XL4S(3.1)*TOTMOF(1)
	TOTHOF(I)=MOFLX(1+I)+MOFLX(?+I)+MOFLX(3+I)
	N18 (I) =MCFLX (1, I) *41
	N2E(I)=MGFLX42-I)*M2
	N3E(I)=MOFLX(3.I):M3
	FLUXJ1(I)=V1E(I)-W1LAS(I)*PHO(I)*V(I)
	FLUXJ2(T) = N2 T(T) - W2LAS(T) + 24G(T) *V(T)
	FLUXJ3(1)=';'E(1)-H3LAS(1)*R4G(1)*V(1)
С	
C	CHECK ACCURACY OF THE DIFFUSION EQUATION
	IF (ABS (TCTMOF (1)) +0.0)630,630.631
6.	30
	TEST2(1)=1.0
	GC TC 636
5.3	31 CONTINUE
	90 633 II=1+KKK
	SPMDIF(II.I)=0.0
	00 634 JU#1+KKK
	IF (II-JJ) 633,622,633
5.	52 OIF(II.JJ) =3.0
	60 10 614
67	33 DIF(II,JJ) = (XLAS(II.I) *MCFLX(JJ.I) -XLAS(JJ.I) *MGFLX(II.I))
	1 /(GG(TI-JU)*RMO(I)/MW(I))
€3	34 SUMCIF(II.I)=DTF(II,JJ)+SUMDIF(II.I)
	IF (0150PT.50.1)50 TO 675
	SUMDIF(II.I) = SUMDIF(II.I) - MOFLX(II.I) / (OK(II.I) * RHO(I) / MX(I))
e:	IS CONTINUE
	TEST1(1) =05LX1(1)/SUMDIF(1,1)
	TESTR(I)=DELX2(I)/SUMDIF(2.I)
	TESTS(I) =DELX3(I)/SDMOIF(3.I)
63	SE CONTINUE
C	
Č	CALCULATE PHYSICAL PROPERTIES
Ċ	
-	99 640 KK=1+KKK
	7LAS(I)=TLAS(I)/1.9
	THE THE TENT OF TH

```
TRASE=TRASE/1.A
    CPC(KK)=CF31(KK)+CGG2(KK)+TLAS(I)+CPG3(KK)+TLAS(I)++2.8
   1 +CP34(KK)*TLAS(1)**3.3+CFG5(KK)/TL4S(1)**2.8
   HG(KK)=GPG1(KK)*(TLAS(I)+T33SE)+CPS2(KK)/2.0*(TLAS(T)**2.0-TBASE**
1 2.01+GPG3(KK)/3.6*(TLAS(I)**3.0-TBASE**3.0)+PGVAP0(KK)
   2 +CPG4 (KK) /4.0*(TLAS(I) **4.0-TPASE**4.()-CFG5(KK) *
3 (1.0/TLAS(I)-1.0/TBASE)
    TBASE=T94SE*1.2
    TRETLAS(I)/E(KK)
    CCLINV(KK) =1.0/(CIV1*(1.0+CIV2*ALOG(TR)))
    TLAS(I)=TLAS(I)+1.9
    MUG(KK)=?.6693E-5*(H(KK)*(TLAS(I)/1.5))**0.5/(SIG(KK)**2.0
   1 *CGLINV(KK))
    2=1.987
    KG(KK)=[CPG(KK)+1.25*R)/M(KK)+MUG(KK)
    <u> MUG (KK)=MUG (KK)+2.4191E02</u>
    KG (KK) = KG (KK) +2. 4175202
SAO CONTINUE
    II=0
    M!!(I)=1.0
    CF(I)=0.0
    KM(I)=9.0
    0.C=(I)H
    JJ=0
    SIJMX FH = D. C
    00 650 JJ=1.*KK
   ФНІ(II, JJ) = (0.125)**0.5*(1.5+(М(II)/Ч(JJ))**(-0.5))*
1 (1.3+(МUG(II)/МUG(JJ))**1.5*(М(JJ)/М(II))**3.25)**2.6
    <u> (LL-II) 1H9+11-LL) 2AJX=(L) 1H0X</u>
    HAXMUS+(UL)IHAX=PEXMUS
651 CONTINUE
    XX=XLAS(II.I) *YG(II)/SUMXPH
    KMU=KFVZ(II*I) = WNG(II) \ZCHXCH
    XCFG=XLAS(II.I)*CPG(II)
    XHG=YL4S(II.I) THG(II)
    KM(I)=XK+KM(I)
    WR(I)=XMA+WR(I)
    GF(I)=XGFG+CF(I)
    H(I)=XHG+H(I)
    HG(II)=HG(II)/M(II)
<u>660 CONTINUE</u>
    CF(I)=C9(I)/MW(I)
    HII)=H(I)\AM(I)
  # PHOC(I)=#HOC1+PHOC2+TLAS(I)+PHOC3+TLAS(I)++2.0
    CEC(I) = CEC1 + CEC2 + TLAS(I) + CEC7/TLAS(I) + + 2 + 9
  HC(1)=C=C1+(TLAS(1)-TBASE)+C=C2+(TLAS(1)++2.0-TBASE++2.0)+
   1 CEC3*(1.0/TLAS(1)-1.0/TBASE)+HC0
FACTK(I)=1.0-ETALAS(I)*EXP(-1.0/ETALAS(I))-(1.0-ETALAS(I))
   1 *EXF(-1.0/(1.0-FTALAS(I)))
KP(I)=TCP1+TCP2/TLAS(I)
    EPS(I) = ESP
    KPG (1) =0.693*EFS(I) *PARTO*TLAS(I)**3.0/30.49E12
    KP([]=(1.C-ETALAS(I))/(1.3/KP(I)+1.3/KPP(I))+ETALAS(I)*KRP(I)
    KE([)=(1.C-ETALAS(I))*KP(I)*EXF(-1.0/(1.0-ETALAS(I)))+FTALAS(I)
     *(KMII) +KRII)) *(EXPI-1.6/FTALASII)) +FACTKII) **?.0/ETALASII)
   2 **2.0/(1.J-EXP(-1.0/ETALAS([))))
```

	K(I)=KE(I)	
<u>c</u>	SCLVE ENERGY EQUATION	
C	SCLAL FULKER EMORITOR	
<u> </u>	SUM1 (I) = FG(1) * W100T(1) + FG(2) * W200T(I) + FG(3) * W300T(I)	
	SUM3(I)=HG(1)*FLUXJ1(I)+HG(2)*FLUXJ2(I)+HG(3)*FLUXJ3(I)	
	SUP3(1)=46(1)+FC0X31(1)+H3(2)+FC0X32(1)+H3(2)+FC0X32(1)	
S 8	IF(I.EQ.IPP)SUM4S=HG(1)*N1E(I)+HG(2)*N2E(I)+HG(3)*N3E(I)	
	IF(I.EQ. IFF) SUM4C=HG(1) *N1E(I) +HG(2) *N2E(I) +HG(3) *N3E(I)	
	ERC==[ALAS(I)*RHO(I)*CP(I)+(1.0-FTAN)*PHOP(*CPP0 .	
	1 +(ETAG-ETALAS(I))+CPC(I)+RHOC(I)	
	TMCC(I)=K(I)/EFC*DFLTAU/OEL?**2.0	
	TCOT(I) = ((PHOC(I) * (HC(I) -H(I)) +PL4S(I) /0.3676) *ETACTL(I) -	
	1 ETALAS(()*RHO(I)*SUM1(I)-P40(I)*CF(I)*VL4S(I)*DELT(I)-	
	2 PHO(I)*VL45(I)*SYM2(I)+DELSUM(I)+K(I)/PAO(I)*DELT(I)+	
	3 K(I)*LAFLT(I)+DELT(I)*DELK(I)+ETALAS(I)*PEOT)/EPC	
	f(I)=fLAS(I)+DELTA';*TOOT(I)	
<u>C</u>		
C	CALCULATE EQUILIBRIUM CONSTANT	
C		
	LOGKEC(I)=KE01+KE02/(T(I)/1.9)	
	KEO(I) = EXP(LOGKEO(I) *2.303)	
C		
C	DETERMINE WHETHER DEPOSITION HAS OCCUPED	
 C		
	OINCEX(I)=1.0/(XLAS(1.1)*XLAS(7.1)/XLAS(2.1)**3.0*=LAS(I))	255000000
	IF(ICT1(I)-1)669,670,670	
66.9	IF(DINDEX(I)-KEQ(I))670,670,680	
	CONTINUE	
3.00	ICTL(I)=1	
С		
c	SOLVE SIMULTANEOUS EQUATIONS FOR MOLE FRACTIONS	
С		
	W1(I)=W1COT(I)*DFLTAU+W1LAS(I)	
	X(1,I)=W1(I)/M1*MW(I)	
	W3(I)=W3COT(I)*OELTAU+W3LAS(I)	
	(I) HM * EM (I) EM = (I + E) X	
	ARGX2=X(1,I)*X(3,I)*KEQ(I)/=LAS(I)	
	IF (ARGX2.LT.0.0) GO TO 675	
	X(2.1)=A=GX2**CUMM	
	GO TO 575	
670	X(2.1)=-(ARS(APGY2))**DUMM	
	DX=X(1,I)+X(2,I)+X(3,I)	
C/0	- 1 전 - 1개의 - CA - 12 전 - CA -	
	X(1:1)=X(1:1)\(\)\(\)\(\)	
	X(2.1)=X(2.1)/CX	
	X(3,1)=X(3,1)/CX	
	MW(I)=Y(1,I)*M1+X(2,I)*M2+X(3,I)*M3	
	H1(I)=X(1,I)*M1/MW(I)	~
	W2(I)=X(Z,I)*M2/MW(I)	
	W3(I)=X(3,I)+M3/MW(I)	
	M=H1(I)+W2(I)+W3(I)	
	M1(I)=41(I)/H	
	MS(I)=MS(I)/M	
	W3(I)=W3(I)/W	
С		
<u>c</u>	CALCULATE THE DEPOSITION RATE	

```
C
      M3CT=(W3(1)-W3LAS(1))/CELTAU
GEN3(1)=W3CF*ETALAS(1)*RHO(1)*N3(1)*(ETALAS(1)
      1 *PHCCCT(I) +PHC(I) *FT4CTL(I) 1 +GIVN3E(I)
      GEN4(I)=-MES/MS*GEN3(I)
      SUMGEN(I) = SUMGEL(I) + GEN4(I)
      IF (SUMGEN(I) -0.0) 677-677-673
  677 G514(I)=-SUMGEL(I)
      GENS(I)=-M3/ME3*GEN4(I)
      ICT1(I)=0
  674 GEN2(I)=M2/ME2+(-3.0+ME2/M3+GEN3(I))
      GEN1(I)=-GEN2(I)-GEN3(I)-GEN4(I)
      ETAUCT(I) = -GEK4(I)/940C(I)
      STA(I) =DELTAU* STADOT(I) +ETALAS(I)
      GO TO 585
  689 CONTINUE
         NO REACTION HAS OCCUPED, CONTINUE
      W1(I)=W1LAS(I)+W1OOT(I)*DELTAU
      WZ(I)=WZLAS(I)+W2OOT(I)*DELTAU
      WY(I)=W3LAS(I)+W7DOT(I)+DELTAU
      N=W1(1)+W2(I)+W3(I)
     <u> "W1(I)=H1(I)/W</u>
      WE(I)=WE(I)/W
      M3(I)=W3(I)/W
      MW(I)=1.0/(W1(I)/M1+W2(I)/M2+W3(I)/M3)
      X(1-1)=W1(1)*PK(1)/M1
      SWY(1) HW*(1) SW=(1,3) X
      X(3,1)=H3(1)#MH(1)/M3
DX=X(1+11+X(2+1)+X(3+1)
      X (1 - 1) =X (1 - 1) / CX
      X(2,1)=X(2,1)/0X
      X13,1)=X13,1)/OX
      GEN1(I)=0.0
      GEN2(1)=0.0
      GEN3(1)=0.0
      GEN4(I)=0.0
      ETAGGT(I)=0.0
      ETA(I)=ETALAS(I)
  685 CONTINUE
        CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION
      WABET=5*0+M1(I)\N1+M5(I)\W5+M2(I)\W5
      F([)=ETA([)*HW(])*RAO([)*WBAR1/T(])
  700 CONTINUE
C******** ELEMENT 4 **************
¢
      SOLVE EQUATIONS FOR THE CORE INTERFACE
      I=LCW
      LCMP2=LCN+2
      LCWF1=LCH+1
      LCWM2=LCW-2
      LCHM1=LCH-1
```

	ETALAS (I) = ETAJ
<u> </u>	
C	CALCULATE SPACE DERIVATIVES
<u>c</u>	
	DELWITTH MILAS(LCHPI) - WILAS(I)) / CFLRF
	DELH2(I)=IM2LASILCMP1)+M2LAS(I))/OFL32
	OFLW3(I) = (W3LAS(LCMP1) + W3LAS(I)) / OELR9
	DFLX1(I)=(XLAS(1,LCWP1)-XLAS(1,I))/DELPF
	DELX2(I)=(XLAS(2+LCHP1)-XLAS(2+I))/DELPF
	DELX3(I) = (XLAS(3, LCHP1) - XLAS(3, I)) / CELPP
	DELECTION OF THE DELECTION OF THE PROPERTY OF
	DELT(I)=((ILAS(LCHP1)-TLAS(LCH))*CELCR/DELPP+
	1 (TLAS(LCW) -TLAS(LCWM1))*CELRF/DSLCR)/(DSLRP+DELCR)
<u>C</u>	CALCULATE DENSITY AND VELOCITY
Č	CALCOLATE GENSITY AND VECTORIN
	R=0.7302
	RHC(I)=01AS(I)*MH(I)/(R*ILAS(I))
	V(I)=(N15LAS(I)+N25LAS(I)+N3FLAS(I))/RHO(I)
C	CALCULATE FLUXES FROM OLD VALUES
C	
	CALL CIFF
	OMOG1(I) +01M(I)*0ELTAU/0ELPP**7.8/ETAL/S(I)
•	OMOC2(1)=02M(1)*05LTAU/05L59**2.0/ETALAS(1)
	OMONI(I)=03%(I)*DELTANYDELRE**?.CVETALAS(I)
	MOFLX(1.)====================================
	MCFLX(2,1)=-8HC(1)*024(1)/MH(1)*02LXZ(1)+XL4S(2,1)*T0TMCf(1)
	MOFLX(3+1)=-RHC(1)*D3M(1)/MW(1)*DELX3(1)+XL4S(3+1)*TOTMOF(1)
	T07M25(1)=M0FLX(1,1)+M0FLX(2,1)+M0FLX(5,1)
	N1E(I)=MCFLX(1.I) *M1
	N2E (1) = NOFLX (2 - 1) = M2
	N3F(I) =MOFLX(3,I) ¥M3
	FLUXJ1([]=\1E([]-W1L4S([)*?H0[[)*V([)
	FLUXUZ(1)=NZE(1)+WZLAS(1)+ZHO(1)+V(1)
	FLLX33(1) = N3E(1) - N3LAS(1) * SHO(1) * V(1)
C	CHECK ACCURACY OF THE DIFFUSION EQUATION
	C/// A/// (10) W. 11/2 C1/// (10) 10 C C/// (10)
•	IF (AES (YOTMCF(1)) -0.0)730.730.731
730	TEST1(I)=1.0
	TEST2(I)=1.0
	TEST:(I)=1.0
	CO JC 736
731	CONTINUE
	00.735 II=1.KKK
	SUMBIF(II,I)=0.0
	06_734_UJ=1.KKK
	IF(II-JJ)733+732+733
<u> 73?</u>	OIF(II,JJ)=0.0
	GG TC 734
7.7.3	DIF(II.JJ) = (XLAS(II.I) + MCFLX(JJ.I) - XLAS(JJ.I) + MOFLX(II.I))
	1 /(C5(II,JJ)*QHO(I)/MW(I))
	SUMDIF(II.I) = DIF(II.JJ) + SUMMIF(II.I)
	IF(DIFOPT.EQ.1160 TO 735
775	SUMBIF(II.T)=SUMBIF(II.I)-MOFLX(II.I)/(CK(II.I)*9MO(I)/MN(I)) CONTINUE
107	GOULTING.

	TEST1(I) = TELX1(I) /SUMDIF(1+I)
	IEST2(I)=05LX2(I)/SUMOIF(2.1)
	TEST3(I)=D_LX3(I)/SUMDIF(3.I) .
	CONTINUE
С	
C C	SOLVE SPECIES I CONSERVATION EQUATIONS
C	
	RHCCOT(I) = (-RAF(LCHP1)/PAG(I)*PHO(LCHF1)*V(LCHF1)/DELPF
	- (RHC(I)-RHOC(I))*DRPDOT/DELRF-(RHO(I)-FHCC(I))*ET40TL(I))
	/(1.0+D=LPPO/CELRP*(ETALAS(I)-1.0))
	W1[01(1)=(GEX1(1)*PELRP/DELRPG-W1LAS(1)*(ETALAS(1)+CELPF
	/CELREG-1.0)*9HODOT(1)-FHO(1)*W1LAS(1)*(ETADTL(1)+D90FOT
	ZOELRED-NIE(LCWP1)*PAD(LCWP1)ZPAD(I)ZDELRED)
	<pre>/(EHG(I)*(CTALAS(I)-1.0+0cLSP/)TLP=5))</pre>
	HZCOI(I) = (GENZ(I) * DELPP/DELPPC - HZLAS(I) * (ETALAS(I) + CELPP
	VBELRED-1.0)*PHODDT(I)-FHO(I)*HZLAS(I)*(ETAOTL(I)+BREDGT
	ZOELREI-NZE(LCWP1)*RAD(LCWP1)ZRAD(I)ZGELRED)
	/(RHG(I)*(SIALAS(I)-1.0*DELRP/DFLRPD))
	W3GOT(I) = (GEN3(I) *GELSP/DELSP(-W7LAS(I) *(E74LAS(I) +GELPP
	/CELGEO-1.01+9HOOOT(I)-EHO(I)+WSLAS(I)+(ETADTL(I)+DPPROT
	VDELAES-NSE(LOWD1)*RAD(LOWP1)/RAD(I)/DELRED)
	/(RHC(I)*(ETALAS(I)-1.0*(CELRP/)FLERN))
Ċ .	
<u>c</u>	CALCULATE CHYSICAL PROPERTIES
C	
	EHCB(1)=EHG30
	FHCC(I)=FHOC1+FHOC2*FLAS(I)+RHOC?*FLAS(I)**C.0
	CPC(1)=CCC1+CPC2*TLAS(1)+CFC3/TLAS(1)**2.0
	HC(I)=CPC1+(TLAS(I)-TBASE)+CPC2+(TLAS(I)++2.0-TBASE++2.0)+
	<u></u>
	CPF(I) = CPP1+CFF2*TLAS(I)+CPP3/TLAS(I) ++2.9
	DO 7640 KK=1,KKK
	TLAS(I)=TLAS(I)/1.8
	TRASSETSASS/1+F
	CFG(KK)=CFGt(KK)+CPGZ(KK)*TLAS(I)+CPGZ(KK)*TLAS(I)**2+C
	<u>+0984(KK)*TL45(I)*T3.0+0F68(KK)/TL48(I)**Z.0</u>
	HG(KK)=OFG1(KK)+(TLAS(I)-T8ASE)+CPG2(KK)/2.0+(TLAS(I)++2.0-TRASC++
	2.0)+0997(KK)/3.0+(FLAS(I)**3.0-T9456**7.P)+H9V4P0(KK)
	+CPG4(KK)/4.9*(TLAS(I)**4.0-TRASE**4.01-CPG5(KK)*
	(1.0/TLAS(I)=1.0/IBASE)
	TBASE=Y9ASE=1.+
	TR=T14S(1)/=(KK)
	COLINY(KK)=1.0/(CIV1*(1.8+CIV2*ALOG(TP)))
	TLAS(1) = TLAS(1) = 13.
	MUG(KK)=2.66935-5*(M(KK)*(TL4S(I)/1.3))**3.5/(SIG(KK)**2.0
1	*CCLIAV(KK)
	P=1,987
	KG (KK) = (CFG (KK) +1.25 PR) /M (KK) *MUG (KK)
·	MUG(KK)=MUG(KK)*2.4191502
	KS(KK)=KS(KK)*2,4175E02
7640	CONTINUE
	II=0
	MU(I)=0.0
	CF(I)=0.0
	CTV11-0.0
	H(I)=0.0
	DO 7660 II=1,KKK

```
JJ=0
      SUMX = H = 3 . C
      NO 7550 JJ=1.KKK
      1 (1.0+(MUG(II)/MUG(JJ))**0.5*(M(JJ)/M(II))**0.25)**2.0
     XPHI(JJ) = XL4S(JJ,I) *PHI(II,JJ)
      HEXPUS+(UU) 1HEX = HEXMUS
 7650 CONTINUE
      XK=XLAS(II.I)*KG(II)/SUMXPH
      XMU=XLAS(II,I)*MUG(II)/SUNXFH
      XCFG=XLAS(II.I)*CPG(II)
      XHG=XLAS(II_I)*HS(II)
      KM(I)=XK+KM(I)
      MU(I)#XMU+MU(I)
      CF(I)=XCPG+GF(I)
      H(I)=XHG+H(I)
      HG(II)=HG(II)/H(II)
 7660 CONTINUE
      C = (I) = C = (I) / M (I)
      H(I)=H(I)/MW(I)
      FACTK(1)=1.0-2TALAS(1)*EXP(-1.0/2TALAS(1))-(1.0-2TALAS(1))
     1 *EXE(-1.0/(1.8-ETAL4S(I)))
    . -KP(I)=TCF1+TCF2/TLAS(I)
     EPS(I) #ESP
      KRD(I)=0.693*EPS(I)*PARTO*TLAS(I)**7.0/30.84E12
      KR([]=(1.F-ETALAS([)))/(1.0/KP([]+1.0/KP([]))+ETALAS([)*KPP([])
      KE(I)=(1.6-STALAS(I))*KP(I)*EXP(-1.6/(1.1-FTALAS(I)))+FTALAS(I)
     1 * (KY(I) +KP(I)) * (FXP(-1.0 /ETALAS(I)) +FACTY(I) *** 2.0 /FTALAS(I)
     2 **2.J/(1.U-EXF(-1.0/ETALAS(I))))
     <u> K(I) #OSLPGXPAD(LOW) X(ALOG ((PAD(LOW) +DELPP-DELRED) X</u>
     1 RAC(LCW)) /KM(I) +ALOG((GAU(LCW)+BELRO) / (RAS(LCW)+
     2 DELAF-DELEGEDIYKE(I))
С
        SOLVE EMERGY EQUATION
      <u> SUM1(I)=[H5(1)+W1B0T(I)+H6(2)+H2Q0T(I)+H5(3)+H7D0T(I))+ETALAS(I).</u>
     1 *FHC(I)
      <u>SUM2(1)=(HG(1)+DELW1(I)+HG(2)+PELW2(I)+HG(3)+PELW3(I))+FHO(I)+</u>
     1 VLAS(T)
      SUP3(1)=HG(1)*FLUXJ1(1)+HG(2)*FLUXJ2(1)+____
     1 HG(3)*FLUXJ7(T)
      APGRC= (H(I) + F40(I) - PLAS(I) /0.3676) + (1.C+ETALAS(I))
     1 -HC(I) #FHCC(I) +1.u/0.E676
      APGETA=(H(I)*RHO(I)-PLAS(I)/0.3676)*0FLPP
     <u>1 -{HC(I)*F40C(I)-1.0/0.3676)*DFLEPE</u>
      ARGE=CELPC+(1.0+ETALAS(I))-DELPPS
     EPC=ETALAS(I) * FHO(I) * CF(I) * OFLPP
1 + FHC(I) * CP(I) * (O2LPP-DELRP)) + (1.6-ETAI) * RHOFD* CPP(I) * CFLPPC
       +(E1A8-1TALAS(I)) *RHOC(I) *CELEPS*CPC(I)
     3 *FHCC(LCWM1)*CPC(LCWM1)*CELCR
     IMCC(I)=K(I)/EFC*DELTAU/DEL99**2.0
      T(I)=(TLAS(I)+DELTAU*(-RAP(LCHPL)/RAD(I)*(SUM46-K(LCHP1)
     1 *T(LCH01) /OELEP) +RAD(LCHM1) /RAD(I) MK(LCHM1) *T(LCHM1) /DELCR
     2 -APGETA*ETASTL(I1-ARGRHO*RHODOY(I)-APGRA*DRPDOT+APGP*PDOT)
     3 VERCIN(1.6+CELTAU*(PAD(LCWM1)/RAD(I)*K(LCHM1)/OFLCR
     4 +9AC(LCHP1)/RAD(I)*K(LCHP1)/DFLRP)/ERC)
```

C C	CALCULATE THE COUILINGIUM CONSTANT AND THE
C	CEFCSITION INDEX
1,	LOGKEG(I)=KE91+KF92/(T(I)/1.8)
	KEQ(I)=EXE(2.303*LOGKEQ(I))
C C	CALCULATE THE NEW CONCENTRATIONS
C	OFFICE AT THE STATE OF THE STAT
	DINGEX(I)=1.0/(XLAS(1.1)*XLAS(3.1)/XLAS(2.1)**3.0*PLAS(I)) · · ·
	IF(J.GT.1)60 TC 7740
	CUP=-3.0*XLAS(2,1) CUC=(9.0*(XLAS(1,1)+XLAS(3,1)-XLAS(1,1)*XLAS(3,1))
	1 +81.0*XL4S(2+I)**2.0*PLAS(I)/XEQ(I))/
	2 (27.0*PLAS(I)/KE)(I)-1.0)
	CUD=27.0*(XLAS(1.1)*XLAS(3,1)-FLAS(1)/KE7(1)*
al Silvinion and	1 XLAS(2.1)**3.3)/(27.0*PLAS(1)/KE?(1)-1.3)
	GUF=(3.0*CUC-C!!3**2.u)/3.0.
	CUA=(27.0*CHD-9.0*CHB*CUC+2.0*CU9**3.0)/27.0
	CUG=(CUG/3.0)**3.0+(CUG/2.6)**2.0
	CUB1=-CUQ/2.0+CUR**0.5 CUB2=-CUQ/2.0-CUR**0.5
	IF(CUR1.LT.0.5)GO TO 7741
	CCA=CLE1**CUMM
	GO TC 7742
774	CCA=-(ARS(CUR1))**DUMM
774	1 IF (CUE2.LT.C.C)GO TO 7743
	CCR=CURZ ** OUMM
771	GO TC 7744
	CCB=-(ABS(CUB2))**DUMM CLAMB=CCA+CCB
M 5167500	XLAMS=CLAMS-CU9/3.9
	X(1.I)=XLAS(1.I)+XLAMA/3.0
	X (2, I) = XLAS (2, I) - XLAMA
	X(3,1)=XLAS(3,1)+XLAM9/3,0
7711	GO TG 7750 W1(I)=(W1LAS(I)+DELTAU/2.0*W1COT(I)+DELTAU/2.0*(GEN1(I)
1140	1 *DELRENDELRED+RAB(LCWF1) /PAD(T) *(EHD(LCWF1) *
	2 C1M(LCHF1)/MW(LCHP1)*(DELRP/DFLRM(X(1,LCVF2)-
	3 x(1.LGWP1))+0FLP/DELRE*x(1.LGWP1))/(DFLP+FTLRP)
	4 +X(1,LCWP1)*TOTMOF(LCWP1))*M1/DELFP2)/(PH2(1)*(ETALAS(1)
	5 +C5LR5/06LR90-1.0)))/(1.0+05LTAU/2.3*(506(LCW91)
	6 /FAC(I)*FHO(LCWP1)*D1M(LCWP1)/M%(LCWF1)*DELF/CELFF
	7 /(DELP+DELRF)*MW(I)/DELF=0+(FTALAS(I)+DELF0 8 /DELRFD=1.0)*FHODD*(I)+EHO(I)*(ETADTL(I)+DRPDD*
	9 /DELROD))/(FHC(I)*(ETALAS(I)*DELPP/DELPP/=1.0)))
	X(1,I)=W1(I)/M:*MW(I)
===========	43(I)=(W3LAS(I)+DELTAU/2.0*W3DOT(I)+DELTAU/2.0*(GEN3(I)
	1 *DELRP/DFLRPD+RAD(LCWP1)/PAO(I)*(FHO(LCWP1)*
	S L3W(FCH51) NWM (FCH57) * (DEF55/DEF5*(X(3.FCAE3) -
(8)	3 X(3,LCWP1))+65LR/05LRP*X(3,LCWP1))/(01LR+CFLRP)
	+ +X(3,LCNP1)*TCTMOF(LCWP1))*M3/9ELEPC)/(PHC(I)*(ETALAS(I)
	5 +DELR9/DEL9PO-1.0)))/(1.0+95LTAU/2.0*(PAS(LCWP1) 6 /PAS(T)*RHO(LCWP1)*O3M(LCWP1)/MW(LCWP1)*DELR/DELPP
	7 /(CELR+CELRG) *MW(I)/DELRGG+(ETALAS(I)+CELAG
	8 /CELEFU-1.1) *PHODOT(I) +RHO(I) * (STADTL(I) +CPPOOT
	9 /CELRPO))/(RHC(T)*(=TALAS(I)+CELPP/DELPP/DELPP)1.0)))

X(3,1)==1(1)/P*=4(1) APP(Z*YL.1)*X(3,1)*X(3)(1)/DLAS(1) IF (G*X*2,L',6,C)*30 TO 77*5 X(2,1)==26(2)**CIMM SO IC 775C Z/15, X(2,1)=1A30,(A*3(2))**20/MM 7759 DX*X(1,1)*X(2,1)*X(3,1) X(2,1)=X(2,1)*X(2,1)*X(3,1) X(2,1)=X(2,1)*X(2,1)*X(3,1) X(2,1)=X(2,1)*X(2,1) ENUX(1)=X(1,1)*X(1,1) ENUX(1)=X(1,1) ENUX(1)=X(1,1) ENUX(1)=X(1,1) ENUX(1)=X(1,1) M(1)=X(1,1)**X(1,1) M(1)=X(1,1)**X(1,1) M(1)=X(1,1)**X(1,1) M(1)=X(1,1)**X(1,1) M(1)=X(1,1)**X(1,1) M(1)=X(1,1)**X(1,1) M(1)=X(1,1)**X(1,1) AND APPLIED C CALCULATE THE DEFOSITION PATE G IME ACM POCOSITY. AND PERLETION OF THE COPE C CALCULATE THE DEFOSITION PATE G IME ACM POCOSITY. AND PERLETION OF THE COPE C CALCULATE THE DEFOSITION PATE G IME ACM POCOSITY. AND PERLETION OF THE COPE C CALCULATE THE DEFOSITION PATE G IME ACM POCOSITY. AND PERLETION OF THE COPE C CALCULATE THE DEFOSITION PATE G IME ACM POCOSITY. AND PERLETION OF THE COPE C CALCULATE THE DEFOSITION PATE G IME ACM POCOSITY. AND PERLETION PATE C CALCULATE THE FUNCTIONS FOR PRESSURE INVESTATION G C CALCULATE THE FUNCTION FOR PATELL MATERIAL C C CONTRACTOR		
IF (GBCX2.L.1.G.C.) TO 7745 X12.1] = AGCRETCHINA SO 1C 775C X14.5 X (2.1) = -(AGCRECACL) + DUNN 7759		
X(2,1)=A=GX2=*CINH SO 10 7750 Y(2-5 X(2-1)=-1A-3(-606(2))**DUNN 7759		
SO 16 7756 TAS (49642) TAS (72,1) = (14364) TAS (72,1) = (14364) TAS (72,1) = (143,1) TAS (73,1)		
7.755 X(2.1)=.(A35(A96A2))***ONNH 7.759 DX=X(1.1)**(2.1)**(X(3.1) X(2.1)=X(2.1)**(X(3.1) X(2.1)=X(2.1)**(X(3.1) X(2.1)=X(3.1)**(X(3.1) IF(J.6T.1)**(0 TO 740 ENUIX(1)=X(3.1) ENUIX(1)=X(3.1) FOUR CONTINUE MM(1)=X(3.1)**M1=X(2.1)**M2+X(3.1)**M3 M1(1)=X(3.1)**M1=X(2.1)**M2+X(3.1)**M3 M1(1)=X(3.1)**M1=X(M1)**M1 M2(1)=X(2.1)**M1 M2(1)=X(2.1)**M2/M**(1) M2(1)=A2(1)**M1 M2(1)=A2(1)**M1 M2(1)=A2(1)**M1 M2(1)=A2(1)**M1 M2(1)=A2(1)**M1 GEN*(1)=M3(A3(1)**OSITION DATE G IMEAFR 9020SITY. AND 92917110N OF THE CODE C M*CT=(M3(1)-M3LAS(2)**OSITION DATE G IMEAFR 9020SITY. AND 92917110N OF THE CODE C M*CT=(M3(1)-M3LAS(2)**OSITION DATE G IMEAFR 9020SITY. AND 92917110N OF THE CODE C M*CT=(M3(1)-M3LAS(2)**OSITION DATE G IMEAFR 9020SITY. AND 92917110N OF THE CODE C M*CT=(M3(1)-M3LAS(2)**OSITION DATE G IMEAFR 9020SITY. AND 92917110N OF THE CODE C M*CT=(M3(1)-M3LAS(2)**OSITION DATE G IMEAFR 9020SITY. AND 92917110N OF THE CODE C C CALCULATE THE GENOMING FOR DATE SERVICE TO SE		X(S*1)=X>GX=**CUNH
7759 0X=X(1,1)+X(2,1)+X(3,1) X(2,1)=X(2,1)+X(3,1)/X X(3,1)=X(2,1)+X X(3,1)=X(3,1)/X X(3,1)=X(3,1)/X X(3,1)=X(3,1) EQUIX(1)=X(2,1) EQUIX(1)=X(3,1) EQUIX(1)=X(3,1) EQUIX(1)=X(3,1) MH(1)=X(1,1)+M1/MH(1) GGR(1)=X(1,1)+M1/MH(1) GGR(1)=X(1,1)+M1/M1/M1/M1/M1/M1/M1/M1/M1/M1/M1/M1/M1/M		\$0 fc 7750
7759 0X=X(1,1)+X(2,1)+X(3,1) X(2,1)=X(2,1)+X(3,1)/X X(3,1)=X(2,1)+X X(3,1)=X(3,1)/X X(3,1)=X(3,1)/X X(3,1)=X(3,1) EQUIX(1)=X(2,1) EQUIX(1)=X(3,1) EQUIX(1)=X(3,1) EQUIX(1)=X(3,1) MH(1)=X(1,1)+M1/MH(1) GGR(1)=X(1,1)+M1/MH(1) GGR(1)=X(1,1)+M1/M1/M1/M1/M1/M1/M1/M1/M1/M1/M1/M1/M1/M	7.745	X (2.1)== [A9S (A9S X2)] ***********************************
X(1,1)=X(1,1)/NX X(2,1)=X(2,1)/NX X(3,1)=X(3,1)/CX IF(1,6,1)60 TC 740 ENUIX(1)=X(1,1) ENUIX(2)=X(2,1) ENUIX(2)=X(2,1) ENUIX(3)=X(3,1) 740 CONTINE MM(1)=X(1,1)*M1+X(2,1)*M2+X(3,1)*M3 M1(1)=X(1,1)*M1+X(1,1)*M3 M1(1)=X(1,1)*M2+M1(1) M2(1)=X(2,1)*M2+M1(1) M3(1)=X(2,1)*M2+M1(1) M3(1)=X(2,1)*M2+M1(1) M3(1)=X(2,1)*M2+M1(1) M3(1)=X(2,1)*M3(1) M3(1)=X(1,1)*M3(1) M3(1)=X(1,1)*M3(1) M3(1)=X(1,1)*M3(1) GC CALCULATE THE DECOSITION PATE G IME AFK @QGOSITY, AND DEPLITION OF THE DOPE C M1(1)=M2(1)*M3(1)*SMAD(1)*M3(1)*IFTALAS(1) I **PHOCOTI(1)*MMCLAS(1)*SMAD(1)*M3(1)*IFTALAS(1) GEN*(1)=M2(1)*SMAD(1)*SMAD(1)*ECCM*3(1) GEN*(1)=M2(1)*GNAS(1)*GNAS(1)*GNAS(1)*GENAS(1) GEN*(1)=M2(1)*GNAS(1)*GNAS(1)*GNAS(1)*GENAS(1) GEN*(1)=GCY2(1)*GNAS(1)*GNAS(1)*GNAS(1)*GELRPS DELECTION (MACCM*1)*GNAS(1)*M3(1)*M3(1)*GNAS(1)*M3(1)*M		
X(2,1)=X(2,1)/PX X(3,1)=X(3,1)/PX X(3,1)=X(3,1)/PX X(3,1)=X(3,1)/PX ENUIX(1)=X(1,1) ENUIX(1)=X(1,1) ENUIX(1)=X(2,1) ENUIX(2)=X(2,1) ENUIX(2)=X(2,1) ENUIX(2)=X(2,1) ENUIX(2)=X(2,1) ENUIX(2)=X(3,1) MI(1)=X(1,1)*MI/MM(1) M2(1)=X(1,1)*MI/MM(1) M2(1)=X(1,1)*MI/MM(1) M3(1)=X(1,1)*MI/MM(1) C CALCULATE THE DEGOSITION OF THE CODE C MYCIE(M3(1)-M3LAS(1))/OELTION OF THE CODE C MYCIE(M3(1)-M3LAS(1))/OELTION OF THE CODE C MYCIE(M3(1)-M3LAS(1))/MI/MM(1)/MI/MM(1)/MI/MM(1) ENDICOT(1)-M3/M3*GR3(1) GENZ(1)-M3/M3/M3/M3/M3/M3/M3/M3/M3/M3/M3/M3/M3/M		
X(3,1)=X(3,1)-Z(X) IF(J,6(1)+0C TC 740 ERUJX(1)=X(1,1) ERUJX(1)=X(1,1) ERUJX(1)=X(1,1) ERUJX(1)=X(1,1) ERUJX(1)=X(1,1) ERUJX(1)=X(1,1) H(1)=X(1,1)+H/+H(1) H(1)=X(1,1)+H/+H(1) H(1)=X(1,1)+H/+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1)+H(1) H(1)=X(1)+H(1)+H(1) GENT(1)=X(1)+H(1)+H(1) GENT(1)=X(1)+H(1)+H(1)+H(1) GENT(1)=X(1)+H(1)+H(1)+H(1)+H(1) GENT(1)=X(1)+H(1)+H(1)+H(1)+H(1) GENT(1)=X(1)+H(1)+H(1)+H(1)+H(1) GENT(1)=X(1)+H(1)+H(1)+H(1)+H(1) GENT(1)=X(1)+H(1)+H(1)+H(1)+H(1)+H(1)+H(1) GENT(1)=X(1)+H(1)+H(1)+H(1)+H(1)+H(1)+H(1)+H(1)+H		
IF (J. 67.1) CO TC 740		
EQUIX(1) = X(1,1) EQUIX(2) = X(2,1) EQUIX(3) = X(3,1) 742 CONTINUE MH (1) = X(1,1) *Mi + X(2,1) *M2 + X(3,1) *M3 MI (1) = X(1,1) *Mi + X(2,1) *M2 + X(3,1) *M3 MI (1) = X(1,1) *Mi + X(2,1) *Mi M3 (1) = X(3,1) *M3 / Mi M3 (1) = X(1) / Mi M4 (1) = X(1) / Mi M5 (1		
EDUIX(2)=X(2,1) 20UX(3)=X(3,1) 740 CONTINUE		
EQUIX(1)=x(3,1) 740 CONTINUE M(1)=x(1,1)*M1ex(2,1)*M2+x(3,1)*M3 M1(1)=x(1,1)*M1ex(1) M2(1)=x(1,1)*M2(M1) M3(1)=x(3,1)*M3(M1) M3(1)=x(3,1)*M3(M1) M3(1)=x(3,1)*M3(M1) M3(1)=x(3,1)*M3(M1) M3(1)=x3(1)+M3(1) M3(1)=x3(1)/M M3(1)=x3(1)/M C C CALCULATE THE DEFOSITION PATE G. IME AFK POCOSITY. AND PIRLITION OF THE CORE C M*C(1=(M3(1)*M3(1)*M3(A3(1)*M3(1)*M3(1)*(STALAS(1)) L*MCC(1)(1)*M3(1*STALAS(1)*M3(1)*M3(1)*(STALAS(1)) GEN2(1)=M2(1)*M3(M2*(SA(1)*M3(1)*M3(1)*(STALAS(1)) GEN2(1)=M2(M2*(SA(1)*M3(1)*M3(1)) GEN2(1)=M2(M2*(SA(1)*M3(1)) GEN2(1)=M2(M2*(SA(1)*M3(1)) GEN2(1)=M3(M3*GEN3(1)) C CALCULATE THE FUNCTIONS FOR PRESSURE INTERRATION G MGM3(1)=M3(1)*M3(1)*M3(1)*M3(1)*M3 F(1)=M3(1)*M3(1)*M3(1)*M3(1)*M3(1)*M3 F(1)=M3(1)*M3(1)*M3(1)*M3(1)*M3(1)*M3 F(1)=M3(1)*M3(1)*M3(1)*M3(1)*M3(1)*M3(1)*M3 GEN2(1)=M3(1)*M3(1)*M3(1)*M3(1)*M3 GEN2(1)=M3(1)*M3(1)*M3(1)*M3(1)*M3(1)*M3 F(1)=M3(1)*M3(1)*M3(1)*M3(1)*M3(1)*M3(1)*M3(1)*M3 F(1)=M3(1)*		
747 CONTINUE		
MM(1)=X(1,1)+M1+X(2,1)*M2+X(3,1)*M3 H1(1)=X(1,1)+M1-M4(1) M2(1)=X(2,1)+P1-M4(1) M2(1)=X(2,1)+P1-M4(1) M2(1)=X(2,1)+P1-M4(1) M1(1)=M1(1)+M3(1) M1(1)=M1(1)-M3(1) M1(1)=M1(1)-M3(1)-M3(1) C		
#1(1)=X(1,1)*P1/MH(1) #2(1)=X(2,1)*P2/MH(1) #3(1)=X(2,1)*P2/MH(1) #3(1)=X(2,1)*P2/MH(1) #3(1)=X(2,1)*#1/MH(1) #3(1)=X(1)/M #3(1)=X(1)/M #3(1)=X(1)/M #3(1)=X(1)/M #3(1)=X(1)/M #3(1)=X(1)/M GC CALCULATE THE BECOSITION PATE G IME AFM OCCCITY, AND DEPLITION OF THE COPE #3(1)=H3(1)-H3(AS(1))/DELTAY GEN?(1)=H3(1)*FTALAS(1)*POOLAS(1)*H3(1)*(FTALAS(1)) 1 *PHCODI(1)+PHCLAS(1)*TADTL(1)+SELNXS(1) GCN*(1)=-M3/M3*GCN3(1) GCN*(1)=-M3/M3*GCN3(1) GCN*(1)=-M3/M3*GCN3(1) GCN*(1)=-M3/M3*GCN3(1) GCN*(1)=-M3/M3*GCN3(1) GCN*(1)=-M3/M3*GCN3(1) GCN*(1)=-G1N2(1)-GSN3(1)-GCN4(1) GREGIT=-D1/F1*GCTL(CMP1) DREGIT=-D1/F1*GCTL(CMP1) DREGIT=-D1/F1*GCTN*(1)/PHOC(1)-ETAOOT(1)*CELRPG DELPP=-CELRPL+COPOOT*-DELTAY DELCRECERD1/PD RAD(1)=RAC(1CMP1)*DELCR C CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION G MBARI=2.0*M1(1)*M1+M2(1)*M2+M3(1)*M3 F(1)=STA(1)*M1(1)*PAO(1)*MPAQ1/T(1) C C**********************************	742	
#2(1)=X(2,1)*P2/MH(1) #3(1)=X(3,1)*P3/MH(1) #=M1(1)+M2(1)+M3(1) #1(1)=M1(1)/M #2(1)=M2(1)/M #2(1)=M2(1)/M #2(1)=M2(1)/M #3(1)=M2(1)/M #3(1)=M2(1)/M #3(1)=M2(1)/M G. CALCULATE THE DEGOSITION PATE G. IMB AFK GOGGSITY. AND DEPLITION OF THE COPE C #7CI=(M3(1)-M3LAS(1))/OELTAU GEN?(1)=M2(TWETALAS(1)*PMOLAS(1)*M3(1)*(ETALAS(1)) 1. TPMCCOT(1)+M2AS(A)*TADTL(1)+M2AN3(1) GEN2(1)=M23/M3*GEN3(1) GEN2(1)=M23/M3*GEN3(1) GEN2(1)=M23/M3*GEN3(1) GEN2(1)=M23/M3*GEN3(1) GEN2(1)=M23/M3*GEN3(1)-GENG(1) ETAGGI(1)=TAGGILLCMG1) ETAGGI(1)=TAGGILLCMG1) CREATE TAGGILLCMG1) DREADI=DELP2**GENG(1)/PMOC(1)-ETAGGI(1)*DELREG DELP3*CELP3**GENG(1)/PMOC(1)-ETAGGI(1)*DELREG DELP3*CELP3**GENG(1)/PMOC(1)-ETAGGI(1)*DELREG C CALCULATE THE FUNCTIONS FOR GRESSURE INTEGRATION G. MEARI=2.0*M*(1)/M1+M2(1)/M2+M3(1)/M3 F(1)=ETAG(1)*MH(1)*PAG(1)*MPAG1/T(1) C C**********************************		
M3(1) = X(3,1) + M3/M(1)		•
H=M1(1)+M2(1)+M3(1)		
#1(1) *#1(1) /# #2(1) *#2(1) /# #2(1) *#2(1) /# #2(1) *#2(1) /# #3(1) *#3(1) /# C		
#2(11=#2(1)/# #3(1)=#3(1)/# C		
#3(1)=#3(1)/# C		W1(I)=W1(I)/W .
C CALCULATE THE DEFOSITION PATE C THE AFK POSOSITY, AND DEPLOTION OF THE COPE C HTCLE(H)(I)+H3LAS(I))/DELTAY GEN(I)=H3CITETALAS(I)*PHOLAS(I)*H3(I)*(ETALAS(I) 1 *FHCCOY(I)+HCLAS(I)*STACTL(I))+CELNES(I) GEN (I)=HCANTA**GEN3(I) GEN (I)=HCANTA**GEN3(I) GEN (I)=HCANTA**GEN3(I) GEN (I)=HCANTA**GEN3(I) GEN (I)=HCANTA**GEN3(I) DEFOCITE THE FUNCTIONS FOR PRESSURE INTEGRATION GEN (I)=HCANTA**GENA(I)/M2+H3(I)/M3 F(I)=ETA(I)*M1(I)*M2+H2(I)/M2+H3(I)/M3 F(I)=ETA(I)*M1(I)*M2+H3(I)/M3+H3(I)/M3 F(I)=ETA(I)*M1(I)*M2+H3(I)/M3+H3(I)/M3 C C SOLVE ENERGY EQUATION FOR SHELL MATERIAL C LEWISLEMH1 750 DO 900 I=LPH,LS CFS(I)=CFS(HNOS(I)=HOSI KS(I)=CS(I) KS(I)=CS(I) KS(I)=CS(I) KS(I)=CS(I)		
C		H3 (I) = N3 (I) / M
C	C	<u> </u>
C HTC[=(M3(I) -M3LAS(I)) / DELTAU GENT(I) = W3CI*ETALAS(I) * PMOLAS(I) + W3(I) * (ETALAS(I) L * FHCEOI(I) + PMCLAS(I) * PMOLAS(I) + PCELNIS(I) GEN (I) = M23/M3 * GEN3(I) GEN (I) = M23/M3 * GEN3(I) GEN (I) = GENZ(I) - GENZ(I) - GENZ(I) ETACI(I) = CTACCILCWCI) CORECOI = DEL PETACOILCWCI) DRECOI = DEL PETACOIN + CONOCTH + DELTAU GELCH = CELCHOL + CMMOLAND + CMMOLAN	Ç	CALCULATE THE BEFORITION PATE
GEN7(1)=H3CT*ETALAS(1)*PMOLAS(1)+H3(1)*(ETALAS(1)) 1	<u></u>	THE NEW PORCETTY. AND DEPLETION OF THE COPE
GEN7(1)=H3CT*ETALAS(1)*PMOLAS(1)+H3(1)*(ETALAS(1)) 1	C	
#FHCCQT((1)+DHCLAS(1)*ETABTL((1))+CELMES(1) GCT L(1)=-ME3/M3*GEN3(T) GFN2(1)=M2/MF2*(-3.0*M62/M3*GEN3(I)) GEN1(1)=-GCT2(1)-GENS(I)-GENS(I) ETABCI(I)=ETAGCT(LCMP1) STA(I)=ETA(LCMP1) OREGIT=-DELX=L*GEN4(I)/PHOC(I)-ETAGGT(I)*CELRPG DELRP=CEL@-DFLPD RAD(I)=RAC(LCMPI)*OSLOR C		
GEN4(I)=-ME3/M3*GEN3(I) GEN2(I)=M2/ME2*(-3.0*M62/M3*GEN3(I)) GEN1(I)=-GIN3(I)-GEN3(I)-GEN4(I) ETAOCI(I)=:TACCI(LCM01) ETAOCI(I)=:TACCI(LCM01) OREGGI=-DELR=L*GEN4(I)/PHOC(I)-ETAOOT(I)*DELRPG DELRH-CELQUL+CGONOIT*SELTAU DELCH-EFLR-DSLPD RAD(I)=RAC(LCMM1)*DSLOR C C CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION C MEARI=2.0*M1(I)/M1+H2(I)/M2+H3(I)/M3 F(I)=STA(I)*M1(I)*PAO(I)*MPAR1/T(I) C C+++++++++*************************		GENZ(I)=WZCT*ET4L4S(I)*RMOLAS(I)*WZ(I)*(FTALAS(I)
GEN4(I)=-ME3/M3*GEN3(I) GEN2(I)=M2/ME2*(-3.0*M62/M3*GEN3(I)) GEN1(I)=-GIN3(I)-GEN3(I)-GEN4(I) ETAOCI(I)=:TACCI(LCM01) ETAOCI(I)=:TACCI(LCM01) OREGGI=-DELR=L*GEN4(I)/PHOC(I)-ETAOOT(I)*DELRPG DELRH-CELQUL+CGONOIT*SELTAU DELCH-EFLR-DSLPD RAD(I)=RAC(LCMM1)*DSLOR C C CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION C MEARI=2.0*M1(I)/M1+H2(I)/M2+H3(I)/M3 F(I)=STA(I)*M1(I)*PAO(I)*MPAR1/T(I) C C+++++++++*************************		L_MFHCCOT(I)+PHCLAS(I)*ETACTL(I)1+CELNES(I)
GEN1(I)=-GEN2(I)-GEN3(I)-GEN4(I) ETAOCT(I)=ETAGCT(LCM91) ETA(I)=ETA (LCM91) DREQUI=-DEL PTAGEN4(I) / PHOC(I) - ETAOOT(I) * CELRPG DELRE-CELQ-L+GENDOT* DELTAU DELCH-CELR-DELRE RAD(I)=RAC(LCHM1) + OSLOR C C C CALCULATE THE FUNCTIONS FOR PRESSURE INTESRATION G WBAR1=2.0*M1(I) / M1+H2(I) / M2+W3(I) / M3 F(I)=ETA(I)*MN(I)*PAO(I)*WAR1/T(I) C C++++++++* ELEMENT 5 ***********************************		
GEN1(I)=-GEN2(I)-GEN3(I)-GEN4(I) ETAOCT(I)=ETAGCT(LCM91) ETA(I)=ETA (LCM91) DREQUI=-DEL PTAGEN4(I) / PHOC(I) - ETAOOT(I) * CELRPG DELRE-CELQ-L+GENDOT* DELTAU DELCH-CELR-DELRE RAD(I)=RAC(LCHM1) + OSLOR C C C CALCULATE THE FUNCTIONS FOR PRESSURE INTESRATION G WBAR1=2.0*M1(I) / M1+H2(I) / M2+W3(I) / M3 F(I)=ETA(I)*MN(I)*PAO(I)*WAR1/T(I) C C++++++++* ELEMENT 5 ***********************************		GEN2(1)=M2/ME2*(-3.0*H62/M3*GEP3(1))
ETACT(1)=TAGCT(LCM21) STA(1)=TA(LCM21) OREGOT==DELTEL*GEN4(1)/PHOC(1)=STACOT(1)*DELRPG DELRP=DELPPONOT*DELTAU DELCR=DELPPONOT*DELTAU CC CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION C WBART=2.0*H1(1)/M1+H2(1)/M2+H3(1)/M3 F(1)=TA(1)*MH(1)*PAO(1)*HPART/T(1) CC C++++++++* ELEMENT 5 ***********************************		
ETA(I) = FTA(LONG1) OREGIT = - DEL PEL * GEN4(I) / PHOC(I) - ETAOOT(I) * CELREG DEL RE-CELQUIL + OS PONT * DEL TAU DEL CH = CELQUITE - DEL PD RAD(I) = RAC(LCMM1) + DEL CR C C C CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION C W84 R1 = 2.0 * M (1) / M1 + M 2(I) / M2 + M 3(I) / M3 F(I) = ETA(I) * PM (I) * PAO(I) * M PAR 1 / T (I) C C *********************************		
OREGOT==GELR=(I)/RHOC(I)-ETADOT(I)*CELRPG DELRP=CELRPL+CRPDOT+DELTAU DELCR=CELR-DELRP RAD(I)=RAC(LCWMI)+DELOR C C CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION G WEAR1=2.0*W:(I)/M1+W2(I)/W2+W3(I)/M3 F(I)=ETA(I)+MH(I)*PAD(I)*WPAR1/T(I) C C++++++++++++++++++++++++++++++++		
DELRP=CELQPL+GQPOOT*DELTAU DELCR=CFLR=OFLPP		
######################################		
RAD(1)=RAC(LCMP1)+DELCR C		·
C CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION C. WBAR1=2.0*W1(I)/M1+W2(I)/M2+W3(I)/M3		
C CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION WHEART=2.0*W1(I)/M1+H2(I)/M2+W3(I)/M3 F(I) = TA(I) * PA(I) * PA(I) * WAR1/T(I) C C C*********** ELEMENT 5 ****************************** C SOLVE ENERGY SOUATION FOR SHELL MATERIAL C LEWET=LPW+1 750 DO 900 I=LPW,LS CFS(I)=CFS1 RHOS(I)=CHOS1 KS(I)=TGS1	C	THE STATE OF THE S
C		CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION
F(I) = ETA(I) * PH(I) * PAD(I) * WPAR1/T(I) C C++++++++ ELEMENT 5 * * * * * * * * * * * * * * * * * *	č	The control of the co
F(I) = ETA(I) * PH(I) * PAD(I) * WPAR1/T(I) C C++++++++ ELEMENT 5 * * * * * * * * * * * * * * * * * *		WB4R1=2.0*W1(II)/M1+W2(I)/M2+W3(I)/M3
C C++++++++ ELEMENT 5 **************** C C SOLVE ENERGY EQUATION FOR SHELL MATERIAL C LEMPICLOW+1 750 DO 900 I=LDH,LS CFS(I)=CFS1 RHOS(I)=GHOS1 KS(I)=TGS1		and the same of th
C******** SLEMENT 5 ***********************************		
C C SOLVE ENEPGY SOUATION FOR SHELL MATERIAL C LEWPI=LPW+1 750 DO 900 I=LPW,LS CFS(I)=CFS1 RHOS(I)=9H051 KS(I)=TGS1	_	· 其我有我在 我,他你就就我 我 我会看我我看着我看着我的一个女子的
C SOLVE ENERGY EQUATION FOR SHELL MATERIAL C		A STATE OF THE STA
C	č	COLUS ENERGY CONTACTON FOR SHELL MATERIAL
Ltw=1=Lpw+1 750 00 900 I=Lpw,LS CFS(I)=CFS1 RHOS(I)=94051 KS(I)=TGS1		SOFAE SHELDI SKOHITON FOR SUSEE WHISTING
750 DO 900 I=LPW,LS CFS(I)=CFS1 RHOS(I)=9H051 KS(I)=TGS1	u	(FURT - LOWAY
CFS(I)=CFS1 RHOS(I)=9H051 KS(I)=TGS1		
KS(I)=4021 KS(I)=4021		- ,
KS(I)=TCS1	· · · · · · · · · · · · · · · · · · ·	
V / 1 1 = V C / T 1		
		K(I)=KS(I)
ALPHAS(1)=KS(1)/(PHCS(1)*CPS(1))		
800 TMCO(I)=ALFHAS(I)*DELTAN/DEL7**2.0	900	TMCG(I)=ALFHAS(I)*DELTAU/DEL?**2.0

OO AGJ I=LPMF1.NRE
IMINUS=I-1
IPL((S=I+1
IF (IMINUS-LOW) 805, 805, 806
SUS DELS=CELP
DTLX=CFLPS
DPCS=CFLX/MELS
DSCF=DFLSYCFLX
KLAS(LEM)=KSLPW
GO TC 43)
866 CONTINUE
IF (I-NFC) 810, 820, 820
810 DELS=CELR
DELX=C-F6
OPOS=1.0
OSCP=1.0
GG TC 930
820 DELS=CELSP
ORDS=GELR/DELS
OSCG=CEL5/QELQ
870 CCATINUE
CELKS(I) = ((KLAS(IPLUS) - KLAS(I)) + OPDS+ (KLAS(I) -
1 KLAS(IMINUS))*OSD?)/(DELS+OELX)
DTL1=TLAS(I)-TLAS(IMINUS)
OTL2=TLAS(IPLUS)-TLAS(I)
Druf(I) = (DTL2*PPGS*DTL1*PSGP) / (DELX*DFLS)
LAPLT(I)=2.0*(CTL2/OFLS-DTL1/OFLX)/(OFLS+OSLX)
TOOT(I) = AL THAS/I) + (DELT(I) / PAD(I) + LAP(T(I)) + 1.0/(RHOS(I)
1 + CFS(I))+05LKS(I)+05LT(I)
IF(I+N3E)A+0,850,850 A40 T(I)=TLAS(I)+O5LTAU*TDOT(I)
GC 10 #68
0.5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1 / (PMOS(I) *CPS(I)) / (OELS+DELX) * ((K(I) /PAD(I)
2 +CELKS(1)) * (CPDS*T(IPLUS) -DSDR*T(IMINUS)) +2.0*K(1)
3 * (f(IELUS) / CELS+T(IHINUS) / DELX))) / (1.6
4 +DELTAMIZ.0/(CELS+DELX)/(RHOS(I)+CPS(I))*((K(I)/RAD(I)
5 +CELKS(T))*(CROS+3S9R)+2.C*K(T)*(1.0/DEL3+1.0/DFLX)))
860 CONTINUE
C
C
Č · · · · · · · · · · · · · · · · · · ·
C SOLVE THE EQUATIONS FOR THE SHELL INTERFACE
Ċ
I=LFW
L FWF2=LPW+2
î bhtiafbh+i
FEMAS=feM+S
Lemwi=for-i
£TALAS(I)=ETAO
c
C CALCULATE SPACE DERIVATIVES
C CALCULATE SPACE DERIVATIVES
OF LEICI) == (M1LAS(LEMM1) =M1LAS(I))/DELOS
RELHZ(I) =- (WZLAS(LOWMI) -WZLAS(I))/DELPR
NELW3(I)=-(N?LAS(LFHM1)+W3LAS(I))/OFLFF
DELX1(I) =- (XLAS(1.LPHM1)-XLAS(1.I))/DELPR

```
OFLX2(E)=-(XLAS(2-LPWM1)-XLAS(2-F))/OFLPR
       <u> DSLX3(I)=-(XLAS(3,LPH41)-XLAS(3,I))/DFLPP</u>
       DELT(I)=((TLASTLPHOL)-TLAS(LOW)) # CELOGYCELOS
   1 + (TLAS(LPW) -TLAS(LPWML)) + CELAS/CELPP)/(DFLRS+CELPP)
         CALCULATE CENSITY AND VELOCITY
       <u>R=0.7302</u>
       RMC(I)=PLAS(I)*NW(I)/(R*TLAS(I))
       V(I)=(N1ELAS(I)+N2ELAS(I)+M3FLAS(I))/PHO(I)
C
         CALCULATE FLUXES FROM OLD VALUES
       CALL CIFF
       OMCO1(1)=DiM(I)+DELTAU/DELF9**2.5/ETALAS(I)
       DMOG3(I)=P3M(I)*PELTAU/DELF9**2.D/ETALAS(I)
       MOFLX(1,1)=-PHC(1)*D1M(1)/MH(1)*87LX1(1)+XLAS(1,1)*1CTM0F(1)
       MOFL×(2,1)=-FHC(I)*D2M(I)/MM(I)*DELX2(I)+XLAS(2,1)*TOTMOF(I)
       MOFLX(3,1)=-FHC(1)*03M(1)/MH(1)*DELX3(1)+XLAS(3,1)*TOTMOF(1)
       TOTMOF(I) = MOFLX(1.I) + MOFLX(2.I) + MOFLX(3.I)
       NIE (I) =MOFLX (1+I) *M1
       N25 (1) =MCFLX (2.1) *42
       MSE (I) SMOFLY (3-I) EMS
      FLUXJ1(I)=N15(I)=H1LAS(I)+RH0(I)+V(I)
       FLUXUS(I)=MSE(I)=WSLOS(I) #PHO(I) #V(I)
      FLUXU3(1)=N3E(1)-H3L4S(1)+PH0(1)+V(1)
         CHECK ACCUPACY OF THE DIFFUSION EQUATION
       IF (495 (TCTMOF (I)) -0.0) 861,861,962
      IFST1 (I) =1 .0
       TEST2(I)=1.8
       <u> 15 $ 1 3.7 12 = 2.40.</u>
      60 TO 367
  862 CONTINUE.
       DO 965 II=1.KKK
       SUMDIF(II.I)=0.0
      00 - 655 JUH1 - KKK
      IF(II=JU)564,863,364
  96? OIF(II,JJ)=0.0
      <u>50 IO 965</u>
  864 DIF(II,JJ)=(XLAS(II,I)*MOFLX(JJ,I)-XLAS(JJ,I)*MOFLX(II,I))
        865 SUPDIF(II+I) = DIF(II+JJ) + S'MOIF(II+I)
      IF (DISOPT.CO.1)50 10 464
      SUMBIF(II.I) = SUMBIF(II.I) - MOFLX(II.T) / (DX(II.I) * RPC(I) / PX(II))
  _a66_CONTINUE_
       TEST1(I) =DELX1(I)/SUMDIF(1,I)
       TEST:(I) =OELX3(I) /SUMDIF(3+I)
ERT CONTINUE
       _ SOLVE_SPECIES_I_CONSERVATION_EQUATIONS____
       #HCBOT(I)=1.0/FTAL45(I)*(PAD(LPHM1)/RAE(I)*THO(LPHM1)
     1 *V(LPHM1)/DELFR-(RHO(I)-RHOC(I))*ETABTL(I)+(ETALAS(I)
```

```
2 *9HO(1) -PHOC(1)*(1.3-ETA0+ITALAS(1)))/OFLFP*0PROOT)
    #1DOT(I) =1.0/(ETALAS(I) + PHG(I)) + (SEN1(I) - TTALAS(I)

1 *W1LAS(I) * PHOCOT(I) + N1ELAS(LPWM1) * PAC(LPWM1) / PAG(I) / DFLPR
     2 -WILAS(I)*PHO(I)*EFAOFL(I)-RHG(I)*IfELAS(I)*MLL4S(I)
3 *CE42CT/CrL=R)
    (I) 2A1A75+(I) $M5D) * ((I) CH9*(I) 2A1A75)\0.1=(I) TODSH
1 *W401) 7C5*(1MW41) 2A15C4+(I) TOZOH5*(I) 2A15W
       -WZLAS(I)*RHG([:*ETAGTL(I)-RHG(I)*ETALAS(I)*WZ_AS(I)
     3 *CPRCOT/DELFR)
      W3EOT(I) =1.0/(ETALAS(I)*RHO(I))*(GEN3(I)-ETALAS(I)
    1 *HJLAS(I)*RHODOT(I)+NJELAS(LPHM1)*PAD(LPHM1)/RAD(I)/DTLPR
      -W3L4S(I) *9HO(I) *ETAOTL(I) +9HC(I) *FTALAS(I) *H3LAS(I)
    3 *DERECT/DELER)
        CALCULATE PHYSICAL PROPERTIES
      COF(I)=CFP1+CFF2*TLAS(I)+CPG3/TLAS(I) **2.0
     C=C(I)=C=C1+CPC2*TLAS(I)+CPC3/TLAS(I)**2.0
HC(I)=CPC1*(TLAS(I)+TBASE)+C=C2*(TLAS(I)**2.0+TBASE**2.()+
     1 CFC3*(1.0/TLAS(I)-1.0/TBASE)+HC3
      HS(LFWF1)=CPS1*(T(LPMP1)-TR4SE)+CFS2+
     1 (T(LPMP1)**2.9-T03SE**2.0)-
    2 CPS3* (1.EVT(LPHP1)-1.0VTPASE) +HS9
      9H0C(I)=#H0C1+*H0C2*TL4S(I)+PH0C3*TL4S(I)**Z.0
      RHOP(I)=FHAC1
      00 8640 KK#1.KKK
      P. 11(1) 2437=(1) 2417
      IPASE=TBASE/1.9
      CFG(KK)=CFG1(KK)+CFG2(KK)+TLAS(I)+CFG3(KK)+TLAS(I)++2.0
    1 +CP94(KK)+TLAS(I)++3.0+CPG5(KK)/TLAS(I)++2.0
HG(KK)+CPG1(KK)+(TLAS(I)+TRASE)+CPG2(KK)/2.0+(TL4S(I)++2.0+TRASE++
    1 2.0) + CPG7 (KK) /3.0+(TLAS(I) ++3.0-TB4SE++7.0++HGVAPQ(KK)
2 +C=G4(KK) /4.0+(TLAS(I) ++4.0-TB4SE++4.1)-CFG5(KK) *
     3 (1.0x1LAS(1)-1.0x18ASE)
      TBASE=TBASE=1.0
      TRETLAS(I)/E(KK)
      CCLINV(KK)=1.0/(CIV1*(1.0+CIV2*4LCG(TR)))
      TLAS(I)=TLAS(I)+1.4
      MUG(KK)=2.6593E-5*(M(KK)*(TLAS(I)/1.*))**0.5/(SIG(KK)**2.0
      . foolinv(kk))
     ==1.587
      <u>kg (xx) = (cfg (kk) +1 , 25 + R) /m (kk) + MUG (kk)</u>
     MUG(4K)=MUG(KK)+2.4191502
      KG(KK)=KG(KK)+2.4175-02
BEAD CONTINUE
     IŢ≡Ç
     MU(I)=0.0
     CF(1)=0.0
     KM(I)=0.0
     H(I) = 0.0
     DO 8669 II=1.KKK
      JJ=3
     SUMX FH = 0.0
     00 8650 JJ=1.KKK
     PHI(II.JJ)=(0.125)**J.5*(1.3+(%(II)/%(JJ))**(-0.5))*
    1 (1.3+(MUG(TI)/MUG(JJ))++0.5+(*(JJ)/M(II))++0.25)++2.0
     (LL, II) IHC* (I, LL) ZALX= (LL) IHCX
```

	SUMXF4=XPHI(JJ)+SUMXP4 -
86	50 CONTINUE
	X<=XL4S(II,I)*KG(II)/SUMXPH
	X~U=XLAS(II+I)*MUG(II)/SUMXGH
	XHG=XLAS(II:1)+HG(II) KM(I)=XK+KM(I)
	Mn(1)=X40+An(1)
	CF(I)=XCFG+CF(I)
	H(I)=XHG+H(I)
	HG(II)=HG(II)/M(II)
AFF	A CONTINUE
· · · · · · · · · · · · · · · · · · ·	CP(I)=CP(I)/MH(I)
	H(I)=H(I)/MY(I)
	FACTK(I)=1.8-TTALAS(I)*EXF(-1.5/ETALAS(I))-(1.3-ETALAS(I))
	1 *EXF(-1.0/(1.0-FTALAS(I)))
	KF(I)=TCF1+TCF2/TLAS(I)
	EPS(I)=2SP
	KPG(I)=0.697*59S(I)*PARTO*TLAS(I)**3.0/30.84E12
	KP(I)=(1,0-EIALAS(I))/(1,0/KP(I)+1.0/KP(I))+EIALAS(I)**P(I)
	KE(I)=(1.0-ETALAS(I))*KP(I)*EXP(-1.0/(1.0-ETALAS(I)))+STALAS(I)
	1 *(KM(I) +KP(I)) *(EXP(-1.0/:TALAS(I)) +FACTK(I) **R.0/:TALAS(I)
	^ 2 **2.U/(1.5-EXF(-1.0/ETALAS(I)))
	K(I)=K5(I)
. С	·
C	SCUYE FRERGY COUATION
С	
	SUM1(I)=(HG(1)*H1DOT(I)+HG(2)*H2DOT(I)+HG(3)*H3DOT(I))*FTALAS(I)
	1 *FHC(I)
	SUM2(I)=(MG(1)*QFLM1(I)+HG(2)*QELW2(I)+HG(3)*QS-M3(I))*PHQ(I)*
	1 VLAS(I)
	SUM3(1) =HG(1)*FLUXJ1(1)+HG(?)*FLUXJ2(1)+HG(3)*FLUXJ3(1)
	ARGERTETALAS(I)*(RHO(I)*H(I)*-PLAS(I)/0.7676) 1EHCC(I)*-HC(I)*1.0/0.3676
	PRG2+D=ETALCS(I)+H(I)+0EL=R
	ARGEIA=DELPR*(P(I)=PHO(I)-P(I)/0.7675)
	1 -CELF=0+(HC(I)+FH3C(I)-1.0/2.3676)
	49GP=FT4L69(1)*DELEP
	ERC=ETALAS(I) ** HO(I) *CP(I) *DELPR+(1.0-FTA0) *
	1 DEL=30*CFP(I)* 3H03(I) +DELRSQ*FH0S(L3WS1)*CPS(L3W91)+
	2 (£140-E14145(1)) ***H3C(I) *C*C(I)*DEL*PF-
	3 (GELER-OFLEPS)*CPS(T)*PHOC(I)
	T#GO(1)#K(1)/SPC#07LTAU/03LPR##2.0
	<u> </u>
	1 K(L#WM1)*T(LPWM1)/DSL#R0)+R4O(L#WP()/P#AJ(I1*K(L#WP1)
	2 *I(LEMP1)/OLLESS-ARGETA*ETATTL(1)-ARGEHC*RHODOT(1)
	3 -ARGER*CPFOOT+APGF*POOT)/ERC)/(1.8+DELTAU*(RAC(LPWM1)/RAO(I)
	4 *K(FEMMI)/DEFESO+600(FEMBI)/660(I)*K(FEMBI)/DEFESO)/EBC)
C	
<u> </u>	CALCULATE THE EQUILIBRIUM CONSTANT AND THE
C	CEFCSITION INDEX
C	- A
	LOGKEG(I) = XEQ1+KEQ2/(T(I)/1.8)
	KEQ(I) = EXF(LOGKEQ(I) + 2.303)
C	OF TECHTURE TO BEROCITION HAD ARCHITED
<u> </u>	DETERMINE IF DEPOSITION HAS CCCURED
C	

3-1 7763	
P=C.7362 DINGSX(I)=1.C/(XLAS(1.I)+XLAS(3.I)/XLAS(2.I)++3.G+9LAS(I))	
IF(ICI1(I)-1)869-870-870	
969 IF(0]AGEX(I)-KEG(I))370,870,973	
87C CONTINUE	
ICT1(I)=1	
C	
C SOLVE SIMULTANEOUS EQUATIONS FOR MOLE PRACTIONS	
C AND CALCULATE THE NEW POPOSITY	
c	
W1(I)=(W1LAS(I)+DELTAU/2.0**10CT(I)+DELTAU/2.0*(GEN1(I)	
1 +PAC(LPHM1) /RAD(I) *M1/NELP2* (RHO(LEHM1) *C14(LEHM1)	
2 /MH(LPWM1) + (X(1.L9WM1) *0EL9/07L89+(X(1.L9WM2)	
3 X(1.2 PWM1)) +DFL03/DEL0)/(DEL0+07L50) +X(1.4 L0WM1)	
4 *TOTHOR (LOWMID) > /(ETALAS (I) *RHO(I) >) /(1.0+0EL TAN	
5 /2:5* (RAD (LPHM1) /RAD (I) *PHD (LPHM1) *D14 (LPHM1) /	
6 MW (LPWM1) * MELPYMELPY / (DELR+DELPY) * MW (I) / DELPR+	
7 RHC(I)*(EIMATL(I)+ETALAS(I)*GEREGIT/DELPP)+	
8 ETALAS(I)*RHOCOT(I))/(ETALAS(I)*RHO(I)))	
X(1,T)=W1(T)*MW(T)/M1	
HE(I)=HHELAS(I)+DELTAM/2.0*MYDOT(I)+DELTAM/2.0*(GENE(I)	
1 +PAC(LPHM:) /PAN(I) *M3/NELP?* (PHO(LPMM1) *D3M(LPMM1)	
2	
3 X(7.LEWM1)) *GFLPP/D1LP)/(GFLF+DFLFF) +X(7.LPHM1) 4 *TGTMOF(LPMM1)))/(EFAL55(1)+RHO(E)))/(1.0+PELTAU	
5 /2.2*(P4D(LPkM1)/3AD(I)*PHD(LPAM1)*DEM(LPAM1)/	
9 MM (FEMMI) + CEFEN NOSFONN (CEFEN JEFEN) + MM (I) NOSFENSF	
7 PHC(I)*(=TANTL(I)+FIALAS(I)*DFROST/DELFP)+	
8 ETALAS(I) + RHCCOT(I)) / (ETALAS(I) + PHO(I)))	
x(3,1)=43(1)/M3*M4(1)	
APGX2=X(1.1)*X(3.1)*KEO(1)/FLAS(1)	
IF (ARGX2.LT.0.0)GO TO 872	
x(2,1)=ARGX2**CUMM	
GO TG 977	
872 X(2.1)=-(L95(AFGX2))**DUMM	
973 DX=X(1,1)+X(2,1)+X(3,1)	
x(1,1)=x(1,1)/0X	
X (2-1) =X (2-1) /FX	
X(5*1)=X(5*1)\(\)\(\)	
MW(I)=X(1,J)*M1+X(2,I)*MZ+X(3,I)*M3	
W1(I)=X(1+I)+M1/MH(I)	
W2(I)=Y(2-I) YM2/MM(I)	
W7(I)=X(3+I)=M3/HW(I)	
H=H1(I)+H2(I)+H3(I) H1(I)=H1(I)/H	
M5(I)=M1(I)>M	
M2(I)=#3(I)/M	
WICT=(H3(1)+H3LAS(1))/CELTA'I	
GEN3(1)=WZFT*ETAL4S(1)*RHO(1)+W3(1)*(ETALAS(1)	
1 *RHCQOT(I) +RHC(I) *ETADTL(I)) +PELN35(I)	
GEN4(1)=-ME3/M3*GEN3(1)	
SUMGER (I) = SUMGEL (I) +GENG (I)	
IF(SUMSEN(I)+0.0)8874,8874,8975	
9874 GENA(I)=+S114GEL(I)	
GEN3(I)=-M3/ME3*GEN4(I)	
1CT1(I) = 0	
9975 GEN2(I)=M2/ME2+(-3.0*ME2/N3+GEN3(I))	

	GFN1(I) =-GEN2(I) -GEN3(I) -GEN4(I)
	ETA(I) = ETA(LGHM1)
	ETAGGT(I)=0.0
0.25	60 TC 985
	CONTINUE
<u>-</u> -	NC REACTION MAS OCCURED. CONTINUE
C .	NE REACTION PAS DECOMED CONTINGE
c	AND
	W1(I)=W1EAS(I)+W1OJT(I)*DELTAU
	W3(I)=W3LAS(I)+W3OOT(I)*DELTAU
	W=H1([)+H2([)+H3([)
	H1(I)=X1(I)/W H2(I)=W2(I)/W
· · · · · · · · · · · · · · · · · · ·	W3(I)=W3(I)/W
	MU(I)=1.0/(W1(I)/M1+W2(I)/M2+W3(I)/M3)
	x(1,1)=W1(1)*MM(I)/M1
•	X(2.[)=W2(I)*MH(I)/MZ
	X(3,I)=W3(I)+WH(I)/M3
	ΓX=X(1,1)+X(2,1)+X(3,1)
	X(1,I)=X(1,I)/DX
	X(2,1)=X(2,1)/OX
-	X(3,1)=X(3,1)/CX
	GEN1(I)=0.0
	GEN2(1)=0.0
	SEN3(I)=0.0
	GFM4(1)=0.0
	E14001(1)=3.0
	ETA(1) = ETALAS(1)
0.00	CONTINUE
С	
C	CALCULATE CHANGE IN HALL INICK. CUS TO DESCRIT.
C	
	OPPOCT=-(DFLPEDISEN4(I)+FHOG(I)*OFLPEL*CTABOT(I))/
1	. (AHOC (I) * (IIA (I) +1.0-ETA0))
	DELFF=CELFFL+GPROQT*DELIAU.
	RAD(I)=RAD(LPMF1)+DELPR
<u>c</u>	
C	CALCULATE THE FUNCTIONS FOR PRESSURE INTEGRATION
<u>c</u>	
	WPAR1=2,0+W1(I)/M1+W2(I)/M2+W3(I)/M3
	F(1)==TA(1)+PH(1)*RAN(1)+WPA01/1(1)
C	CALCULATE THE GUNSI-STEADY PRESSURE
<u>C</u>	CALLULAT: 17: WUIST-3:CANT
U	S0=6.0/P4PT0/30.94E04
	DO 891 I=LCW,LFW
	KAFFA(I) = ETA(I) **3.0/(2.5*(1.0/ETA(I)) **7.0*\$0**2.0
	, +(1.J-ETA(T))**2.0)
	DELP(I)=-MU(I)/XAB9A(I)*V(I)/(144.0*
	72.17*3600**2.01/14.7
	CONTINUE
	SUF=0.0
	DO 6647 I=LCH-LPH-2
	T1=I+1
	I2=I+2
	IF (I-LCH) 6494,6884,6885
	

6884	RINC=DELPF+DELR
	GO TO 6896
2002	RINC=2.0*OELR
	CONTINUE
06.00	
•	SUF=SUM+RING/6.0*(F(I)+F(I2)+4.3*F(I1))
	IF(I2-L0)6897-6893-6893
6887	BUALTARD
600	SUM=SUM+(F(LF)+F(LPW))/2.0*05LFR
	CONTINUE
• • • • • • • • • • • • • • • • • • • •	R=0.7302
	DO 6890 I=LCW.LPM
	P(I)=CCNTH+0/(2.0+PI*SUM)
5890	CONTINUE
	PDCT=(P(LPW)-PLAS(LPW))/(DELTAH+C.3576)
C	
C	CALCULATE CEFOSITION RATE. COATING DESCRITED.
C	COPE CEPLETEC. AND HEAT FLUX ALL AT THE WALL
ř	
	FLUX=-K(LPW)*CELT(LPW)
	SHONP=GENF (FEM)
	CORE1=(DELORL-C5LG2)+12.8+1000.8+1.8E06
	COFECF=(PELCF0-DELCR) *12.0F130C.3
	COAT1 = (DEL = EL = EL = E) *12.0 *1000.0 *1.0 E06
	COATTH=(CELFEB-DELPP)*12.D*1888.J
C	
c	CALCULATE DATA FOR THE ARNOLD SOLUTION
Č	
·	
	DO 643 I=LCW-LCM
	00 692 II=1,KKK
	CAEX(II, I) = (X(II, I) - XINIT(II))/(ITUIX(II) - XINIT(II))
	PZ(II+I)=(P4B(I)-P4B(LCW))/(ABS(4.0*DM(II+I)*TIME2))**6.5
	PZ(II+I)=(P4B(I)-P4B(LCW))/(ABS(4.0*DM(II+I)*TIME2))**6.5
हरू	PZ(II+I)=(P4B(I)-P4B(LCW))/(ABS(4.0*DM(II+I)*TIME2))**6.5
हरू	PZ(II,I) = (R4B(I) - RAB(LCW)) / (ABS(4.8*OM(II,I)*TIME2))**5.5 CONTINUE
हरू	PRILITIE (RAB(I) - RAB(LOW)) / (ABS(4.8*OM(II,I)*TIME2))**5.5 CONTINUE ESTABLISH OLD FROMERIES
हरू	PRILIT = (RAD(I) - RAD(LCW)) / (ABS(4.0+OM(II,I)+TIME2)) **5.5 CONTINUE ESTABLISH OLD FROMERIES KSLEN=KS(LCW)
हरू	PZ(II.I) = (R4B(I) - RAB(LCW)) / (ABS(4.8*DM(II.I)*TIME2))**5.5 CONTINUE ESTABLISH OLD FRODERIIES KSLPM=KS(LCW) DO 885 I=LCW.LCW
हरू	PRILIT = (R40(I) - R40(LCW)) / (A8S(4.0*OM(II,I)*TIME2))**5.5 CONTINUE ESTABLISH OLD FROMERIES KSLPM=KS(LCW) DO 885 I=LCW,LCW H15L4S(I)=M15(I)
हरू	PRILIT = (PAG(I) - PAG(LCW)) / (ABS(4.5*DM(II,I)*TIME2))**5.5 CONTINUE ESTABLISH OLD EROPERTIES KSLPM=KS(LPW) DO 885 I=LCW+L=W N15L4S(I)=M15(I) N25L4S(I)=M25(I)
	PRILIT = (248(I) - 248(LCW)) / (488(4.8*0M(II,I)*TIME2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPM=KS(LCW) 40 885 I=LCW+L=W 115L4S(I)=M15(I) N25L4S(I)=M25(I) N35L4S(I)=H35(I)
हरू	PRILIT = (PAB(I) - PAB(LOW)) / (ABS(4.5*DM(II,I)*TIME2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPM=KS(LOW) DO 885 I=LOW,L=M N15L4S(I)=M15(I) N25L4S(I)=M25(I) N35L4S(I)=M35(I) FLAS(I)=P(I)
हरू	PRILIT = (248(1) - 248(10)) / (488(4.8*0)*(11.1)*TIME2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPNEKS(LOW) BO 885 I=LOW.LEW H16L4S(I)=M15(I) N26L4S(I)=M36(I) FLAS(I)=P(I) ETALAS(I)=214(I)
हरू	PROLAS(I) = PUC(I) PROCERTIES KSLPM=KS(LOW) BO 885 I=LOW, LOW N15L4S(I) = M15(I) N25L4S(I) = M25(I) FLAS(I) = P(I) ETALAS(I) = P(I) RHOLAS(I) = P(I)
हरू	PRILIT = (248(1) - 248(10)) / (488(4.8*0)*(11.1)*TIME2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPNEKS(LOW) BO 885 I=LOW.LEW H16L4S(I)=M15(I) N26L4S(I)=M36(I) FLAS(I)=P(I) ETALAS(I)=214(I)
हरू	PROLAS(I) = PUC(I) PROCERTIES KSLPM=KS(LOW) BO 885 I=LOW, LOW N15L4S(I) = M15(I) N25L4S(I) = M25(I) FLAS(I) = P(I) ETALAS(I) = P(I) RHOLAS(I) = P(I)
हरू	PROPERTIES ESTABLISH OLD EROPERTIES KSLPMEKS(LOW) DO 885 I=LOW, LOW H15L4S(I)=M15(I) N25L4S(I)=H35(I) FLAS(I)=P(I) ETALAS(I)=P(I) H16AS(I)=P(I) H16AS(I)=P(I) H16AS(I)=P(I)
हरू	PRILIT = (248(1) - 240(LCW)) / (488(4.5*0)*(11.1)*TIME 2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPN=KS(LOW) DO 885 1=LOW.LOW H15L4S(1)=M15(1) N25L4S(1)=M25(1) FLAS(1)=M35(1) PLAS(1)=POC(1) H14AS(1)=POC(1) H14AS(1)=POC(1) W2LAS(1)=H2(1) W2LAS(1)=H2(1) W3LAS(1)=H3(1)
हरू	PRILIT = (248(1) - 240(LCW)) / (485(4.5*0)*(11.1)*TIME 2))**5.5 CONTINUE ESTABLISH OLD EROPERTIES KSLPN=KS(LOW) DO 885 I = CON.LCW H15L4S(I) = M15(I) N25L4S(I) = M25(I) FLAS(I) = M25(I) FLAS(I) = P(I) ETALAS(I) = P(I) H14AS(I) = P(I) W2LAS(I) = M1(I) W2LAS(I) = M3(I) SUML3(I) = SUM3(I)
हरू	PRILIT = (248(1) - 240(LCW)) / (485(4.5*0)*(11.1)*TIME 2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPN=KS(LOW) DO 885 1=COW.LCW H15L45(1)=M15(1) N25L45(1)=M25(1) FLAS(1)=M35(1) PLAS(1)=POG(1) H14A5(1)=POG(1) H14A5(1)=POG(1) W2LAS(1)=W3(1) SUNL3(1)=SUM3(1) XLAS(1.1)=X(1.1)
हरू	P7(II,I) = (248(I) - 240(LCW)) / (485(4.5*DM(II,I)*TIME2)) **5.5 CONTINUE ESTABLISH OLD EROPERTIES KSLPM=KS(LOW) DO 885 I=LOW,LOW N15L4S(I)=M15(I) N25L4S(I)=M15(I) N25L4S(I)=M15(I) FLAS(I)=P(I) ETALAS(I)=P(I) H1LAS(I)=P(I(I) W2LAS(I)=M1(I) W2LAS(I)=W1(I) W3LAS(I)=W1(I) XLAS(I,I)=X(I,I) XLAS(I,I)=X(I,I)
हरू	PACIFICITIES CONTINUE ESTABLISH OLD FROMITIES KSLPN=KS(LOW) DO 887 I=LOW,LEW HISLAS(I)=MIS(I) N25LAS(I)=MIS(I) FLAS(I)=MIS(I) ETALAS(I)=FIR(I) PHOLAS(I)=P(I) HILAS(I)=P(I) W2LAS(I)=WIS(I) SUPLE(I) W2LAS(I)=WIS(I) SUPLE(I) XLAS(I)=WIS(I) XLAS(I,I)=X(I,I) XLAS(I,I)=X(I,I) XLAS(I,I)=X(I,I) XLAS(I,I)=X(I,I) XLAS(I,I)=X(I,I)
हरू	PZ(II,I) = (240(I) - 240(LCW)) / (ABS(4.5*DM(II,I)*TIME2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPM=KS(LOW) DO 885 I=LCW.LEW H15L4S(I)=M15(I) N25L4S(I)=M25(I) N25L4S(I)=M25(I) FLAS(I)=P(I) ETALAS(I)=F(I) #14AS(I)=F(I) W24AS(I)=F(I) W24AS(I)=W1(I) W24AS(I)=W1(I) SUPL3(I)=W3(I) XLAS(1,I)=X(1,I) XLAS(2,I)=X(2,I) XLAS(3,I)=X(3,I) VLAS(I)=V(I)
हरू	PRILIT = (PAG(I) - PAG(LCW)) / (ABS(4.5*DM(II,I)*TIME2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES K\$LPM=KS(LOW) DO 805 I=LOW,LOW H1ELAS(I)=M1E(I) N2ELAS(I)=M2E(I) N2ELAS(I)=M2E(I) FLAS(I)=P(I) FLAS(I)=P(I) FLAS(I)=P(I) W1LAS(I)=P(I) W2LAS(I)=W1(I) W2LAS(I)=W1(I) W2LAS(I)=W1(I) XLAS(I)=SUM3(I) XLAS(I)=X(I)=X(I) XLAS(I)=X(I)=X(I) VLAS(I)=X(I)=X(I) VLAS(I)=X(I)=X(I) VLAS(I)=V(I) OFLERL=DELOR
हरू	>7(II.I) = (248(I) - 248(LCW)) / (ARS(4.5*DM(II.I)*TIME 2))**5.5 CONTINUE ESTABLISH DUD FROMERIES KSLPH=KS(LCW) DO 845 I = COW.LCW H15(45(I) = M15(I) M25(45(I) = M15(I) M25(45(I) = M15(I) M35(45(I) = M15(I) FLAS(I) = M15(I) M14AS(I) = M15(I) M15(I) = M15(I) M15(I) = M15(I) M15(I) = M15(I) M16(I) = M15(I) M17(I) = M15(I) M17(I) = M15(I) M18(I) = M15(I) M18(I) = M15(I) M19(I) = M15(I)
हरू	PRILIT = (PAG(I) - PAG(LCW)) / (ABS(4.5*DM(II,I)*TIME2))**5.5 CONTINUE ESTABLISH OLD FRODERTIES K\$LPM=KS(LOW) DO 805 I=LOW,LOW H1ELAS(I)=M1E(I) N2ELAS(I)=M2E(I) N2ELAS(I)=M2E(I) FLAS(I)=P(I) FLAS(I)=P(I) FLAS(I)=P(I) W1LAS(I)=P(I) W2LAS(I)=W1(I) W2LAS(I)=W1(I) W2LAS(I)=W1(I) XLAS(I)=SUM3(I) XLAS(I)=X(I)=X(I) XLAS(I)=X(I)=X(I) VLAS(I)=X(I)=X(I) VLAS(I)=X(I)=X(I) VLAS(I)=V(I) OFLERL=DELOR
हरू	>7(II.I) = (248(I) - 248(LCW)) / (ARS(4.5*DM(II.I)*TIME 2))**5.5 CONTINUE ESTABLISH DUD FROMERIES KSLPH=KS(LCW) DO 845 I = COW.LCW H15(45(I) = M15(I) M25(45(I) = M15(I) M25(45(I) = M15(I) M35(45(I) = M15(I) FLAS(I) = M15(I) M14AS(I) = M15(I) M15(I) = M15(I) M15(I) = M15(I) M15(I) = M15(I) M16(I) = M15(I) M17(I) = M15(I) M17(I) = M15(I) M18(I) = M15(I) M18(I) = M15(I) M19(I) = M15(I)
	<pre>P7(II.I) = (PAB(I) - PAD(LCW)) / (ABS(4.5*DM(II.I)*TIME2)) **5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPh=KS(LOW) DO 095 I=LOW.LCW D15LAS(I)=M15(I) N25LAS(I)=M15(I) N25LAS(I)=M25(I) N35LAS(I)=M35(I) FLAS(I)=P(I) ETALAS(I)=FIA(I) RHOLAS(I)=P(I) M1LAS(I)=W1(I) W2LAS(I)=W2(I) W3LAS(I)=W3(I) SUML?(I)=SUM3(I) XLAS(4.I)=X(4.I) XLAS(3.I)=X(3.I) VLAS(1.I)=X(3.I) D5LERL=D5LCR D5LCRL=D5LCR D5LCRL=D5LCR D5LFFL=D5LRP</pre>
C C C	<pre>PR(II,I) = (PAG(I) - PAG(LCW)) / (ABS(4.C*OM(II,I)*TIME2)) **5.5 CONTINUE ESTABLISH OLD FRODERTIES KSLPM=KS(LOW) DO 885 I = LCW, LCW M15LAS(I) = M15[I] N3FLAS(I) = M15[I] N3FLAS(I) = M15[I] N3FLAS(I) = M16[I) FLAS(I) = P(I) ETALAS(I) = P(I) M1LAS(I) = P(I) M1LAS(I) = M16[I) W2LAS(I) = M26[I) W2LAS(I) = M36[I) SUML?(I) = SUM3(I) XLAS(I,I) = X(2,I) XLAS(I,I) = X(2,I) XLAS(I,I) = X(2,I) XLAS(I,I) = X(3,I) VLAS(I) = V(I) DFLERL = DFLOR DFLORL = DFLOR DFLOR DFLORL = DFLOR DFLORL = DFLOR DFLORL = DFLOR DFLORL = DFLOR DFLOR DFLORL = DFLOR D</pre>

00 890 I=1.LS
KLAS(I)=K(I)
TLAS(I)=T(I)
890 COATIAUS
C PATA RETUINE CONTINE
C DATA FRINTOUT ROUTINE
C .
00 900 I=1.LS
IF(I.EC.LCH)GO TO 900
IE(1.60.65M) CO TO 300
IF(TMOC(I).GT.E.5)WRITE(6.92)TMOD(I).J.I
IF(CM302(I).GT.0.5)WRITE(6.96)CM002(I).J+I
IF (DXON3 (11.51.0.5) WPITE (6.96) DNOD3 (11.J.T
9RO CONTINUE
te()-lesthi: 1000.312,1000
912 OUTIME=3600.0*TIME2
Oil Le = (FCM)
WRITE(6.62) OUTIME, OUTP, FLUX, RHOVH, COATTH, COATL,
1 COREC= CORE1
TCOT(1)=(T(1)-TLAS(1))/DELT4U
TOOT(LS) = (TSURF-TLAS(LS)) / GELTAU
n:s==0.0
. 00 950 I=1.LS
75GF=T(I)-459.6
IF(I-LS)915,916.916
915 OUTC=13.3*PAC(T)
60 TC 918
915 OUTD=RADIUS*12.0
614 141-FCM) 623-856-850
921 IF(I-LEW)930,930,940
930 GUTVR=V(1)/3500
WRITE(6.81) I.CUTO.DEGF.K(I), PHO(I).CO(I).OUTVR.ETA(I).EFLP(I)
60 70 361
942 WRITE(6, 92) I . OUTD . DESE . K(I) . 940S(I) . C°S(I)
60 TC 950
958 WPITE(6.42)I-0UTD-DEGF.K(I)-PHOC(I)-CPC(I)
960 CONTINUS
WRITE16, 89)
00 990 I=LCW+LFW
981 WRITE (6.05) I,C1M(I),O2M(I),D3H(I),M0FLX(1.1),M0FLX(2.1).
1 MOFLX (3,1).TOTMOF(1).GEN4(T)
MEI15(6, 39)
D0 993 I=LCN+L=W
990 WPITE(6,97)1,X11,1),X12,1),X(3,1),TEST1(1),TEST2(1),TEST3(1)
1 *KEG(I)*DINDEX(I)
WOITE (5, 73)
00 995 I=LCW+LFW
995 JRITE (5.77) I.CAPX (1.1). RZ (1.1). CAPX (2.1). RZ (2.1)
1 .CAFX(3-I).PZ(3,I)
qos Jefint=J+KFRINT
1000 TIME=TIME2
WPITE16,50}
GO TG 110
2600 STOP
END

SUBROUTINE DIFF

	SUPROUTINE DIFF
C	SHE ROUGETHE SIFF
	ALGORITHM FOR GINASY DIFFUSIVITY CALCULATION
č	
<u> </u>	COMMON 1,KKK,J.LOH,LP,GIFOPT
	COMMON TOTMOF (SO) .RMOP (SO)
	COMMCN M94P(10.10).PL45(50).SIGS0(10.10).M(10).M(50)
	COMMCN_RHO(50).MCFLX(10.50).FOVEPK(10.10).TLAS(50)
	CCMMCN XLAS(10,50).DM(10,50),D1M(50),D2M(50).D3M(50),ETALAS(50)
	COMMON DK(10,55).DS(11,10).GGLIND(10,17).DIF(10,10).SUMDIF(10,57).
	COMMCN MP. POREP, CICI, CID2, DFLT(50), RAC(50)
	COMMICA OTLAP.CELARI.DELPR.BELARI
	REAL MOFLX, MBAR, M, MP, MW
	DATA FI/3.1415c/
	DA 629 II=1.KKK
	R=8.3145U7
	TLAS(I)=TLAS(I)/1.9
	OK(II.1)=0.6675-08*P0922*(8.0*P*TLAS(I)/H(II)/PI)**0.5
	OK(II,I)=OK(II,I)*3.875
	TLAS(I)=TLAS(I)*1.3
	JJ=0
	E05 00 611 JJ=1.KKK
	IF(II-JJ)610,609,609
_	50 * D6 (II - JJ) = 96 (JJ - II)
	50 TO 611 509 96(I[,JJ)=0.0
-+-	6C TC 611
	510 CONTINUE
_	TLAS(I)=7LAS(I)/1.8
	TRETLAS(I) /FOVERK(II.JJ)
	CCLINE(II, JJ) =1.3/(CIO1*(1.0+CIO2*4LOG(TR)))
	DG(II, JJ)=1,45835-33*(TLAS(I)**3.5*MBAP(II.JJ))**.5/(PLAS(I)*
	i SIGSG(II.JJ)*COLINO(II.JJ))
	JLAS(1) = TURS(1) *1.3
	OG([I.JJ)=OG([I.JJ)+1.975#FTALAS([]+*2.6
	IF(01F02T, F2:1)05(IT,JJ) = 06(1,2)
	IF(DIFOPT.E2.2)DG(II,JJ)=DG(1,2)
_	511 CONTINUS
	520 CONTINUE
	IF (A=S (TOTMOF (1)) -0.1) 636,636,621
	521 00 522 II=1.KKK
	528 SUMPLE (11-1) = 0.0
	00 635 II=:-\KKK
	00 634 JJ#1,KKK
	IF(II-JJ)671+630+631
	637 DIF(II.JJ)=0.0 GO TO 634
	531 OIF(II.JJ) = (XLAS(JJ,I) + MCFLX(II,I) - XLAS(II,I) + MGFLX(JJ,I))/
	1 DG(II.JJ) 234 SUMDIE(II.I)=SUMCIE(II.I)+DIE(II.JJ)
	IF (CIFOPT-1) 6634-6635-6634
6	TF(B1F0F)=1F0E24,0305,0004 F34 DM(II.T)=(MOFLX(II,I)-XLAS(II,I)+T0TMOF(I))/(SUMDIF(II,I)+
_9.	1 MCFLX(II,I)/DX(II,I))
	GO_FC_635
6	:35 DM(- =(MOFLX(- - XLAS(-)+TOTMOF())/S!M3 F(-)

	6636 DD 6637 II=1.KKK
	OGM=(MOFLX(II.1)-XLAS(II.I)*TOTMOF(I))/SMMCIF(II.1)
	OM(II.I)=DELEF/PAO(LCW)/(ALOG((RAG(LCW)+DELEPP-DELEPP)
	1 /RAC(LOW))/CSM+ALGG((PAG(LOW)+DELRE)/(PAG(LOW)+
	2 GEL RE-DEL 990))/DM(II+1))
	6637 CONTINUE
	GO TC 64:
	635 00 700 II=1,KKK
	700 SUMBIF(II.1)=0.0
	00 640 II=1,KKK
	00 639 JJ=1.KKK
	IF(II-JJ)633.637,638
	63? DIF(II-JJ)=0.8
	50 10 639
	63° OIF(II-JJ)=XLAS(JJ+I)/D6(II-JJ)
_	639 SUMCIF(II,I)=GIF(II,JJ)+SUMPIF(II-I)
	649 OM(II.I)=(1.0-XLAS(II.I))/SUMDIF(II.I)
	641 CONTINUE
	00 642 IJ=1.KKK
	642 IF (APS (OM (II.X)).LI.1.DE-36) (M(II.X) F1.05-36
	01M(I)=0M(1,I)
	- D2M(1)=DM(2-1)
	O3M(I) =9M(3,I)
	RETURN
•	END

APPENDIX XII

PROPERTIES FOR GAS PHASE SPECIES

		CONSTANTS FO	IR THE HEAT CA	CONSTANTS FOR THE HEAT CAPACITY EQUATION	NO		
Species	4	Bx(10 ²)	Cx(10)	Dx(10 ⁹)	$E_{x}(10^{-4})$		Reference
H ₂	6.952	-0.04576	0.09563	-0.2079	0	0	73
HC1	7.244	-0.1820	0.3170	-1.036	0	-22.063	73
HSC1 ₃	21.514	0.2325	0	0	-29.4	-123.7	
		VALUES F	VALUES FOR THE CRITICAL CONSTANTS	AL CONSTANTS			
Species	V _c (cc/mole)	G	Tc ₁ (°K)	<u>e</u>	(e/k) ₁ (°K)		٥ _; (٩٠)
Ŧ,	64.5		33.26		25.61		3.372
-£	86.9		324.56		249.91		3.725
HS•C13	254.0		495.0		381.0		6.33
,		COEFFICIENTS	FOR THE EQUIL	FOR THE EQUILIBRIUM CONSTANT	INT		
Species	A		-B(10 ⁻⁴)	ا"	Range	Correlation	Correlation Coefficient
HS•Cl ₃	6.856.75	2	0.99496	500-	200-1500 °K		

APPENDIX XIII

PROPERTIES FOR SOLID SPECIES

VALUES FOR THE THERMAL CONDUCTIVITY AND DENSITY						
Species	A(BTU/ft hr°K	B(BTU/ft hr°K ²)	(#m/ft ³)	$(\frac{in}{in^{\circ}C})$		
Si	84.6125	0	145.314	2.33		
A12 ⁰ 3	-1.35239	1.1498E4	248.432	2.61		
A1 ₂ 0 ₃ (80%)	-1.23226	6.1728E3	198.746	-		

APPENDIX XIV

CALCULATION OF THE AVERAGE PRESSURE

For the problem chosen for this thesis, the pressure of the system is assumed to be independent of position within the porous medium. However, the pressure will change with time because solid silicon is either deposited or depleted within a closed container. For the reaction system chosen, the quantity of the element hydrogen will remain constant for all time. With this fact, the value for the pressure at any time can be calculated as follows.

In an incremental volume of porous medium, εdV , the amount of elemental hydrogen, dX, is calculated from the following equation.

$$\rho \vec{\omega}_{\mu} \, \epsilon \, dV = dX$$
 (A13-1)

where

$$dV = 2\pi L_0 r dr \tag{A13-2}$$

and

 \angle_o is the length of the cylinder.

The term $\overrightarrow{\omega}_{\mu}$ can be calculated from the following equation:

$$\overline{\omega}_{H} = \frac{\omega_{HCI}}{M_{HCI}} + \omega_{H_{Z}} + \frac{\omega_{HS,Cl_{3}}}{M_{HS,Cl_{3}}}$$
(A13-3)

Inserting the ideal gas law and the last two equations into equation Al3-1 gives:

$$\varepsilon \frac{PM\omega}{RT} \left(\frac{\omega_{HCI}}{M_{HCI}} + \omega_{Hz} + \frac{\omega_{HSiCly}}{M_{HSiCly}} \right) \pi r L_0 c/r = c/X$$
 (A13-4)

If the pressure is assumed to be independent of position, the total amount of elemental hydrogen can be obtained by integrating equation Al3-4 over the limits of the radii bounding the porous medium as follows:

$$X = \bar{P} \frac{2\pi L_0}{R} \int_{R_c}^{R_p} \frac{EM_{\omega}}{T} \left(\frac{\omega_{HCl}}{M_{HCl}} + \omega_{HZ} + \frac{\omega_{HS_cCl_2}}{M_{HS_cCl_2}} \right) r dr \qquad (A-13-5)$$

where $ar{\mathcal{P}}$ is the average pressure at time t.

In the problem at hand, all quantities within the integral are constant with respect to position so $\frac{X}{L_o}$ can be obtained as follows:

$$\frac{\chi}{L_o} = \frac{\mathcal{E}_o P_o M_{co}}{R T_o} \bar{\omega}_o \pi \left(\mathcal{Q}_p^2 - \mathcal{Q}_c^2 \right) \tag{A-13-6}$$

Equation A13-5 can be rearranged to calculate the average pressure at any time.

$$\bar{P} = \frac{1}{L_0} \sum_{Z\Pi}^{R} \int_{R_0}^{R_0} \frac{\omega_{MCI}}{T} \left(\frac{\omega_{MCI}}{M_{MCI}} + \omega_{M_2} + \frac{\omega_{MSiCl_3}}{M_{MSiCl_3}} \right) r dr \qquad (A-13-7)$$

LITERATURE CITED

- 1. Gorton, C. W. and A. C. Merritt, "A Survey of the Literature and Industry Involved with High Temperature Oxidation Resistant Surface and Diffusion Coating," unpublished report for Project THEMIS contract F44620-68-C-0008, August 1969.
- 2. Dickinson, C. W., et al., "Protective Coatings for Tungsten," Journal of Metals, 787 (1963).
- 3. Powell, C. F., et al., <u>Vapor Deposition</u>, John Wiley and Sons, New York, N. Y., 1965.
- 4. Biedler, E. A., "The Formation of Molybdenum Disilicide Coatings on Molybdenum," J. Electrochem. Soc. 98(i), 21 (1965).
- Shephard, W. H., "Vapor Phase Deposition and Etching of Silicon," J. Electrochem. Soc. 112 (10), 988 (1965).
- Sangster, R. C., et al., "Growth of Silicon Crystals by a Vapor Phase Pyrolytic Deposition Method," <u>J. Electrochem. Soc.</u> 104 (5), 319 (1957).
- Bylander, E. G., "Kinetics of Silicon Crystal Growth from Si Cl₄ Deposition," <u>J. Electrochem. Soc.</u> 109 (12), 1171 (1962).
- Goodman, M. F., <u>Fabrication and Evaluation of Silicon Epitaxial Films</u>, APC TG-731, September 1965.
- Steinmaier, W., "Thermodynamical Approach to the Growth Rate of Epitaxial Silicon from SiCl₄," <u>Philips Res. Rep.</u> 18, 75 (1963).
- 10. Theuerer, H. C., "Epitaxial Silicon Films by Hydrogen Reduction of SiCl₄," J. Electrochem. Soc. 108 (7), 649 (1961).
- Kesler, G. H., "Factors Affecting the Rate of Deposition of Metals in Thermal Dissociation Processes," <u>Trans. Met. Soc. of AIME</u> 218, 199 (1960).
- 12. Carlton, H. E., and Oxley, J. H., "Forced and Natural Convective Mass Transfer in Multicomponent Gaseous Mixtures," J. AIChE 13(3), 571 (1967).
- 13. Krier, C. A., "Fundamental Considerations in CVD of Diffusion Coatings," Chemical Vapor Deposition, AD281-887, June 1962.
- 14. Withers, J. C., "Methods for Applying Coatings," <u>High Temperature Inorganic Coatings</u>, J. Huminik ed., Reinhold Pub. Corp., New York, N.Y., 1963.
- 15. Samuel, R. C., and N. A. Lockington, "Protection of Metallic Surfaces by Chromium Diffusion," <u>Metal Treatment</u> 18, 354 (1951).

- 16. Kelly, F. C., "Chromizing," <u>Trans. Amer. Electrochem. Soc.</u> 43, 351 (1923).
- 17. Marshall, L. H., "Formation of Chromium Alloy Coatings," U.S. Pat. 1,853,369, 1932.
- 18. Klopp, N. D., et al., <u>Development of Protective Coatings for Tantalum</u> Based Alloys, ASD-TR-61-676, March 1962.
- 19. Aves, W. C. and G. M. Ecord, "Advances in Coating Deposition Techquires for Refractory Metal Structures," Met. Soc. Conf. 30, 663 (1967).
- 20. Hollowell, J. B., et al., <u>Coatings for Tantalum Based Alloys</u>, ASD-TDR-63-232, April 1963.
- 21. Chao, D. J., et al., <u>Development of a Cementation Coating Process for High Temperature Protection of Molybdenum</u>, MC-TDR-64-55, March 1964.
- 22. Aves, W. C. and Bourland, G. W., <u>Investigation and Development of Techniques for the Utility of the Pack Cementation Process for Columbium and Molybdenum Alloys</u>, Rept.-2-53052142-2147 1, 1967.
- 23. Sama, L. and B. Reznik, "Sn-Al-Mo Oxidation Protection for Tantalum Aerospace Parts," Electrochem. Technol. 6 (3), 113 (1968).
- 24. Samuel, R. C., "A Survey of Factors Controlling Metallic Diffusion from the Gas Phase," <u>Murex Review 1</u> (18), 501 (1958).
- Dioguardo, P. R., et al., "Scaleup of Pack Cementation Coatings," <u>Met. Soc. Conf.</u> 30, 651 (1967).
- 26. Carman, P. C., Flow Through Porous Media, Acad. Press, New York, N.Y., 1956.
- 27. Muskat, M., The Flow of Homogeneous Fluids Through Porous Media, McGraw Hill Book Co., New York, N.Y., 1937.
- 28. Scheidegger, A. G., <u>The Physics of Flow through Porous Media</u>, The MacMillan Co., London, England, 1960.
- 29. Bird, R. B., et al., <u>Transport Phenomena</u>, J. Wiley and Sons, New York, N. Y., 1960.
- 30. Brinkman, H. C., "A Calculation of Viscous Forces Exerted by a Flowing Fluid on a Dense Swarm of Particles," Appl. Sci. Res. Al, 27 (1947).

- 31. Slattery, J. C., Momentum, Energy, and Mass Transfer in Continua, McGraw Hill Book Co., New York, N. Y., 1972.
- 32. Blake, F. C., "The Resistance of Packing to Fluid Flow," <u>Trans.</u> <u>AICHE 14</u>, 45 (1922).
- 33. Kozeny, J., Akad. Wiss. Wien. Abt. IIa (136), 271 (1927).
- 34. Dupuit, AJEJ, "Etudes Theoriques et Pratiques sur le Mouvement des aux," as described in reference 26.
- 35. Wylie, M. R., and W. D. Rose, "Some Theoretical Considerations Related to the Quantitative Evaluation of the Physical Characteristics of Reservoir Rock from Electrical Log Data," <u>Trans. Am. Inst. Min. Eng.</u> 189, 105 (1950).
- 36. Masamune, S. and J. M. Smith, "Transient Mass Transfer in a Fixed Bed," I&EC Fundam. 3 (2), 179 (1964).
- 37. Evans, R. B., et al., "Gaseous Diffusion in Porous Media at Uniform Pressure," J. Chem. Phys. 35(6), 2076 (1961).
- 38. Bosanquet, C. H., British TA Rept. BR-507 (1944) as reported by Phys. Rev. 73, 762 (1948)
- 39. Epstein, P. S., "On the Resistance Experienced by Spheres in their Motion through Gases," Phys. Rev. 23, 710 (1924).
- 40. Schmitt, K. H., Z. Naturforish 14a, 870 (1957) as reported in reference 37.
- 41. Rothfield, L. B., "Gaseous Counterdiffusion in Porous Pellets," J. AICHE 9(1), 19 (1963).
- 42. Scott, D. S. and F. A. C. Dullian, "Diffusion of Ideal Gases in Capillaries and Porous Solids," J. AICHE 8 (1), 113 (1962).
- 43. Youngquist, G. R., "Diffusion and Flow of Gases in Porous Solids,"

 <u>Ind. and Eng. Chem.</u> <u>62</u> (8), 52 (1970).
- 44. Pollard, W. G. and R. D. Present, "On Gaseous Self Diffusion in Long Capillary Tubes," Phys. Rev. 73, 762 (1943).
- 45. Wakao, N. and Smith, J. M., "Diffusion in Catalyst Pellets," Chem. Eng. Sci. 17, 825 (1962).
- Masamune, S. and J. M. Smith, "Pore Diffusion in Silver Catalysts," J. AICHE 8(3), 217 (1962).
- 47. Rao, M. R. and J. M. Smith, "Diffusion Resistance in $A^1_{2}^{0}_{3}$ and SiO_2 Catalysts," <u>J. AIChE</u> <u>9</u>(4), 485 (1963).

- 48. Johnson, M. F. L. and W. E. Stuwart, "Pore Structure and Gaseous Diffusion in Solid Catalysts," J. Catal. 4, 248 (1965).
- 49. Brown, L. F., et al., "Prediction of the Diffusion Rates in Porous Materials at Different Pressures," J. Catal. 14(3), 220 (1969).
- 50. Rao, M. R. and J. M. Smith, "Diffusion and Reaction in Porous Glass," J. AICHE 10(3), 293 (1964).
- 51. Masamune, S. and J. M. Smith, "Absorption Rate Studies; Interaction of Diffusion and Surface Processes," <u>J. AIChE</u> <u>11</u>(1), 4 (1965).
- 52. Masamune, S. and J. M. Smith, "Absorption Rate Studies, Significance of Pore Diffusion," J. AICHE 10(2), 246 (1964).
- 53. Wakao, N. and J. M. Smith, "Diffusion and Reaction in Porous Catalysts," Ind. and Eng. Fundam. 3(2), 123 (1964).
- 54. Smith, J. M., "Kinetics of Absorption," Advan. Chem. Ser. 79, 8 (1967).
- 55. Scott, D. S., "Gas Diffusion with Chemical Reaction in Porous Solids," Can. J. Chem. Eng. T1C33, 173 (1962).
- 56. Kunii, D. and J. M. Smith, "Heat Transfer Characteristics of Porous Rocks," J. AIChE 6(1), 63 (1960).
- 57. Yagii, S. and D. Kunii, "Studies on Effective Thermal Conductivity in Packed Beds," <u>J. AIChE</u> 3 (3), 373 (1957).
- 58. Huang, J. H. and J. M. Smith, "Heat Transfer in Porous Media With a Known Pore Structure," <u>Chem. Eng. Data</u> 8(3), 437 (1963).
- 59. Masamune, S. and J. M. Smith, "Thermal Conductivity of Porous Catalyst Pellets," Chem. Eng. Data 8(1), 54 (1963).
- 60. Schotte, W., "Thermal Conductivity of Packed Beds," <u>J. AIChE</u> $\underline{6}(1)$, 63 (1960).
- 61. Hutt, J. R., and J. W. Berg, "Thermal and Electrical Conductivities of Sandstone Rocks and Ocean Sediments," <u>Geophysics</u> 33(3), 489 (1968).
- 62. Newby, R. A., R. R. Rothfus, and K. Li, "The Effective Conductivity of Randomly Dispersed Heterogeneous Systems," Paper No. 42A presented at the 65th Annual Meeting of the AIChE, New York, November 26-30, 1972.
- 63. Huang, J. H., and J. M. Smith, "Diffusion and Heat Transfer in Process Alundum," I. & E. C. Fundam. 2, 189 (1963).

- 64. Kunii, D. and J. M. Smith, "Heat Transfer Characteristics of Porous Rocks: II. Thermal Conductivities of Unconsolidated Particles with Flowing Fluids," <u>J. AICHE</u> 7(1), 29 (1961).
- 65. Willhite, G. P., D. Kunii, and J. M. Smith, "Heat Transfer in Beds of Fine Particles," <u>J. AIChE</u> 8(3), 340 (1962).
- 66. Mischke, R. A., and J. M. Smith, "Thermal Conductivity of Alumina Catalyst Pellets," <u>Ind. and Eng. Chem. Fundam.</u> 1(4), 228 (1962).
- 67. Huang, J. H., "Effective Thermal Conductivity of Porous Rocks," J. Geophysical Res. 76(26), 6420 (1971).
- 68. Lever, R. F., "The Equilibrium Behavior of the Silicon-Hydrogen-Chlorine System," IBM Journal, 460 (1964).
- 69. Harper, J. J. and T. J. Lewis, <u>Thermodynamics of the Chlorine-Silicon</u>
 Hydrogen System, Technical Memorandum No. 6/M/66, June 1966.
- 70. Mickley, H. S., et al., <u>Applied Mathematics in Chemical Engineering</u>, McGraw Hill Book Co., Inc., New York, N. Y., 1957
- 71. O'Brien, G. G., et al., "A Study of the Numerical Solution of Partial Differential Equations," J. Math. Phys. 29, 223 (1951).
- 72. Basset, H. C., et al., <u>High-Temperature Complex Permittivity Measurements on Reentry Vehicle Antenna Window Materials</u>, Tech Rept. No. AFWL-TR-71-189, April, 1972.
- 73. Hougan, O. A., et al., <u>Chemical Process Principals Part II</u>, John Wiley and Sons, New York, N.Y. (1956).
- Curtis, C. F. and J. O. Hirshfelder, "Transport Properties of Multicomponent Gas Mixtures," <u>J. Chem. Phys.</u> <u>17</u> (6), 550 (1949).
- 75. Wilke, C. R., "A Viscosity Equation for Gas Mixtures," <u>J. Chem.</u> Phys. 18 (4),517 (1950.
- 76. Hirschfelder, J. O., et al., <u>The Molecular Theory of Gases and Liquids</u>, J. Wiley and Sons, New York, N. Y., p. 584 (1954).
- 77. Camacho, T. F., "Transport Processes in the Combustion of Carbon," PhD Dissertation, Georgia Institute of Technology (1973).
- 78. Mason, E. A. and S. C. Saxena, "Approximate Formula for the Thermal Conductivity of Gas Mixtures," <u>The Physics of Fluids 1</u> (5), 361 (1958).
- 79. Mason, E. A. and L. Monchick, "Transport Properties of Polar Gases," J. Chem. Phys. 35 (5), 1676 (1961)

- 80. Arnold, J. H., "Studies in Diffusion," I&EC 22(10), 1091 (1930).
- 81. Gilliland, E. R., "Diffusion Coefficients in Gaseous Systems," <u>I&EC</u> <u>26</u> (6), 681 (1934).
- 82. Hirschfelder, J. O., et al., "Viscosity and Other Physical Properties of Gases and Gas Mixtures," <u>Trans. ASME</u> 71 (11), 921 (1949).
- 83. Andrussow, L., "Uber die Diffusion in Gassen I," Z Elektrochem 54 (7), 566 (1950).
- 84. Wilke, C. R., and C. V. Lee, "Estimation of Diffusion Coefficients for Gases and Vapors," <u>I&EC 47</u> (6), 1253 (1955).
- 85. Slattery, J. C. and R. B. Bird, "Calculations of the Diffusion Coefficients of Dilute Gases and of the Self Diffusion Coefficients of Dense Gases," J. AICHE 4 (2), 137 (1958).
- 86. Orthmer, D. G. and H. T. Chen, "Correlating Diffusion Coefficients in Binary Gas Systems," <u>I&EC Process Design Develop.</u> 1 (4), 249 (1962).
- 87. Chen, N. H., and D. F. Orthmer, "New Generalized Equation for Gas Diffusion Coefficients," <u>Chem. Eng. Data 7</u> (1), 37 (1962).
- 88. Fuller, E. N., et al., "A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients," I&EC 58 (5), 19 (1966).
- 89. Kelley, K. K., "Contributions to the Data on Theoretical Metallurgy," US Bur of Mines Bull. 371 (1934)
- 90. Furukawa, G. T., et al., "Thermal Properties of Aluminum Oxide from 0-1200 K," J. Res. USNBS Sect. A Phys. and Chem. 57A (2), 67 (1956).
- 91. Clements, J. F., "The Specific Heat of Some Refractory Materials," Trans. Brit. Cer. Soc. 61, 452 (1962).
- 92. Jakob, Max, <u>Heat Trans. Vol. I</u>, John Wiley and Sons, New York, N.Y., 1957.
- 93. Stull, D. R. and H. Prophet, <u>JANAF Thermochemical Tables</u>, NSRDS-NBS 37, 1971.

ATIV

Allen Charles Merritt was born October 19, 1945 in Fort Collins, Colorado. The author attended the United States Military Academy and the Georgia Institute of Technology from which he received a Bachelor of Chemical Engineering degree in 1967.

The author was employed by the Proctor and Gamble Company as a summer engineer for two summers, served as a Lieutenant in the Air Defense Artillery of the United States Army, and was then employed as an Assistant Research Engineer with the Engineering Experiment Station. During this period the Master of Science in Chemical Engineering was completed at the Georgia Institute of Technology in 1969. The author has served as Manager of Technical Services for Gold Kist Incorporated since 1972.