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SUMMARY

In order to study the domains of Chemical Vapor Deposition in the
industrial process of pack cementation; a comprehensive analytical model
describing simultaneous transport phenomena in porous media is developed.
Distinction is made between consolidated and unconsclidated media. Particu-
lar attention was paid to the models in the Titerature which described
specific aspects of transport phenomena in porous media. In this work a
novel approach to the equation of continuity is developed by using a
single representation for effects in the solid and gas phases. Since no
work previously discussed multicomponent diffusion in porous media, a
model extending the "dusty gas theory" of Evans et &l. is derived.

The specific problem in pack cementation chosen for study is the
hydrogen reduction of HSiCI3 to produce a silicon coating on an inert
substrate. In this study, the substrate is also the wall of the pack
cementation container. One of the objectives of this study is tq show
that coatings can be deposited on inert substrates due to the inherent
advantages of the transient heat transfer, which exists early in the
pack process. The generalized porous media transport equations are
tailored to meet the constraints of the specific pack process chosen.
These equations are then solved as an initial value probliem through stan-
dard numerical techniques on a CDC digital computer. Oue to depletion
and deposition of a solid phase by chemical reaction at the walls and

throughout the porous media, special boundary conditions and transport

properties in the vicinity of the wall are developed.
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Results are presented which show the effects of Knudsen diffusion
on the amount of coating deposited and composition profiles. The effects
of multicomponent diffusion are compared with those for equal binary
diffusivities. Since actual experimental results are not available,
accuracy of the numerical results is difficult to project. However,
stability and convergence tests are used. In addition, results of the
numerical mole flux calculations are compared to those from the Stephan-
Maxwell equation. Early time results are compared to an analytical
solution derived by Arnold.

The most important conclusion reached from the results of this
thesis is that the model chosen for multicomponent diffusion will provide
a successful solution for initial value problems in multicomponent mass
transfer. The second important conclusion is that the assumption of
equal binary diffusivities will provide a reasonable solution, thus
greatly simplifying calculations. And finally, Knudsen diffusion can
be a significant contribution to mass transfer in porous medium.

Several areas of further work and development in this area are
evident from the results of this thesis. A nested iterative scheme to
better calculate the molar concentrations in the porous media when
deposition occurs should be developed. Laboratory experiments should
be conducted to provide actual data for comparison with the model. And

finally, experimental work to better relate porous media properties to

transport properties should be conducted.
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NOMENCLATURE
fraction of gas molecules diffusely reflected
from capillary walls (dimensionless)
molar density (1b-mo]e/ft3)
number of molecules per unit volume (mo]ecu]es/ft3)

number of mo]gcu]es of gas species 1 per unit volume
{molecules/ft>)

number of molecules gf solid species p per unit
volume (molecules/ftd)

molar heat capacity of the gas species (BTU/Tb-mole °F)
heat capacity (BTU/1b-¢F)

E%qo of solid substrate p

é}c of coating ¢

é}& of gas species i

binary diffusivity for species pair ij (ftthr)

effective binary diffusivity for dusty gas theory (ftZ/hr)
binary diffusion coefficient for dusty gas theory (ftz/hr)

effective multicomponent digfusion coefficient in porous
media for gas species i {ft™/hr)

overall diffusivity for the core interface (ftthr)
deposition index defined by equation 3-5 (dimensionless)
Knudsen diffusivity for gas species i (ftthr)

average particle diameter (u)

acceleration due to body force on fluid (ft/secz)

constant defined by equation 2-20 (b)
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enthalpy (BTU/1b)

/35 of the gas species i

éap of the solid substrate p
/QE of the coating ¢

molar flux witg respect to molar average velocity
(1b-mole/hr-ft=)

effective molar flux wiEh respect to molar average
velocity {1b-mole/hr-ft“)

effective mass flux witE respect to mass average
velocity (1b-mole/hr-ft“)

equilibrijum constant (dimensionless)
porous media shape factor (dimensionless)
tortuousity factor (dimensionless)
Boltzmann Constant

static effective thermal conductivity of th2 porous
media (BTU/hr-ft-°F)

overall thermal conductivity for the core interface
(BTU/hr-ft-°F)

apparent thermal conductivity of the porous media due
to radiation (BTU/hr-ft-°F)

radiation contribution to kr defined by equation 2-21b

thermal conductivity of the solid substrate material
(BTU/hr-ft-°F)

L of the gas species i
kf of the fluid

ks  of the shell or core material in a pack concentration
mode

actual length of a pore channel along a tortuous path (ft)

integer signifying the node point nearest the core-porous
medium interface

linear depth of a porous substrate (ft)
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s

length of the cylinder containing the pack (ft)
molecular weight of a gas mixture (1b-mole)

M<  of gas species i

/éh' of element i

motecular mass of species i (1b/molecule)

reduced molecular mass {dimensionless)

mass of the solid substrate and coating at <ime t (1b)
mp, of the solid substrate at initial time

me  of coating c

molar flux of species i in a capillary (lb—mole/hr—ftz)
effective molar flux of gas species i (1b-mo]e/hr-ft2)
effective molar flux of solid species p (lb_mole/hr-ftz)
effective mass flux of species i (lb/hr-ftz)

total mass flux }n the porous medium for dusty gas
theory (1b/hr-ft<)

total effective mass flux (lb/hr-ftz)

number of molecules of the gas species i per unit
volume {molecule/cu ft)

number of molecules of the solid species i per unit
volume (molecule/cu ft)

sum of gas species molecules

sum of gas and solid moiecules

pressure (psf)

reference pressure (psf)

average pressure in a porous medium (psf)

represents solid species p

total energy flux (BTU/hr-ft?)

xi
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generation term of species i (lb/hr-fts)
radius of the core material (ft)

radius of the porous material (ft)
average radius of a particle (u)

average radius of the pore (R)

universal gas constant (cal/gm-mole-°K)
distance variable {ft)

spegific surface of the particles of porous media
(ft2)-]

temperature (°R)

critical temperature of species i(°K}

time variable (hr)

critical volume of species i (cm3/gm—m01e)

volume of solid substrate (ft3)

total unit volume of porous medium (ft3)
superficial velocity through porous media (ft/hr)
actual velocity within a pore (ft/hr)

total amount of elemental hydrogen {1b)

mole fraction of species i (dimensionless)

incremental distance between the core and porous
medium interface (ft)

incremental distance between the shell and porous
medium interface (ft)

incremental radius (ft)
incremental time (hr)

thermal diffusivity (FtZ/hr)

xifj

porosity or void volume of the porous medium {dimensionless)
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Ep volume fraction of solid substrate and coating in
a porous medium (dimensionless)

Ep ~ of solid substrate only

e emissivity (dimensionless)

& term defined by equation 4-5b

K permeability of porous media (ftz)

E permeability coefficient of porous media (ft4/1bf-sec)

K, shape factor representative of a specific porous
medium (dimensionless)

Ao mean free path at reference pressure Po (ft)

AL mean free path of a gas species i (ft)

/LL viscosity of the fluid (1b/ft-hr)

‘/zd of the gas species i (1b/ft-hr)
F) density of the fluid (Tb{fts)
rz of the coating ¢
ft of the gas species i
f; of the solid substrate p
[%% of the solid substrate at initial time

(; of the core or shell material

U collision diameter for the species i {ft)

O%? collision diameter for the pair ij (ft)

e tortuousity of the porous medium (dimensionless)
& term defined by equation 2-9¢

‘lef diffusion collision integral for the pair ij
‘ (dimensionless)

_C%f4£ collision integral for viscosity of the gas species i
(dimension1ess?




Xiv
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CHAPTER 1
INTRODUCTION

In the early stages of the multi-year program, "A Study of
Interfacial Phenomena," sponsored at the Georgia Institute of Technology
by the United States Air Force as part of the Project Themis, a search
of the technical literature and a survey of the defense and space-oriented
industry was conducted in the specific area of high temperature, oxidation

1 This study was undertaken to

resistant surface and diffusion coatings.
identify technology gaps and to determine research needs in this special
coatings field. One of the recommendations resulting from this study

was to investigate the domains of chemical vapor deposition as a coating
mechanism. Chemical vapor deposition (CVD) is a basic coating process
which may include both homogeneous gas phase and heterogeneous chemical
reactions to produce a coating on a heated substrate material. In response
to this particular recommendation, an experimental and analytical investi-
gation of the CVD process was undertaken. The chemicaIlsystem chosen for
this research was the hydrogen reduction of silicon tetrachloride to ele-
mental silicon and hydrogen chloride. At the time of this study, silicide
coatings were of considerable interest to the aerospace industry for pro-
tection of refractory metals in severe thermal environments under oxidi-

1,2 One technique used for the deposition of these

zing conditions.
coatings is CVD.3’4 Coincidentally, considerable effort had also been

spent during this period by the semi-conductor industry in the production

of single crystals and epitaxial thin-films of pure silicon on suitable




5 In both

substrates by CVD for use in electronic components manufacturing.
of these coatings-oriented industries, analysis and improvement of the
CVD coating process were approached with experiment techniques. Many
associated technical papers dealt with metallurgical 1mp11cat10ns.6’7’8
In most of the thin-film and single crystal work, theoretical considera-

2,10 Only a few papers

tions were limited to thermodynamic predictions.
concerned with coating or thin-film characterizations and performance
analysis considered the aspects of transport phenomena in the production

1,12,13 This omission was also particularly evident in

of the coating.
the analysis of the production of diffusion coatings by CVD. While the
solid-solid diffusion of the coating material into the substrate to pro-

duce an alloy is an essential part of the overall deposition process, in

many cases this phenomena may not be the controlling mechanism.

Specifically, the research program mentioned above was a parametric
study of the deposition rate of silicon on a tungsten wire. The important
parameters, besides deposition rate, were wire temperature, gas phase flow
rate, gas phase composition, and wire diaméter. This first CVD study was
conducted in a simple glassware system composed of a drying tube, two con-
densers, a bubbler flask, and a deposition tube. The substrate was elec-
trically heated. Enough data were obtained from this preliminary
experimental work to design and build a more substantial CVD apparatus.

The construction of this system allowed for operation under partial vacuum
or in positive pressures. This equipment was also constructed so that either
a gas-liquid, a gas-gas, a gas-solid, or a solid-solid feed system could

be utilized. The solid-solid feed system required that one of the components

decompose into gaseous products which would react with the other solids to




give the desired reaction gases. In this apparatus, CVD coatings could

be deposited on inert oxide substrates. Several experiments were conducted
with this experiment. Coatings were obtained on tungsten wires and on
inert alumina substrates.

Because of production related problems, the pure CVD process was
found to be used in limited, often laboratory, situations. In more common
industrial coating operations, other techniques incorporating CVD con-
cepts were prevalent. One such technique in wide use is termed "pack
cement:a\tian."]4 This name described a process that has changed considerably
in basic concept since its inception. Originally, "pack cementation"
implied that coatings were produced by diffusion from metal powders in
physical contact with the substrate surface at elevated 1:em;:uer'atu1r'es.]5
Examples of this process are the early cementation coatings of aluminum,
zinc, or chromium on iron in the steel industry. In *he chromizing pro-
céss, pieces of iron or steel were packed in a retort surrounded by

15 The pack was heated in a furnace at a temperature

chromium powders.
of 1300° € for four hours. To avoid excessive sintering of the coating
material, inert refractory powders were mixed with the finely divided
chromium. In 1927, Marshall modified the pack design in the chromizing
process to include carrier gases which combined with chromium in the
solid phase to form a gas phase species.1? This gas then reacted with
the iron surface to produce a coating. The reaction of a carrier gas
with the substrate is almost universal in modern pack cementation pro-
cesses, thus chemical vapor deposition has become the basic c¢oating

mechanism in this operation. Several descriptions of the pack process

for uses other than chromium coatings on iron may be found in references




18 through 22. In addition, workers have more recently used pack cemen-
tation successfully to produce complex coatings containing several
elements which are deposited simu1taneous]y.23’24
The pack cementation process has been generally limited to diffusion
coatings produced by solid-solid reactions or substitution reactions be-
tween the coating element and substrate, where the entire bulk of the
material within the retort is maintained at constant temperature. Although
very desirable, no results have been found in the literature which indicate
pack cementation coatings can be produced on inert substrates. In pure
CVD processes, however, inert substrates may be coated by surface reaction
if the substrate temperature is sufficiently high. This phenomena may
occur in a pack proceés during the transient period when the mass is
heated from ambient to furnace temperatures.
In this thesis, the possibility of the production of a coating on
an inert substrate is analyzed. In the past, only a few researchers have
considered aspects of depletion, heat transfer, or flow within the pack.24’25
Any attempt to analyze this process will require an understanding of
transport phenomena in porous media. A search of the literature did not
reveal any considerations of pack cementation or other porous media related
processes that incorporated flow, heat transfer, and mass transfer
simultaneously. Several researchers have discussed separate aspects of
transport phenomena in porous media, particularly the development of dif-
fusivity and thermal conductivity. These discussions have been included

in a general set of equations describing transport phenomena for porous

media. These equations are presented in detail in the next chapter. The

nature of this development is not limited just to the analysis of pack




cementation. Application can be found for these theories in several
seemingly diverse fields including grain drying or aeration, shale oil
recovery, and catalyst performance prediction.

In Chapter III, the general transport equations for porous media
presented in Chapter 11 are applied to the specific probliem in pack
cementation mentioned above. Results of a digital computer solution to
this problem based on finite difference equations are discussed in

Chapter IV. Recommendations and conclusions follow in Chapter V.




CHAPTER II
TRANSPORT PHENOMENA IN PORQOUS MEDIA

Analytical analysis of simultaneous heat, mass, and momentum
transport in porous media is relatively undeveloped. As was mentioned
in the Introduction, certain aspects of the individual conservation equa-

tions have been studied by researchers of different cisciplines. For

example, hydrologists have investigated flow through sand beds and have
proposed empirical relations for the steady state equation of motion.
Chemical engineers have experimented with diffusion in catalyst pellets
and have proposed semi-empirical relations for the diffusion coefficient.
Because most of the reported work is experimental in nature, the resulting
re]ationﬁhips are practically oriented and not readily suited to theoreti-
cal application. A good example of this deficiency concerns studies of
heat transfer with flow through a porous medium in which the convective
effect and the Knudsen effect are treated as conduction and included in
the apparent thermal conductiyity.

Comparison of the various relations describing transport phenomena
in porous media is further complicated because substantially different
models were chosen to characterize the media. In many flow and heat trans-
fer studies, media structures have been classified as either "consolidated”
or "unconsolidated." Unconsolidated media are formed from randomly orien-
ted particles. Consolidated media are those media which may have closed

ended or completed closed pores. These media could have originated from




an unconsolidated structure which could have sintered or undgrgone some
other process to close the pores. Much of the literature involved with
flow and heat transfer studies concerns the porous media characteriza-
tions with different models for the pore size distribution within a
given structure. In diffusion studies, especially where catalyst pellets
have been formed from porous particles, the structure has not been
classified. However, different models are used to describe the pore
size.

In the discussions of this chapter, a comprehensive analytical
model describing simultaneous transport phenomena in porous media will
be developed. Because results of the present study might be applied to
either of the two general classifications of porous structure, the follow-
ing discussions will include consolidated and unconsolidated media.
Effects of the various pore size models will also be discussed where
appropriate. The development of each transport equation will be sepa-
rately shown. The particular transport properties associated with porous
media will also be discussed in each appropriate section. Equations for
calculation of the properties not influenced by porous media effects,

such as gas density and gas heat capacity, will be presented later.

Equation of Motion

The equation of motion for flow through porous media is an expres-
sion of the experimental results of several workers. Notable among them
is Darcy. His work has been formulated into an equation which bears his

name and is given below as equatijon 2-1. This relation and its historical
26,27,28

development are well documented.




Ve = - it (ve-p3) (2-1)

&)

is the superficial velocity of the fluid flowing
in the porous medium

where

K is the permeability

H is the fluid viscosity
VP is the pressure gradient

‘0 is the fluid density

G s the body force on the fluid.

Darcy's Law differs considerably from the classical equation of
motion {as it appears in Bird et a].zg for example); however, this rela-
tion applies to macroscopic rather than microscopic observations of a
fluid'passing through fine channels in porcus media. Although no tran-
sient terms appear in Darcy's Law, this equation is used in the solution
of time dependent prob]ems.29 To better describe certain specific prob-
lems such as in flow through a porous mass and an adjoining empty space,
Brinkmann has proposed a modification to equation 2-1 which reduces to

30

Darcy's Law for low values of the permeability. This relation was more

rigorously derived by S]attery.31
Since Darcy's Law was determined experimentally for flow through

unconsolidated porous media with a uniform pore size, a correction must

be made for application to consolidated porous media. The accounting

for the different types of porous media is incorporated in the value used

for the permeability. Carman has discussed methods for the determination

of this property and other problems encountered in the characterization

of porous media for flow in detail. Results of his efforts and others




are presented briefly below for both consolidated and unconsolidated

media.

32 a

Carman based his work on the earlier studies of Blake nd

Kozeny.33 These independent efforts were among the first to apply the
concept of a hydraulic radius to the viscous flow of fluids through
unconsolidated porous media with uniform pore size. Carman chose to
describe flow through the porous medium in terms of the superficial
velocity e and the bed depth Le instead of the actual quantities,

v and L , for the individual capillaries of the medium. In doing so,
he defined a new variable, T , called the tortuousity, to represent the

34, which relate

ratio f; . Then he modified the results of Dupuit
actual velocity, v , to the apparent velocity, G@, to include the tortu-
ousity. These modifications have been included in the definition of the
permeability which is given below:

53
K O2(-E) (2-2)

K

where is the porosity or the void fraction

&
So 15 the specific surface of thé particles

A

is the tortuousity factor which is a function of 7
and a shape factor i, .

A1l of the quantities in equation 2-2 may be determined experimentally
with relative ease with the exception of the tortuousity factor, K .
Carman has reported results of many experiments to evaluate this quantity.
Carman has also stated that for most unconsolidated media, the value of

k is approximately 5.0 inchesz.

Evaluation of the quantities in equation 2-2 for consolidated
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porous media is more difficult. Usual experimental procedures to
determine the value of S0 (e.g., nitrogen absorption} are not applicable
since these procedures include closed ended pores where flow does not
occur. Wyllie and Rose have proposed a relation to calculate the tor-
tuousity factor of consolidated media.35 The result of their work as

reported by Carman is given below:
£=2.5¢% (2-3)

Experimental values reported in Carman indicate that this relation is
adequate for the porosities expected for consolidated media. As with
the definition for the permeability for unconsolidated media, experiments
are required to arrive at a value forZ. Carman also mentions the prob-
lem of a nonuniform pore size and provides, as a solution, an integral
technique for the range of particle sizes under consideration.

Recent results of diffusion studies in catalyst pellets imply that
the tortuousity can be simply related to porosity for specific types of
porous media. These results will be discussed in detaillin a following

section of this chapter.

Equation of Continuity

In general, the equation of continuity for flow through porous
media has been written in two parts, one for the gas phase and one for

36 In the present study, the porosity will be allowed

the solid phase.
to change, so, for convenience, a single continuity equation for both
phases will be derived.

A volume element composed of solid particles and gas is shown in

Figure 1. The solid particles are assumed to be composed of a substrate
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Figure 1. Schematic Representation of a Volume

Element of Coated Porous Media.




12

with constant density . and a film of coating with constant density
(-]

f% . After suitable mathematical manipulation (see Appendix 1 for

details), the density of the solid particie composed of the original

substrate plus the coating may be determined as follows:

(2-4)

G=f” (ﬂv."ﬁ.) 57:2

where Ep s the volume fraction of solid per unit volume of
solid and gas for any time.

€r, 1is the initial volume fraction of solid per unit
volume of solid and gas.

The equation of continuity for a volume composed of both solid particles
and gases where the mass velocity of the solid is zero is also derived

in Appendix I. The result of this development is given below:
Q . OV =
3 (ep) *%(fﬁfp) PV-pVe =0 (2-5)

where ¢ is time.
Substitution of equation 2-4, the expression for the density of the solid

particles, into equation 2-5 yields:

BEPY S (p(G-5))rvpl=0 @

Noting that the change in the initial porosity with ﬁime is zero,

equation 2-6 may be reduced to the continuity equation used in this work

which is presented below:
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2 _
S(ep) R 31 v-pte= 0 (2-7)

Equation of Continuity Species i

The equation of continuity for species i is derived in a manner

similar to that for the overall continuity equation and is given below:

% (5(00)»' )+ ﬁa% (EP @We, ) + V-ﬁs.: re (2-8)

where /< is the mass fraction of the species i in the gas phase
r« 1is the generation term for species 1i

fﬁf is the effective mass flux of species i based on a

unit area of both solid and gas
&) is the mass fraction of the species i in the coating.

Over the last several years, many papers have been published on
methods used to determine values for the diffusion coefficient for use
in the mass or mole flux relationship. Much of this work was generated
by the increased interest in catalyst pellets formed by pressing together
small porous particles. At lTow pressures, the usual pore size distribution
was such that both normal diffusion and Knudsen diffusion occurred. As
previously mentioned, all of the publications reviewed involved only
binary diffusion. However, Evan, Watson and Mason proposed a diffusion
model for constant pressure and temperature based on a "dusty gas" theory

37 In

that offered promise for adaptation to a multi-component system.
this model, the Stefan-Maxwell equations were written to include the

solid as a giant molecule with zero mass velocity. This approach resulted

in an equation which conformed to the accepted relations describing the
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transition region between normal diffusion and free molecular f]ow.38

This equation also reduced to the proper form for conditions at either
limiting case. The results of the work by Evans et al. are given below
as equation 2-9a. A brief summary of the derivation of these equations

is presented in Appendix II.

- o & Q_ﬂ_‘- Ne -
M =-D; 57 * 7 N (2-9a)
e ne e’
where O ~ 7 & D"d (2-9b)
0@/ /
Nng Ly \
S =1+ 5% ) (2-9¢)
non.
Dip
and -;g is the molecular flux of species i based on a cross-

sectional area of both solid and gas

he is the number of molecules of the gas phase species
i per unit total volume

n is the total number of gas phase molecules per unit
total volume

Ne  is the number of molecules of the solid per unit
total volume -

n is the sum of n and np
e’
Z%;' is the effective diffusion coefficient for a porous
medium
e’
Dip is the effective Knudsen diffusivity for a porous
medium.

The effective diffusion coefficients are related to the normal diffusivi-

ties by the generally accepted relationship given in equation 2-10.37

Through the definition of Z, specific contributions to the diffusion

by consolidated or unconsolidated media can be made.
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AR
o5 - £y

where & is the porosity
7 is the tortuousity
4@-! is the binary diffusivity for the dusty gas theory.
The binary diffusivity for the gas phase species can be obtained from the

following equation:29

! Aé e £ 17 'f -r
B x f o ‘? .
‘pﬁ 31 (2;727‘) é’g Od)) (2-11a)
where m= M (2-11b)
/77" * .fnd
and me¢ is the molecular mass of species i

k. is the Boltzmann constant
T is the absolute temperature
a?' is the collision diameter
Qy ;s/the collision integral.
The diffusivity, [)99; representing the interaction between the solid

37 Based on

and gas species is equivalent to a Knudsen diffusivity.
assumptions provided by Evans et al., this diffusivity is calculated by
assuming the reduced mass,m , becomes me., and the collision diameter,
(ﬂ&' » becomes ﬁp s the radius of the solid particles. According to
Epstein, as r'epor'ted by Evans et al., the collision integral, -O‘;P’

)39

reduces to (H' The equation forC%}; thus becomes:

Df'- E($n G655 @
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where E} is the radius of the solid particles

Q. is the fraction of species i diffusely scattered by
the wall.

According to Schmitt, again as reported in Evans et al., a is usually
equal to unity.40 Independently, Rothfield derived 2 similar expression

ul In this model, a special

for equation 2-9a based on momentum balances.
definition for the Knudsen diffusivity was used which contained a bulk
flow term. Scott and Dullien, in their analysis of mixed mode diffusion
in porous media, first derived a diffusion equation for a single circular

42 To extend

capillary where both normal and Knudsen diffusion applied.
their model to porous media, they also used a value determined by the
ratio % to express the effects of porous media on the binary diffusivity.
Integrated forms of the equation of Evans et al., Scott and Dullien, and

Rothfield have all been shown to be equa'!.43

These equations are discussed
further in Appendix III.

From first appearances, the definition for the effective Knudsen
diffusivity derived by Evans et al., as shown in equation 2-12, will allow
for direct calculation from basic porous media property data. With the
more common definition (see for example Pollard and Present44), diffusion
studies are required to evaluate a constant in the Knudsen diffusivity
equation, K, , which accounts for the porous media effects. In comparing
their equation to these earlier works, Evans et al. state that the collec-
tion of terms gn'@zﬁf %—F) must be evaluated from diffusion experiments
rather than calculated directly. In effect, Evans et al. have simply

expanded the definition for the experimental constant K .

Most of the later papers on diffusion in porous media have been

concerned with modifications of the early work to better account for the




17

effect of actual porous structures on the diffusivities. These models
have utilized either experimental diffusion data or porous media charac-
terization data to predict results for new diffusion conditions. For
example, several papers published by J. M. Smith and his co-workers were
based on diffusion in catalyst pellets assumed to have a bi-disperse,

45,46,47

randomly oriented, non-continuous pore structure. Johnson and

Stewart developed a different model to show the effect of pore geometry

48 This modification also assumed randomly

on the effective diffusivity.
oriented circular pores but considered the distribution to be continuous
rather than bi-disperse and non-continuous. The results of Johnson and
Stewart and Smith and co-workers are consistent. Brown et al. compared
the two techniques with experimental data and reached a similar conc]usion.49
The results of Smith and co-workers are particularly important to the
present study. According to these workers, if the porous media has a
single mode pore size distribution with a single radius,;% would be
equal to 82 in the local diffusion equation. Thus the need for experimental
determination of 7 is eliminated. For a bimodal distribution, the defini-
tion of the ratio {% would be more complex. Considerable data are pre-
sented in Carman which can be used to show that %; is approximated by
62.26 In addition, Smith and coworkers show that pore size distribution
data can be used to calculate the Knudsen diffusivity without results
from prior diffusion studies.45
Smith and co-workers have also extended their work on pure diffusion
processes in porous media to include the effects of ¢hemical feaction and

50-54

of absorption on the diffusion phenomena. Wakao and Smith proposed

a modification for the effective diffusion coefficient in which reaction
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or absorption is occurring.53 Scott has proposed a similar model to
account for the effect of reaction during diffusion in porous media.55
As was previously mentioned, no work has yet been presented for
multi-component diffusion in porous media. The approach used in this
work to analyze such a problem is based on an extension of the method

given by Evans et al. In addition, the benefit of the later work by

Smith and co-workers and Johnson and Stewart which provides better defi-
nitions for the term %; and the Knudsen diffusivity will be utilized.
The results of the derivation of the multi-component mass flux term
Ai is presented below.

By rearranging the basic diffusion equation proposed by Evans et al.
in terms of concentrations based on a unit volume of both solid and gas

molecules, the following equation results:

f} p oy - - oot .
vii =7 (GO ) (WM ) + () (g™ EAL5) (2

AP
where ¢’ is the molar concentration of the gas and solid
¢p is the number of solid molecules per unit volume
X is the mole fraction of the gas species i
_/Gre is the molar flux of the gas species 1
/g;’ is the molar flux of the solid species.
The derivation of this equation is presented in Appendix IV. The molar
flux of the so1id,ﬁ3§f is assumed to be identically ejual to zero. Further,

the quantity CZ%; may be rearranged to give:

e,

ety = Cﬂ; (2-14)
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Insertion of these results into equation 2-13 gives:

VY -2 ((c o‘;-’)'(:(.vt;' AZ)) (cDﬁ)“'”’ (2-15)
&

rd e/ e-
For the gas phase species, the term ¢ C%, is equal tocDéf, . If the

molar flux of species i is defined as follows:

- re -
E e o A€ (2-16a)
¥e e
where ,_]2 = —~C ‘p‘}” v K (2-16b)

equation 2-15 and 2-16a may be combined to give:

A Ve Pty o)

- K A7°

The mass flux is obtained from the following relation:

(- P ,f,%’ o i I (2-18)

where Mo is the molecular weight of the mixture

A is the molecular weight of the gas species i.

Equation of Energy

The derivation of the equation for energy conservation in porous

media begins with a generalized form in which potential and kinetic terms

are neglected. This relation must be modified to include the contributions
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of both the solid and gas phases. Therefore the change in enthalpy
within a unit volume composed of a solid and flowing gas is assumed to
reflect both the change of the enthalpy of the gas ard solid on an addi-
tive basis. The generalized equation is further modified by assuming
that the velocity of the solid is zero and that the change in solid
density with time is zero. The modified energy equation is given below

as equation 2-19. This derivation is presented in detail in Appendix V.

o7 A A
(E'/OCP. # é}ao/%’cfapo + (&'Ia-é)ﬁ cp2 )q)'? é/g(f/./,é):)zf (2-19)
. —e .4
# €p§(/;’.‘afy‘f§‘) = -G v ur - pv '(é(i;" vw: )
- V.Z(/;"O/:‘e) ¢ f%p * V‘ée 77

tay

where /Qt is the mass enthalpy of the gas species i

f% is the enthalpy of the coating

éb is the effective thermal conductivity.
In a manner analogous to the previous section, the effect of the porous
media on heat conduction is expressed in the thermal conductivity.

Considerable literature has been published describing various

models for the thermal conductivity in porous media. A number of studies
have dealt with heat transfer in a porous solid filled with a static

fFluid. 262

Studies have also been conducted for heat transfer in porous
media with flowing fluids.®3264%% 1y many of these publications, con-

siderations have also been made for the difference between consolidated

and unconsolidated materials. One paper included the effects of gas-solid
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reactions on the thermal conductivity.66 Recently, Huang proposed that
for porous rock, the static thermai conductivity be given by the follow-

ing equations:67

kc = E'ka) @ﬁp{‘g, ) ” c"'(én ﬂé_)@&a(}g) ¢ //2 /-3,99(}0)) ! (2-20a)

where H =1~ se;gp('g) - &p cxp(};':) (2-20b)

and &  is the porosity

77 is the pore geometric factor

ko is the solid thermal conductivity

éy is the fluid thermal conductivity

&~ is the apparent radiation thermal conductivity.
Huang based his derivation on a preobability argument for a model combining
three mechanisms: heat transfer by conduction through the solid, heat
transfer through the solid and fluid in series by conduction and radiation,
and heat transfer through the fluid phase by conduction and radiation.
This relation is applicable to both consolidated and unconsolidated porous
media through the value chosen for m .

Various relations have also been proposed to calculate &, kp, and

QI . Schotte has proposed the following relation for &k, in packed beds:60

kf,:(;-f ) T (2-21a)

o

where feo

-
0-692€l}p (}"aT')j (2-21b)
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and € is the emissiuity
DP is the particle diameter.
Schotte compared his results with the experimental data of Yagi and

Kuni157

with good success.

The term k;:is the thermal conductivity of the solid material and
can be found in specific literature related to that material. The term
KF’ which is the fluid conductivity, must be corrected for pore size if

the fluid is a gas with a Tow pressure. Huang has proposed the follow-

ing rea]tion:ﬁ7
* A ]
ik (1 ) =2
where S = —‘25‘%- (2-22b)
Ao P
and ? is the conductivity of the gas mix:ure
P s the pressure

P° is the reference pressure
Ao 1s the gas mean free path at the reference pressure
E? js the mean particle radius.

For a multi-component gas mixture, an averaging technique must be used

to calculate the mean free path. The multi-component gas conductivity,

L?,, will be calculated as described in the next chapter.
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CHAPTER 111
ANALYSIS OF PACK CEMENTATION

As was mentioned in the Introduction, the specific problem chosen
for analysis in this thesis is the deposition of solid silicon on an
inert alumina shell by the pack cementation process. In order to postu-
late a problem whose solution can be obtained with a realistic amount of
computer time while still preserving all of the essential features, a
single chemical vapor deposition reaction based on the hydrogen reduction
of trichlorosilisic acid to form hydrogen chloride and solid silicon is
specified. In the past, workers concerned with this chemical system chose
silicon tetrachloride as the predominant gas phase silicon bearing species
(see for example, reference 68). Recent studies by Harper and Lewis have
shown that the particular species chosen for this thesis are predominant.69

In the proposed process, a ceramic cylinder, filled with a porous
pack material with a solid silicon core at the center, all at constant
temperature, is placed in a hot furnace. The porous mass is assumed to
contain a mixture of hydrogen, hydrogen chloride, and trichlorosilisic
acid. At the start, heat is added to the cutside surface of the alumina
shell. As the temperature of the system rises, hydrogen chloride reacts
with the silicon at the core surface to form trichlorosilisic acid and
hydragen. As the species diffuse outward toward the hot alumina shell
and attain a higher temperature, the equilibrium shifts so that solid

silicon is deposited as a coating.69

For this problem, all transport phenomena effects are assumed to
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be symmetrical about the cylindrical axis. The analysis of this process

is based on a reduced set of the generalized transport equations for con-
solidated porous media as presented in Chapter II. The specific equations
are given below. In addition, the remaining constraints necessary for
analysis of the proposed problem are presented below. Unfortunately,
analytical techniques for the simultaneous solution below of these relations
are not available. As is typical of many such problems, numerical solution
schemes using a digital computer have been combined 1,0 provide an algorithm
which may be used to predict events in pack cementation. In this chapter,
details of this algorithm are also presented. Boundary and initial con-

ditions are discussed in terms of their numerical representations.

Porous Media Description

The hypothetical porous media selected for this study is assumed
to be consolidated and made from pressed alumina powder with a single pore
radius., These assumptions allow for the calculation of the tortuosity
from the porosity without experimental determination and thus simplify
the porous media effect on both the diffusivity and permeability as pre-
viously discussed. The actual material properties selected are those used
in many previous diffusion and heat conduction studies as reported in

Smith et a].45 Pertinent data are summarized as follows:

Material A1203-H20
Particle diameter 90u

Macropore radius To be determined
Particle density 2.45 gm/cc

The value for m in egquation 2-20 for this material as reported by Huang

is approximately 1.0.6?
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Transport Equations

The general transport equations for porous media presented in the
previous chapter may be simplified for the analysis of this pack coating
process. Because the coating is composed of a single component, silicon,
and because this species does not exist in the gas phese, the conseryation

of silicon represented by equation 2-8 becomes:
(3-1)

Equation 2-8 for the continuity of the gas phase species also reduces as

follows:
g('fpwi) ’ V’f’?ae = r (3-2)

Application of the assumptions mentioned in the previous paragraph

to equation 2-19 gives the equation for energy conservation,

e * Rfnmr (e ﬂ)[’CP,.)osz PG SHZ) . )

PV VT ol Z(A/ Pex) ~ VZZ«#,)« F"AW:;';{N"'&:‘

Fa (]

For this problem, the equation of motion remains as equation 2-1.
The overall equation of continuity, equation 2-7, also remains the same
as previously derived.

The only transport equation needed to describe both the core mate-

rial and the inert shell for the problem chosen for this work concerns
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conservation of energy. Even though the shell is composed of a ceramic
material, temperatures anticipated in this problem are not sufficient to
cause changes in pressure with time or distance. The equation used to
describe the conservation of energy for either the shell or the core is

given below:

(gcgq)t = P T (3-4)

Auxiliary Equations and Further Assumptions

One of the more interesting aspects of the present problem lies in
the deposition of a condensed phase by chemical reaction. Unfortunately,
experimental data of sufficient accuracy are not available to obtain a
reliable empirical relationship to predict condensation rates for the
chemical system considered in the present study. In addition, theories
for condensation kinetics are not well developed so theoretical results
are also not available. Thus, the assumption is made that the gas phase
is in equilibrium with the condensed phase, should one be present. The
implication in this assumption is that the condensation kinetics are infi-
nite or at least so rapid that species transport processes are rate
controlling. The extent to which assumption is valid must rest on experi-
mental data obtained under conditions in which the ditfusional and equili-
brium conditions have been precisely determined. In order to determine
when condensation occurs, the following procedure is followed in the

present study. For convenience a deposition index, DI, is defined as:

Pl

Or = (3-5)

Kz Knsics,
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The numerical value of DI is compared with the numerical. value of the
equilibrium constant, Kp, for the specific gas phase-condensed phase
equilibrium. If DI is less than Kp, the thermodynamic implication is
that a condensed phase is formed. The gas phase compcsition is calculated
accordingly. Use of the appropriate continuity equation results in a pre-
diction of the amount of the solid phase deposited.

In addition to this major point, several other relationships must
be used to analyze the pack cementation process. These equations are
discussed in the following paragraphs.

The ideal gas law needed to calculate the systems pressure is pre-

sented below in equation 3-6:

27
p= - (3-6)

Another set of constraints which must be satisfied concerns the
conservation of the elements. Equations are given below for the specific

chemical system at hand.

My M Mw (3:7)
Y = -
2 Mty "8z 7 sy 7o/ 'ﬂﬂnwcg ’;qug o
iy Mer

—_— §o— = (3-8)
/’Z«J«q} HSCh M s fles = ©

/@:'

Mis.c Fusich, * 3¢ =0 (3-9)
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The final equation used in the mathematical description of this
pack cementation problem satisfies the requirement that the sum of the
mass fractions in the gas phase must equal unity. This relation is

mathematically represented below:

Fowi=/
& (3-10)

Finite Difference Equations

The initial step in the solution to the problem for this thesis con-
cerns the representation of the partial differential eguations and the
accompanying boundary conditions as numerical relations. In the method
selected, the derivative terms in the partial differential equations are
replaced by finite difference ratios. Detailed discussions of this tech-
nique to solve differential equations are presented by Mickley et 31.70
The following is a brief summary of the approach used here,

Finite difference ratios are easily derived from a Taylor's series.
As an example, the time derivative of temperature,'ggp, where temperature
is both a function of space and time can be considered. A Taylor's series

expansion of temperature at a fixed point with time as a variable is given

below:
7 7
T(’}f*df):’ 7¢rt) ¢ al > * T ot L (3-11)

If time increments are sufficiently small, terms in ot of second order of

higher may be neglected. Thus the derivative of temperature with respect
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to time may be approximated as:

T(r trat) = 70 t)r ot L (3-12)

This equation is described as "forward marching”" in time. For partial
derivatives of temperature with respect to the positicn variable r,
third order terms of 4 are neglected and two series approximations com-
bined to give:

Q7 T (rrar, ) - T(rar;é¢)
O?f } 2ar

(3-13)

For second derivatives with respect to r~ , suitable manipulation of the

two series yields:

T T(rsar,¢) - ETlrg) + Tar £)
wr? - aré (3-14)

Equations 3-13 and 3-14 are described as "centered" difference relations.
In some cases, the space variable increments may not be equal. To obtain
a finite difference relation, two series equations with different incre-

mental distances are utilized to give:

o B (rirease)-Ttne)) Blrot)rpae) |

- 3-15)

LK + A5

Similar manipulations of the Taylor's series expansions will yield a finite

difference equation for the second derivative of temperature with respect
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to the space variable where the incremental space variables are not
identical.

The choice of a "forward marching" difference equation for the time
derivative and a "centered" difference equation for the space derivatives
is typical for the solution of initial value problems. In this case, values
for all variables are known at the initial time. Values at the next time
may be calculated by the algebraic solution of the suitable finite tempera-
ture at time Z#d¢, as for example the equation for transient heat conduction

with constant properties:

ulh | TCrian ¢)-270:¢) Trare)
7Unerat) = 7(ri¢) + fcf’( 2 ) (3-16)

Other, more accurate difference equations may ke derived from alter-
nate forms of the Taylor's series expansion. For example, the time deriva-
tive may be based on f¢Zaf, or higher terms may be included. However, these
equations require an iterative scheme for solution. As a result, these
alternatives will use greater amounts of computer time for solution for the
same increment size. In any finite difference representation of a differen-
tial equation, the accuracy of the solution will be determined by the size
71

of the increments of the numerical solution if both stable and convergent.

These two basic criteria are discussed further below.

Stability and Convergence

If there is an exact solution for a given partial differential equa-
tion, there is an exact solution for any given finite difference equation

used to represent this partial differential equation. Any difference
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between these two solutions is known as the truncation error. If the exact
solution to the finite difference equation approaches the solution to the
partial differential equation in the 1imit as the incremental variable
approaches to zero, the finite difference equation is said to be
comarer‘gent:.rI

In a practical solution of a given problem utilizing finite difference
equations, oniy a finite number of significant figures can be carried in the
computations. The difference between the exact solution of the finite dif-
ference equations and this practical solution is known as the numerical
error. Generally, these errors are predominantiy errors of round-off. A
practical solution to a difference equation in which the numerical error
does not increase as the solution progresses is said to be stab]e.71 Unless
a proposed numerical solution is both stable and convergent, or unless the
instability is predictable, the accuracy of the results is unknown. Several
tests have been published which may be used to determine the stability and
convergence of the special class of numerical schemes which represent linear

71 For the tran-

partial differential equations with constant coefficients.
sient heat conduction equation with constant properties, stability is in-
sured if a modulus, defined ascr:f;; » is less than 0.5. If stability is
assured, the solution will also be convergent and the accuracy will only be
a function of the incrément sizes chc)sen.?1

In such cases where variable properties or nonlinear equations are
involved, the modulus & :-—f;a cannot be used to predict stability and
convergence. However, this concept may serve as a guide to test a proposed

solution. If a solution exhibits oscillation or unreasonable physical re-

sults, the modulus can be changed and the new results studied. Results
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using several grid spacings can also be studied to check for convergence.

Boundary and Initial Conditions

For the solution to the problem of pack cementation, conditions at
three interfaces must be specified. In the following paragraphs, boundary
conditions for the shell-furnace interface and the certer of the core are
presented first. These discussions are followed with derivations for the

relations which apply at the core-porous medium interfaces. Relationships

for the second porous medium interface will be similar and will not be
given here.

At the interface between the surface of the shell and furnace environ-
ment, only heat is transferred across the boundary, sc only energy related
conditions are required. For this boundary, the shell surface temperature
is assumed to be known as a function of time. Determination of these values
is readily done experimentally. A Hermite interpolation polynomial is used
to generate additional values between postulated experimental data points.
To improve the accuracy of the numerical solution in the vicinity of the
surface, a special calculation for the temperature at the station just in-
side the shell surface is used. This technique ensures that the heat flux
predicted by the finite difference solution at this interior station is con-
sistent with the implied heat flux resulting from an experimental surface
temperature. The development of this equation is given in Appendix VI.

This procedure has been used in other 'm.vor'k.?2

Assuming symmetry, the heat flux at the center of the silicon core
must be zero. The value for the temperature at this location is assumed to
be equal to the temperature at the station nearest the center. As with

the surface of the shell and the furnace, only energy related boundary
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conditions apply at this interface.

At the interface between the porous medium and the core material,
or between the porous medium and the shell, unusual bcundary conditions
are required. In this numerical solution, an interface is treated as an
increment rather than a surface of zero thickness. As a result, volume
element terms must be included in the derivation of the equations which
describe the boundary conditions. For the mass boundary condition between
the porous medium and the core, a storage term and a generation term are
required. The equation representing these considerations is presented

below. A similar equation is needed for the other interface.

&Q(Z”.Q(C“U)Co (-Qrf’-a%)f?w" # Zpé’(dca.;yéo ArF Eﬂgu_).', i

(3-17)
2l (ccwspt) Lol (ecwmm ) = 2o Blecw) Lo are re
where i?f(ifu%o{) is the mass flux of species i as evaluated at the
station in the porous medium rearest the jnterface
Lo is the cylinder length
Arp is the incremental distance between the core

material interface and the first node point in
the porous material

arg, is the initial value of ap.
Because chemical reactions at the interfaces may either deplete or deposit
solid silicon, the incremental distance between the core interface and the

first node point in the porous medium will vary with time. An equation

has been developed to calculate the change in thickness and equation of
continuity for this increment. Details of these derivations are given
in Appendix VII. Results are given below for the thickness of the incre-

ment between the porous medium and the core. A similar equation is used
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for the increment between the porous medium and the shell.

at
arp(érat) = arp(¢)- (E(a-rp(é) i ""g;dqsg (3-132)

(qu, it z:pr(t)aw)
apr(£148) = aprlt) - B.(E-5+1) (3-18b)

where arp s the initial value for &rp

apr, is the initial value for apr
Because the boundary condition is most conveniently used in terms of con-
centration rather than as a derivative, equation 3-17 is used in the
definition of a finite difference time derivative to calculate the value.
This resulting relation is presented below in equaticn 3-19. As mentioned
above, large differences in the derivatives between any two successive
times are not expected to occur. However, at early times when reaction
does occur, substantial inaccuracies in derivative calculations can be
created because of the nature of the numerical solution. To minimize the
effect, time derivatives of the species calculations are averaged.

weltaw, ttat) = (e (ecw, t) }1-(;’?;” 4 4,; /"L (3-19)
¢

(Kwp/)/“'(awﬁ‘/ (x.az’)lﬂm (ccwpr, {v8t) /o (coewrs t) ( vl

(& (ccwpz, tral) - G cwpr, £rag) ) # érp Mc*é(u}M/ lrat)/

(a%aqﬂf'&6@@W{M£Mk&mwfm4hﬁqér h@%&Mz
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Lo Cecwwr,, 0160 )/ Molicom, ¢ )(f;;/(’wérp) Pl ) (319)

Cont'd
/A;p) 4 (eCtew, ) + & _,)OI/ "/{a‘w,a’) c%‘/{
’f.

Oé)%’/mﬁ) ))/(/(cau, c"mz’)(é'(ccw, £)# j{,é: ) ))

As before, a similar equation is used for the other interface and is
presented in Appendix VIII.

In addition to equation 3-17, two other constraints must be satis-
fied simulitaneously at the boundaries between the solid layers. Equilibrium
is assumed to exist at all times and the sum of the mass fractions must
equal unity.

When reaction does not occur, the velocity at the wall is equal to
zerp. MWhen reaction does occur, the velocity is calculated as follows:

Fae

Ve = (3-20)

The caiculation for the energy related boundary conditions at the
two solid interfaces are performed in a manner similar to the method des-
cribed above for mass considerations. This equation is presented below:

2lcwn) Z—
7,

Tecw,¢tat) = (ricw )+ ot oty (- (3-21)
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The equations for the other interface and the arguments are shown in
Appendix IX.

Because the depletion of solid silicon at the interface between the
core and the porous medium will create a gap, the thermal conductivity and
the diffusivity for the increment between the interface and the first node
point in the porous medium must be modified to include the contribution
due to the gap. The approach used in this thesis is to calculate an over-
all diffusivity and an overall thermal conductivity in a similar manner as
an overall heat transfer coefficient is calculated for heat conduction
through composite materials. The development of these equations is given

in Appendix X. Results are given below in equations 3-22 and 3-23.

- L arp é%f
(ﬂ(‘e _ Arp(_&@fdr}:_%){ df‘P A’?’) ny

-——-—————-— (3-22)
»(.Qf(ccwﬁ/) Den )
ne
where Llln is the overall diffusivity for the composite.
Lerap / .
éff(&(.&fyp -’-"ﬁ) b ( '_e'-f_g‘&ﬁ) -/ (3-23)

keltawr)) ke lew)

where ke is the overall thermal conductivity for the composite.
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Computer Program

The computer program for the numerical solution of the eguations
describing the pack cementation problem is divided into several elements.
Element 1 reads input data and establishes initial conditions such as
temperature and concentration profiles. The remaining elements of the
program constitute a primary loop with time as the incremental stepping
variable. Element 2 calculates the temperature profiie in the core material.
Element 3 calculates the temperature, concentration, and velocity profiles
for the porous media. Element 4 calculates the boundary conditions for the
interface between the core material and the porous media. Element 5 cal-
culates the temperature profile in the shell material, and Element 6 cal-
culates the boundary conditions for the interface between the porous media
and the shell material. The remaining portion of the program calculates
the pressure in the porous medium, the amount of core depleted, and the
amount of coating deposited. Also calculated are normalized values of con-
centration and distance for comparison with the Arnold Solution as discussed
later. Finally, old values of certain variables are established and output
data generated.

With knowledge of all variables at the initial time, the program
calculates values for all variables at the next time by starting at the
center of the core and progressing outward to the surface. At the surface,
the program requires the temperature to be input from experimental data or
from a proposed profile. In actual practice, the pack cementation device
would be placed in a furnace and the surface temperature measured as dis-

crete points in time. The program receives these discrete points as input

data and interpolates additional values as may be required. After values
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for all variables have been calculated, the computer returns to Element 2
and begins computation again for a new time. A copy of the software is
included as Appendix XI. For convenience, values for the diffusivity are
calculated in a sub-routine to the main program. Software for this pro-
cedure is also included in Appendix XI.

In order to increase the usefulness of the results of the present
study, the computer program has been written in a general way to accommo-
date practical dimensions and other actual physical data for a system com-
posed of three gas phase species and a single coating species. For example,
thermodynamic properties of chemical components may be easily changed as
Tong as these data fit the polynomial equations used in the computer program.

In addition, the program will process problems with radii greater than exact

multiplies of the selected stepping increment.
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CHAPTER IV
IMPLEMENTATION OF THE NUMERICAL SOLUTION AND RESULTS

In Chapter III, the specific transport equations describing the
deposition of solid silicon on an alumina substrate during pack cementation
were presented. Also proposed was a digital computer program to obtain
the numerical solution to the transport equations. In this chapter, the
results of the numerical solution are presented. This discussion is pre-
ceded by a description of the relations for the various component and
mixture physical and transport properties. Even though considerable time
was spent reviewing recent developments in this area, relationships for
the gas mixture properties and the individual species properties were selec-
ted to some extent on a basis of convenience in the numerical solution as
increased accuracy in this area will not significantly improve the results
of the primary goal of analysis of the pack cementation problem. Also
presented is a discussion of the transport and thermodynamic properties of

the solid materials. Other input data are shown later.

Thermodynamic and Transport Properties of the Gas Species

The equations used to calculate the heat capacity and enthalpy of

the gas mixture are given below:

AT @
- |
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1) 7. - - g
Z /;;, o 07 v Koy

A= s (4-2)

The generalized equation for the heat capacity of the individual
gas phase species is given below in units of Kecal/mole °K. This equation
represents a regression analysis of experimental data as a function of

temperature in degrees Kelvin over the range 273 to 1800° K.

~ £
Cp = A¢ BT+ 7% D77 52 (4-3)

VYalues for the constants in equation 4-3 are reported in Appendix XII for
each of the species. Also included are values for the standard heat of
formation at 298.16° K, in units of Kcal/mole, and the reference to the
values for the heat capacity constants. The standard heats of formation
used are those reported in reference 73.

The thermodynamic value for the equilibrium constant for the reaction
proposed above is obtained from data presented in reference 73. These data

have been fitted to an equation as a function of temperature as shown below.

g, Ko = A+ S e

Values for the constants in equation 4-4 are presented in Appendix XII.

The equation used to calculate the viscosity of the gas mixture is

based on an extension of the Chapman-Enskog theory by Curtis and H'irschfe'lder74

5 This equation is given below:

and further modified by wﬂke.7




4]

Z (2/5’ %) ) (4-5a}

i~y N |
where 5%/ ~ 1/?'{ (/:" /%—;‘) 2(/‘ - (/‘;a)‘?(/;’{)4) < (4—5'3)

and /uz is the species viscosity.
The equation used to calculate the viscosity of the individual gas
species is given below in equation 4-6. This relation has been previously

reported in Bird et a1.29 for both monatomic and polyatomic gases.

| Vo=
t = 2.6 (/0‘5)0:‘3» o (4-6)

where ¢, s the collision diameter
{%”; is the collision integral for viscosity.

The collision integral has been tabulated as a function of reduced temp-

76 Values for this integral in the reduced

77

erature by Hirschfelder et al.

temperature range 1.4 to 30 have been fit to the following equation:

. -f
Qi = (0.¢97 (70 4 6.327 by 77 )) (4-7a)

e
where 77 =z 2 4 (4-7b)

@y . .
and (EJ‘ is a constant unique for each species.
£

e
Several techniques have been proposed to calculateq. and(‘g}and are
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reviewed in reference 29 and 78. The method used in this work is given

below:
@
(2). = 0777 (8-8a)
where 7cc  1is the critical temperature for species i

G@; is the critical molar volume for species 1.
Values for 7c. and EZ;are given in Appendix XII.
The equation for the gas mixture thermal conductivity is based on
a modification by Bird et al.,29 of an equation first proposed by Mason and

Saxena.78' This equation is given below:
Z( (éd/)) (4-9)

where ke is the species thermal conductivity.

Equations to calculate the thermal conductivity of monatomic gases

have been proposed which are similar to those used fcr the viscosity.zg’76

Extension of these equations for use with polyatomic gases has not been as

29 A model used in this work was proposed by Mason and Monchick

and is presented below.?g

successful.

£ = (c:é. f/.zs.é')/a- (4-10)
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A considerable number of papers have been published on ways to
calculate the binary diffusion coefficients of gas species combina-

23,76,80-88 Values for this property are needed for calculation of

tions.
the effective diffusion coefficient discussed in the previous chapter.
The method used in this work is that reported by Hirschfelder, Curtis,

and Bird’®

and s given below in equation 4-11a. Even though this method
is one of the earlier works, most of the newer methods do not give signifi-
cantly better accuracy for a majority of combinations. In addition, this
method is consistent with those used to caIcu]atg/z'and £¢. A comparison

of the several methods is given in reference 88 along with experimental

data.
‘l) M7
;s = /.85 7)) -
4 8583 (107?) 05{,0?. (4-11a)
/ /
where A= (x ° (4-11b)
(7 * %)

and Ci?' is the collision diameter for the pair ij

1:%?' is the collision integral for the pair ij.
The collision integral for diffusion is calculated by a similar
method to that for viscosity based on specific table values for diffusion

6

reported by Hirschfelder et a1.7 The equation for the diffusion collision

integral is given below for the reduced temperature in the range 1.4 to 30.

Ry = (07599 (1070597 lu 7 ) RS E)

e
For these calculations ,( T )’.-and 0‘9‘ are calculated as suggested in reference

/
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29 as follows:

(E)g,‘ (ff’);(f‘);)é (4-13)

-—

a7y (4-14)

Nl

0“5,'

The value for the Knudsen diffusivity for the gas phase species is
calculated from an equation reported by Yo_ungquist.43 This relation may
be modified to include the results of Smith and coworkers to calculate a

value for the pore radius.45

D‘; = 32 ;MV:) ) (4-15)

-

where 2 is the average pore radius.-
As mentioned in Chapter II, a. is probably equal to unity so the last term

in equation 4-15 is also equal to unity.

Thermodynami¢ and Trahsport Properties of the Solid

The equation for the heat capacity of solid silicon is given below
in equation 4-16. This relation is reported to represent experimental

values in units of cal/mole °K for the temperature range 273.16° to 1]?3°K.8g

-~

CP= 8574 * 0.0 )7 - roslnS)/~2  (4-16)

The equation for the heat capacity of alumina, which comprises both

the porous media substrate and the outer shell, is given in equation 4-17.
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This relation is reported to represent experimental values in units of
BTU/1b°~F for temperature in degrees Fahrenheit over the range 325° F to

90

2930° F. Similar values were reported in three other independent obser-

vations and compiled in reference 91.

Cp= 0239 ¢ o odop (073) 7 (4-17)

Jakob has shown that the thermal conductivity of non-metallic crysta-

1ine materials is inversely proportional to the temperature and would fit

an equation of the following form:92

-]
% = A4+ 7 (4-]8)

Yalues of the constants for the solid materials used in this work are

presented in Appendix XIII.

Further Modification of the Momentum Equation

Early runs with the computer program resulted in unstable solutions.
Even though the stability moduli for the heat and mass transfer equations
ware maintained at very low values, the instability persisted. Finally,
the problem was identified in the use of the momentum equation. Even though
the momentum equation, given as equation 2-1, does not contain a second
derivative or a time derivative term, values for the pressure are calculated
from values of the mixture density which is calculated from the continuity
equation. Thus, a third stability modulus must be ccnsidered. The time
increment to produce a stable solution from the momentum equation based on

the third stability modulus was estimated to be less than 10'4 seconds. In

comparison, the value for the increment which will satisfy the other moduli
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is only less than 10'2 seconds. As a result, the pressure can be assumed
to be independent of position. [f this assumption is used, the momentum
equation is not needed. In addition this assumption implies that a change
in pressure at any point, as a result of other transport or reaction pheno-
mena, very quickly changes the pressure throughout the porous media. This
assumption changes the initial algorithm. The velocity at any point is now

calculated as follows:

Me,
31
E 3

®

(4-19)

&~
]
N
2

The density is calculated from the ideal gas law. Th2 pressure is allowed
to vary with time, but its value is the same at all node points at any
instant. Values for the instantaneous pressure are calculated from the
equation below. This equation is based on the assumption that the total

amount of elemental hydrogen throughout the entire porous media does not

change.
Lp
= X & EMw /Wy,
P= E;} / — [____"1‘ Z_i“'f CONSecds "G//' (4-20)
(-o (& / Mﬁrf Mﬁé Mff&ff ) )
where 2{ is a constant.

Lo
The derivation of equation 4-20 is given in Appendix XIV. In order to

estimate the reliability of the assumption that the gradient of pressure

is small, the gradient is calculated in the computer solution from the
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momentum equation. Results of the calculation, as well as other results

of the numerical solution are discussed in a following section.

Input Data

Because many iterations are required to reach a solution to the
problem at hand, considerable computer time is used for each run. In order
to conserve computer time, the decision was made after observing results
from early runs to set the initial temperature of the system at 300° F,
rather than ambient, as would occur in actual practice. In addition, the
surface temperature of the shell was input at 1000° F for all time. Input
values which determine the properties of the shell were set so that the
properties were also held constant. Constants which determine the thermal
conductivity of the porous substrate were arbitrarily multiplied by ten.
These constraints allowed the temperature of the porous medium to rise
faster than would normally occur, thus causing interface reaction at an
earlier time. Since the performance of the shell heat transfer relations

72 these constraints were not

were shown to be successful in another work,
thought to compromise the study of important phenomena of diffusion and
reaction in the porous medium.

One other constraint has been placed on the solutions presented herein.
In actual practice for pack cementation, only hydrogen chloride would prob-
ab]y be injected into the pack at time zero. This case cannot be studied
in this work due to limitations of the computer program. Values for all
species must be greater than zero or indefinite numbers occur. In addition,

early runs using small values of H2 and H51013 resultad in dramatic changes

in mixture molecular weight at the core interface producing an instability

similar to that encountered with the continuity equation as discussed in
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the previous section. To overcome this problem, excess hydrogen is used

for all runs. Initial composition and other input data are summarized

in Table 1.

Table 1. Input Data
Item Value
Initial temperature 300° F.
Base temperature 70° F,
Surface temperature 1000° F,
Total pack radijus 12.60 in.
Core radius 4.75 1in.
Porous medium radius 10.70 in.
Pore radius Variable
Particle diameter 90.00n
Space increment 0.50 in.
Emissivity 0.50
Initial porosity 0.51
Time increment Variable

Initial species mass concentration:

Hy 0.618
HCY 0.001
HSACT 0.381
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Results

The primary objective of this work is to show that the relation§
proposed in previous chapters do indeed provide a solution to the problem
of pack cementation. Since no experiments were performed with an actual
system, no true conclusion as to the results of the solution can be
presented, Considerable experimental results have already been presented
for the heat transfer and bfnary diffusion aspects of the porous material
selected. In this light, the important considerations of this thesis thus
become the performance of the relations regarding multicomponent diffusion
and Knudsen diffusion. In the following paragraphs, results are presented
which show that a solution to the multicomponent diffusion problem does
exist. These results are then compared to the special case of equal binary
diffusivity. And finally, results are presented which show the effects of
Knudsen diffusion on pack cementation.

In the following Tables 2 through 5, results of the solution for
the multicomponent case are presented after 100 seconds, 1,000 seconds,
1,900 seconds, and 2,000 seconds in the furnace. The pore radius specified
is 90,000 A and is not sufficient to produce a significant contribution due
to Knudsen diffusion. While the program ran for 3,600 seconds, which was
designated as the end of the run, data after 1,900 seconds are not valid.
At approximately 1,920 seconds, temperatures and concentrations in the
porous medium were sufficient to cause deposition of silicon in the pores.
Apparently this phenomena could not be adequately accounted for in the
algorithm proposed for the step size used, and the solution became unstable.
Attempts to promote a more stable solution by reduction of the diffusion

modulus were unsuccessful. More will be said about this problem in the

next section.
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In order to show that the multicomponent solution is successful,
concentration profiles are presented in Figure 2 for the species HCL at
several times. The results are considered stable because the profiles
do not oscillate. Profiles for the other species are not plotted because
they do not exhibit significant change. As was previously mentioned,
concentrations for these species were set in excess initially.

In many engineering applications, the use of a single binary diffu-
sivity in a mu1ticohponent diffusion problem is expecient, provided errors
are small. For this reason, a solution was obtained for the hypothetical
case where the binary diffusivities for each specie pair were set equal
to the value for D]’z and any effects due to Knudsen diffusion were not
allowed through an option in the software. Results ¢f this solution are
presented in Tables 6 through 9 at 100 seconds, 1,000 seconds, 1,900
seconds and 2,000 seconds. Concentration profiles of the species HCI
were nearly identical to those for the multicomponent case and thus are
not plotted. Comparison of the effective diffusivities for the multi-
component and the equal binary diffusion cases is presented in Figure 3
at 100 seconds and in Figure 4 at 1,900 seconds. As can be easily seen,
there is significant difference between the values for the multicomponent
case and those for the special case. As another comparison, the amount
of coating deposited is plotted for each case as a function of time in
Figure 5. There is some difference in the coating deposition rates.

In order to determine the effect of Knudsen diffusion on the algo-
rithm several runs were made with different pore radii for the multi-
component case and the case where all binary diffusivities are equal to

D As in discussions above, results are presented below in terms of

1,2°
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Figure 2. Mole Fraction of HC1 versus Station at Times

Shown for the Multicomponent Case.
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Results of the Solution for the Case Where A1l Binary Diffus

Table 6 {Continued).

are Equal with No Knudsen Diffusion After 100 Seconds
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Figure 3. Comparison of Diffusivity for the Multiccmponent Case

and the Case of Equal Binary Diffusivities After 300 Seconds.
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Figure 4. Diffusivity versus Station After 1,300 Seconds.
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concentration profiles, diffusivity, and coating deposition. The mole
fraction of HC1 is plotted in Figure 6 versus station for several times
and for several pore radii for the multicomponent case. Results after

100 seconds could not be distinguished for any pore radii studied. After
300 seconds, runs with pore radii less than 50,000 E produced oscillations
in the HC1 profiles indicating instability. Diffusion moduli were also
consistently greater than 0.5 further indicating instability. More will
be said about this indicator in the next section. After 1,900 seconds
results are only available for pore radii equal to 90,000 E and 50,000 E.
Other runs with smaller pore radii were so unstable that indefinite num-
bers had already been produced in the calculations, thus stopping the run
through an error exit on the computer. Figure 7 is a plot of similar
results for the special case for equal binary diffusivities. As with
results for the multicomponent case, the HC1 profile is very similar after
100 seconds for all pore radii studied. After 300 seconds, resuits for

a pore radius of 30.7 A are not valid. Much smaller pore radii can be
studied for the special case of equal binary diffusivity because the
muiticomponent effect does not magnify the problem.

In order to show the Knudsen diffusion effect on diffusivity,
effective diffusivities are plotted in Figure 8 for the different pore
radii at 1,900 seconds for the special case of equal binary diffusivity.
Because all binary diffusivities are equal to DI,Z’ the difference in the
effective diffusivity values is a result of the Knudsen component.

The effect of pore radius on the amount of coating deposited versus

time is shown for each case and for each different pore radius in

Figures 9 and 10. Broken line curves represent results from unstable
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Figure 6. Mole Fraction of HC1 versus Station for Times

and Pore Radii Shown for the Multicomponent Case.
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solutions.

Accuracy of Results

The accuracy of results to the solutions discussed above is a func-
tion of time spacing, distance step size, and stability. As was previously
mentioned, runs with smaller step sizes will provide more accurate solutions
provided stability is maintained. Due to lack of computer time, results
with smaller step sizes were not obtained. Stability was checked on each
run by monitoring stability moduli for both heat and mass transfer as was
discussed in Chapter III. Should any modulus exceed 0.5, the value of the
modulus, the iteration, and the station were printed as a warning.

One good method to test accuracy of the numerical solutions is to
compare results with those from an analytical solution. Unfortunately,
such solutions are not available for this pack cementation problem.
However, for very early times, the Arnold solution reported in Bird et a].zg
can be assumed to approximate results expected from the numevrical solutions.
In Figure 11, results of Arnold are compared to the multicomponent case
and the special case of equal binary diffusivities. If the assumptions
are made that at 1900 seconds the multicomponent solution has reached
steady state and that the bulk flow term is negligible, a simple analytical
solution results. The product of t:lk:was fitted to a curve of the form
arbre for this solution. Results of the steady state solution and those
for the multicomponent case at 1900 seconds are shown in Figure 12.

In the macroscopic sense a test for accuracy is that the product
of the radius and coating thickness deposited should be Tittle less than

the product of the core radius and the thickness of core material depieted.
=3
) .

Results at 1900 seconds for the multicomponent case are 5.1606 (10
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Figure 12. Steady State Solution versus the Multicomponent

Solution at 1900 Seconds.
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mil-inches and 5.4102(10'3).m11—inches respectively.

Perhaps the most significant measure of the accuracy of results
from solutions presented herein concern the values listed in various
tables under the heading fTEST.“ This parameter represents the ratio of
the molar concentration gradient as calculated from the Stephan-Maxwell
equation to the same gradient as calculated from the numerical solution.
Since the Stephan-Maxwell equation is exact, the fact that values for

the "TEST" parameters are very close to unity is indicative that the

numerical solution is both reasonable and accurate.
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CHAPTER ¥
CONCLUSIONS AND RECOMMENDATIONS

The most important conclusion reached from the work discussed
herein is that the model chosen for multicomponent diffusion will provide
a successful solution for initial value problems in multicomponent mass
transfer. The second important conclusion is that the assumption of
equal binary diffusivities will provide a reasonable solution, thus
greatly simplifying calculations. And finally, Knudsen diffusion can be
a significant contribution to mass transfer in porous medium.

Several areas of further work and development in this area are
evident from the results of this thesis. A nested iterative scheme to
better calculate the molar concentrations in the porous media when deposi-
tion occurs should be developed. Laboratory experiments should be con-
ducted to provide actual data for comparison with the model. And finally,

experimental work to better relate porous media properties to transport

properties should be conducted.
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APPENDIX I
CONTINUITY EQUATION FOR POROUS MATERIAL

Consider a small volume of porous material, \4 , composed of
substrate particles covered with a thin coating and a gas-filled void.

Let the mass of the substrate particle be defined as:

me = GV, (A1-1)

where is the volume of porous media occupied by the
substrate particles

fﬁg is the density of the substrate.

and the mass of the coating be defined as:

me= @ (Vo-Vg) (R1-2)

where {% is the density of the substrate coating

\4; is the volume of the porous media occupied by the
solid particies.

The density of the solid composite may be calculated as follows:

(%= _menv; Me (A1-3)

AR ALY (-4
VP
V(X e) (M1-5)

If the porosities of the media are defined as:
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Va
Ep = ~— -
+o Ve (A1-6)
and Ep T _\/E (A1-7)
"
where Vé is the total volume of porous media
Then Ve o & (A1-8)
\/P Ep
And f; becomes :
73
= + (p - = (A1-9)
67 ﬁ"" (JRa f’c &p

Now the continuity equation for a two-phase mixture of solid composite and

gas is written as follows:
o -
‘ii? +7eFi = O (A1-10)

where f} is the density of the porous medium
N is the mass flux in the porous medium.
But is * s where & is the gas filled volume and © is the densit
15 g gp « were e 55 e s ¢ ,
of the gas. Also 7% = 7}-+C?%ﬂf where 77 is the mass flux of the gas species
&r

i. Assuming that the mass flux of the composite,?%., is zero, the continu-

ity equation becomes

ge(gp).« c—%{g‘,,), P"_Zi{""e -5 (A1-11)
L%
Now Efﬂo: E/oﬂ'- ¢ (ﬁ'{,-ﬁ:)% (A1-12)

For a coating with a constant density, the time derivative ofq7$hﬁ1] be:
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4 NE;
Blepd- o 5

And the continuity equation for the porous medium becomes

o%(f/a)*‘/g c‘f’—;‘”, 7-q =0 (A1-14)
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APPENDIX II

BINARY DIFFUSION COEFFICIENT FOR POROUS MEDIA

Evans, Watson, and Mason have proposed a model for the binary
diffusion equation in porous media which begins with a modified form of
the Stefan-Maxwell equation for constant temperature and pressure.37
Evans et al. proposed their relation in terms of molecules rather than
the customary molecular qualities. In addition, these workers have treated
the solid particles of the porous medium as large molecules with a zero

mole velocity. The general form of this equation is given below.

v
n
ff e’ - /. ane
2 2 L7 . = =, e (ﬂlZ-'l)
&~ r7 Dd [VJ V&) n’
CAf
where re is the number of molecules of species i for the total

unit volume of solid and gas

" is the total number of molecules, solid and gas, for
the total unit volume

[%y is the effective diffusion coefficient
Ve 1is mass velocity of species i
t}I is the number of gas and solid i species.

In this equation, effects of the porous media on the diffusion path are

incorporated in the definition of the diffusion coefficient as follows:

e’ £ Nn° _
a,g__‘Q, (A2-2)
d 77
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where &' is the porosity
7 is the tortuosity
;{;, is the binary diffusion coefficient.
If the molecular flux of species i,AZis defined as the product nsiZ'then

equation A2-1 may be rearranged to give:

Z(n ) (,,‘.Ag, -?/LZ) = z;’;‘ (A2-3)
&

For two gaseous species and one solid species g equation A2-3 becomes:

nedfy -y ale nc fdp - : -
‘@Dfdf L - ¢« VP = ripiie __sone (A2-4)
£ ii

Assuming that the solid speciesp has a zero mass velocity,,Cfpwould also

be equal to zero. Equation AZ2-4 could then be arranged to give:

e (14 2 j’) -2 n d'gz‘ ¢ 25 (A2-5)

If &, is defined as follows:

[) -
o = ;; Z?d ) (A2-6)

Then equation A2-5 may be arranged to give:

e chk» e (A2-7)

/t/' = - Dc ;3‘9,_'/(7
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where a}’- _ g‘%’? f:ﬁc.' (A2-8)
e 6y B N o
and n'Gy = (5 HE 513 (hz-9)

The quantity n;Q;jis calculated from a modification of equation
A2-9, For a mixture of a gas and solid, the reduced mass M may be approxi-
mated by the mass of the gas species,m,. The collision diameter reduces
to the radius of the solid particle and the collision integral becomes
(7 » ‘%ZT ). The term g is the fraction of specizs i diffusely scat-
tered by the solid and for most gases is approximately equal to unit.
Therefore, the diffusivity for interaction between the solid and gas is

given below:

n'D5 - (F (5 g lgr)” o

This equation is used by Evans et al. to represent the effect of Knudsen

diffusion.
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APPENDIX III

COMPARISON OF VARIQUS FORMS FOR THE BINARY
DIFFUSION EQUATION IN POROUS MEDIA

Evans, Watson and Mason have proposed the following equations

for the binary diffusion equation in porous media.37

- one :
Mo = =D oo * XS0 4/ (A3-1)
e n'_e’
where D; = 7 Dy S. (A3-2)
I)e/ /
n 3 -
and Se= (r+ ) (A3-3)
‘D‘f

If the mole fraction of species i, ¥, is defined as the ratio Eg then

equation A3-1 may be rearranged to give:

- _neent

Ao = 297 (A3-4)
/ —oc e S

A
7/ A*:/: (A3-5)

)

where o4

e’ e
Because r:C%; is equal to ra[%?' . equation A3-2 may be rearranged to
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give:

$¢ = Se (A3-6)

Do e
= D
- S (h3-7)
/¥ a - - Q’(r.'
/D

1 and Scott42.

Equation A3-7 is the form suggested by Rothfield4
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APPENDIX IV
MULTICOMPONENT DIFFUSION EQUATION FOR POROUS MEDIA

For non-constant pressure and temperature, the Stephan-Maxwell

equation written in the terminology of Evans et al. is given as follows:

Y
ndn; ey x
g FZ‘{/D;) /gf- 7 )=v(7) (Ad-1a)
4'15/'
where n'= N4 np (A4-1b)
J
n= ch: (Ad-1c)

e’ 7

%— = ; /,% (A4-1d)
(%./ -/ é‘én ’é%)‘irc?{;/"ﬂd) T (aete)

and Ne is the molecules per unit total volume of the gas
species 1

N is the molecules per unit total volume of the solid
species

Ve is the apparent molecular average velocity for the
gas species i or the solid species p.

By dividing the number of molecules per unit volume by Avogadro's npumber
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equation A3-1a may be converted to an equation based on the number of

moles per unit total volume as follows:

df
eCt ’ -/ TN
‘g gg?"' / < ’,%ie ) %—c- ‘;.“") >y f‘,/l (A8-2)
v/

This equation is further expanded to give:

GCepS Vo 7e)e Lye - 2% per _
; ¢’ (CD?)? 7o) S e - g (A4-3)

A = 06.17‘.3 (A4-4)

equation A3-3 becomes:

| G- &
CCrr, ooy~ " S N .
g C'/é % ) /? C,;) = o Ve -C.j, C'Q’ VC'! (A4-5)
Y
If only one species exists in the solid phase, the term which accounts

for the interaction between the solid and the gas species i may be

separated from the summation in equation A3-5 and the mass fraction of

the gas species i substituted for the ratio of €. to ¢ to give:




92

J |
Ie, s nE 4 @ _ _ .-
by Gledl ) (it v 0°) - (C-’J);) "L~ (M6a)
L=} d d d
.u‘d ‘
S R X .
Cgf) = e S-S5

L

where Ve = (C—:-" (4-6b)

Now AC’ equals ac because the number of solid molecules does not change.

In addition, ¢’ may be factored and canceled to give:

J

Nty e g€ imE Y - e
gc{a%) A(uff// -yué')*‘ é 0};)&11{;—(/4&): czf:‘*nﬁ-cg,)pc (A4-7)
:'1‘01' -

For most situations c‘::’ is nearly unity. Thus, equation A4-7 becomes:

o/
v = ) ey g ¢ ) (St Zak) e
“_‘
7
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APPENDIX V

MULTICOMPONENT ENERGY CONSERVATION EQUATION
FOR POROUS MEDIA

Neglecting kinetic and potential energy, the equation for energy

conservation of a homogeneous mixture is:

5((067}) ¢ v phe= rg 0 3 (A5-1)
where Z% is the enthalpy of the mixture.

Assuming that the porous medium is a mixture of solid and gases which

may be represented by the “dusty gas" model used in previous derivations,
equation A5-1 may be modified to give equation A5-2 below. As with other
relations based on this model, the velocity of the solid is assumed to

be zero. In addition, the solid is assumed to be incompressible so

that changes in pressure only occur in the void volume.

gf(f/o/?) ’o%éfﬁ,ﬁ;)v‘ F’-/a?é/; = *V.?" f&é:; é-,a) (A5-2)
where /; is the enthalpy for the gas mixture

/%p is the enthalpy for the solid phase.

Equation A5-2 can be expanded to give:

7 Q) -
qag—f # //cﬁf(é/'o) {Q,%’@ﬂ/#) ¢ P-/oy'/. /7 ""P’“? !;%é‘ﬁ) (A5-3)
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According to the continuity equation:

>
Si(50) + vpte = ~Si(e0 ) (A5-4)

Inserting this result in equation A5-3 and combining terms yields:

a m 9 -] 11 ] ]
3%+ &e'éofp%) //;%é,oqp)vor/e A= - 0-g ceZl1 L (h5-5)

If the solid material is composed of a substate particle and a coating
of a single species and if the density of the coating does not change
with time, the derivative of the product.;y% with respect to time can

be represented as shown in equation A5-6. Details of this derivation

are shown in Appendix I.
= e o -
&5(5},&)_ R 5z (A5-6)
Inserting these results into equation A5-5 yields:
f{"&j"‘z(? Fo)t PAZ < onevi e + 2200 pTE (85-1)
o R )T (A T ik VH 0T 4yt

In order to express the energy equation in terms of temperature, the

following equation is used:

A= ;@.{ /;;c.' (AS-?a)

(474
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p 7 40
where Hy = / Co, T e (A5-7b)
7o
o
and /ﬁL' is the enthalpy of the gas species i at the base

temperature
7%  is the base temperature.

The relation describing the enthalpy of the solid phase can also be expan-

ded to give:
fptle= & (%f‘%; * (Epog)f He (A5-8a)
where A = /7_ 7;-@ Y (A5-8b)
A ir e
and Ho = écc,a I+ Hp (A5-8¢)

Assuming that the density of the solid substrate and of the coating are
constant in time, application of these definitions for the individual
enthalpies to equation A5-7 results in a conservation of energy equation
based on the Tocal temperature of the porous media. This equation is

given below:

27 <. su 7
PP F@gﬂaaﬂ ‘ G o&g? t (o- %)/f%f%r (A6-3)
- PE P A
/@%Z:Qsz v‘(g//jz-fz ~/o,z.-l7//* 7g 153’«/035

Now the flux of energy into the systan,g,can be expanded as follows:
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T~ ~b 0T+ Z//"g/ (A5-10)
e

Inserting these results into equation A5-9 and combining terms yields

the following equation for energy conservation in porous media:

o7 "
(é/ogo 4 .:.—;,fo C;i’% * (gj)—g/‘g)@ ‘93)0_7? f@&'%)ﬁ%’ (A5-11)

fc?oZ//‘ o ‘-/0173 i " /Ol/c Z// Vo

£.=/

- - ,40, fVéeP?‘:?&'ox peE

ot
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APPENDIX VI
CALCULATION OF THE SUBSURFACE TEMPERATURE

7¢,¢) is defined as the temperature of the grid point just
inside the shell surface. In the algorithm arranged for solution of
this problem, the spacing between this point and the surface can be very
much smaller than the spacing for the other grids. As a result, space
derivative calculations can be inaccurate. In addition, the value for
the surface temperature is specified or experimentally determined. As
a result, the value calculated for 7¢¢,¢) must be consistent with the
value for the heat flux at this point as implied by specification of the
surface temperature. In order to provide increased accuracy and to
satisfy the constraint on the heat flux, an implicit equation is used
to calculate TZZ,Z). This method is possible at this point because the
value of the surface temperature is known at all times. The equation is

developed below:

Teitral)= 7le, e) v ?”‘@—? ,a‘;’{éd{ ) (R6-1)

where ;%?4 is the time derivative of temperature at time

;g%—é*dé is the time derivative of temperature at time

The equation for the time derivative of temperature at time &4 is given

below. This equation uses values for all physical and transport properties

evaluated at the previous time, £#£. In this respect, the use of this
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method is not totally implicit, but the values for these variables will

not change significantly in the range of the calculation.

7. r.‘fdf) Tt 2rat) 7y
g taf _Cssur( Ll ) (e {d)) C’é(b{) (A6-2)

ar ES5 AP
Lé.t)
6}. E(ﬁ) )éf*ds ((4,5 ré {fdl') -A/' 7((-/ {?’4{) Af' 4’)7‘(2 t,u{))’V/O ((-JJC (C,{)

where 7%,4tat ) is the temperature at the surface at time £ +af
o4 (et) s the thermal of diffusivity

7‘(£~-’,£mf) is the temperature two points inside the surface at

time & raf
A is the spacing for a normal grid
45 is the spacing for the last grid point and surface.

4!“45

(A6-2b)

and g—'ﬁ’ = (gé,(ér/,é)

Application of equation A6-2a and A6-2b to A6-1 yields after rearranging

terms:

7, Mf) (7Ce) e EZ /0 ¢ s e (=2 "ij (6-3)

¢ oo (/o(z., )cy(é f)))(Zs' T, é7at) - 57 /(4‘ ”"())

2oy, f)(-—(c«/ eat) | 7t fmf))))/(/ ;1’2/4”65)

C(% ’ /(f»"(z é)c;p(é,z‘))) Z“)"Zq,/’:ff/'és ‘ar))
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APPENDIX VII

INTERFACE CONTINUITY EQUATION AND
THICKNESS CALCULATION

Because chemical reaction may consume or deposit solid silicon at
an interface, the distance between the solid surface and the first node
point in the porous medium will vary and a gap will form. As a result,

a speical calculation for grid thickness and the continuity equation must
be developed. As was previously stated, storage terms are necessary be-
cause the interface is treated as a volume element in a numerical
solution. The derivations begin with the continuity equation. Dimensions

used in these derivations are shown in Figure 13,

Elorat, acrp. + Grkelo lop-arp, )/» # ke Lo arp ep + (A7-1)
éa7£25£o4drfLC§?p'£;3JZ; = -Zrle *<v7q)éévf9l4?£cu~p

Dividing by Z7i Lo yields:

&?(Acrf f{A}?-dr‘g)/a A,)ag;/a # Ar/a(é- ;’)/% )_ £> /OV/ (A7-2)

Lew Py

But, AfTL is the initial distance from the interface to the node point

just inside the porous media which is constant; so

AJ?G&#%)

C:cpt g (:9?, +Earp '&377);%? /0<i¥ / ?%/a Jn z /oy’

(A7-3)
Cadpor
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Figure 13. Schematic Representation of the Porous Media-~Core Gap.
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Expanding and combining terms yields:

.. IE -
{0 ér‘f: *tEarp, — arp, l,_-,"p f‘/ao.}é ¢ arp 3 o)tp = (A7-4)
i %—"ﬂr’% fecup

But &cr=ar- arp and ar is constant so:

(drft‘a.rf -Aqog qﬂg‘)ﬁ;{- f(lo-/sJ‘)A,), '9"‘.; ‘QZC“'W lé/ (A7-5)

Liewpt

Combining terms and dividing by.arp gives the final form of the conti-

nuity equation used in this work.

(r+ %?ff"))o%o ’ %% e (/a-ﬂ) .TW%"J‘ frcpy 7O

Results of a similar derivation for the other interface are:

/+ E- f:'., o¥pr  Plepwnt!)

= x/ A7-7
; Jot T T [k MW( )

Et "(]"ﬁ‘)ovz (&0 -4,

The thickness of the partial grid between the core and the first

node point in the porous medium will change due to depletion of the core.
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The thickness of this partial grid is calculated from a mass balance on

the species, silicon, in the original grid as follows:

3@}7@4, ap 6-7,— £z )& -r s év/o-«arg)é_) = Z/fé:foé’/ﬂ/—.{ (A -8)

The last term in equation A?—B represents the net generation {or deple-
tion} of silicon in the grid of thickness-ATP. The other term represents
depletion in the porous material and the depletion of the core to form

a gap. Dividing hyé%ﬂ@%and expanding terms gives:

3 P,
org . 3¢ < BE = ap e (h7-5)

But EP=I—E so equation A9-8 becomes:

D e .
“Argr%‘.o"ﬁ; -/%é o7 = arprie (A7-10)

Solving for %{QFF yields:

L. &
Sarp _ _ Aplse 1 R AR, o (A7-11)
¢ {%‘

A similar equation can be derived for the shell interface. The results

are shown below:
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SHupr Al s 5a4,9'§z€
o = (A7-12)

/g_-(é‘-f; < /)
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APPENDIX VIII

CALCULATION OF INTERFACE MASS FRACTIONS
BOUNDARY CONDITIONS

In the solution to a differential equation, derivatives of the
mass fluxes at the solid boundary must be zero. Also, a boundary has
zero thickness so there is no storage term in the mass balance. For a
finite difference approximation, a finite volume is used so a storage
term and a flux term are needed. For the interface between the core and

the porous medium, the following mass balance applies:

o
ox(?zz@ arp, Lo wiep enke (orp- arp, )éa/m.:;) (A8-1)
*Erlcwr)lo B fonn = ek lo arpre

where 2. is the radius of the interface
é@buWJis the radius at
Lewp! is one point beyond the interface
arp is the thickness of the interval between &wand ccwpy
Arfp s the initial value for orp .

Equation A8-1 can be expanded to give:

Arpgz [fﬁwi) ’ e/owc‘ ‘3’%”".« (A’/O'”f )5‘340“,; )+ (A8-2)
. OArp  Rlicwn) 5 e _ .
fex o7t R i g, TP
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In the algorithm for the problem at hand, e, (ireys) is calculated

from a Taylor's series as follows:

) . # ¢ .
W, ((CUJ, thﬁ) T @l (((w,g)f %{%}/f I%JF‘A,M{) (A8-3)

As with the calculation of the subsurface temperature (see Appendix VI},
the fact that Arp can be very small, thus producing inaccurate deriva-
tives, warrants the use of an implicit solution forw.‘é'm;,gm(). The
derivative g%"l/t,.d is obtained from equation A8-2 and is shown in the

expanded form below:

c?w‘/tmz‘ (A/? re /é 7% ((m,g’m()(f"éau !) /)c / (A8-4)

f{cm, {r4f) wi cew €ral )(& Cpﬁ/aqg) R (acw,x)

ﬁ%)/{f&r@ 27 )€ (ew, ttag) ¢ ;Z’ ~/ ))

Insertion of equation A8-4 into AB8-3 and collecting terms yields the

following equation for c; Gew, fraf):

FFU - B ik v

Wi (eew, trat) = (wi Gcwse) * i

V4 €
4 %2( /O(C-pr/, arar) (ﬁn leawpr, # of )/Mm (oo, Fad j
((v lecwry, £rat) - Xe (. (Cwpl, (ral ))"LP * 4r' .l’¢ Cecapy, fr8t))
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{(A8-5)

/(z.rmr)o) b (cap, Kféf)ﬂ?c(cup/, z’/dl')/ﬁ'?/-’-ﬁ'}“ )/ Cont'd
‘ Y ont'

((oc’z_cw, {faz‘)(c.‘(?_(w, ) # 2%9 “/)))/6;” EX/E%T)

P(ccw, {ral) 1.0:. (eceor, !raa’)/Mw/@w/’/; /’45’)/ :_';0“/

(Arharp))/ﬁ'w(é(w; é’z‘di) /AI;O # (f(mw,[) # j;;‘j “/)
£ dar, ‘

cc;f/é 4 f(ﬁf'éd, lral) (3‘% ! i&??/drg )/(/(é(@ £7s2)

(elecw 8) ¢ 5 -1)))

A similar equation can be developed for the interface between the porous

medium and the shell. The results are:

| N e |
wilem, ¢1ad) = (e Cennd) + Ean o E(m) ¢ (o)

) e plasm 1ot Cam ¢150) [ P lepaom, )
(e ( cowms, 1141)33'; + M CowmZ, Lral) - A (Crwan, (’/Jt)
L) arrapr) * ki lepwm, Lrat) A7 Copwm, H60))) /)
(5'(¢,aw, Z)/(é-’%ﬂ "Mf))) /('/ ’ ?’( gg%m)/éﬂwm,wzj
(Q; Leowm. E1al) [t { cromy, (76¢) L/dj.l;/(’éé' /d,'f?f))

Moo (e, Evat) fapr ¢ p(z_,ow, /1al) ('c.‘%)f/;, ¢ Elerw, ¢)

ﬁg/gspr) f Eéﬁw, i')cf?—zf?ﬂg )/(E'émf,f)f(wat /faf)))
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APPENDIX IX

CALCULATION OF INTERFACE TEMPERATURE
BOUNDARY CONDITIONS

The calculation of the interface boundary condition is based on an
energy balance over a portion of the porous section on one side of the
interface. To improve the accuracy of the numerical solution, an implicit
calculation of the interface temperature values is used. The method used
to calculate 7¢¢ecw), the temperature of the interface between the core and
the porous medium, is shown below. Results for a similar derivation are
also given fbr‘?ZZ/QLQ, the temperature at the other interface. The deriva-

tion begins with the following energy balance:

i(&pwpo) ¢ a‘%(fmopag L‘//g) g O';'?g((c; e/))/fd,& Jc) b (R9-1)

3 A “ Cenl e e
0%[[5:’/) 'Af/g)[JU) 45’3 (ﬁd(’r"‘ C,{:-) = z%f:})@"(“w’a’)
ecwr) . fucwn) .y
A?“ ((CUJPI) 4 ( D) ?,,, = @Tw) '?ouf )

The first term is the accumulation of internal energy of the gas phase in
the partial increment next to the interface. The second term is the
accumulation of internal energy of the porous substrate next to the inter-
face. The third term represents the accumulation of internal energy on the

core material deposited on the porous substrate. The fourth term is the

change in internal energy of the gas in the gap between the core and porous
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medium. The fifth term is the accumulation of internal energy of the core
material near the interface. The remaining two terms represnet the flux
of energy due to diffusion and conduction. For the problem at hand, the
density of the solids does not change in time and the internal energy of

the solid can be represented in terms of é;' s0 Equation A9-1 becomes:

2 .
Seleparp 0) fo-g(fo(.drp arp) )+ g f 2, %32;”{ oz
G ar G A e s 0%

- _ R(gcwn) ( f,;‘.e(gwp,);/} (ecarpr)) * ég_@_m’) (A @%:":"’9%0/

&=

A
Substituting the definition for {/ and expanding and combining terms gives:

arpSeepit)- aepBleg) 150 O T Copap o) 199
—érf'drﬁg "f(ﬂ?"/bg Of;ﬁf (%/%Nﬁ% ’ (:.‘)g;“%)/gdr’g C)g ¥
/Ocacrcg)a‘%r TRABYeSE g 62@‘%’*/(,47-/-5’)9!1’ = LY € ()

o Re £
pelienr) * &Zﬂﬁdﬁ - z{eiwﬂfaa/

A
Application of the definition of # and expansion of terms gives:

A QE 4 P 2F ”
Ar‘f)ﬁf) %{ 4 A/}D /'/f'o‘)-{ "AK/OE'O-?? -df-/p/ga;.‘- £ qg(ly_/é,)&@o (A9-4)

¢ /Ar,o-”g)/%‘?- (A"‘F'Arﬂg—f * /0(/7{)‘;,‘—? # (79.? # (A.rf-m;g)/éx}b
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, & (R9-4)
+ R fpo arp, g, * (é'o-e‘,‘g)/g arpep * Lacrep )a?é - Cont'd

pon (- F * pCA-£)% = = G ) il

Elccanty _. Rlecewry) .
¢ il -
Re 2 Fout

Assuming ‘%‘%%" is - daj and combining terms based or derivatives yields:

(dff(/;f"P)* arg(élg "5.'5{7?6));%‘ g ﬁ@f(ﬂa/f)-&ﬁ) (A9-5)
Z‘,jf 4 CF(/O/&-P) ¢ ﬁpup-éﬁ ,;2,32';2)%’1"_ (g?&af)-arﬁ)
o "{fc # (M/?‘Arb)c ‘g Arp cp ¢ CE -—Eo) arp <
g=&[;£w/)0 WPt EPRATR S (G R LAER)

€ p (e

For a numerical solution, values for '3’ are defined as follows:

i—;fn = -4 é‘“””’)(r/““’) - Tf‘ﬁfmf))/acr (R9-6)
fm, = = & (ceans) ( 7 (ccamr) - 7. e:ca.r))/ arp (A9-7)

Further, 1 T{icay¢sat)is defined as:

o7
T(tcw, €vat) = J{tew, &) ¢ ol G ,,/! / (A9-8)
rra

then an implicit numerical solution formw,fzra) can be found as follows:
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Elecn)¥
7(teew, £rat) = (7'((,(@‘!) 7 ‘2";/— “‘ég (’Z'é‘wfﬁ (A9-9)

=,
) olecaing
4 ’df)//;(zcwp/, {Mf’) # 2 e ) Eltew. Evat) 7w, 9y,
P € (ecwen)

2. arp Elecwor, Lrat) T(ccam, ¢1at) - ARGETA ;‘%‘7

& &
- aeseno L - ageoer Bl ¢ neseSy) /)
(/ ; gf( zé’(/é..’md

R. acr /é( ““U/’”) 4 iff;?/)é (Mw@) ) JERC )

where ALG &4 = arp (/;(CCM, £+ .m')/a/lﬂ'd, /’4/)

*P&’f‘%a‘) - anp (AZ (ece, z’fdz‘)ﬁ (eer, #ral)
/ ¢

- o)

ARG Ero =

/7&:«), /#dc’)/df}’ ’ c‘(/cc'cd, Z) arp "*‘-Vﬂ)

AgGep = ( plicw, évat) Kl tew, trat) - Pleaw, ¢))
(eltcw, £) # /) -

; /g Cceoms, £ rat) /‘Z (ccwm/, (f&‘)
Y 0.3,
EEC = arp & (ccw, ()/o (c.'cq,; Zrar) C}D/ch, f.‘/d/)
(Ar/o ~arp) ! (/- {g)/% 2L p lccew, {raz) *
(& - £tcw, ¢)) f? {ecw, tat) arg cp (caw, £1at)

o fi]

l-/g ((.C‘(uﬂ//, .f.fd() C@ ((,(w,w/, t’f,szf) aCr.,
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A similar equation can be derived for the interface between the

porous medium and the shell. The results of that derivation are:

Tlmw, trat) = ( réeow, ¢) + .%t' 4 ’Péw)z (A9-9)

- P e =3
Ceowmy, ¢1a¢) i CclPwmr , ¢rar) * ;dﬁfa) b (crowms, ¢ rat)

7 (crwms, o 2af)  # fi’:;'w) E(erwm, ¢ral) T{cram, £rad) -
f’
S Safr Z
ARGETA S5¢ ~ H8%6 CHp 30 - Aegre ¢ 7 Aeépéf)/éz‘f )/

L Lrem) Rleown)  af
(/f %Aiora t((-/"(//’f/’ é/d() # m ) ‘__'. //&C)

where ARGETH = &pr CAC LAw ! ='4:‘)/J(m, £rat)

" Pletw ) - ops (0 (e 7 (A,
_0%72_ 05 (2 (couw, trag) A (

/ML’) -y 5474)
ARG 2HO = E(lrw, ¢) Hlcrw, frat) 2pr
AeG e = €(crw, c’)(/oé,m! £rat) A,

ﬁ(@ﬂw{)
érat) - 03‘74 ) - (/C(ﬂ’u :‘rd;’)#épw
érat) = %)

ARGP = €(erw,£)apr/o0 K%
e = £lcan, &) plipw, rar) qodon,
[Idz')d/:f £ (s é}j/; {LPaw) 4prs C‘/;, lrw,
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2rat) fa/sa/g(c.%), (fd/)c/‘g (era
€rat) ¢ (& -elerwe)) @ o )
spro ¢ Cp (crm, trat) ¢ (apr - qo)s)
g (rw, £147) % (¢ pe ¢rat)
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APPENDIX X

CALCULATION OF THE OVERALL DIFFUSIVITY
AND OVERALL THERMAL CONDUCTIVITY FOR THE
CORE INTERFACE

Because the interface between the core and the porous medium may
recede as a result of depletion of the core material, a special calcu-
lation must be made for the diffusivity and the thermal conductivity in
the interval just beyond the interface. These calculations are based on
a model which treats the intervals as a composite material composed of
the gap, formed by recession of the core, and the porous material. The
geometry and nomenclature used for this derivation are shown in Figure 13
with as the portion of the increment representing the gap and with
as the portion representing the porous medium. The derivation for the
diffusivity will be shown first.

If the assumption can be made that for any instant, the molar flux
relative to the molar-average velocity in the gap is equal to that in the
porous medium just beyond the gap and is only slightly dependent on distance

over that interval, an overall diffusivity can be calculated as follows:

“Qe&h/ ) _r( mar/ (A10-1)

R rarp -arp 21 arp

Upon integration, the following equations result:
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W ANA /%*"‘%if’)

Ve - X ¢ (A10-2a)
e 1anp -arf) é- ﬁ—z,‘(pm /t?cfaqa--ar}g '
zrarp
- @v’ dﬂ (/Q-fary? Atﬂ)
and r’;(/7m -5-/ = e (A10-2b)
el a7 Ketarp=4&rg : '
7 PR rys ‘ﬂ” /fé‘c!arp
M
Adding equations Al0-2a and A10-2b and rearranging terms yields:
. - v ¥
médvp Kcé = - /é» (xa;;y,;w;g)éy. (A10-3)
LLlniﬁkfdff' ﬂﬁé‘l) f/#aqo'dqp

This equation can be further rearranged to give:

=y Py (% "4’7‘”?'3) ln( _#"ﬁ\ g2 elasay ¥l _
Ji= ,,,,,,( ¢ e —. (A10-4)
' n ut/?-drp‘ ~€

If equation A10-4 is multiplied and divided by the space increment for the

" fsacp

interval under consideration, a derivative can be ¢reated. If the remaining

terms are collected, an overall diffusivity results as shown by equation Al10-5a

and A10-5b.

—=x€ _ ¢ Ve
S = /f; (ﬂm 5 (A10-5a)
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+ (A10-5b)

B

where

‘Q’NP e 4 4rpar,
I (A5 ey

tarp-arg,

A similar logic can be used to derive an equation for the overall
thermal conductivity for the composite formed from the gap and the porous
medium in the interval just beyond the core interface. In this case, the
heat flux in the gap is assumed to be independent of distance for the inter-
val and the flux in the gap is assumed to equal that in the porous medium.

This relation is represented as follows:

&7
_ré/ g - _rée/ a:;f' = Qcﬁ" (A]O"G)
Be tarp-arp, Ke tarp

Upon integration, the following equations result:

b ( ‘@w}’; 2%)

7, -7/ =g A10-7a)
% ~arp,
and
&L tar
7 é’@lar £
- : = - f
r/é’chr?a /écfdrp-aq)’ &f - R (A10-7b)
v

Adding equation Al10-7a and A10-7b yields:
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4,,(2 & tarp ) &/‘derg w—g) -/
<

- 7 =( HIPYR (A10-8)
A’c'.-'drp /&’(‘d’f"dfﬂ

Equation A10-8 can be represented as a derivative equation by multiplying

and dividing by &0p The overall thermal conductivity is then obtained by

collecting terms as follows:

}
1
4

ﬁ- = —ke or (A10-9a)

< rar e FAr e
where - bn (Eé tarp- 5,%) “ ( J) <P (A10-9b)
L=( z

o f’«/

Lesarp Retarparg,




APPENDIX XI

COMPUTER PROGRAM

Nomenclature

Program MAIN

Subroutine DIFF
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NOMENCLATURE FOR THE COMPUTER PROGRAM

Real Variables:

ALPHAC (1)
ALPHAS (I)
ARG
ARGETA
ARGLP
ARGGP
ARGPR
ARGRHO
ARGRP
ARGX2

CAPX (II)

CCA

ccB

CBO

¢8Il
cB2
C1D1

C1D2

Thermal diffusivity for the core material

Thermal diffusivity for the shell material

Argument used in time loop limit definition

Argument used in energy equation for either interface
Argument used in space loop limit definition

Argument used in energy equation for either interface
Argument used in energy equation for core interface
Argument used in energy equation for either interface
Argument used in energy equation for shell interface

Argument used to calculate Yo from equilibrium
expression

Dimensionless concentration variable used in the
Arnold Solution

Argument used in initial value calculation for the
Arnold Solution

Argument used in initial value calculation for the
Arnold Solution

Interpolation variable used in center line temperature
profile calculation

Same as above
Same as above
Constant for diffusion collision integral calculation

Same as above




cmv
CLAMB

COATTH
COAT1

COLIND {II, JJ)
COLINV (II)
CONTH

COREDP
CORE1

cP (I)
CPC

CPC1

CPC2

CPC3

CPG (II)
CPG1 (II)
CPG2 (II)

CPG3 (II)
CPG4 (II)
CPG5 (II)
CPP (I)
CPP1

CPP2
CPP3
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Constant for viscosity collision integral calculation

Argument used in initial value calculation for the
Arnold Solution

Coating thickness at the shell-porous medium interface

Coating thickness at the shell-porous medium interface
during iteration J

Collision integral for diffusivity
Collision integral for viscosity

Constant used in pressure calculation equal to

Thickness of core depleted

Thickness of core depleted during iteration J

Mixture Heat capacity

Heat capacity of the core material

Constant for core heat capacity calculation

Same as above

Same as above

Heat capacity of gas species Il

Constant for gas species II heat capacity calculation
Same as above

Same as above

Same as above

Same as above

Heat capacity of the porous substrate material
Constant for porous material heat capacity calculation
Same as above

Same as above




CPPQ Initial value of CPP

CPS Heat capacity of shell material

CPS1 Constant for shell material heat capacity calculation
CPs2 Same as above

CPS3 Same as above

Cso Interpolation variable used in surface temperature
profile calculation

Cs1 Same as above
€S2 Same as above

Coo Interpolation variable for centerline and
surface temperature profile calculation

co1 Same as above
€02 Same as above
cl0 Same as above
c1 Same as above
cl2 Same as above
€20 Same as above
c21 Same as above
€22 Same as above
DEGF Point out variable for temperature

DELCR Partial space increment between the last node in
the core and the core radius

DELCRL 01d value of DELCR

DELCRO Initial value of DELCR

DELK (I) First derivative of K with respect to r
DELKC (I) First derivative of KC with respect to r
DELKS (I) First derivative of KS with respect to r

DELKDT First derivative of the product K{I)*DELT(I)
with respect to r at either interface




DELNIE (I)
DELN2E (1)
DELN3E (1)

DELP (I)
DELPR

DELPRL
DELPRO
DELR
DELROV (1)

DELRP

DELRPL
DELRPO
DELRS

DELRSO
DELS

DELSR
DELSUM (1)

DELT (I}
DELTAU
DELVA
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First derivative of the mass flux of species 1
with respect to r

First derivative of the mass flux of species 2
with respect to r

First derivative of the mass flux of species 3
with respect to r

First derivative of the pressure with respect to r

Partial space increment between the porous medium and
the node just inside the porous medium

01d value of DELPR
Initial value of DELPR
Space increment

First derivative of the produce RHO{I)*V{I) with
respect to r

Partial space increment between the core radius and
the node just inside the porous medium

01d value of DELRP
Initial value of DELRP

Partial space increment between the norous medium
radius and node just inside the shell

Initial value of DELRS

Space increment variable for the shell energy equation
calculation equal to either DELR or DELSR

Partial space increment between the last node in the
shell and the shell radius

First derivative of the sum of the product AG(II)}
V FLUXJII(I} with respect to r

First derivative of T(t) with respect to r

Time increment

Space increment variable for the porous medium
calculations equal to either DELR or DELPR




DELVAB
DELW1 (I)
DELWZ (I)
DELW3 (I)
DELX

DELXY (I)
DELX2 (I)
DELX3 (I)
DG (II, JJ)
DIF (II, JJ)

DIFOPT
DINDEX (I)

DIST
DIVNIE (I)
DIVNZE (1)
DIVN3E (I)
DIVROV (I)
DK (I1)

DM (11,1)
DMOD
DMODZ
DMOD3
DPRDOT
DRDS

Same as above equal to either DELR or DELRP
First derivative of W(1) with respect to r
Same as above
Same as above

Space increment variable for the shell energy
equation calculation equal to either DELRS or DELR

First derivative of X1(I) with respect to r
First derivative of X2(I) with respect to r
First derivative of X3(i) with respect to r
Binary diffusivity for the gas pair II, JJ

Argument used in the multicomponent diffusivity
calculation

Diffusion model option indicator

Index used to determine whether deposition should
occur

Printout variable for radius

Divergence of NIE (1) with respect to r
Divergence of N2E (I) with respect to r
Divergence of N3E (I) with respect to r
Divergence of the product RHO({I)*V(L)
Knudsen diffusivity for species II
Multicomponent effective diffusivity
Diffusion stability modulus for species 1
Diffusion stability modulus for species 2
Diffusion stability modulus for species 3

Change in time of the partial increment DELPR

Ratio of either DELR/DELS or DELX/DELS
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DRLIM Smallest value of the partial increment at the
surface accepted equal to 0.01 DELR

DRPDOT Change in time of the partial increment DELRP

DSDR Ratio of either DELS/DELX or DELS/DELR

DTAUT0 Variable used in surface and core temperature
profile calculation

DTAU20 Variable used in surface and core temperature
profile calculation

DTAU21 Variable used in surface and core temperature
profile calculation

DTLY Argument used in shell energy equation calculation

DTL2 Argument used in shell energy equation calculation

DUMM Dummy variable equal to 1.0/3.0

DX Sum of mole fractions for normalization

DIM (I) Multicomponent diffusivity for species 1

DeM (I) Multicomponent diffusivity for species 2

D3M (1) Multicomponent diffusivity for species 3

E (II) Lennard-Jones constant for gas species Il

EOVERK(II, JJ) Lennard-Jones constant for the gas species
pair II, JJ

EPS (I) Emissivity of porous particles

EQUIX (II) Initia)l equilibrium concentration of gas species 1I
at the core interface

ERC Argument used in energy equation calculation for
porous medium

ESP Input value of EPS (I)

ETA (I) Void fraction or porosity of the porous media

ETADOT (I) First derivative of ETA (I) wifh respect to time

ETADTL (I) 01d value of ETADOT (I)

ETALAS (I) 01d value of ETA (I)
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ETAQ Initial value of ETA (I)

F (I) Function used to calculate P {I) equal to ETA(I)*
MW(I)*RAD( I )*WBAR1/T(I)

FACTK (I) Argument used to calculate KE (I)

FLUX Output variable for the heat flux at the shell
interface

FLUXJ1 (I) Mass flux of gas species 1

FLUXJ2 (I) Mass flux of gas species 2

FLUXJ3 (I) Mass flux of gas species 3

GENY (I) Rate of production of species 1, K,

GEN2 (I) Rate of production of species 2, HCI

GEN3 (I) - Rate of production of species 3, HSTCI3

GEN4 (I) Rate of production of species 4, Si{ )

H (I) Mixture enthalpy

HC (I) Enthalpy of core material

HCO Initial value of HC {I)

HEADG2 Input variable for heading

HEADG3 Input variable for heading

HEADG4 Input variable for heading

HEADGS Input variable for heading

HEADG6 Input variable for heading

HEADG7 Input variable for heading

HG {II0 Enthalpy of gas species Il

HGVAPO (I) Heat of vaporization of gas species I at 298° K

HS {I) Enthalpy of shell

HSO Initial value of HS (I)

KAPPA (I) Permeability of porous medium




K (1)
ke (1)
KE (1)
KEQ (1)
KEQ1
KEQ2
k& (I1)
KLAS (I)
KLCW
KM (1)
KP (I)
KR (I)

KRO (1)

KS (I)

KSLPW

LAPLT (1)
LOGKEQ

M (II)

MBAR (II)

ME1

ME2

ME3

MOFLX (II, I}

MP
MU (1)

Thermal conductivity

Thermal conductivity of core material

Effective thermal conductivity of porous medium
Equitibrium constant

Constants used to calculate KEQ {I)

Constants used to calculate KEQ (I)

Thermal conductivity of gas species II

01d value of K (I)

Thermal conductivity of the core at station LCW
Mixture thermal conductivity

Thermal conductivity of the porous material

Effective thermal conductivity of the porous
material due to radiation

Thermal conductivity due to radiation of the porous
material used to calculate KR(I)

Thermal conductivity of the shell

Thermal conductivity of the shell at station LPW
Second derivative of T (I} with respect to r
Natural logarithm of KEQ (I)

Molecular weight of gas species II

Function of M (I1) used to calculate D (II, JJ)
Atomic weight of element 1

Atomic weight of element 2

Atomic weight of element 3

Molar flux of gas species I

Molecular weight of porous material

Mixture viscosity of gas species 1I
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MW (1)
MWO

M1

M2

M3

NIE (I)
N2E (I)
N3E (I)
N1ELAS (I)
N2ELAS (I)
N3ELAS (I)
0uTD
OUTTIME
ouTP
QUTVR

P (I)
PDOT (I)
PARTD

PHI (I)

Pl

PLAS (I)
PORER
PO

RAD (1)

Mixture molecular weight

Initial value of MW {I)

Molecular weight of gas species 1
Molecular weight of gas species 2
Molecular weight of gas species 3
Mass flux of gas species 1

Mass flux of gas species 2

Mass flux of gas species 3

01d value of NI1E {I)

01d value of N2E (I)

01d value of N3E (I)

Print out value of RAD (I)

Print out value of TIME

Print out value of P {I)

Print out value of V (I)

Pressure

First derivative of P(T) with respect to t
Porous material particle diameter

Function of molecular weight and viscosity used
in mixture property calculation

Constant equal to 3.14159
01d value of P (I)

Porous material pore radius
Initial value of P (I)
Universal gas constant

Radius
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RADC
RADIUS
RADP

RHO (1)
RHOC (1)
RHOCT (I)
RHOC2
RHOC3
RHODOT (1)
RHOLAS (I)
RHOP (1)
RHOPO
RHOS (1)
RHOS]
RHOS2
RHOS3
RHOVW {I)
RINC

RZ (1)

SIG (II)

S1GsQ (II,J4)

SMDF
SUM

SUMDIF (I)

Radius of the core

Radius of the shell

Radius of the porous material

Mixture density

Density of the core

Constant used to calculate RHOC (I)
Constant used to calculate RHOC (I)
Constant used to calculate RHOC (I)
Change in time of the mixture density
01d value of RHO (I)

Density of the porous material
Initial value of RHOP (I)

Density of the shell

Constant used to calculate RHOS (I}
Constant used to calculate RHOS (I}
Constant used to calculate RHOS (I)
Product of RHO (I) and V {I) at the shell interface

Argument used in pressure calculation
equal to either 2*DELR or DELR + DELRP

Dimensionless space and time variable used
in the Arnold Solution

Lennard-Jones constant for gas species II

Mixture Lennard-Jones constant for the gas
species pair II, JJ

Argument used to calculate TOT MOF (I)
Argument used to calculate TDOT (I)

Argument used to calculate DM (II,JJ)
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SUMGEL (1)
SUMGEN (1)

SUML3 (I)
SUMXPH
SuM1 (1)
sumM2 (1)
SuM3 (I)
SUMacC

SUM4S

50
T (1)
TAU
TAUO

TAU1

TAUZ

TBASE

TB (J)
TBO

TB1

782

TCC1

01d value of SUMGEN (I)

Sum used to determine if all coating has been
removed

01d value of SUM3 (I)

Argument used to calculate mixture physical properties

Argument used to calculate TDOT {I)
Argument used to calculate TDOT (I)
Argument used to calculate TDOT (I)

Argument used to calculate TDOT(I)} in the core
interface

Argument used to calculate TDOT(I) in the shell
interface

Specific surface of porous material
Temperature
Time Yimit of computer run

Value of time used in surface and centerline
profile interpolation routine

¥alue of time used in surface and centerline
profile interpolation routine

Value of time used in surface and centerline
profile interpolation routine

Base temperature for thermodynamic calculations
equal to 70.0°F

Centerline temperature

Value of TB (I} used in centerline temperature
interpolation routine

Value of TB (I} used in centerline temperature
interpolation routine

Value of TB (I} used in centerline temperature
interpolation routine

Constant used to calculate KC (I)
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TCC2 Constant used to calculate KC (I}

TCC3 Constant used to calculate KC (I)

TCP1 Constant used to calculate KP (I)

TCP2 Constant used to calculate KP (I}

TCP3 Constant used to calculate KP (I)

TCSI Constant used to calculate XS (I)

TCS2 Constant used to calculate KS (I)

TCS3 Constant used to calculate KS (I}

TDOT (I} Change in time of T (I}

TEST1 (I) Ratio of DELX1 to value predicted by
Stefan-Maxwell equation

TEST2 (I} Ratio of DELXZ to value predicted by
Stefan-Maxwell equation

TEST3 (I) Ratio of DELX3 to value predicted by
Stefan-Maxwell equation

TIME Cumulative value of time since calculation
began

TIME 2 Value of time used in surface and centerline
temperature equation

TINIT Initial value for the temperature profile

TLAS (1) 01d value of T (I)

TMOD (1) Temperature stability modulus

TOPT Input data printout option

TOTMOF (1) Total mole flux

TR Reduced temperature used to calculate DG(II,JdJ)

TSURF Surface temperature

TS0 Value of TSURF used in surface temperature

interpeiation routine

TS1 Value of TSURF used in surface temperature
interpolation routine
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TS2 Value of TSURF used in surface temparature
interpolation routine

v (I) Velocity

YLAS (I) 01d value of V (I)

VRGRDT Product of V{I)}*

W Sum of mass fractions

Wl (1) Mass fraction of species 1

W2 (1) Mass fraction of species 2

W3 (I) Mass fraction of species 3

WIINIT Initial value of W1 (I)

W2INIT Initial value of W2 (I)

W3INIT Initial value of W3 (I)

WILAS (I) 01d value of Wl (I)

W2LAS (I} 01d value of W2 (I)

W3LAS (I) 01d value of W3 (I)

WIDOT (I) First derivative of W1 with respect to t

W200T (1) First derivative of W2 with respect to t

W300T (I) First derivative of W3 with respect to t

WBART Elemental mass fraction of gas species 1

W3DT 01d value of W3DOT(I)

X(II,I1) Mole fraction of gas species II

XCPG Argument used to calculate GP

XHG Argument used to calculate H

XINIT (I1,1) Initial value of X(II,I)

XK Argument used to calculate KM (I)

XLAMB Argument used to calculate initial values for

Arnold Solution




XLAS (11,1)
XMU

XPHI
Integers:

I

ICT

11

IMINUS
IPLUS

IPR

IRP

I
12

JJ
JJEND
JJJ
JPLUS
JPRINT
KK
KKK
LC

LCPLUS
LCW

LCUMT

01d value of X{II,I)

Argument used to calculate MU (I)

Argument used to calculate PHI (I)

Integer used to indicate position

Integer used to determine if reaction has occurred

Integer used to indicate species

I-1
I+1

Integer used to indicate station next to shell
interface inside the porous medium

Integer used to indicate station next to core
interface inside the porous medium

1+1

I+2

Integer used
Integer used
Integer used
Integer used
J+1

Integer used
Integer used
Integer used

Integer used
the core

LC + 1
Integer used

LCH - 1

to
to
to
to

in
to
to
to

to

indicate time
indicate species
indicate end of run

indicate time

print routine
indicate species
indicate species

indicate station next to core inside

indicate the core interface




LCWM2
LCWP]
LCWP2
LMINUS
LP

LPW
LPWMI
LPWi42
LPWPI
LPWP2
LS

N
NPRINT
NR
NRE
NT

LCW - 2
LCW + 1
LCW + 2
LS ~ 1

Integer used to
shell interface

Integer used to
LPW - 1

LPW - 2

LPW + 1

LPW + 2

Integer used to
Integer used to
Integer used to
LPW + 1

LS ~ 1

Integer used to

indicate the station next to the
inside the porous medium

indicate the shell interface

indicate the surface
indicate time

indicate time in the print routine

indicate the number of input

temperature profile data points.
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PROGRAM MAIN

PRCGRAF MAIN(DATE DNTEUT, TASZ5=0ATALTAFEEZCUTAT)
COMMEN L+ ¥XX9JsLCHWL2,3TFO2T
COMMEN TOTHOF(50) 43423150

_COMMCA MPL=(1T417)V20LA5(5035TFS (20400 M2 L) MHL5TY S
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—— e COMMCN_ XLES(10457) 400030 ari,n*w(1»!-_;ﬂméiligzrt5;1_:'“L‘Qf“”l _
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DIMENSTIAN WI00T(53),N20AT(5),H3I0AT(SD) 4FHCNRT(57)
DIFENSTION VESPLET(S33Y«HGVASP(LG) yHCISGYLHSIEDY
DIMEASTAN LOGKEA(S5),KIN (5,1, 0TVI0OV(53)
DIMEANSION ST (2917 ¢ XPHT(L0)
DIMZASTON DTLWL(53),0TLH2(E3) 4 OELHT(SRY
DIFENSTON CO2G4020Y,CP65 (L) ,7FS(5 Jln’“(*qﬁ
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DIMEASTON MIF (510,827 (55) N5 3) NLITLES(30) gN2ILAS(ST I NIILASIEN)
GIMEASION ﬁ'gh' (Gi)sC7 LNC"Ju‘ DELNIE1E]) i
LDIMENSTION CL“KFA‘?J':FL”*J 120, FLUXIE(30)Y e
DIFEKRSTAN acfqujv:TuW3Tf7ﬁ)|3”V h{qn].SH“G~L{;]],TCT‘{"}

_ﬂI.PEES,IQL.F:NZ_LqﬁJ.! GoNZ(53)eRE0II00),GEMY(5D)
DIMENSTON SHMI(53),S1"™2(57),51I%(1 J‘-f( CY.KARP=ER(57)
SIMENSION SUMZEST IJKLubI”J}-:_cr 5 1)« 75572159 !.[?FT?fffl
CIMENSION SUNMLT(SD) X (2G50 DTLEUM(5T)

DIMENITIN STATL(50),01 f“*X(JL]-F(*]!-f“)Lﬂblaj’ 3050 _
DIMENSION NIYNAZ(51),0IVNTI (SO0)02IVNITIED)
i;mixigpﬂ_ﬁrctxtiﬂJJDvcugiﬁﬂ1.Eﬂgiiiéillr"QZLiJLH,ﬂ__ i
DIFCASION £OUIX(20)aRZ (1251 o XINITIIE) JCAFX(15450)

c e - _—
REAL LAPLT «MaXLAS4KE0, xﬂ.m;;.wu
PRl KaKSeKCaXSaKPTaMELKER N24L0GKET W M14M24M3 _ L
BERL NLEoN2EJNIToNIELASHN2E Lﬂ s NITLASSMOFLX
RELL MEAS MU KE GG KABPA, KLEHKSLPW
REAL MS.MEL1,MEZ,ME34MW]

C o bty ol ] 41§ —
DATA R/1493774VE2) /0407 4VRGNT(L)/540/,PT/5428259/,T3LSE/75.0/

C - —

Cc INFUT FORMLTS

S o N S s e greso sz sonseans — —
2 FOFMAT(128€) !
11 FOSMAT(2F20.1)

e

c QUTPUY FCRMATS _ e

c

51 FOEMAT (1H1) . e

52 FORMAT (12LF)
531 FORMAT(/417X+10HINSYT CATA,//,
1 x4 22HINITIAL TIMBLRATURE = +F6.1+6H DEG Falo
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2 SX.22HMTUTAL SANTUS = QFBO.O\q Tr. 7,
3 9X.22HCORE RAFTYS T LF5a3. 39 IN. 7,
4 SX 224D, FMIOTA SaDINS T 2FH.243H TN/
5 AN 22T EE RAETHS = W4THBJIa M _ANG /.
6 "')t'.’r.'*"ﬂ TICLZ OIaM. = 1‘6:30&"' HIC’/'
7_ay,224SNISSIVITY. 2 JFBiTels L

B ax, I2MILTA~R SOASING +FBe 3TN TN/,

9 9y, Z2UTIMT LI¥IT 36l o SECe /s

1 91”"”‘-1"'. IMCREMEINT sFoe2a b4l SFCW/y -

2 _9¥y224INTERFOLATION POINTSE o137y .

3 92 . 224P3INT FACTOR = +J5e/
L MY, FININTITIAL 20908T7TY 2 2F5+347, -
B GY.22HSEECICS T T2}

By FOFMAT (740X 3BEHTAT CAPACTTY P”UATION COTFFICIFMTS e/

1 1.X.7HOFCL T +2FC10,2,2XaTHERE2 T e2-0e3s0%a790207 = JELG.2e 7y
£ 11X 9 7HCEPL 2 +EXDeT42UTHCECZ = 2513, e 2XaTHCONT = oFAF G Xfy
3 L1A«THOESL = yFA0 T4 2N .7HLISL = vElJc- 7)’: ryCogsT o= Cadela

t-li!xJHCF34ﬁ¥13H3°3-3K-3HC§333£LEHCE“'Ex'1*””“'/!___ et e

5 EXYeEHHZ R RIS I S R F N0 N1 N b SPT FIPR P I 0 o 1 I 3,/;

6 v;)’,i‘-"*ICL -_.0 -“u&_0_::10'0_3g;‘m_;l}'_uﬁs_n_:g'v_‘ﬂ 3§1Xr' :? T‘/'

7 EXaEHS I‘ICL‘-:‘& T e E e Tl X oS a0 o TN a3 piXaT23. T} .
S5 FOSHMAT /0%y W2HTHE2 AL rG*!‘QfIUITY SPUATICN COSFFICIZATS /.

LiXe7UTECL = 110:1f0a121074tcra = - f.:.7x.?HTcCE T WE1d,.% /e

2INWTHTLR2S =
T e2¥,PHTLST =
“HTZe /.

2_11X,74TCeL = 10 342X 7UTCA2 = LE40
"3 11X4?HTCSL = Uo-ozkc{"'chc T .%135
54 FO0TMAT (/. QJ(-"»”"I’IN TIC THLORPY COC FFT‘?
1 18X, 305/K45X%, ';H';IG‘lfl,/v
2 EXGEBFH2 | _eFi0.LBY DTG I(.:._X__E_‘;_.? LH AMTG ./ .
3 S¥,EHHCL fFlOubhoBY nl:“.’; KalXoyCha2«uH ANG L/,
b BXyEHSTACL T F10.be5d 056 KaiXsFh et 8270 e
59 FOUFMABT (/421 ERD QF RUNW/+ 1411}
£2 FORMATEIME .2AHTINE T SCRA LM SN/,
1 J20H FOISSNSE WIPZ1Ta 7.0 ATH, /.
._2_“2‘:"‘ HIAY SUD L = aElR el ATULET SRS,
2CH "‘»P"q'l‘mh BATE «TE3.3W10E LAJHI/FTZ  /,
2¢H CNATIMNG CF2CSITE0 _ . . A ELN LT O MILS ey — "
294 ZERLSITICA THIS ITE DQTIUN' "-1']...11 H MILS*1.15h./. -
SEH CORT_ATELETIND E;J‘o_n a4 MILS /.
283N .,._:'L:TACN THI: ITL‘?ﬂTIC‘I E10,3p1LH MILSYL,555)
B FUAMAT /50X, 17UMDL ICHLAR hTIGHTS./ .
1 EX.EBY2 FELL+9H I_B/"OL Y
S EX FHMCL____«FFRL 2 LA/MOLT 7/,
3 51{5""51"'CL3OF‘J.-;qf LASHGLT o /
L FALEHAL20T #FFEa1e3% LA/MCLE) ’
Bl FOFKAT(/.9x.21PFLENMTHT ATU"‘I"‘ NFIGHT'/r

I

ul RFLEN]

~ L g

mlruurull

™
\.a

L.0¥RHH $FEL1,% LBIVCLT 2/,
2 EMgEHEL yFE.L+84 LOZPOLZ/
3 EXeoHSI . _eFEL1.AM LO/MOLTY
£5 fOF'ﬁf'/vQYo3ﬁVI'ITIAL SFICIFS HISS Coﬁf NTRATYOM, 7,
1 EY EHHD sF 740l

2 EXY4EHHCL wF7.547/y
I BXeEFSIPCLEF7.5) .
€n FOFMAT(/,9X, TLHINITIAL SPECIES MCLE CCANCENTRATION./,
i BN Shu2 1F7a5972 .
2 EXs»ERHCL yFPabaly -
3 EX EHSIUELL Y LFT7.G)
73 FUFFAT(/+9X 2LFOENSITY COZFFICIZNTS 0/



5_0I.NTS.-__
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1 9, E0MMASI INTHALTY SOLIN./.
2 9¥,15HINITIAL PORGSITY /s -
T EX,APSA0CY = 41PZI0.F.3H L1/C“FT,/,
b BY QHTHACE T WFi0.390 LA/CUFT,/,
TS RX,ANMACT = 4E1B.343H LAZOIFT,/,
— h EXy3R2uns] = 4F10.3,%H LA/CHET ./, .
7 BX,IHOHMNED ¢E10.343H LR/CUFT R 7y
8 56Xy 3HTHAS] E13+ 320 LO/OUFT o/,
9 EX4BHRHAOED 10,3484 LASCIFT 7, .
L RX,aHHED = L(PFLG L, TH BT/, /,
2 BX.9KH3G +F10.6,7H ATUZLE, 7,
.3 BX4fMTAASE = ,1P710,3.5H BIG_FY
7L FORMAT I/ /3 Xv7HSTﬁTI0"05X15qbﬁ KL.QX.:HR71q11Xv54Cﬁ?X7 9Y »
1 THPZZ 11X, Hcaatn.QX.iuvzv.fi
T2, FORMAT(IX+IZ2.6%, 10713, 7,64,510. 3.41 5 S
L X e illa XN 10e3,6X,C10.3Y_
A) FOFPAT{/ IXTHSTATION, IX 5H7QWTU§o5X-1 FT F“ERHTJ?E-’X-'HK-
A 20X IHRHO S 10X s 2H0?, L 8K, IV ¥ 14 3HITA, “XLHPDELrs’~
LILX,uH{TIMY M 7B {CEG FYe3XW1LREATUSIFT U,
3 2N, SHILBLCIET) L6 X, 10H (OTU/LBAF) 23X, AH{ET/SEE) 415 Xs WHIATH/FT) )
Al. rDr?JTl‘X.IJoElpr? e X eF L 1laS s TRy P TAl LS dFFL T e 4o S aFTulipti¥,
ACT 2.2 N 4B C 248X W GOFT7 LY .
FL =C°FﬂTt‘K913'E! F? QOSKQ Li.?'sx01”'LL.J!gFrLOOWILXv:10
Bj.,EG'—"PnT 13?@.9.1'3-_5?‘_7_1__-4'4.'! loxo_“.-‘ 3.-‘X9.,4La30.‘-w";}?__3___’-0",__:
1 E10e2abXaZlle el L2040
87 FO‘Nﬁflf,qK.“"{.‘."':'j:f)'-.?__i’!!’_lﬁo‘:"./-
1 ARG ZHOULFPP = «F1da5474
2_9Y e IHCELPR_= 4F20.5:7 .
3 CxyfALLLEFS = 'Fiﬂ 5./)
P8 FOFMAT LAY o TX o THOTATION sH Xy THOIM o 12Xy T2 11X o FHN 399 7 X
1 GFMOFLXLa 3 s BOHMOFL X2, 0%, RHMAFLY 34 AX &HTOTFMOF LAX (G HGT L, 7,
e B LIKAZHISOFT/HEY (SXy QUSARTIHRY 45X, WH(SNET/HE) o
3 IX|L3H(N0LF/P723H°}QIX113F(MOL—/FT°/H‘IolX-

%)
1de3a0xe .

Ac FU‘H&T(f/;sx-?“rdeIOhvﬁf 7Hx;v11X¢9HX?ciiﬁ 2ﬂ¥31”¥o
L SR T LS L Xy BHTYE ST 240X s SHTE ST I3 T Xy JHYE N 26X 4 SHOTNI X/} -
A2 FOSMATI/Z 3R, J0MWARNTIIG TeMrERATURE MAOLCULUS = ,10210,.3,
L 13H AT IT-TATION,GPIG,1EH 4MN0 STATION.IR)
93 FOFFﬂTf/.?K,’B“qﬂ7TIAL GRID SFACES ANDO KINS FIINTS, /.
el BREGSELG 2 s TTL2X35HLP = G TILZXWEHLS = 4, T1342%,
2 BHLCH = 113,’1;6“LDH = ’IE'/'
an FOEMAT (/9% 20MKINITIC THEOPY CQASTANTS s/,
1 6X.6HCINYL +FPabelsnXeBHCIN2 wFTalialdy
2 EXSEHCIVE  sFTelafs3XsSHEIVD _oFTobd __
a5 FORMAT (/49X PLUEQUTILIARPTUN COMSTANT PASAMITIRS,/.
e A DX EHMEIL _4S25.5, 10X HHKENE _ WFI3.5,6H £I6 X)
AR FOFMAT (/4T 29RYARPRING QTFFUSICN MOOULHNS = L1PF10,73,
_1 17H AT TTERATION.IPIS.1ZH AND STATIOM.IG) e
ar FGFV“T‘3X I2,46X%,FL2.10,1%, F&?-409;X Fi2. 10!;“,; " Lh.3
1 i el alX et 130l XeEI N, 2 i¥T10,.3)
9% FOPMATI(/.9X,L0HRTHACY 7IFFUSIVITIE§ AP ALLOMWET TO VARY)
93 FOSMAT(/ 9N LuHALL OINARY OQIFFUSIVIYIZIS 4%E EAUEL TO n{1.2») _
101 FOF“QT(/!OK LLHALL BINARY CIFFUSIVITIOS ARE ENUAL TFo D1, 21.1.
1 9X2IHTELRT TS NO KHUASEN JIFEUSION) —

G EJECT FAGE A1 START OF ORCERAM
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CONUSBENSAES S| EMENT 1 FResssnssnsssnsnmnny

c
100 WRITE{A,.51)

PLA0 KUMELR OF INFT POINTS.PRINT FAGTOP, KUMBED OF SAZCIS
PRINT OOTICN AND QIFFUSIVITY GFTIGH

o oOn

110 REAQLS . INTAPRINT KK, TOOT.DIFORPT

CHECK FOR £NO CF RUN : *

120 IF{KT. LE.0260 70 2903

PEAC ANO WRITE OTHIR INGUT NATE

a9 QO

RELU!:-ZiHEﬂFhGthﬁDaZ HEACGIoHEACGUyHE ADGEyHERDSHHZACHT
WIITC {0,322 YHEATNG 4 HE QDGZ.HEdﬂGo.HrLDGR.H;&GPS.H ADGo.H’n1F7
IF(CIFODT=11126,128,127
12€ HRITE (6, 38)
GO . TC 1293 "
128 WRITE(R.161) )
.60 T) 128 —
127 WRITE (H,59)
w422 COMTIMIT
REAN(54*)OORFR,PLITDLESD
or nn(“')raj;_ls,fl LR TIMIT.TAJ.NILTAY,RENC, 80P .
DO 130 K<X=1,<KK X

L PIAQL3PICEALINKD, SPS2 KK 2 CPGY (LK) . CEGU (KK, EPGT (KY) B
REAGIS +*IHGYAFDIKKY s T{KK) s SIG{KK)

e A3 CANTINT .
RFEAGI3,*)TCC1,TCC2.TCC3,C0CL,CEC2,C003
RIEN{D MIVLCL,TCP2,TCPICPFL,CR22,C233
B AN(G e )TESL s TESZHTLSTaCR3L 4 CRS7 .25
 RTACIS,TPETAS WL IMIT,W2INTI T MIINIT
ua:r-te.ss;nur rzanm:npna T VENPLPOITR ,PARNTOLESD,

L CELRTAULDELTAY S HT 4 NPRINTITAD,XKX -
MPITI{A,05 ) WLIINIT o W2INIT,HIINIT
DEE0(S*)F1, M? '13-”’10 ;..zt?"_‘ el
READLS ¥ )IIUDCL 202 2.*1003,’HD’1.QH052 DUAST ,OHOZ) 4HOU 4H 3]

_REAN(G I GKENT o . -
9‘#0(5-‘ICIDI.CIDZoCIV:.CIV9
c FOR COMPLFTZ INCUL PRINTQUT. TO2T MUST £7UM 1
IF(TCST=-01140,400 4141 .
161 _COKRTINIE e
Hnrrcta,th“Ini €102 CIVi.CIVZ
. WRITIE.9RIXEAL.KING
HWRITS (6.?0&QHCC1.«HOC"°HCC:-PHOul.QHOCE.?HOb RﬂoﬂﬂthﬁqHsﬂrTenSS
WRITE (B QII AL P29 M3g™MP e .
HETITZ(AsobLIMELMT2.M23
WO LTZt5,55 TCCL,V052,TCCI,TC21,TCR2,TCE3,TCS1,T0S2.TOSR
HRITZ(645RIS 1Y SIGCi+E(2)«SIGL2E«S(T)HSIGIIY
_  HIIT=(He" h}C‘CI.PPCZ.C°CK.C°°LoCPQEoC°F? CPS1.C252,CP5 72,
1 CFcli*i.CPPZ(*I- G311 +CPHRLlL)SCRAGI(1),
2 GEGIAPY LG22} ,0PG3(2) ,CFGul2).CP55(F), e
3 CFGI(3!-C502(‘1,9063(¢I.CCG (T}.CFG5(3)
1640 COKTIMYE

c



12.i_CON.TI.NUE
EQ8_Cgn._f.Jc

RELD TIMT ANC SUPFACE Ttnpeanua S FOR FIRST INTEPVAL

) O

RELJ(5.11)TAUD.TST
e PEAO LG 11) TAUL ,TSL
READ(5,11) 732,752

c s
c CCMVIIT TIMF UNITS FROM SECONDS 70 HOURS
[
TAL=TAN/I600,0 . .
_DELTAU=IELTAULZ600.0 _
TALG=TAU2/%600.0
e TAUL=TANL/3500.0
TALZ=TAY2/3h00.7
[
c CONYIRT OISTANCE UNITS FROM INCHES TO FEST
. N e ——
RADIUS=2ADTIUS/12.0 ; :
— RADC=RANC/12.0 .
RAGF=RAOP/12.0 )
D?L==r:L°fL§_£_ % —

g _cohuc?r TEMOERATURE UNEITS FROM FAHREUMEIT TO RAMKINE

_ __TBESE=TOASE#458.6 - S
E TINIT=TIHNIT+45¢S,6

T30=150+445%.5

TS1=TSLi+L59.68
JS2=TE524459.F

- S R
B QOFFUTE LIMIT _CE RADIUS AND TOTAL AUMOIR OF DISTAMCE STATICHMS i
cﬁ .
ORLIM=6,01*0FLR -
LS=IFIX(PACIUS/Z0ZL®)

o _DEr SS=RACIUS=-FLOAT {LS)*DFELR B
2017 IF(CILSR-DPLIMYZ210,210,220
— 230 DOSLSE=CTLSR+0ELR oz 3 e =
L5=LS+1
50 _TC 230
220 LS=LS+zZ
s I o s S
LPIPLS LS=-2
o LCEIEIXIPEDC/OZLRY
DELCR=RANC-FLGAT(LC) *2CLR
DEL§=G=D’L09

LC=LC+1

. ABRGLFS(ATNR+RANS=PZADC) .
LESIFIX(APGLP/CELR) +LC

oo DELER=RA0P~ FLC;TILP!'JELQ+UFLR

NZLERG=NZLE=R
DELRP=RELE-0ZLCR
DCLRFA=0FL >3

o s BELREsTEA R -DSLER. — — —
CELRSY=DEL?S
9=l el e
LEW=LF+1
LCH=LC+1
WRITE(R+93)ILCHLPLS+LCH,LPHW
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RAQ{I=0.0 =0
0r 231 I=2.L0
I“Inys3=I~L
SAR(IIZRANLINIMISE+0TLR

2X1 CORTIMNUZ
RALLLCHY 2R ADG
HE=LCW+L
00 232 T=HP.LD
RAGL{II=A0(LEY+FLOAVII~LCHY *NELR

—— 232 COMTIMGS : .
BAGILFH) =FANE
HESLEWL
NRE=LS=L

00 233 IsND.NRE
RADCI)=RAC(LFY+FLOAY {I-LPWI*DELR
237 nARTINUE
2a0(L3)=2RANTUS
No_300. I71,LS ; : -
TLASCII=TINIT .
RHONCYITI=O.1
IF(I-LEY 250425542480
267 KLASAIIZYCHL4TNCZ/TLASIIY +TCNIRTLAS(IY
GO TO 308
260 1FIT-L3)27g,c70.200 N - e
271 KL&S(I)'TCP1+TCP7/TLQS(II+TC°"TLﬂS(Ii
G0 TC N
200 KLAS(IV=1CSL+TCS2/TLASIII+TCSI*TLAS (I}
_ZL0 corTInnE
KSLFhTKLAS(LEW)
"
c anCULn MOLE FRAGTIONS
¢

e

MULFEL QA (WL INIT /7ML W2 IRIT/M24WIINTI T /M3

—ee e XINIT ALY INT TR MO 4 - h
XINIT(2Y =WEINIT*MYA /M2,

e XTIMIFALESAsMIINTT*MU]IME ' e oo s i
0x= x;hIr:*J+x1\17{’)~sz'T{?i
xrnIT( I=XINTTE2) 200X

HIT(2I=SXINIT(2Y 70X

XIPIT(‘)-XINI?(J}(O‘ —
WRITZ {c.EG!XINITt11,xINrrtzl.xrnrrtzl

INITIALIZE UnRTﬂEL:S

£ O XY

RELPRL=DELE R
BELFFLEOTLA2D
DELCRL=DILC=D
_BPFCOT=0.0

DAFCCT=0.0
POOT=2.0

00 335 ISLCU.LEHW
_ETALAS(I) =278l

VLES(I)=0.1
HLLAS(I)ZHLINTT

WZLAZ (L) =W2INIT

HILAS (I SWIINTT

MH{T) =MW




TBLas(11=1.0
XLAS (2 I)=XINIT(1)
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XLASI2,I)=XINIT(2)
XLASES4 1) =XTINIT(Z)

SUMLALII=0.0
o=.2362

EMOLAS(I)=FLAS(I) "MWl Z(R*TLASCIN)
MIELAS(T)I=d.1

HZFLAS(I) =040
__MN3ELAS(I)=0.0

TOTMGF(T)=0.0
_MOFLX(1,1)=0.0

MOFLX(2,1Y=0.1
MCFLX(2,1)=1.1

GFHNZ(IN=0,.0
GEFE(IN=0.0

GEN3(I)=0.0
_GENG(1)=0.0

ETAQTL(I)=J.0
RHUNCTIIY=0,.0 %

SUMG=L(I1=0.0
ICTL(IN=0

TCS COANTIANUZ
CPFO=CF21+N2P2*TINIT-CPR3/TINIT**2.0

CALCULATE THE_ PULTICOMEQOMINT CONSTANTS

a0

MEiy=p1_

M{2y=m2
eI =M3

I1=0
350 00 4l TIT=1.KKK

JJ=0
= D Ted JJdEE KKK oo

aLGS”tIIvdJl*(?.S‘{SIu(I*i+3IG(JJ)))“2.;

—— o COVERXUITLJ ) =ME(INI*c (U "2 .5
MOAR(IToJdd)=(HOIT) e MAIIIV Z(MOIT) *MIII))
2N CONT INUS

400 CONTINUZ

C
c SeT w—uL TIME
L

TCOUNTE®S ANGC INTIRGERS

JJENC=NT =2
JEFINT=NOPTINT

ARC=TA8U/SCELTAU
NZINT (825)

IF(NERINT.SN,.0)GO TO 330
JENZNERINT

T T T UEAERINT Y

IFt-n)3106.330.7%20

TN M= J#NFRINT

50 1C 230

ME

IN
=0.0
=0.0



P_2iJ.IN.IJ
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c CALCULATS THI IMITIAL SUPFAGE YEMSERIRTURE

DIAULI=TFAUL-TALG
aTAUZI=Tar2-7aud
oTaLzL=reL2-Taly )
C2L=1.07 (OTAULT*3TATZD)Y
£21=1.3/{0TaU1C*3TAUZ 1Y
C2e=1.0/7{0TAYU2N=*DTAR2L)
CLO=C24*(TALL+TAL2) . .
CLi=g2i%(TAUD+TA2)
C12=2022»{TAUC+TAILY
COG=c20*TALL»TAY2
LRI=L231*TALD*TAYD
CO2=C22*TALL*TAY]

CSO=COn TSR +C02%T32-031%T351

CS4=C10*TSI+C12*TS?=C117TSL -
CS25C 02TSM+C22¥TS2=-021%TSL . , B
- TSURF=CSH

C
c CALCULATE THE FITSSURE CONSTANT
[

R=0,7302
_ PO=1,3.__ ..
WRARLZMEL /MZWH2INIT42 D% MEL /ML WL INIT4SEL/FTRUTINTT
COMTR=FTAN®ODXP Y] /{08 TIMNITITHOARIPELI® (FANP*4D , 0mD200¥ 7, 0

c BEGIM_FOTPACD MARCHING IN TIMT

c

__OUPEE L0270 e
450 00 1336 d=i,N
JPLU3= J41
FINSZ=TIMEZ+DZLTAY
455 IFITOUZ=-TIMZ2)450+500,%00
LN IF{JII=-JICHI L0 ,470.500
UL 4 B NN NN S | _.
TAUG2TAUL :
TAL1=TAYZ
T36=T151
____Fs1=152 L
OTAULD=DTALZ]
479, GO . T0 497
480 JJJI=Jd.e2
JLLE=TANZ - ——
TS0=152
2EaL(5.41)70011 .75
TS1=T34i+¢45%.6 .
e TRUAETAVL/R0AD
OTEULI=TALIMN=-TAUD

C
c UeLAT:s INFUT SUPRFACE TEMPERATUSE PRQFILF
£ . P
490 ICAGIG 11} TANZ,TS2
__TE2=35244L59,F
TALZ=TaN2/3500.0
DTaU2)=TAaU2=TAHR
OTAU2i=TAU2=-TAU]
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C2C=1,0/1CTANLT*DTAYZD)
C2i=1,9/(PTALIT*ITAY2Y)
C22=1.0/7I0TAL25#0TAUZL)
CiG=C20*(TaUL+TAN2)
Cli=CZivtTaleTanz)
CAT=CZZ*(Talf+TAYLY
COG=C20*TALL*TAY2
£oizCc21*TALO*TALR
Cdz2=ceg2*TaLLi*TAND
CSO=CON2TSI+CIP*TS2-COoL*TSE ' ! "
CS1=C1J*TSOH+CLi2*T52-C1L*TS1
. C52=C20»TS56+C22%752-02477514
500 TLAS(LS)=TSURF
TSUSF=CSD+TIMEZ* (CS2*TIME 2051}
TILS)=T3UFF
TCL)=TLAS(2Z)

c

_Crrevrwrayy TICMONT D ®¥¥MESXAn¥Nyryrsnnny

c
C SOLVS SMESGY SRUATION FOR_ GORE_MATERTAL
. /

00 _BG0 I=Z.LC
IPLU3= I*‘
_IMIKUS=I I o s
“QCII’~C°Ca*C:C3‘TLﬁS(I)+C303/TLJS(Il"?.5
CHOC{I)=CUICI42H0C2¥TLAS(I) #2HCCIXTLAS (TH¥*2,9
¥C(I)=TCCL+7CL2/TLAS{I)+TCOIFTLAS(D)
I 4 e It 404 0 1 .
ALE Hl‘ClIl-<Cf1‘/(QfUCIT)‘CF"fI"
THODLI)=ALPHAC (I} 2DFLTAI/CELD*®2,7
IF(I=LC)595,45C 0,505
fan NIQVASTELRE
KLCh= TCCL*"C’!?L&:[Lud}+rCP3‘TL55{L"H]
CELKCIIN=({KLCh=XLAS(I))*NFL2/TELY S+ = TS
1 (KLAS(I)=-XLAS(IMINUS))*DZ L\!Q/U-.L*’ZI/(D-_LVQ+D L=
G0 T0 3535 _
595 DILVA=TILF
DELKC I = ((KLAS{TILUS) =KLASIT)) *DELS/0TLVEY
1 (RLAS(IV=-NLASTIMINUS)II*DZILVA/DZLRIZILOLVA+IZLR)
__59f NDELT(IN=F(TLASIIFLUS) =TLAS(INI*DZLA/DILVAS
1 (TLASII)=-TLAS(IMINUS)I)I*OTLVA/LILR) Z(OELYA+NELY
e e LASLTLII=2.0 /0L VA * (LUTLASIICLYUSY=TLAT(I) )
1 ISTL\J“"(TL“S(I)'TL-\SII?‘I?\U‘\)’)J"Q LE)
e TOCTAI)=ALOMEC(I)*(OTLT (I /24D LT +LAPLT (1)) 42,7/ (RYIC(TI®COCIII)*
1 QELKCIIV*PZLTILI)
G0N TAIN)=STLASCIY+NSLTAU*TOOT(T)
T(23=7(2)
LSRRDE IR SRnolAY o e e i i R
cegcely=Ccrci(2) ’
K{1)=Kt2)

c
D T e ;
c
€ _SOLVE TIANSPORT SQUATIQNS FOR POSONS SECTION ——— —
c
IRP=LChH+Y -

IFR=LPH-1
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LCFLUS=LC+2 .
00 735 ISLCOLUS.LO .
TRLUS=I+2

_"_-__-I”- Ir“‘. I - . - e e . ———
Ith“I\U"LCH)ElG 510,611

6310 _QFLvaz=]IL=2
GG TC 6la

£1¢ OFLYARTISLD
Elb CONTIMIE
IF¢IaLS=-1LPHI615,615,616
€15 OSLVA=OZLR
50 TC BAl
€12 DELVA=AZLFP
£17 COKTIMNUE

[
€ CALLNLATE SFACE DSRIVATIVIS | R
c
ggLegyJIa_tQPQCLnStIQLL;J*VLﬁc(I LU;!-~HOLGQJL"*_L£§jIj)j¢”___ L
1 DELVAN/DELVAS{RA0LAS (II*VLAS (1) =R0ILES (Z¥INDSI *YLAS(THIWIS)T #

2 CiLyasns LV&ﬂ:f:O-Lvn+a LYE) .
DIVNOVIII =0T LRCY (T +2HOLAS(IV VL AS{TI/ZLN (T}
GTLYL (T T CAXLASEL . IPLUSY=XLAS (2, T)) *N7 Ly A I/DNILYa+

1 TRLASTL.T)~- XLﬁSIqu4IIU5))‘7tLVﬁ!L LYAEYZINELYA+IILYAR)

DT Y 2(T =t IXLASEZ g IPLUSY=XLASHS G TI)* LY/ NTLYA

1 LS. 11-x18502, IWINUS]!'T LYLZDTLSIMY 2RI LY A+ DELYAD)

DL LI s LA ToLS) = LAR (T IV ¥ T LY/l LYGa+

1 (XLASETeI}=XLAS (34 IMINISYIPILLYA/CILYLT) Z(DELVA+DTLYAR)
el Iy s ASITPLUS) = WILAS (T I*CILY LD 20T Y

1 +{WLLASET) =WILAS (IMINUS) Y P RTLYA/DELTAT) Z(LILYA +05 LY A
OELH2 (TS CUN2LAS (IOLS)Y =2 502 #05 MI%s0TLYy e

1 +(WALASCII ~H2LAS (IMTHUSII ¥ SLYA/ZDILY L) Z({CTLYA+DTLYAD)Y

—e e DELRICI SAUITLAS LTS LRSI N LD/ T T —
L +(WILASCII=HWILASIIMTHRUS)K® L“A/F:L"‘=)/(C LYA+STLYA )
*w___._ﬂjhkkijllil(N15L§SJIPLU31?NilLu%{Ill'W LY IRsOT NS .

1 (NITLASET)-RLSUAS(IHINUSIIISUVASDILY AR/ (IZLYE+SELVAD)
JEANZEATIZ LI N2FLASIIPLUS) = T LAS I »IPLVEE/DC WA+

1 IRZILASTTIY =" 2ZLAS{TIMINYSHISOILVA/LELYAM Z{OZLVA+NELYAR)

Do Lh!ttt)*(fk*fL&;tt”LU;)-n"fL*StIll**va&f! Ty

L (KIZLASEI =N TLASCIMIMNIS) Y =N LYAa/CILYAEY /{ T LVAFDILVADY
SIVNIZ(IIZOILNISIDI FNIZLASIT) /A0
DIVNZE(IY=CILNZELI» +N2ELAS(T)I /A0 (T}

DINAIZE =Nt KPS LT+ NI LAS(TIY /00N LTY
DELKCTP= ((KLAS (LPLUSY »KLAS (T ) *ASLUAR/CELY A
ek LKL S (T o KLAS (TMENISLY RYILYA/PTLYD) FUNIL YA BTLYS D) -
DELTCII=(TLASCIPLIS) =TLAS(IDIFDSENARAITLY S
1 (TLASCIY=TLAS(IMINUS)I*OTLYA/TELYAY /LN VAT LT Y}
LAGLT (I = ITLAS(IPLUS) =TLASII Y ZILVAL (TLASCININUSY -

1 TLASCINIZDSLVASY *(2.P/(NELY S+ TELVLAY Y
NELSUM{II=SCISUPL T {IFLUS)* QAN ISLUS) «SU=LI(T) *R4N(I 13 ¥

1 CELYER/DEL YA+ (SHMLILIY*RADITI=SIML T(TIFT ST *RAO(THINUSYY ™

2 DELVAZILLYAD) ZIOELVAR+OITLVAYZSAN(])

CELCULATE THE NEW DENSITY &NT THE VZLODITY

x M wllly]

R=D.7362
SHCETI=PLASCIY =MW (T} S (RETLAS(T)Y
VIIYZ(HIELAS{I Y eNZELASTI +NTELAS(INY /RHO(ID
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T
c SCLVE SPECISS I COMSERVATION EALATICMS
c
. RHELCTITIZ., 0/ TALAS(II*¢{AUNEI=IHC(II)I*ITAATLLT I =0TYICVLIYY
HiCCTOT) 21 .0/ ETALAS TN RNOIIN ) S (it LS (TIS(ETALGS (T SFRONAT(TY
1 +RHCOIY*ETANTLEIII=0TIVNI S (T2 +6ENI (T
WZCOT(TI =1, 0/ (ETALASII) *RHOCI ) *(~N2LAS(DI*(ETALAS(I)*FHOOOTII}
L ARBCATINETATTLIINI -DIYNSZ S (DY +5EN2 (1)) '
WIDOTSI) =1 .0/ (ETALAS(I) *RHCITIV*(=HILASC(DI® (2 TELAS(I)EHODOTIT)
3 4FHC(II*ETAOTL (I =OTUNIE(T}I+GENICLDD :
c
R ~CELCULATE FLUXES _ -
CALL CIFE

DFODIII)=0LMII) *OZLTAU/DELRA*2,0/ETALAS (D)

— e _DMQEZLINETIMITI*OCLTAUZDELO™ 2.0 /CTALLSL])
OFOLI{II=CIN{IY*NILTAU/OELP#* 2,0/ TALASHT)

e o MOFLXtL I ==FHCIT) *OIM (I L/ MY *0 LX) 4 WLASE - TY*TOATHOFETY
MOFLX (2 FI==CHCLII *IZH{IY ZMHT T #0ILX2LT I #XLAS (24 1) #TOTHCF L)
ML, TS =FHA (T *N3M(I) /MU *0 L3 (T v 048512, IV TOTFOCLT)
TOTMOF (T¥=MOFLY (1 + T} 4HOFLX (T} #MCFLY 84T}

e NAELDIEMAFLX (1) %4
MZE (1) TMGFLX 12413 %42
FLUXJl(II‘%iE(Il-diLnS(Il‘-H3(Il‘vt')
FLUXSZATIENCS LT) =20 AS IV A2UGIT) *V T}

FLUXJIOEI = e (I =d3LAS(IIYRHG(T*V(T)

[ - e im
C £EECK ACnLoacy OF THE DIFFUSTION E£QUATION
. —_

IF{AES(TCTHMOF LT -ﬂ 516364670,

X0 TESTLLIY=1.1
TESTZ2(IY=1.0
TESY3ILTr=1.,10
&G0 TO B£78

B3 CORTINME
N0 633 IT=1.KKK
siroIFCIT. Y =n,0
00 R34 JJ=1.EXK

L IFITII=JJ3E 23,072,533

R3IZ? DIFtITIWAJN)=2.0
GO _T9_a74_

533 ﬂIF(IIuJJ)‘(anS(II.Ll'NcFLKIJJ I:-XLaQ(JJ'Il'MGFIxtII.I)!

1 /ADGATT L JJY*RYOIIY MW )Y

[ 1 SUHCIFtII.;l'GTFIII,JJ}iSUHUIF(IIoI)
L IFtDITOPTLE,4350 TQ &75

SUMOIFCTI I ZSUMATIFCI LT ~MOFLX{IT L) 7 OK (LT II*RHOITI 7MHLT)Y

_€35 canlIsig .
TESTl(II-ﬂfLXI(Il/SUPDIF(L'I)

TESTZ{Iy =L X2(I) /SUMDIF(2.T)
TESTE(IY=DSLXILIY Z7SUMDIF(T. 1Y
e €3IF CONYINUE ————
c .
G CALCMLATT FPHYSICAL PRORZIRTISS
C

N3 6Ll KK=1. KKK
TLAS(D)=TLAS(T)/L.9
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TRESI=TANSE/L P |
C°ﬂ¢“K‘=QEmA!._! KITTLAS(I) +C
1 +CPIAIKKI*TLAS(I}I** 3, 34CPRSIKKIZTLAS(II 7,0
HE LK SAPAL ORI *LTLAS(T) ~T 3ASEL +COGIIRHI /DL TLAS(TI**E . J-TRRSE"*
L 2Ll #7323, Gr{TLASTIII®* I, D=FRASE**I, 1) +BGVAE] (KK}
— & *CELL KKV A AN (TLASII) ** 4, N=TOASE* "L, () -CFGS{KKI ™
3 t1.0/7TLASITIY=1,0/TRAST)
TEAGZ=TAASI*1 .2
TR=TLASC(I) /T [KX) )
COLIAVIRKY =] ., 0/C¢CTIVI® (1.0 +CTV2*ALBGITRY} . »
TLASCIN=TLAS(TII*L,9
MUGIKMKITP, EEGTC-C (HIKKI®{TLASIIN /1031250 ,57¢5IG (KKI**2, 0
1 *COLINVIKK))
221 .GR7
KG{XLI=(CPHE{KKI+1 252 RE/MIKKE*H UG (KKD
MUG (XK1 =¥UG(KK) #2,4491502
KGIKK) K6 IKK)*2, 4175202
e Bu0 CONTINIE - R
II=?
MIPCT)=iT.0
CFeL¥=0,0
KM{T1=9.0
HII)=d.0
A0 6eg _L1IZ4 . KKK
23=0
SUFXEHER 0
0a £49 JJ=1.KKK
LOHTI(IT e R }‘*0.9'(1.;*(N{IIIIW(JJil“( 2,53}
1 (L, 34(MUECITY /! YRS LS SHIFOIIZMITTINII®*],25)"%2.0
e XCPHTAS Y ZXLASOIIL T *PHEC(T L)Y
SUMXZHTXEHT EJIY +51MXPH
£657 COMTIMLE
XE=NXLAT(IT.IY*¥S (LI} /SUMNAH
XPL=LLASITT. D) AMDGLII) /SUNXEY
XCEGENLASCITLIV*CPR(IL),
ARG a5 {IT 1Y HI(L])
XELTEEXK+KM{TY
MU (L =ale ey
CF(TY=XCFG+CE{T)
_— HETIY2XHG+H(TY -
HG(II)‘H’(II)IPIIII
—6&0 COAMTIMIT
CF{I)'F°(II/PHtI)
MOTYEULT I MULT)
R FHOC (I SEHOCL+FHAC IS TLAS (T +2HOC3 *TLAS (T **2 .8
e CEC LIV SLBCL +CPC2FTLAS (I 4CACT/TLAS{I) 52,0
’ HC(I!-PJC1‘(nLBS(Il-TBnS YACCCR2MITLAS (I "=2 ,3=TRASE*¥2.0) +
e A EERITL,0/TLASITIY =1, 07T BASTY RG]
FACTK(I) 1 =S TALASLI) PEXD (=L o /ETALAS(II ) aCLoNETALASII}}
3 *EXC(~1.0/81.3-TTALASCINNY
¥ELL)=TCRL+TCR2/7TLASLI)
EPSI)=ESe
KL LTV =0.E93*EFS{ I PARTO*TLASII)**¥,073C. 0222
KPLEI= (L C-CTALASLINY AL243/XP T+ J/KPPITID+STALASCTI® Q0 ETY
KELCTIZ L C-CTALAS (I)) *KPIII*SXF(=1.0/ (1o 0-CTALASLTIIII+TTALAS(IY
1 *RKNMIT)+KPIIIYREEXP (=1 E/ETALASIIIIHFACTRUITI**2,0/73TALLS LT
2 #2001, 0-~EXP =1, 0/ETALAS(I)IIY)

+05G ZIKF)‘lLﬂS(II+C?53{K<)*?Lﬂqf11‘*? ¢
I
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c SCLVS FHFIGY ENUATION

SUML(T)=FG(1) *hi0AT (1) +4G(2)*W200T (1) +-G (T ®WIHITLT)

CSHMZ(LDEHGOLI*CTLYICT) #HG ()% OLW2 (I +HG () *OTLHT (T

SUM3CI)=HA (1) *FLUKILCII+HG(2) *FLUXJI2 (T} 445 (T) £ LUX I3 (T)

TF (T CRaICF) SUMLSEHG (L) *NLE(T) 445 (2 *RIE (L) +HA (3D *N2T (1)

IF(IeS7 IEC)SUMLC=AG (1) *H1E (1) +4E(2) *N2E (I #HG () * NI (1)

_ERCE ‘TJLQQIII‘RAG(II‘CP(I!+I1-a--T#W)*”HODl*C“ﬂG - :
1 ¢(ETAG=STALASCI))*CPC(I)*]4AG(I)

_ TMCC(I)=K(I) /S6C* 5L TAU/NELR 42,0

TCOT(I)I=((PHOCCI) * (HC(I) =H (I ) #+PLASIT) /0. SE76) *STACTL(I) -
1 ETALAS(I)*2HO(I)*5UML (L) =FUN(T)*CE(T)*VLAS(II*NILT(I) -
2 PHO(LI*VLES(I)N*SUM2(I)=DILSUMCI) +K(T) /PAQLT)I*OZLT(I) 4
3 KT SLAELT(I)40SLT (1) *OELKIT)4ETALAS (L) #2COT)/ERC

T(ll‘ILASfII+D~LTﬁJ‘TﬁJT{IJ

CALCULATE ZQUILITRIUH COhSTnhT

rHol+]

LOGKER(I) SKEO14KEN2Z(TLI) 71.8)
KZG(L) ZEXE (LAGKENITI*2,30 )

[
CETEPMINE WHITHER. _NESJSITION HAS OCCHPED

-£ ! 2

121 0/ (XLASILII*XLAS (7. T) /XLES (2. TV1**3. 0*SLLS(T))
1)REIAH70.570
)=K=EN(I))570,670.690

.
e SR p— —

C
C SOLVE SIMILTANFIUS AUATIONS FOR MOLE FILCTIONS
c

W2IlIV=WLACOT(IN*NILTAUSMHILASIT)
XUis I)SUHLII) ZML*MRIT)
H3tII‘AEiquIl‘DiLﬂAU*HSLﬁS!;}r“.
'_{I!/FY*Fi{I)
£ LI "X (3. I)*KEQR(I)/SLAS(TI}
IF(Q%GXZ LT.0.0160 TO 675
wo o= RS  EVSAREXATI UM o s s s e
G0 T2 &75
—BE75 X{i,1)==-TARS1ARGYZ))*2DUMN
E7E OX=X(2.T)4¥ (2,11 +X(3,1)
Xlia2)3X01.T0/0X
X(ZeI)=XI12.,I)7CX
AT TI=XL3,TH/0K
MRIIIEX (L, TI*MIeX (2, T)*M2 X (3,I)*M3
HI(I)=XtL,I)*FA/MHIT)
WH2{I)=A(2,I)*N2/MU(T)
HZ(T)=X(Z, TV *PI/MN(T)
ASHL(IY+HA2(I)+LW3(T)
_WI(I)Y=AL(T) /A
W2 LIV=W2 (I} /U
——  WI(T)=W3(I) /4 o 5 e

c CALCULATS THZ CZP0SITION RATE
C ANG THE NEW POROSITY
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MICT2 (W3 (1) =H3LAS LI /0TI TR

GIRI(IY=NADTEITALASH{I)*RAQII} #N3 (1) *{ZTALAS(I)
L_PEHCOOY (I #THCUIYXTTACTL EIVEHOINNIZ ()

GRRul{I==FIT/M3*GINI{T)
SUMGINET) ZSUMGILOI #RCENLLT)

IFCSLMGINE Y =0, 0057746774673
Grru (I =-SI5TLCT)

GoNIAIIS-MI/MII*GING T

ICT1(L1=n

GEMZUIIVIME2/NE2* (=3, 0¥ME2/M3*GEF3IT))
GENA{IN==GIN2LI) =AINS (1) =BT Ny (1)

ETAODCTL{I)==GEKL(]) 7240C(]I}
CTA{IY=OZLTAURCETAQOT(T) +ETALASH(TY

£89 CORTINIZ

c

c

GO TQ &85

KO RIAGCTIOMN FAS 0CCUREN, CONTINUE

c

WiCIh=WiLe5 (I +WiDOT (T} *NEL TAU

WZ U1V =waLAS (I} +6200T (T *DILTAD
WICINZHhILASLII +WTINOT(II*ISLTAL

CATRECTIeUHZIT) NI TD
CTMALTpEHAATIY s

W (Iv=w2(Tr s " -
W3ETIzu3ItIN /Y

—— GTRZ1)Z0.0

MW CL) TiaCr (R (I /7 i+ HZAT) 724K (1) 797}
X{le I WL LI *PRITY ML

K{ZLII=M2(II*HUIT) /M2

OXZX (1oLt X (2o T)4X(3 413
X138 .1Y20%

XLayi¥=X12.13/04
X1 Dpz¥d2.70 /70X

GENLIIV=N.0

GEAZL(II=A.LN
GERG(IY=0,0

TENST(I)I =040
ETALII=STALASLYY

€8s

CORTIMNLE

o Oon

WOBRLE2 o 0NWL (L) ZMAAHZ (LI ZMZONS(TI 7 n7
FOII=SYA(IIAPNLT) *RAD (I} *WPBARL /T (1)

700 CORTIMNGE

CEEnssrvzns ZLTMENT &4 ENNET NS RR LA NN AN

c

c SOLYE SNUATIAONS FOR THE CORT IATERFACE

G
I=LCM
LCWP2SLGH+2
LCHF12LCW+]
LCWMZTLCUH=2

LCHMLI=LCH-L
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STALASIEI=ZT4AD .-

CALCULATZ sSRACT MERIVATIVES

P Neliy]

'”5?Lhi?fi iu1Ln<thw= R
- DLW I(TY A INILAS(LOWPS) SNILAS (1)) #0526
NELXICII=CXLASE]L CHAPL) ~X] AS{1,T})Z0CL2F
OELXZ IV ECXLAS(Z s LOHOLY~XLASI2.T V) FNZLFF
DELXICTF={XLAS (3, LCHPE) =X LAS(T,T )1 /65L°PF ' ’
DFLRCV (I} =RUNLAS(LOHPLY FVLAS (LOWEL) Z0SLER
COSLT(INZC(TLASELCUOL) ~TLASLLCHIIFLTLEALDTILED .
1 (TLAS(LCH] =~TLAS{LOWMEI ¥ CELRF/DSLEDY Z (DILRO+DILLP)

CALCULBTE DENSITY ANC VELCCITY

O

R=D,7302
SRCLI)EOLASITA®MN (1) Z(RSTLASIINY
VEI)UNLSLASTI Y4 N2ILASITY s N3ELAS(INYI/RHQLT)

CALCULATE FLUX S FROM OLR VALUES

sRe R v

caLl CIFF
S OMOCIIII=OLM TN *OSLTAL/QCLPOs» = G070 ST
OMOL2(LE=02M{IIPNCLTAN/ BILRI¥%2 520 TALLSIT)
1"0“’(1"”"‘(["” Lrﬂ.llf'] LDE“"_‘/LTALfﬁtf‘
MOFLX Ly IV 2oFHC (TN ROLMIIY /AT IIRDILNE LTI HALAS (Lo L) *TQTVOF (1)
MCFLE(Z I ==5HCETI D29 [ /ML IIDZUXZ LI 4XLASI2, 1)+ T oTrOS ()
MOFLX (o 1) 2=RHE (I} *DIMIT) /MH(TIROTLXZCT ) +XLASE3 L) *TCTNGF (1}
e e IO MR LI EMOFLX L DI FMOFLE L2, ThAMAFLA (T 1) _
MEE (T)ZHEFLX (113 #42
MIELIYEMORLX (21022
NIF (I TMOFLX(2,1) %3
—_— FLUXJ LI =NiE
FLUXJZtTIk=N 'lII-H’Lde;l"HO(I)‘\HII

L FLLXI3EIYZNEE

c
c CHICK ACCUIACY _OF THE
¢
e JECAESLYOTRCE AT =000 7302730731
730 TESTILDI=L.0
1ESTZLI0 1,0,
TESTICII=1.0
nO._TC_73E
731 COMTINUE
00..715 1152 .KK¥
SUMDIF(II,1)=0.0
00 734 JJ=LaXKK o . L
IFLII-J0V72Y,732.733
732 NIFCII,301=C.0
GG TC 734
73T OIF(ITadJ) SIXLAS(IT T *MCALXAJIaT) =XLAS (IS TI*MIFLXLIT LTI
1 ZECGIIT I ¥QEOCTII/NAIT))
e TS SUNMOIFITL, JI=OTF I Jd} #SUMITF(TIILT)
IF(CIFOPT,ZN.11G0 TO 725
SUMDIF(IToT1=SUMBIET T, =MOFLX(TT.T) Z¢CKETT, I¥*RHUOLT) /I (TY)
735 CONTINUE
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TESTLLI) =0ELX1 (7} /SUMDIF (1.T)
TEST2(IN=05LX2 A1) /SUAILE(2.1)

TIETIC =02 Lx 3L} /SUDIFI3, I ‘
e P38 GORTIRLE

C
_€ . SOLVE SRICTES T CONSIRVATION_ENUATICRS
e

RRCCOT I = (=aC (LCAPL) /80 LD # 20 (LOHE V¥V (LOUEL) /DZLOF
1 - (RAC(IT-RHOC (T ) X0RODIT/GRLRE - (RRO (T} -BUCC DI PITADTLIINY
2 711,0403L°PG/LELRE LETALASIT) 1,00 ) _ .

WicoT(t SELE

= (GENL (TY*ATLRIB/NELIP] ~HILAS (TIS(CTALAS(IV+EELEY
1 /CELPEL =2 .M *CHODQTAI)=FHOIII*HALLASITII*{ETAOTLO[} +B3°55°0T
2 /FELQ‘I-P'fILPHF¢I‘RQDILPH°1)/PQU(I)IDVL?FUD
I /(RSGUIN*{TTALAS(I) ~1L4BiLROITLO35) Y.
WZCQTITI) =SLGENZIIY*OELOR/DZ LQ“"-NZLQSIID'I:T‘LﬂS{"l'CrLac
1 JOELREG=1.C) MO TII) =FHOUI) *HZLASIII*(ZTAOTL LY +ORAROT
T2 7CELIEN-N2ELLOWOLIRADILERALY /RADLTI FRELRFD )
I /BN (STaLASIT) »1 T+NILRP/DTLERD) )Y
*DOI{Tl-fFH?3rI!‘GEL“P/D‘LQJC-J’LS:IIl‘fb' LASHETY 40 L”P
3 ACELET-1, CAXORD T () =RHQIT ) 2USLAS(IN I (ETARTL AT} +GDP00T
2 JCELREY =N3T(LOWALY*RADILCHALY /2AD{T) /DELRFN)
3 LIRHC IS (ZTALAS (D) =1 D+ CELRP/NLETAY)

 CALCULETE CHYSICAL PROQSEZFYIES

(e 2w N7

KHGE(T)Y=Fun 3}
FHCC(I1=cHICT4F 0C2Z* TLASE I 4THIC TR TLAS (11 * 22, 0
L CPCHI)=CCC+ S22 TLASII)+CECI/TLAS(II 2.0
MOTII=CPCI*tTLASII)-THASEY+CPEC2*(TLAS(I)*»»2, -TBnS—“Z CI-
e 1 CECIMIL L C/TLASIT)I L. /TEASSY 440D —_—
COF{II=CRDL+CFE2%TLLSHI)+CODI/TLAS(II**2."
DO_7EL0 _KK=1,.KXK
TLﬁS!Il~TLa3(I)/1.%
T!‘.;ﬂl_s'.-fﬁﬁq ,1 i e
CFG(&<I‘C=31tK<!*CP c(KK}'TL&S(II*C“G?(K’)*TLQS(Il“?.
e A FCPGL (KK RTLAS{T) P LO4CFGSIKKI/TLAS (T} 27,0 ———
HG (K3 =CEGL (XK= {TLASTIY=-TOASEY+CFPG2(KK)Y /2, “*ITL’G(I)*‘? 0= T“"'*‘
1 2014003 0KKI LT 0RCILAS(II**3.D-TRA5c* 7. ) +HIVALD (KK )
2 +CPGL KK /% " {TLASII I ** 4 o) ~TRASI* 2L L 21 =CPNRT (KK ™
—— 3 LA TLASHT )~ LB BASEY .
TEASZ=TOAST® ., ¢
TR=TLASCYY /= (KXY .
COLI&V(KK! 2L O7ICIVI*F (L, G+CTV2YALOGITRIYD
e LA ST ZTLASAII A L L.

MUGIKKY=2, 66935'5'(H(KKF‘(TLﬂS(IlIi.%Il“‘ﬁ.S/(aIG(KK\“c.B
A *CCLINVIKKY)

R=al,.,%07
KGO SICFEIKKY #1252 RY ZH (KK P MG IKK)

MUG (K }SMUR (KK} *2, 4232502
KOIKY) =KG(KKI*2, 81756502

7643 COMTIMUE
ir=¢

MULIY=0,0
SR 1.5 % 4571 7%

Kr¢I¥=0.0
H{1)=0,0

po 7¢€6d IT=1,KKK
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JJI=G
SUMAZHT ],
ND 7855 JJ=1.KxK
e BYTCIT LY TT12S )R A L (M EITY /YD) AR =0.5))
i 1. De4HUGETINZNUSCIIYI 0 5o (Mg ZH LTI I*¥] 250 % %2, 5
e XPHTIEJJYEXLAS(JS DI PRICIT y )
SUPXAH=XFHI(JJ) +5IMXOH
- 7650 CONTIMUE
KEZXLASITIISIY*KG(IL} /SUMKFH
AMUEXLAS{IT L IRAHUG (T1Y /SUMXEH oL .
KCFG anS(II.[l‘FPG(II)

KACT = ARIKNM(T)
MULT) sXMU+MHIT)
CRIII=XCRR+OF{D)
o HII)EAHGAHII)
HGETTYSHAECITY Z7HEIT
— TEERD GOMTIMIE
Co(I)=C2(Ii/MHLT}
HOT =Ty /MW (T _
FACTR{1052a0-CTALAS(IIREXO {1 o0/ TALASITI I =M1 o0 ~STALASII))
A e =1,0/214.0~2TALLS(TIY )
AP(T)TLTL4TCETATLASIE)
— _EPS{Iy=ESE_ R
: KAL(T)=0.FOT*ZES (1A OARTO*TLASIII**»7.( /3] 24882
KR(II=ZI4.F=FTALASLT) ) 7 (L. 07201 ) #2107/ _!ZJqI.LLt:— TALASLII®K2N0TY o
KEQINEAL C=CTALAS () *KO{ I *TXK U=t 0/ (1, J=FTRLASITIIY4TTALLS(T
Ll RARMOIIEKILII I TP { =L G /ETALASITII+FACTRUTI #2375 TALLSAT) .
2 82, 0/ L. i=CXE el O/STALASLINI D)
— e BT oI LSRR ALAL QG (RO N WY 4L TR LAY S —
1 RACOLCWI) ZKMIT) +ALOGL{2A0{LCH) +DELID) 7 (AASILEH) +
_— A DIl af=nine i) /KT

c
c SOLYE SMIRGY _ENUATIGN | : —
c

SUMLII) =N Wi BT (T sHG(2)SH230T LI +HG I *WI 00T (1) *ETALAS(T)
1 *FMLLT)
SUNM2 (1) =UHG(L
1 VLAS(D)
e BUPILTIIEFGILYFLUXSL (I +MG () *FLUXJI2(T Y+ _
1 MG *FLUXITCT)

PETSLWLCIIAHG(2) AP SLR2 (T ¢HA( IV *RTLUILT)}*F40(T) *

i -HC(I}*wHGF(I)+1.u!].-676
ARGEHOSH{TAF (ETALASCIISOTLRCHNTLIE=ATLROY
ATGIIAS{HIT)I*2UO{ T} ~CLAS(T) /0, 267R) “IFLD2
L _~(HCIIY*FMGC T =1 ,.0/0. b0 2nTL 0
HRGESCILOC* (L C+ZTALASLIIY Y =¥ L322
L _EPC2ZITALASL{IT*CHALII *CRILY*NT LS
1 HFHCLTI*COLINY"ED: LPO=BELRD)) {1+ C=STA Y RRHAFARCAP (LIS OFLOSC
2 _#{CTAY=TTALASUII I RAOCITI?NTLRNSCES(])
3 +FHCCILCH®2I®CPC {LCHAMII*CILER
_IMCSUEY =R /ECCH*NSLTAUZDELRIY» 2.0
Y (TP z(TLASII Y 43 LTAU® (=RATILCHELIZRAN( 7 (SHIMUr=C (LCHFL)
e A_ATLLEWDLI /OELER) ARADILCWMLY /RA0CTI ML CHM D) FT ELONMAY Z/DPLER
2 —AREETACETASTLLTI «ARGAHO*RHODOT (I} AP CRS*IACDQTHAPGE*FI0T)
3 JERPCH/LL CHCTLTAUF(RAD(LEAMEY/RADETY* AL W) /DELED
4 +RACILCHOL) /RADIII*KILGHWPL) /DT LRPY JERCY
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c F5
c CALCULATE THT ZAUILIA>TIYM CONSTANT 2ND THT
c CEFCSITION INOTX
r~
LOGKIGC(I) =KENL4K=N2/(T(I) 71.A) -
_ XEQAI)=£XF(R.203*LAGKEN(T))
C
c COLCULATS THT NIW_CONCENTZATIONS
c

DIMAZX{IN=1,0/(XLAS(L,1)

i
|f"
Ha
I
1-—
IK

IXLLS{2,T1**3.0%FLES (1))

IF(J.GT.116a TC 7740
CUP==3,0%*¥LAS(2,T) o

CHUC=19. 0% (XLAS{LsTI+XLAS(TaT) =XLAS(2+T1*XLES(3.1))
1 +R1. 0¥XLES(2,T)**2,0%ELASII)/XSA(IN) 2

2 (27.0*PLASUIN/KENIN=2.T)
__“EUQiﬁinQIIKLﬁ?flxll'ﬁtﬂﬁlé;l’:ﬁk“ﬁfllfiéﬁff"

1 an<:7 T)**2.2) /(27 3*OLAS (I /KEN(I) =1 .00
CUF=(2.0*CUC-CHIA*%2,u) /3.8

CLU—(’? C#CHUO=C.0%SU3*CUC+2. ‘CU%"?.G!!??.G
CUSS(CUP/T 0023, 0+ (CUO/2,6)%%2,)

CUE1==CUN/2, 1+"uv"n 5
CUB22-CUN/2.0-C112%%0,5

IF(CURL.LT. Btu]rj TQ 7741
CCA=CLEL®=GUNMM

50 TC 77L2

7741 CCA==(ANSCUALY)R¥OUNY_
FLZ IF(CUS2.LT.C401GO TO 7743
CCR=curZExnlivy

GO TC 7744
— T COR=«(ARS (CUR2)IREOUMM

774L CLAM2=CCA+CCN
ALAME=CLAMB=Cn /T, T

X (4-I1)=XLAS(Ls IV +XLAMAZ3.0
X2 1)SXLASE2,T)-XLAYA

Xtu,I)-XLﬂQGu.TI+xLﬂWQI;.§
GO 0 7?4(‘

7760 Wi (1) = (WZLAS(II+0ELTAN/2, C*WICOT(I) #15LTAL/2, 0% (FENL(T)
1 *COELIE/NELSFRSINO(LCHELY /ZAN(T) (FHDLLLIELY =

2 CIMILCHELY/PHAILCHEL) * (0T LRI/OTLOM {2, L2IF?) -

3 XLt CUPLY) £RTLR/GILRREN [, LCHAT)) AIDTLESETLIA) .
AL s LCHP L) *TOTIOF(LCHRL) ) "ML /0LF22) /(P42 T)*(ETALAS(T)
+CSLRZ/NOLRE3~1 00 ) /0L 40T LTAL/2.2% (520 (LCHEL)

ZFAC(T)*CRO(LCHAL) *DLM (LCUPL) ZMA(LCHEL ) *DELO/NELRF
ZACEL24NELRR) *MALT) ZDELE SO+ (ETALASLT) #0TLES

/NILRFO=2,0)*FHODIT (L) 4RHC(T) #(ITAITLIT) 723397
AOELREDIIZ(FHOCT ® (L TALAS(TN #5FLTE/I7LE0=2,00))

;)m~qo~u1;

XUL 3 TISWLLIY M2 MULCT)
WECINZ(AILASIIN4NZLTAU/2, D% WIDOTIT) +25LTAU/2, 3#(GENILT)

1 *CCL=E/0FLREOARADILCWAL) /RaN (I R(FHIILZNDL)*
2 FEMILCHBI Y /ZMHILCHDL) * (DELS3/07 L2 (X (7. LONED) =

3 X(3,LCWEL1) ) +CILI/ICLIF*X (I,LCHFZ) ) /(DLIL2+C7LPA)
& +xt*.Lcurim*rrr»rF(Lch1)1*v71ﬂ LE32)/(P4CETI*(ETALASLT)

5 +CELRS/NFLEF0=-1,00)) /(141425 LTAU/2 3% I2AT(LCUHIL)
B /RPAGLTI*EFD (LCHPA)*DIMILCHDL) /MA(LCHT ) *ISLRIOSLED

7 /(CELR+TELREY*MUW (I /OE th6¢{u‘&L$:(1i+" Le"
8 /LELEFU-1.T*FHONOT(T) +RHO(INV*(STAOTLITYSC2FNOT

9 FCELRED))/(RHC(T)*(=TALAS(I)+CELPP/IELRON-1.0)))
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X{34I3=WT{THAMT¥MULT) v
APGX2=N(1aT)*X (3, TI%KEN (I /OLAS LT
IF(ﬁ~CI? LT.5.03%0 T3 7745
X{2s1)ZARGHRER UMY
S0 fCc 7?7758 v
o TTLE X (2,722 (A5 (A9GK2)) 420NN
770 DX=X{Ll T 4X (23T +X{3,1)
X{32102X11. 12 /0K
X{ZoI)=X12T)/PX
X35 102X 3,11/ CX
IF(J.GT.1}68 TC 740
ENUTX L4 EX (12T
EOUIXL2Y=x(2,1)
ZAUIX{T) = {3, 1)
TLn COKTIBU'

W11 X(;in’Pil”NtI) .
W2LTNZX(2TVSF2/HMMLTY .
H?(Il-x(3.I)‘P‘/"”(I!

Hi(I) HitIy/w
WalIl=de I/ .. —— -
HITII=NICII /N

CALCULATE THE RECOSITION 2477
THE_AFH O0FGSITY, ANB 922L7TION OF THE £CoZ

DO

CWTETEAMICIV-WILAS (I I /OILTAY
GINT (I} =TI STXETALAS( I} *2UOLAS (1) 43 (I * (T TALASLI)

1 *FHOCOY (IV4SHTLASLIIPITASTLAINY#0oLNIT (I —_——
GEML(T)==ME3/MI*BENTLY) ,
GEN2 LTV =MT FME2* (=3, 0%HT2/M32GENT (1))

BENILIIS=GTY2{IY =63 (TI =560 (T)

ETAOCT (I} =STAGOTLLCWRLY . _—
STACLI=ETAILANEL)

ORFGIT=-CZ L"L""'N‘t(l)IDH.OC(IL,-::."'ﬂOOT(U“C'L‘?PG - —_
NELRO=CELORL+0TSNNTAIE L TAY

BELGRENELR-05LFD )

RAD (I} =RAN(LCUMLY +05L 3R

L ob
|

CALCULATE THE FUNCTIONS FOR O2SSSURE INTEGRATICN

WE2RIZ2, 0% LTV /7MIAWHZ LI /MZ4HT(T) /N3
FUIN=STALI) *PH LT *RAD (I * WAL /TCT)

c .

CHERRREABRS £} TMONT 5 SRRNEESRSRINRENSSRLY
C

T SOLVE
c

LEWEL=| DWW
750 D0 200 I=LPW,LS
_ CFSU(IY=CESY
TRHOS(I)=EHOS1
e BB FINETCST —
K{IY=K3{I)
ALPHASC(II=KS{T)/ (PHCS{IH*CFRESCIN)

400 TreOUII=ALFHAS{I)=OELTAYSDELI**2, 0

:PGY SOUATION FOR SHILL MATERIAL

jl‘f

.
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D3 #aj ISLOWFL4NRE "
IMINUS=T=1 , :

IPLUS=T+1
TFEIMINIS=-LOoHI PG54 9054 808

8¢5 DELST EFL’
__DILRELILeS
DSCS=0ELK/ATLS
D5CFZITLS/TTLY

KLAS{LFWI=KSLPK
GO TC_*39

205 COF TINUT
TF{I-NFCY810,220.820
a1 DELS=CIL?
DELX=C7L?
orOos=L1.0
0S0P=1.0
GG TC 410
820 DTLS=CELSR
JPUS CZLR/DZ LS
QSCSTLELS/BILR . .
BI0 OCATINLE
E‘LKQ{I"('KL&S(fQLU°"KLﬂS([l)‘BPBQ*(KLﬂSII)- _
1 KLASAIMIHISIYI*ANST?) A{GrL54NTLYY
L AOTLLETRASCIV -YLASCIMINYSY L. — -
OTLZ2=TLAS(IALUS)-TLAS(I)
n- LT(I)-tnTLZ'P‘rS*n’Ll‘Pafﬁl/rn N SN
LaﬁLT{I;'?.t't"TLEID Li- WTLIIO"LX)/(UFLsﬁﬂcLXl
FECTLINEAL NASITY R (OTLT (T ) 20A04T) +LAO TLTII #1,17(RHOSIE) ~
1 FCFE{TI*OTLKSIIY*DTLTII)
JELI-n270040,850,4330. . . .._ — ——
A4 TATI)=TLASTII +DILTAU*TOOT(]) N
GF _T0 R0
ARE]) -('l‘(TLﬂq{1)*C'LTuU‘TJGT(Ilfz SeNILTANL2.E
e A ZEHSSUTIACIS DI ZNOELS+NLLNY R (U T) /22T .
2 #LELKS(IYI*{CTOSHTLIPLUSY=-0SDITLIMINUSII+2,0%K{T)
e 3 FATLISLUSI/TELSETLTAINYUSEZITLX I 1) 741 .6 e e e
L +DSLTMI R0/ ICELS+OELXY ZLAHDSIIV*CPS{IV* ({K{TI)/"ATIT)
5 +CELKSLTI)* (CRO3=TSNR) +2. C*KATI* {1 0/NELT+L,B/NTLXI ) -
BRGT CORTIMIE

rravacErsys CLTHMENT 6§ ARAN AR ARSI R AARRN N INE

30LVE THE EQUATIONS FOR THFE SHELL INTZSFACE

DOLD[O

I=LFW
LEWF2=1P4+2
LEWFRLI=LPWSL
LERMI2LOYR2
LEUNL=ZLOW=1
STLLASITI=ITLD

iy O
(2]
=3
~
2
L
=
|
-
]

SPACE DERIVATIVES

O LbL (Y =- (WLLES (LEWMIY mHILASLT )Y /NZLOT —_—
NELHZ (I == (WELASILOWMI) =W 2LAS(I) ) /OELFF

OLWAATY = {W7LAS{LEWNML) =¥ 308 (1)) /GELFS
DELXEII)==(XLAS (Lo LPWHLI=XLAS (L1, I})7JTLPR
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DELX2 (L1==(XLAS (2 LPHML) =XLAS (7, T3} /0653
DELXI(I = (XLASEE,LPAM ) =XLAS (LI} /071 P2
DZLTCIN=((TLASFLPASLI=TLAS(LoH) ) SCILOG/LILES

e e 1 CTLASIEPHL =TLAGLLOWMLY ) ¥ CELESACELAPN A EITLISHESL OF)

c
__L_“*__Cﬁt&l.kﬁ.l_ CEMSIIY _AND NZLGCITY
R=[,7202
E“C(Il-PL#:(I)'ﬁM(I)f(n‘fLAS(I)i
VIII=INIELASOII#NZZLASITY #MITLAS(IRI/2HO( Y !
c
— L CRALCULATZ FLUXIS FRGM OLO VALNES _ . __
c
CALL £1IFF

OVCO1 (11 =01M (T RNCLTAU/DFLEO**2 /S TALASLT)
OMOLACTIY P2 (LI ¥DELTAUZDELP2% .2, J/ETALASCT)
DHOGI(IY=P3MII) *MILTAUZOCLFOF %2 0/ETALASIT) |
MOFLX (L TAS-CHOIII DL ZRMCII#OTLYL (1) +XLASHL, TIRTCTOS (T2
MOFLX (2, T)2=FHO(TI*02M (I /MILII*TEUXZ(TH+XLAS (2, D *TATHOR(T)
MEFLX (I T) T GHC TR 03 D AWM R NELX (T XA, T) %TATMOF (1)
TOTMOF T ZMOFLX (1, 1Y +MOFLX €24 T #40FLX (7, T)
e ALE A DY EHOFLN (L2 T ML
' H?E(l)"HCFLX( JIVEa2
e MTEATIZMOFLY (3120
: FLLIJLtIl'NLE(I)-Hanﬂ([l*<H0(Tl‘U{I)
FLUNJ2Z{IIEN2T (T =H2L0SET) *PHItTI*V(T}
FLLYJICII=NICCIY=WILASCIY *FHO(TY *V (1)

CHECK BCGURACY OF THE OIFFUSION SSUATYON

£ O

1FeaastTerMoF (13 =0,0)361,06%,962
SR TESTALT) =10
TEsT2{I1=1.0
TSI =2 .0,
60 TO 387
A62_CORTINUE. .
a0 885 II‘I.KKK
SUFQIF(TIL,1)20.0
N0 eE3 JJEi.KKK
N UE S S SN EELTE L3 R 1L S SR —_ —_
ug? GIF(II.JJ!-O c
HG_IG 95 M
L33 UIF(II.JJ}-tyLF°(Ix DI*MO0FLY (I D) ~XLAS (DI TP *HOFLXITI LI}
1 Z1964T1 JIF¥IHALTN AT
8E% ZUFDIF{II+D) =0IF (I1,0J) #SUROIF (T4
_ IF(DIEN2T,00,1050 TG _RoA_ _
SUMBIFAIT2I)=SUMDIF(ILoI) ~MOFLXATIL 1) 7 (0K (II,LI*RRC (1) ZFALINY
GABE_CONTINYZ
TESTL(I) 2BELXL A1) ZSUMDIFIL, 1)
TEST2(I) =0ILX2(TY /SUMAFT 42,57
TESTH D =0ELXZ (I} ASUMDIF (3T
— ER7 CGRIIMZ
c
C . SOLVE SPECTES I _CONSERVATION EOUATIONS
c

GHCTOT(I)=3,0/°TRLAS (I * (P20 (LW IY/RACETII*THOLLOWMLY

1 *VILFRML) ZDELFR=-(RHOtD) =RHOSIT IV *ETASTLITI+(ETALAS(D)
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2 FGHO{I) -CHOCITI* {1 0=STAY+ITALAS(INY) /D LF=#0D2NATY
H100TT) =1, 0/ 0TTALASEI) ¥ HO (T (6N (L) ~TTALASLTY

LOPHALASCIYS2HOCOT LD NISLAS(LIWMII * 220 (Lo2WNML) /7240 (1) /OFL3R
2 _~MILAS(II®PHQT)»ITADTLLTY »RUG{TI*TT2LAS{T)*HLLASIT)

U AeSICT /0T LER)

WEGOY(T) =33 7€TTALASCIIAPHO(IN) =GN (TN -SYLLAS (D)
1 *WILAS(IY*RBCOOTHI) #+NIFLASILOWML) *2aCLOWPL) ZRAT(I) /DTLOR
2 ~W2LASCII*RHG I3 *STADTL (I =2HO(TI*CTALASLTI*WY ASIT)

3 *CERCOT/CZLF=y
WICOTEIY 21 B/7CETALAST{TI*RHOITIIR(GENT(TY=-ZTALASIT) . ’

1 *HILASEIV*RHONOTCI) PNSELASILAHMII *AA0 (LOWFLI /ZRADIIN /DTL2R
4 =WILASLIV*RUOEIY¥CTADFLAI) =CHCIIIXETALASIIDI®HILACSIT)

3 *LFRCOT/DELFRR)

CALCULATE SBHYSICAL 9R0PZ2TIES

L - L)

COFUTISCEFI+CFF2FTLAS (I +CRET/TLASITI##2.1
COCYII=CRCL+CPCE*TULAS (I} +CPLIATLAS(II®NR,)

HEGI)=CPCI*{TLASH{TI)~TBASECY+LOC 2 {TLAS(I)**2.0~TAASE#*Z,()+
1 CFCA¥(1.0/TLASITI~1.0/TRASEY #HET

HS(LFhF1 =CPSL* (T {LPAPL) =TRESE y+CES2E
1 {T(LrRUR1LI*w2, fl..'rf?;\g a3 g)- . L

2 Leeiviy. C/TALEATLE -1, 0/TPASE) 41 S0
_=HGC( YERHOLL+YRICC*TLASI I #2HALTATLAS (I *¥2 .0
SHOC(I)=Funcy
00 AELT KK31 KKK
TLASCIIZTLAS(IY /L ,.9
N _ IPASERTAASIAL.® . .
CEGIREI=0EA] (KK) *CFBEEKKY "TLASET) 40T (KKIPTLAS (LI *%2 .7 )
A _+CEGL KK YR TLASII ) ** 3. 2+CPGS KXY /TLESIIV %2, . _
HG (KX) =062 (KK)*(TLAS (1) =TRASE) $NFG2IKK) 22 NS (TLAS (I * %2, uTRHASE "
1 2.0} #CPGT (KR /R O (FLASIII® 3. 0=TOA3E«*7, 04 +HOYAOT[KK])
2 +nSEu{XK) 74, 0% CTLASEI)I "* L 0 ~THASER T4, " }=CFREIKK] ™
Z.IlqﬁiILﬁﬁitl?loﬁ{Iﬂdsl
THASE=TNASE=1,0
r: =TLASITY S LR}
SLINVUKKY =2, 0/ CCIVET (L aD+CIV2*ALTG(TEY )
TL»SEI)-TLEQ(T)'i.H
MUG(KK) T2, R3032-G% (M(KKI* (TLASET) 72 +2) 1 #20,6/7(SIG(KKI»*2, 0
— Y FCOLTINVIKKY) — ——
S=1,647 .
KGIXX)I=ACFGIKKI+1 I52R) AL ) 204 (KKD
MLUGI<KITMUSIKKI* 2, 0191602
MGLKX)2KGEKKI *2,61 75702
BRLD CONTINIT
IT=(
“U{IY=0,0
CPL1120.0
KMIIN=D,.0
H{11=0.0
0O RE&RT II=1.KKY
JJ=N —
SUMXEMs0.Lb
e DO_ARST =1 KKK
PHICIT eI {0 125)%%) 6% (L T4 IMCIT)/H(JII % (=D,5))%
2 (2. e tMUGETIN /MUGLI SN0, S% (I /METTYI I *] 252 2%2 .4

XPHICGJI) =XLAS{IIIV*PHI(ITWJI)
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SUMXFYEXTHT (JJ) + 51 MXPY .

ABEGN CORTINLC

X€=XLAS{TI I *KG{TI) /SUMNPH

XOUSXLAS(ITW DI *MIGTT) Z5UHXC :

XCFS2nLASLIEIV CPR(LI)

e KPCTALASTITL T) M0 (L)

EMETIZXK+KMETY
PIFETY XY+
CFRLII=XCFR+OF (T
HEI)SXHGHH(T)
HGCITh=HA(IT) /¥III)

— MESN CUNTIMUZ — — .
CPIII=C2tI) ZMHIT) .
HITYEH LTI /HAIT) L
FACTRKIII =1 0=STALAS(II*EXT{~t  G/7ETALASIII I =(4.3~CTALASIT))

A *EXCL-2 L/ 0L Do TALASIINY)

KF{I)=TCR1+TCP2/TLAS(T)
EESLI}=ESE —
K G iIy=2. 69"===rIi*ﬂnarr*rLastIJ"s.ofsa.aaziz
MO (TS (1D =ETALASTIINN /A1, 0783010 41 o T/XKSNtI) 4P TALASL{TII 20 (T}
KECIY=4L.0-STALASIII}I*K=(T) =] XE (1o 07014 1-STALBSIIVII4CTALASII)
A M(KMUIIAKRAIVIMLENP =1 O/ TALAS I I #FACTKATI®*2 R ETALAS(IY N
T2 2 0701 G-EXF{=1 0/ZTALAS(INID}
_KIIyzXE(IY

€
C SCLYI TMIRGY SOIJATION _ L
c
L SUMLIIIZ(RS(LI*HADQTLI) ¥HGE2) *W2I0T(T) +HG(Z) ¥ WIIAT(TI)AFTALAS (1)
1 *FHCID)
SUPZLILEMG AL MOELMA LT +HAC2) 202 W2 { T 40503208 NI LI) R0 Q0T) %
1 ovLasS{D

SUMT (I SHA S1 R FLUNII TN +HS {2 )2 FLUNJ2 (T} +4G (T #F X130 T)
ARGEI=TTALASIINAS{RYO(IY*H{I}~FLASIIY/0.707E)
1 =FHCOMIN*HC(IN*L,. 02D, 7675 . e
ARGFLI=ETALES{TI*A(TIY*O0L 2R
—_—  ARGEIASDTLORMUIR{IIRRHQII) -OUI /0. TETRY . ——
1 «CgLEe? B'lH”tIi‘FHJC(I}-l.LIu.‘6763
LECF=rTALES(I)*OZ 5P
Z?C-ETnLﬂQfI}‘tﬂrtIl‘CB(I)*J L=Q+l1 §=FTAD) ¥
i DELEINACTE(TY* MO +0ELRSI*FHNSILINTLI) *oPg (L P01} + o
2 (eTad=ZTLLASLTY Y *SHIC(I) *CCCIIY*DELDPRI =
J ACLLER-T 1 ceRyRCOC {7 ¥2HO0(]T)
THGO{II=K (I 7ERC*)TLTAU/DELTIR®2
TATI=(TLASETY +REL TS  (RANCLEUHMT I ZFEN(TI*ESUMLS S
1 KILAWMLY*TILFRML} ADTLORG0 Y +3LNIL WP I /5003 ( TV " (., °H“l
A 3TILERPIY/NSLASI-APGETAYTTANTLAI)~ARGIHCHSHONAT(T)
3 ~LRGFRYCPFOCT+ASGE*2D0TI /CRCH /(L OHDELTAUMIRACILPUMLY /RADITY
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APPENDIX XIII

PROPERTIES FOR SOLID SPECIES

VALUES FOR THE THERMAL CONDUCTIVITY AND DENSITY

in

Species A{BTU/ft hr°K B(BTU/ft hr°K2) L#m/ftal (1n°C)
Si 84.6125 0 145.314 2.33
A1203 -1.35239 1.1498E4 248.432 2.61

A1203 (80%) -1.23226 6.1728E3 198.746 -




164

APPENDIX XIV
CALCULATION OF THE AVERAGE PRESSURE

For the problem chosen for this thesis, the pressure of the system
is assumed to be independent of position within the porous medium. How-
ever, the pressure will change with time because s0lid silicon is either
deposited or depleted within a closed container. For the reaction system
chosen, the quantity of the element hydrogen will remain constant for all
time. With this fact, the value for the pressure at any time can be cal-

culated as follows.

In an incremental volume of porous medium, edy, the amount of

elemental hydrogen,d), is calculated from the following equation.

{oa'J,J EdV = X (A13-1)
where V= Prierdr (A13-2)
and Lo 1s the length of the cylinder.

The term é% can be calculated from the following equation:

et Cwsicy (A13-3)
Dy M " PR T M

Inserting the ideal gas law and the last two equations into equation Al3-1

gives:

Pt LWper Wusy )
E BT ey * tony = )Vrlac/(' = X (R13-4)

< MH&C‘{;
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If the pressure is assumed to be independent of position, the total amount
of elemental hydrogen can be obtained by integrating equation Al13-4 over

the Timits of the radii bounding the porous medium as follows:

TP R o T (Mt e e, rdk (A13-5)

b7
X=p éb7£5‘/r " &M /s lowscl

where £ s the average pressure at time t.
In the problem at hand, all quantities within the integral are constant

X .
with respect to position so 7 can be obtained as follows:

X &RMw _
lo. D27 wo”/é’,f“ fcz) (A-13~6)

Equation A13-5 can be rearranged to calculate the average pressure at any

time.

= ¥ 2 et s Lows el
L o= L_D F 4 j ral (/Hm £ (&’yz 7 maz)a"dr (A=13-7)
(4
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