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SUMMARY 

 

 

   

Epigenetics mainly refers to the biological phenomena that can alter gene 

expression and cellular differentiation without changing the underlying DNA sequences 

in the genome. The two main components of epigenetic regulation are DNA methylation 

and histone modifications (1,2).  Both have been shown to be highly related with gene 

expression, and histone modifications, compared to DNA methylation, are more complex 

given that the tails of histone proteins can be modified by a variety of histone modifying 

enzymes. Different histone modifications are related with or participate in distinct 

regulatory processes and mark distinct regulatory elements, including transcription 

initiation, elongation, enhancers, insulators, imprinting and three-dimensional chromatin 

structures (3-11). Thus, a thorough understanding of the specific patterns of histone 

modification profiles and their associations with various genomic features is very 

important in functional genome biology research. Some general discoveries have been 

drawn from a number of studies on the dynamics of histone modifications in different cell 

types (3,4,7,12-18). But detailed analyses of the complex and diverse associations of 

histone modifications with genome regulatory systems, along with the underlying 

mechanisms, are still currently lacking. 

Due to recent advances in next-generation high-throughput sequencing 

technology, experimental biologists have combined the chromatin immunoprecipitation 

technique with high-throughput sequencing (ChIP-seq) to obtain the genome-wide maps 

of various functional factors, including suites of histone modifications and transcription 

factors, in a number of cell types of different species (3,18,19). These large-scale datasets 
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provide rich sources of information for important regulatory functional systems or 

pathways of gene expression and cellular differentiation. In order to globally characterize 

the epigenomic modification landscape and its interaction with other transcription factors, 

effective and efficient computational algorithms and pipelines are needed.  The 

development of such tools and approaches will play a critical role for the progress of 

research in epigenetics and gene regulation (19). 

The algorithms and analyses that result from my own Ph.D. dissertation research 

provide both novel methods for basic data processing and advanced tools of information 

mining and pattern recognition for important biological questions. The specific advances 

of my research in the field of computational epigenomics are summarized as follows: 

Research advance 1: A Gibbs sampling algorithm was developed to accurately 

map short ambiguous sequence tags back to the reference genome. Employing the 

information of neighboring tag-mapping profile information, the algorithm is the first 

which models the ambiguous read mapping problem in a unified Bayesian inference 

framework. It achieves better performances compared with existing methods, with 

respect to the higher fractions of correctly mapped ambiguous tags and higher accuracies 

of recovered real genomic sites measured by the recall, precision and F scores.  The 

applications of this algorithm are shown to be able to discover more important biological 

signals in repetitive genomic regions, including transposable elements, simple repeats, 

peri-centromeric regions and segmental duplications. 

Research advance 2: A broad peak calling algorithm was developed to identify 

enriched contiguous regions of diffuse ChIP-seq signals. Combining a Gibbs sampling 

procedure for parameter estimations of non-homogeneous Poisson processes and the 
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maximal scoring segment algorithm, the method is capable of identifying broad peaks of 

various sizes, especially for certain histone modifications which can have peaks over 1 

Mb. Compared with existing algorithms, this method requires many fewer parameters 

and is more data-adaptive. Applications of the method on simulated datasets prove that it 

has better recall and F scores, and it has better coverage for larger broad peaks. 

Application of this method to real ChIP-seq datasets from human cells shows that this 

algorithm is also useful for finding biologically meaningful patterns, such as large-scale 

chromatin states with particular regulatory meanings. 

Research advance 3: A hypothesis-driven computational pipeline was designed to 

search for MIR retrotransposon derived insulators (MIR-insulators) and a list of such 

predicted insulators is found. This work presents one of the first reports of CTCF-

independent insulators in the human genome. Several of the predicted MIR-insulators are 

experimentally validated by enhancer-blocking assays (EBA) in both human kidney cell 

lines and zebrafish embryos. Chromatin signatures, including histone modification 

profiles and RNA polymerase II and III bindings, are characterized for those putative 

MIR-insulators. Functional analysis of genes proximal to those MIR-insulators uncover 

that the T-cell receptor (TCR) pathway is enriched, and an interesting example of three 

adjacent TCR genes with pairs of MIR-insulators encompassing them is found. 

Comparative analysis of chromatin environments in different cell types classifies the 

MIR-insulators into cell type invariant and cell type specific groups. 

Research advance 4: An unbiased (hypothesis-free) algorithm was developed to 

search for chromatin boundary elements in the human genome with possibly novel 

features and mechanisms. A list of boundary elements is predicted and a subset of them is 
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CTCF-independent. The classical boundary element BEAD1 (also the only one which is 

experimentally validated in human CD4
+
 T cells) is successfully found by this algorithm. 

Specific combinatorial chromatin signatures are identified for those boundary elements 

and a set of interesting protein factors are predicted to be associated with boundary 

activity, including EVI1, USF and YY1. A subset of this list contains non-coding RNAs 

that are actively transcribed and bound by RNA polymerase III (Pol III). This is the first 

report of non-coding RNA, specifically tRNA, derived boundary elements in the human 

genome. 

Research advance 5: An unsupervised algorithm was developed to predict novel 

combinatorial chromatin signatures without being restricted to the annotated genomic 

features or training datasets. As a high-dimensional pattern recognition method, it can do 

exploratory data analysis of genomic ChIP-seq datasets of various histone modifications 

and an inherent statistical criterion is derived for the final pattern identifications. The 

resulting combinatorial signatures are found to be related with distinct genomic features, 

such as transcriptional start sites (TSS), transcription termination sites (TTS), enhancers, 

conserved non-coding elements (CNE) and L1 retrotransposons. Bivalent signatures are 

also found and associated with cell type specific gene expression silencing. An additional 

advantage of this algorithm is that it is able to find both small and large signatures with 

very complex combinatorial profiles, e.g. spatially shifted enrichments of different 

histone modifications. Several large signatures are found to be highly related with gene 

bodies and have the potential to discover novel gene body annotations.
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 

 

Epigenetics and gene expression regulation 

Variations of cellular phenotypes can exist even if the cells have identical 

genomic DNA sequences. These phenomena, along with their underlying mechanisms, 

are collectively called epigenetics (1,2). The two major topics of epigenetics research are 

DNA methylation and histone modifications. DNA methylation refers to the addition of 

methyl group to the 5
 
position of cytosine pyrimidine ring, and clear negative 

associations between DNA methylation states in promoter regions and gene expression 

levels have been observed in a number of studies (20). Compared to DNA methylation, 

histone modifications bear much more varieties, and their relationships with gene 

expression and cell differentiation are complex.  Within each nucleosome, i.e. the basic 

units of chromatin structure, two copies of four histone proteins (H2A, H2B, H3 and H4) 

are wrapped around by DNA sequences, and the amino terminal tails of those histone 

proteins can be modified by different enzymes. The main types of histone modifications 

include acetylations, methylations, phosphorylations and ubiquitylations (1,2). Beyond 

the different types of histone modifications, the complexity comes mainly from the 

distinct locations on the tails of different histone proteins where the modifications occur. 

For example, the di-methylation of lysine 9 of H3 (H3K9me2) has very different effects 

compared with the di-methylation of lysine 4 of H3 (H3K4me2).  
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The basic models for the associations of histone modifications and gene 

expression can be classified into the following hypotheses (1,21). First, different histone 

modifications can change the local chromatin structure and thus affect the accessibility of 

the DNA sequences to transcription factors and/or RNA polymerase. Second, specific 

histone modifications and their associated chromatin enzymes can possibly be the 

recognition targets and recruit specific transcription factors that are necessary for 

transcription activation or repression. Third, specific histone modifications can be 

consequences, instead of causes, of different gene expression states.  

Regardless of the detailed mechanistic hypotheses, a general picture of the 

associations between different histone modifications and gene expression 

activation/repression has emerged based on recent genome-wide analyses 

(3,7,8,11,16,18,22-24). Globally, histone modifications associated with active 

transcription and open chromatin are called active modifications and the ones associated 

with repressed transcription and closed chromatin are called repressive modifications. In 

promoter proximal regions, a set of histone modifications that are characteristic of open 

chromatin structures are strongly associated with active transcription initiation, including 

H3K4me3, H3K27ac and H3K9me1. In gene bodies, several broadly distributed histone 

modifications are associated transcription elongation, including H3K36me3, H3K79me2 

and H3K79me3. In distal intergenic regions, some discrete locations that are marked by 

specific active modifications, including H3K4me1 and H3K27ac, are associated with 

active expression of genes and have been suggested as regulatory elements in trans. And 

a few specific repressive modifications are widely enriched within the repressive 

chromatin states, e.g. heterochromatin domains. 
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Besides the basic associations with specific gene expression patterns, the 

dynamics of histone modifications are largely related with cellular differentiation and 

reprogramming (7,12,14-16,21,25). Comparative analyses of the genome-wide 

landscapes of different histone modifications in various cell types have suggested that 

specific cell types are characterized by distinct histone modification profiles. One of the 

interesting observations is that some gene promoters modified by bivalent patterns (i.e. 

co-occurrence of active an repressive modifications) are paused for transcription in stem 

cells but turn to active transcriptions in differentiated cell types where the promoters 

become marked by active modifications alone (12). Most recently, the chromatin 

modifying enzymes are further shown to be modulators of cell type reprogramming 

which will help for mechanistic explanations of the relationship between histone 

modification landscape dynamics and cellular differentiation (26). 

The biological importance of histone modifications is not restricted to their 

associations with gene expression. They are related with diverse biological pathways and 

the histone modification signatures contain abundant information to predict specific 

regulatory elements and distinct functional activities, including enhancers, insulators, 

replication timing, alternative splicing and three-dimensional chromatin looping (3,5,6,8-

11,17,23-25,27-34). The most thoroughly studied case is enhancers. Distinct histone 

modification signatures are found to be informative to identify the cell type specific 

locations of enhancers (9,28,29). Thus, analyzing the genomic landscapes of histone 

modifications can provide valuable tools to capture cell-type specific regulatory systems.  
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ChIP-seq data analysis for epigenomics 

The development of next-generation high-throughput sequencing technologies has 

enabled genome-wide analyses of histone modifications. By combining the chromatin 

immunoprecipitation technique with next-generation sequencing (ChIP-seq), researchers 

can effectively identify genomic locations of different histone modifications (using 

distinct antibodies). Compared with traditional experimental approaches, ChIP-seq has 

the following advantages: 1) it is more high-throughput and easier to scale up, 2) it has 

better signal to noise ratios, and 3) it has higher resolution for the locations of 

modifications (19). Due to these advantages, ChIP-seq has been employed by a number 

of genome-wide studies to investigate the distribution patterns of a suite of histone 

modifications in different species and cell types. As the experimental technique is now 

mature, more challenges come from the subsequent computational data analysis steps. In 

the last few years, many computational algorithms have been developed for effective and 

efficient data mining and analysis of large-scale ChIP-seq datasets. This new field is 

often referred to as computational epigenomics. 

Generally speaking, computational epigenomic data analysis is composed of two 

different fields: 1) basic data processing, and 2) biological question driven data mining 

(Figure 1.1). The basic data processing deals directly with the short sequence tags (or 

reads) produced by ChIP-seq and generates genomic mapping profiles of tags that are 

noise reduced and can be analyzed for specific biological questions. Next, depending on 

the specific questions of interest, biological question driven data mining develops 

corresponding advanced algorithms which transform the genomic profiles of ChIP-seq 

tags to useful biological discoveries. 
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Figure 1.1: Steps of computational epigenomic data analysis. 

 

 

 

There are two major steps in basic data processing, i.e. sequence read mapping 

and peak calling (Figure 1.1). Read mapping is the first and most important step of ChIP-

seq data analysis since all subsequent analyses rely on accurate mappings of ChIP-seq 

reads. The main challenge is to make time-efficient methods for short sequence 

alignments that are applicable for large amounts of reads. There have been several 

successful algorithms available for read mapping (35-37), and one remaining problem is 

about ambiguous reads (also called as multi-mapping reads) which can be aligned to 

multiple genomic locations with almost identical sequence similarities. One solution for 

the ambiguous read mapping problem will be discussed in details in this dissertation. 

After accurate read mapping, the next critical data processing step is peak calling, namely 

identifying discrete genomic regions that have significantly higher tag-counts compared 

to the background noise levels (38-42). It can also be considered as noise reduction 

processing. The resulted discrete locations with significant tag-counts represent the real 

sites of the histone modifications or transcription factors, and characterize the basic 
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landscapes of ChIP-seq profiles. The current methods mostly restricted their focuses on 

sharp and abrupt peaks, i.e. densely located small genomic bins with high tag-counts 

(38,39,42). Although this kind of peaks fit well with the observed features of some 

histone modifications and most transcription factors, certain histone modifications are 

widely distributed along large genomic regions without characteristic size ranges and 

accordingly their ChIP-seq datasets are diffuse (19). The corresponding peaks are called 

broad peaks and a novel algorithm for broad peak calling will be discussed later in this 

dissertation. 

After the basic data processing, specific data mining algorithms are needed to 

solve different interesting biological questions (Figure 1.1). Depending on the specific 

biological question, descriptive features of the problem of interest are usually formulated 

into quantitative signatures or patterns. Based on the diverse characteristics of the 

signatures or patterns, appropriate pattern recognition algorithms need to be carefully 

selected and designed. Several interesting biological questions will be described in the 

following sections (Figure 1.1) and the corresponding analytical methods are detailed in 

subsequent chapters. 

Enhancers and Insulators 

Gene expression regulation is a complex process. Besides cis regulation through 

transcription factors, other types of regulations in trans also play critical roles, including 

enhancers and insulators. Enhancers can be located distal from their target gene 

promoters and are able to activate transcriptions in a cell-type specific manner. 

Chromatin looping is proposed to form via specific to connect the enhancer with its target 

promoter (28). Insulators are located between enhancers and their target promoters 
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(43,44). In the appropriate cell types, functional insulators can block the interactions of 

enhancers and promoters such that transcription will not be activated from the promoter. 

In this sense, insulators are classified as negative regulators. Another interesting feature 

of insulators is that they are not able to block enhancer-promoter interactions if they are 

located outside of the regions enclosed by enhancer-promoter pairs. Based on these 

features, different hypothetical models are proposed for insulator mechanisms, such as 

disturbances of local chromatin structures that block enhancer-promoter interactions, 

formations of three dimensional loops that partition enhancers and promoters into distinct 

domains and competing with promoters for the preferential interactions of enhancers 

(43,44).  

As an important class of regulatory elements, insulators have been investigated 

for many years and there are several experimentally validated insulators in different 

species.  In drosophila, a gypsy transposable element located between an enhancer and a 

promoter can be bound by proteins Su(Hw) and mdg4, and block the transcription 

activation caused by the enhancer (45,46). Another insulator, called 5‟HS4 element, is 

found in the β-globin locus in the chicken genome (47-49). This insulator is the most 

investigated one in vertebrate species and its associated protein, CTCF, has been shown 

to be widely associated with insulator functions (50,51). 

Among all the experimentally validated insulators, there is no unified mechanistic 

model to explain their functions. But for a subset of insulators, RNA polymerase III (Pol 

III) is shown to be a critical part of the system. In yeast, some tRNA genes (which are 

transcribed by Pol III) function as insulators and furthermore (52,53), many more 

locations that are bound by TFIIIC (a subunit of Pol III) can also function as insulators 
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(52,54). Similar results of tRNA-derived insulators are recently found in mouse (55). 

Most interestingly, a SINE B2 transposable element in the mouse genome, which evolved 

from tRNA, can be transcribed by Pol III and function as an insulator in a developmental 

stage dependent manner (56). Collecting these observations from different species 

together, Pol III machinery is highly probable to be related with insulator functions, at 

least for a subset of them. Actually, an evolutionary hypothesis has been proposed to 

suggest that some insulators originally evolved from Pol III promoters (57). 

Chromatin boundary elements 

Another related class of regulatory elements is called chromatin boundary 

elements or chromatin barriers. Chromatin boundary elements can block the spread of 

repressive chromatin domains, which are enriched with repressive histone modifications, 

and thus protect the active transcription within open chromatin domains (43). The ability 

of boundary elements to partition the chromatin into repressive domains 

(heterochromatin) and active domains (euchromatin) makes them to be related with 

insulators, because they can potentially block enhancer-promoter interactions by 

demarcating them into different domains (44,45,48). Actually boundary elements are 

sometimes classified as a subgroup of insulators due to this overlap of phenotypic 

outcomes, although the conceptual distinction is also clear. 

Since chromatin boundary elements can change and restrict the landscape of 

large-scale chromatin domains, they can be viewed as higher-order regulators that 

function in long distance and influence groups of gene expression. The importance of 

boundary elements is further underscored by the fact that the linear configurations of 

active and repressive domains along chromosomes are also related with three 
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dimensional chromatin structures (58). Some boundary elements have been shown to 

interact with each other to form hubs of three dimensional chromatin interactions 

(50,52,59-61).  

Despite their importance, there is no clear unified model of the boundary element 

mechanisms and the number of experimentally validated barriers is limited. A 

straightforward algorithm based on one aspect of the observed features derived from a 

few known boundary element examples will just detect putative elements with the same 

features and unable to find barriers with different, or even novel, features. A carefully 

designed unbiased algorithm is needed to explore candidate boundary element locations 

with various features that are indicative of the underlying mechanisms.  

Combinatorial chromatin signatures 

At this time, the relationships between individual histone modifications and gene 

expression patterns have been studied a great deal and a general picture for the role of 

individual histone modifications has begun to emerge. Nevertheless, the much more 

complex relationships between different combinations of histone modifications with 

various biological activities and regulatory elements, such as transcriptional initiation, 

transcriptional termination, cell-type specific expression, enhancers and imprinting, have 

been under investigated. Although systematic analysis of this question is difficult, a 

hypothesis called the “histone code”, which proposes the specific relations between 

combinatorial histone modification signatures and different biological activities, has been 

raised based on some biochemical observations (21). Several canonical histone code has 

been found in the last few years (9,28,29,32,62). For instance, active promoters are 
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associated with combinations of H3K4me3, H3K9me1 and several histone acetylations. 

Cell type specific enhancers are characterized by H3K4me1and H3K27ac. 

As large-scale ChIP-seq datasets of various histone modifications in different cell 

types are accumulating, computational algorithms to search for distinct novel 

combinatorial histone modifications patterns and relating them with diverse genomic 

features will be valuable for the understanding of the regulatory functions of histone 

modifications. Furthermore, given the detailed locations of specific combinatorial 

chromatin signatures and their associations, comparative analysis among different cell 

types will reflect the dynamics of epigenetic regulation.  

Overview of the dissertation 

This dissertation focuses exclusively on the development and application of 

computational algorithm for ChIP-seq data analysis that are related with epigenomics. It 

contains both basic data processing methods and advanced data mining algorithms aimed 

at specific biological questions.  

CHAPTER 2 presents a novel algorithm to accurately map ambiguous short 

ChIP-seq tags to reference genome sequences. Systematic performance comparisons with 

previous methods are reported for a set of simulated ChIP-seq data libraries. The utilities 

of this algorithm for the discoveries of biological signals within repetitive genomic 

regions are discussed. 

CHAPTER 3 presents a method to identify broad peaks of diffuse ChIP-seq 

datasets. Besides the use of the maximal scoring segment algorithm, a detailed discussion 

on parameter estimations via Gibbs sampling on non-homogeneous Poisson processes is 
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reported. Evaluations of the algorithmic performance on both real ChIP-seq datasets and 

simulated datasets are shown. 

CHAPTER 4 presents a hypothesis-driven computational pipeline that predicts a 

specific subset of insulators: MIR-insulators. Both genomic and epigenomic features are 

integrated into this pipeline and a list of putative MIR-insulators are predicted. Several 

selected putative MIR-insulators are further experimentally validated. Functional 

annotations of genes proximal to those putative MIR-insulators, investigations on the 

local chromatin signatures, and the analysis of cell type specificity, are carried out for the 

predicted insulators. 

CHAPTER 5 presents an unbiased algorithm to predict the locations of chromatin 

boundary elements in the human genome. The successful prediction of BEAD1 element 

is emphasized, and also the potential capabilities to discover elements with novel features 

are explored. The associations of the predicted boundary elements with CTCF binding 

and a set of chromatin features are analyzed. Some novel transcription factor binding 

motifs are shown to be enriched within those boundaries. A subset of boundaries 

containing non-coding RNAs genes are further analyzed for the binding of Pol III and the 

transcription states. 

CHAPTER 6 presents a new unsupervised algorithm to search for recurrent 

combinatorial histone modification signatures. Applications of this algorithm resulted in 

a set of chromatin patterns and their relationships with diverse genomic features are 

systematically analyzed. The computational advantages of this algorithm are discussed in 

both algorithm descriptions and analyses of the resulted chromatin signatures. 
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CHAPTER 2 

A GIBBS SAMPLING STRATEGY APPLIED TO THE MAPPING OF 

AMBIGUOUS SHORT SEQUENCE TAGS 

 

 

 

Abstract 

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-

seq) is widely used in biological research.  ChIP-seq experiments yield many ambiguous 

tags that can be mapped with equal probability to multiple genomic sites. Such 

ambiguous tags are typically eliminated from consideration resulting in a potential loss of 

important biological information. We have developed a Gibbs sampling based algorithm 

for the genomic mapping of ambiguous sequence tags. Our algorithm relies on the local 

genomic tag context to guide the mapping of ambiguous tags. The Gibbs sampling 

procedure we use simultaneously maps ambiguous tags and updates the probabilities used 

to infer correct tag map positions. We show that our algorithm is able to correctly map 

more ambiguous tags than existing mapping methods. Our approach is also able to 

uncover mapped genomic sites from highly repetitive sequences that can not be detected 

based on unique tags alone, including transposable elements, segmental duplications and 

peri-centromeric regions. This mapping approach should prove to be useful for increasing 

biological knowledge on the too often neglected repetitive genomic regions. 
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Introduction 

Genome-wide chromatin immunoprecipitation followed by high throughput 

sequencing (ChIP-seq) experiments are increasingly used in biological and medical 

research (3,19). ChIP-seq experiments produce a large amount of short sequence tags 

which need to be faithfully mapped back to the genome and processed to reveal 

biologically relevant signal. A number of algorithms have been recently developed to 

process ChIP-seq data (63). These include algorithms for genomic mapping of sequence 

tags (35,37), smoothing of ChIP-seq tag distribution signals (64) and detection of 

statistically significant tag peaks (65). One remaining challenge for the processing of 

ChIP-seq data is the mapping of ambiguous tags. Ambiguous tags are those that can be 

mapped to equally to multiple genomic sites, each of which has significant sequence 

similarity with the tag, and thus it is difficult to distinguish the real site from all the 

possible sites. Usually, researchers simply disregard ambiguous tags and only make use 

of uniquely mapped tags. This often results in a substantial loss of information and may 

bias conclusions based on the analysis of unique tags alone. This is particularly true for 

mammalian genomes, such as the human genome, which have numerous interspersed 

repeat sequences. Repeat sequences that are highly similar may produce a large amount 

of ambiguous tags, which if not mapped will be disregarded in subsequent analyses. 

Research has shown that interspersed repeat sequences provide a wide variety of 

functional elements to eukaryotic genomes (66). Therefore, disregarding ambiguous tags 

will cause an underestimate of the biological significance and functional roles of 

interspersed repeated DNA. 



14 

 

 Two different approaches have been developed for the mapping of ambiguous 

sequence tags. The mapping software MAQ randomly selects a possible site and assigns 

it to the ambiguous tag (35). Each possible site has the same probability of being 

selected. In other words, there is no way to know if this approach yields a correct 

mapping of ambiguous tags. The second approach takes advantage of the local context of 

mapped tags to more accurately assign genomic locations for ambiguous tags. This 

approach rests on the assumption that real ambiguous tag sites are expected to have more 

sequence tags in the local vicinity, whereas the incorrect sites for the same ambiguous 

tags are expected to have fewer numbers of co-located tags (36,67). To apply this method 

for any ambiguous tag, the number of overlapping mapped tags at each of the possible 

ambiguous tag mapped positions are counted and used to assign fractional weights to 

each possible position. The ambiguous tag is then fractionally mapped to each possible 

position with the fractions weighted by the local mapped tag context. In other words, 

possible sites with more tags already mapped are deemed to deserve higher confidence 

and are accordingly assigned greater fractions of ambiguous tags. The fractional mapping 

method makes important contribution to the ambiguous tag mapping problem. But as the 

use of ChIP-seq in scientific research is increasing, it will be important to further refine 

the accuracy of mapping ambiguous tags. First, the fraction method is heuristic as the 

fractions assigned to the possible map sites are directly proportional to the number of tags 

mapped to each site. While this approach is consistent with biological intuition, it lacks 

statistical support. A more sensitive probabilistic method could be used to better 

represent and measure the confidence level of each possible site. Second, the fraction 

method deterministically fractionates the ambiguous tags without guarantee that the result 
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is optimal. In other words, it doesn‟t search the possible space of assignments of 

ambiguous tags and lacks information on the accuracy of the final results. Third, the 

fraction method is not realistic enough since it splits tags by assigning fractions of 

ambiguous tags to each possible site. In reality, each sequence tag is only derived from a 

single genomic site. Thus, fractioning sequence tags inevitably results in wasting signal 

on incorrect sites and weakening the signal level on real sites. 

To address the outstanding issues with ambiguous tag mapping, we have 

developed a probabilistic Gibbs sampling based algorithm to map more ambiguous tags 

with greater accuracy. Our approach assigns ambiguous tags to single genomic sites, 

without fractionating tags, and iteratively samples within the space of the possible 

mappings of ambiguous tags. The Gibbs sampling strategy (68,69) guides the algorithm 

to achieve accurate unique mappings of ambiguous tags. The algorithm also provides 

statistical support for ambiguous tag mapping via the use of likelihood ratios that 

measure the confidence levels of possible genomic map sites. We evaluated the 

performance of our algorithm compared to existing approaches using sequence tag data 

from the highly repetitive human genome. We demonstrate that our probabilistic 

approach to mapping ambiguous tags yields superior results as measured by 1) the 

fraction of correctly mapped ambiguous tags, 2) the precision and recall of correctly 

recovered repetitive genomic sites and 3) the level of signal found at repetitive sites. 
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Methods 

Overview of the algorithm 

Our algorithm maps ambiguous tags to individual genomic sites by taking 

advantage of the local genomic context provided by co-located tags. For each possible 

map site of an ambiguous tag, the number of co-located tags are counted and used to 

calculate a normalized likelihood ratio that represents its probability of being the real 

map site. Map sites are randomly selected based on the underlying probability 

distributions from the likelihood ratios. Likelihood ratio scores then updated based on the 

new mapping, and this procedure iterates until convergence when there is little or no 

change in the map positions between iterations. 

A Gibbs sampling strategy is used to iteratively map ambiguous tags to possible 

genomic sites while updating the probability that each tag is mapped to its most likely 

site. Gibbs sampling was chosen because it allows for a simultaneous updating of the 

map positions and the parameters for these positions. Through the updating iterations, the 

algorithm searches in the space of all possible mapping configurations, where each 

mapping configuration can be considered as a bipartite graph with edges connecting tags 

and sites (Figure 2.1). Intuitively, once an ambiguous tag is correctly mapped to the real 

site, it will guide the algorithm to map those tags derived from the same site to it with 

higher probability. 

Problem formulation 

For each ambiguous tag, there are multiple possible genomic sites to which it 

could be assigned. It is not possible to assign a specific site to an ambiguous tag with 100 
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percent confidence, and so we need to calculate the confidence for each probable site by 

some measurement and then select a reasonable site for each ambiguous tag based on 

those confidences. By “reasonable”, we mean a selection of sites that will minimize the 

number of incorrect mappings of ambiguous tags. Suppose there are T genomic sites 

associated with ambiguous tags and the set of ambiguous tags is }......,{
21 NaaaA , where 

i
a  represents ambiguous tag i . We use }......,{ 21 iiniii sssS to denote the set of probable 

sites for i
a , where 

in is the total number of probable sites for i
a . 
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Figure 2.1: Scheme of our Gibbs sampling algorithm. Possible tag map sites along 

with their likelihood ratios are shown prior to stochastic mapping. Gray boxes reprsent 

incorrect sites, and the black box represents the correct site. An arrow between a tag and 

a site means the tag could possibly be mapped to that site. One iterative cycle of joint 

stochastic mapping and parameter updating is shown. The black arrows point to selected 

sites for each tag after stochastic mapping. 

 

 

 

There are two aspects of this problem. One is the measurement of confidence for 

each probable site, and the other one is the algorithm used to select reasonable sites for 

ambiguous tags. An applicable measurement of confidences of probable sites needs to be 

monotonic with the number of tags that are mapped to each specific site and should 

reflect both the information of the distribution of tag numbers of real sites and the 

information of the distribution of tag numbers of background. We use likelihood ratio as 

the confidence measurement based on both intuitive clues and theoretical analysis. 
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Intuitively, likelihood ratio is monotonic with tag counts and is also computationally 

tractable. Furthermore, it takes both the background distribution of tag counts and the 

estimated target distribution under consideration. Higher likelihood ratios correspond to 

higher confidences and increase non-linearly with tag counts. Likelihood ratios will 

increase sharply for large tag counts and be relatively low for sites with few tags. This 

property will help to avoid the problem of wasting fractions of mapped tags on sites that 

contain few tags; a problem that could be particularly vexing if many such low 

confidence sites exist for a single ambiguous tag. The likelihood ratio for ijs is denoted as 

)(kP

)(kP
LR

jn

js

j
.  

sP is the estimated target distribution of tag counts in real sites and nP is the 

background distribution of tag counts. jk is the tag count at site j . The details of these two 

distributions will be discussed in the next section. Given the calculated likelihood ratios, 

it is possible for us to reasonably map ambiguous tags.  

Furthermore, from a theoretical point of view, normalized likelihood ratio is the 

measurement we will automatically derive from the calculation of the conditional 

probability of assigning ambiguous tags to a specific site given the assignments of all the 

other tags. We use D to denote the original data, which essentially represent the 

associations of tags with possible sites, and M to denote the whole assignment of tags to 

sites. ][ iM represents the assignments of tags to sites, except the assignment of tag i . 

),|~( ][ DMsaP iiji represents the conditional probability of assigning tag i to the j th 

probable site of i , given the original data and the assignment of all tags except tag i . We 

use U to represent the whole set of sites.  
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Below we show that this conditional probability is equal to the normalized 

likelihood ratio, as derived from Bayes rules: 
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So the normalized likelihood ratio represents the conditional probability for the 

j th probable site given the assignment of other tags. Equivalently, this conditional 

probability serves as our predictive update formula for the Gibbs sampling procedure 

described below. 

In order to calculate likelihood ratios for genomic sites, we need to first map those 

ambiguous tags to get the number of tags mapped to each specific site. In other words, 

mapping of ambiguous tags and calculating the likelihood ratios for each site are circular. 

This circularity led us to adopt Gibbs sampling strategy, which is a stochastic version of 

EM algorithms, to select reasonable sites for ambiguous tags. To do this, we first 

initialize the likelihood ratios for genomic sites using the total number of tags that can be 

probably mapped. Then we map each ambiguous tag to a specific site based on the initial 

likelihood ratios. To be more specific, we stochastically map each ambiguous tag to a 

genomic site with the probability equal to the normalized likelihood ratio of the site. 

Then we update the likelihood ratios given the current mapping of ambiguous tags. We 

continue the update on the mapping and the calculation of likelihood ratios until there is 

no significant change. Through the iterative updates (stochastic mapping and parameter 

updating), the overall likelihood ratios are expected to be optimized, and so we achieve 
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an accurate mapping of ambiguous tags. Since the complete normalized likelihood ratio 

for a configuration of mapping is proportional to Ui

in

is

kP

kP
)

)(

)(
( , where i is the index of 

genomic sites with tags mapped, we can rewrite this formula based on tag counts and 

obtain the formula as 

)(

)(

)(
n

P

P

n

s , where )(n represents the number of sites 

with tags mapped. Here, represents the set of tag counts for all sites. For instance, if 

consists of large numbers, it means that most sites are mapped with large number of 

tags and the mapping is a reasonable one. Otherwise, most sites are mapped with a small 

number of tags and the set of tags are scattered into diverse sites. Taking the logarithm of 

this formula and dividing by Z , the total number of tags, we get 
)(

)(
log

)(

n

s

P

P

Z

n
. 

When Z is sufficiently large, it approaches the relative entropy between
sP and

nP on the 

subset of . So essentially, the Gibbs sampling procedure described above searches a 

certain subset  to maximize the relative entropy. When consists of only large 

numbers, the relative entropy is larger. This analysis further demonstrates that our 

algorithmic design is reasonable. The equation above shows that by using normalized 

likelihood ratios, our objective function is equivalent to the relative entropy. 

In theory, Gibbs sampling will have good performance given a sufficient number 

of iterations.  Thus, there may be concerns about the time necessary for the algorithm to 

converge. However, since unique tags count for the majority of the whole set of tags, and 

these help to guide the mapping of ambiguous tags, this has the effect of shortening the 

algorithm time significantly. In our experience, about 5 iterations are sufficient for 

convergence. 
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Algorithm 

Next we describe each step of the algorithm in detail along with the definitions of 

necessary concepts. The scheme of the method is shown in Figure 2.1. 

Phase 1. Initialization 

Step 0. The program Bowtie (37) is used to map all sequence tags to the genome 

and only genomic loci with significant sequence similarities are used for the following 

steps. Sequence tags are classified into unique tags and ambiguous tags by the Bowtie 

mapping algorithm. 

Step 1. To calculate the likelihood ratios, we need to model the distributions of 

tag counts for real modified sites (
sP ) and for background (

nP ). For real modified sites, 

we use the Normal distribution to approximate the real distribution of tag number 

)2,(~ NPs . 

To identify genomic sites that are most likely to actually be modified (i.e. real 

modified sites), we use sites with large numbers of mapped unique tags.  We then use the 

numbers of unique tags associated with those sites to calculate the average tag count and 

standard deviation for each site genome-wide.  Note that the average tag count calculated 

here is corrected by a factor which takes into consideration that the real average tag count 

will be greater once ambiguous tags are included. For background, we use the Poisson 

distribution to approximate the background distribution of tag counts: )(~ PoissonPn . 

The Poisson distribution is an appropriate model for counting processes that 

produce rare random events and thus can be applied here to describe the background tag 

count distribution. We count the total number of tags (both unique and ambiguous tags) 

and calculate the average tag number for each site. The average tag number serves as the 
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parameter ( ) of Poisson distribution. After getting all the parameters, we calculate the 

likelihood ratios for various tag counts: 
)(

)(
)(

kP

kP
kLR

n

s , and get a table of likelihood 

ratios which will be used in subsequent steps. 

Step 2.  In order to obtain the initial settings of likelihood ratios for all the 

probable genomic loci, we use the number of tags of each site (both unique and 

ambiguous tags) to calculate the likelihood ratios. Since the ambiguous tags have not 

been assigned to a specific genomic site, here we assign each ambiguous tag to all the 

probable sites to initialize the likelihood ratios. The calculation of likelihood ratios for 

various tag numbers has already been done in Step 1 and the algorithm only needs to 

search the table of likelihood ratios. A special notion here is that we introduce the 

information content factor ( 10 f ) of ambiguous tags compared to unique tags. Since 

the nature of uncertainty of ambiguous tags, the information content of ambiguous tags is 

smaller than unique tags. Thus, the effective number of ambiguous tags (
ek ) is corrected 

by f  and the number of tags used to calculate likelihood ratio is: 

fkkkkk aueu ,  where
uk is the number of unique tags and 

ak is the number of 

ambiguous tags. f can be set by the user based on their confidence of ambiguous tags 

and provide flexibility of the method. The suggested value of f  is the inverse of the 

mean number of associated sites of ambiguous tags. If the mean number of associated 

sites of ambiguous tags is larger, then f  should be made smaller to weight unique tags 

more heavily for the mapping. 

Phase 2. Iterative weighted mapping 
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Step 3. Given the likelihood ratio ( jLR ) of probable site j  (
inj ...2,1 ) for 

ambiguous tag 
ia , the algorithm stochastically selects a probable site and assigns it as the 

site of the corresponding ambiguous tag. The probability ( ijP ) of probable site j  to be 

selected for 
ia  is proportional to the likelihood ratio of site j : 

i
Sk k

j

ij
LR

LR
P , where 

ink ...2,1 . Thus, probable sites with higher likelihood ratios will have a greater chance 

of being assigned. 

Step 4. Based on the current assignments of sites for ambiguous tags obtained 

from Step 3, the likelihood ratios of all the probable sites are updated. The new likelihood 

ratio of each probable site is obtained accordingly to the current number of tags assigned 

to the site. 

Step 5. Iterate through Step 3 and Step 4 until no significant changes occur, i.e. 

until convergence. For a given threshold, if the number of reassignments of ambiguous 

tags is smaller than the threshold, then the iterations will stop and output the final 

mapping of tags. 

Results 

Sequence tag data sets 

In order to test the performance of our algorithm, we randomly selected ~50,000 

sites of the human genome as a benchmark. Each site is 147bp in length (i.e. mono-

nucleosomal) and the set of sites contains transposable elements and simple repeats in the 

same fractions as the human genome. Then we generate short sequence tags from these 

sites under a range of set of parameters. These parameters include sequence tag length 
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( L ), signal-to-noise ratio ( SNR ) and sequencing error level ( SE ). In theory, shorter 

sequence tags are expected to have more ambiguous tags. To test the performance of our 

algorithm on different sequence tag lengths, we generate libraries with 20bp tags and 

libraries with 35bp tags. SNR  corresponds to the specificity of the ChIP experiments. 

Noise here means the fraction of sequence tags derived from sites which are not the real 

modified sites. In experiments with high specificity, the majority of sequence tags are 

derived from the real modified sites, while in experiments with high level of noise, there 

are increased number of sequence tags derived from other sites. And we define the SNR  

as the ratio of the probability that a sequence tag is derived from the real modified sites 

over the probability that a sequence tag is derived from other sites. To test our 

algorithm‟s performance under different SNRs, we generate libraries with SNR  set as 99 

(corresponds to 99% tags derived from real modified sites) and libraries with SNR  set as 

9 (corresponds to 90% tags derived from real modified sites). The sequencing error level 

corresponds to the probability of errors in high-throughput sequencing. We generate 

libraries with sequencing error levels as )5/(2 L and )5/(4 L . The reason to set SE  this 

way is as follows. We assume that the sequencing errors on different sites are 

independent from each other. This is not completely true in reality but is acceptable as a 

first-order approximation. Then the total number of errors for each sequence tag with 

length L  would follow binomial distribution. So under )5/(2 LSE , the fraction of 

sequence tags without errors is about 60% and under )5/(4 LSE , the fraction is about 

50%. It means that the quality of the simulated sequencing is not very good. Under such 

conditions, some sequence tags might be mis-mapped or become ambiguous tags. The 

purpose of this setting is to make sure that our algorithm test results are conservative. 
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Since each of these three parameters only has two optional values, there are 8 

combinations of different values of those parameters and so we generate one sequence 

tag library for each combination of the parameter values. The parameters for each library 

are listed in Table A.1. 

We also used a second larger benchmark set consisting of 173,877 sites of the 

human genome. These sites were obtained from a ChIP-seq study of histone 

modifications based on ABI SOLiD sequencing platform (unpublished data) that only 

used unique sequence tags, and each site has significant number of tags. This dataset was 

used because it mimics conditions one would expect for real sites: a larger number of 

total sites and a realistic distribution of sites along the human genome. In order to test our 

algorithm, we generated sequence tags for these sites the same way as described above 

under one set of parameters (Table A.1). 

After preparing sequence tags, we ran the program Bowtie (37) to map the 

sequence tags to the human genome. The fractions of ambiguous tags in the 9 libraries 

range from 9.7% to 37.6%. The fraction of sites undetected using unique tags alone are 

influenced by the tag threshold used. Higher threshold cause more undetected sites. For 

the lowest threshold (4 tags) used in our analyses, the fractions of undetected sites range 

from 16.4% to 28.4%. These values underscore the importance of accurately mapping 

ambiguous tags to recover undetected sites. 

Fraction of correctly mapped ambiguous tags 

The first and most direct measurement of the algorithm performance is the 

fraction of correctly mapped ambiguous tags. Since the fraction method does not assign 

the ambiguous tags to a specific site, this measurement is not applicable. So we compared 
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our algorithm against the MAQ software method, which randomly selects a site for each 

ambiguous tag. The comparison on the 8 sequence tag libraries shows that our algorithm 

correctly maps 49% to 71% of ambiguous tags, while the MAQ method correctly maps 

8% to 23% of ambiguous tags (Figure 2.2). Over all eight sequence tag libraries 

evaluated, our algorithm maps 38% to 51% more tags than MAQ. In the best case, our 

algorithm maps the majority of ambiguous tags (71%) and only a small fraction of 

information is lost. 

 

 

 

 

 

Figure 2.2: Fractions of correctly mapped ambiguous tags for each library. Library 

descriptions are given in Table A.1. Gray bars show results based on MAQ, and black 

bars show results based on our Gibbs sampling algorithm. 

 

 

 

Comparison of rescued sites 

The other measurement of the algorithm‟s performance is the numbers and 

fractions of correctly „rescued‟ genomic sites, which can not be observed by unique tags 

alone. An important issue regarding the rescued sites is the tag number threshold, above 
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which a site is called rescued with a certain number of tags (Figure 2.3.A). Different 

thresholds will result in different sets of true positives, false positives and false negatives. 

Since there are various methods to decide the threshold and different users usually set 

different thresholds, we tested our algorithm‟s performance on a set of three different 

thresholds (4 tags, 6 tags and 8 tags). Together with the previously described the 9 

sequence tag libraries we use, this results in a set of 27 conditions for analysis. 

The first thing we did was to compare the numbers of genomic sites identified using 

unique tags alone to the numbers of genomic sites identified by including ambiguous tags 

with our method (Table A.2).  Over the 27 conditions, the inclusion of ambiguous tags 

yields an average increase of 11.46% in the fraction of genomic sites accurately 

identified. The use of ambiguous tags resulted in the identification of 2,602-51,508 sites 

missed with unique tags alone. 

Next we compared our method for including ambiguous tags to the MAQ and 

fraction methods. To do this, after excluding sites that can be found by unique tags alone, 

we divide the set of sites rescued by ambiguous tags into two subsets by comparing the 

set with the benchmark. The correctly rescued sites are true positives (TP ) and other sites 

are false positives ( FP ). The sites in the benchmark which remain undiscovered are false 

negatives ( FN ) (Figure 2.3.B). In order to test the performances, we employ recall 

)/( FNTPTPRE  and precision  )/( FPTPTPPE  as measurements.  

For the four libraries with 35bp tags and the four libraries with 20bp tags, our 

algorithm shows the highest recall over all conditions (6 tag thresholds shown in Figure 

2.3.C, 4 and 8 tag thresholds shown in Figure A.1 and numbers of sites shown in Table 

A.3). Our algorithm also has the highest precision for these libraries over 14 of the 24 
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conditions evaluated (Figure 2.3.C, Figure A.1). For the 10 cases where our algorithm did 

not show the highest precision, the difference from the fractional method was marginal 

(Table A.3). In general, when recall increases precision may be expected to decrease. The 

simultaneous increase in both recall and precision in 14 cases evaluated here supports the 

improved performance of our algorithm. To more quantitatively evaluate the 

improvement in the performance of our algorithm for both recall and precision together, 

we used the harmonic mean (F) of the recall and precision values for each condition (i.e. 

each library and threshold combination). The F-values are higher for our algorithm over 

all conditions, indicating an improvement in performance when recall and precision 

considered together (Table A.4). Similar results can be seen when the larger tag library is 

evaluated with our algorithm over the three thresholds. Recall improves substantially in 

all cases, and precision decreases marginally for thresholds 6 and 8 (Figure 2.3.D and 

Table A.5). The F-values showing the combined recall and precision performance are 

higher for our method over all three thresholds (Table A.4). 

In Figure 2.4, we provide two examples of our mapping results with the 

comparison against the benchmark and the result of fraction method. It can be seen that 

our algorithm rescues more sites than fraction method, and that the average number of 

tags at rescued sites is higher than seen for the fraction method. This can be attributed to 

the fact that the fraction method assigns a fraction of ambiguous tags on each site and 

wastes information on other sites. The greater number of tags per rescued site can help to 

ensure that these sites are robust to different user thresholds that are employed to 

distinguish signal from noise. 
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It should be noted that the two examples shown here represent segmental 

duplications (Figure 2.4.A) and satellite regions (Figure 2.4.B) respectively. It is expected 

that such highly repetitive regions will produce many ambiguous tags and thus would be 

difficult to uncover with ChIP-seq.  However, our method achieves good performance in 

such repetitive regions. Furthermore, the second example is located very near to the 

centromere of chromosome 7. Centromeric regions are important in various cellular 

processes, such as cell division, and correct mapping of ambiguous tags to centromeric 

regions could help to uncover specific biological roles for such regions. 
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Figure 2.3: Comparison of algorithm performances. A. Illustration of data used to test 

algorithm performances. B. Variant tag thresholds could cause differences in the 

performance test. The lines (red and green) are two tag thresholds. C. Barplots of recall 

and precision for the three methods (MAQ-dark blue, fraction method-light blue, Gibbs 

method-green) on 8 libraries under 3 different tag thresholds. D. Barplots of recall and 

precision for the three methods (MAQ-dark blue, fraction method-light blue, Gibbs 

method-green) on the bigger library under 3 tag thresholds. 
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Figure 2.4: Examples of ambiguous tag mapping results. Tracks are shown through 

UCSC Genome Browser. The track of real sites shows the sites in the benchmark 

libraries. The track of Fraction method shows the mapping result by fraction method and 

the track of Gibbs method shows the mapping result by our Gibbs method. The heights of 

data represent the number of tags mapped to those sites. The tracks of repetitive genomic 

regions (segmental duplications, interspersed repeats and simple repeats) are also shown. 
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Biological relevance 

Transposable elements, simple repeats, micro-satellites, segmental duplications 

and pericentromeric regions are genomic regions rich in repeat sequences. These regions 

could produce large numbers of ambiguous tags and will be difficult to uncover due to 

the technical problem of mapping ambiguous tags. The ability to correctly map 

ambiguous tags may facilitate novel discoveries regarding the biological significance of 

such repeat regions, many of which have been ignored in past chromatin 

immunoprecipitation studies.  For instance, we show that our method is able to detect 

previously uncharacterized segmental duplications and satellite regions in Figure 2.4.  In 

addition, our method uncovered a previously undetected modified histone site in the 

proximal promoter region of the CWF19-like 1 cell cycle control protein.   

To further investigate whether our algorithm really helps us to find more sites in genomic 

repeats, we used the UCSC genome browser (70,71) to count the numbers and fractions 

of rescued sites in those regions and compared them against using unique tags alone 

(Figure 2.5). This analysis demonstrates that our algorithm is able to rescue substantial 

numbers of sites in genomic repeat regions, especially for segmental duplications and 

pericentromeric regions. Unique tags can only uncover around half of the sites in 

segmental duplications and pericentromeric regions, while our algorithm could uncover 

the majority of those sites (Figure 2.5.B). It is evident that our method has the potential to 

generate additional biological knowledge from ChIP-seq experiments.  
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Figure 2.5: Recovery of sites in repetitive genomic regions. A. The numbers of 

correctly discovered sites in various genomic features by unique tags alone (white) and 

our Gibbs method (black) compared with the corresponding numbers in the benchmark 

library.  B. The fractions of correctly discovered sites in various genomic features by 

unique tag alone (white) and our Gibbs method (black). [TE: transposable elements; s_r: 

simple repeats; microSat: microsatellites; seg_dup: segmental duplications; centro: peri-

centromeric regions] 
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Discussion 

Based on the results described above, we have shown that our algorithm 

significantly improves the accuracy of mapping ambiguous tags. The essential 

information used by the algorithm is the association between co-located sequence tags, 

which was originally utilized by Faulkner and co-workers (36) in the fraction method. 

Our contribution to this class of approach is to employ iterative probabilistic methods to 

achieve better performance. The use of likelihood ratios not only reflects the information 

on sequence tag associations but also the background distribution information. 

Furthermore, likelihood ratios are not linear to tag counts, but increase sharply for large 

tag counts and thus efficiently avoid wasting signal on sites with small tag counts. The 

Gibbs sampling procedure enables us to sample in the space of mapping and achieve a 

reasonable assignment of sites to sequence tags. For most experiments, unique tags are 

the majority of tags and they can guide the sampling efficiently. Thus, Gibbs sampling 

doesn‟t require too much time to reach the final result. We have also shown that correct 

mapping of ambiguous tags can facilitate our understanding of biology by recovering 

repeated genomic sites which are prone to produce ambiguous tags. 

Although the length of sequence tags is increasing, there will still be a certain 

amount of ambiguous tags. As shown in Figure 2.4, genomic sites, such as segmental 

duplications and microsatellites will always produce ambiguous tags by their nature: with 

multiple copies in the genome. So the task of mapping ambiguous tags will not disappear 

due to the experimental technique advancements in short term, and our algorithm 

provides an efficient way to solve this problem. 
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CHAPTER 3 

BROAD PEAK IDENTIFICATIONS FOR DIFFUSE CHIP-SEQ 

DATASETS 

 

 

 

Abstract 

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP--

seq) has been widely used to characterize the genomic distributions of a variety of 

functional features, especially histone modifications. While some histone modifications 

show abrupt enrichment peaks at narrow and specific genomic locations, others have 

diffuse distributions along chromosomes and their large contiguous enrichment 

landscapes are better modeled as broad peaks. Here we present BroadPeak, a broad peak 

calling algorithm for diffuse ChIP-seq datasets. BroadPeak is able to find peaks of very 

different sizes, and its utility is expected to be helpful to the analysis of chromatin states 

and related biological questions. 
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Introduction 

Histone modification landscapes are highly related with cell differentiations and 

the analyses of genomic distribution profiles of different histone modifications can help 

to understand the complex regulatory mechanism of the cell (1,2). ChIP-seq technology 

has been used to produce genome-wide maps of a suite of histone modifications in a 

number of cell types (3,7,18,25). To retrieve information from those ChIP-seq datasets, 

one of the critical data processing steps is peak calling, i.e. identifying the contiguous 

genomic regions that are significantly enriched with ChIP-seq tags compared with the 

genomic tag distribution as background (19). Some histone modifications, as well as 

transcription factors, are usually located to specific regions (e.g. promoters) and thus their 

ChIP-seq peaks are narrow and sharp. Computational methods have been developed to 

identify such peaks and their applications are very successful (38,39,42). But some 

histone modification‟s distribution profiles spread out along large contiguous genomic 

regions, e.g. chromatin domains, and accordingly their enriched peaks do not have a 

characteristic size range. For such diffuse datasets, the large regions with enriched ChIP-

seq tags are modeled as broad peaks. Compared to the sharp peaks, which is featured by 

high tag counts of closely adjacent sites, the most important descriptive feature of broad 

peaks is that the spatial densities of sites with high tag counts (high-tag sites) within 

broad peaks are significantly higher than the genomic background. Gaps (i.e. low-tag 

sites) are allowed within broad peaks, and the broad peak sizes can grow to include more 

high-tag sites as far as the spatial densities are significantly high. There have been several 

algorithms designed to solve the broad peak calling problem (40,41). Compared with 

those methods, BroadPeak require fewer parameters and the number of gaps are 
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adaptively determined from the data. Applications of BroadPeak on both real and 

simulated datasets support its good performance for broad peak calling. 

Methods 

Algorithm overview 

The basic idea of BroadPeak is to assign appropriate positive scores to high-tag 

sites and negative scores to low-tag sites (gaps), and model the broad peaks as segments 

with maximal cumulative scores (maximal scoring segments) along chromosomes. 

Considering the cumulative score curve as a random walk along the chromosome, 

maximal scoring segments represent contiguous regions with significantly higher spatial 

densities of high-tag sites which, by our definition, are broad peaks. The input file for 

BroadPeak is the sorted tag-count profiles along chromosomes in bedGraph format. The 

output file is the list of broad peak locations in BED format (Figure 3.1.A).  

Problem formulation 

In the input file, the genome under consideration has been divided into small non-

overlapping genomic bins with equal sizes (e.g. 200bp) and each bin is assigned with a 

tag-count. The bins are first classified into high-tag and low-tag bins based on a tag-count 

threshold derived from the standard tag-count Poisson distribution (which is 

parameterized by the genomic average bin tag-count λ). The regional spatial distributions 

of high-tag bins along chromosomes are expected to be non-homogeneous if broad peaks 

exist. Each high-tag bin is then assigned with a positive score s1, and each low-tag bin is 

assigned with a negative score s2. The cumulative score from bin i to bin j is 
j

ik
kij sc . 

Maximal scoring segments are segments with maximal cumulative scores, i.e. the 
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cumulative scores will decrease if the segments extend to longer segments or shrink to 

shorter segments. Thus, identifications of maximal scoring segments are equivalent to 

setting the boundaries of broad peaks with regional highest spatial densities of high-tag 

bins. 

Scoring scheme and parameter estimations 

The scores (s1 and s2) need to be carefully designed in order to obtain reasonable 

peaks. Based on the theorems proved by Karlin and Altschul (72),  the optimal scoring 

scheme is log likelihood ratios: s1=ln(p/q) and s2=ln((1-p)/(1-q)), where p is the 

estimated spatial density of high-tag bins in real broad peaks and q is the genomic 

background spatial density. Thus p and q are the only parameters needed for BroadPeak. 

One important feature of this scoring scheme is that, as the segment lengths are large, the 

spatial densities within the resulted maximal scoring segments will approximate the real 

target density p (72). This feature theoretically supports the validity of the final identified 

broad peaks since their compositions of high-tag bins will resemble real peaks and it also 

suggests that the gaps will be adaptively allowed based on the data, namely the target and 

background densities.  
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Figure 3.1: Scheme and evaluation of BroadPeak. (A) The algorithmic scheme and of 

BroadPeak. (B)  Examples of broad peaks of H3K79me2 and H3K36me3. (C) Examples 

of broad peaks of H3K27me3. (D) Preferential distributions of broad peaks of 

H3K79me2 and H3K36me3. (E) Enrichments of CTCF bindings around the edges of 

large H3K27me3 broad peaks (>200kb). 
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In order to accurately estimate the target density p, BroadPeak provides two 

options: supervised and unsupervised estimations (Figure 3.1.A). For supervised 

estimation, user need to provide a list of regions that are enriched with broad peaks based 

on a priori knowledge (e.g. highly transcribed genes can be used for H3K36me3 

parameter estimation). For unsupervised estimation, BroadPeak first uses a sliding 

window approach to obtain an initial set of regions showing spatial density changes and 

model the occurrence of high-tag bins in those regions as non-homogeneous Poisson 

processes with change-points. Conjugate gamma prior distributions are built and a Gibbs 

sampling algorithm is applied to estimate p and q. BroadPeak first uses a sliding window 

approach to scan the genome to sample a list of genomic regions that contain change-

points of spatial densities, i.e. the spatial densities change, at one unknown location 

within the region, from background densities to significantly high densities that are only 

observed in broad peaks.  These regions can be used to simultaneously estimate the target 

density p and background density q. Due to the resolution problem of sliding window 

approaches and the noisy fluctuations of ChIP-seq data, we also need to accurately 

predict the position of the change-point, in order to accurately estimate p and q. It leads 

us to adopt the Gibbs sampling method to iteratively estimate the location of change-

points, p and q. 

We used a 10kb sliding window (each step is bin-size) to scan the genome and 

calculated the high-tag bin densities for each sliding window. If the high-tag bin density 

is higher than twice of the genomic background density, the corresponding window is 

assigned as a putative region containing broad peaks or part of broad peaks.  If we 
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observe a large number of consecutive sliding windows with background densities 

followed by a large number of consecutive sliding windows with putative broad peak 

densities, then the whole region will be used later as a sample for parameter estimation.  

Assume we get N such change-point containing regions after the sliding window 

scan as described above and each region contain L genomic bins, we will divide the L 

bins (for each sample region) into n super-bins and each super-bin is consisted of m 

consecutive bins. Finally, we obtain N data series with length n and they are denoted 

as: ),...,( 21 iniii dddD , where ijd corresponds to the number of high-tag bins in the jth 

super-bin. Due to the way they are sampled, for each data series iD , there exists a super-

bin k such that )(~ 1Poissondij for kj  and )(~ 2Poissondij for kj . So k is the 

unknown change-point and 1 is the rate for background spatial density of high-tag bins 

and 2 is the rate for target spatial density of high-tag bins ( 21 ).  

The whole data series is thus modeled as a non-homogeneous Poisson process 

with two distinct rates. Gibbs sampling has been previously used for parameter 

estimations of non-homogeneous Poisson processes and here we applied this strategy. 

We assume 1 and 2 follow the conjugate prior distributions: 111 1

11 ~ e and 

222 1

22 ~ e . The prior distributions for the hyperparameters 1 and 2 are: 

111 1

11 ~ e and 222 1

22 ~ e . And a series of conditional probabilities are as 

follows:  
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Before Gibbs sampling, 1 is initialized as 
1

1
ˆ j

ijd

and 2 is initialized as 

n

nj

ijd
1

2
ˆ because the change-point is not likely to occur in the first and last a few 

super-bins. Because the prior distributions for 1 and 2 are gamma, and we consider 

1
ˆ and 2

ˆ  are good estimates of the means of the gamma distributions, then 1 is 

initialized as varˆˆ
11 and 2 is initialized as nvarˆˆ

22 , where var is the 

variance of the first few super-bins and 
nvar is the variance of the last few super-bins. 

1 is estimated as 111
ˆˆˆ , and 2 is estimated as 222

ˆˆˆ . 1 and 2 are set as 0.5 

and 1 is estimated as 2ˆˆ
11 , and 2 is estimated as 2ˆˆ

22 . 

After initializations, we use Gibbs sampling on those conditional probabilities to 

iteratively estimate k, 1 and 2 . Finally, the target spatial density of high-tag bins is 

mp /1 and mq /2 . The estimated densities will then be used to calculate the log 

likelihood ratios as the scores for maximal scoring segment identifications. 

Broad peak identifications 

After estimating parameters and setting scores, BroadPeak applies the linear-time 

Ruzzo-Tompa algorithm (73) to search for all maximal scoring segments (Figure 3.1.A). 
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For each maximal scoring segment, the observed spatial density of high-tag bins is 

compared with the background using z-test and only the ones with significantly higher 

densities (P<0.05) are added to the final broad peak list. Finally a BED format file of 

broad peak locations is generated as the output. 

Results 

Evaluations on real ChIP-seq datasets 

In order to evaluate the performance of BroadPeak, we applied it on the genomic 

ChIP-seq datasets of several diffuse histone modifications in human CD4
+
 T cells (3). 

Investigations of the resulted broad peak examples shows that they are consistent with the 

diffuse ChIP-seq tag count distributions (Figure 3.1.B and 3.1.C).  As a global check of 

the performance, we found that the peaks of H3K79me2 and H3K36me3 concentrate 

around transcriptional start sites (TSS) and transcriptional termination sites (TTS) 

respectively (Figure 3.1.D). Also, we found that the edges of the resulted broad peaks of 

H3K27me3 are more enriched with CTCF binding (Figure 3.1.E). Since CTCF is thought 

to be related with chromatin barriers, its enrichments around the H3K27me3 broad peak 

edges support the performance of BroadPeak to identify repressive chromatin domains. 

Similar results are also observed for broad peaks of H3K9me3 (Figure B.1). We also 

compared the results based on supervised and unsupervised parameter estimations for 

H3K36me3 and they are very similar with each other (Figure B.2). 

Performance comparisons on simulated datasets 

We also generated simulated tag libraries for a list of pre-set broad peaks and 

applied BroadPeak, along with two existing broad peak calling methods: SICER and 
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RSEG. We first simulated 3 libraries for tests by selecting 5,000 non-overlapping human 

genes with different sizes as the real broad peaks. The human genome is divided into 

200bp bins.  For non-broad-peak regions, the background spatial density of high-tag bins 

is set as 1x10
-4

. For real broad peak regions, the density is set as 20, 50 and 100 fold of 

the background density respectively for different libraries. The tag count distribution of 

high-tag bins is a Gaussian distribution with mean of 8 and standard deviation of 2. The 

spatial density of low-tag bins (noise) is the same throughout the whole genome and is set 

as 0.5, namely about half of the genome have noise. The tag count distribution of low-tag 

bins is a Poisson distribution with the average rate as 0.7, which is similar to the 

H3K36me3 library. Similar to the comparison procedure of RSEG, we run BroadPeak, 

SICER and RSEG on the three simulated libraries and compared the identified broad 

peaks with the real peaks. A real broad peak is considered as correctly identified if a 

certain fraction of it is covered by predicted peaks. Similarly, the predicted broad peak is 

considered as true if a certain fraction of it is covered by real peaks. The three thresholds 

of fractions are 20%, 50% and 80%. Based on these basic counts, recall and precision are 

used to measure the performance and the F score is used as the final measurement of the 

overall performance of the algorithms.  

 Among all the tested simulated datasets, BroadPeak achieves substantial 

improvements on recall (Table B.1 and Figure B.3), while maintaining good precision 

(slightly lower than SICER). The F scores of BroadPeak are the best for all the datasets 

tested. BroadPeak is especially better for larger peaks (Figure B.3). Globally, the size 

distribution of the resulted broad peaks is much wider for BroadPeak, compared with 

SICER and RSEG (Figure B.4).  
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CHAPTER 4 

PREDICTION AND VALIDATION OF MIR RETROTRANSPOSON 

DERIVED INSULATORS IN THE HUMAN GENOME 

 

 

 

Abstract 

Insulators are regulatory sequence elements that help to organize eukaryotic 

chromatin via enhancer-blocking and chromatin barrier activity.  While there are several 

examples of transposable element (TE)-derived insulators, there are no known human 

insulators provided by TEs.  Mammalian-wide interspersed repeats (MIRs) are a 

conserved family of human TEs that have substantial regulatory capacity and share 

sequence characteristics with tRNA-related insulators.  We sought to evaluate whether 

MIRs can serve as insulators in the human genome.  To do this, we applied a 

bioinformatic screen using genome sequence and functional genomic data from CD4
+
 T 

cells to identify a set of 1,178 predicted MIR-insulators genome-wide.  These predicted 

MIR-insulators were computationally validated to serve as chromatin barriers and 

regulators of gene expression in CD4
+
 T cells.  The activity of predicted MIR-insulators 

was experimentally validated using enhancer-blocking assays.  MIR-insulators are 

enriched around genes of the T cell receptor pathway and protect these genes from 

repressive chromatin to facilitate their cell-type specific expression and function.  

Overall, 58% of the MIR-insulators predicted here show evidence of T cell specific 

chromatin barrier and gene regulatory activity.  MIR-insulators show a distinct local 

chromatin environment with marked peaks for RNA Pol III and a number of histone 
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modifications, suggesting that MIR-insulators recruit transcriptional complexes and 

chromatin modifying enzymes in situ to help establish chromatin and regulatory domains 

in the human genome.  The provisioning of insulators by MIRs across the human genome 

suggests a specific mechanism by which TE sequences can be used to establish gene 

regulatory networks. 

Introduction 

Insulators are regulatory sequence elements that help to organize eukaryotic 

chromatin into functionally distinct domains (44,74).  Insulators can encode two different 

functions: enhancer-blocking activity and chromatin barrier activity.  Enhancer-blocking 

insulators prevent the interaction of enhancer and promoter elements located in distinct 

domains, and chromatin barrier insulators, also known as boundary elements (43,75), 

protect active chromatin domains by blocking the spread of repressive chromatin.  These 

two functional roles are not mutually exclusive; compound insulators may encode both 

enhancer-blocking and chromatin barrier activities (48). 

Transposable element sequences are known to provide a variety of regulatory 

sequences to eukaryotic genomes (66), and there are several examples of TE-derived 

insulators.  The best studied TE-insulator comes from the Drosophila gypsy element 

(46,76-78).  Gypsy is a long terminal repeat retrotransposon that contains an insulator 

sequence in its 5‟ untranslated region.  The gypsy insulator interacts with the suppressor 

of hairy wing [su(Hw)] and modifier of mdg4 [mod(mdg4)] proteins to block regulatory 

interactions between distal enhancer and proximal promoter sequences.  This same 

insulator can also protect transgenes from position effects indicating that it encodes 

chromatin barrier activity as well. 
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More recently, TE-derived insulator sequences have been discovered in 

mammalian genomes.  The short interspersed nuclear element (SINE) B1 has insulator 

activity that is mediated by the binding of specific transcription factors along with the 

insulator associated protein CTCF (79).  Another mouse TE, the SINE B2 element, serves 

as a developmentally regulated compound insulator, encoding both enhancer-blocking 

and chromatin barrier activity, at the growth hormone locus (56).  B2 is a tRNA-derived 

SINE, and the connection to tRNAs is intriguing given the fact that tRNA gene sequences 

have been shown to encode insulators in yeast (52,53,80,81), mouse (55) and human 

(33,82).  A survey of six mammalian species revealed that lineage-specific expansions of 

retrotransposons have contributed numerous CTCF binding sites to their genomes (83).  

A number of these TE-derived CTCF binding sites in the mouse and rat genomes are 

capable of segregating domains enriched or depleted for acetylation of histone 2A lysine 

5 (H2AK5ac), suggesting that they may encode insulator function.  Interestingly, this 

same analysis did not detect retrotransposon driven expansion of CTCF binding sites in 

the human genome.        

Despite the fact that human TEs have yet to be implicated as insulators, the 

genome is made up of a substantial fraction of TE sequences including numerous tRNA-

derived SINE retrotransposons with the potential to encode insulator function (84).  

Mammalian-wide interspersed repeats (MIRs) are an ancient family of TEs (85) that bear 

several features suggesting that they may serve as genome regulators in general and 

insulators in particular.  First of all, a number of non-coding MIR sequences were found 

to be highly conserved, indicative of some functional, presumably regulatory, role (86).  

Later, it was shown that MIRs are enriched for open chromatin sites (87), encode 



51 

 

regulatory RNAs (88), host gene promoters (89) and enhancers (90) and are also 

associated with tissue-specific expressed genes (91).  Finally, MIRs are tRNA-derived 

SINEs (92) and their sequences include recognizable regulatory motifs, such as the 

promoter B-box element, that are thought to be important for insulator activity. 

In light of these known MIR regulatory sequence characteristics, we sought to 

evaluate whether MIR elements can encode insulator activity in the human genome.  To 

do this, we employed a bioinformatics screen of genome sequence and functional 

genomic data to identify a subset of MIR sequences that possess insulator-like features.  

These features include the presence of intact B-box sequences, occupancy by RNA Pol 

III and the partitioning of active and repressive chromatin domains (Figure 4.1.A).  This 

procedure resulted in the identification of >1,000 putative MIR-derived insulator 

sequences, which were first validated computationally and experimentally and then 

evaluated with respect to a number of functional properties.    

Results 

Bioinformatic screen and validation 

We developed and applied a bioinformatic screen to search for human MIR 

sequences that may encode insulator activity (Figure 4.1.A).  To do this, we evaluated 

human genome sequence data along with functional genomic data from CD4
+
 T cells.  

CD4
+
 T cells were chosen owing to their importance as a model system for immunology 

and for the abundance of available functional genomic data that exist for this cell-type.  

The genome sequence data analyzed consisted of TE and gene annotations, and the 

functional genomic data included RNA-seq and microarray expression data along with 

ChIP-seq data for RNA Pol III binding and 39 histone modifications.   
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Figure 4.1:  Bioinformatic screen and validation of MIR-insulators.  (A) Scheme of 

bioinformatic screen used to predict MIR-insulators.  (B) Spearman correlations for 

individual histone modification profiles upstream versus downstream of predicted MIR-

insulators.  (C) Heatmap showing Spearman correlations for pairs of histone modification 

profiles.   (D) Average (± standard error) CD4+ T cell expression levels of proximal 

genes from the active (grey) and repressive (black) sides of predicted MIR-insulators.  

(E) Average (± standard error) differences in gene expression levels for genes located on 

the opposite sides of individual predicted MIR-insulators.   
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First, all MIR sequences in the human genome that contain intact B-boxes and are 

bound by RNA Pol III in CD4
+
 T cells were identified.  Then, these MIRs were evaluated 

for their ability to partition active versus repressive chromatin using a previously 

described approach (33) that segregates histone modifications associated with expressed 

(active) versus silent (repressive) genomic regions.  To do this, broad genomic 

distributions of 39 histone modifications, with 34 characterized as active and 5 

characterized as repressive, were evaluated in order to detect large contiguous regions 

(domains) of active and repressive chromatin.  The B-box containing and RNA Pol III 

bound MIR elements found to be located between adjacent active versus repressive were 

then selected for further analysis.  Finally, RNA-seq was used to further reduce the list of 

putative MIR-insulators to those that delineate high versus low expressed genomic 

regions.  This procedure resulted in the identification of 1,178 putative MIR-derived 

insulators across the human genome (Figure 4.1.A).    

The putative MIR-derived insulators were computationally validated with respect 

to their affects on chromatin and gene expression.  For chromatin, the putative insulators 

were evaluated for their ability to partition individual histone modifications and to 

delineate sets of modifications that have been previously characterized (18) as active 

versus repressive (Figure C.1).  ChIP-seq tag counts for all 39 histone modifications 

analyzed here are negatively correlated for the regions upstream versus downstream of 

the putative MIR-insulators (Figure 4.1.B and Table C.1), indicating that this set of MIRs 

partitions specific histone modification sites in the local chromatin environment.  In 

addition, when the histone modifications are considered as an ensemble, by clustering 
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their joint upstream versus downstream ChIP-seq profiles, active and repressive 

modifications can be seen to group together (Figure 4.1.C and Figure C.2).  This result 

indicates that the putative MIR-insulators identified here also delineate active versus 

repressive chromatin marks.  Consistent with this result, genes located proximal to the 

MIR-insulators in the active chromatin environment are expressed at higher levels than 

the genes located on the repressive side of the insulators (Figure 4.1.D and Figure C.3). 

We also evaluated the role that the putative MIR-insulators play in regulating 

tissue-specific expression by measuring the differences in expression levels, across 79 

human tissues, for genes that flank the insulators.  Genes that flank MIR-insulators show 

greater differences in expression, between the active and repressive sides of the 

insulators, in CD4
+ 

T cells than seen for the other human tissues (Figure 4.1.E and Figure 

C.4), consistent with a role for the insulators in establishing tissue-specific chromatin 

domains.  Taken together, the results of the bioinformatic analyses support the notion that 

human MIRs can serve as insulators and suggest that the putative MIR-insulators 

identified here encode chromatin barriers that function as tissue-specific regulators.    

Experimental validation 

We sought to experimentally validate the enhancer-blocking activity for a subset 

of the MIR-insulators predicted here using previously described human and zebrafish 

enhancer-blocking assays (EBAs) (56,79,93,94).  For the human EBA, a luciferase 

reporter construct transfected in human HEK 293 cells was used to evaluate both short 

(200 - 400 bp) and long (1000 – 1200 bp) sequences centered on three predicted MIR-

insulators (Table C.2).  All three MIR-insulators tested here showed enhancer-blocking 

activity comparable to the 5‟ HS4 positive control (Figure 4.2.A).  For the most case, 
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both short and long sequences show similar levels of enhancer-blocking activity.  The 

only exception was the long sequence from the chromosome 11 MIR-insulator, which 

showed slightly lower enhancer-blocking activity than both the positive control and the 

short sequence from the same locus.  This suggests the possibility of interference from 

adjacent sequences for this insulator. 
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Figure 4.2:  Enhancer-blocking assays (EBAs) for predicted MIR-insulators.  (A) 

Human EBA.  Enhancer-blocking activity levels (fold-enrichment) are normalized 

relative to the empty vector.  Average enhancer-blocking activity levels (± standard error) 

for positive (5‟HS4 and II/III) and negative (II/III mutated) controls along with results for 

short and long sequences surrounding predicted MIR-insulators from chromosomes 1, 2 

and 11 are shown.  For each sequence analyzed, inserts were cloned upstream of the 

enhancer (negative control site) and between the enhancer and promoter (test site).  (B) 

Zebrafish EBA.  Positive (5‟ HS4) and negative (empty vector) control sequences along 

with short and long sequences surrounding predicted MIR-insulators from chromosomes 

1, 2 and 11 were inserted between the CNS enhancer and the somite promoter.  GFP 

expression in somites versus enhancers indicates relative enhancer-blocking activity.  (C) 

Enhancer-blocking activity in zebrafish is quantified as the average (± standard error) 

ratio of somite over CNS expression. 

 

 

 

The same short and long MIR-insulator sequences were tested in a zebrafish EBA 

using a GFP reporter construct transiently transfected in embryos.  This EBA tests the 

ability of putative insulator sequences to block interaction of a central nervous system 
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(CNS) enhancer with a somite GFP promoter (Figure 4.2.B).  All MIR-insulator 

sequences tested show enhancer-blocking activity greater than seen for the 5‟ HS4 

positive control (Figure 4.2.C).  There are some differences between the short and long 

sequences, but they are not consistent across the tested sequences.  Taken together, the 

results of in these EBAs demonstrate that selected MIR-insulator sequences encode 

strong enhancer-blocking activity, which is conserved between cell-types and across 

species.   

MIR insulator chromatin features 

Having established the chromatin barrier and enhancer-blocking activity of 

predicted MIR-insulators, we performed a series of enrichment analyses to characterize 

the local chromatin environment at-and-around these insulators.  RNA Pol III occupancy 

levels peak at MIR-insulator sequences (Figure 4.3.A), which is consistent with the initial 

bioinformatic screen used for their identification.  Nevertheless, the distinct RNA Pol III 

peak at MIR-insulators differs from the previously observed broad genomic distribution 

of RNA Pol III binding (95) suggesting the possibility that MIR-insulators are activated 

via specific recruitment of RNA Pol III and possibly transcriptional activation.  In 

addition, the negative control, performed on a randomly selected set of B-box containing 

MIRs, shows that specific RNA Pol III binding is not a generic feature of MIRs across 

the genome.  RNA Pol II levels, on the other hand, increase steadily from the MIR-

insulator region into the flanking active chromatin environment (Figure 4.3.B), consistent 

with their role as barriers against the spread of repressive chromatin. 

Binding of the insulator-associated protein CTCF also peaks around MIR-

insulator sequences relative to flanking genomic regions and shows a strong enrichment 



58 

 

compared to the genomic background (Figure 4.3.C).  However, CTCF binding levels are 

slightly depleted right at the locations of the MIR-insulators, raising the possibility of co-

operative action between CTCF-independent MIR-insulator mechanisms and the CTCF 

binding at adjacent genomic loci. 

 

 

 

 
Figure 4.3:  Enrichment of chromatin features around predicted MIR-insulators.  

8kb windows centered on predicted MIR-insulators were evaluated for the fold-

enrichment (compared to genomic background) of (A) RNA Pol III binding, (B) RNA 

Pol II binding, (C) CTCF binding and (D) levels of five histone modifications.  For each 

enrichment curve, a corresponding negative control (lower lines marked with crosses) is 

shown based on a randomly selected set of B-box containing MIR sequences of the same 

size. 

 

 

 

MIR-insulators show a characteristic histone modification signature with 

distinctive peaks of the H2AZ histone variant, H3K4me1, H3K4me2 and H3K9me1 
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(Figure 4.3.D).  Such peaked patterns can not be expected based on the approach used to 

detect putative MIR-insulators since the algorithm evaluates broad distributions of active 

versus repressive histone modifications over 100kb windows surrounding the MIRs.  

H3K4me3 levels peak adjacent to the locations of the MIR-insulators on the active 

chromatin side and remain high across the local active chromatin domain.  Most of these 

marks are associated with active chromatin and transcriptional initiation, suggestive of 

the recruitment of chromatin modifying complexes to MIR-insulators resulting in the 

local opening of chromatin and priming for gene expression.  Consistent with this 

possibility, MIR-insulators are much closer to the nearest gene transcription start site 

(TSS) on the active chromatin side than on the repressive side (Figure C.5).  H3K4me1 

modifications are often associated with enhancer sequences, raising the possibility of 

some mechanistic overlap between MIR-insulators and enhancers, as has been previously 

suggested (44).     

Tissue-specific chromatin barrier functions of MIR-insulators 

Human and zebrafish EBAs indicate that MIR sequences are likely to encode 

enhancer-blocking activity via conserved mechanisms (Figure 4.2), whereas 

computational validation of the MIR-insulator predictions suggest that MIR-insulator 

chromatin barrier activity is tissue-specific (Figure 4.1.E).  We sought to further evaluate 

the possible tissue-specific functional roles played by the MIR-insulators predicted here.  

To do this, we performed an analysis of the gene ontology (GO) and pathway (KEGG) 

annotations of the genes located on the active chromatin sides of the MIR-insulators.  

These genes are enriched for a number of GO functional categories related to T cell 

function including cell-cell interactions and immune signaling cascades (Figure 4.4.A).  
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Perhaps most strikingly, this analysis revealed that 21 genes found in the T cell receptor 

signaling pathway (KEGG: hsa04660) are located adjacent to MIR insulators on the 

active chromatin side (Figure 4.4.A, Figure 4.4.B and Figure C.6).  Among this list, there 

are several transmembrane receptor proteins, which mediate interactions with antigen-

presenting cells, including a co-located genomic cluster of two T cell co-stimulators 

(CD28 and ICOS) and the co-inhibitor CTLA4 (Figure 4.4.C).  The chromatin 

environment at this genomic cluster, along with the cell type-specific expression patterns 

of these three genes, exemplifies the T cell-specific regulatory function of the MIR-

insulator encoded barrier activity (Figure 4.4.D).  In CD4
+
 T cells, these three genes are 

flanked by pairs of MIR-insulators that surround an open and active chromatin 

environment (H3K4me3 and H3K36me3) to the exclusion of repressive chromatin marks 

(H3K27me3) in the adjacent regions.  This pattern stands in contrast to what is seen for 

GM12878 and K562 cells where the entire locus is marked by repressive chromatin.  

Accordingly, CD28, ICOS and CTLA4 are highly expressed in CD4
+
 T cells compared to 

GM12878 and K562 cells (Figure 4.4.D).  Similar cell type-specific distributions of 

chromatin and gene expression for MIR-insulators and their adjacent genomic regions are 

observed when the same histone marks and expression levels are compared for all 21 

MIR-insulator proximal genes found in the T cell receptor pathway (Figure C.7). 

 

 

 



61 

 

 
Figure 4.4: T cell-specific functions of predicted MIR-insulators.  (A) Results of a 

gene ontology (GO) and pathway (KEGG) analysis of proximal genes on the active 

domain side of MIR-insulators.  P-values (-log10 normalized) are shown for the KEGG 

(red), GO biological process (orange), GO molecular function (blue) and GO cellular 

component (purple) analyses; the grey line corresponds to P=0.05.  (B) List of 21 T cell 

receptor signaling pathway genes located on the active domain side proximal to MIR-

insulators.  (C) Portion of the T cell receptor pathway showing membrane receptors that 

mediate T cell stimulation via antigen presenting cells.  (D) Expression levels and the 

chromatin environment across a genomic cluster of three T cell receptor genes – CD28, 

CTLA4 and ICOS (blue gene models) – and their co-located MIR-insulators (purple bars) 

are shown for CD4+ T cells, GM12878 and K562.  Relative gene expression levels (high-

red to low-green) are shown coincident with the gene models.  Genomic distributions of 

three histone modifications are shown as H3K4me3 (red), H3K36me3 (orange) and 

H3K27me3 (blue). 
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We expanded the tissue-specific chromatin and expression analysis to include all 

MIR-insulators predicted here.  To do this, we first classified MIR-insulators as cell-type 

specific based on the relative distributions of chromatin marks across MIR-insulators in 

CD4
+
 T cells versus GM12878 and K562 cells.  681 out 1,178 (58%) of predicted MIR-

insulators show skewed distributions of active versus repressive marks in CD4
+
 T cells, 

with divergent peaks on opposing sides of the MIR-insulators, compared to relatively flat 

distributions of the same histone marks in GM12878 and K562 cells (Figure 4.5A-C).  

Accordingly, these tissue-specific MIR-insulators have proximal genes on the active 

domain side that are expressed at higher levels in CD4
+
 T cells than the same genes in 

GM12878 and K562 (Figure 4.5.D).  Furthermore, these MIR-insulators separate pairs of 

genes, on the active versus repressive chromatin sides of the insulators, that have greater 

differences in their levels of expression in CD4
+
 T cells than seen for the same pairs of 

genes in GM12878 and K562 (Figure 4.5.E).  The 42% of MIR-insulators that do not 

show evidence of tissue-specific function may have broader activity reflecting chromatin 

boundary establishment earlier in development.  It is also possible that additional MIRs 

not detected in our bioinformatic screen, e.g. those that lack intact B-boxes or those do 

not bind RNA Pol III, may also serve as insulators in CD4
+
 T cells and/or in other tissues.  
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Figure 4.5: Cell-type specific chromatin barrier activity and gene regulation by 

MIR-insulators.  ChIP-seq fold enrichment levels around tissue-specific MIR-insulators 

are shown for (A) H3K4me3, (B) H3K36me3 and (C) H3K27me3 in CD4+ T cells 

(black), GM12878 cells (red) and K562 (orange) cells.  Insets show the average 

differences (± standard error) between the active versus repressive domains surrounding 

MIR-insulators for the marks and cells.    (D) Average gene expression levels (± standard 

error) are shown for genes located in the active domain side proximal to MIR-insulators.  

(E) Average (± standard error) differences in the gene expression levels for genes located 

on the opposite sides of individual MIR-insulators.  For all bar plots, significance of the 

differences between CD4+ T cells and other cells are indicated as * P<0.05 ** P<0.01 

*** P<0.001. 

 

 

  

Discussion 

MIRs are relatively ancient and conserved TEs, i.e. formerly selfish genetic 

elements, that have been co-opted to provide a variety of regulatory sequences to their 

host genomes.  Together with their conservation and regulatory capacity, the tRNA-

derived sequence features of MIRs suggested to us that they might help to organize 

human chromatin via the provisioning of insulator elements.  Therefore, we screened the 
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human genome for putative MIR-insulators and attempted to validate their activity using 

a combined computational and experimental approach.  The results of our analysis 

suggest that numerous MIR sequences serve as insulators across the human genome.  

These predicted MIR-insulators show evidence of both chromatin barrier and enhancer-

blocking activity.  Interestingly, while the chromatin barrier activity of the MIR-

insulators appears to be cell type-specific (Figure 4.1.E, Figure 4.4 and Figure 4.5), the 

mechanisms underlie MIR‟s enhancer-blocking activity are seemingly conserved between 

cell-types and between species (Figure 4.2).  This may be attributed to the fact that MIR 

sequences in isolation possess an innate capacity to provide enhancer-blocking activity 

via the interaction with conserved protein factors, but in situ MIRs interact with cell-type 

restricted factors to yield a more narrow and specific range of activity.  Given that the 

EBAs were performed with minimal (<1200 bp) constructs, it may be the case that 

synergistic binding of sites outside the MIR-insulators help to provide cell-type specific 

barrier activity.    

The MIR-insulators identified here have a distinct local chromatin environment 

(Figure 4.3) that may yield some clues as to their mechanisms of action.  For example, 

while RNA Pol II and RNA Pol III CD4
+
 T cell binding profiles are highly correlated 

across the human genome (95), their patterns at-and-around MIR-insulators are quite 

distinct.  RNA Pol III occupancy levels peak right at the MIR-insulators, whereas RNA 

Pol II levels steadily increase from the MIR-insulators into the adjacent active chromatin 

domains.  This suggests the possibility that RNA Pol III is specifically recruited to MIR-

insulators to help establish their activity, thus priming the adjacent chromatin for opening 

and transcriptional activity as reflected by the increasing RNA Pol II levels.  The histone 
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modification profiles around MIR-insulators are consistent with this model.  There are 

clear local peaks of modifications right at the MIR-insulators, such as seen for H3K4me1 

and H3K4me2, but these same marks of open chromatin are also maintained at relatively 

higher levels in the adjacent active domains.  H3K4me3 shows a similar pattern, but its 

peak is shifted further into the active domain and it is maintained at higher levels through 

this domain.  Thus, there may be a wave of progressive methylation of the H3K4 position 

starting at the MIR-insulator locations and continuing with the addition of methyl groups 

into the active domain, similar to what we observed previously for human chromatin 

barriers(33).     

The location of MIR-insulators relative to proximal gene promoters also sheds 

some light on their mechanism of action.  MIR-insulators are located much closer to the 

promoters of the genes that are located on the active side of the insulator compared to the 

genes located on the repressive side (Figure C.5).  This suggests that MIR-insulators are 

not only located in such a way to protect proximal promoters from the encroachment of 

repressive chromatin, but also restrict interactions with promoters to only those enhancers 

that are located nearby or within genes.  This scenario can be illustrated by cluster the co-

located T cell receptors – CD28, CTLA4 and ICOS – each of which is flanked by a pair 

of MIR-insulators (Figure 4.4.D).  This apparent restriction to local enhancers would 

seem to be odds with the textbook definition of enhancers as regulatory elements that 

exert their effects over long ranges.  However, recent genome-wide analyses of chromatin 

reveal that gene bodies are enriched for enhancer elements (7,25,28) and these local 

regulatory sequences may be largely responsible for cell-type specific expression. 
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TE-derived insulators have previously been associated with CTCF binding events 

(83).  The dependence of MIR-insulators on the vertebrate insulator protein CTCF is far 

from clear based on the results of our analysis.  While there is a clear enrichment of 

CTCF binding in the local proximity of MIR-insulators (Figure 4.3.C), only 52 of 1,178 

(4.5%) MIR-insulator sequences predicted here are actually bound by CTCF in CD4
+
 T 

cells.  In fact, for many of the MIR-insulators, CTCF binding appears to peak in the 

genomic regions just adjacent to the elements.  This suggests the possibility of 

cooperativity between MIR sequences and the local genomic context in establishing 

insulator activity.  However, if this were indeed the case, one would expect that the 

longer insulator sequence inserts used in the EBA constructs would invariably yield 

higher enhancer-blocking activity and this was clearly not the case (Figure 4.2).  These 

results raise the possibility that MIR-insulators function in a largely CTCF independent 

manner. 

Many questions as to the specific mechanisms underlying MIR-insulator activity 

remain to be answered.  For example, while the compound insulator activity of the mouse 

tRNA-derived SINE B2 is related to the transcriptional activity of the element (56), it is 

not clear if the same can be said for MIR-insulators.  Furthermore, many of the protein 

factors that interact with MIR-insulators remain to be elucidated.  Nevertheless, the 

finding that numerous MIRs across the human genome can provide insulator activity 

raises intriguing possibilities.  In particular, when their repetitive nature is considered 

together with their role in organizing chromatin, it suggests a possible mechanism for the 

establishment of cell-type specific regulatory networks by TEs as long ago envisioned by 

McClintock (96) and Britten and Davidson (97).   
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Materials and methods 

Genomic and functional genomic data sets  

The human genome reference sequence (NCBI build 36.1, UCSC version hg18) 

was analyzed with respect to the locations of MIR TE sequences and NCIB RefSeq gene 

locations using the UCSC Genome Browser „RepeatMasker‟ and „RefSeq Genes‟ tracks 

respectively.  ChIP-seq data (3,18) were used to characterize the genomic locations of 38 

histone modifications and one histone variant in CD4
+
 T cells.  ChIP-seq data were used 

to characterize the genomic locations of RNA Pol II, CTCF (3) and RNA Pol III (95) 

binding sites in CD4
+
 T cells.  ChIP-seq data from the ENCODE consortium were used to 

characterized the locations of three histone modifications in GM12878 and K562 cells 

(7,98).  Microrray data were used to characterized gene expression levels across 79 

human tissues (99), including CD4
+
 T cells, along with GM12878 and K562 (100,101).  

Microarray signal intensity values were normalized using the z-transformation in order to 

compare relative expression levels across tissues and microarray platforms.  RNA-seq 

data from CD4
+
 T cells (95) were used to characterize genome expression levels.  

Bioinformatic prediction and validation of MIR-insulators 

Human genome MIR sequences (candidate insulators) were screened through a 

series of filters to identify a final set of predicted MIR-derived insulators (Figure 4.1.A).  

The final set of predicted MIR-insulators (n=1,178) contains the following set of 

properties: intact B-box promoter sequences, occupancy by RNA Pol III, segregation of 

active versus repressive chromatin domains and segregation of expressed versus silent 

genomic regions.  The ability of the predicted set of MIR-insulators to segregate 

individual histone modifications and to group active and repressive modifications 
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together were computationally validated using correlation analysis of ChIP-seq data for 

the 39 CD4
+
 T cell histone modifications.  Details of the MIR-insulator computational 

validation procedure can be found in the Figure C.1.   

Enhancer blocking assays (EBAs) 

Human EBAs were performed as previously described (56,102) using the pELuc 

vector and transient transfection HEK 293 cells.  Selected MIR-insulator sequences were 

cloned upstream (negative control) or between (test) enhancer and promoter sequences 

and enhancer-blocking activity was measured based on relative levels of luciferase 

expression.  The 5‟ HS4 insulator from the chicken beta-globin locus and the minimal 

insulator sequence motifs (II/III) from this same element were used as positive controls in 

this assay.  Mutated II/III sequence motifs, incapable of binding CTCF, were used as 

negative controls.  Three replicates were performed for each EBA.   

Zebrafish EBAs were performed as previously described (103) using a Tol2 

transposon-based vector and transient transfection of zebrafish embryos.  Selected MIR-

insulator sequences were cloned between a central nervous system (CNS) enhancer and a 

promoter that drives somite expression, and enhancer-blocking activity was measured 

based on relative levels of somite/CNS GFP expression.  The 5‟ HS4 insulator from the 

chicken beta-globin locus was used as a positive control in this assay; an empty vector 

was used as a negative control.  For each putative MIR-insulator sequence tested, 41-46 

replicates were assayed to control for chromatin position effects.     

Acknowledgements 

This work was supported by an Alfred P. Sloan Research Fellowship in 

Computational and Evolutionary Molecular Biology (BR-4839 to J.W. and I.K.J.); 



69 

 

Georgia Tech Integrative BioSystems Institute pilot program grant (to J.W. and I.K.J.); 

the Buck Institute Trust Fund (to V.V.L.); the Spanish Ministry of Science and 

Innovation (MICINN) (BIO2009-1297 to L.M., BFU2010-14839 to J.L.G.-S and 

CSD2007-00008 to J.L.G.-S) and by Junta de Andalucía (CVI-3488 to J.L.G.); S.E.M. 

was supported by CIBERER (ISCIII). 



70 

 

CHAPTER 5 

GENOME-WIDE PREDICTION AND ANALYSIS OF HUMAN 

CHROMATIN BOUNDARY ELEMENTS 

 

 

 

Abstract 

Boundary elements partition eukaryotic chromatin into active and repressive 

domains, and can block regulatory interactions between domains.  Boundary elements act 

via diverse mechanisms making accurate feature-based computational predictions 

difficult.  Therefore, we developed an unbiased algorithm that predicts the locations of 

human boundary elements based on the genomic distributions of chromatin and 

transcriptional states, as opposed to any intrinsic characteristics that they may possess.  

Application of our algorithm to ChIP-seq data for histone modifications and RNA Pol II 

binding data in human CD4
+
 T cells resulted in the prediction of 2,542 putative 

chromatin boundary elements genome-wide.  Predicted boundary elements display two 

distinct features: first, position-specific open chromatin and histone acetylation that is 

coincident with the recruitment of sequence-specific DNA binding factors such as CTCF, 

EVI1 and YYI, and second, a directional and gradual increase in histone lysine 

methylation across predicted boundaries coincident with a gain of expression of non-

coding RNAs, including examples of boundaries encoded by tRNA and other non-coding 

RNA genes.  Accordingly, a number of the predicted human boundaries may function via 

the synergistic action of sequence-specific recruitment of transcription factors leading to 

non-coding RNA transcriptional interference and the blocking of facultative 
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heterochromatin propagation by transcription-associated chromatin re-modeling 

complexes.  

Introduction 

Eukaryotic chromosomes are functionally organized into alternating active and 

repressive chromatin domains, referred to as euchromatin and heterochromatin 

respectively (64,104).  Active chromatin domains are characterized by histone 

modifications that facilitate gene expression via the opening of chromatin, which 

provides transcription factors access to genomic DNA, whereas repressive domains are 

enriched with histone modifications that yield more tightly compact and less accessible 

chromatin leading to the repression of gene expression (1,2,105-109).  Accordingly, the 

establishment and maintenance of distinct chromatin domains has important implications 

for gene regulation specific to cellular development and function (110,111). 

The organization of eukaryotic chromatin into functionally distinct domains 

implies the existence of chromatin partitioning elements that can be used both to 

delineate active euchromatic and repressive heterochromatic domains, while preserving 

their structural integrity, and to prevent regulatory cross-talk between different domains 

(43,44,57,75).  Such chromatin partitioning elements do in fact exist and they are known 

as „boundary elements‟ (46,56,78).  Boundary element functionality is characterized by 

two fundamental properties: 1) the ability to protect from chromosomal position effects 

by acting as barriers against the self-propagation of repressive chromatin (46,80,112) and 

2) the ability to insulate or block regulatory interactions between distal enhancers and 

proximal gene promoters (57,113,114).  Some boundary elements are able to act both as 

chromatin barriers and enhancer blocking insulators (56,115).  Boundary elements that 
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are cell-type specific help to establish alternating facultative, as opposed to constitutive, 

euchromatic and heterochromatic domains.  

Known boundary elements are diverse, and several different mechanisms of 

boundary element activity have been uncovered.  First, fixed boundary elements consist 

of specific DNA sequences and their associated proteins, which establish boundaries with 

well defined positions.  Such precisely located boundaries are thought to form discrete 

physical barriers that partition distinct chromatin and/or regulatory domains.  For 

example, the HS4 boundary element found upstream of the chicken β-globin locus is 

bound by the CCCTC-binding factor (CTCF), a well known vertebrate insulator 

associated protein with demonstrated enhancer blocking activity (49,116).  The scs/scs‟ 

elements in Drosophila provide fixed boundaries at the heat-shock domain locus 

(112,114,117), and the chromatin barrier activity of the scs/scs‟ boundaries is dependent 

upon the binding of two protein factors Zw5 and BEAF (118).     

Second, there are variable boundary elements that do not occupy specific DNA 

sequences or genomic locations.  These variable boundaries are thought to be established 

and maintained through a dynamic balance of collisions between opposing chromatin 

modifying enzyme complexes responsible for the formation of euchromatin on one side 

of the boundary and heterochromatin on the other (119,120).  For example, the 

phenomenon of position effect variegation (PEV) in Drosophila can be attributed to 

variable boundary elements (44,121).  PEV refers to the variegated expression of genes 

located between adjacent euchromatic and heterochromatic domains.  PEV occurs due to 

the changing locations of variable boundaries between cells, which result in genes being 

located in alternating euchromatic or heterochromatic environments in different cells.   
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Third, boundary element activity can depend upon transcriptional interference 

from small non-protein-coding transcriptional units, such as tRNA genes in yeast 

(52,53,74,80,81) or tRNA-derived SINE retrotransposons in mouse (56,79).  Boundary 

elements that function via transcriptional interference contain specific sequence features 

needed to recruit transcription factors (e.g. the Pol II and Pol III machineries), and they 

may also provide a physical barrier to the propagation of heterochromatin via 

nucleosomal gaps close to transcription start sites.  These nucleosomal gaps may also 

serve as entry sites for chromatin remodeling complexes that help to establish the 

boundaries (43,53).  

Thus, many of the currently known boundary elements have been defined 

functionally, based on experimental confirmation of their activity, rather than 

categorically based on the presence of well defined features.  Indeed, as detailed above, 

there are diverse mechanisms that underlie boundary element activity and no common 

sequence or protein features that unite all known boundaries.  This lack of common 

boundary element features makes comprehensive prediction of boundaries difficult.  To 

date, boundary element prediction methods have relied on specific features to identify 

mechanistically coherent subsets of boundaries.  For example, genome-wide distributions 

of CTCF binding sites considered together with chromatin domain borders have been 

used to infer the locations of putative fixed boundaries (3,122).  This feature-based 

approach to boundary element prediction may overlook boundaries that function via 

diverse and possibly as yet unknown mechanisms. 

Recently, a number of genome-wide maps of histone modifications have been 

computationally analyzed in order to describe chromatin architecture in terms of the 
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distribution of distinct domains within and between cell types.  For instance, studies in 

Drosophila melanogaster (25,123), Caenorhabditis elegans (15) and human (6,7) have 

characterized the genomic distributions of euchromatic and heterochromatic domains at 

high levels of resolution.  The ability to characterize chromatin domain distributions in 

this way suggests that it should also be possible to more precisely define the locations of 

putative chromatin boundaries between domains along with their local properties.  To 

address this issue here, we employed a computational analysis of histone modification 

maps in human CD4
+
 T cells.  To date, CD4

+
 T cells represent the single best 

characterized system for studying chromatin architecture as there exist genome-wide 

maps for 38 histone modifications and one histone variant (3,18).  The existence of 

multiple (five) repressive modifications, in particular, is a unique aspect of this data set 

that provides increased resolution for delineating active versus repressive domains.  

Furthermore, experimentally characterized genome-wide maps of chromatin accessibility 

(DNase I hypersensitive sites), binding sites for RNA Pol II and Pol III as well as several 

other protein factors exist for CD4
+
 T cells along with RNA-seq data for genome 

expression.   

The goal of this study was to take advantage of the detailed genome-wide 

chromatin maps that exist for CD4
+
 T cells in order to predict and analyze a collection of 

putative human boundary elements that is unbiased with respect to the mechanisms of 

boundary activity.  Such a set of predicted boundary elements could help to prioritize 

experimental interrogation of boundaries and further define the scope of possible 

boundary element mechanisms.  To this end, we developed a boundary element 

prediction algorithm that does not rely on any previously characterized features of 
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boundary element sequences, such as the binding of specific protein factors (e.g. CTCF), 

the presence of tRNA or tRNA-derived sequences or the expression of non-coding 

RNAs.  Rather, our approach defines the genomic positions of putative boundaries in 

cell-type specific manner based solely on the locations of transition points between 

facultatively active (euchromatic) and repressive (heterochromatic) domains, along with 

the distributions of Pol II binding sites.  We chose this objective approach to avoid 

biasing our boundary element predictions with respect to a limited set of previously 

known features, and more importantly, to allow for the opportunity to discover boundary 

elements that may operate via novel, previously unreported mechanisms of action.  

Boundary element prediction proceeded in two steps.  First, we defined euchromatic and 

heterochromatic domains based on the distributions of active versus repressive histone 

modifications, and the regions between adjacent domains were taken as possible locations 

for boundary elements.  Second, the regions between chromatin domains were further 

analyzed with respect to the distributions of Pol II binding sites to more precisely locate 

putative boundaries. 

Application of this two-stage chromatin boundary element prediction algorithm to 

human CD4
+
 T cell chromatin data resulted in the prediction of 2,542 cell-type specific 

boundary elements genome-wide.  The functional relevance of the predicted boundaries, 

with respect to facultative chromatin and cell-type specific expression, was supported by 

the finding that pairs of genes immediately flanking the boundaries are more divergently 

expressed in CD4
+
 T cells than in other human cells.  Feature analysis of the predicted 

human boundaries suggests the possibility of several novel and distinct modes of action: 

1) predicted boundaries show a distinct local chromatin environment including peaks of 
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open chromatin marked by enrichment for numerous histone acetylations.  These results 

suggest that the establishment of boundaries involves the local action of specific 

chromatin remodeling proteins, 2) while many of the predicted boundaries are shown to 

be bound by the well known insulator protein CTCF, there are a number of boundaries 

that may function in a CTCF-independent manner via the binding of protein factors that 

are known to function in chromatin remodeling but were not previously implicated in 

boundary activity, e.g. EVI1 and YY1, 3) a number of predicted boundaries show 

evidence for the action of transcriptional interference including examples of putative 

tRNA derived boundaries.  tRNA genes were previously shown to function as boundaries 

in yeast (52,53,80,81) but these are the first examples of putative tRNA derived 

boundaries in human.   

Materials and methods 

Datasets of histone modifications and Pol II binding in CD4+ T cells 

We used publicly available genome-wide ChIP-seq data for 38 histone 

modifications and one histone variant (H2A.Z) defined in human CD4
+
 T cells (3,18). 

These 39 histone modifications are classified into active histone modifications and 

repressive histone modifications, based on previous results (18), for use in chromatin 

domain prediction.  Active modifications are positively correlated with gene expression 

levels and are known to mark euchromatic genomic regions, whereas repressive 

modifications are negatively correlated with expression levels and mark heterochromatic 

domains.  The 34 active modifications used here are: H2BK5ac, H2BK12ac, H2BK20ac, 

H2BK120ac, H2AK5ac, H2AK9ac, H2AZ, K3K4ac, H3K9ac, H3K14ac, H3K18ac, 

H3K23ac, H3K27ac, H3K36ac, H4K8ac, H3K12ac, H4K5ac, H4K16ac, H4K91ac, 
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H2BK5me1, H3K4me1, H3K4me2, H3K4me3, H3K9me1, H3K27me1, H3K36me1, 

H3K36me3, H3K79me1, H3K79me2, H3K79me3, H3R2me1, H3R2me2, H4K20me1 

and H4R3me2.  The 5 repressive modifications are: H3K9me2, H3K9me3, H3K27me2, 

H3K27me3 and H4K20me3.  Genome-wide ChIP-seq data for Pol II binding in CD4
+
 T 

cells was also obtained from Barski et al. 2007.  

General scheme of chromatin boundary element prediction algorithm 

In order to predict chromatin boundary elements in CD4
+
 T cells, we designed a 

two-stage algorithm (Figure 5.1.A). First, we employed active versus repressive histone 

modification distribution information to define the locations of large-scale euchromatic 

and heterochromatic domains respectively (Figure 5.1.B).  Regions in transitions (RIT) 

between adjacent euchromatic and heterochromatic domains are taken as possible 

locations containing chromatin boundary elements.  Second, we predicted the specific 

locations of boundary elements using Pol II binding inside RITs.  Boundary elements 

were taken as 8kb windows flanking the precise transition points between high versus 

low Pol II binding regions.  Only RITs with one such Poll II transition point were 

considered to contain unambiguous boundary elements.  Details for each stage of the 

algorithm are provided below.  
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Figure 5.1: Boundary element prediction algorithm scheme.  A: Pipeline of the 

boundary element prediction algorithm.  B: Scheme of domain prediction: repressive 

modifications (R) and active modifications (A) at each genomic site are transformed to 

positive or negative scores.  A maximal-segment algorithm is then applied on the score 

strings to locate contiguous regions with local maximal cumulative scores; such regions 

correspond to euchromatic or heterochromatic domains.  C: Scheme of the hidden 

Markov model for boundary element prediction.  The two hidden states are 

heterochromatin and euchromatin.  Each state is characterized by distinct emission 

probabilities of low, medium and high Pol II binding levels. 

 

 

 

Domain localization with a maximal-segment algorithm 

Histone modifications were characterized as active versus repressive based on 

their correlation with gene expression levels as previously described (18).  All active 

modifications were then considered together as a single set for subsequent analysis as 

were all repressive modifications.  In order to infer heterochromatic domains, we set a 

positive score for each genomic location which has repressive histone modification ChIP-

seq tags and a negative score for each location with active modification tags.  The tag 

counts of repressive and active modifications were further classified as small (<= 8 tags), 

medium (>8 tags and <=15 tags) and large (>15 tags).  Based on Karlin‟s theorems (72), 
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the scores for individual genomic sites are set as )ln(
ij

ij

ij
q

p
s , where i ={repressive, 

active} and j ={small, medium, large}.  ijp  represents the estimated frequency of the 

specific kind of sites in real heterochromatin domains, and ijq  represents the genomic 

background frequency of the specific kind of sites.  Intuitively, in heterochromatic 

domains, the frequency of repressively modified sites is higher than the genomic 

frequency of repressively modified sites and the corresponding scores are positive and 

larger for sites with more tags.  Likewise, the scores for actively modified sites are 

negative.  We use the peri-centromeric regions to estimate ijp , since peri-centromeric 

regions are believed to be heterochromatic regions.  Peri-centromeric regions are defined 

as the regions on both sides of centromeres extending to the most proximal gene as 

previously described (124).  After the scoring step, we applied the maximal-segment 

algorithm (73) to detect contiguous genomic regions with local maximal cumulative 

scores.  Such contiguous regions represent domains that are enriched with repressive 

histone modifications, i.e. heterochromatic domains (Figure 5.1.B).  As previously 

suggested (64), we removed the candidate heterochromatic domains that are <10kb.  This 

cut-off was chosen to reflect that fact that domains, by definition, are thought to be broad 

and widely spread, and relatively short genomic regions <10kb are more likely to 

represent discrete regulatory elements than bona fide domains.  The remaining inferred 

heterochromatic domains were used in subsequent steps. 

In order to infer euchromatic domains, we set positive scores for actively 

modified sites and negative scores for repressively modified sites, and the other steps 

were the same as described for inference of heterochromatic domains.  As with 
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heterochromatic domains, predicted euchromatic domains <10kb were eliminated from 

further consideration.  In order to estimate the frequency of actively modified sites in real 

euchromatic domains, we used the histone modification data for the top 5% of genes that 

are most highly expressed in CD4
+
 T cells (99) assuming those genes must be inside 

euchromatic regions. 

After obtaining heterochromatic domains and euchromatic domains in this way, 

we define a list of RITs between adjacent heterochromatic and euchromatic domains.  All 

possible boundary elements should reside within RITs, but it is not necessary that every 

RIT contains a boundary element.  The next step in the algorithm narrows down these 

RITs to more precisely define the location of putative boundary elements. 

Boundary element localization with a hidden Markov model 

In order to more accurately predict specific chromatin boundary element locations 

within RITs, we took advantage of the fact that euchromatic regions have higher Pol II 

binding signal levels than heterochromatic regions.  We built a two-state hidden Markov 

model (HMM) on Pol II binding data, and employed the Viterbi algorithm to find the 

most possible hidden state chain (Figure 5.1.C).  The two states in this chain are 

heterochromatin and euchromatin respectively.  The emission probabilities of the Pol II 

signal in euchromatic regions are estimated based on Pol II data in genes which are the 

top 5% most highly expressed in CD4
+
 T cells, and the emission probabilities of Pol II 

signal in heterochromatic regions are estimated based on Pol II data in genes which are 

not expressed (the lowest 5%).  The total size of heterochromatic domains is denoted as 

1s  and the total size of euchromatic domains as 2s .  The total size of RITs that go from 

heterochromatin to euchromatin is denoted as 12t , and the total size of RITs that go from 
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euchromatin to heterochromatin as 21t .  Then the transition probability from 

heterochromatin to euchromatin is estimated as 
)( 112

12

st

t
, and the transition probability 

from heterochromatin to heterochromatin is estimated as 
)( 112

1

st

s
. The transition 

probability from euchromatin to heterochromatin is estimated as 
)( 221

21

st

t
, and the 

transition probability from euchromatin to euchromatin is estimated as 
)( 221

2

st

s
. 

After running the Viterbi algorithm over all RITs, we recorded the most probable 

hidden state chains for each RIT.  Transition points from one state to the other were taken 

as possible boundary element locations.  To avoid bivalently modified regions and to 

eliminate small scale variations in Pol II binding, boundary elements were only predicted 

for RITs that show a single transition point in the hidden state chain.  Since boundary 

elements may be expected to contain a combination of multiple regulatory elements 

around the precise transition points, putative boundary elements were taken as 8kb 

regions around the exact transition points.  

DNase I hypersensitivity analysis 

Genome-wide DNase I hypersensitivity data in human CD4
+
 T cells were taken 

from (4). The genomic locations of DNase I hypersensitive sites are transformed to 

NCBI36/hg18 using the UCSC Genome Browser program Liftover (70,125).  To check 

whether the predicted boundary elements are more DNase I hypersensitive than flanking 

regions on average, we extended the predicted boundary elements by 8kb upstream and 

downstream and divided the extended regions into 1kb non-overlapping bins. For each 
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bin, we calculated the average DNase I hypersensitive scores and normalized them by the 

genomic average DNase I hypersensitive scores. 

Histone modification signature analysis 

Tag counts for each individual histone modification were computed for predicted 

boundary elements extended by 8kb upstream and downstream.  Extended regions were 

divided into 1kb non-overlapping bins, and for each bin, the average tag counts are 

normalized by genomic averages.  

Analysis of CTCF binding 

Genome-wide ChIP-seq data for CTCF binding in human CD4
+
 T cells were 

taken from (3).  We only considered locations with more than 5 tags as reliable CTCF 

binding sites.  To check whether predicted boundary elements have higher affinity to 

CTCF binding than flanking regions on average, we extended the predicted boundary 

elements by 8kb upstream and downstream and divided the extended regions into 1kb 

non-overlapping bins.  For each bin, we calculated the average CTCF tag counts and 

normalized them by the genomic average CTCF tag count for 1kb regions. 

TFBS analysis 

In order to look for putative protein factors associated with predicted chromatin 

boundary elements, we used the “TFBS Conserved” track from the UCSC Genome 

Browser.  We gathered those computationally predicted conserved TFBS (with Zscore 

above 1.96) inside predicted boundary elements.  For each transcription factor, we 

counted the number of its appearance within boundary elements and statistically tested 
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whether the specific transcription factor is significantly associated with boundary 

elements using the hypergeometric test.  

Boundary element transcription analysis 

RNA-seq data of transcription in human CD4
+
 T cells were taken from (95).  We 

extended the putative chromatin boundary elements by 8kb upstream and downstream 

and divided them into 1kb non-overlapping bins.  We calculated the average non-protein-

coding RNA-seq tag counts for each bin and normalized them by the genomic average 

tag counts.  The data was then log2 transformed.  Predicted boundary elements were 

classified into two groups: boundaries containing RNA genes and boundaries without 

RNA genes, and the above calculations were done on the two groups of boundaries 

separately.  The annotations of RNA gene locations are from the “RNA gene” track 

(126,127) on UCSC Genome Browser. 

Gene expression analysis 

Gene expression profiles were taken from (99).  For genes located within 

predicted euchromatic domains and heterochromatic domains, we calculated their 

average expression levels in human CD4
+
 T cells.  For each predicted boundary element, 

we took the two genes most proximal to it on the two opposite sides (the euchromatic 

side and the heterochromatic side) and calculated the expression differences between 

these pairs for CD4
+
 T cells and for all other tissues together.  
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Gene function annotations 

Gene Ontology analysis and KEGG pathway analysis were performed using 

MSigDB (128,129) for predicted euchromatic domains with high gene densities (> 1 

gene/20 kb). 

Results 

Datasets and chromatin boundary element prediction algorithm 

In recent years, a substantial body of data detailing the chromatin structure of 

eukaryotic genomes has been accumulated.  For the human genome in particular, there 

are now genomic maps with experimentally characterized locations of numerous histone 

modifications as well as binding sites for a variety of proteins.  Such data provide 

opportunities for the discovery of novel chromatin related regulatory elements across the 

genome.   

Human CD4
+
 T cells represent one of the best characterized systems for the 

genome-scale analysis of chromatin.  Keji Zhao and colleagues have used chromatin 

immunoprecipitation followed by high-throughput sequencing experiments (ChIP-seq) to 

generate genome-wide maps for 38 histone modifications and one histone variant 

(H2A.Z), CTCF binding, Pol II binding and Pol III binding (3,18,95).  Chromatin 

accessibility in CD4
+
 T cells has been evaluated genome-wide using DNase I 

hypersensitivity assays coupled to high-throughput sequencing (4), and genome-wide 

CD4
+
 T cell expression levels have been determined using microarray and RNA-seq 

technologies (95,99). 

We took advantage of the existence of these genome-scale chromatin datasets to 

facilitate the discovery of boundary elements in the human genome.  The goal of this 
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work was to provide a comprehensive list of likely boundary element candidates, and 

then to evaluate the features of these putative boundaries with respect to possible 

mechanisms of action.  We designed a two-stage algorithm to predict the locations of 

putative boundary elements (Figure 5.1.A).  In the first stage, we defined the locations of 

large-scale active (euchromatic) and repressive (heterochromatic) chromatin domains 

based on the genomic distributions of active and repressive histone modifications.  The 

histone modifications analyzed here were characterized active or repressive as previously 

described (see Materials and Methods) (18).  For each genomic position, a specific score 

(negative or positive) was assigned according to the relative abundance of active or 

repressive modifications.  A maximal-segment algorithm was then applied to the 

resulting string of scores to locate contiguous genomic regions with maximal local 

cumulative scores (Figure 5.1.B).  The maximal-segment algorithm was chosen because 

it can detect such contiguous regions over variant lengths, and it is robust to small scale 

stochastic noise in the ChIP-seq data.  The maximal-segment algorithm also worked well 

here because the parameters that define the relative negative or positive scores can be 

directly estimated from the ChIP-seq data.  Further details on our maximal-segment 

algorithm for domain detection can be found in the Materials and Methods section (see 

Domain localization with a maximal-segment algorithm).   

We searched for chromatin boundary elements that reside within regions between 

adjacent euchromatic and heterochromatic domains – hereafter referred to as regions in 

transition (RITs).  However, it should be noted that not all RITs will necessarily contain 

discretely located boundary elements.  For instance, some RITs may contain regions with 

fuzzy patterns of active and repressive modification distributions that would not allow for 
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precise delineation of boundary element locations.  Such fuzzy patterns may represent 

boundaries that act via PEV related mechanisms, owing to different boundary locations 

among heterogeneous cell populations, and these imprecisely located boundaries will not 

be detected by our method.  Furthermore, because the sizes of RITs can be relatively 

large (>50kb) in some cases, a method is needed to narrow down the genomic regions 

where predicted boundary elements can be located.  In light of both of these issues, we 

developed a second stage of the algorithm that uses a hidden Markov model (HMM) of 

Pol II binding distributions along RITs in order to more precisely locate boundary 

elements (Figure 5.1.C).  This approach is based on the rationale that euchromatin is 

transcriptionally active, whereas heterochromatin is largely transcriptionally silent.  

Accordingly, euchromatin is expected to have higher levels of Pol II binding, and 

heterochromatin is expected to have lower levels of Pol II binding.  Furthermore, Pol II 

protein complexes are known to associate with proteins that have acetyltransferase and/or 

chromatin re-modeling functions (130).  Thus, boundary elements are expected to be 

located in genomic regions with particularly sharp transitions between low and high Pol 

II binding; HMMs are ideal for delineating such abrupt transitions. 

HMMs were used to model RITs by predicting the facultative chromatin state – 

euchromatin or heterochromatin – for each genomic site that best explains the Pol II 

binding distribution along each RIT.  To do this, the Viterbi algorithm was used to infer 

the most probable chromatin state chain along the RITs based on Pol II binding emission 

probabilities and chromatin state transition probabilities (Figure 5.1.C).  Details on the 

HMM we used for boundary element localization can be found in the Materials and 

Methods section (see Boundary element localization with a hidden Markov model).  
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After obtaining the most probable hidden state chains of euchromatin and 

heterochromatin, we removed RITs that contain more than one transition point between 

the two chromatin states, since these represent ambiguously located boundaries.  

Sequence features of the remaining RITs are summarized in Table D.1.  For RITs with 

single chromatin state transition points, we take 8kb regions centered on those transition 

points as putative boundary element regions.  The 8kb window size was chosen to strike a 

balance between the utility of precisely locating predicted boundary elements and the 

biological reality that boundary element activity may be spread over multiple adjacently 

located regulatory elements.  

Chromatin domain localization 

In the first stage of the algorithm (Figure 5.1.B), we predicted the locations of 

large-scale active and repressive chromatin domains, i.e. facultative euchromatic and 

heterochromatic regions.  An example of several adjacent euchromatic and 

heterochromatic domains on chromosome 2 can be seen in Figure 5.2.  The predicted 

euchromatic domains are enriched with the active histone modification H3K79me1, and 

the predicted heterochromatic domains are enriched with the repressive modification 

H3K27me2.  The same pattern can be seen when all 34 active and all 5 repressive 

modifications are considered together (Figure D.1).  In this example, we also observe 

higher Pol II binding and RNA-seq expression levels in the predicted euchromatic 

domains than seen for the predicted heterochromatic domains (Figure 5.2), consistent 

with the expectation that euchromatin is more actively transcribed than heterochromatin.  

Furthermore, predicted euchromatic domains genome-wide have significantly higher 

average CD4
+
 T cell expression levels than the predicted heterochromatic domains 
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(Figure 5.3; Mann-Whitney U test P<1E-10).  The observations on expression levels 

serve to validate the maximum segment algorithm we use to delineate active 

(euchromatic) and repressive (heterochromatic) domains based on the analysis of histone 

modification data alone. 

 

 

 

 
Figure 5.2: Example of predicted chromatin domains.  An ideogram of chromosome 2 

shows the cytogenetic banding pattern along with the location of this specific example.  

The distributions of ChIP-seq tag mapping peaks for the active histone modification 

H3K79me1 (red bars), the repressive histone modification H3K27me2 (blue bars), Pol II 

binding (black bars) and RNA-seq tags (purple bars) are shown in separate tracks.  The 

predicted euchromatic domains (red bands) and heterochromatic domains (blue bands) 

are shown in the tracks denoted as „Euchromatin‟ and „Heterochromatin‟.  The locations 

of RefSeq Genes are shown below the chromatin domains.   
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Figure 5.3: Validation and analysis of predicted chromatin domains.  A: Average 

human CD4+ T cell expression levels for genes located in predicted euchromatic domains 

(grey bar) and heterochromatic domains (black bar).  B: Average RNA-seq tags per site 

in CD4+ T cell for predicted euchromatic domains (grey bar) and heterochromatic 

domains (black bar). 

 

 

 

We also used Gene Ontology (GO) and KEGG pathway analyses to interrogate 

the functional relevance of the euchromatic and heterochromatic domains predicted with 

our algorithm.  Genes found in predicted euchromatic domains are enriched with 

functional terms and pathways related to CD4
+
 T cell functions, such as defense response 

(GO), systemic lupus erythematosus (KEGG) and antigen processing and presentation 

(KEGG) (Table D.2).   

 

 



90 

 

Boundary element prediction 

Application of the two-stage maximal segment algorithm and HMM approach 

(Figure 5.1) to the CD4
+
 T cell ChIP-seq data resulted in the identification of 2,542 

putative chromatin boundary elements.  Sequence features of these boundary elements 

are summarized in Table D.1.  It should be noted that our prediction method is not 

mechanistically biased in the sense that it does not rely on any previously known features 

of boundary element sequences, e.g. CTCF protein binding (122,131), the presence of 

tRNA genes (53) or the expression of non-coding RNAs originating from SINE repeats 

(56,79).  By predicting boundaries in this way, without regard to previously known 

features, we can evaluate the associations of putative boundaries with such features a 

posteriori and, more importantly, look for novel boundary element related features, 

which may be indicative of as yet unknown boundary element mechanisms.   

Examples of three predicted chromatin boundaries are shown in Figure 5.4; the 

locations of the boundaries are compared to the locations of the chromatin domains 

defined by active and repressive histone modification distributions along with the 

locations of CTCF binding, Pol II binding and RNA-seq expression levels.  All of these 

boundaries are located close to the edges of borders between adjacent chromatin domains 

and at sharp transition points of Pol II binding and RNA-seq levels.  The two boundaries 

shown in Figure 5.4.A are co-located with CTCF binding sites.  The boundary shown in 

Figure 5.4.B shows a similar chromatin profile to those in Figure 5.4.A but is not related 

to CTCF binding.  More detailed illustrations of these boundaries showing all of the 

individual histone modifications can be found in Figures D.2 & D.3. 

 

 



91 

 

 

 
Figure 5.4: Examples of predicted chromatin boundary elements.  A: Examples of 

predicted boundary elements with CTCF binding.  B: Example of a predicted boundary 

element without CTCF binding.  The predicted boundary elements are shown as green 

bands.  ChIP-seq peaks for active and repressive histone modifications, CTCF binding, 

Pol II binding and RNA-seq tags along with the locations of euchromatic domains, 

heterochromatic domains and RefSeq genes are illustrated as separate tracks (as in Figure 

5.2).  
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In order to test the relevance of the predicted chromatin boundaries to facultative 

chromatin and cell-type specific gene regulation, we compared the expression level 

differences for pairs of genes located on immediately opposing sides of the boundaries 

for CD4
+
 T cells to their expression level differences among a set of 78 different human 

tissues and cell types (99).  If the predicted boundary elements do in fact represent CD4
+
 

T cell specific regulatory elements that help to establish facultative chromatin domains, 

then the expression level differences of gene pairs that flank the boundaries should be 

greater for CD4
+
 T cells than for other tissue-types.  Consistent with this expectation, 

gene pairs that flank the predicted boundaries have significantly greater expression level 

differences in CD4
+
 T cells than in other tissues and cell-types (Figure 5.5; Mann-

Whitney U test P<1E-10). 

 

 

 

 
Figure 5.5: Expression differences between gene pairs that flank boundary elements. 

Expression differences of gene pairs located on immediately opposing sides of predicted 

boundary elements are shown for CD4+ T cells (grey bar) and 78 other human tissues 

together (black bar). 
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In an attempt to further evaluate the potential functional significance of the 

boundaries predicted here, we searched for overlaps between the predictions and 

previously experimentally characterized boundaries.  Among the few known boundaries 

that have been functionally verified, only one boundary element, the BEAD-1 element, 

was identified in human T cells.  BEAD-1 is a ~2kb region located between the 

divergently transcribed V 3 and TEA gene segments within the T cell receptor α/  locus, 

and it has been shown to have enhancer-blocking activity (132).  BEAD-1 is located 

within a RIT defined by our algorithm and overlaps one of the predicted boundary 

elements (Figure 5.6 and Figure D.4).  Previously, the BEAD-1 sequence was shown to 

have a CTCF binding site and its enhancer blocking activity was found to be CTCF 

dependent in an erythroleukemia cell line (51).  However, there is no evidence for CTCF 

binding of BEAD-1 from the genome-wide ChIP-seq analysis of CD4
+
 T cells (3) 

suggesting that boundary element activity at this locus may be CTCF independent in 

some conditions. 
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Figure 5.6: Co-location of a predicted boundary element with BEAD-1. A boundary 

element predicted by our method (green band) is shown to overlap with the 

experimentally characterized BEAD-1 boundary element (purple band).  The BEAD-1 

element is located between the V 3 and TEA gene segments (black boxes) of the T cell 

receptor α/  locus.  ChIP-seq peaks for active and repressive histone modifications, 

CTCF binding, Pol II binding and RNA-seq tags along with the locations of euchromatic 

domains, heterochromatic domains are illustrated as separate tracks (as in Figure 5.4).  

The inset shows greater detail at the BEAD-1 locus. 

 

 

 

Chromatin features of predicted boundaries 

The boundary element predictions reported here are based solely on chromatin 

states inferred from histone modifications and Pol II binding and do not rely on any 
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previously characterized features of boundary element sequences.  Since boundary 

elements are known to have diverse mechanisms of action (43,44,48,133), we analyzed 

our predicted boundaries for enrichment with a number of previously characterized 

boundary features and also with respect to as yet unknown features that may suggest 

novel mechanisms of boundary element activity. 

We evaluated the chromatin environment of predicted boundaries using 

enrichment analysis of a number of genome-scale chromatin data sets.  To do this, the 

2,542 predicted boundary element regions were co-oriented and center aligned in such a 

way as to observe 8kb boundary element regions flanked by 8kb heterochromatic and 

euchromatic regions respectively.  Predicted boundary elements show marked enrichment 

for DNase I hypersensitivity consistent with an open chromatin environment (Figure 

5.7.A).  Twelve histone acetylation marks all show similar peaked patterns of enrichment 

over predicted boundaries compared to flanking heterochromatic and euchromatic 

regions, suggesting that the predicted boundary elements are specifically acetylated to 

facilitate opening of the chromatin and recruitment of sequence-specific DNA binding 

factors (Figure 5.7.B).   
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Figure 5.7: Chromatin signatures of predicted boundary elements.  A-F: 8kb 

boundary regions are shown together with 8kb flanking heterochromatic and euchromatic 

regions.  Normalized levels of DNase I hypersensitivity (A), fold enrichment profiles of 

12 histone acetylations (B), normalized levels of CTCF binding (C), normalized levels of 

YY1 binding (D), fold enrichment profiles of H3K27 mono-, di- and tri-methylations (E) 

and fold enrichment profiles of H3K9 mono-, di- and tri-methylations (F) are compared 

for flanking regions and boundaries.  

 

 

 

Levels of binding for the CTCF insulator protein are also elevated in predicted 

boundary element regions compared to adjacent heterochromatic and euchromatic 

regions (Figure 5.7.C).  Thus, the apparent acetylation activity at predicted boundary 

elements may be recruited by specific protein factors such as CTCF.  The importance of 
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CTCF in establishing chromatin regulatory domains recently was underscored by results 

indicating that numerous functional CTCF binding sites are constitutively occupied 

among different cell types, and more remarkably, conserved among syntenic regions in 

the human, mouse and chicken genomes (94).  However, it should be noted that only a 

minority of predicted boundary elements (777 or 30.6%) contain CTCF binding sites, 

suggesting that at some of the predicted boundaries acetylation events occur in a CTCF 

independent manner or may be indicative of the recruitment of different DNA-binding 

factors. 

 

 

 

Table 5.1: Protein factors enriched in predicted boundary elements. 

 

Protein No.
1
 P-value

2
 Annotations

3
 

EVI1 382 0.022 Interacts with histone deacetylase, histone 

methyltransferases and CBP and P/CAF 

CEBP 249 2.27E-17 Interacts with CBP and p300 and promotes 

histone acetylation 

YY1 157 1.44E-17 Directs histone deacetylases and histone 

acetyltransferases to promoter 

CREBP1 150 5.87E-24 Essential in H2B and H4 acetylation, can 

interact with CBP HAT domain 

USF 140 2.50E-28 Recruits histone modifications at vertebrate 

boundary elements 
1 

The number of boundary elements containing the corresponding protein factor binding 

sites. 
2 

The statistical significance of the enrichment of the protein factor in predicted boundary 

elements assessed by hypergeometric test. 
3 

Functional annotations for the proteins based on the relevant literature (cited in the text). 

 

 

 

We used the conserved TFBS data from the UCSC Genome Browser (70,125) to 

search for protein binding sites that are significantly enriched among the set of predicted 

chromatin boundaries.  There are a number of significantly enriched TFBS that interact 
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with proteins directly or indirectly involved in chromatin remodeling events (Table 5.1).  

For example, EVI1, CEBP, CREBP1, USF and YY1 are all involved in chromatin re-

modeling via their interactions with chromatin modifying enzymes such as HAT, HDAC 

and HMT (134-140).  In addition, the transcription factor USF has previously been 

implicated as mediating chromatin boundary element activity (47,141).  The presence of 

distinct TFBS often overlap at individual boundaries indicating that a number of 

predicted boundaries have common binding sites (Figure D.5). 

Inferences on protein binding based on the presence of TFBS are prone to false 

positives (although the use of conserved sites greatly mitigates this possibility) and also 

do not yield information on cell-type specific binding.  For these reasons, we searched for 

ChIP-seq data sets from CD4
+
 T cells to validate the TFBS observed to be enriched at our 

predicted boundaries with experimentally characterized cell-type specific binding events.  

There are CD4
+
 T cell ChIP-seq data for YY1 (142), and analysis of these data reveal that 

the predicted boundaries are significantly overrepresented for YY1 binding (n=918; 

P≤10
-16

 hypergeometric test), and YY1 binding peaks at boundaries relative to adjacent 

chromatin (Figure 5.7.D).  Interestingly, there are far more boundaries bound by YY1 

(n=918) than boundaries with conserved YY1 TFBS (n=157).  This may be due to the 

presence of lineage-specific or non-canonical YY1 binding site motifs among the 

predicted boundaries.  Consistent with observations that YY1 is a cofactor of CTCF for 

X-chromosome inactivation (143), there is a highly significant overlap between 

boundaries bound by CTCF and YY1 (n=534; P≤10
-113

 hypergeometric test) suggesting 

the possibility of synergistic action between these two factors.  Nevertheless, there 

remain 384 boundaries with YY1 binding only suggesting CTCF-independent 
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mechanisms of action.  For example, evidence showing that YY1 can interact with both 

HDAC and HAT (144-150) led to a potential model proposing that YY1 can activate or 

repress transcription via changing the local chromatin environment (148).  YY1 was also 

shown to be able to interact with components of nuclear matrix (151,152), which may 

also facilitate partitioning of active and repressive chromatin domains.   

The specific methylation status, mono- di- or tri-methylation, of the H3K27 and 

H3K9 histone marks show divergent trends across predicted boundary elements 

containing regions and adjacent heterochromatic and euchromatic regions (Figure 5.7.E 

and Figure 5.7.F).  H3K27 and H3K9 mono-methylation (H3K27me1 and H3K9me1) 

levels increase steadily from facultative heterochromatic domains across boundary 

element containing regions and into euchromatic domains.  On the other hand, di- and tri-

methylation of the same residues (H3K27me2, H3K27me3, H3K9me2 and H3K9me3) 

gradually decrease from heterochromatin through the boundary element regions to 

euchromatin.  

A number of other histone methylation marks, along with non-protein-coding 

RNA-seq accumulation, also show steadily increasing levels across boundary element 

regions from facultative heterochromatin to euchromatin (Figure 5.8.A and Figure 5.8.B), 

consistent with a gradual opening of the chromatin.  However, all of the modifications of 

histone H3K4 analyzed here (H3K4me1, H3K4me2, H3K4me3 and H3K4ac) show 

distinct peaks over the predicted boundaries relative to flanking heterochromatic and 

euchromatic regions (Figure 5.8.C).  These particular histone modifications have been 

associated with promoter and/or enhancer activity, suggesting that boundary element 

mechanisms may be related to initiation of transcription (43), in the case of promoters, 
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and/or perturbation of the local chromatin environment, as has been suggested for 

enhancers (44).  The enrichment profiles of all histone modifications could be found in 

Figures D.6, D.7 and D.8. 

 

 

 

 
Figure 5.8: Chromatin and transcriptional transitions across predicted boundary 

elements. A-C: 8kb boundary regions are shown together with 8kb flanking 

heterochromatic and euchromatic regions. Fold enrichment profiles of 8 histone 

methylations (A), log2 transformed normalized non-protein-coding RNA-seq tags (B) 

and fold enrichment profiles of H3K4 histone modifications (C) are compared for 

flanking regions and boundaries. 
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Transcriptional interference at predicted boundaries 

Transcription of non-coding RNA has been shown to be important for boundary 

element function from yeast to higher eukaryotes (52,53,56,79).  Therefore, we analyzed 

RNA-seq data from CD4
+
 T cells in order to evaluate whether our predicted boundaries 

are transcriptionally active (95).  Across the predicted boundary elements, RNA-seq 

levels increase steadily with the transition from heterochromatin (low levels) to 

euchromatin (high levels) (Figure 5.8.B).  Interestingly, a subset of 77 predicted 

boundary elements contain annotated non-coding RNA genes (126,127) and show 

distinct peaks of RNA accumulation relative to the adjacent chromatin domains (Figure 

5.9.A), which coincide with Pol III binding (Figure 5.9.B).  The RNA-seq peaks indicate 

that these particular boundary locations are transcribed at markedly higher levels than 

genomic background consistent with a role for transcriptional interference. 
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Figure 5.9: Features of boundary elements containing RNA genes. A-B: 8kb 

boundary regions are shown together with 8kb flanking heterochromatic and euchromatic 

regions. Log2 transformed normalized RNA-seq tags (A) and normalized Pol III binding 

levels (B) of boundary elements containing RNA genes are compared for flanking 

regions and boundary regions. C: Example of boundary element containing tRNA genes. 

The predicted boundary element is shown as the green band.  ChIP-seq peaks for active 

and repressive histone modifications, CTCF binding, Pol II binding and RNA-seq tags 

along with the locations of euchromatic domains, heterochromatic domains and RefSeq 

genes are illustrated as separate tracks (as in Figure 5.2). Pol III binding (yellow bars) 

and RNA genes are also shown separately.  
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Figure 5.9.C shows an example of a predicted boundary element that contains a 

cluster of 4 tRNA genes along with peaks of RNA-seq expression and Pol III and CTCF 

binding, suggesting a possible relationship between CTCF binding and tRNA gene 

transcription.  The example shown in Figure 5.9.C suggests that, similar to yeast, tRNA 

genes in the human genome may operate as genomic boundaries, although definitive 

assessment of their functional significance awaits further experimental analysis.  

Consistent with this prediction, clusters of mouse tRNA genes have been shown to 

encode chromatin barrier activity (153). 

Discussion 

A chromatin based approach to unbiased boundary element prediction 

Boundary elements are known to organize chromatin into functionally distinct 

domains and to prevent regulatory cross-talk between domains.  Distinct boundary 

elements may act through a variety of mechanisms, and accordingly boundaries have 

been characterized phenotypically based on their activity rather than the presence of 

characteristic features.  Thus, boundary element prediction algorithms that use pattern 

detection methods to search for known boundary element characteristic features will 

result in biased sets of predictions that only reflect one or another of the known 

mechanisms of action.  This fundamental challenge to the computational prediction of 

boundary elements motivated our development and application of an unbiased algorithm 

that predicts the locations of putative boundary elements genome-wide based on their 

functional consequences, with respect to both chromatin and transcription states, as 

opposed to any intrinsic characteristics that they may possess. 
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Our approach to boundary element prediction relies on the delineation of adjacent 

active (euchromatic) and repressive (heterochromatic) domains based on the genomic 

distributions of active versus repressive histone modifications.  Regions in transition 

(RITs) between adjacent chromatin domains are further interrogated for the presence and 

location of putative boundaries using distributions of Pol II binding sites that serve as 

marks of active cell-type specific transcription.  Application of this two-stage chromatin 

boundary element prediction algorithm (Figure 5.1) to CD4
+
 T cell data resulted in the 

prediction of 2,542 boundary elements across the human genome.  The role of these 

predicted boundary elements in cell-type specific chromosomal domain organization was 

confirmed by the finding that genes immediately flanking boundaries are more highly 

differentially expressed in CD4
+
 T cells than seen for other human cells/tissues (Figure 

5.5).  Having predicted boundary elements in this way, we then analyzed the putative 

boundaries for the presence of a variety of features that may yield specific clues as to 

their potential mechanisms of action. 

Models for human boundary element activity 

Previous studies on boundary elements have suggested competing models that 

explain the mechanisms underlying boundary element activity.  The fixed model for 

boundary element activity implicates specific DNA sequences and their associated 

proteins, whereas the transcriptional interference model emphasizes the role of 

transcription from non-protein-coding transcriptional units.  We have previously noted 

that these two models are not necessarily mutually exclusive (43).  Under the fixed 

model, boundaries are precisely located and contain specific sequences that form discrete 

physical barriers between domains.  Specific sequence features are also needed to recruit 
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Pol II and Pol III machineries for the transcriptional interference model, and 

transcriptional units that act as boundaries may also form physical barriers that block the 

propagation of repressive chromatin.  The features uncovered for our predicted boundary 

elements can similarly be taken to suggest that the mechanisms of human boundary 

activity include aspects of both the fixed and transcriptional interference models. 

Analysis of the predicted boundary elements and surrounding RITs revealed two 

main features: 1) position-specific acetylation and open chromatin coincident with the 

recruitment of transcription factors such as EVI1, YY1 and USF (Figure 5.7.A, 5.7.B & 

5.7.D; Table 5.1), and 2) a gradual transition across RITs, from heterochromatin to 

euchromatin, of increasing histone lysine methylation and non-protein-coding RNA 

levels (Figure 5.7.E & 5.7.F; Figure 5.8.A & 5.8.B).  Considered together, these two 

observations lead us to propose a possible model for human boundary element activity 

(Figure 5.10).  Under this model, the specific positions of boundaries are established via 

the local recruitment of histone acetyltransferase (HAT) activity and transcription factors 

leading to the expression of non-protein-coding RNAs (Figure 5.10.A).  Boundary 

element function is maintained more broadly across RITs by the superposition of distinct 

and opposing chromatin modifying activities leading to the observed gradual transitions 

between heterochromatic and euchromatic histone lysine methylation and mediated by 

transcriptional interference (Figure 5.10.B).  
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Figure 5.10: Model for human chromatin boundary element activity.  Broader 

regions in transition (RITs) from heterochromatin to euchromatin are shown along with 

more precisely located boundary elements.  A: Boundary element locations are 

characterized by position-specific open chromatin environment (DNase I 

Hypersensitivity Site) and hyperacetylation (Ac) that are coincident with the recruitment 

of transcription factors (TF) and non-protein-coding RNA transcription.  B: RITs are 

characterized by gradual changes in the levels of histone methylation (me) from 

heterochromatin to euchromatin. 

 

 

 

Predicted boundary elements reside in regions of distinctly open chromatin and 

also show position-specific accumulations of 12 different histone acetylation marks 

(Figure 5.7.A and 5.7.B).  Previous studies have suggested boundary element activity is 

dependent upon the local recruitment of histone acetyltransferase activities to counteract 

the spread of repressive chromatin (141,154,155).  The patterns of histone lysine 

acetylation enrichment observed at position-specific location within predicted boundaries 
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are in agreement with already reported prominent role for histone acetylation at boundary 

elements and further corroborate the boundary prediction method used here.   

Along with the position-specific chromatin features and recruitment seen at 

predicted boundaries, we also observe distinct chromatin dynamics spread across the 

RITs that lie between adjacent facultative heterochromatic and euchromatic domains.  

For instance, H3K27 and H3K9 mono-methylation levels increase steadily from 

heterochromatic domains across boundary element containing regions and into 

euchromatic domains, whereas H3K27 and H3K9 di- and tri-methylation levels gradually 

decrease across the same intervals (Figure 5.7.E and 5.7.F).  This pattern can be taken to 

indicate a unidirectional activity of histone demethylation across RITs from 

heterochromatin to euchromatin.  At the same time, a number of other mono- di- and tri-

methylation histone marks show steady accumulations across RITs from heterochromatin 

to euchromatin (Figure 5.8.A) and are indicative of increased transcriptional activity 

(Figure 5.8.B) and/or the action of chromatin modifying enzymatic complexes associated 

with transcriptional elongation.   

H3K79 mono- di- and tri-methylation all show progressively increasing levels 

across RITs from facultative heterochromatin to euchromatin (Figure 5.8.A). While the 

exact function of H3K79 methylation is currently unknown, accumulation of these marks, 

catalyzed by the lysine methyltransferase (KMT) DOT1 (156), is correlated with actively 

transcribed protein-coding genes (157).  Accordingly, it is possible that H3K79 

methylation also marks active transcription of non-protein-coding RNAs across RITs as 

observed here (Figure 5.8.A & 5.8.B).  In fact, H3K79 methylation has previously been 

implicated in the stable maintenance of distinct chromatin states in yeast and mammalian 
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cells (158), and our data also suggests a possible, and previously unexplored, role for 

DOT1 in the establishment and maintenance of chromatin boundaries. 

Transcriptional regulators at predicted boundary elements 

The observations that predicted boundary elements contain binding site motifs for 

a number of proteins implicated in both the regulation of transcription and chromatin 

remodeling (Table 5.1), along with experimentally characterized YY1 binding (Figure 

5.7.D), are consistent with a role for transcriptional interference in human boundary 

element activity.  Involvement of transcription factors capable of maintaining a local 

active chromatin environment at boundaries has previously been reported by the 

Felsenfeld group in the context of the USF1 factor (47).  USF transcription factors can 

regulate Pol II transcription via direct interaction with components of the basic 

transcription machinery, such as TFIID and TBP associated factors (159), or through the 

recruitment of co-factors such as the histone acetyltransferase PCAF or the H3K4 histone 

methyltransferase SET7/92 (141).  Here, we observe a significant enrichment of the USF 

binding site motif (E-box element) among predicted boundaries.  Thus, we speculate that 

USF participates in the establishment and/or maintenance of human boundary element 

activity by triggering transcriptional interference, which may be mediated, at least in part, 

by the action of the aforementioned co-factors.   

EVI1 is another sequence-specific transcription regulator with binding sites that 

are over-represented among the boundary elements predicted here (Table 5.1).  EVI1 has 

been shown to interact with the histone acetyltransferase PCAF, the histone deacetylase 

HDAC1 and the histone methyltransferases SUV39H1 and G9A (134,135).  Thus, we 

speculate that EVI1 may function in boundary element activity by serving as a switch 
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between distinct chromatin remodeling activities thereby mediating the transition from 

heterochromatin to euchromatin in a cell-type dependent manner.  

Conclusions and prospects 

Chromatin boundary elements are major players in genome organization and 

regulation, but at this time there are relatively few examples of known boundary 

elements.  Here, we report a large collection of putative boundary elements for CD4
+
 T 

cells that span the entire human genome.  The boundaries reported here are computational 

predictions and thus must be treated with all due caution; nevertheless, analysis of the 

features of these boundaries yields results that are consistent with their roles as chromatin 

related regulatory elements.  We hope that the boundaries predicted here can serve as a 

prioritized list of targets for further experimental validation.  If validated experimentally, 

the predictions reported here could help to substantially enlarge the catalog of known 

chromatin boundary elements.  Our feature analysis of the predicted boundaries also 

raises the possibility of a mechanism of chromatin boundary activity in the human 

genome related to transcriptional interference.  This possibility awaits further detailed 

investigations. 
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CHAPTER 6 

CHROMATIN SIGNATURE DISCOVERY VIA HISTONE 

MODIFICATION PROFILE ALIGNMENTS 

 

 

 

Abstract 

We report on the development of an unsupervised algorithm for the genome-wide 

discovery and analysis of chromatin signatures.  Our Chromatin-profile Alignment 

followed by Tree-clustering algorithm (ChAT) employs dynamic programming of 

combinatorial histone modification profiles to identify locally similar chromatin sub-

regions and provides complementary utility with respect to existing methods.  We applied 

ChAT to genomic maps of 39 histone modifications in human CD4
+
 T cells to identify 

both known and novel chromatin signatures.  ChAT was able to detect chromatin 

signatures previously associated with transcription start sites and enhancers as well as 

novel signatures associated with a variety of regulatory elements.  Promoter associated 

signatures discovered with ChAT indicate that complex chromatin signatures, made up of 

numerous co-located histone modifications, facilitate cell-type specific gene expression.  

The discovery of novel L1 retrotransposon associated bivalent chromatin signatures 

suggests that these elements influence the mono-allelic expression of human genes by 

shaping the chromatin environment of imprinted genomic regions.  Analysis of long gene 

associated chromatin signatures point to a role for the H4K20me1 and H3K79me3 

histone modifications in transcriptional pause release.  The novel chromatin signatures 
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and functional associations uncovered by ChAT underscore the ability of the algorithm to 

yield novel insight on chromatin based regulatory mechanisms.      

Introduction 

Histone proteins are subject to a variety of covalent modifications, including 

methylation, acetylation, phosphorylation and ubiquitylation.  The identities and locations 

of these histone modifications have profound effects on the structure and regulatory 

properties of eukaryotic chromatin (21).  Indeed, over the last several years specific 

genomic regulatory elements, such as promoters, enhancers and boundary elements have 

been associated with distinct combinatorial patterns of histone modifications (3,5,8-

11,18,23,28,33,95).  The discovery and characterization of such combinatorial histone 

modification patterns, or chromatin signatures as they are often referred to, can provide 

valuable information with respect to the location and activity of cell-type and 

developmentally-specific genomic regulatory features (7,13,14,17,22,25,31,34,160).  

Next-generation sequencing based technologies, chromatin immunoprecipitation 

followed by high throughput sequencing (ChIP-seq) in particular, provide an opportunity 

for the systematic analysis of combinatorial histone modification patterns genome-wide 

(19,161).  Computationally, the inference of combinatorial histone modification 

signatures is a pattern recognition problem in high-dimensional space. There are currently 

two classes of computational approaches designed for this purpose: supervised and 

unsupervised methods.  Supervised methods identify histone modification signatures 

characteristic of a pre-defined set of known genomic features, e.g. promoters or 

enhancers (9,27,28,34).  Regulatory element characteristic combinatorial modification 

patterns identified in this way can then be used to query the genome to identify the 
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locations of additional regulatory elements of the same kind.  The use of supervised 

methods in this way was critically important for the discovery that specific genomic 

regulatory elements bear distinct chromatin signatures.  However, supervised methods are 

unsuited for the discovery of novel histone modification patterns that may be associated 

with as yet unknown regulatory activities.  Unsupervised methods do not rely on training 

data sets derived from previously annotated features, and as such they have the potential 

to discover the kinds of unknown chromatin signatures that characterize novel regulatory 

elements.  Here, we are more interested in the unsupervised approach to the analysis of 

chromatin given the potential this approach holds for novel discoveries.   

There are a number of available unsupervised algorithms for the analysis of 

histone modification patterns.  The program ChromaSig utilizes probabilistic profiles that 

are characteristic of specific histone modification patterns (29,30).  The CoSBI algorithm 

applies a biclustering method to search for regions with common histone modification 

patterns (32).  Hidden Markov Model (HMM) based methods are widely used to segment 

eukaryotic genomes into various combinatorial chromatin states with distinct histone 

modification profiles (6,7,62).  The most recently developed method of this kind, 

Segway, employs Dynamic Bayesian Networks (DBN) to achieve greater precision for 

the detection of known regulatory elements along with superior accommodation of 

missing data (162). 

We have developed an unsupervised algorithm for analysis of combinatorial 

histone modification patterns that extends the capabilities of existing methods in a 

number of ways.  First, our method does not apply any restriction to the size of co-located 

histone modification patterns.  Second, our method does not utilize any motif seed to 
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initialize the subsequent inference of histone modification patterns.  Third, our method is 

capable of detecting histone modification patterns with multiple modes, e.g. co-located 

signatures made up of constituent individual modifications that are spatially shifted with 

respect to one another.  Fourth, our method is capable of detecting co-located signatures 

composed of alternating segments with conserved and variant combinatorial patterns.  

Fifth, our method discriminates between chromatin signatures composed of the same 

histone modifications but with different shapes.  Sixth, our method provides an inherent 

statistical criterion that allows related chromatin signatures to be classified into distinct 

groups, and thereby delineates the total number of patterns observed in any data set.  The 

first four features described above distinguish our method from the ChromaSig and 

CoSBI programs.  The fifth feature provides added utility beyond what is available for 

the HMM and Segway methods, and the sixth statistical feature is uniquely implemented 

in our approach.  

We call our method ChAT, for Chromatin-profile Alignment followed by Tree-

clustering, and we applied this approach to the genome-wide analysis of 39 histone 

modifications characterized by ChIP-seq analysis of human CD4
+ 

T cells (3,18).  

Application of ChAT on this data set resulted in the discovery of chromatin signatures 

previously shown to be characteristic of specific genomic regulatory elements along with 

a number of novel chromatin signatures and features that point to as yet unexplored 

chromatin related regulatory mechanisms.  We report these discoveries in light of the 

design and implementation of the ChAT algorithm, with an emphasis on comparison to 

existing methods.  The ability of the ChAT algorithm to discern combinatorial histone 

modification patterns previously observed to be associated with known regulatory 
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elements serves as proof of its utility for the discovery of functionally relevant chromatin 

signatures.  The characterization of previously undiscovered chromatin signatures and 

functional associations with ChAT supports the potential utility of the algorithm to yield 

novel biological insight. 

Materials and methods 

General scheme of the ChAT algorithm 

The ChAT algorithm analyzes genome-wide histone modification data sets 

produced via ChIP-seq in order to characterize distinct chromatin signatures.  ChAT is an 

unsupervised algorithm; its use does not require any training set based on pre-defined 

genomic annotations such as the locations of promoters, enhancers or transcription factor 

binding sites.  There are three major steps in the ChAT algorithm: 1) ChIP-seq data 

transformation, 2) dynamic programming on histone modification profiles, and 3) 

hierarchical clustering of genomic regions that correspond to related chromatin signatures 

(Figure 6.1).  
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Figure 6.1: Scheme of the ChAT algorithm. (A) For a series of  genomic regions, 

combinatorial histone modification distributions are represented by ChIP-seq profile 

matrices.   (B) Histone modification ChIP-seq tag counts are smoothed and transformed 

to produce normalized scores.  (C) Dynamic programming is used to identify sub-regions 

with similar chromatin signatures. (D) Pairwise p-values are computed based on a null 

distribution of high-scoring chromatin segment pairs (islands) found between unrelated 

genomic regions.  (E) Pairwise p-values are organized into a distance matrix that is used 

for hierarchical clustering of similar chromatin sub-regions.  
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ChIP-seq data transformation 

The genome is divided into 200bp non-overlapping bins, and for each bin arrays 

of ChIP-seq signals (i.e. tag counts) for all histone modifications in the data set are 

computed.  In this way, combinatorial histone modification profiles are represented as a 

matrix, where the column vectors correspond to combinatorial histone modification tag 

counts within individual genomic bins and the row vectors correspond to the contiguous 

genomic landscape of individual histone modifications (Figure 6.1.A).  Then for each 

individual histone modification (i.e. each row vector), Gaussian smoothing is applied to 

remove noise resulting from spurious tag counts in the ChIP-seq experiments (Figure 

6.1.B).  The resulting smoothed ChIP-seq tag counts for each histone modification are 

transformed to a score between 0 and 1 for all subsequent analysis (Figure 6.1.B).  

The transformation is: i

i

T

Tt

esc 11 , where sc is the transformed score and 

t is the smoothed tag count.  iT  is the genomic median of tag counts of histone 

modification i .  The transformation is performed for two reasons.  First, the vast majority 

of bin tag counts for each histone modification are very small (e.g. 1 or 2 tags), and the 

transformation allows such regions to be effectively excluded from subsequent analysis.  

Second, large differences between high bin tag count values (e.g. 100 versus 150 tags) 

can bias subsequent alignment steps, and the transformation allows the magnitude of such 

differences to be dampened.  

Having quantified and transformed ChIP-seq histone modification tag count 

signals in this way, the algorithm then divides the genome into discrete genomic regions 
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(Figure 6.1.A) by delineating contiguous regions that contain high ChIP-seq signals for at 

least one histone modification from intervening regions that do not contain any such 

signal.  The intervening genomic regions that do not contain any high ChIP-seq signal are 

excluded from subsequent analysis, and the contiguous genomic regions with high ChIP-

seq signal are taken as discrete units for subsequent alignment and chromatin signature 

analysis.  To do this, consecutive genomic bins with high ChIP-seq signals ( 5.0sc ) are 

first merged into a single region, and regions which are close to each other (<4kb) are 

further merged together.  Importantly, at this step no size threshold or limit for 

contiguous regions is used.  This allows the algorithm to characterize chromatin 

signatures across a wide range of genomic sizes.  In addition, consecutive bins do not 

need to be enriched with the same histone modification in order to be merged.  This 

allows the algorithm to characterize chromatin signatures with spatially shifted patterns 

of individual histone modifications. 

To make the algorithm more computationally efficient, individual genomic 

regions with similar histone modification profiles are grouped together prior to profile 

alignment with dynamic programming.  This grouping is achieved via a simple two-step 

clustering procedure.  First, genomic regions are checked for presence or absence of a set 

of user-defined histone modifications (e.g. H3K4me3, H3K27ac, H3K27me3 and 

H3K36me3), and regions are grouped together if they contain the same sets of these 

modifications.  This step reflects the fact that regions which differ with respect to the 

presence/absence of critical user-defined histone modifications are unlikely to have 

similar chromatin signatures.  Second, genomic regions are further grouped into three 

size categories: small (≤5kb), medium (>5kb and <10kb) and large (≥10kb).  This initial 
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grouping greatly reduces the number of pairwise profile alignments needed to be 

performed.  It also allows for intelligent user input with respect to the coherence of 

functionally related (e.g. active versus repressive) histone modifications.  

Dynamic programming on histone modification profiles 

For every pair of genomic regions within the same group, local pairwise 

alignment of transformed histone modification profile matrices is performed using 

dynamic programming.  The dynamic programming approach entails a number of 

advantages: it does not require any prior chromatin signature motif seed, it guarantees 

optimal local alignments that can include gaps, it allows for the discovery of chromatin 

signatures of vastly different sizes, and it allows for the calculation of p-values that 

quantitatively measure chromatin signature similarities between genomic regions. 

To perform dynamic programming, the transformed histone modification profile 

matrix of each discrete genomic region is considered as a string of column vectors and a 

modified cosine similarity is used as the score to measure the similarity between each 

pair of column vectors (Figure 6.1.C).  For example, the column vector for bin i of the 

first region (region 1) of a pair under comparison is denoted as 1

iv .  Each entry of this 

column vector corresponds to the transformed score for the level of a specific histone 

modification, e.g. 1

ikv is the value for the kthhistone modification in bin i . Similarly, the 

vector for bin j of the second region (region 2) of a pair under comparison is denoted as 

2

jv  and 
2

jkv is the value for the kth  histone modification in bin j .  The raw score for the 

similarity between 1

iv and 
2

jv  is calculated as: ))arccos(cos(~
21

21

ji

ji

ij
vv

vv
fs . 
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The factor f is an amplification factor ( 21 f ) that enlarges the angle between 

1

iv and 2

jv .  The value of ijs~ is more likely to be negative with higher values of f  and 

accordingly the two bins will have lower probability of being aligned.  Thus, increasing 

the value of f will cause the alignment to be more stringent.  Here, f is set to 2 for small 

sized region comparisons in order to focus on highly similar sub-regions and is set to 1.5 

for medium and large size comparisons. 

The raw score is further multiplied by a weight factor to calculate the final score 

for 1

iv  and 2

jv .  The final score is ijsws ~  and the weight factor is related to 

},min{ 21

jiij vvm .  The relation between w and ijm is 
/

1 ijm
ew .  Thus vectors with 

small norms are given small weight; the rationale being that vectors with small norms 

have low levels of ChIP-seq signals and therefore should contribute less to the final 

signatures even if they are very similar with each other.  is used to control the 

stringency of the weight factor.  Larger values of  result in smaller weights, and 

accordingly only genomic regions with abundant ChIP-seq signals will be aligned.  Here, 

is set as 0.3. 

The gap penalty is designed to be proportional to the vector norm.  For example, 

the gap penalty of aligning 1

iv to a gap is 
11

ii vkg .  The gap penalty scheme is designed 

such that it highly penalizes the alignment of vectors with large norms (i.e. high levels of 

ChIP-seq signals) to gaps.  The parameter k is used to control the stringency of the 

alignment, and it is designed to be larger for small size region comparisons and smaller 

for medium and large size comparisons.  The introduction of gaps using this scheme 
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enables the discovery of multi-modal chromatin signatures, particularly for large-sized 

signatures that often contain combinations of conserved and variant segments.  

Having parameterized the dynamic programming algorithm in this way, it is then 

used to search for the most similar sub-regions between pairs of transformed histone 

modification matrices representing discrete genomic regions.  Each entry of the 

alignment matrix for dynamic programming is: 

}0,,,max{ 1

11,

2

1,1,1,1 ijijjiijjiji gcgcscc , and 0,0 ,00, ji cc .  Each pair of 

regions is compared twice: in the same and in the opposite orientations.  In this way, sub-

regions with the highest combinatorial histone modification profile similarities will be 

found. 

P-values are calculated to quantify the similarities between genomic sub-regions 

aligned in this way (Figure 6.1.D).  To do this, the algorithm employs the island method, 

based on the extreme value distribution of high-scoring segment pairs, originally 

developed for DNA sequence comparisons (72).  This method creates a null distribution 

of random similarity scores, against which the observed similarity scores can be 

compared in order to compute p-values for aligned pairs of sub-regions.  To create the 

null distribution of random similarity scores, pairs of unrelated genomic regions are 

randomly sampled from the entire set of regions under consideration.  Then for each pair 

of unrelated regions, dynamic programming with the same parameter settings is applied 

and all high-scoring islands of similarity, with scores above a threshold t , are retained.  

Using those high-scoring islands, the parameters tK  and t  for the extreme value 

distribution are estimated as suggested by Altschul et al (163), and finally the p-value is 

calculated as:
xt

tmneK
ep 1 . 
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Hierarchical clustering of related chromatin signatures 

All p-values for pairwise profile alignments are organized into a pairwise distance 

matrix, and hierarchical clustering is applied on this matrix (Figure 6.1.E).  In this way, 

sub-regions with the same combinatorial histone modification signatures will be grouped 

together and the branch lengths among them in the hierarchical tree will be shorter.  

Furthermore, since p-values are used as pairwise distances, the branch lengths can be 

viewed as approximate p-values among sub-groups or clusters.  Then, for a given p-value 

threshold (e.g. 0.05), the hierarchical tree divided by this threshold will yield clusters of 

related sub-regions at user-defined levels of statistical confidence (Figure 6.1.E).  

Cluster-characteristic combinatorial histone modification signatures can then be derived. 

Chromatin signature feature enrichment analysis 

Chromatin signatures discovered via the application of ChAT to genome-wide 

histone modification data sets are evaluated for the enrichment over annotated genomic 

features (e.g. promoters and enhancers) using a fold enrichment (FE) criterion: 

qpFE / , where p is the fraction of the patterns overlapping with specific genomic 

features, and q  is the fraction of the specific genomic feature in the genome.  Here, an 

FE threshold of 3 was taken to indicate that a given chromatin signature is enriched over 

a particular genomic feature.  The features analyzed include TSS (8kb sequences centered 

on the transcription start sites of Refseq gene models), TTS (8kb sequences centered on 

the transcription termination sites of Refseq gene models), enhancers (CD4
+
 T cell 

specific p300 binding sites) (164) and CD4
+
 T cell DNase I hypersensitive sites (4). 
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Results 

The ChAT algorithm for chromatin signature discovery 

As its name implies, the ChAT algorithm analyzes genome-wide maps of histone 

modifications characterized by ChIP-seq studies via a process of Chromatin-profile 

Alignment followed by Tree-clustering.  To do this, chromatin profiles are represented as 

numeric matrices with transformed scores for each histone modification along the 

genomic sequence (Figure 6.1.A and 6.1.B).  Alignment of these profiles is performed 

using an implementation of the local dynamic programming algorithm, which allows for 

the detection of genomic sub-regions with shared chromatin profiles (Figure 6.1.C).  

Dynamic programming also allows for the introduction of gaps in the chromatin profile 

alignments.  Gaps are critical since they allow the algorithm to extend beyond regions 

with variant (or diffuse) chromatin enrichment signatures, and in so doing facilitate the 

discovery of chromatin signatures that span long genomic regions as well as those with 

complex multi-modal patterns of histone modification enrichment.  For each resulting 

pairwise chromatin profile alignment, an approximate p-value is calculated (Figure 

6.1.D), and hierarchical clustering is then applied on these pairwise values to organize 

genomic regions into related groups of chromatin signatures (Figure 6.1.E).  The use of 

p-values for clustering allows for an inherent statistical criterion by which the 

hierarchical tree can be divided into groups of coherent chromatin signatures.  

Application of ChAT to CD4+ T cell chromatin 

We applied the ChAT algorithm to the analysis of genome-wide maps of 39 

histone modifications characterized using ChIP-seq on human CD4
+
 T cells (3,18) in an 

attempt to discover all discernible histone modification patterns.  ChAT was run using the 
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parameter values described in the Materials and Methods section, and a p-value threshold 

of 0.05 was used to partition the resulting hierarchical trees of patterns in order to 

explicitly delineate individual chromatin signatures.  As stated previously, application of 

ChAT to ChIP-seq histone modification data sets does not require any restriction on the 

size of potential chromatin signatures or the use of motif seeds to initialize the search.  

ChAT identified a total of 206 distinct combinatorial histone modification 

patterns genome-wide, which were subsequently grouped into small- (144), medium- (35) 

and large-sized (27) categories as explained in the Materials and Methods.  Overall, the 

features of these observed chromatin signatures are consistent with the intended design of 

the algorithm and point to the additional utility provided by its use.  For instance, we 

detected a number of large-sized patterns, ranging from 10kb – 100kb, which 

demonstrate the utility of allowing alternating conserved and variant segments in the 

detection scheme.  We also find a number of signatures with multiple modes of histone 

modifications as well as spatially shifted patterns for individual constituent 

modifications.  Combinatorial patterns that bear the same individual histone 

modifications with different relative profile shapes are recognized as distinct chromatin 

signatures.  

Inspection of the small-sized patterns revealed that a substantial fraction of these 

signatures are associated with known regulatory features, such as TSS, TTS and p300 

binding sites (Table E.1).  41.7% of the small-sized patterns are enriched with DNase I 

hypersensitive sites, using a fold enrichment threshold of 3 (FE>3), implying that they 

are located in open chromatin and possibly co-located with individual regulatory 

elements.  In the following sections, we describe a number of the chromatin signatures 
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discovered by ChAT, with an emphasis on the characterization of known regulatory 

features, which serve as a kind of positive control for the approach, along with 

descriptions of previously uncharacterized patterns that underscore the ability of the 

algorithm to facilitate novel discoveries. 

TSS associated chromatin signatures 

Since chromatin signatures around active TSS have been previously well-

characterized (3,9), we searched for ChAT identified chromatin signatures that are co-

located with annotated TSS in an attempt to evaluate the performance of the algorithm.  

There are 36 small-sized signatures that were found to be enriched at TSS (Table E.1; 

FE>3), and the common characteristic histone modifications of these patterns include the 

canonical TSS associated marks H3K4me3, H2AZ, H3K4me1 and H3K9me1 as well as a 

number of other combinations of histone acetylations, which are known active marks.  

Examples of several TSS associated signatures detected by ChAT are shown in Figure 

6.2. 
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Figure 6.2: Transcription start site (TSS) associated chromatin signatures.  (A) A 

TSS associated signature based on enrichment of H3K4me3. (B) A TSS associated 

signature composed of 5 active histone modifications. (C) A bivalent TSS associated 

signature with 3 active modifications and 1 repressive modification. 
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Figure 6.2.A shows the histone modification enrichment profile of the simplest 

TSS signature, which is characterized by H3K4me3 alone.  In Figure 6.2.B, the TSS 

associated signature is shown to be enriched with 5 co-located active histone 

modifications.  Interestingly, a number of bivalent TSS associated signatures were also 

found by ChAT.  For example, the bivalent signature shown in Figure 6.2.C is 

characterized by 3 co-located active marks and a spatially shifted and multi-modal 

enrichment of the repressive mark H3K27me3.  From the perspective of the ChAT 

algorithm design, the enrichment profiles of the bivalent signature example (Figure 

6.2.C) illustrate the ability of the program to find patterns with multiple modes caused by 

shifted enrichments of different histone modifications.   

Analysis of expression levels (99) in CD4
+
 T cells for sets of genes  with TSS 

marked by distinct signatures show that bivalent signatures are associated with lower 

gene expressions than seen for active signatures (p=4.1x10
-4

, Mann-Whitney test) (Figure 

6.3.A).  Furthermore, the lower gene expression levels associated with bivalent 

signatures, and higher gene expression levels associated with active signatures, are 

specific to T cells and B cells compared with expression levels in other cell types (Figure 

6.3.B).  This observation indicates cell-type specific regulatory functions of distinct TSS 

associated combinatorial histone modification signatures discovered by ChAT for CD4
+
 

T cells.  
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Figure 6.3: Differential gene expression associated with specific TSS chromatin 

signatures.  (A) Median CD4+ T cell expression levels (+/- 1 quartile) of genes with TSS 

marked by 36 distinct chromatin signatures.  Bivalent TSS signatures (blue bars) 

correspond to lower overall expression levels than active signatures (orange bars).  (B) 

Cell-type specific gene expression patterns associated with different TSS chromatin 

signatures.  Gene expression levels across 79 cell types (red=high and green=low) are 

shown for genes with TSS marked by a bivalent signature versus genes with TSS marked 

by an active signature.  Expression differences are most pronounced for the indicated T 

cells and B cells.  

 

 

 

We also observed that sets of genes with similar T or B cell expression levels can 

show very different TSS associated chromatin signatures.  For instance, Figure 6.4.A 

shows two sets of genes with indistinguishable T or B cell expression levels (p=0.7, 

Mann-Whitney test), but different levels of expression (p=4.9x10
-3

, Mann-Whitney test) 

across a panel of numerous other cell-types and tissues (99).  In other words, the first set 

(s1) has a narrower cell-type specific expression pattern, whereas the second set (s2) 

shows broad expression over numerous cell-types and tissues (Figure 6.4.A).  The 
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chromatin signature for the set of cell-type specific genes (s1, Figure 6.4.B) is far more 

complex, being comprised of six different histone modifications, than the signature made 

up of two histone modifications seen for the set of broadly expressed genes (s2, Figure 

6.4.C).  This suggests the possibility that cell-type specific expression is regulated via a 

more complex chromatin promoter landscape.  In fact, when all 36 of the TSS related 

chromatin signatures are evaluated, more complex signatures are found to be associated 

with gene sets that have higher T or B cell-type specific expression levels (Figure 6.4.D).  

The acetylation marks H3K36ac and H3K27ac in particular are associated with high 

levels of T or B cell-type specific expression.     
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Figure 6.4: Cell-type specific expression associated with complex chromatin 

signatures.  (A) Average (±sd) expression levels (blue-T or B cell expression, grey-other 

cell-type expressions) of genes with TSS marked by two different chromatin signatures 

(s1 and s2).  (B) Enrichment profiles showing the average histone modification scores 

across signature s1.  (C) Enrichment profiles showing the average histone modification 

scores across signature s2.  (D) Box-plots showing T or B cell specific expression level 

distributions for different sets of chromatin signatures. 

 

 

  

TTS associated chromatin signatures 

The nature of chromatin signatures around TTS have not been previously 

characterized as well as those associated with TSS (6,15,162), and this may be due to a 

lack of coherence in the histone modification patterns found at gene termini.  

Nevertheless, ChAT was able to discern 9 small-sized patterns associated with TTS in 

CD4
+
 T cells (Table E.1; FE>3).  The common characteristic marks for these TTS 

signatures are quite distinct from those seen around TSS and include H2BK5me1, 

H4K20me1 and H3K27me1.  Two examples of TTS associated signatures are shown in 
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Figure 6.5.A and 6.5.B.  A single genomic region showing adjacent locations of each of 

these two signatures close to an annotated TTS is shown in Figure 6.5.C.  Both of these 

TTS patterns are bi-modal with two enriched peaks linked by a relatively depleted central 

region.  The relatively low levels of histone modifications seen in the central regions of 

these patterns may be related to specific protein binding events as has been suggested for 

the bi-modal patterns of enhancers (7).  Consistent with this possibility, these same sets 

of regions show peaks of RNA polymerase II (Pol II) binding that corresponds to the 

locations of the depleted regions in the bi-modal patterns (Figure 6.5.D and 6.5.E).  With 

respect to the ChAT algorithm design, the bi-modal patterns seen at TTS point to the 

utility of gaps in the chromatin profile alignments, which allow chromatin patterns to 

extend beyond variant regions and include multiple peaks of individual histone 

modifications. 
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Figure 6.5: Transcription termination site (TTS) associated chromatin signatures.  

TTS signatures associated with three (A) and two (B) histone modification combinations 

are shown (histone modification representations described as for Figure 6.2).  (C) A 

specific TTS proximal locus showing adjacent locations of each of these two patterns.  

(D) Pol II enrichment profile within genomic regions marked by the signature shown in 

panel A.  (E) Pol II enrichment profile within genomic regions marked by the signature 

shown in panel B. 

 

 

 

Enhancer associated chromatin signatures 

Chromatin signatures characteristic of enhancers have been characterized in a 

number of studies (7,9,11,27-30), many of which rely on the positions of p300 binding 

sites to identify enhancer locations.  We also took the locations of p300 binding sites 

(164) to indicate putative enhancers and found that ChAT characterized 18 small-sized 

signatures that are co-located with these sites (Table E.1; FE>3).  The common 

characteristic marks of these patterns include the canonical enhancer associated marks 

H3K4me1 and H3K4me3 along several other histone acetylations (Figure 6.6.A).  

Examples of enhancer associated signatures detected by ChAT are shown in Figure 6.6.B 
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and 6C; these two distinct signatures are characterized by similar sets of histone 

modifications with markedly different profile shapes, i.e. mono-modal (Figure 6.6.B) 

versus bi-modal (Figure 6.6.C).  The different shapes of this kind discovered by ChAT 

may point to distinct dynamics of histone modifying enzymes and/or DNA binding 

proteins between the two sets of enhancers, indicative of the utility of the algorithm for 

discovering specific chromatin based regulatory mechanisms.   

 

 

 

 
Figure 6.6: Enhancer associated chromatin signatures.  A ~100kb genomic region 

with three locations marked by a specific signature composed of co-located peaks. (B) 

Histone modification enrichment profiles of an enhancer associated mono-modal 

signature.  (C) Enrichment profiles of an enhancer associated bi-modal signature. 
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Conserved non-coding element associated chromatin signatures 

Conserved non-coding elements (CNEs) are non protein-coding sequences that 

have been found to be anomalously conserved between species; CNEs are of interest 

because they are thought to correspond to regulatory regions that have been conserved by 

purifying selection based on their functional utility (165).  We evaluated CNEs 

characterized via the comparison of genome sequences from 28 vertebrate species for the 

presence of chromatin signatures discovered with the ChAT algorithm and found that all 

144 signatures show substantial overlap (FE>3) with the CNEs (Figure 6.7.A and Table 

E.1).  This result is consistent with the presumed regulatory activity of CNEs.  Not 

surprisingly, most of the CNE associated signatures are made up of active histone marks 

and tend to be associated with TSS or enhancers; such CNEs are likely to be active 

regulatory elements in CD4
+
 T cells.  However, a number of CNEs were also found to be 

associated with repressive chromatin signatures.  For example, a simple chromatin 

signature made up of the repressive mark H3K27me3 (Figure 6.7.B) is highly enriched 

over CNEs (FE=18.4).  We surmised that these CNEs may represent regulatory elements 

that are active in other cell-types but repressed in a specific manner in T or B cells.  To 

evaluate this possibility, we checked the expression levels of the genes most proximal to 

these CNEs for their expression across 79 human tissues and cell-types (99).  These 

genes do appear to be repressed in T or B cells in a cell-type specific manner, since they 

are expressed at higher levels across other cell types compared to T or B cells (Figure 

6.7.C and 6.7.D).   
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Figure 6.7: Conserved non-coding element (CNE) associated chromatin signatures.  

(A) Distribution of fold enrichments of CNEs for all small-sized signatures.  (B) Histone 

modification enrichment profiles (as described for Figure 6.2) for a repressive signature 

highly enriched within CNEs.  (C) Cell-type specific expression levels for genes 

proximal to CNEs bearing the repressive signature shown in panel B.  (D) Distribution of 

the ratios of T or B cell average expressions and other cell type average expressions for 

genes shown in panel C (observed=red expected=grey).  Observed ratios are significantly 

smaller than expected ratios calculated from gene expression levels randomly simulated 

across cell-types and tissues (p=1.3x10-10, Mann-Whitney test). 
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Bivalent chromatin signatures associated with L1 retrotransposons 

Bivalent chromatin signatures, composed of co-located active and repressive 

histone modifications (12,16), have previously been associated with TSS sequences, and 

the ChAT algorithm was also able to detect such bivalent signatures at TSS in CD4
+
 T 

cells (Figure 6.2.C and 6.3).  Application of ChAT here revealed two bivalent signatures 

that were not found to be associated with TSS: H3K9me3 and H3K36me3 (Figure E.1) 

along with H3K4me3 and H3K9me3 (Figure 6.8.A).  Interestingly, both of these bivalent 

signatures were found to be highly enriched within L1 retrotransposon sequences; 68.4% 

of the genomic regions marked by the H3K9me3-H3K36me3 signature overlap with L1 

as do 77.0% of genomic regions marked by H3K4me3 and H3K9me3.  A broad genomic 

region with several L1 encoded segments that overlap the H3K4me3-H3K9me3 

signatures can be seen in Figure 6.8.B. 

 

 

 

 
Figure 6.8: A bivalent chromatin signature associated with L1 retrotransposons.  

(A) Histone modification enrichment profiles (as described for Figure 6.2) for the 

bivalent signature.  (B) A single genomic region with three locations marked by the L1 

characteristic bivalent signature.  
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This particular bivalent pattern has previously been associated with imprinted 

genomic loci wherein genes tend to be expressed in a mono-allelic fashion based on the 

parent of origin for the allele (16).  Interestingly, a number of studies have also shown 

that L1 retrotransposons are enriched in-and-around imprinted genomic loci (166-169).  

Thus, the enrichment of these bivalent signatures on L1 retrotransposons may point to a 

chromatin based mechanism by which L1 sequences contribute to the mono-allelic 

expression of human genes.  On the other hand, such bivalent patterns may actually result 

from ChIP-seq analyses performed heterogeneous cell populations with the locations in 

some cells marked by active modifications and others with repressive modifications.  In 

this case, the patterns revealed by the algorithm would represent an artifact of the ChIP-

seq experimental design. 

Large-sized chromatin signatures 

The ChAT algorithm places no restriction on the size of chromatin signatures that 

it can identify, and we found 27 large-sized signatures in CD4+ T cells ranging from 

10kb – 100kb in length.  These large-sized chromatin signatures can be classified into 

two groups.  The first group contains long contiguous co-located blocks of repressive 

marks, presumably representing heterochromatic or repressive chromatin domains.  The 

second group shows more complex and potentially interesting patterns resembling the 

known H3K4me3-H3K36me3 domains, which are associated with gene bodies and long 

non-coding RNAs (3,8,170).  For example, the signatures shown in Figure 6.9.A and 

6.9.B (see also Figures E.2 and E.3) are characterized by the presence of similar active 

marks albeit over different size ranges.  In both cases, the long chromatin signatures show 

punctate enrichments of several active marks at one end of the pattern together with 
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broader enrichments of different active marks throughout the rest of the signature.  These 

two large-sized signatures show substantial overlaps with gene bodies (Figure 6.9.C), 

suggesting the utility of ChAT for annotating genes.  

However, while more than 90% of these two large-sized signatures do overlap 

with known gene bodies (Figure 6.9.D), there is still a small fraction which does not 

overlap with gene bodies.  For example, Figure 6.9.E shows two specific genomic 

regions where the signatures do not overlap with annotated gene models.  Inspection of 

RNA-seq and spliced EST data from these regions suggests the possibility that the 

regions marked by these chromatin signatures represent as yet uncharacterized alternative 

promoters of nearby genes.  

The biggest difference in the enrichment levels for any individual mark between 

these two patterns is seen for H3K36me3, a mark of transcriptional elongation (3,7).  

Consistent with this observation, genes marked by these two chromatin signatures show 

different expression levels in CD4
+
 T cells (p=0.016; Figure 6.9.F).  These data 

underscore the functional relevance of slight differences in chromatin signatures that are 

able to be distinguished by the ChAT algorithm.  
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Figure 6.9: Large-sized chromatin signatures associated with gene bodies.  (A & B) 

Histone modification enrichment profiles are shown for two chromatin signatures 

composed of the same constituent modifications and spatial patterns with distinct sizes.  

(C) Specific instances of each signature co-located with human gene bodies.  (D) 

Percentage of these two large-sized signatures that overlapping with gene bodies 

(grey=any coverage, blue>50% coverage, orange>80% coverage, red >95% coverage of 

the gene body).  (E) Two examples where signature B is co-located with individual 

genomic regions that are annotated as intergenic but show evidence of being genic.  (F) 

Average CD4+ T cell expression levels for genes marked by signatures A and B.  
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Both of these long chromatin signatures show enrichment of H4K20me1 and 

H3K79me3 that tend to be located within gene bodies and start just downstream of TSS 

(Figure 6.9.A-C).  This suggests the possibility that these marks are associated with 

transcriptional pause release, a phenomenon whereby Pol II complexes paused at 

promoter regions are allowed to proceed into gene bodies to facilitate active transcription 

of the genes (171,172).  Previously, the relative levels of bound Pol II seen in promoter 

proximal versus downstream regions have been used to evaluate the extent of 

transcriptional pause release (173,174).  Here, we show that the ratio of gene body-to-

TSS Pol II density is positively correlated with the gene body levels of H4K20me1 

(Figure 6.10.A) and H3K79me3 (Figure 6.10.B) consistent with a role for these marks in 

transcriptional pause release.     

The discoveries of those complex large-sized signatures highlight the 

performance of ChAT with respect to several aspects of the algorithm design.  First of all, 

the large-size of these signatures underscores the advantage of predicting chromatin 

signatures without size restrictions.  Second, the prediction of large-sized signatures was 

facilitated by the ability of the algorithm to extend histone modification profile 

alignments through the use of gaps in the dynamic programming implementation.  Third, 

the complex histone modification enrichment profiles apparent in these signatures, i.e. the 

specific enrichments of several histone modifications over a narrow range of the pattern 

and the broad enrichments of other marks in the rest of the pattern, demonstrates the 

ability of the algorithm to detect patterns with spatially shifted multi-modal enrichments 

of multiple modifications.  
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Figure 6.10: Transcriptional pause release associated with H4K20me1 and 

H3K79me3.  The ratio of Pol II density downstream of TSS (+1kb~+5kb) over its 

density around TSS (-1kb~+1kb) is positively correlated with the density of downstream 

H4K20me1 (A, Spearman‟s ρ=0.54) and H3K79me3 (B, Spearman‟s ρ=0.51). 

 

 

 

Conclusions 

We developed ChAT (Chromatin-profile Alignment followed by Tree-clustering) 

an unsupervised algorithm for the discovery and characterization of recurrent 

combinatorial histone modification patterns, i.e. chromatin signatures.  ChAT utilizes a 

novel dynamic programming and hierarchical clustering approach to relate and group 

similar chromatin signatures dispersed across the genome.  The algorithm was explicitly 

designed to provide complementary utility with respect to existing methods.  For 

example, ChAT can identify chromatin signatures across a vast range of different sizes, it 

finds multi-modal chromatin signatures composed of individual histone modifications 
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that are spatially shifted as well as complex signatures composed of conserved and 

variant segments, and ChAT can also distinguish between chromatin signatures that are 

made up of the same constituent histone modifications with different shapes.  The 

algorithm also employs an explicit statistical criterion that provides confidence levels for 

the grouping of similar chromatin signatures.   

We applied ChAT to the analysis of genome-wide histone modification maps in 

human CD4
+
 T cells.  The algorithm was able to discern combinatorial histone 

modification patterns previously observed to be associated with genomic regulatory 

features such as TSS and enhancers, serving as a proof of its utility for the discovery of 

functionally relevant chromatin signatures.  Perhaps more interestingly, we were also 

able to discover a number of previously unknown chromatin signatures with ChAT.  For 

example, we discovered novel chromatin signatures associated with TTS, enhancers and 

CNEs.  We were also able to uncover functional associations, based on enrichment of 

chromatin signatures at specific genomic regulatory features, which point to novel 

chromatin based mechanisms of gene regulation.  For example, we found evidence for 

the role of complex chromatin signatures, made up of numerous co-located histone 

modifications, in the cell-type specific regulation of human genes.  We also found 

evidence suggesting that L1 retrotransposons can influence the mono-allelic expression 

of human genes by creating a local genomic environment enriched for specific bivalent 

chromatin signatures.  Finally, novel long chromatin signatures found to be associated 

with human genes suggest a role for the H4K20me1 and H3K79me3 histone 

modifications in transcriptional pause release.  The discovery of these novel chromatin 

signatures and functional associations underscores the potential utility of the algorithm to 
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provide novel biological insight and to help focus future experimental efforts for the 

characterization of chromatin based regulatory mechanisms.  
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CHAPTER 7 

CONCLUSIONS 

 

 

 

In summary, this dissertation is composed of five computational algorithms 

developed for ChIP-seq datasets of epigenomics research. The first two algorithms 

belong to the basic data processing field, and they serve essentially to reduce noise and 

retrieve real genomic locations of histone modifications and/or transcription factors. In 

CHAPTER 2, a read mapping algorithm is developed to deal with ambiguous ChIP-seq 

tags, and in CHAPTER 3 a peak calling method is designed to identify broad peaks for 

diffuse ChIP-seq signals. The next three algorithms are question-driven methods that 

apply pattern recognition techniques for basic biological discoveries. While CHAPTER 4 

focuses on a hypothesis-driven pipeline for insulator predictions, CHAPTER 5 introduces 

an unbiased hypothesis-free approach for predicting chromatin boundary elements. In 

CHAPTER 6, an unsupervised algorithm is developed to explore novel combinatorial 

chromatin signatures that are associated with various genomic features. 

While next-generation sequencing technologies have produced large amounts of 

sequence tags that make many large-scale biological analyses applicable now, the very 

short sequences cause new computational problems when they are mapped back to the 

reference genomes. One problem is related to the ambiguity of multi-mapping tags. 

CHAPTER 2 presents a Gibbs sampling strategy to solve this problem. Theoretical 

derivations are discussed, and it guarantees the optimality of the performance from the 

Bayesian statistics point of view. Applying the method on simulated datasets, it has 

substantial improvements on the fractions of correctly mapped ambiguous reads 
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compared with previous methods. Furthermore, the accuracy of recovering the real sites 

is also improved by using this algorithm. More detailed analysis of the recovered sites in 

different repetitive genomic regions supports the utility of this algorithm for finding more 

signals within those previously under-investigated regions. 

As another critical step for basic data processing, several peak calling methods 

have been developed. Most of those methods restricted on calling sharp peaks that are 

characteristic for transcription factors and some histone modifications. There are certain 

histone modifications well known for their diffuse distributions and methods for 

identifying broad peaks are lacking. CHAPTER 3 presents a maximal scoring segment 

algorithm based method for broad peak calling. A parameter estimation module is 

constructed using Gibbs sampling procedures on non-homogeneous Poisson processes. 

The global observations of the shifted enrichments of H3K36me3 and H3K79me2 broad 

peaks along gene bodies, along with the enrichments of CTCF bindings around the edges 

of the resulted H3K27me3 broad peaks, indicate that the performance of this algorithm 

fits well with a priori biological knowledge. Evaluations on simulated datasets further 

prove the superior performance compared with existing methods for large broad peak 

calling. 

One of the important epigenomics question relates to the identity and locations of 

insulator elements in the human genome. Inspired by experimental observations 

summarized from a subset of insulators, a hypothesis-driven pipeline is designed in 

CHAPTER 4 to predict locations of a subset of insulators: MIR-insulators. This pipeline 

integrates both genomics and epigenomics features and finally generated a set of 1,178 

MIR-insulators in CD4
+
 T cells in the human genome. Several selected MIR-insulators 
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are experimentally tested using EBAs in both human kidney cell lines and zebrafish 

embryos. Specific local chromatin signatures are found for the putative MIR-insulators. 

Their distance distributions to TSS imply the evolutionary dynamics of insulators. 

Functional annotations of genes proximal to those MIR-insulators show an interesting 

enrichment of TCR pathway. This observation, along with specific examples, raises the 

importance of MIR-insulators on cell type specific regulations. A global analysis of those 

MIR-insulators found a large fraction of them to be functional in a cell type specific 

manner. 

A related, but different, type of regulatory element is chromatin boundary 

elements. These boundary elements play an important role in epigenomics because they 

can organize large-scale chromatin domain configurations and presumably related with 

three-dimensional structures. In order to address the lack of unified features of the 

currently known barriers, CHAPTER 5 developed an unbiased hypothesis-free algorithm 

to search for boundary elements in an attempt to discovering novel features. In order to 

do that, chromatin boundaries are modeled as transition points between chromatin states 

and a HMM based method is designed. As an indication of the good performance, the 

canonical boundary element, BEAD1 element, is successfully found. The resulted 

boundaries can be classified into CTCF dependent and independent groups. To search for 

novel features, sequence analysis shows a set of transcription factor binding motifs 

enriched within the predicted boundaries. It includes EVI1, CREBP1, USF and YY1. All 

of these proteins have interesting interactions with chromatin modifying enzymes, and 

USF has even been shown to be related to one canonical boundary element 

experimentally before. The most interesting feature analysis comes from the finding of a 
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subset of boundaries containing non-coding RNA genes. It is the first report of potential 

non-coding RNA gene, specifically tRNA, derived boundaries in the human genome, 

although similar observations were found in yeast and mouse before.  This computational 

predication was later experimentally confirmed. 

 Given the large number of different histone modifications existing in the genome, 

the complex relationships between combinations of histone modifications and various 

genomic features have been an important topic in epigenomics research. CHAPTER 6 

built an unsupervised algorithm for the discovery of combinatorial chromatin signatures 

in the genome. This algorithm is based on a high-dimensional profile alignment strategy 

and bears a set of inherent advantages compared to previous methods, such as free of size 

restrictions, the capability of finding multi-mode patterns, the discrimination between 

patterns with different profile shapes and the statistical criteria for pattern identifications. 

Applications of this method on human CD4
+
 T cell epigenome datasets produced a set of 

interesting combinatorial chromatin signatures. These signatures are further analyzed by 

comparing with various genomic features. These associations support the performance of 

this method for discovering novel combinatorial chromatin signatures and the utility of 

this algorithm for biological research. 



147 

 

APPENDIX A 

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

 

 

 

Table A.1. Parameters of sequence tag libraries. 

 

 

 

 

 

 

 

 

 

 

 

 

Libraries tag length signal to noise ratio sequencing error 

rate 

Library 1 35 99 2/5L 

Library 2 35 99 4/5L 

Library 3 35 9 2/5L 

Library 4 35 9 4/5L 

Library 5 20 99 2/5L 

Library 6 20 99 4/5L 

Library 7 20 9 2/5L 

Library 8 20 9 4/5L 

Big Library 20 9 4/5L 
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 Table A.2. Comparison of the number of sites identified using unique tags only 

versus using unique and ambiguous tags with the Gibbs sampling method. 

 

  Lib 1 Lib 2 Lib 3 Lib 4 Lib 5 Lib 6 Lib 7 Lib 8 Lib Big 

th Total site 51278 51278 51278 51278 51278 51278 51278 51278 173877 

4 Unique 42886 42454 42729 42302 38631 36760 38515 36729 144751 

Unique TP 42869 42446 42712 42290 38625 36759 38515 36729 144638 

Gibbs 46127 45857 45957 45762 43848 43225 43693 43036 162991 

Gibbs TP 45470 45264 45315 45124 43123 42551 43002 42347 162501 

Improvement 2601 2818 2603 2834 4498 5792 4498 5624 17863 

Fraction 5.07% 5.50% 5.08% 5.53% 8.77% 11.30% 8.77% 10.97% 10.27% 

6 Unique 41264 40600 41120 40454 36364 32253 36284 32100 126452 

Unique TP 41262 40599 41118 40452 36363 32252 36282 32099 126402 

Gibbs 45142 44500 44957 44369 42383 41347 42254 41229 158139 

Gibbs TP 44622 44060 44452 43902 41826 40879 41724 40734 157929 

improvement 3360 3461 3334 3450 5463 8627 5442 8635 31527 

fraction 6.55% 6.75% 6.50% 6.73% 10.65% 16.8% 10.61% 16.84% 18.13% 

8 Unique 39351 37967 39214 37856 32816 24852 32667 24918 98044 

Unique TP 39350 37966 39214 37855 32815 24851 32666 24918 98018 

Gibbs 43520 42023 43317 41879 40631 38340 40501 38287 149200 

Gibbs TP 43115 41705 42921 41555 40221 38031 40098 37950 149076 

improvement 3765 3739 3707 3700 7406 13180 7432 13032 51058 

fraction 7.34% 7.29% 7.23% 7.22% 14.44% 25.70% 14.49% 25.41% 29.36% 
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Figure A.1. Recall and precision of 3 algorithms under various tag count thresholds 

(4 tags and 8 tags). A. Illustration of data used to test algorithm performances. B. 

Variant tag thresholds could cause differences in the performance test. The lines (red and 

green) are two tag thresholds. C. Barplots of recall and precision for the three methods 

(MAQ-dark blue, fraction method-light blue, Gibbs method-green) on 8 libraries under 

tag thresholds = 4 and 8. 
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Table A.3. Algorithm performance on 8 sequence tag libraries. 

 
Th libraries sites to 

recover 

MAQ MAQ 

(TP) 

Fraction 

method 

Fraction 

method (TP) 

Gibbs Gibbs 

(TP) 

 

 

 

 

4 

library 1 8409 2581 1435 3558 2387 3241 2601 

library 2 8832 2378 1395 3434 2452 3403 2818 

library 3 8566 2573 1444 3490 2352 3228 2603 

library 4 8988 2378 1418 3397 2432 3460 2834 

library 5 12653 3009 1997 4737 3588 5217 4498 

library 6 14519 3409 2643 5583 4669 6465 5792 

library 7 12774 3077 2049 4806 3628 5178 4498 

library 8 14555 3384 2594 5462 4544 6307 5624 

 

 

 

 

6 

library 1 10016 1912 1366 3164 2582 3878 3360 

library 2 10679 1749 1325 2994 2580 3900 3461 

library 3 10160 1849 1371 3110 2579 3837 3334 

library 4 10826 1699 1303 2968 2555 3915 3450 

library 5 14915 2718 2287 4777 4230 6019 5463 

library 6 19026 4155 3883 7427 7060 9094 8627 

library 7 14996 2701 2282 4699 4140 5970 5442 

library 8 19179 4264 3979 7469 7094 9129 8635 

 

 

 

 

8 

library 1 11928 1476 1258 2875 2632 4169 3765 

library 2 13312 1352 1186 2685 2533 4056 3739 

library 3 12064 1446 1252 2753 2521 4103 3707 

library 4 13423 1309 1176 2643 2491 4023 3700 

library 5 18463 3186 3032 6174 5930 7815 7406 

library 6 26427 5868 5798 11547 11425 13488 13180 

library 7 18612 3256 3089 6190 5944 7834 7432 

library 8 26360 5633 5553 11428 11282 13369 13032 
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Table A.4. Algorithm performance for recall and precision together.   

 
thresholds 4 6 8 

criteria recall precision F recall precision F recall precision F 

Library_1 MAQ 0.17 0.56 0.26 0.14 0.71 0.23 0.11 0.85 0.19 

Fraction 0.28 0.67 0.39 0.26 0.82 0.39 0.22 0.92 0.36 

Gibbs 0.31 0.80 0.45 0.34 0.87 0.49 0.32 0.90 0.47 

Library_2 MAQ 0.16 0.59 0.25 0.12 0.76 0.21 0.09 0.88 0.16 

Fraction 0.28 0.71 0.40 0.24 0.86 0.38 0.19 0.94 0.32 

Gibbs 0.32 0.83 0.46 0.32 0.89 0.47 0.28 0.92 0.43 

Library_3 MAQ 0.17 0.56 0.26 0.13 0.74 0.22 0.10 0.87 0.18 

Fraction 0.27 0.67 0.38 0.25 0.83 0.38 0.21 0.92 0.34 

Gibbs 0.30 0.81 0.44 0.33 0.87 0.48 0.31 0.90 0.46 

Library_4 MAQ 0.16 0.60 0.25 0.12 0.77 0.21 0.09 0.90 0.16 

Fraction 0.27 0.72 0.39 0.24 0.86 0.38 0.19 0.94 0.32 

Gibbs 0.32 0.82 0.46 0.32 0.88 0.47 0.28 0.92 0.43 

Library_5 MAQ 0.16 0.66 0.26 0.15 0.84 0.25 0.16 0.95 0.27 

Fraction 0.28 0.76 0.41 0.28 0.89 0.43 0.32 0.96 0.48 

Gibbs 0.36 0.86 0.51 0.37 0.91 0.53 0.40 0.95 0.56 

Library_6 MAQ 0.18 0.78 0.29 0.20 0.93 0.33 0.22 0.99 0.36 

Fraction 0.32 0.84 0.46 0.37 0.95 0.53 0.43 0.99 0.60 

Gibbs 0.40 0.90 0.55 0.45 0.95 0.61 0.50 0.98 0.66 

Library_7 MAQ 0.16 0.67 0.26 0.15 0.84 0.25 0.17 0.95 0.29 

Fraction 0.28 0.75 0.41 0.28 0.88 0.42 0.32 0.96 0.48 

Gibbs 0.35 0.87 0.50 0.36 0.91 0.52 0.40 0.95 0.56 

Library_8 MAQ 0.18 0.77 0.29 0.21 0.93 0.34 0.21 0.99 0.35 

Fraction 0.31 0.83 0.45 0.37 0.95 0.53 0.43 0.99 0.60 

Gibbs 0.39 0.89 0.54 0.45 0.95 0.61 0.49 0.97 0.65 

Library_Big MAQ 0.28 0.92 0.43 0.30 0.99 0.46 0.29 1.00 0.45 

Fraction 0.46 0.95 0.62 0.53 0.99 0.69 0.56 1.00 0.72 

Gibbs 0.61 0.98 0.75 0.66 0.99 0.79 0.67 1.00 0.80 
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Table A.5. Algorithm performance on the bigger sequence tag library. 

 
Th sites to 

recover 

MAQ MAQ 

 (TP) 

Fraction 

method 

Fraction 

method (TP) 

Gibbs Gibbs 

(TP) 

4 29239 8963 8272 14330 13594 18240 17863 

6 47475 14475 14314 25181 25034 31687 31527 

8 75859 21700 21655 42789 42746 51156 51058 
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APPENDIX B 

SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

 

 

 

Table B.1: The summary of recall, precision and F score for BroadPeak, SICER and 

RSEG on simulated libraries with different overlapping criterion. 

 
 

Feature 
 

Software 
overlap criteria = 20% overlap criteria = 50% overlap criteria = 80% 

dataset 

1 

dataset 

2 

dataset 

3 

datase

t 1 

dataset 

2 

dataset 

3 

dataset 

1 

dataset 

2 

dataset 

3 

 
Recall 

BroadPeak 0.44 0.53 0.55 0.39 0.46 0.51 0.38 0.43 0.47 

SICER 0.07 0.07 0.07 0.04 0.04 0.04 0.03 0.03 0.03 

RSEG 0.60 0.38 0.19 0.31 0.21 0.12 0.24 0.18 0.11 

 
Precision 

BroadPeak 0.69 0.74 0.73 0.60 0.66 0.64 0.55 0.60 0.58 

SICER 0.78 0.84 0.89 0.66 0.74 0.82 0.52 0.63 0.74 

RSEG 0.29 0.65 0.89 0.24 0.55 0.82 0.18 0.44 0.71 

 
F score 

BroadPeak 0.54 0.62 0.63 0.47 0.54 0.57 0.45 0.50 0.52 

SICER 0.12 0.12 0.13 0.08 0.07 0.08 0.06 0.06 0.06 

RSEG 0.39 0.48 0.31 0.27 0.30 0.21 0.21 0.26 0.19 
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Figure B.1: Enrichment of CTCF binding around broad peak edges of H3K9me3 

identified by BroadPeak. The blue curve shows the enrichment profile of H3K9me3 

within and around the identified broad peaks and the pink curve shows the enrichment 

profile of CTCF binding. 
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Figure B.2: Examples of H3K36me3 broad peaks identified by supervised and 

unsupervised parameter estimations. Examples of the supervised peaks (red) and 

unsupervised peaks (purple) are compared with the gene bodies (blue) and the tag 

profiles of H3K36me3 (orange). 
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Figure B.3: Examples of broad peak calling by BroadPeak, SICER and RSEG on 

one simulated library. The identified broad peaks by RSEG (purple), SICER (orange) 

and BroadPeak (red) are compared with the real peaks and the tag profiles (blue). 
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Figure B.4: The size distributions of broad peaks identified by BroadPeak, SICER 

and RSEG. 
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APPENDIX C 

SUPPLEMENTARY INFORMATION FOR CHAPTER 4 

 

 

 

 
Figure C.1:  Scheme illustrating the MIR-insulator computational validation 

procedure. 
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Table C.1: Spearman correlations between upstream and downstream histone 

modification levels across putative MIR-insulators. 

 
Histone 

modifications 

Spearman 

correlations 

 

P value 

H2AK5ac -0.23 2.3E-8 

H2AK9ac -0.79 3.1E-81 

H2BK5ac -0.39 1.2E-41 

H2BK12ac -0.47 2.7E-55 

H2BK20ac -0.24 3.7E-16 

H2BK120ac -0.36 5.9E-36 

H3K4ac -0.41 1.4E-44 

H3K9ac -0.55 1.3E-82 

H3K14ac -0.85 1.6E-21 

H3K18ac -0.20 3.1E-12 

H3K23ac -0.76 3.6E-61 

H3K27ac -0.37 2.3E-37 

H3K36ac -0.43 4.9E-49 

H4K5ac -0.32 1.7E-27 

H4K8ac -0.28 9.6E-21 

H4K12ac -0.70 8.5E-84 

H4K16ac -0.44 5.7E-45 

H4K91ac -0.33 6.8E-29 

H2AZ -0.18 10.0E-10 

H2BK5me1 -0.36 3.7E-34 

H3K4me1 -0.06 1.5E-2 

H3K4me2 -0.38 4.1E-41 

H3K4me3 -0.32 1.0E-29 

H3K9me1 -0.41 5.0E-49 

H3K9me2 -0.78 1.6E-37 

H3K9me3 -0.63 6.5E-48 

H3K27me1 -0.42 3.4E-47 

H3K27me2 -0.72 7.2E-66 

H3K27me3 -0.47 1.0E-31 

H3K36me1 -0.70 1.0E-56 

H3K36me3 -0.43 3.7E-52 

H3K79me1 -0.54 3.2E-80 

H3K79me2 -0.72 3.5E-146 

H3K79me3 -0.69 3.4E-139 

H3R2me1 -0.33 6.6E-20 

H3R2me2 -0.72 1.2E-12 

H4K20me1 -0.45 1.3E-55 

H4K20me3 -0.64 1.2E-17 

H4R3me2 -0.82 1.6E-29 
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Figure C.2:  Scheme and results of the principal components analysis around 

predicted MIR-insulators.  Above, the joined histone modification arrays are shown 

along the first three principal component arrays that result from the PCA analysis.  

Below, a three-dimensional plot showing the locations of individual active (red) and 

repressive (blue) histone modifications in the principal component space. 
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Figure C.3:  Cumulative distributions of the CD4+ T cell gene expression levels for 

MIR-insulator proximal genes.  
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Figure C.4:  Cumulative distributions of the differences in the gene expression levels 

for genes proximal to MIR-insulators.  Difference distributions are shown for CD4+ T 

cell expression levels (orange) and for expression levels across 78 different tissues (grey). 
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Table C.2: Genomic coordinates of three MIR-insulators and their corresponding 

primers for EBA validations. 

 
MIR element 

locations 

Type Coordinates of 

tested sequences 

Size 

(bp) 

Primer 

ID 

Primer Sequences 

 
chr1:23555914-

23556047 

 
MIR 

chr1:23555859-
23556088 

230 1 ATACACTCGAGATGCATGATATGGC
CCAGTGATGGTC 

2 ATACACTCGAGATGCATAGTCATGC
CCATACCACCTC 

chr1:23555438-

23556521 

1084 3 ATACACTCGAGATGCATTGATTGGG

ATAAACCCAGGA 

4 ATACACTCGAGATGCATTCCCATTGC

ATGATCTGTTT 

 

chr2:97999554-

97999807 

 

MIR 

chr2:97999495-

97999868 

374 5 ATACACTCGAGCTGCAGTGAACATA

GGAGGGGAGGTG 

6 ATACACTCGAGCTGCAGAAGATGAT

CCACCCTGCAAT 

chr2:97999109-

98000252 

1144 7 ATACACTCGAGCTGCAGAGGAGCCA

GTCACAGAAGGA 

8 ATACACTCGAGCTGCAGTGCTTTGA

AACCCTTTACGC 

 

chr11:82289556
-82289817 

 

MIRb 

chr11:82289550-

82289843 

294 9 ATACACTCGAGATGCATAACGGCAA

TAACAGCTACCA 

10 ATACACTCGAGATGCATTAGGGAGT

GGTTAGGCTCCA 

chr11:82289143-
82290278 

1136 11 ATACACTCGAGATGCATCAGAAGCG
CACAGGCTAAG 

12 ATACACTCGAGATGCATAGTCTTTCT
CCCCGACAGGT 
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Figure C.5:  Distance distributions between MIR-insulators and the nearest gene 

promoters.  Median values of the distributions are shown in blue on each plot. 
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Figure C.6:  T cell receptor pathway illustration from KEGG database.  Genes 

located proximal to MIR-insulators, on the active domain side, are highlighted in red. 
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Figure C.7:  Cell type-specific chromatin barrier activity and gene regulation by 

MIR-insulators from the T cell receptor pathway.  ChIP-seq fold enrichment levels 

around MIR-insulators proximal to the 21 T cell receptor genes are shown for H3K4me3, 

H3K36me3 and H3K27me3 in CD4+ T cells (black), GM12878 cells (red) and K562 

(orange) cells.  Insets show the average differences (± standard error) between the active 

versus repressive domains surrounding MIR-insulators for the marks and cells.  

Significance of the differences between CD4+ T cells and other cells are indicated as * 

P<0.05 ** P<0.01 *** P<0.001.  Average gene expression levels (± standard error) are 

shown for genes located in the active domain side proximal to MIR-insulators at the 21 T 

cell receptor genes.  
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APPENDIX D 

SUPPLEMENTARY INFORMATION FOR CHAPTER 5 

 

 

 

Table D.1: Sequence features of RITs and predicted boundary elements. 

 

 RIT Boundary element 

Median size 68.6kb 8kb 

GC content 0.421 0.423 

CpG O/E 0.229 0.316 

Genic fractions 43.0% 40.9% 

 
1
The ratio of observed CpG frequency to expected CpG frequency. 

2
The length fractions of regions within gene bodies. 
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Figure D.1: Example of predicted chromatin domains. An ideogram of chromosome 2 

shows the cytogenetic banding pattern along with the location of this specific example.  

The distributions of ChIP-seq tag mapping peaks for the active histone modification (red 

bars), the repressive histone modification (blue bars) are shown in separate tracks.  The 

predicted euchromatic domains (red bands) and heterochromatic domains (blue bands) 

are shown in the tracks denoted as „Euchromatin‟ and „Heterochromatin‟. 
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Table D.2: Enriched gene ontology and KEGG terms of genes in predicted 

euchromatin domains with high gene densities. 

 

 Term P-value 

 

 

Gene 

Ontology 

ATP dependent helicase activity 0.039 

Defense Response 0.045 

Glycerophospholipid Biosynthetic Process 0.056 

Regulation of Response to External Stimulus 0.069 

Inflammatory Response 0.070 

 

KEGG 

Pathway 

Systemic Lupus Erythematosus 0 

Antigen Processing and Presentation 0.017 
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Figure D.2: Examples of predicted boundary elements with CTCF binding. The 

predicted boundary elements are shown as green bands.  ChIP-seq peaks for active and 

repressive histone modifications, along with the locations of euchromatic domains and 

heterochromatic domains are illustrated as separate tracks (as in Figure D.1). 
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Figure D.3: Example of a predicted boundary element without CTCF binding. The 

predicted boundary element is shown as green bands.  ChIP-seq peaks for active and 

repressive histone modifications, along with the locations of euchromatic domains and 

heterochromatic domains are illustrated as separate tracks (as in Figure D.1). 
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Figure D.4: The predicted boundary element overlapping with BEAD-1. The 

predicted boundary element is shown as the green band.  ChIP-seq peaks for active and 

repressive histone modifications, along with the locations of euchromatic domains and 

heterochromatic domains are illustrated as separate tracks (as in Figure D.1). 
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Figure D.5: Overlaps between conserved TFBSs. A. Heatmap showing the degrees of 

pairwise overlaps between TFBSs; B. Matrix showing the numbers of pairwise overlaps 

between TFBSs; C. List of numbers of all observed combinations of TFBSs. 
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Figure D.6: Enrichment profiles around boundary elements of histone modifications 

which show distinct peaks. The average fold enrichments (y-axis) of individual histone 

modifications are ploted for the predicted boundary elements (8kb), the heterochromatin 

sides (8kb) and the euchromatin sides (8kb). 
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Figure D.7: Enrichment profiles around boundary elements of histone modifications 

which increase from heterochromatin to euchromatin. The average fold enrichments 

(y-axis) of individual histone modifications are ploted for the predicted boundary 

elements (8kb), the heterochromatin sides (8kb) and the euchromatin sides (8kb). 
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Figure D.8: Enrichment profiles around boundary elements of histone modifications 

which decrease from heterochromatin to euchromatin. The average fold enrichments 

(y-axis) of individual histone modifications are ploted for the predicted boundary 

elements (8kb), the heterochromatin sides (8kb) and the euchromatin sides (8kb). 
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APPENDIX E 

SUPPLEMENTARY INFORMATION FOR CHAPTER 6 

 

 

 

Table E.1: Enrichments of small-size combinatorial histone modification patterns 

with functional genomic features.  

 

Genomic 

Features 

No. patterns enriched 

with FE
a
>3  

No. patterns 

enriched with FE>5 

No. patterns 

enriched with 

FE>8 

TSS
b
 36 (25.0%) 21 (14.6%) 8 (5.6%) 

TTS
c
 9 (6.3%) 0 0 

p300
d
 18 (12.5%) 16 (11.1%) 12 (8.3%) 

DNase I
e
 60 (41.7%) 51 (35.4%) 40 (27.8%) 

CNE
f
 144 (100.0%) 142 (98.6%) 137 (95.1%) 

 
a
FE: ratios of the fractions of patterns overlapping with the specific features over the 

genomic fractions of the corresponding features. 
b
TSS: transcription start site. 

c
TTS: transcription termination site. 

d
p300: binding sites of p300. 

e
DNase I: DNase I hypersensitive sites. 

f
CNE: Conserved non-coding elements predicted based on sequence alignments of 28 

vertebrate species (data downloaded from UCSC genome browser).  
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Figure E.1: Histone modification profiles for H3K36me3-H3K9me3 bivalent 

pattern. Genomic locations with this specific bivalent pattern are aligned and levels of 

H3K36me3 and H3K9me3 are shown as heatmaps on the left (yellow - higher levels, 

blue - lower levels). The average profiles of histone modifications of this pattern are 

shown on the right. 
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Figure E.2: Average histone modification profiles for the large pattern example A. 

Each curve shows the average profile of a specific histone modification of genomic 

locations with the same pattern. 
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Figure E.3: Average histone modification profiles for the large pattern example B. 

Each curve shows the average profile of a specific histone modification of genomic 

locations with the same pattern. 
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