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SUMMARY 
 
 
 

Hydrothermal systems at oceanic spreading centers play an important role in the 

composition of seawater, the formation of ore deposits, the support of microbial and 

macrofaunal  ecosystems, and even for the development of life on early earth. These 

circulation systems are driven by heat transport from the underlying magma chamber, 

where latent heat of crystallization and sensible heat from cooling are transferred by 

vigorous, high Rayleigh number convection through a thin conductive boundary layer.  

The traditional study of magmatic-hydrothermal systems is primarily based on the 

time-series observation, which takes the form of repeat visits, continuous offline 

monitoring by autonomous instruments, or continuous online monitoring by instruments 

with satellite or cable links to shore. Although a number of studies have deployed 

autonomous monitoring instruments at vents and around mid-ocean ridges to investigate 

geophysical and hydrothermal processes, the data are still rather limited and a 

comprehensive understanding of magma-hydrothermal processes at oceanic spreading 

centers is lacking. Numerical modeling needs to be employed to elucidate the dynamic 

behavior of magmatic hydrothermal systems and for testing completing hypotheses in 

these complex, data-poor environments. 

In this dissertation, I develop a mathematical framework for investigating heat 

transport from a vigorously convecting, crystallizing, cooling, and replenished magma 

chamber to an overlying hydrothermal system at an oceanic spreading center. The 

resulting equations are solved numerically using MATLAB. The simulations proceed 

step-by-step to investigate several different aspects of the system.  
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First, I consider a hydrothermal system driven by convection, cooling and 

crystallization in a ~ 100 m thick basaltic magma sill representing an axial magma 

chamber (AMC) at an oceanic spreading center. I investigate two different crystallization 

scenarios, crystal-suspended and crystal-settling, and consider both un-replenished and 

replenished AMCs. In cases without magma replenishment, the simulation results for 

crystals-suspended models show that heat output and the hydrothermal temperature 

decrease rapidly and crystallinity reaches 60% in less than ten years. In crystals-settling 

models, magma convection may last for decades, but decreasing heat output and 

hydrothermal temperatures still occur on decadal timescales. When magma replenishment 

is included, the magmatic heat flux approaches steady state on decadal timescales, while 

the magma body grows to double its original size. The rate of magma replenishment 

needed ranges between 5 x 105 and 5 x 106 m3/yr, which is somewhat faster than required 

for seafloor spreading, but less than fluxes to some terrestrial and subseafloor volcanoes 

on similar timescales. The heat output from a convecting, crystallizing, replenished 

magma body that is needed to drive observed high-temperature hydrothermal systems is 

consistent, with gabbro glacier models of crustal production at mid-ocean ridges. 

Secondly, I study the heat transfer model from a parametric perspective and 

examine the effects of both initial magma chamber thickness and magma replenishment 

rate on the hydrothermal heat output. The initial rate of convective heat transfer is 

independent of the initial sill thickness; but without magma replenishment, the rate of 

decay of the heat output varies linearly with thickness, resulting in short convective 

lifetimes and decaying hydrothermal temperatures for sills up to ~ 100m thick.  When 

magma replenishment is included in crystals settling scenarios at constant or 
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exponentially decreasing rates of ~ 10-8 m/s to the base of the sill, growth of the sill 

results in stabilized heat output and hydrothermal temperature on decadal timescales and 

a relatively constant to increasing thickness of the liquid layer. Sills initially ~ 10 m thick 

can grow, in principal, to ~ 10 times their initial size with stable heat output and a final 

melt thickness less than 100m. Seismic data provides evidence of AMC thickness, but it 

can not discriminate whether it denotes initial magma thickness or is a result of 

replenishment. These results suggest that magma replenishment might not be seismically 

detectable on decadal time scales.  Periodic replenishment may also result in quasi-stable 

heat output, but the magnitude of the heat output may vary considerably in crystals 

suspended models at low frequencies; compared to crystals settling models. In these 

models the direct coupling between magmatic and hydrothermal heat output suggests that 

heat output fluctuations might be recorded in hydrothermal vents; but if damping effects 

of the basal conductive boundary layer and the upflow zone are taken into account, it 

seems unlikely that heat output fluctuations on a time scale of years would be recorded in 

hydrothermal vent temperatures or heat output.  

Thirdly, I extend the work to the binary system motivated by the fact that the real 

magmas are multi-component fluids. I focus on the extensively studied binary system, 

diopside-anorthite (Di-An), and investigate the effects of convection of a two-component 

magma system on the hydrothermal circulation system through the dynamic modeling of 

both temperature and heat output. I model the melt temperature and viscosity as a 

function of Di concentration, and incorporate these relations in the modeling of the heat 

flux. Simulations comparing the effects of different initial Di concentrations indicate that 

magmas with higher initial Di concentrations convect more vigorously, which results in 
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faster heat transfer, more rapid removal of Di from the melt and growth of crystals on the 

floor. With magma replenishment, I assume that the magma chamber grows either 

horizontally or vertically. In either case magma replenishment at a constant rate of ~ 10-8 

m3/a can maintain relatively stable heat output of 107-109 Watts and reasonable 

hydrothermal vent temperatures for decades. The final stabilized heat flux increases with 

increasing Di content of the added magma. Periodic replenishment with a 10 year period 

results in temperature perturbations within the magma that also increase as a function of 

increasing Di. With the simple magma model used here, one can not discern conclusively 

whether the decrease in magma temperature between the 1991/1992 and the 2005/2006 

eruptions at EPR 9°50′ involved replenishment with more or less evolved magmas.   

Fourthly, I investigate a high-silica magma chamber as the hydrothermal 

circulation driver. I construct viscosity models for andesite and dacite melts as a function 

of temperature and water content and incorporate these expressions into a numerical 

model of thermal convective heat transport from a high Rayleigh number, well-mixed, 

crystallizing and replenished magma sill beneath a hydrothermal circulation system. 

Simulations comparing the time dependent heat flux from basalt, 0.1wt.% andesite, 

3wt.% andesite, and 4wt.% dacite, indicate that higher viscosity magmas convect less 

vigorously, which results not only in lower heat transport and hydrothermal vent 

temperatures, but also in a lower decay rate of the vent temperature. Though somewhat 

colder, hydrothermal systems driven by unreplenished high-silica melts tend to have a 

longer lifetime than those driven by basalts, assuming a heat output cutoff of 107 Watts. 

As in the basaltic case, magma replenishment at a rate of ~ 3 x 105 – 3 x 106 m3/a can 

maintain relatively stable heat output of 107-109 Watts and hydrothermal vent 
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temperatures for decades. Idealized models of porous flow through the lower crust 

suggest such replenishment rates are not likely to occur, especially for high-viscosity 

magmas such as andesite and dacite. Long term stability of hydrothermal systems driven 

by these magmas requires an alternate means of magma replenishment. 

Finally, the dissertation concludes by discussing some avenues for future work. 

Most important of these are to: (1) couple magma convection with more realistic 

hydrothermal models and (2) link magma chamber processes to better physical models of 

replenishment and eruption.  
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CHAPTER 1. INTRODUCTION 
 
 
  

1.1 Magma-Hydrothermal Activity at Oceanic Spreading Centers 

1.1.1 Seafloor hydrothermal systems 

Mid-ocean ridges play an important role in the plate-tectonic cycle of our planet. 

The global mid-ocean ridge system extends around approximately 50,000–60,000 km 

across the ocean-floor. At the mid-ocean ridges, oceanic crust and lithosphere are created 

at an average rate of ~3.3 km2/yr [Parsons, 1981; White et al., 1992]. Along the volcanic 

mid-ocean ridges, seawater percolates downward through fractured oceanic crust where it 

is heated and chemically modified through the reaction with the surrounding host rock. 

Eventually, the seawater can reach the maximum temperature that exceeds 400°C. At 

these high temperatures the fluids become extremely buoyant and rise rapidly back to the 

seafloor, where they are expelled into the overlying water column. These seafloor 

hydrothermal systems play an important role in the transport of mass and energy between 

the lithosphere, biosphere and ocean. The heat transfer in submarine hydrothermal 

systems accounts for nearly 25% of the global heat flux from Earth’s interior, and 

approximately 33% of the heat flux through the ocean floor [Williams and Von Herzen, 

1974; Stein and Stein, 1994].  The transfer of mass affects the geochemistry of seawater 

and the crust [e.g., Wolery and Sleep, 1976; Edmond et al., 1979; Von Damm et al., 
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1985;] and is responsible for the formation of ore deposits on the seafloor [e.g., Hekinian 

et al., 1980; Hannington et al., 1995; Rona and Scott, 1993]. 

 

 

 
 
Figure 1.1 Map of the global ridge crest system indicates the major mid-ocean ridge 
sections [German and Von Damm, 2004]. Red circles represent sites where active 
hydrothermal vents have already been found. Orange circles show sites where 
hydrothermal activity is known to exist from the detection of characteristic chemical 
signals in the overlying water column. 

 

 

The discovery of high-temperature hydrothermal vent sites on the seafloor is the 

best evidence of hot hydrothermal circulation at ridge crests. The global distribution of 

hydrothermal vents is shown in Figure 1.1. The first active fields of hot springs in the 

deep sea on the mid-ocean ridges were discovered in 1977 at the Galapagos Spreading 
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Center (GSC) [Corliss et al., 1979]. This was also the first observation of a vent 

biological ecosystem based on chemosynthetic bacteria [Jannasch, 1983]. Subsequently, 

the first high temperature (~ 350 °C) sulfide-laden “black smokers” were discovered on 

the East Pacific Rise (EPR) at latitude 21ºN [Spiess et al., 1980]. In the past three 

decades, more than 300 sites of hydrothermal venting have been discovered and explored 

on the ocean floor [Baker and German, 2004]. High temperature metal-rich, magnesium- 

and sulfate-poor hydrothermal fluids that form black and white smoker chimneys are 

formed along oceanic spreading centers in several major geodynamic settings, including 

the fast [Haymon et al., 1991; Baker et al., 1994], intermediate [Baker and Massoth, 

1987], slow [Rona, 1985; Langmuir et al., 1993]   and ultraslow-spreading ridges [Baker 

et al., 2004; Edmonds et al., 2003], back-arc basins [Fouquet et al., 1991] , arcs [de 

Ronde et al., 2003], and fore arcs [Herzig and Hannington, 1995]. 

Hydrothermal venting occurs on mid-ocean ridge axes with a diversity of thermal, 

structural, and petrological characteristics. Hydrothermal fields exhibit different forms 

depending on the spreading rate. On the fast-spreading East Pacific Rise, black smokers 

(250°C ~ 400°C) typically occur through discrete individual chimneys and chimney 

clusters. Sulfide chimneys are rarely more than 15 m tall [Kelley et al., 2002]. On the 

intermediate-spreading Juan de Fuca Ridge, the most common structures are the large 

multi-flanged irregular sulfide mounds (up to 18 - 20 m tall) that host multiple vigorously 

venting black smoker chimneys on their summits [Tivey and Delaney, 1986; Kelly et al., 

1997]. On the slow-spreading Mid-Atlantic Ridge, for example, the Transatlantic 
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Geotraverse (TAG) hydrothermal field, the black smokers exist on the top of a large 

single large deposit with the diameter of 200 m and height of about 50 m [Humphris et 

al., 1995]. The TAG hydrothermal activity has been episodically active over relatively 

long periods (105 years) [Rona, 1984; 1993b]. Distinctly different from all other known 

sea floor hydrothermal fields, a new class of tectonically hosted hydrothermal field, 

including the low-temperature Saldanha and Lost City sites [Barriga et al., 1998; Kelly et 

al., 2001] and the high-temperature Logatchev and Rainbow vent sites [Charlou et al., 

2002], were discovered on the Mid-Atlantic Ridge. Lost City is located about 15 km 

away from a mid-oceanic ridge and on 1.5 million years old ocean crust. It is a peridotite-

hosted system, characterized by massive carbonate–brucite structures, up to 60 m high, 

rather than sulfide structures typical of black smokers. It represents the first observation 

of the low-temperature venting (40°C ~ 75°C) that may be associated with 

serpentinization-related heat release [Lowell and Rona, 2002] and is the first major 

occurrence of active carbonate chimneys at a vent site [Kelley et al., 2001]. 

Hydrographic, optical, and chemical tracers have all been used to successfully 

identify the venting [Baker et al., 1995]. The first one of such studies was return visits 

during the 1980s to vent fields at 13°N on the East Pacific Rise and in the Galápagos 

Spreading Center. Comparison of known sites between visits revealed that the activity of 

individual vents and entire vent fields can vary substantially at a scale of years, and that 

these fluctuations can strongly affect the abundance and distribution of specialized vent 

fauna [Fustec et al., 1987; Hessler et al., 1988]. During the 1990s, with the capability to 
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access the acoustic listening network in the Northeastern Pacific, researchers were able to 

remotely detect seafloor eruptions on the Juan de Fuca and Gorda Ridges [Fox et al., 

1995]. Meanwhile, our understanding of the hydrothermal and biological consequences 

of magma injection and eruption events have been enhanced greatly through the event-

response studies at eruption sites in this region [Embley et al., 1999] and the 

serendipitous discovery and follow-up investigation of a seafloor eruption at 9°N on the 

East Pacific Rise [Haymon et al., 1993; Shank et al., 1998]. The global importance of 

seafloor hydrothermal processes and the apparent interconnectedness of magma transport, 

crustal structure, seawater circulation and biogeochemical processes have led to focused 

studies at the RIDGE 2000 Integrated Study Sites (ISS), which currently are located on 

the Endeavour Segment of the Juan de Fuca, and the East Lau Spreading Center in the 

Lau Basin [see more detailed information at www.ridge2000.org/science]. These 

pioneering studies documented the impressive capacity of microorganisms [Juniper et al., 

1995; Huber et al., 2003] and vent fauna [Tunnicliffe et al., 1997] to quickly colonize and 

exploit new sources of venting, and motivated new researches into the propagation of 

vent species along the mid-ocean ridges. 

Estimating the heat transfer by hydrothermal circulation through oceanic crust is 

important to understand the evolution of the oceanic crust and its effects on the chemistry 

and the biology of the oceans. Before the discovery of submarine hydrothermal venting, a 

comparison of conductive heat flow data based on the numerical models of the global 
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heat loss from cooling, spreading lithosphere suggested that hydrothermal heat loss was 

an important component of the Earth’s energy budget.  

Figure 1.2 summarizes the early work on heat loss models of hydrothermal 

venting and shows the observed and predicted heat flow versus the age of the ocean 

basins. Figure (a) is summary of earlier results from [Anderson and Skilbeck, 1981]. 

Figures (b), (c) and (d) are the results from Stein and Stein [1994] compared to 

predictions of reference models GDH1 [Stein and Stein, 1992] and PSM [Parsons and 

Sclater, 1977]. Stein and Stein [1994] compare theoretical and observed heat flow data to 

parameterize hydrothermal circulation and find that the advected heat flux caused by 

hydrothermal circulation is significant. About 33% of the total oceanic heat flux occurs 

by advection and approximately 30% of the advected portion of the flux occurs in crust 

younger than 1 Ma. Although the models estimate the global importance of hydrothermal 

heat loss, they do not provide information for an individual vent or vent field.  

Various techniques have been used to determine the heat output from focused 

high-temperature vents. These include measurement of the buoyant plumes above 

discrete vents [e.g., Bemis et al., 1993; Little et al., 1987], and measurements of flow 

velocity, temperature and area of individual vent orifices [e.g. Converse et al., 1984; 

Ginster et al., 1994; Ramondenc et al., 2006] Studies from a number of hydrothermal 

sites show that total heat output from high-temperature vents at a given sites ranges 

between 107-108 Watts.  
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Figure 1.2 Observed and predicted heat flow versus the age of the ocean basins. Figure (a) 
is the summary of earlier results from [Anderson and Skilbeck, 1981]. The predicted 
curve is schematic. Figures (b), (c) and (d) are results from Stein and Stein [1994] 
compared to predictions of reference models GDH1 [Stein and Stein, 1992] and PSM 
[Parsons and Sclater, 1977]. The symbols for observed heat flow are shown in (a). 
Similar sealing ages for all the oceans are indicated, in contrast to the earlier compilation 
which shows the sealing at younger ages in the Pacific [From Stein and Stein, 1994].  

 

 

Diffuse flow has received less attention than focused flow, even though it might 

account for a significant amount of the total hydrothermal heat output at mid-ocean 

ridges. For example, Schultz et al., [1992] estimate that diffuse flow accounts for nearly 

90% of the total heat output at the Main Endeavor Field on the Juan de Fuca Ridge, 
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though Veirs et al. [2006] obtain an estimate of ~50%. Geochemical data shows that 

diffuse flow is a mixture of seawater and high-temperature vent fluid [Von Damm and 

Lilley, 2004], and recent assessments of this data suggest that most of the diffuse heat 

output is ultimately due to the high-temperature component [Germanovich et al., 2010] 

Measurements in the neutrally buoyant plume in the water column above a vent 

field are also used to estimate the total heat flux. Such integrated heat outputs typically 

give larger values than the sum of discrete measurements at individual vents, suggesting 

that these measurements include some part of the diffuse flow. Water column 

measurements typically range between 108 and 109 Watts [see Baker, 2007; Lowell et al., 

2008]. Observed heat output and vent temperature data are summarized in Table 1.1 (see 

corresponding reference for details).   
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Table 1.1 Vent flow characteristics for some seafloor hydrothermal systems 
 

Reference Location 
Vent 
temperature 
(°C) 

Vent Heat 
Flux 
(MW) 

Integrated 
Heat Flux 
Ht (GW) 

Rona and Trivett [1992] Axial Volcano 
(JdFR) 108 - 326 2.4 - 6.4  

Rosenberg et al. [1988] Endeavour 
(JdFR) up to 400   1 - 5 

Schultz et al. [1992] Endeavour 
(JdFR) 7 - 13 53.5 – 

62.9  

Veirs et al. [2006] Endeavour 
(JdFR)  8 - 42  

Ginster et al. [1994] Endeavour 
(JdFR) 296 - 374 3.6 - 87.3 0.29 - 0.44 

Baker and Massoth 
[1986] 

South Cleft 
(JdFR)   0.29 - 0.87 

Baker and Massoth 
[1987] 

Endeavour 
(JdFR)   0.6 - 2.8 

Baker et al. [1993] North Cleft 
(JdFR) 104 - 324 161 - 319 0.48 - 0.96 

Baker [1994] North Cleft 
(JdFR)   0.38 - 0.94 

Gendron et al. [1994] North Cleft 
(JdFR)   1.4 – 4 

Stein and Fisher [2001] Middle Valley 
(JdFR) 180 - 276 0.13  

Lonsdale and Becker 
[1985] 

Southern 
Trough (GB) 270 - 314 86 - 201  

Ramondenc et al. [2006] 9°50′ N (EPR) 345 - 388 40  
McConachy et al. [1986] 11°N (EPR) 347 3.0 - 25  
Macdonald et al. [1980]  21°N (EPR) 344 - 356 0.2 - 0.3  
Converse et al.  [1984] 21°N (EPR) 275 - 350 140 - 300  
Rudnicki and Elderfield 
[1992] TAG (MAR) 360 - 364  0.5 - 0.9 

Rona et al. [1993] TAG (MAR) 365 200 - 250  
Rudnicki and German 
[2002] Kairei (CIR) 360  0.07 - 0.12 

 
Notes: In this table, JdFR stands for Juan de Fuca Ridge, GB for Guaymas Basin, EPR 
for East Pacific Rise, MAR for Mid-Atlantic Ridge and CIR for Central Indian Ridge. 
Modified from [Lowell et al., 2008]. 
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1.1.2 Link between hydrothermal activity and sub-axial magma chamber 

The interplay between the sub-axial magma chamber (AMC) and hydrothermal 

system is shown schematically in Figure 1.3. At nearly all sites of observed high-

temperature venting, seismic reflection data shows the presence of shallow subsurface 

magma bodies beneath the active hydrothermal systems regardless of the spreading rate. 

It is now generally accepted that the AMC represents the heat source that drives the 

hydrothermal circulation [e.g., Kelley et al., 2002; Maclennan, 2008; Lowell et al., 2008, 

2010]. Even at the TAG hydrothermal systems at the slow spreading Mid-Atlantic Ridge 

where no shallow or mid-crustal magma has been detected, the presence of deeper 

magmatic sources has not been ruled out [Canales et al., 2007]. Hydrothermal activity 

also appears to be associated with the recent volcanism at the ultra-slow spreading 

Gakkel Ridge in Arctic Ocean [Michael et al., 2003; Baker et al., 2004] and the 

Southwest Indian Ridge [Sauter et al., 2002; Dick et al., 2003]. Observations from the 

21°N sites on EPR have indicated the considerable stability of hydrothermal venting in 

temperature and composition lasting for more than two decades [Campbell et al., 1988; 

Von Damm et al., 2002]. The TAG hydrothermal field at the Mid-Atlantic Ridge has a 

near constant fluid composition from 1986 until 2003 [German and Lin, 2004]. The 

steady state character of seafloor hydrothermal systems has been linked to magma 

replenishment at rates similar to those observed at basaltic volcanoes [Lowell and 

Germanovich, 1994; Humphris and Cann, 2000]. However, such constancy can be 
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interrupted. Both the temperature and composition of fluids existing at vent sites can 

change significantly with time, apparently in direct response to volcanic activity and/or 

dike emplacement beneath the seafloor [Butterfield and Massoth, 1994; Von Damm et al., 

1995, 1997; Lilley et al.; 2003].  

Episodic magma supply has been recognized to be an important feature in 

behavior of seafloor hydrothermal activity. The seismic reflection suggests that the 

episodicity is important event along about 60% of the surveyed East Pacific Rise [Detrick 

et al., 1987]. Evidence of large-scale episodic venting of hydrothermal fluids was 

discovered at Juan de Fuca Ridge in 1986 [Baker et al., 1989]. A detailed study of 

magnetization and morphology coupled with seismic reflection has shown that the 

magmatic processes on the Valu Fa Ridge are episodic [Collier and Sinha, 1992]. In 

addition, the evidence for episodic replenishment of the AMC at relatively high 

frequency includes eruption scenarios and non-eruptive diking events. For instance, the 

eruptions occurred at the fast-spreading East Pacific Rise near 9°50′N in 1991 and 1992 

[Haymon et al., 1993]. Time series studies of vent fluid composition at this site in direct 

response to this volcanic episode show the continuously evolving chemical compositions 

over more than a decade [Von Damm et al., 1995, 1997, 2004]. Temporal changes in 

hydrothermal activity related to the more recent eruptions in 2005/2006 [Rubin et al., 

2006; Soule et al., 2007] are still being investigated. There is evidence of non-eruptive 

diking activity that may cause perturbations to the hydrothermal systems [Ramondenc et 

al., 2008; Germanovich et al., 2010].  A non-eruptive diking event that affected vent 
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temperature and chemistry has also been observed at Main Endeavour Field (MEF) on 

Juan de Fuca ridge (JDFR) [Johnson et al., 2000, Lilley et al., 2003].  

 

 

 
 
Figure 1.3 Illustration showing possible routes of hydrothermal circulation (arrows) 
through a section of fast- or medium-spreading ridge crest above an axial magma lens. 
The heat releases from crystallization and cooling melt lens to the overlaying 
hydrothermal systems to generate hydrothermal vents [after German and Lin, 2004]. 
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1.2 Models of Magma-Hydrothermal Systems 

1.2.1 Hydrothermal circulation system 

 Quantitative understanding of the interconnected heat transfer and 

biogeochemical processes at oceanic spreading centers requires the development of 

mathematical and numerical models. Such models can address the physical processes of 

fluid circulation and heat transfer or geochemical processes in both temporal and spatial 

scale, and can be used to explain the observational data and infer subsurface conditions as 

well as to guide further experimental and field studies. In general, hydrothermal 

convection models can be classified into three categories: cellular convection models, 

single-pass models, and downward cracking models. Reviews of various models of 

hydrothermal systems can be found in [Lowell, 1991a; Lowell et al., 1995; Lowell and 

Germanovich, 2004].  

 Cellular convection models were initially developed by Horton and Rogers 

[1945] and Lapwood [1948] served as a starting point for studying geothermal convection 

problems. They investigate the convection in a saturated homogeneous porous material 

layer which is heated from below. The upper and lower boundaries are generally 

impermeable and isothermal. In these models, Rayleigh number Ra, a dimensionless 

parameter that determines the character of convective patterns, must be greater than the 

critical Rayleigh number Rac for convection to occur [Lapwood, 1948]. Early work on 

cellular convection models attempted to explain the heat flow anomaly patterns observed 
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in young sediment lithosphere [Williams et al., 1974; Ribando et al., 1976; Green et al., 

1981; Fehn et al., 1983]. Cellular convection models have been applied to off-axis 

circulation [Lowell, 1980; Fisher et al., 1990; Fisher and Becker, 1995] and 

hydrothermal circulation above a sub-axial magma body [Brikowski and Norton, 1989; 

Wilcock, 1998; Rabinowicz et al., 1999]. Schoofs and Hansen [2000] investigated the 

depletion of the brine layer at the base of a vigorously convecting system. Jupp and 

Schultz [2000] argued that the thermodynamic properties of water may control black 

smoke at the temperature of 400 °C.  

 Single pass models examine the general behavior of the hydrothermal system 

without considering the details of the temperature and velocity distribution. Single-pass 

models describe the deep circulation system in which fluids circulate downward into the 

ocean crust, flow horizontally near the top of the magma chamber at the base of the 

sheeted dikes, and ascend back to the surface. Focused high-temperature flow is thought 

to occur in the main single-pass limb; diffuse flow may occur as a result of the mixing of 

the deep circulation with the shallower circulation in the pillow basalts. Hydrothermal 

fluid is assumed to pass through the system only once through a recharge zone, a 

discharge zone, along with a reaction zone near the base of the hydrothermal system. A 

cartoon description of the model is illustrated in Figure 1.4. The single-pass models can 

be viewed as a special case of the cellular convection models, in which an extremely 

heterogeneous distribution of permeability restricts the flow paths to pipe-like zones. 

Based on the scale analysis arguments in [Lowell, 1991; Lowell and Germanovich, 2004], 
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the single-pass model explains high-heat output venting more easily than the high 

Rayleigh number convection model, for the case of an imposed heat flux lower boundary 

condition. Single-pass models have been used in hydrothermal modeling since the earliest 

works tried to explain the low conductive heat flow values measured on young crust and 

in terms of hydrothermal heat loss [Bodvarsson and Lowell, 1972; Lowell, 1975]. Single-

pass models have been applied in many seafloor hydrothermal problems to describe the 

general behavior of hydrothermal systems, such as the formation of sulfide ore deposits at 

seafloor spreading centers [Lowell and Rona, 1985], the temporal evolution of heat 

transfer from solidifying magma to black smokers [Lowell and Germanovich, 1994], the 

formation of catastrophic event plumes associated with dike injections [Lowell and 

Germanovich, 1995], and the thermal stresses effect on the evolution of permeability 

[Lowell et al., 1993; Germanovich et al., 2001]. Pascoe and Cann [1995], Lowell et al., 

[2003], and Ramondence et al., [2008] developed a two-limb single-pass model to 

investigate the mixing between deep seated hydrothermal circulation and fluid circulation 

in the extrusive layer of the oceanic crust.  
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Figure 1.4 Cartoon of a single-pass hydrothermal circulation model at an ocean ridge 
crest at local ridge crest circulation scale [Germanovich et al., 2000]. 
 
 
 

Downward cracking models for hydrothermal circulation were initially proposed 

by Lister [1974]. It is assumed that tensile thermal stresses, provided by temperature 

differences, could cause fracture propagation, so that hydrothermal circulation would 

migrate downward and extract heat from the cracked hot rocks. Lister [1983] argues that, 

to sustain a high output hydrothermal system, one not only needs support from an active 

magma chamber but also requires an active cracking front. Lowell and Germanovich 

[1994] develop this idea and suggested that hydrothermal systems migrate downward into 

an impermeable frozen layer, in conjunction with dike emplacement into the crust. Their 

model suggests that thermal stresses associated with dike injection may be preferable to 
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Lister’s original mechanism. In consequence, as magma crystallizes the hydrothermal 

system migrates downwards and high heat flux is maintained.  

The downward cracking concept is still prevalent in the literature. Field studies 

suggest that the reaction zone with the highest temperature may be characterized by a 

downward propagating set of fluid-filled fractures [Kelley and Delaney, 1987; Kelley et 

al., 1993]. At the cracking front, hydrothermal fluids migrate downwards and obtain their 

final compositions before rising buoyantly back to the seafloor [Alt, 1995; Seyfried and 

Ding, 1995; Alt and Teagel, 2000]. Wilcock and Delaney [1996] argue that a downward 

penetrating cracking front supports high hydrothermal fluxes when the magma supply to 

the crust decreases, leading to the formation of large sulfide deposits at intermediate 

spreading rate ridges, such as the Endeavour Segment of the Juan de Fuca Ridge. Recent 

seismic reflection data [Van Ark et al., 2007] suggests that an AMC likely provides the 

heat for hydrothermal circulation at the Main Endeavour Fiedl, however. 

Even though Lister’s idea of a downward propagating cracking front has been 

accepted at least conceptually [e.g., Wilcock and Delaney, 1996] as a mechanism of 

hydrothermal heat transfer, the evidence from [Manning et al., 2000] is not consistent 

with the original Lister model. For example, Manning et al., [2000] argue that: (a) the 

first cracks to form are microcracks rather than the macro-scale cracks envisioned by 

Lister; (b) the crack propagation rate is orders of magnitude less than suggested by Lister 

[1974]; and (c) the cracking temperature predicted in Lister model decreases with depth, 

which is counter to observations from Oman ophiolite and the East Pacific Rise.  
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Hydrothermal circulation is mainly driven by the underlying magma chambers, 

since magma chamber provides the heat source to sustain hydrothermal circulation. 

Hydrothermal circulation and heat transfer models also show the important role of 

magmatic heat sources in the hydrothermal systems [Cann and Strens, 1982; Lowell and 

Rona, 1985]. [Lowell and Burnell, 1991] and [Lowell and Germanovich 1994] considered 

heat transfer from an axial crystallizing magma body using a single-pass hydrothermal 

system model (see Figure 1.3). Scaling analysis of the heat loss from the magma that 

decreases with time as t-1/2 suggests an analogous decline of the hydrothermal heat output 

and vents temperature. Hydrothermal systems driven by sub-axial magma chambers often 

exhibit relatively stable vent temperatures and vent fluid chemistry on decadal time scales 

[Campbell et al., 1988; Von Damm et al., 2002]. To maintain the observed black smoker 

temperatures and heat output in a steady state for decades requires a thin conductive 

boundary layer between the magma and hydrothermal circulation [Lowell and 

Germanovich, 1994, 2004; Fontaine and Wilcock, 2006], a highly permeable discharge 

zone [Lowell and Germanovich, 1994, 2004], and magma replenishment [Lowell and 

Germanovich, 1994, 2004]. In addition, the characteristics of hydrothermal systems are 

closely related to magmatic activity. Both the temperature and composition of 

hydrothermal fluids can change significantly with time in direct response to magmatic 

and tectonic vents. For example, hydrothermal responses to earthquake eruptions and 

dike emplacement are studied by [Lilley et al., 2003; Ramondenc et al., 2008]. However, 

to better understand the behavior of magma-hydrothermal systems at mid-ocean ridges, 
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these models must consider the coupling between hydrothermal circulation and magma 

convection, including possible replenishment.  

1.2.2 Magma chamber convection 

The dynamics of the cooling, crystallizing magma chambers have been a subject 

of scientific interest for decades. The study of magma chamber dynamics focuses on two 

different mechanisms: (i) the thermally well-mixed magma body is cooled by conduction 

through the wall rocks [Cathles, 1977; Norton and Taylor, 1979]; and (ii) cooling of the 

magma chamber is dominated by magma convection [Spera, 1980; Spera et al., 1982; 

Lister, 1983; Hupert and Sparks, 1988]. Different opinions exist in the literature 

regarding the role of convection. For examples, Brandeis and Jaupart [1986] and Marsh 

[1989] have argued that convection is weak or absent. Theoretical and experimental 

studies indicate that magma should convect vigorously [Huppert and Sparks, 1988; 

Martin and Nokes, 1988, Worster et al., 1990, Kerr, 1994]. Although the role of 

convection on nucleation, growth, and the redistribution of crystals in magma chambers 

is under debate, the dominant role of the convection in magma cooling and crystallization 

is widely accepted. Heat transfer by convection is more efficient, by one to two orders of 

magnitude, than by conduction in cooling magma bodies.   

As magmatic systems cool below their liquidus temperatures, generally denser 

crystals form at the cooling boundaries. There has been much debate concerning the 

mechanism of fractional crystallization in magma chambers. Crystals may nucleate at the 
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roof, near the floor or within the interior of the magma body where they can remain in 

suspension or settle down afterwards [Martin and Nokes, 1989; Sparks et al., 1984]. 

Huppert and Sparks [1984] assumed that crystals formed in the interior of the magma 

chamber were small and remained suspended as a result of vigorous convective motions. 

This assumption is counter to traditional models in which crystals settle and accumulate 

on the floor [Martin, 1990; Martin and Nokes, 1989; Worster et al., 1990].  The crystals 

settling rate depends upon the rate of cooling, the density of the particles, and the 

viscosity of the magma. Experimental studies indicate that convection delays but does not 

stop crystal settling. [Jarvis and Woods, 1994] argued that crystals grow in the interior of 

a turbulently convecting fluid and subsequently settle gravitationally to the bottom 

boundary. They also suggested that the residence time of crystals within the convecting 

bulk is relatively short compared to the overall cooling time of the fluid. Crystal settling 

is believed to be an efficient differentiation mechanism, even though the convective 

velocities are much larger than settling velocities using Stokes’ law [Martin and Nokes, 

1989].  

Convection in magma chambers results from two different driving forces: thermal 

convection and compositional convection. Thermal convection results from the cooling 

of the magma as heat is transported to the surrounding rocks [Brandeis and Jaupart, 

1986]. Compositional convection is driven by the density and chemical composition 

differences between the crystals and liquids that stem from the injection of new magma 

into a chamber, partial melting, or fractional crystallization [Sparks et al., 1984]. Double 
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diffusive convection occurs when gradients in both temperature and composition exist in 

the crystallizing magma [Huppert and Sparks, 1984].  

1.2.3 Linked Models of Magma and Hydrothermal Convection 

Studies of the temporal evolution in hydrothermal processes indicate the existence 

of a close coupling between magma supply and hydrothermal processes on individual 

ridge segments [Haymon et al. 1991, 1993, 1996; Embley et al. 1995; Von Damm et al. 

1995; Haymon and White, 2004; Maclennan, 2008]. The first models linking magmatic 

heat transfer to the overlying hydrothermal system assumed that crystallization occurs at 

the roof of the magma [e.g., Lowell and Rona, 1985; Lowell and Burnell, 1991]. In this 

case, the thermal boundary layer rapidly thickens due to the accumulation of crystals on 

the roof of the magma chamber, which results in heat transfer from the magma 

decreasing rapidly with time. Consequently, the temperature and heat output of the 

hydrothermal systems decay rapidly too. However, the details of the connection between 

the ridge axis hydrothermal flux and subsurface magma chamber processes have not been 

studied comprehensively.  

1.3 Motivation 

 Most models of hydrothermal circulation are coupled to magmatic processes 

only loosely. In the most common situation, the temperature is fixed at the bottom of the 

magma chamber. This condition assumes that magma serves as an infinite reservoir of 

heat, and heat transport is controlled by the vigor of hydrothermal systems, which is 
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characterized by the Rayleigh number Ra [e.g., Bejan, 1995; Lowell and Germanovich, 

2004]. On the other hand, if a constant heat flux is assumed at the base of the 

hydrothermal system, then hydrothermal heat output is controlled by the rate at which the 

heat is conducted from the magma body [e.g., Lowell and Germanovich, 1994, 2004; 

Germanovich et al., 2000, 2001]. Neither of these boundary conditions is realistic 

because heat transfer from a convecting magma body near its liquidus will cause magma 

to cool and crystallize [e.g., Cann and Strens, 1982; Lowell and Rona, 1985].  

  The hydrothermal models of Lowell and Burnell [1991] and Lowell and 

Germanovich 1994] considered heat transfer from a crystallizing magma body. These 

assumed that crystallization occurred at the roof of the magma chamber. As the frozen 

layer grew downward, heat loss from the magma decreased with time as t-1/2 resulting in 

an analogous decline in hydrothermal heat output and vents temperature. Although 

hydrothermal heat loss following diking events such as occurred at Co-Axial in 1993 or 

at Axial Volcano in 1998 may decay faster than t-1/2 [Baker et al., 2004b], hydrothermal 

systems driven by sub-axial magma chambers often exhibit relatively stable vent 

temperatures and vent fluid chemistry on decadal time scales [Campbell et al., 1988; Von 

Damm et al., 2002]. Although time series data on hydrothermal heat output are limited, 

heat output is generally assumed to be stable as well. The data suggest that ridge crest 

hydrothermal systems typically transport between 108 and 109 Watts of heat [Ramondenc 

et al., 2006; Baker, 2007].  
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 Lowell and Germanovich [1994] and Humphris and Cann [2000] suggested that 

magma inputs at rates similar to those observed on terrestrial volcanoes could help 

maintain steady hydrothermal heat output. These results, however, were not linked to 

quantitative models of magma convection and crystallization.   

 The observations of quasi-steady state hydrothermal heat output and vent 

temperature, which are not adequately predicted by current magma-hydrothermal models, 

argue for models that investigate different ways to link magmatic processes and 

hydrothermal circulation. Therefore, my research on developing models of magma 

convection that may be more appropriate representations of the magmatic-hydrothermal 

coupling is well motivated.  

1.4 Objectives 

The objective of this dissertation is to provide a suite of effective models to 

characterize the coupling between hydrothermal systems and magma chamber. In the 

literature, a large number of mathematical models have been developed to study the 

seafloor hydrothermal systems. However, relatively few of these models have addressed 

the link between high-temperature hydrothermal systems and magma supply or provided 

a basis for understanding heat transport from a convecting magma chamber to the 

overlaying hydrothermal system. I seek to address the linkages between hydrothermal 

heat output and heat transfer from a cooling, crystallizing, replenished magma chamber 

beneath oceanic spreading centers. Specifically, I consider the heat transfer from a 
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vigorously convecting basaltic magma chamber of certain thickness to the overlying 

hydrothermal system. Also, I consider not only the common case in which crystals stay 

suspended in the magma, but also the end-member case in which crystals rapidly settle or 

crystallization occurs at the base of the magma chamber.  In addition, I investigate the 

role of magma replenishment in maintaining quasi steady heat output on decadal 

timescales.  

Though many of the pioneering studies entailed high-temperature flow, they 

generally assume a single-component fluid. In reality, the magmas are multi-component 

fluids. Although the results on one-component systems provide insights on the interaction 

between the magma and hydrothermal systems, the convection mechanism can not apply 

to multi-component systems since they do not consider the dependence among multiple 

components. Thus, I address the modeling of the hydrothermal system driven by 

multiple-component magmas. Specifically, I consider the Di-An system and focus on the 

Di rich side, since it represents a chemical analogue to the basaltic melts at mid-ocean 

ridges. A phase diagram is employed to evaluate the formation and crystallization 

processes, and the dynamic features of the system are characterized with respect to the 

time-varying Di concentration.  

Although most hydrothermal systems at oceanic spreading centers are driven by 

basaltic magma, high-silica magmas have been discovered at several different locations. 

High-silica magmas, typically andesites and dacites, have higher viscosity. Different 

viscosities between basaltic and high-silica magmas result in different thermal 



 25

characteristics and evolution of the overlying hydrothermal systems. However, studies of 

hydrothermal systems driven by high-silica melts are less detailed and not as thoroughly 

understood as their mid-ocean ridge basaltic counterparts.  I aim to better characterize 

hydrothermal systems driven by high-silica melts and focus on both andesites and dacites 

magma. Specifically, I examine the dependence of viscosity on different factors such as 

temperature, composition and water content, because melt viscosity exerts a strong 

control on the heat flux from the convecting magma. 

In summary, this dissertation addresses the following topics: 

• Modeling and parametric studies of heat output from a convecting, crystallizing, 

replenished basalt magma chamber beneath an oceanic spreading center 

• Effect of multi-component chemical composition on the evolution and heat 

transfer from a cooling, crystallizing, replenished magma chamber  

• Models of heat transfer from a convecting, crystallizing, replenished high silica 

andesitic dacitic magma chambers at an oceanic spreading center 

1.5 Outline 

The rest of the dissertation is organized as follows: 

Chapter 2 introduces the magmatic-hydrothermal models at oceanic spreading 

centers including a turbulent convecting, crystallizing, and replenished magma body, and 

briefly reviews some of the previous modeling work. Then, I present a mathematical 

framework to perform numerical analysis of the magma chamber and overlying 
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hydrothermal system. I consider two scenarios of magma convection and crystallization 

models. One assumes the convective motions in the magma chamber are sufficiently 

vigorous to keep crystals in suspension and well mixed within the interior of the magma. 

The other assumption is that crystallization occurs at the boundary layer of a magma 

chamber and crystals settle and accumulate on the floor. In addition, I discuss magma 

replenishment as a mechanism to maintain steady state heat flux from the magma system 

for decades.  

Chapter 3 considers hydrothermal systems at oceanic spreading centers with heat 

transfer from a vigorously convecting, crystallizing, and replenished basaltic magmatic 

sill beneath an ocean ridge axis. Based on the fundamental theory for magma convection 

and hydrothermal circulation presented in Chapter 2, I develop the numerical models for 

the dynamic heat flux and temperature for both the magma chamber and overlying 

hydrothermal systems.  

Chapter 4 focuses on the effects of the initial magma chamber size and episodic 

magma replenishment on heat flux and responses of hydrothermal vents. In addition, I 

discuss the implication of the model in terms of the evolution of the magma chamber and 

the linkages between magmatic heat output and hydrothermal venting for EPR.  

Chapter 5 extends the work to two-component melts and investigates the effect of 

magma chemical composition on magmatic heat transfer and the dynamic characteristics 

of overlying hydrothermal system. I focus on the Di-An system, because it is a reasonable 

yet simple analog for a basaltic magma chamber. Since the heat transfer behavior of 
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magmatic mixtures is determined by the presence of different chemical components, the 

system characteristics, such as heat flux, crystal content, etc., are examined through a 

dynamic model of the Di concentration. The goal is also to link magma chamber 

dynamics to the composition of lavas that may be erupted. 

Chapter 6 examines the magmatic heat flux and behavior of hydrothermal 

temperature in the presence of high-silica melts, focusing on both andesite and dacite 

magmas. Due to the significant difference of viscosity between different magmas, the 

thermal characteristics and evolution of the overlying hydrothermal systems are different. 

I investigate the dependence of viscosity on different factors, including chemical 

composition, temperature, pressure, volatile content, and crystal content, and propose 

new viscosity models for andesites and dacites. Then, adopting the proposed framework 

in Chapter 2, I describe the heat flux of hydrothermal system based on the proposed 

viscosity model.  

 Finally, Chapter 7 summarizes this dissertation and suggests topics for future 

research.  For the reader's convenience, I have attempted to keep every chapter as self 

contained as possible. 
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CHAPTER 2. MATHEMATICAL FORMULATION 
 
 
 

 In this chapter, I propose to more realistically model magma hydrothermal 

processes at oceanic spreading centers by including a turbulent convecting, crystallizing, 

and replenished magma body. Figure 2.1 depicts the basic model geometry consisting of 

a layer of vigorously convecting magma that transfers heat to an overlaying hydrothermal 

system through a thin thermal boundary layer, with new magma replenished from its 

underlying mush zone. Hydrothermal circulation system follows a single-pass model, in 

which cold seawater penetrates into the oceanic crust where it is heated and form the 

hydrothermal fluid at a temperature Th. At the top of the magma chamber, the 

temperature is constant at the solidus magma temperature TS. Due to the large 

temperature difference between the hydrothermal fluid and the top of magma chamber, 

heat is transferred from the convecting magma at temperature Tm across a thin thermal 

conductive boundary layer with thickness δ(t). Denoting Fm and Am as the heat flux and 

area of the magma chamber, respectively, the total heat output from the magma chamber 

is Fm(t)Am. I assume that all the heat output from the magma chamber is transported 

across the conductive boundary layer and is taken up by the overlying hydrothermal 

system. With the heat transfer into the hydrothermal fluids, the buoyant fluids rise rapidly 

and discharge into the ocean through hydrothermal vents. As a result of the heat 
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transported from the magma chamber to the hydrothermal fluid, the magma chamber 

cools down and crystallizes. 

 

 

 
 

Figure 2.1 Schematic of magma convection model with crystals suspended in case (a) and 
crystals settling in case (b). Turbulent magma convection provides heat flux Fm to power  
the overlying hydrothermal system at a temperature Th and heat flux Fh. The top of the 
magma chamber is maintained at its solidus Ts and heat from the magma to the 
hydrothermal system is transported across a conductive boundary layer of thickness δ(t). 
The underlying mush zone provides a source of magma and heat flux to the magma 
chamber. Details of magma dynamics are neglected in this model. 
 
 
 

In this work, I consider two scenarios of magma convection and crystallization. 

One assumes the convective motions in the magma chamber are sufficiently vigorous to 

keep crystals in suspension and well mixed within the interior of the magma, which is 

similar to the model of [Huppert and Sparks, 1988]. The other scenario assumes that, as 
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crystallization occurs, crystals settle rapidly and accumulate on the floor, similar to the 

models of [Martin, 1990; Martin and Nokes, 1989; Worster et al., 1990]. In this case, the 

crystal layer grows with time and, as a result, the depth of liquid magma decreases. This 

assumption allows me to calculate the maximum lifetime of the magma convection since 

magma convection is driven only by the liquid magma. Homogeneous crystallization of a 

well-mixed magma is likely to be possible only in the early stages of magma convection 

processes because, as the crystal size increases, gravitational forces will overcome the 

convective forces keeping the crystals in suspension [Brandies and Jaupart, 1986]. Thus, 

in the crystals suspended model I neglect the density difference between the crystals and 

the liquid magma; and in the crystal-settling model, I assume that crystals instantly fall 

out of suspension and settle onto the chamber floor as they form within the magma. 

In the following sections, the mathematical models are presented to describe the 

interactive characteristics of both the magma convection system and the hydrothermal 

system. Section 2.1 introduces the basic system geometry and the fundamentals of 

convection in the magma system, and presents the heat balance for a convecting, 

crystallizing, replenished magma chamber; Section 2.2 develops the magma heat flux 

models for both crystals suspended and crystals settling; Section 2.3 develops the magma 

heat flux models with magma replenishment for two different crystals distribution 

assumptions; Section 2.4 describes the hydrothermal circulation models.  
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2.1 Heat Conservation of the Magma Chamber 

Almost all convective motions come from a layer of fluid heated from below 

and/or cooled from above. Within the liquid magma body, the thermal convection results 

from the temperature difference between the hot magma and the cold upper boundary. 

Heat is transferred by conduction between the cold rock and hot magma. The vigor of this 

convection is expressed by the dimensionless Rayleigh number Ra, which is defined as 

the ratio of thermal buoyancy force to the viscous and thermal resistance 

 

mm

m

va
TgDRa Δ

=
3α  (1)

where αm (°C–1) is the thermal expansion, g (m/s2) is the acceleration due to gravity, D is 

the thickness of the laterally extensive magma body, am (m2/s) is thermal diffusivity, vm 

(m2/s) is kinematic viscosity, and ΔT = Tm(t) - Ts is the difference between the mean 

temperature of the convecting magma Tm(t) and the magma solidus temperature Ts. The 

subscript m refers to properties of the magma.  

 During cooling and crystallization of magma chamber, Tm, ΔT, and νm are time-

dependent. Therefore, the Rayleigh number is also a function of time. Rayleigh number is 

a measurement of the strength of the convection and of the rate of heat transfer. As 

shown by Huppert and Sparks [1988], Martin and Nokes [1989], Huppert and Turner 

[1990], Worster et al. [1990], Jaupart and Tait [1995] and Jellinek and Kerr [1999], a 

magma body would undergo vigorous convection when the Rayleigh number is greater or 

equal to a critical value ,i.e., Ra >> Rac. Instability and convective motions start only 



 49

when the Rayleigh number reaches a minimum value of ~103; and convection becomes 

fully turbulent when Ra >106. As ΔT decreases and νm increases as a result of cooling, 

the motion becomes increasingly less vigorous with time and eventually becomes laminar. 

Since the Rayleigh number is proportional to the third power of thickness of magmatic 

chamber, the size of the system is the most important parameter concerning the existence 

and vigor of magma convection. Seismic data at several mid-ocean ridges show the 

presence of a thin mostly liquid lens of magma is typically several tens of meters to 

perhaps ~ 100 m thick [e.g., Kent et al., 1990; MacLeod and Yaoyancq, 2000]. In nearly 

all cases, the initial Ra is much greater than the critical value. For ΔT = 100°C, D = 100 

m, Ra ~ 1011; for D ~ 10 m and ΔT ~ 1°C, then Ra ~ 106.  

To characterize the heat flux of the magma chamber, I first introduce the Nusselt 

number. Following Huppert and Sparks [1988], the heat flux Fm(t) from the convecting 

magma body can be expressed in terms of the Nusselt number Nu, which is defined as the 

ratio of the heat transport as a result of convection to the heat flux conducted across the 

layer of thickness D in the absence of convection:  
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where t (s) is the time, λm = amρmcm is the thermal conductivity,  ρm (kg/m3) is the magma 

density, and cm (J/kg°C)  is the specific heat. The classical relationship between the 

Nusselt number and the thermal Rayleigh number is given by [Jarvis and Peltier, 1989] 

 3/1)/( cRaRaNu ≈  (3)



 50

Upon substituting equations (1) and (3) into equation (2), I obtain the heat flux Fm 

(W/m2) transferred as a result of convection in the magma chamber [Turner, 1973] 

 3/43/12 ))(())(/(1.0)( Smmmmmmm TtTtvgactF −= αρ  (4)

Next, I discuss the heat balance for the convecting, crystallizing, replenished 

magma chamber. Considering that a layer of crystal-free magma emplaces into the crust 

and forms a magma chamber, the magma is cooled by the surroundings. The heat content 

of magma chamber is given by 

 ]))((1()()[()( LtTtTctVtH mmmmmm χρρ −+=
 (5)

where L (J/kg)  is the latent heat of the crystallization of the magma, χ(Tm(t)) is the 

volume fraction of crystals in the crystal-melts mixture, which is a function of the magma 

temperature Tm(t) since the magma crystallization is controlled by its temperature.  Vm(t) 

denotes the volume of liquid magma 

where Am(t) is surface area of magma chamber, and Dm(t) is the thickness of liquid 

magma. In general, both the area and thickness of the liquid magma may be time varying. 

The details of modeling are discussed later. Moreover, the first term on the right-hand 

side of equation (5) represents sensible heat per unit volume of magma, and the second 

term represents the latent heat yet to be released as crystallization occurs.  

 For simplicity, I neglect the difference in the density between liquid magma and 

crystals, and the volume decrease that occurs as a result of crystallization. Moreover, I 

 )()()( tDtAtV mmm =  (6)
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assume that the magma body is a sill-like structure and that heat loss from the vertical 

walls is negligible. The conservation of energy at the magma-hydrothermal system 

interface requires that 
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where Fr(t) is the heat flux added to the magma chamber as a result of replenishment, and 

Fc(t) is the rate at which the conductive heat transfers from the growing crystal layer to 

the convecting liquid magma.  

In order to solve equation (7), I need an expression for χ(Tm(t)). One commonly 

used expression assumes that the crystal content χ varies linearly with the magma 

temperature, which is limited between the liquidus and solidus temperature [Hort, 1997], 

i.e.,  
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where TL denotes the liquid magma temperature. As an alternative, Huppert and Sparks 

[1988] relate χ to the magma temperature through the following formula 
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In the following, I discuss four different scenarios to solve the differential 

equation (7). I consider the case in which magma replenishment is absent or present. 

Within each case, I consider two scenarios depending on the existence form of the 

crystals: (a) crystals remain suspended with the liquid magma as it crystallizes; and (b) 
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crystallization occurs at the floor of the magma chamber or crystals instantly settle to the 

chamber floor (see Figure 2.1). For simplicity I refer to these two cases as “crystals 

suspended” and as “crystals settling”, respectively. The real situation probably lies 

between these extremes, and some crystals may also grow from the roof. I neglect this 

effect because I wish to diminish the growth rate of a conductive thermal boundary layer 

at the top of the magma chamber, and thus provide an upper estimate for the magmatic 

heat flux. In the following discussion, I denote D(t), D0, and Am0 to be the magma 

chamber thickness at time t, the initial values of the magma chamber thickness and area, 

respectively. 

2.2 Magma Convection without Replenishment  

Without new magma being added to the magma chamber, the heat from magma 

replenishment Fr(t) = 0. Both the thickness and the area of magma chamber are assumed 

to be time invariant as a result of neglecting the density difference between the magma 

and crystals, i.e., D(t) = D0 and Am(t) = Am0. 

2.2.1 Crystals suspended 

In the crystal-suspended scenario, the crystals are well mixed with liquid magma 

during cooling and crystallization (Figure 2.1, case (a)). The crystals and liquid magma 

have the same temperature and Fc(t) =0. In addition, without magma replenishment, both 

the magma chamber thickness and area remain constant at their initial values, 

respectively. The thickness of the liquid magma is the same as the thickness of the 
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magma chamber, i.e., Dm(t) = D(t) = D0. Correspondingly, the volume of magma Vm(t) is 

a constant 

 00)( mm ADtV =  (10)

Therefore, the equation (7) is simplified to  
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2.2.2 Crystals settling 

If crystallization occurs at the floor of the magma chamber or crystals instantly 

settle there, then the volume of the liquid magma Dm(t) decreases as magma crystallizes 

(Figure 2.1, case (b)). Thus, the thickness of the liquid magma depends on the crystal 

content, i.e.,  

 )))((1()( 0 tTDtD mm χ−=  (12)

Correspondingly, the volume of liquid magma Vm(t) is  

As the magma chamber cools and crystals settle to the floor, a temperature gradient may 

exist across the crystal layer resulting in conductive heat transfer from the growing 

crystal layer to the convecting liquid.  The rate of conductive heat flux from the crystal 

pile back to the liquid magma is approximately expressed as 
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where Ds(t) is the thickness of the crystal layer,  

 )()( 0 tDAtV mmm =  (13)
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Therefore, the equation (7) is simplified to 
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2.3 Magma Convection with Replenishment 

During magma replenishment, additional heat and fluid mass is added to the 

magma chamber. As a result, the heat content increases with time. Denote u(t) to be the 

magma replenishment rate. The rate of heat input due to replenishment Fr(t) is given by  

 )()()( tuLTctF mLmmr ρρ +=  (17)

In addition, the magma chamber volume grows as the new magma refills. Denote V(t) to 

be the magma chamber volume. It can be obtained as 

where V0 = D0Am0 is the initial volume, Ab(t) is the area through which magma 

replenishment occurs. For simplicity, I assume that the additional magma is added at its 

liquidus across the entire area at the base of the magma chamber, i.e, Ab(t) =  Am(t).  

I again consider the two cases: “crystals suspended” and “crystals settling”. I 

assume that the magma entering the base of the magma chamber mixes rapidly with the 

existing magma so that a single temperature Tm(t) can still be used to describe the 

convection system. To model the magma chamber growth in equation (18), I assume that 

the magma chamber grows either horizontally or vertically, i.e., either the area Am(t) or 

thickness D(t) of the magma body varies with time. 
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2.3.1 Magma replenishment with the growth of magma thickness 

In this section, I assume the thickness of magma chamber D(t) changes and the area of 

magma is a constant Am(t) = Am0 during magma replenishment. The thickness of magma 

chamber is 

 ∫+=
t
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Note that although the magma chamber thickness grow the same way in both crystals 

suspended and crystal settling cases, the thickness of liquid magma are different in each 

case. In the crystals suspended, the thickness of magma is the same as that of the magma 

chamber, i.e., Dm(t) = D(t), since no separation of magma and crystals are considered. In 

the crystals settling case, the thickness of magma depends on the crystal content 

 )))((1)(()( tTtDtD mm χ−=  (20)

2.3.2 Magma replenishment with growth of horizontal area 

One can also consider the effects of magma replenishment on the heat output 

from the convecting, crystallizing magma chamber by keeping the thickness of the 

magma chamber fixed, i.e., D(t) = D0, and allowing the area to increase with time. First, I 

express the volume of liquid magma chamber with the magma replenishment rate u(t) 
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where Vo = Am0D0 is the initial magma chamber size, and Vs(t) is the volume of crystals 

that have formed. In the following, I consider the evolution of the magma horizontal area 

by considering the crystals suspended and crystals settling cases, respectively.   
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In the crystals suspended case, Vs(t) is  zero since the crystals are mixed evenly in 

the residual melts, and the liquid magma thickness is the same as that of the magma 

chamber, i.e., Dm(t) = D(t)  = D0.  Taking the derivative of equation (21) leads to   
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Solving (22) results in the area of the magma chamber 
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 In the crystals settling case, the crystal volume Vs(t) depends on the crystal 

content and is related to the liquid magma volume by  
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Substituting (24) into equation (21) yields 
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Combining equations (6) and (12), I obtain the volume of the liquid magma 
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Substitution of equation (26) into (25) and taking derivative results in differential 

equation of the magma horizontal area 
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Note I obtained the same results for the crystal settling (equation (27)) and crystal 

suspended (the right equality in equation (22)) cases, although they originate from 

different mechanisms.    

2.3.3 Magma replenishment rates 

In this section, I discuss the modeling of the magma replenishment rate. I consider 

two basic models of replenishment. First, magma replenishment occurs with a constant 

velocity for a certain time period tf. Thus, the replenishment rate is expressed as  
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In the second model, the velocity of replenishment is assumed to decay exponentially 

 bteutu −= 0)(  (29)

where u0 is the initial velocity, b is the exponential factor. 

2.4 Hydrothermal Systems 

I assume that the total heat flux from the subsurface magma body is transferred to 

the base of the hydrothermal system through an impermeable conductive boundary layer 

with thickness δ(t). Then if Fh(t) denotes the advective heat flux transported by the 

hydrothermal fluid, and Ad is the area of the discharge zone,   

 dhmm AtFtAtF )()()( =  (30)

The heat flux of the hydrothermal system is related to its temperature as  

 )()( tTuctF hdffh ρ=  (31)



 58

where Th(t) denotes the temperature of hydrothermal system, ρf is the density and cf is the 

specific heat of the fluid, and ud is the Darcian upflow velocity. I assume that buoyancy 

drives circulation in a porous medium. For simplicity, I assume the temperature of the 

recharge zone is zero and the flow resistance is dominated by the discharge zone [Lowell 

and Germanovich, 2004]. Then the Darcian upflow velocity ud is given by 
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where αf  is the coefficient of the thermal expansion of fluid, k is the permeability, and vf 

is the kinematic viscosity of fluid. Substituting equation (32) into (31) leads to 
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Hydrothermal and magmatic heat fluxes are linked to vent temperature by substituting 

equation (33) into equation (30). Therefore, the temperature of the hydrothermal 

temperature is obtained from 
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Solving equation (7) is the key to determining all the system properties, including 

heat flux and temperature, etc. In the following chapters, I will show the equation (7) can 

be simplified to a first-order non-linear ordinary differential equation in terms of the 

magma temperature as a function of time. A MATLAB program (Appendix A) is 

developed to solve for the magma temperature. To determine the first-order derivative of 

temperature, the finite difference approximation is applied by using Euler method. Once 
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the magma temperature is solved, other quantities are available through their relationship 

to the magma temperature.  

This chapter describes a general framework for mathematical modeling of the 

hydrothermal system driven by magma convection. Chapters 3, 4, 5, and 6 discuss 

different magma systems. Although each chapter follows the same framework as in this 

chapter, each is written as an individual paper. Chapter 3 has been published in the 

Jourmal of Geophysical Research. Chapter 4 has been submitted to Geophysical Journal 

International. Chapters 5 and 6 will be submitted soon.  
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CHAPTER 3. MODELS OF HYDROTHERMAL HEAT OUTPUT FROM A 
CONVECTING, CRYSTALLIZING, REPLENISHED MAGMA CHAMBER 

BENEATH AN OCEANIC SPREADING CENTER1 
 
 
 

Abstract 

 

The temperature and heat output of hydrothermal systems at oceanic spreading 

centers place strong constraints on the mechanism of heat transfer in oceanic crust. In this 

paper, we investigate time-dependent heat transfer from a vigorously convecting, 

crystallizing, and replenished magmatic sill beneath an ocean ridge axis and an overlying 

hydrothermal system. We first consider two different crystallization scenarios: crystals-

suspended and crystals-settling, coupled with crystallinity-dependent and temperature-

dependent magma viscosity. The large-scale convection is assumed to rapidly 

homogenize the magma, resulting in a characteristic temperature Tm. In cases without 

magma replenishment, the simulation results for crystals-suspended models show that 

heat output and the hydrothermal temperature decrease rapidly and crystallinity reaches 

60% in less than ten years. In crystals-settling models, magma convection may last for 

decades, but decreasing heat output and hydrothermal temperatures still occur on decadal 

timescales. When magma replenishment is included, the magmatic heat flux approaches 

                                                 
1The material is essentially reproduced from Liu, L. and R.P. Lowell (2009). Models of 
hydrothermal heat output from a convecting, crystallizing, replenished magma chamber 
beneath an oceanic spreading center, J. Geophys. Res., 114, B02102, doi:10.1029/ 
2008JB005846. 
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steady state on decadal timescales, while the magma body grows to double its original 

size. The rate of magma replenishment needed ranges between 5 x 105 and 5 x 106 m3/yr, 

which is somewhat faster than required for seafloor spreading, but less than fluxes to 

some terrestrial volcanoes on similar timescales. The heat output from a convecting, 

crystallizing, replenished magma body that is needed to drive observed high-temperature 

hydrothermal systems is consistent, with gabbro glacier models of crustal production at 

mid-ocean ridges.  
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3.1 Introduction 

 Hydrothermal systems at oceanic spreading centers are closely linked to 

magmatism. At nearly all sites of observed high-temperature venting, seismic reflection 

data shows the presence of shallow subsurface magma bodies beneath active 

hydrothermal systems regardless of spreading rate [e.g., Detrick et al., 1987; Collier and 

Sinha, 1990; Canales et al., 2006; Singh et al., 2006; Van Ark et al., 2007]. Even at the 

TAG hydrothermal system at the slow spreading Mid-Atlantic Ridge where no shallow or 

mid-crustal magma has been detected, the presence of deeper magmatic sources has not 

been ruled out [Canales et al., 2007]. At the ultra-slow spreading Gakkel Ridge, 

hydrothermal activity also appears to be associated with recent volcanism [Michael et al., 

2003; Baker et al., 2004a]. More importantly, recent evidence suggest the properties of 

subaxial magma lenses vary along the ridge axis and that high-temperature venting lies 

above regions with high liquid fraction [Singh et al., 1999; Canales et al., 2006]. 

Moreover, at the fast-spreading East Pacific Rise near 9°50′N, where eruptions occurred 

in 1991 [Haymon et al., 1993] and again in late 2005/early 2006 [Rubin et al., 2006; 

Soule et al., 2007], there is evidence of non-eruptive magmatic activity as suggested by 

vent chemistry [e.g., Von Damm, 2004] and changes in the permeability structure [e.g., 

Sohn et al., 1998; Scheirer et al., 2006] that may be related to magmatism [e.g., 

Ramondenc et al., 2008].  

 Most models of hydrothermal circulation are coupled to magmatic processes 
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only loosely. In the most common situation, the temperature is fixed at the bottom. This 

condition assumes that magma serves as an infinite reservoir of heat and heat transport is 

controlled by the vigor of the hydrothermal system, which is characterized by the 

Rayleigh number Ra [e.g., Bejan, 1995; Lowell and Germanovich, 2004]. On the other 

hand, if a constant heat flux is assumed at the base of the hydrothermal system, then 

hydrothermal heat output is controlled by the rate at which the heat is conducted from the 

magma body [e.g., Lowell and Germanovich, 1994, 2004; Germanovich et al., 2000, 

2001]. Neither of these boundary conditions is realistic because heat transfer from a 

convecting magma body near its liquidus will cause magma to cool and crystallize [e.g., 

Cann and Strens, 1982; Lowell and Rona, 1985].  

 The hydrothermal models of Lowell and Burnell [1991] and Lowell and 

Germanovich 1994] considered heat transfer from a crystallizing magma body. These 

assumed that crystallization occurred at the roof of the magma chamber. As the frozen 

layer grew downward, heat loss from the magma decreased with time as t-1/2 resulting in 

an analogous decline in hydrothermal heat output and vent temperature. Although 

hydrothermal heat loss following diking events such as occurred at Co-Axial in 1993 or 

at Axial Volcano in 1998 may decay faster than t-1/2 [Baker et al., 2004b], hydrothermal 

systems driven by sub-axial magma chambers often exhibit relatively stable vent 

temperatures and vent fluid chemistry on decadal time scales [Campbell et al., 1988; Von 

Damm et al., 2002]. Although time series data on hydrothermal heat output are limited, 

heat output is generally assumed to be stable as well. The data suggest that ridge crest 
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hydrothermal systems typically transport between 108 and 109 Watts of heat [Ramondenc 

et al., 2006; Baker, 2007].  

 Lowell and Germanovich [1994] and Humphris and Cann [2000] suggested that 

magma inputs at rates similar to those observed on terrestrial volcanoes could help 

maintain steady hydrothermal heat output. These results were not linked to quantitative 

models of magma convection and crystallization, however.   

 The observations of quasi-steady state hydrothermal heat output and vent 

temperature, which aren't adequately predicted by current magma-hydrothermal models, 

argue for models that investigate different ways to link magmatic processes and 

hydrothermal circulation. In the following section of this paper, we discuss models of 

magma convection that may be more appropriate representations of the magmatic-

hydrothermal coupling. In section 3.3, we formulate the mathematical model for magma 

chamber convection with and without replenishment. In section 3.4, we present the 

results of the numerical simulations; and in section 3.5, we discuss the implications of the 

modeling results. 

3.2 Magma Convection and Crystallization 

The dynamics of cooling, crystallizing magma chambers has long been a subject 

of scientific interest [e.g., Lovering, 1955; Jaeger, 1968; McBirney and Noyes, 1979; 

Irvine, 1980]. Because the density and chemical composition of the crystals are generally 

different from that of the liquid, crystallization often results in convective transport and 
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chemical differentiation within the magma body. The role of convection on nucleation, 

growth, and the redistribution of crystals in magma chambers has been a matter of some 

debate. Although Brandeis and Jaupart [1986] and Marsh [1989] have argued that 

convection is weak or absent, the more common view is that convection is vigorous [e.g., 

Huppert and Sparks, 1988; Martin and Nokes, 1988, Worster et al., 1990, Kerr, 1994].   

 Convection in magma chambers results from two different driving forces: thermal 

convection and compositional convection. Thermal convection results from cooling of the 

magma as heat is transported to the surrounding country rock. Compositional convection 

results from buoyancy-driven density differences that stem from injection of a new 

composition into a chamber, partial melting, or fractional crystallization.  

The detailed dynamics of a crystallizing magma body is extremely complex. 

Crystals may nucleate at the roof, near the floor or within the interior of the magma body, 

and the rate at which crystals settle depends upon the rate of cooling, the density of the 

particles, and the viscosity of the magma. Huppert and Sparks [1988] assumed that 

crystals formed in the interior of the magma chamber, were small, and remained 

suspended as a result of vigorous by convection. This assumption is counter to traditional 

models in which crystals settle and accumulate on the floor [Martin, 1990; Martin and 

Nokes, 1989; Worster et al., 1990].  Jellinek et al. [1999] and Jellinek and Kerr [1999] 

investigate convection and magma mixing in laboratory experiments and Jellinek and 

Kerr [2001] applied these results to convection and crystallization within the Kilauea Iki 

lava lake. In these papers, magma replenishment has been neglected, and cooling is 
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assumed to occur as a result of thermal conduction to the country rock. Magma 

convection models that include replenishment have focused on cases in which the 

entering magma has significantly different composition than the magma in place [e.g., 

Huppert and Sparks, 1981; Huppert et al., 1986; Snyder and Tait, 1995]. Such models are 

not directly relevant to mid-ocean ridge settings. 

In this paper, we seek to address the linkages between hydrothermal heat output 

and heat transfer from a cooling, crystallizing, replenished magma chamber beneath an 

oceanic spreading center. For this analysis we do not consider the detailed dynamics of 

magma chamber crystallization. Because the composition of mid-ocean ridge basalts is 

relatively homogenous locally [e.g., Batiza and Niu, 1992; Perfit et al., 1994], we neglect 

the effects of compositional convection and magmatic differentiation and consider a 

model of magma thermal convection based on that of Huppert and Sparks [1988]. They 

considered heat transfer from a vigorously convecting basaltic magma chamber of 

thickness D emplaced into the cold continental crust and developed a simple heat balance 

to describe how the bulk temperature of the magma Tm(t) decayed as heat was transferred 

across the roof as a result of high Rayleigh number convection. The focus of their model 

was to determine the extent of roof melting and convection within a growing silicic 

magma, while crystallization and cooling occur within the subjacent basaltic magma 

chamber. 

Although we use Huppert and Sparks [1988] as a starting point, we consider 

several different scenarios.  First, rather than investigating the effect of convective heat 
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transfer from the magma on heating the overlying rock, we link this heat transfer to the 

overlying hydrothermal circulation system. The upper boundary of the convecting magma 

is maintained at the solidus temperature Ts. Because the hydrothermal circulation rapidly 

removes heat from the crustal rocks, no induced melting occurs on the chamber roof. 

Second, in addition to considering the case in which crystals stay suspended in the 

magma, we also consider the end-member case in which crystallization occurs at the floor 

(or crystals settle rapidly to the base of the magma chamber). These two situations are 

both qualitatively and quantitatively different from earlier models [Lowell and Rona, 

1985; Lowell and Burnell, 1991; Lowell and Germanovich, 2004], which assumed 

freezing proceeded downward from the roof. These models resulted in a rapidly 

thickening conductive thermal boundary layer and a rapid decay in hydrothermal heat 

output.  If crystallization occurs at the base of the magma chamber or if the crystals 

rapidly settle there, the lower boundary layer grows with time, resulting in a decreasing 

depth of liquid magma with time. This assumption yields an estimate of the maximum 

lifetime of magma convection in the absence of replenishment, because convection in 

crystal-free magma maintains a lower viscosity. Third, because we find that magmatic 

heat flux and hydrothermal temperature still decay more quickly than observed, we 

investigate the role of magma replenishment in maintaining a quasi-steady heat output on 

decadal time scales. 
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3.3 The Mathematical Model 

3.3.1 Basic system geometry and mathematical formulation 

Seismic data from studies at several mid-ocean ridges show the presence of a thin 

mostly liquid lens of magma extending between ~ 0.5 and 4 km across the ridge axis and 

often for 10s of kilometers along the axis [e.g., Detrick et al., 1987; Sinton and Detrick, 

1992, Collier and Sinha, 1990; Kent et al., 1990; Singh et al., 2006; Van Ark et al., 2007]. 

The magma lens is typically several tens of meters to perhaps ~ 100 m thick [Kent et al., 

1990; MacLeod and Yaoyancq, 2000].  Heat is transferred by conduction between the 

magma and the overlying cold country rock. As shown by Huppert and Sparks [1988], 

Martin and Nokes [1989], Huppert and Turner [1991], Worster et al. [1990], Jaupart and 

Tait [1995] and Jellinek and Kerr [1999], such a magma body would undergo vigorous 

convection.  The vigor of this convection is expressed by the dimensionless Rayleigh 

number Ra, must exceed a critical value Rac ~ 103. For a laterally extensive magma body 

of thickness D, Ra is  
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where αm is the coefficient of thermal expansion, g is the acceleration due to gravity, am is 

the thermal diffusivity, vm is the kinematic viscosity, and ΔT = Tm (t)-Ts is the difference 

between the average temperature of the convecting magma Tm(t) and the solidus 

temperature of basalt Ts that defines the roof of the magma body, respectively. The 

subscript m refers to properties of the magma. Because magma is cooling and 
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crystallizing Tm is a function of time. The symbols used in this paper are listed in Table 

3.1.  

 
 
 
 
Table 3.1 Values of the physical parameters for hydrothermal vent fields 
 

Physical meaning Parameter Value  Units 
Latin symbols    
Area of magma replenishment Ab  m2 
Area of hydrothermal discharge zone Ad 103-104  m2 
Horizontal magma area in chamber Am <2×106 m2 
Initial magma chamber area  Am0 106-107 m2 

Exponential factor b 10-9 S 
Fluid specific heat cf 6×103 J /kg ºC 
Magma specific heat cm 1400 J /kg ºC 
Magma chamber depth D 100 M 
Liquid magma thickness Dm  M 
Crystal magma layer thickness Ds  M 
Heat flux added by conductivity Fc  W/m2  
Heat flux carried by the hydrothermal fluid Fh  W/m2 
Magmatic heat flux Fm  W/m2 
Heat flux added by magma replenishment Fr  W/m2 
Acceleration due to gravity g 9.81 m/s2 
Permeability k 10-11-10-13 m2 
Latent heat of crystallization of magma L 4.2×105 J/kg 
Nusselt number Nu  - 
Rayleigh number Ra  - 
The critical Rayleigh number Rac ~103 - 
Replenishment final time tf  s 
Mean magma temperature Tm  ºC 
Hydrothermal temperature Th 250-400 ºC 
Basalt liquidus temperature TL 1200 ºC 
Basalt solidus temperature TS  1030 ºC 
Darcian velocity ud  m/s 
Replenishment rate u  m/s 
Volume of magma Vm  m3 
Volume of crystals Vs  m3 
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Greek symbols    
Thermal expansion coefficient of magma αm 5×10-5 ºC-1 
Thermal expansion coefficient of fluid αf 10-3 ºC-1 
Conduction boundary layer thickness δ  m 
Thermal diffusivity κ 8×10-7 m2/s 
Thermal conductivity of magma λm 2 Wm/ ºC 
Thermal conductivity of rock λr 2 Wm/ ºC 
Kinematic viscosity of magma νm  m2/s 
Kinematic viscosity of magma at liquidus νm0 0.1 m2/s 
Kinematic viscosity of fluid νf 10-7 m2/s 
Density of magma ρm 2.7×103 kg/m3 
Density of fluid ρf 103 kg/m3 
Volume fraction of crystals χ  - 
Critical crystal fraction χc 60% - 

 
 
 

 In nearly all cases, Ra is much greater than the critical value of 103. For ΔT = 

100°C, D = 100 m, and the other parameters in Table 3.1, Ra ~ 1011; for D ~ 10 m and ΔT 

~ 1°C, then Ra ~ 106. Therefore, following Huppert and Sparks [1988], the heat flux Fm(t) 

transferred from the convecting magma body can be expressed in terms of the Nusselt 

number Nu and the classical relationship between Nu and Ra [e.g., Jarvis and Peltier, 

1989],  
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where λm is the thermal conductivity of magma. Substituting equation (1) into equation (2) 

yields the heat flux transferred as a result of convection in the magma chamber [Turner, 

1973] 
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 3/4))(()( Smmmm TtTJctF −= ρ (3)

where 3/12 )/(1.0 mmm vgaJ α= , and am =λm/ρmcm. As a result of heat flux Fm(t) transferred 

through the top boundary of area Am, the magma body cools and crystals begins to form. 

 

 

 
 
Figure 3.1 Schematic of magma convection model with thickness Dm and mean 
temperature Tm. Turbulent magma convection provides heat flux Fm to power the 
overlying hydrothermal system at a temperature Th and heat flux Fh. The top of the 
magma chamber is maintained at its solidus Ts and heat from the magma to the 
hydrothermal system is transported across a conductive boundary layer of thickness δ. 
The underlying mush zone provides a source of magma and heat flux to the magma 
chamber. (a) depicts the situation with crystals suspended and (b) depicts the situation 
with crystals settling. [modified from Lowell et al., 2008] 
 
 
 

 In this paper, we assume that the total heat flux from the magma chamber Fm(t)Am 

is transported across a conductive boundary layer δ(t), where it is taken up by a 

Ds(t) 
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convecting hydrothermal system. Figure 3.1 depicts the basic model geometry consisting 

of: a layer of vigorously convecting basaltic magma underlying a hydrothermal system. 

In the hydrothermal circulation system, cold seawater penetrates the oceanic crust, where 

it is heated to a temperature Th. The buoyant fluid then rises rapidly and discharges into 

the ocean through a hydrothermal vent field of area Ad. 

Following [Lowell and Germanovich, 2004], we link heat transfer from magma 

to the heat transfer by the hydrothermal circulation through a heat balance equation  
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where λr is the thermal conductivity of rock and Fh(t) is the advective heat flux 

transported by the hydrothermal fluid. Equation (4) simply states that the heat conducted 

from the turbulently convecting magma body into the base of the hydrothermal system 

equals the heat transported to the top of the discharge zone Ad by hydrothermal advection. 

For a hydrothermal system venting at temperature Th(t), the heat flux is 

 )()( tTuctF hdffh ρ=  (5)

where ρf is the density and cf is the specific heat of the fluid, and ud is the Darcian upflow 

velocity. We assume buoyancy driven flow; and for simplicity, we assume the 

temperature of the recharge zone temperature is zero and the flow resistance is dominated 

by the discharge zone [Lowell and Germanovich, 2004]. Then ud is given by 
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where αf  is the coefficient of the thermal expansion of fluid, k is the permeability, and vf 
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is the kinematic viscosity of fluid.  In equation (6), we recognize that the permeability 

may be a function of time. Substituting equation (6) into (5) leads to 
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Hydrothermal and magmatic heat fluxes are linked to vent temperature by substituting 

equation (7) into equation (4). 

3.3.2 The heat balance for a convecting, crystallizing, replenished magma chamber 

The heat content H(t) of a volume of magma V(t) = Am(t)D(t) is  

 ]))((1()()[()( LtTtTctVtH mmmmm χρρ −+=  (8)

where L is the latent heat of the crystallization of the magma and χ(Tm(t)) is the volume 

fraction of crystals at temperature Tm(t), respectively. The first term on the right-hand side 

of equation (8) represents sensible heat per unit volume of magma, and the second term 

represents the latent heat yet to be released as crystallization occurs. For simplicity, we 

neglect the slight difference in density between liquid and crystals, and the volume 

decrease that occurs as a result of crystallization. Conservation of energy requires that 
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where Fr(t) is the rate at which heat is added to the magma chamber as a result of 

replenishment and Fc(t) is the rate at which heat is conducted into the magma from below. 

Substituting equation (8) into equation (9) yields 
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Using equation (10), we consider four different scenarios. First we consider the case in 

which magma replenishment is absent. Within this scenario, we consider two member 

situations: (a) crystals remain suspended with the liquid magma as it crystallizes or (b) 

crystallization occurs at the floor of the magma chamber or crystals instantly settle there 

(Figure 3.1). For simplicity we refer to these two cases as “crystals suspended” and as 

“crystals settling”, respectively. The real situation probably lies between these extremes, 

and some crystals may grow from the roof. We neglect this effect because we wish to 

diminish the rate at which a conductive thermal boundary layer may grow at the top of 

the magma chamber. Then we consider the case in which magma replenishment occurs, 

and again we consider the two cases of “crystals suspended” and “crystals settling”.   

In order to solve equation (10), we need expressions for χ(Tm(t)), the magma 

viscosity νm(Tm(t)), and a number of other parameters. One commonly used expression 

assumes χ varies linearly with temperature between the liquidus and solidus temperature 

[Hort, 1997]. That is: 
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Huppert and Sparks [1988], relate χ to magma temperature through the formula 
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Equation (12) yields a liquidus temperature of 1200°C, a solidus temperature of 1030°C; 

the temperature at which crystallinity reaches 60% is 1091°C. This analytical expression 

is displaced toward slightly lower temperatures, but it exhibits a similar χ-T trend to that 

calculated by MELTS [Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998] for a 

standard dry MORB. Because the solidus temperature in (12) is greater than for MORB, 

equation (12) slightly overestimates the amount of latent heat released during 

crystallization. Equation (11) gives a slightly higher temperature at which χ = 60%, 

resulting in a shorter lifetime for the convecting system [Liu, 2007]. Having an analytical 

expression for the χ-T relationship is useful for the mathematical analysis developed here. 

We use equation (12) for the computations in this paper because it is a good 

approximation to the χ-T relationship for basalt. 

In equation (3), heat flux Fm(t) depends upon magma viscosity, which is mainly 

dependent on the crystal content of the magma [Roscoe, 1952; Lejeune and Richet, 1995]: 

 n
cmm

−−= )1(0 χχνν  (13)

where n is a constant, and χc is the critical crystal fraction beyond which the flow is 

prevented (i.e., ∞=ν ). In this formulation we neglect the dependency of viscosity on 

temperature as well as non-Newtonian rheology that occurs when crystal content reaches 

about 40% [Lejeune and Richet, 1995]. As the temperature Tm(t) decreases and the crystal 

content increases according to equation (12), magma viscosity increases. Empirical data 

suggest χc = 60% and n = 2.5 [Shaw, 1980; Marsh, 1981; Lejeune and Richet, 1995]. For 

crystal-free basalt νm0 ≈ 0.1 m2/s, equation (13) becomes  
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 5.2)67.11(1.0 −−= χmv  (14)

The relationship between magma viscosity and crystal content is shown in Figure 3.2. As 

crystallinity increases, the viscosity increases moderately at first; but when crystal 

content reaches ~ 60%, the viscosity increases so rapidly over a short range of 

crystallinity that the magma behaves essentially as a solid. Because Ra → 0 as νm → ∞, 

we cease the calculations when χ(Tm(t) = 60%. 
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Figure 3.2 The relationship between magma viscosity and crystal content from equation 
(14), showing the rapid increase in magma viscosity as crystal content reaches 60%. 
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In models which assume crystal settling, the magma is assumed to be crystal free 

as it cools. For these models we assume 

 5.8
0 ))(/( tTTvv mLmm =  (14a)

Equation (14a) gives an increase in the viscosity of a factor of 3 as magma cools from 

1,200°C to 1,050°C. This equation gives a reasonable fit to the data for dry basaltic 

magma given in Spera [2000]. Then Ra decreases as the thickness of the magma layer D 

and the temperature difference ΔT decrease. In principle, we stop the calculations when 

Ra ~ 106; however, in actual simulations we stop when the heat output becomes less than 

that observed in seafloor hydrothermal systems. 

 Equation (10) is solved numerically in conjunction with equations (3), (12) and 

(14) to obtain the total magmatic heat output Fm(t)Am, which is then linked to 

hydrothermal heat output and vent temperature through equations (4) and (7), 

respectively. The other parameters needed in theses equations are given in Table 3.1. In 

particular, we use ρm = 2,700 kg/m3 for basaltic magma [Trial and Spera, 1990; Spera, 

2000], TL = 1,200 °C [Sinton and Detrick, 1992], and Ts = 1,030 ºC. The shape and the 

size of the magma body are the most important parameters during heat transfer. For 

simplicity we consider a rectangular-shaped magmatic sill is considered with planar area 

Am and thickness D (D << Am). In this model, we assume D = 100 m, initially.  

To estimate the area for heat extraction by a hydrothermal system, we note that 

axial magma chamber typically ranges between 0.5 and 4 km wide across the ridge axis 

[e.g., Collier and Sinha, 1990; Kent et al., 1990; Singh et al., 2006] while extending for 
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dozens of kilometers along the axis in some places [e.g., Detrick et al., 1987; Van Ark et 

al., 2007; Jacobs et al., 2007], and less than 10 km in others [e.g., Canales et al., 2005; 

Singh et al., 2006]. Vent field spacing along ridge axes is somewhat irregular. Along the 

Endeavour segment of the Juan de Fuca Ridge, vent fields are spaced approximately 2 

km apart [e.g., Kelley et al., 2002], but along other ridge segments vent fields may be 

spaced more closely or farther apart. As a reasonable estimate, we will assume that the 

hydrothermal circulation taps heat from an area of subsurface magma Am ~ 106-107 m2. In 

models with magma replenishment, either the area Am or thickness D of the magma body 

may vary with time. The cases in which the area increases are described in the Appendix.  

3.3.3 Magma convection without replenishment 

3.3.3.1 Crystals suspended 

If we assume that all the crystals are suspended within the interior of the magma 

then Vm(t) = Am0D0, is a constant. Because there is no replenishment, Fr(t) = 0 in equation 

(10). Upon taking the time derivative of the second term on the left hand side of equation 

(10), we obtain 

 ( ) )()(00 tF
dt

dT
tTLD

dt
dT

Dc m
m

mm
m

mm −=′− χρρ  (15) 

where χ΄(Tm(t)) is the derivative of χ with respect to Tm (from equation (12)), and Fm(t) is 

given by equation (3), where ν is given by equation (14). Equation (15) is solved for Tm(t) 

and the result is inserted into (4) to obtain the total heat flux from magma convection as a 

function of time.  
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3.3.3.2 Crystals settling 

 If crystallization occurs at the floor of the magma chamber or instantly settles 

there, then the volume of the magma chamber decreases as the thickness D decreases 

with time (Figure 3.1 case (b)). The volume of liquid magma Vm(t) is the initial volume 

V0 minus the volume of crystals formed Vs. Hence 

 
dt

tdT
dT

tTd
V

dt
tdV

dt
tdD

A
dt

dV m

m

mm
m

m )())(()()(
00

χχ
−=−==  (16)

As the magma chamber cools and crystals settle to the floor a temperature gradient may 

exist across the crystal layer resulting in conductive heat transfer from the growing 

crystal layer to the convecting liquid.  The rate of conductive heat flux from the crystal 

pile back to the liquid magma is approximately 

 
)(

)(
tD

tTTF
s

mL
mc

−
= λ  (16a)

where λm is the thermal conductivity of the frozen magma and Ds(t) = χ(Tm(t))D0 is the 

thickness of the crystal layer. By comparing results of simulations with and without the 

term given by equation (16a), it can be shown that this term exerts only a small effect on 

the thermal evolution of the magma chamber [Liu, 2007]. 

 Substituting equations (16) into equation (10) and recognizing that Dm(t) = D0[1-

χ(Tm(t))], we obtain the result 
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cmm
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=
χχρχχρ (17)

Equation (17) is now solved with Fm given by equation (3), Fc given by equation (16a), 
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and νm given by equation (14a). 

3.3.4 Magma convection with replenishment 

 During magma replenishment, additional heat and fluid mass is added to the 

magma chamber. As a result both the magma chamber volume and heat content increase 

with time. The increase in heat content is given by the factor Fr(t) in equation (10). We 

will assume that additional magma is added at its liquidus through an area at the base of 

the magma Ab(t) at a velocity u(t). Again we consider the two cases: “crystals suspended” 

and “crystals settling”. For simplicity we assume the magma entering the base of the 

magma chamber mixes rapidly with the existing magma so that a single temperature Tm(t) 

can still be used to describe the convection system.  

3.3.4.1 Crystals suspended 

 In this case the magma volume is  

 
0 0

( ) ( ) ( )
t

bV t V A s u s ds= + ∫  (18)

For simplicity, we assume that the area of the magma remains constant and that magma 

replenishment occurs over the entire area Am. Then 

 
)()()( tuA

dt
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m
m

m
m == (19)

We consider two different models of replenishment. In the first model, magma 

replenishment occurs at a constant velocity for a certain time period tf, which corresponds 

to the time for the magma chamber to double in size or the magmatic heat flux to decay 
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to less than 107 Watts 

 
.t          0)(
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 (20)

The depth of the magma can be obtained by integrating equation (19) yielding: 

 00)( DtutDm +=  (21)

In the second model, the velocity of replenishment is assumed to decay exponentially 

 bteutu −= 0)(  (22)

where u0 is the initial velocity. Similarly, the depth of the magma is given by  

 
b
u

D
b
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−
−= (23)

The rate of heat input Fr(t) is given by 

 )()()( tuALTctF mmLmmr ρρ += (24)

Substituting equations (18), (19), and (24) into equation (10) leads to the necessary 

equation for magma temperature:  

 ( ) ( )( )
( )( )mmmm

mmLmmmm

cLtTtD
LtTtTTctutF

dt
dT

−′
+−−

=
)()(

)()()()(
χρ

χρ
 (25)

where Dm(t) is given by either equation (21) or (23). 

3.3.4.2 Crystals settling 

 If crystals form on or instantly settle to the floor of the magma chamber, the 

magma volume is given by 

 
0 0

( ) ( ) ( )
t

m s bV t V V A s u s ds= − + ∫ (26)
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where Vs is the volume of crystals that have formed. Because we have no independent 

constraint on the surface area, we assume that Am(t) = Am0, a constant. Substituting Vs = 

χ/(1-χ)Vm(t) into equation (26) then  

 
0 0 0

1 ( )
(1 )

t

m mV V A u s ds
χ

= +
− ∫ (27)

Substituting Vm(t) = Am0Dm(t) into (27) yields the result 
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The thickness of magma chamber is 
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t

D t D u s ds= + ∫  (28a)

and the rate at which the magma volume changes with time is  
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Then upon substituting equations (16a), (24), (28) and (29) into equation (10) we obtain 

the equation for magma temperature: 
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− + − + − − +
=

′ ′+ − + − − (30)

Simulations using equation (30) are run for set periods of time using the different 

replenishment velocities given by either equation (20) or (22). The simulation stops when 

D(t) doubles. 
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3.4 Results 

3.4.1 Magma convection without replenishment 

 Figure 3.3 shows total heat output Fm(t)Am from the convecting basaltic magma 

with two different values of Am for “crystals suspended”. The dotted lines located at 109 

and 107 Watts denote the approximate range of total hydrothermal heat output measured 

in hydrothermal systems at oceanic spreading centers [Ramondenc et al., 2006; Baker, 

2007]. As the magma temperature drops, the crystallinity and viscosity increase (Figure 

3.2), resulting in decreasing values of Ra and Fm(t) with time. The simulation ceases 

when the crystal content reaches 60% and the viscosity become infinite. Figure 3.3 shows 

that magmatic heat output decreases rapidly within a ten-year period and the convective 

lifetime is less than 10 years. This results primarily from the decrease in Rayleigh 

number as the viscosity increases with crystallinity.  Such a rapid decay may be 

appropriate for a system driven by a diking event, but it would not be expected for a 

system driven by an axial magma chamber. Area Am plays a role in determining the total 

heat flux, but it has no influence on the lifetime of magma convection.  
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Figure 3.3 Total heat output from the convecting crystallizing magma for the crystals 
suspended model without magma replenishment. The dotted lines located at 109 Watts 
and 107 Watts denote the approximate range of total hydrothermal heat output measured 
at oceanic spreading centers. 
  

 

Figure 3.4 shows the total heat output, for case “crystals settling”. In comparison 

with Figure 3.3, Figure 3.4 shows that for the same value of Am, the initial rate of heat 

loss from the convecting magma is greater for the “crystals settling” case; but the rate of 

decline heat loss is much slower in this case, and the convective lifetime of the magma 

body increases. For larger surface area Am, the lifetime exceeds 80 years with a heat 

output of more than 107 Watts. Although in principle the simulation stops when Ra 
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decreases to 106, this limit is not reached within the 100 year timescale shown in Figure 

3.4.  
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Figure 3.4 Same as Figure 3.3, except using the crystals settling model. In this case, the 
lifetime of magma convection increases significantly although heat output gradually 
declines below 107 Watts. 

 

 

The principal difference between the models with crystals suspended and crystals 

settling stems from the role of viscosity. With crystals suspended, the rapid increase of 

viscosity with crystal content exerts the main control on Ra and the rate of heat loss from 

the magma chamber. With crystals settling, the viscosity of the liquid magma changes 
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slowly (equation (14a)), and only the gradual change in the thickness D and the 

temperature difference ΔT affect the Rayleigh number. In this case, even after 60% 

crystallization, D ≈ 40 m and Ra ~ 3 x 109. Although the magmatic heat loss decays more 

slowly in the case of crystals settling, and the overall lifetime increases, Figure 3.4 shows 

that heat output drops from 109 to 108 Watts in less than 2 decades. For systems with an 

initial heat output of ~ 108 Watts, the decay rate is significantly slower, and given the 

limited data available for hydrothermal systems, the crystal settling model may be 

reasonable (but see also section 3.4.2). 

3.4.2 The behavior of the hydrothermal system 

To further emphasize the implications of the heat output results shown in Figure 

3.4 and Figure 3.5, Figure 3.6 shows the hydrothermal vent temperature as a function of 

time for different values of permeability k and magma area Am, assuming a hydrothermal 

discharge area Ad = 104 m2. Temperature Th = 250 °C denotes the lower limit for observed 

black smoker vent temperatures. Equations (4) through (7) show that the hydrothermal 

heat flux is controlled by the magmatic heat flux from below The equations also show 

that for a given magma surface area Am the hydrothermal temperature decreases with 

increases in permeability (or mass flux). These equations also show that there is a 

tradeoff between magma surface area and permeability as depicted in Figure 3.5 and 

Figure 3.6. Figure 3.5 shows that the temperature of the hydrothermal system drops very 

quickly during the brief lifetime of the system. Figure 3.6 shows that although the magma 
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convection system lasts for several decades, the hydrothermal temperature still drops 

rapidly on a decadal timescale. The most important feature of Figure 3.5 and Figure 3.6 is 

that without magma replenishment, hydrothermal temperature decreases significantly on 

decadal time scales, regardless of the values of the parameters Am and k, and regardless of 

which magma convection model is assumed. For the simple hydrothermal models used 

here, the hydrothermal temperatures are much higher than typical black smoker 

temperatures in the initial stages of magmatic heat transport (Figure 3.5 and Figure 3.6). 

This is a result of the starting conditions in the magma which result in an extremely high 

initial thermal gradient and heat transfer rate since the magma is assumed to be instantly 

emplaced at time t = 0. This initial singularity does not strongly affect the later behavior 

of the system. 

Such a rapid decay of a seafloor hydrothermal system is not commonly observed 

in long-lived systems that are driven by basalt magmatic heat sources; instead, the heat 

transport from the magma chamber sustains relatively steady venting temperatures and 

heat output. The basic model presented here suggests that magma convection alone may 

not be sufficient to maintain the high hydrothermal temperature and heat output for 

decadal timescales. The inconsistency between the above simulation results and the 

observations provides motivation for the development of magma convection models with 

replenishment.  
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Figure 3.5 Hydrothermal temperatures as a function of time for the crystals suspended 
model for different values of permeability k and magma area Am. The dotted line at 
T=250°C represents a lower limit for black-smoker venting. 
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Figure 3.6 Same as Figure 3.5, except using the crystals settling model. Although 
magmatic convection lifetime is much longer, hydrothermal temperatures still decrease 
significantly on decadal timescales. 
 
 
 

3.4.3 Magma replenishment 

From the above simulations, we find that magmatic heat output decays 

significantly on decadal timescales. For the crystals settling model the rate of decay 

might not appear unreasonable, except that it is accompanied by a rapid decline in vent 

temperature as well. In the following subsections we investigate the effects of magma 

replenishment as a means of stabilizing magmatic and hydrothermal heat output.  
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3.4.3.1 Crystals suspended 

First, we consider the case in which crystals are suspended in the crystallizing 

magma as described by equation (25). Figure 3.7 shows the total magmatic heat output 

over a range of replenishment velocities. The results show that for some range of 

replenishment velocity, magmatic heat output reaches an approximate steady state within 

the observed hydrothermal heat output limits. For these simulations, the magma area Am 

= 106 m2. Because the depth Dm is growing during replenishment, we stop the simulations 

when Dm doubles or when the heat output decreases to 107 Watts. For a velocity of 10-7 

m/s, which is not shown, the depth of the magma chamber doubles within a few years. At 

a lower extreme (e.g. 10-9 m/s) heat output decreases below 107 Watts rather quickly.  

The Appendix shows the analogous simulations when the depth of the magma 

chamber is held fixed and the area is assumed to increase as a result of replenishment. 

Figure A.1 shows that magmatic heat transfer is stabilized on decadal time scales for 

similar values of magma replenishment velocity. The lifetime of systems with area 

changing is shorter than for those in which the depth increases. This is because as the area 

increases the volume flux of magma increases with time (equations A.4 and A.6). 
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Figure 3.7 Total heat output as a function of time in the crystals suspended model for 
different values of constant or exponentially decaying magma replenishment velocity. 
Velocity u in m/s, b is the exponential factor. Simulations are run until magma depth D 
doubles from its initial value of 100 m, or until heat output decays to less than 107 Watts. 
Magma area is 106 m2. Results show that u between 10-7 and 10-8 m/s tend to stabilize 
heat output on decadal timescales. 

 
 
 

3.4.3.2 Crystals settling 

 Then we considered the case for crystals settling as described by equation (30), 

where D(t) is given by (28a) and Fc is given by (16a). Figure 3.8 shows the total 

magmatic heat output for the same values of replenishment velocity shown in Figure 3.7. 

As in the case for crystals suspended, the heat output approaches steady state for certain 
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values of the replenishment velocity. In this model the area Am is a constant value of 106 

m2. As for the prior case of crystals suspended, the simulations are run until the thickness 

D(t) doubles or the heat output decreases to 107 Watts. As in the case for crystals 

suspended, replenishment velocities of ∼ 10-7 – 10-8 m/s are needed to maintain quasi-

steady state heat output on decadal time scales.  
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Figure 3.8 Total heat output as a function of time for the crystals settling model for a 
variety of magma replenishment velocities. As in Figure 3.7, simulations are run until the 
magma size doubles or heat output decreases to 107 W. Though heat output is decreasing, 
for u between 10-7 and 10-8 m/s, heat output is approximately constant on decadal 
timescales. 
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The Appendix shows the analogous simulations when the depth of the magma 

chamber is held fixed and the area is assumed to increase as a result of replenishment. 

Figure A.2 shows that magmatic heat transfer is stabilized on decadal time scales for 

similar values of magma replenishment velocity. Because the area increases in time 

(equations A.16 and A.17) in these simulations, the volume flux increases with time, 

resulting in a shorter doubling time than for cases in which the area is constant. . 

3.5 Discussion 

 The results of the previous section show that heat output from a cooling, 

crystallizing, subaxial magma chamber undergoing vigorous convection at an ocean ridge 

axis decays on decadal timescales and is not able to maintain stable hydrothermal heat 

output and vent temperatures in the absence of replenishment. Models in which crystals 

grow on or rapidly settle to the floor giver more realistic results than models in which 

crystals stay suspended, however.  After an initial transient period lasting a decade or 

more, models with magma replenishment yield quasi-steady state heat output on decadal 

timescales, provided the velocity of magma input is ∼ 10-8 - 10-7 m/s. 

 The velocities needed to drive observed steady state hydrothermal heat fluxes 

correspond to magma volume fluxes ranging from 5 x 105 to 5 x 106 m3/yr through an 

area of 1.5 km2. The rates of magma replenishment at oceanic spreading centers are 

unknown, and magma replenishment rates in general volcanic settings are poorly 

constrained and vary widely [e.g. Macleod and Tait, 2000]. To place these fluxes in 
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perspective, however, consider that ~ 4 x 105 m3/yr of magma is needed to produce 6 km 

of crust per km of ridge axis at a full spreading rate of 6 cm/yr; and ~108 m3/yr of magma 

was supplied to Kilauea, Hawaii between 1956 and 1983 [Dzurizin et al., 1984] and 

Krafla, Iceland between 1975 and 1981, respectively [see Humphris and Cann, 2000]. 

Hence the replenishment rates determined from the models presented here are similar to, 

or perhaps 10 times larger, than needed for crustal production, but are significantly 

smaller than occurs at some active volcanoes on decade time scales. Because crustal 

production rates are not expected to be steady on the time scales corresponding to 

changing occurring in the magma chamber, magma replenishment on decadal time scales 

at rates that are greater than needed for steady crustal production are not unreasonable. If 

the replenishment rates determined from our models are approximately correct, the lower 

values of replenishment to the magma lens are approximately the same as required for 

generation of the entire thickness of the oceanic crust. This result suggests that crustal 

formation under the gabbro glacier model [Henstock et al., 1993; Morgan and Chen, 

1993] is consistent with observed values of hydrothermal heat output.  Further work is 

needed to confirm this idea, however.  

 Although the replenishment velocities needed to maintain stable heat output for 

the different models in Figure 3.7 and Figure 3.8, Figure 3.A.1, and Figure 3.A.2 are 

similar, there are several differences between the replenishment models in detail. In the 

models in which the magma surface area grows with time, the volumetric rate of magma 

replenishment increases with time and heat flux increases slightly with time (Figure 3.A.1 
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and Figure 3.A.2). In the models in which the surface area is fixed, heat output tends to 

decrease with time even with replenishment (Figure 3.7 and Figure 3.8).  Moreover, 

because the volumetric magma flux is greater in models in which the area increases than 

in the models in which the depth increases, the time to doubling the magma volume is 

much shorter in the former case. Although heat output changes in time in all models 

shown in Figure 3.7, Figure 3.8, Figure 3.A.1 and Figure 3.A.2, changes occur on a long 

enough time scale that they might not be noticed with the present limited data from 

hydrothermal systems.  

 Although the replenishment velocities needed in the model to yield quasi-steady 

state heat output appear to be reasonable for decadal time scales, they cannot be 

maintained for geologic times. Because sections of ocean ridges axes are devoid of 

significant hydrothermal activity while other sections are active, even at fast spreading 

rates, the model results suggest that some regions of the ridge crest are undergoing more 

rapid rates of magma input than others. This result is consistent with recent seismic data 

suggesting that hydrothermal activity is associated with the most liquid regions of 

subsurface magma [Singh et al., 1999; Canales et al., 2006]. Given the rapid rate of 

crystallization shown by our calculations, this observation is consistent with frequent 

replenishment coupled with the crystals settling model during episodes of vigorous high-

temperature hydrothermal circulation. Our results are also consistent with observations at 

EPR 9°50′N, which suggest magma replenishment occurred between the eruptive events 

of 1991 and 2005/2006 [Von Damm, 2004; Scheirer et al., 2006]. Even at slow spreading 
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ridges, where magma supply is generally lower, high temperature, high heat output 

hydrothermal systems are likely driven by frequently replenished magma chambers 

[Lowell, 2008]. Humphris and Cann [2000] have also argued that the TAG hydrothermal 

system on the Mid-Atlantic Ridge is powered by a replenished magma chamber. If the 

TAG hydrothermal system is driven by magmatic heat, the magma chamber must lie deep 

in the crust or in the upper mantle, however [Canales et al., 2007]. 

 According to our models, magma chamber replenishment eventually yields quasi-

steady state heat output in both the crystals suspended and the crystals settling models. 

Erupted lavas typically contain few phenocrysts [e.g., Bryan, 1983]; however, so from a 

petrological point of view, the crystals settling model appears to be more appropriate. 

Moreover, between the 1991/1992 and 2005/2006 eruption episodes, the magma chamber 

beneath EPR 9°50′ N cooled by approximately 30°C [Soule et al., 2007]. Figure 3.9 and 

Figure 3.A.3 show that models with crystals suspended cool by approximately 30°C 

within the first few years, then maintain a nearly constant temperature. On the other hand, 

Figure 3.9 and Figure 3.A.3 show that a similar decrease in magma temperature also 

occurs in the crystals settling models but over 15-20 year time frames. Although both 

models show similar temperature decreases, we prefer the crystals settling model because 

we do not know at any one time where we are in the magma convection cycle. The 

crystals suspended model would require that we caught the initial temperature decrease 

that starts at time zero, whereas the crystals settling model gives reasonable results 

regardless of where we are in the system’s history. 
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Figure 3.9 Magma temperature as a function of time for (a) crystals suspended and (b) 
crystals settling models for different values of constant magma replenishment velocity u. 
For (a) magma temperature approaches the value for which crystal content is 60%; for (b) 
the temperatures are significantly lower and decay by a few tens of degrees per decade. 
Curves ending at less than 100 years denote the time at which depth of the magma 
chamber doubles.  
 
 
 

 Although the model simulations suggest that magma replenishment coupled with 

magma chamber growth can help maintain a quasi steady-state hydrothermal system, the 

models employ a number of simplifications that need to be investigated further in order to 

make the simulations more robust. For example: 

(1) In these models, rates of magma replenishment that satisfied observational constraints 
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were simply determined heuristically.  Magma transport from the underlying mush zone 

to the magma chamber may not occur according to any simple mathematical function. To 

obtain a more realistic model of magma replenishment, our magmatic-hydrothermal 

models need to be linked to physical models of magma transport in upper mantle and 

lower crust.  

(2) Magma chamber growth is greatly oversimplified. In these models, we simply assume 

that magma extends laterally or vertically as a result of replenishment. The stress field 

and the elastic response of the surrounding rock have been neglected. Magma chamber 

growth and pressurization of the magma cavity could lead to failure and magmatic 

eruptions [e.g., Sim, 2004]; however, so more realistic models of magma replenishment 

should be linked to deformation and possible eruption processes.  

(3) Magma chamber dynamics and the effects of replenishment are greatly oversimplified.  

Even in the absence of magma replenishment, the models do not consider the dynamics 

of crystal settling and the effects of compositional convection. Attachment of crystals to 

the roof is also not considered. In models with magma replenishment, the new crystal-

free magma imported into the magma chamber is assumed to mix with the magma in 

place instantaneously. However, the temperature, viscosity, and chemical composition of 

replenished magma may differ from the magma present in the chamber at any given time. 

Such differences may have a significant impact on magma crystallization and convection, 

and the composition at the time of an eruption.  
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3.6 Conclusions  

This paper links heat transfer from a layer of vigorously convecting, crystallizing, 

and replenished magma chamber to an overlying high-temperature seafloor hydrothermal 

system. For magma chambers without replenishment, the results show that heat output 

decays on a decadal time scales, and for models in which crystals are assumed to be 

suspended in the melt convection is short-lived. These results are inconsistent with 

observed high-temperature hydrothermal systems that have maintained quasi-steady 

temperatures for decades. Magma convection models that include magma replenishment 

maintain nearly steady heat output on decadal time scales, while the magma body doubles 

its initial size. Magma replenishment rates for these cases appear to fall within a range 

between that required for long-term crustal generation and that observed at some 

volcanoes on decadal time scales. Models in which crystals either grow at or settle 

quickly to the floor of the magma chamber appear preferable for petrological reasons.  

The magma convection, crystallization and replenishment models used here are 

oversimplified compared to real basaltic magma chambers at mid-ocean ridges. Future 

work will entail more complexity, including the mechanics of magma chamber growth, 

the mechanics of magma flow and replenishment from below, and magma chamber 

dynamics in a multi-component magma system.  
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3.7 Appendix: Magmatic Heat Flux Resulting from Replenishment when the Area of the 

Magma Chamber Increases with Time 
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Figure 3.A.1 Total heat output as a function of time in the crystals suspended model for 
different values of constant or exponentially decaying magma replenishment velocity. 
Velocity u in m/s, b is the exponential factor. Simulations are run until magma area 
doubles from its initial value Am0 = 106 m2, or until heat output decays to less than 107 
Watts. Results show that u between 10-7 and 10-8 m/s tend to stabilize heat output on 
decadal timescales. 
 
 
 

One can also consider the effects of magma replenishment on the heat output from 

the convecting, crystallizing magma chamber by keeping the depth of the magma 
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chamber fixed and allowing the area to increase with time. As before, the cases of 

crystals suspended and crystals settling are treated separately. 

Crystals Suspended 

As in section 3.3.4.1, we consider the change in volume V(t) of the magma chamber with 

time as a result of replenishment. This is expressed by equation (18), which is rewritten 

below. 

 
∫ ′′′+=
t

b tdtutAVtV
0

0 )()()(  (A.1)

where V0 is the initial volume, Ab is the area through which magma replenishment occurs, 

and u(t) is the velocity of replenishment, respectively. Assuming that the depth of the 

magma chamber remains fixed and replenishment occurs over the entire area Am(t), 

 
)()(0 tutA

dt
dAD

dt
dV

m
mm ==  (A.2)

We consider two different models of replenishment. In the first model, magma 

replenishment occurs at a constant velocity for a certain time period tf, which corresponds 

to the time for the magma chamber to double in size or the magmatic heat flux to decay 

to less than 107 Watts 
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The area of the magma can be obtained by integrating equation (A.2) as follows: 

 )/exp()( 00 DtuAtA mm =  (A.4)

where Am0 is the initial area of the magma chamber. In the second model, the velocity of 
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replenishment is assumed to decay exponentially 

 bteutu −= 0)(  (A.5)

where u0 is the initial velocity. Similarly, the area of the magma is obtained as  
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Figure 3.A.2 Total heat output as a function of time for the crystals settling model for a 
number of different replenishment velocities. Simulations cease when the magma 
chamber area doubles from its initial value of 106 m2, or the heat flux decreases to 107 W. 
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Crrystals Settling 

As in section 3.4.2, the volume of liquidus magma chamber is given by equation (26), 

which is reproduced here for convenience: 

 ')'()'()(
00 dttutAVVtV
t

msm ∫+−= (A.8)

where the volume of crystals Vs is given by  
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and 
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Equation (A.10) expresses the assumption that the area of magma chamber grows as a 

result of magma replenishment, while the thickness of magma chamber remains constant. 

     Substituting (A.9) into equation (A.8) yields 
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Take the derivative of equation (A.11) with respect to time gives 
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In this case, because the depth of the magma chamber is constant, the rate of heat 

conduction from the crystal layer at the floor to the liquid magma above is given by  
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To obtain the final equation for the temperature evolution in the liquid magma chamber, 

Equations (A.10), (A.12), (A.13), and (24) are substituted into equation (10). The result is: 
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In contrast to the situation in for crystals settling and in section 3.4.2 in which the magma 

area remains constant, equation (A.14) contains the magma area Am(t) explicitly. This 

expression of Am(t) can be obtained by substituting equation (A.10) into (A.11) and 

taking the derivative. The result is: 
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For u(t) = u0, and constant, integration of equation (A.15) yields 
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For u(t) = u0e-bt , integration of equation (A.15) yields, 
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Figure A.2 shows the magmatic heat output as a function of time for several rates of 

magma replenishment.  
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Figure 3.A.3 Magma temperature as a function of time for (a) crystals suspended and (b) 
crystals settling models for different values of constant magma replenishment velocity u. 
For (a) magma temperature approaches the value for which crystal content is 60%; for (b) 
the temperatures are significantly lower and decay by a few tens of degrees per decade. 
Curves end when the area of the magma chamber doubles. 
 
 
 

Acknowledgments. We thank the reviewers Ed Baker and Adam Soule, and the 

Associate Editor Gary Massoth, for their thoughtful comments on the original version of 

this manuscript. This work was supported by NSF grant OCE 0527208 to RPL. 

 



 108

3.8 References 
 
Asimow, P.D. and M.S. Ghiorso (1998), Algorithmic modifications extending MELTS to 
calculate subsolidus phase relations, Amer. Mineral., 83, 1127-1131. 
 
Baker, E.T. (2007), Hydrothermal cooling of midocean ridge axes; do measured and 
modeled heat fluxes agree? Earth Planet. Sci. Lett., 263, 140-150. 
 
Baker, E.T., H.N. Edmonds, P.J. Michael, W. Bach, H.J.B. Dick, J.E. Snow, S.L. Walker, 
N.R. Banerjee, and C.H. Langmuir (2004a), Hydrothermal venting in magma deserts: 
The ultraslow-spreading Gakkel and Southwest Indian ridges, Geochem. Geophys. 
Geosyst., 5(8) Q08002 doi: 10.1029/2004GC000712.  
 
Baker, E. T., R.P. Lowell, J.A. Resing, R.A. Feely, R.W. Embley, G.J. Massoth, and S.L. 
Walker (2004b), Decay of hydrothermal output following the 1998 seafloor eruption at 
Axial Volcano: Observations and models, J. Geophys. Res., 109, B01205 doi: 
10.1029/2003JB002618.  
 
Batiza, R. and Y. Niu (1992), Petrology and magma chamber processes at the East 
Pacific Rise-9°30′N, J. Geophys. Res., 97, 6779-6797. 
 
Bejan, A. (1995), Convection Heat Transfer, 2nd ed., John Wiley & Sons, New York, 
pp.623 
 
Bryan, W.B. (1983), Systematics of modal phenocryst assemblages in submarine basalts; 
petrologic implications, Contr. Mineral. Petrol., 83, 62-74. 
 
Brandeis G., and C. Jaupart (1986), On the interaction between convection and 
crystallization in cooling magma chambers, Earth Planet. Sci. Lett., 77, 345-361. 
 
Campbell, A.C., T.S. Bowers, C.I. Measures, K.K. Falkner, M. Khadem, and J.M. 
Edmond (1988), A time series of vent fluid compositions from 21°N, East Pacific Rise 
(1979, 1981, 1985), and the Guaymas Basin, Gulf of California (1982, 1985), J Geophys 
Res., 93, 4537-4549.   
 
Canales, J. P., S. C. Singh, R. S. Detrick, S. M. Carbotte, A. Harding, G. M. Kent, J. B. 
Diebold, J. Babcock, and M. R. Nedimovic (2006), Seismic evidence for variations in 
axial magma chamber properties along the southern Juan de Fuca Ridge, Earth. Planet. 
Sci. Lett., 246, 353-366. 
 
Canales, J. P., R. A. Sohn, and B.J. deMartin, (2007),Crustal structure of the Trans-
Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26 degrees 10'N); implications 
for the nature of hydrothermal circulation and detachment faulting at slow spreading 
ridges, Geochem. Geophys. Geosyst., 8(8), Q08004, doi:10.1029/2007GC001629. 
 



 109

 
Cann, J.R. and M.R. Strens, (1982), Black smokers fuelled by freezing magma, Nature, 
298, 147-149. 
 
Collier, J. S., and M. C. Sinha (1990), Seismic images of a magma chamber beneath the 
Lau Basin back-arc spreading centre, Nature, 346, 646-648.   
 
Detrick, R. S., P. Buhl, E. Vera, J. Mutter, J. Orcutt, J. Madsen, and T. Brocher (1987), 
Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise, 
Nature, 326, 35-41. 
 
Dzurizin, D., R.Y. Koyanagi, and T.T. English (1984), Magma supply and storage at 
Kilauea volcano, Hawaii, 1956-1983, J. Volcanol. Geotherm. Res., 21, 177-206.  
Gente, P., J.M. Auzende, V.Renard, Y.Fouquet, and D.Bideau, (1986), Detailed geological 
mapping by submersible of the East Pacific Rise axial graben near 13° N, Earth Planet. 
Sci. Lett., 78, 224-236.  
 
Germanovich, L.N., R.P. Lowell, and D.K. Astakhov (2000), Stress-dependent 
permeability and the formation of seafloor event plumes, J. Geophys. Res., 105, 8341-
8354. 
 
Germanovich, L.N., R.P. Lowell, and D.K. Astakhov (2001), Temperature-dependent 
permeability and bifurcations, in hydrothermal flow, J. Geophys. Res., 106, 473-495. 
 
Ghiorso, M.S. and R.O. Sack (1995), Chemical mass transfer in magmatic processes. IV. 
A revised and internally consistent thermodynamic model for the interpolation and 
extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and 
pressures. Contr. Mineral. Petrol., 119, 197-212.  
 
Haymon, R. M., et al. (1993), Volcanic eruption of the mid-ocean ridge along the east 
Pacific Rise crest at 9°45΄- 52΄N: direct submersible observations of seafloor phenomena 
associated with an eruption event in April, 1991. Earth Planet. Sci. Lett., 119, 85–101. 
 
Henstock, T.J., A.W. Woods, and R.S. White (1993), The accretion of oceanic crust by 
episodic sill intrusion, J. Geophys. Res., 98, 4143-4161. 
 
Hort, M. (1997), Cooling and crystallization in sheet-like magma bodies revisited, J. 
Volcanol. Geotherm. Res., 76, 297-317. 
 
Humphris, S. E., and J. R. Cann (2000). Constraints on the energy and chemical balances 
of the modern TAG and ancient Cyprus seafloor sulfide deposits, J. Geophys. Res., 105, 
28,477-28,488. 
 
Huppert, H. E., and R. S. J. Sparks (1981), The fluid dynamics of a basaltic magma 
chamber replenished by influx of hot, dense ultrabasic magma, Contrib. Mineral. Petrol., 
75, 279-289.  



 110

 
Huppert, H. E., and R. S. J. Sparks (1988), The generation of granitic magmas by 
intrusion of basalt into continental crust, J. Petrol., 29, 599-624.  
 
Huppert, H.E., R.S.J. Sparks, J.A. Whitehead, and M.A. Hallworth (1986), 
Replenishment of magma chambers by light inputs, J. Geophys. Res., 91, 6113-6122. 
 
Huppert, H.E. and J. S. Turner (1991), Comments on “On convective style and vigor in 
sheet-like magma chambers” by Bruce D. Marsh, J. Petrol., 32, 851-854.  
 
Irvine, T.N. (1980), Magmatic density currents and cumulus processes, American J. Sci., 
280, 1-58. 
 
Jaeger, J.C. (1968), Cooling and solidification of igneous rocks, In Basalts vol 2, edited 
by H.H. Hess and A. Poldervaart, 503-536, John Wiley, NY.  
 
Jarvis, G.T., and W. R. Peltier (1989), Convection models and geophysical observations, 
in Mantle Convection: Plate Tectonics and Global Dynamics, ed. W. R. Peltier, Gordon 
and Breach Science Publishers, 479-595. 
 
Jaupart, C., and S. Tait (1995), Dynamics of differentiation in magma reservoirs, J. 
Geophys. Res., 100, 17,615-17,636. 
 
Jellinek, A.M., and R.C. Kerr (1999), Mixing and compositional stratification produced 
by natural convection. Part 2. Applications to the differentiation of basaltic and silicic 
magma chambers and komatiite lava flows, J. Geophys. Res., 104, 7203-7218. 
 
Jellinek, A.M., R.C. Kerr, and R.W. Griffiths (1999), Mixing and compositional 
stratification produced by natural convection. Part 1. The experiments and their 
application to the Earth’s core and mantle, J. Geophys. Res., 104, 7183-7201.  
 
Jellinek, A M., and R.C. Kerr (2001), Magma dynamics, crystallization, and chemical 
differentiation of the 1959 Kilauea Iki lava lake, Hawaii, revisited, J. Volcanol. Geotherm. 
Res., 110, 235-263 
 
Kelley, D. S., J. A. Baross, and J. R. Delaney (2002), Volcanoes, fluids, and life at mid-
ocean ridge spreading centers, Annu. Rev. Earth Planet. Sci., 30, 385-491. 
 
Kent, G. M., A. J. Harding, and J. A. Orcutt (1990), Evidence for a smaller magma 
chamber beneath the East Pacific Rise at 9º30΄N, Nature, 344, 650-652. 
 
Kerr, R.C. (1994). Melting driven by vigorous compositional convection. J. Fluid Mech. 
280, 255–285. 
 
Lejeune, A. M., and P. Richet, (1995), Rheology of crystal-bearing silicate melts: an 
experimental study at high viscosities, J. Geophys. Res., 100, 4215-4229. 



 111

 
Liu, L. (2007), The link between convection and crystallization in a sub-axial magma 
chamber and heat output in a seafloor hydrothermal system, M.S. Thesis, 74 p., Georgia 
Institute of Technology, Atlanta. 
 
Lovering, T.S. (1955), Temperatures in and near intrusions, Econ. Geol., 50, 249-281. 
 
Lowell, R. P. and D. K. Burnell (1991), A numerical model for magma-hydrothermal 
boundary layer heat transfer in the oceanic crust, Earth Planet. Sci. Lett., 104, 59-69. 
 
Lowell, R.P., B.W. Crowell, K.C. Lewis, and L. Liu (2008), Modeling multiphase, multi-
component processes at oceanic spreading centers, in Magma to Microbe: Modeling 
Hydrothermal Processes at Oceanic Spreading Centers, Geophys. Monogr. Ser., v. 178, 
ed. by R.P. Lowell, J.S. Seewald, A. Metaxas, and M.R. Perfit, p. 15-44, American 
Geophys. Union, Washington, DC. 
 
Lowell, R. P. and L. N. Germanovich (1994), On the temporal evolution of high-
temperature hydrothermal systems at ocean ridge crests, J. Geophys. Res., 99, 565-575. 
 
Lowell, R. P. and L. N. Germanovich (2004), Seafloor hydrothermal processes: Results 
from scale analysis and single-Pass models, in Mid-Ocean Ridges: Hydrothermal 
Interactions Between the Lithosphere and Oceans, Geophys. Monogr. Ser., 148, ed. by C. 
R. German, J. Lin and L. M. Parson, pp. 219-244, Amer. Geophys. Union, Washington, 
D.C. 
 
Lowell, R. P. and P. A. Rona (1985), Hydrothermal models for the generation of massive 
sulfide ore deposits, J. Geophys. Res., 90, 8769-8783. 
 
MacLeod, C. J. and G. Yaouancq (2000), A fossil melt lens in the Oman ophiolite: 
Implications for magma chamber processes at fast spreading ridges, Earth Planet. Sci. 
Lett., 176, 357-373. 
 
Marsh, B. D. (1981), On the crystallinity, probability of occurrence, and rheology of lava 
and magma, Contrib. Mineral. Petrol., 78, 85-98. 
 
Marsh, B.D. (1989), On convective style and vigor in sheet-like magma chambers 
J.Petrol., 30, 479-530. 
 
Martin, D. (1990), Crystal settling and in situ crystallization in aqueous solutions and 
magma chambers, Earth Planet. Sci. Lett., 96, 336-348. 
 
Martin, D., and R. Nokes (1988), Crystal settling in a vigorously convecting magma 
chamber, Nature, 332, 534-536. 
 
Martin, D., and R. Nokes (1989), A fluid dynamical study of crystal settling in convecting 
magmas, J. Petrol., 30, 1471-1500. 
 



 112

McBirney, A.R., and R.M. Noyes (1979), Crystallization and layering of the Skaergaard 
Intrusion, J. Petrology, 20, 487-554.  
 
Michael, P.J., et al. (2003), Magmatic and amagmatic seafloor generation at the 
ultraslow-spreading Gakkel Ridge, Arctic Ocean, Nature, 423, 956-961. 
 
Morgan, J.P. and Y.J. Chen (1993), The genesis of oceanic crust: Magma injection, 
hydrothermal circulation, and crustal flow, J. Geophys. Res., 98, 6283-6297. 
 
Perfit, M.R., D.J. Fornari, M.C. Smith, J.F. Bender, C.H. Langmuir, and R. M. Haymon 
(1994), Small-scale spatial and temporal variation in mid-ocean ridge crest magmatic 
processes, Geology, 22, 375-379. 
 
Ramondenc, P., L. N. Germanovich, K. L. Von Damm, and R. P. Lowell (2006), The first 
measurements of hydrothermal heat out at 9°50΄N, East Pacific Rise, Earth Planet. Sci. 
Lett., 245, 487-497. 
 
Ramondenc, P., L.N. Germanovich, and R.P. Lowell (2008), Modeling the hydrothermal 
response to earthquakes with application to the 1995 event at 9°50′ N, East Pacific Rise, 
in Magma to Microbe: Modeling Hydrothermal Processes at Oceanic Spreading Centers, 
Geophys. Monogr. Ser., 178, ed. by R.P. Lowell, J.S. Seewald, A. Metaxas, and M.R. 
Perfit, p. 97-122, American Geophys. Union, Washington, DC. 
 
Roscoe, R. (1952), The viscosity of suspensions of rigid spheres. British Journal of 
Applied Phys., 3, 267-269. 
 
Rubin, K. H., M. Perfit, D. J. Fornari, S. A. Soule, M. Tolstoy, and F. Waldhauser (2006), 
Geochronology and composition of the 2005-06 volcanic eruptions of the East Pacific 
Rise, 9°46'-56'N, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract V23B-0602. 
 
Scheirer, D.S., T.M. Shank, D.J. Fornari (2006), Temperature variations at diffuse and 
focused flow hydrothermal vent sites along the northern East Pacific Rise 
Geochem. Geophys. Geosyst., 7, Q03002, doi: 10.1029/2005GC001094. 
 
Shaw, H. R. (1980), The fracture mechanisms of magma transport from the mantle to the 
surface. In: Physics of Magmatic Processes, ed. by Hargraves, R. B., Princeton 
University Press, 201-264.  
 
Sim, Y. (2004), Mechanics of complex hydraulic fractures in the Earth’s crust, Ph. D. 
Thesis, 324 p. Georgia Institute of Technology, Atlanta. 
 
Singh, S. C., J. S. Collier, A. J. Harding, G. M. Kent, and J. A. Orcutt (1999), Seismic 
evidence for a hydrothermal layer above the solid roof of the axial magma chamber at the 
southern East Pacific Rise, Geology, 27, 219-222. 
 
Singh, S. C., W. C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J. P. Canales, 



 113

D. Dusunur, J. Escartin, and J. M. Miranda (2006), Discovery of a magma chamber and 
faults beneath a Mid-Atlantic Ridge hydrothermal field, Nature, 442, 1029-1032. 
 
Sinton, J. M. and R. S. Detrick (1992), Mid-ocean ridge magma chambers, J. Geophys. 
Res., 97, 197-216. 
 
Snyder, D. and S. Tait (1995), Replenishment of magma chambers: comparison of fluid 
dynamics experiments with field relations, Contrib. Mineral. Petrol., 122, 230-240. 
 
Sohn, R.A., D.J.Fornari, K. L. Von Damm, J. A. Hildebrand, and S.C. Webb (1998), 
Seismic and hydrothermal evidence for a cracking event on the East Pacific Rise crest at 
9°50'N, Nature, 396, 159-161. 
 
Soule, S.A., D.J. Fornari, M.R. Perfit, K.H. Rubin (2007), New insights into mid-ocean 
ridge volcanic processes from the 2005-2006 eruption of the East Pacific Rise, 9°46'N-9° 
56'N, Geology, 35, 1079-1082 
 
Spera, F. J. (2000), Physical properties of magma, in Encyclopedia of Volcanoes, 
Academic Press, 171-190. 
 
Trial, A.F., and F.J. Spera (1990), Mechanisms for the generation of compositional 
heterogeneities in magma chambers, Geol. Soc. America Bul., 102, 353-367 
 
Turner, J. S. (1973), Buoyancy effects in fluids, Cambridge University Press, London.  
 
Van Ark, E.M., R.S. Detrick, J.P. Canales, S.M. Carbotte, A.J. Harding, G..M. Kent, M.R. 
Nedimovic, W.S.D. Wilcock, J.B. Diebold, J.M. Babcock (2007), Seismic structure of the 
Endeavour Segment, Juan de Fuca Ridge; correlations with seismicity and hydrothermal 
activity, J. Geophys. Res., 112, B02401, doi: 10.1029/2005JB004210. 
 
Von Damm, K. L., C. M. Parker, R. M. Gallant, and J. P. Loveless (2002), Chemical 
evolution of hydrothermal fluids from EPR 21°N: 23 years later in a phase separating 
world, EOS Trans., Amer. Geophys. Union, 83, Suppl., 1421. 
 
Von Damm K. L. (2004) Evolution of the hydrothermal system at East Pacific Rise 
9˚50′N:  Geochemical evidence for changes in the upper oceanic crust, in Mid-Ocean 
Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophys. 
Monogr. 148, ed. by C.R. German, J. Lin, and L.M. Parson, pp. 285-304, Amer. Geophys. 
Union, Washington, D. C. 
 
Worster, M. G., H. E. Huppert, and R. S. J. Sparks (1990), Convection and crystallization 
in magma cooled from above, Earth Planet. Sci. Lett., 101, 78-89. 
 

 



 114

CHAPTER 4. EFFECTS OF PERIODIC REPLENISHMENT AND INITIAL 
MAGMA SIZE2 

 
 
 
Abstract 

 
The temperature and heat output of hydrothermal systems play an important role 

in the thermal budget of the oceanic crust. In this paper, we investigate the time-varying 

heat transfer from a convecting, crystallizing, and replenished sub-axial magma chamber 

to the overlying hydrothermal system by considering the effects of initial magma 

chamber sill thickness and periodic replenishment rates. Both crystals suspended and 

crystals settling scenarios are considered. The initial rate of convective heat transfer is 

independent of the initial sill thickness; but without magma replenishment, the rate of 

decay of the heat output varies linearly with thickness, resulting a short convective 

lifetimes and decaying hydrothermal temperatures for sills up to ~ 100m thick.  When 

magma replenishment is included in crystals settling scenarios at constant or 

exponentially decreasing rates of ~ 10-8 m/s to the base of the sill, growth of the sill 

results in stabilized heat output and hydrothermal temperature on decadal timescales and 

a relatively constant to increasing thickness of the liquid layer. Sills initially ~ 10 m thick 

can grow, in principal, to ~ 10 times there initial size with stable heat output and a final 

melt thickness less than 100m. These results suggest that magma replenishment might not 

be seismically detectable on decadal time scales.  Periodic replenishment may also result 

                                                 
2The material is essentially reproduced from Liu, L. and R.P. Lowell (2010). Modeling 
heat transfer from a convecting, crystallizing, replenished magma chamber: Effects of 
initial magma chamber thickness and periodic replenishment, Geophys. J. Int. 
(submitted). 
 



 115

in quasi-stable heat output, but the magnitude of the heat output may vary considerably in 

crystals suspended models at low frequencies; compared to crystals settling models. In 

these models the direct coupling between magmatic and hydrothermal heat output would 

suggest that heat output fluctuations might be recorded in hydrothermal vents; but if the 

damping effects of the basal conductive boundary layer and the upflow zone are taken 

into account, it seems unlikely that heat output fluctuations on a time scale of years 

would be recorded in hydrothermal vent temperatures or heat output.  
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4.1 Introduction 

Hydrothermal activity at mid-ocean ridges is closely linked to crustal magmatism. 

At nearly all sites of observed high-temperature venting, seismic reflection data has 

indicated the presence of shallow subaxial magma bodies beneath the active 

hydrothermal systems over a broad range of spreading rates. Examples include: the fast- 

and ultra-fast-spreading East Pacific Rise [Detrick et al., 1987; 1993], the intermediate-

spreading Valu Fa Ridge [Collier and Sinha, 1990] and Juan de Fuca Ridge [Canales et 

al., 2006; Van Ark et al., 2007], the slow-spreading Mid-Atlantic Ridge [Singh et al., 

2006], and the ultraslow-spreading Gakkel ridge in Arctic Ocean [Jokat et al., 2003] and 

Southwest Indian Ridge [Sauter et al., 2004]. Moreover, eruptions on the East Pacific 

Rise near 9°50′ N in 1991 and 1992 [Haymon et al., 1993] have resulted in strong 

temporal changes in hydrothermal venting [e.g., Von Damm, 2004] that have persisted to 

the time of more recent eruptions in 2005/2006 [Tolstoy et al., 2006; Cowen et al., 2007; 

Soule et al., 2007; Lupton et al., 2006]. In between these two eruptive episodes, small 

non-eruptive diking events may have cause perturbations to the hydrothermal system 

[Ramondenc et al., 2008; Germanovich et al., 2010].  High temperature hydrothermal 

circulation within the permeable oceanic crust occurs as heat from the convecting, sub-

axial magma chamber (AMC) is transferred by conduction across a thin thermal 

boundary layer between the top of magma chamber and the base of hydrothermal system 

based [e.g., Lowell and Germanovich, 1994; Lowell et al., 2008; Liu and Lowell, 2009].  

To better understand the evolution of the boundary layer and the linkages between 

heat flux from the convecting, crystallizing magma and hydrothermal heat transport, Liu 

and Lowell [2009] developed numerical models of magmatic heat flux. They investigated 
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two different crystallization scenarios, crystal-suspended and crystal-settling, and 

considered both un-replenished and replenished AMCs of basaltic composition.  The 

models in [Liu and Lowell, 2009] showed that magma replenishment of ~ 10-7 to 10-8 m/s 

was needed to maintain quasi-steady heat output between 107 and 109 W over a time scale 

of decades. These results assumed an AMC with an initial thickness of 100 m and 

considered only constant or exponentially decreasing magma replenishment rates. 

Although the models presented in [Liu and Lowell, 2009] provide useful insights into the 

behavior of magma-hydrothermal systems at mid-ocean ridges, these models considered 

a very limited parameter space. Thus, we are motivated to investigate heat transfer from a 

convecting, crystallizing, replenished magma chamber from a parametric perspective.    

Here, we investigate two factors that affect hydrothermal heat output: (a) initial 

magma chamber thickness and (b) a variable magma replenishment rate. Specifically, the 

magma convective lifetime and the evolution of magmatic heat flux are controlled by 

both the size and shape of the magma. Seismic imaging suggests that the AMC may 

range from as little as a few tens of meters [Kent et al., 1990; Singh et al., 1998; Collier 

and Sinha, 1990] to perhaps a few hundred meters thick [Vera et al., 1990; Sinha et al., 

1998; Navin et al., 1998 ]. Laterally, it may extend from as little as 500 m [Babcock et 

al., 1998] to as much as 4 km across [Sinha et al., 1998; Vera et al., 1990; Harding et al., 

1989; Detrick et al., 1987]; but typically it ranges between 1 and 2 km perpendicular to 

the ridge axis [Detrick et al., 1993; Kent et al., 1990; collier and Sinha, 1990; Van ark et 

al., 2007]. The AMC may extend almost continuously along the ridge axis for 10s of km 

[Burnett et al., 1989; Detrick et al., 1987; Babcock et al., 1998], but because several 

hydrothermal systems may lie along a given ridge segment [e.g. EPR [Haymon et al., 
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1991; Haymon and White, 2004]; JDF [Kelly et al., 2001]], we neglect the along axis 

variations in the AMC. Because the vertical thickness of the AMC appears to be 

relatively more variable than its lateral extent, we examine the effects of magma chamber 

thickness on the magmatic heat transfer rather than variations in its lateral extent. Magma 

replenishment rate also plays an important role in maintaining the heat flux and extending 

the magma convective lifetime.  

The assumption of continuous a constant or exponentially decreasing rate of 

magma replenishment may be a significant over simplification.  For example, 

interspersed between the magmatic eruptions on the East Pacific Rise near 9°50′ N in 

1991 and 1992 [Haymon et al., 1993] and again in 2005/ 2006 [Soule et al., 2007;], there 

may have been non-eruptive magmatic events [Ramondenc et al., 2008; Germanovich et 

al., 2010]. The evidence for these comes from seismicity studies and observed changes in 

the temperature, fluid chemistry of some hydrothermal vents [Sohn et al., 1998, Baker et 

al., 1999; Scheirer et al., 2006; Tolstoy et al., 2008]. Here, we consider the effects of 

episodic replenishment by investigating the effects of sinusoidal replenishment rates. As 

in [Liu and Lowell, 2009], we consider both replenished and un-replenished AMCs; and 

in each case, we consider both crystals suspended and crystals settling scenarios. 

The rest of the chapter is organized as follows. In section 4.2, we briefly review 

the mathematical models of magmatic heat transfer developed in [Liu and Lowell, 2009]. 

In section 4.3 we investigate the effects of magma chamber size on heat flux of 

hydrothermal systems. In section 4.4, we investigate the effects of episodic replenishment 

rates on hydrothermal heat flux. Section 4.5 discusses the implication of the model in 
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terms of the evolution of the magma chamber and the linkages between magmatic heat 

output and hydrothermal venting, followed by conclusions in section 4.6. 

4.2 Mathematical Model of Magmatic Heat Transfer  

Within the liquid magma body, thermal convection resulting from the temperature 

difference between hot magma and its cold upper boundary maintained by the overlying 

hydrothermal circulation is an efficient means of heat transfer.  The basic equations 

governing the magma convection system, which are based on Huppert and Sparks 

[1988], are discussed in detail in [Liu and Lowell, 2009]. Here, only the key equations are 

reproduced to highlight the significant differences between the analyses in this chapter 

and those of [Liu and Lowell, 2009].  

In a well-mixed sub-axial magma chamber, convection can be characterized by 

the Rayleigh number defined as 

 

mm

m

va
TgDRa Δ

=
3

0α  (1)

where αm is the coefficient of thermal expansion, g is the acceleration due to gravity, am 

is the thermal diffusivity, mν  is the kinematic viscosity, D0 is the initial thickness of the 

magma body, and ΔT is the difference between the mean magma temperature Tm(t) and 

the solidus magma temperature Ts. The heat of magma crystallization is considered to be 

gradually released in the temperature interval 1200°C to 1030°C. The subscript m refers 

to the properties of the magma. Typical values of Ra in the AMC may range from ~ 106 

to 1011 [Liu and Lowell, 2009] compared to the critical value is of ~ 103. For convection 

with large Ra, the heat transfer can be related to a Nusselt number Nu, which defines the 

ratio of convective heat flux to the heat flux due to conduction. With the assumption of 



 120

the classical relationship Nu ~ Ra1/3 [e.g., Jarvis and Peltier, 1989], the heat flux Fm(t) 

transferred from the top of the magma body is given by [Turner, 1973] 

 3/43/12 ))(()/(1.0)( Smmmmmmm TtTvgactF −= αρ  (2)

where ρm is the magma density and cm is the specific heat. Equation (2) shows that 

magma viscosity νm. controls convective heat flux.  In general, νm is a function of bulk 

composition, crystallinity, temperature, volatile content, and the magma temperature. 

During magma convection, cooling, crystallization and evolving volatile content results 

in a time-dependent magma viscosity. To characterize this time-varying magma viscosity, 

we consider two types of magma crystallization mechanisms: crystals suspended (all 

crystals remain suspended within the liquid magma) and crystals settling (all crystals 

occur at the floor of the magma chamber or rapidly settle there). Because mid-ocean 

ridge basaltic magmas contain few volatiles, we neglect the effect of volatiles on magma 

viscosity. For the crystals suspended model, we assume νm is only a function of crystal 

content χ(Tm(t)), whereas for the crystals settling model, viscosity is a function of magma 

temperature. The resulting relationships from [Liu and Lowell, 2009] are, respectively, 
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where νm0 is the initial viscosity, χ(Tm(t)) is the crystal content as a function of magma 

temperature, and TL denotes the liquidus magma temperature.  

The crystal content χ relates to the magma temperature through the equation 

[Huppert and Sparks, 1988] 



 121

 
6

)(
7200))(( −=

tT
tT

m
mχ  (5)

To solve for the magma temperature with and without magma replenishment, we 

equate the time derivative of the heat content in the magma body to the rate of heat loss 

through the top boundary and the magma replenishment rate from below the magma 

chamber. That is: 
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where H(t) is the heat content in the magma chamber, Am(t) is the area of magma 

chamber, Fr(t) is the heat replenishment rate due to the magma replenishment. For cases 

without magma replenishment, Fr(t) = 0.   

  For cases without magma replenishment, the magma temperature governing 

equation for crystal suspended and crystal settling models is given by [Liu and Lowell, 

2009], respectively 

 

mmmm

mm

cDtTLD
tF

dt
tdT

00 ))((
)()(

ρχρ −′
=  (7)

 

[ ]{ } [ ]0 0

( )

( )
( ( )) ( ) 1 ( ( )) [1 ( ( ))] ( ( ))

m

m c

m m m m m m m m m

dT t
dt

F t F
D T t c T t L T t D T t T t L cρ χ χ ρ χ χ

=

−
′ ′+ − + − −

 (8)

where χ′  is the first order derivative of crystal content, and L is the latent heat, 

respectively. In the crystals settling model (equation (8)), Fc accounts for the rate of heat 

flux, that is conducted from the growing crystal layer to the remaining liquid magma. 

With magma replenishment, new magma enters the magma chamber from the 

underlying mush zone. As a consequence, both the heat content and mass of magma 
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increase. The increase of heat content from mush zone contributed by magma 

replenishment is described by Fr(t)  

 )()()( tuLTctF mLmmr ρρ +=  (9)

where Vm(t) is the volume of new magma that enters the convecting magma body. In [Liu 

and Lowell, 2009], two end-member scenarios of magma chamber growth upon 

replenishment were considered: (a) magma chamber thickness held constant while its 

area increased with respect to time; (b) magma chamber area held constant while its 

thickness increased with time. Here, we use model (b) and employ a time-varying magma 

thickness model for both the crystals suspended and crystal-settling scenarios. Denoting 

u(t) as the magma replenishment velocity, the thickness of magma chamber is obtained 

from  

As in [Liu and Lowell, 2009], upon substituting equations (10) and (9) into equation (6), 

the temperature dependence for the convecting, replenished magma chambers for the 

crystals suspended and crystals settling models are given by, respectively, 

 [ ] ( ){ }
( )[ ]mmm

mmLmmmm

cLtTtD
LtTtTTctutF

dt
tdT

−′
+−−

=
)()(

)()()()()(
χρ

χρ  (11)

 1

2

( ) ( ) ( )
( )

m m cdT t F t F t
dt t

− +Γ
=

Γ
 (12)

where 

 ( ) ( )( ) ( ){ }1( ) ( ) 1 ( ) ( ) 1 ( )m m m m m m Lt u t T t c T t T t L c T Lρ χ χ⎡ ⎤Γ = − + − − +⎡ ⎤⎣ ⎦ ⎣ ⎦  (13)

 ∫+=
t

dssuDtD
00 )()(  (10)



 123

 ( ) ( ){ }
( )( ) ( )( )

2

'

( ) ( ) ( ) ( ) 1 ( )

            ( ) 1 ( ) ( )

m m m m m

m m m m

t D t T t c T t L T t

D t T t T t L c

ρ χ χ

ρ χ χ

′Γ = + −⎡ ⎤⎣ ⎦

+ − −
 (14)

Combining equation (2), (7), (8), (11) and (12) respectively, we can obtain both 

magma temperature and heat flux. Although the Tm(t) is a direct measure of the heat flux 

in equation (2), the primary observational link between heat transfer from the magma 

chamber and the overlying hydrothermal systems is best expressed in terms of total heat 

output Fm(t)Am. The measured total heat output of hydrothermal systems at oceanic 

spreading center is typically between ~ 107 and 109 Watts [Lowell and Germanovich, 

2004; Ramondenc et al., 2006; Baker, 2007]. Thus, in our numerical analysis, the model 

parameters are tuned to provide an initial total heat output of ~ 109 W. In addition, heat 

output is a good indicator of the lifetime of a hydrothermal system. Therefore, to 

quantitatively examine the lifetime of a ridge-crest hydrothermal system, we define it 

based on either of two conditions: (1) when the crystal content in magma chamber 

approaches 60%, the viscosity of magma goes to infinity and no more heat transfer 

occurs by convection; or (2) when the total heat output is less than 107 Watts.  

4.3 The Effect of Initial Intrusion Size  

In [Liu and Lowell, 2009], we selected a single initial size of magma chamber 

thickness of 100 m for demonstration purposes. However, magma chambers in the earth 

can vary greatly in terms of shape and thickness. Here, we assume the magma chamber 

with a rectangular cross section of fixed area and study the effect of initial chamber 

thickness on magmatic heat flux. Seismic imaging suggests that magma sills at oceanic 

spreading centers range between a few tens and ~ 100 m [e.g., Kent et al., 1990; 

MacLeod and Yaoyancq, 2000]. In continental settings, magma sills may be several 
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hundred meters to perhaps more than1 km thick [e.g., Hogan and Gilbert, 1995; Auger et 

al. 2001]; and similar melt thicknesses may result from impact events on Earth and other 

planets [e.g., Rathbun and Squyres, 2002].  Although the emphasis of this chapter is on 

the setting at oceanic spreading centers, where the AMC is typically ~ 100 thick or less, 

we consider sill-like magma chambers of different initial thicknesses ranging from 10 m 

to 1000 m. 

To determine the magmatic heat flux for the different scenarios described in 

section 4.2, we solve equations (7), (8), (11) and (12) respectively in conjunction with 

equation (2). From these equations, the rate decay of the magma temperature with time 

varies inversely with the initial magma thickness D0. Because the heat flux Fm(t) also 

depends on mean magma temperature Tm(t), its rate of decay also varies inversely with 

D0. However, the initial heat flux Fm(0) only depends on Tm(0) (see equation (2)), which 

we assume to be a liquidus magma temperature TL of 1200°C. Thus, Fm(0) is independent 

of the initial thickness of magma chamber D0.  

4.3.1 Magmatic heat output for crystals suspended and crystals settling models without 

magma replenishment 

In this part, we examine heat transfer from the magma chamber without magma 

replenishment as governed by equations (7) and (8). Both crystal-suspended and crystal-

settling scenarios are considered. In both cases, the magma chamber starts at the liquidus 

temperature (χ = 0). As in [Liu and Lowell, 2009] we assume magma surface area Am to 

be 106 and 107 m2. In the simulations, we calculate magmatic heat flux until either χ = 

60% and the viscosity goes to infinity, or the total heat output drops below 107 W.  
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Figure 4.1 Total heat output as a function of time in the crystals suspended model without 
magma replenishment for two different initial thicknesses of magma chamber 100 m and 
1000 m. Am and D0 denote the area and the initial thickness of magma chamber, 
respectively. Am are 106 and 107 m2. The magma area plays a role in determining the total 
heat output, but it has no influence on the lifetime of magma convection. The dashed 
horizontal lines located at 107 W and 109 W denote the approximate range of total 
hydrothermal heat output measured at oceanic spreading centers. 

 
 

Figure 4.1 shows the total magmatic heat output as a function of time for the 

crystals suspended case for different initial thicknesses D0. In these cases, convective 

magmatic heat flux stops because χ = 60%. The final total heat outputs are still greater 

than 107 W. As expected, the results in Figure 4.1 show that the larger the initial 

thickness the lower the rate of decay of magma heat output and the longer the convective 

lifetime. The lifetime is directly proportional to D0.  Note that because there is not enough 
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heat content in magma sill to keep the magmatic system last for 1 year, the heat output of 

the 10 m thick magma chamber is not shown in Figure 4.1. As noted earlier, the initial 

heat flux of 4.9 ×109 W is independent of the initial thickness of the magma chamber, but 

the initial total heat output is directly proportional to Am. 
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Figure 4.2 Same as Figure 4.1 except using the crystals settling model. The initial 
thicknesses of magma chamber are 10m, 100 m and 1000 m. In this case, the lifetime of 
magma convection increase significantly, although heat output gradually declines below 
107 Watts. 

 
 
 
Figure 4.2 shows the analogous results for the crystal settling model. As in the 

crystals suspended case, the rate of decay of magmatic heat output is inversely 

proportional to D0. Similarly, the convective lifetime is directly proportional to D0.  In 
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contrast to the crystals suspended cases, however, the system lifetime is determined by 

the decay of the total heat output to below 107 Watts rather than by the crystallinity. 

Moreover, the comparison of Figure 4.1and Figure 4.2 shows that for a given value of D0 

and Am, the heat flux decays more slowly in crystals-settling model than that in the 

crystals-suspended model. In contrast to the crystals-suspended case, the lifetime for even 

the D0 = 10 m case is long enough to plot on the graph. The convective lifetime of the 

magma chamber with initial thickness of 1000 m and surface area of 106 m2 is about 150 

years, which is not shown entirely in the Figure 4.2 due to the scale of the figure. Note 

that precisely speaking, a magma chamber 1000 m thick with a surface area of 106 m2 is a 

pluton, not a sill. To be considered a sill with this thickness its surface area would have to 

be ~108 m2 or more. Moreover, such thick sills probably reflect multiple intrusion events. 

Here, we neglect the magma convection along the sides of pluton and assume that the rate 

of magma intrusion is fast compared to the cooling time so that the emplacement is 

effectively instantaneous.  

The difference between Figures 4.1 and 4.2 results from the assumed end-member 

crystallization scenarios. In the crystals suspended case, the crystals mix well with the 

magma and the viscosity of the mixture increases rapidly as crystal content increases 

(equation (3)). From the equations (1) and (2), viscosity exerts a significant control on the 

Rayleigh number and hence on the rate of heat loss from magma chamber.  In the crystals 

settling case, the viscosity of the magma is only a relatively weak function of temperature 

(equation (4)); and heat output decays mainly because Tm(t) and the thickness of the 

liquid magma layer decrease with time.   
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4.3.2 Magmatic heat output for crystals suspended and crystals settling models with 

replenishment  

[Liu and Lowell, 2009] showed that stable heat flux from a convecting AMC 

requires magma replenishment. Similar to the no-replenishment scenario, both crystals 

suspended and crystals settling cases are investigated. The magma chamber at its liquidus 

beneath a colder upper boundary represented by the hydrothermal system begins to 

crystallize and its volume shrinks. As the internal pressure in magma chamber declines 

new magma may be driven upward from the reservoir of relatively crystal-rich partial 

melt that occupies the lower crust [e.g., Mainprice, 1997; Dunn et al., 2000]. Magmas 

from the mushy zone may also ascend because of the buoyancy that results from the 

density difference between melt and crystals in the mush zone either as porous flow [e.g., 

McKenzie, 1984] or as buoyant fluid-filled dikes [Lister, 1990]. When a new magma 

batch enters the chamber, we ignore the density differences that may be present and 

assume that the new magma mixes with the contents in chamber immediately. If the rate 

of magma replenishment is faster than the rate of volume loss resulting from 

crystallization, magma replenishment results in an increase of melt. We employ a 

numerical model to describe the magma chamber growth. Here, we assume that the 

surface area of the magma chamber remains fixed and the thickness of the magma body 

increases as new magma is added to the magma chamber (see equations (11) and (12)). 

We carry out simulations to examine the impact of initial thickness of magma chamber 

on the heat flux. Similar to the no-replenishment case, we choose the initial thickness to 

be 10, 100, and 1000 m, respectively. Based on the discussion in [Liu and Lowell, 2009], 

the velocity of magma replenishment between 10-7 and 10-8 m/s can yield quasi steady 
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state heat output on decadal timescales. In the simulations presented here we assumed a 

constant replenishment rate of 5×10-8 m/s. In our simulations for magmas initially 100 

and 1000 m thick, we stop the simulations when the magma chamber grows to double its 

initial value. This limit is somewhat arbitrary, but at mid-ocean ridges seismic suggests 

that the magma chamber is typically not more than ~ 100 m thick [e.g., Kent et al., 1990; 

MacLeod and Yaoyancq, 2000]. For a 10 m initial size, we halt the simulation when it 

grows by a factor of 10.   
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Figure 4.3 Total heat output as a function of time in the crystals suspended model for the 
different values of magma chamber thickness 10, 100, and 1000 m. The constant magma 
replenishment rate u0 = 5×10-8 m/s, the area of magma chamber Am = 106 m2. The 
simulations are run until the magma thickness double. Except that the magma chamber 
with the thickness of 1000 m takes more than 600 years to double. It is not shown entirely 
due to the limited scale of the figure. Although the thicker magma body will last longer, 
the thinner one can undergo longer replenishment times. For a 10 m thick sill, the 
magmatic heat flux remains constant for 26 years as the sill thickness increases to 50 m. 
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Figure 4.3 and Figure 4.4 show the results of magmatic heat flux for crystals 

suspended and crystals settling models with magma replenishment, respectively. We 

define the doubling time as the time over which the initial thickness of magma chamber 

doubles. In each scenario the doubling time is proportional to the initial thickness of the 

magma. For example, with the same magma replenishment rate, the doubling time is 65 

years for the magma with initial thickness of 100 m, while it is 6.5 years for the magma 

chamber with the initial thickness of 10 m and 650 years for an initial thickness of 1 km. 

Also as expected, the lifetimes of magmatic heat output are commonly extended by 

magma replenishment.  
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Figure 4.4 Same as Figure 4.3 except using the crystals settling model. As in Figure 4.3, 
simulations are run until the magma size doubles. Although heat output is decreasing, for 
u0 = 5×10-8 m/s, heat output is approximately constant on decadal timescales. 
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Figure 4.5 implies that it takes less time for a thin magma body to double its 

thickness than for a thick one. Moreover, if a magma chamber starts with a thin size (10 

m), it has the ability to grow to ten times the initial size rather than two times and still be 

within the MOR observational limits. For a magma chamber with small initial thickness 

(10 m), magma convection approaches a steady state after the magma thickness doubles, 

although it can grow up to 10 times the initial size to 100 m. Thus a small magma sill 

could achieve longer stable heat output by simply starting with a thinner initial magma 

body.  
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Figure 4.5 Compare the lifetime of magmatic heat transfer when the thickness of magma 
chamber increases two and ten times in crystals settling model at a constant magma 
replenishment rate. For the magma chamber 10m thick, the magma convection system 
enters a steady state after the magma thickness doubles. Thus, the small magma chamber 
could achieve longer stable heat output. 
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4.4 The Effect of Episodic Replenishment 

The volume of incoming magma batches, their frequency, and the volume of the 

magma chamber play a critical part in heat transfer from magma systems. In section 4.3, 

we discussed the effect of the initial magma thickness on magmatic heat flux. In this 

section, we examine the effects of dynamically changing of magma volume by 

investigating the effects of episodic rates of magma replenishment. 

High-temperature hydrothermal venting has shown marked stability in both 

composition and temperature at least on a decadal-scale [Campbell et al., 1988; Bowers 

et al., 1988; Von Damm et al., 2002]. The analysis in [Liu and Lowell, 2009] and in the 

preceding section shows that magma replenishment is necessary to maintain a steady 

state hydrothermal system; but results were based on either a constant or exponentially 

decreasing replenishment rate. Although the results are instructive, there is little 

justification for such simplified replenishment scenarios. A more rigorous analysis of the 

replenishment rate is necessary for better understanding the effect of magma 

replenishment on hydrothermal heat output.  

In this section, we incorporate episodic magma replenishment based on evidence 

for such replenishment in the literature. For example, the theoretical arguments in favor 

of episodic injection at all spreading rates have been advanced by Lister [1983b]. The 

seismic reflection by Detrick et al. [1987] suggests that the episodicity is important event 

along about 60% of the surveyed East Pacific Rise. Evidence of large-scale episodic 

venting of hydrothermal fluids was discovered at Juan de Fuca Ridge in 1986 [Baker et 

al., 1989]. A detailed study of magnetization and morphology coupled with seismic 

reflection by Collier and Sinha [1992] has shown that magmatic processes on the Valu Fa 
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Ridge are episodic. In addition, there is evidence for episodic replenishment of the AMC 

at relatively high frequency, including eruption scenarios and non-eruptive diking events. 

For instance, the eruption cycle from 1991 to 2005/2006 near 9°50′ N on the EPR 

[Haymon et al., 1993, Soule et al. 2007] provides direct evidence of replenishment at 

decadal timescales; and vent temperature excursions during this period [Sohn et al., 1998; 

Schierer et al, 2006] may represent non-eruptive diking events [Ramondenc et al., 2008; 

Germanovich et al., 2010]. A non-eruptive diking event that affected vent temperature 

and chemistry has also been observed at Main Endeavour Field (MEF) on Juan de Fuca 

ridge (JDFR) [Johnson et al., 2000, Lilley et al., 2003]. Thus, we propose a new 

replenishment model to simulate a periodically replenished, continually cooled and 

fractionated magma chamber.   

4.4.1 Sinusoidal magma replenishment rate  

The characteristics of the hydrothermal system driven by the underlying magma 

chamber are closely coupled to the replenishment of the AMC process. For simplicity we 

assume that replenishment occurs over the entire base of the AMC and that the 

instantaneous rate of replenishment u is only a function of time. Based on the Fourier 

analysis, any periodic function u(t) can be decomposed into a sum of simple oscillating 

functions, namely sines and cosines [Oppenheim et al., 1996]. 

 
0

1
( ) sin( ) cos( )n n

n
u t a a nwt b nwt

∞

=

= + +∑ (15)

For simplicity, we model the rate of magma replenishment as a sinusoid function  

 0 0( ) sin( )u t u u wt= +  (16)
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where u0 is the initial replenishment rate, w is the injection frequency of magma refilled 

from mushy zone, and the corresponding replenishment period is P = 2π/w. As a 

consequence of the principle of superposition, once the behavior of the hydrothermal 

system subject to equation (16) is well understood, one can obtain the response to any 

other periodic function by utilizing the Fourier expansion in equation (15). Combining 

equations (10) and (16), the thickness of magma chamber is expressed in terms of the 

replenishment rate by:  

Note that with a constant magma replenishment u(t) = u0, the thickness of magma 

chamber is expressed by  [Liu and Lowell, 2009]     

 00)( DtutD +=  (18)

Comparing equations (17) and (18), we see that when the magma replenishment 

period is infinite (frequency is zero), equation (17) reduces to equation (18). Thus, with 

the replenishment rate model of equation (16), a broader range of situations are covered. 

Moreover, with non-zero replenishment frequency, the periodic replenishment rate is 

always greater than the constant rate. Thus, the time to double the thickness of the 

magma chamber is less in the case with periodic supply than in the case of constant 

replenishment. The doubling time also depends upon the replenishment period because 

the period affects the rate of temporal variation of the total heat output. If the replenished 

period is 1 year, the equation (17) is nearly the same as equation (18), which means, that 

the overall trend of total heat output doesn’t change with time. Over the same length of 

time, however, for a larger replenishment period, the total heat output exhibits much 

greater fluctuations with time.  
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Figure 4.6 Total heat output as a function of time in the crystals suspended model with 
magma replenishment at four different periodic intrusion rates for 1, 10, 20, and 50 years. 
P denotes the magma replenishment period. The magma replenishment rate is sinusoidal 
with initial rate u0 = 5×10-8 m/s. Simulations are run until the thickness of magma 
chamber doubles. 

 
 

In the following, we simulate the magmatic heat output with periodic 

replenishment considering both the crystals suspended and the crystals settling models. 

Similar to the section 4.3.2, u0 = 5×10-8 m/s in each case and the thickness of magma 

chamber is 100 meters. For the crystal-suspended model we choose replenishment 

periods of 1, 10, 20 and 50 years, whereas for the crystals-settling case we use 1, 10, 50 

and 100 years, respectively. For the latter case, we choose the longer replenishment 

period because the relatively low magma viscosity results in vigorous convection within 

the magma chamber. As a result, higher heat flux can be maintained. For the crystal 
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suspended model quasi-stable heat output requires a greater frequency of magma 

replenishment. Figure 4.6 shows the heat output characteristics in the crystal suspended 

case. Replenishment periods of 1 and 10 years keep the total heat output within the 

observational range of 107 to 109 Watts. At longer replenishment periods, the heat loss 

from magma chamber is greater than the rate of magma heat flux into magma chamber. 

As a result, the total heat output may at times drop below the observational lower 

boundary 107 Watts.. For example, the total heat output drops below 107 Watts after 

around forty years when the replenishment period increases to 50 years and remains there 

for nearly a decade. To keep the total heat output within the observed range, our results 

show that the replenishment period must be less than 15 years. Moreover, we notice that 

the hydrothermal activity reaches its lifetime because crystal content in magma chamber 

approaches 60%. The crystallinity does not go rapidly up to 60% and shut the system 

down in a few years as it does in the no-replenishment case [Liu and Lowell, 2009]. This 

can be explained through a close look at the changes of Rayleigh number with and 

without magma replenishment. With magma replenishment, the Rayleigh number is 

9.6×107 after six years; whereas, the Rayleigh number is 3×106 at the same time in the 

non-replenishment case. As a result of the high Rayleigh number, convection is 

maintained within the magma chamber. In addition, at longer replenishment periods, the 

heat output exhibits large fluctuations on decadal timescales. The fluctuations of heat 

output are not symmetric, because cooling initially affects the heat loss in the convecting 

magma system more rapidly than the increasing heat flux that accompanies magma 

replenishment. Consequently, the total heat output exhibits non-symmetric variation, 
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which is shown as a sharper drop and slower increase. As the rate of heat loss from 

cooling decreases, the temporal evolution of the heat flux becomes more symmetric.  
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Figure 4.7 Total heat output as a function of time in the crystals settling model with 
magma replenishment at four different periodic intrusion rates for 1, 10, 50, and 100 
years. P denotes the magma replenishment period. The magma replenishment rate is 
sinusoidal with initial rate u0 = 5×10-8 m/s. Simulations are run until the thickness of 
magma chamber doubles. The growth of magma chamber thickness is a function of 
magma replenishment rate and period. At the same magma replenishment rate, the 
magma chamber with a large replenishment period doubles first. 

 
 
 
Figure 4.7 shows the heat output in the crystals settling case.  It can be seen that 

the periodic variation of total heat output is not as large as in the crystals suspended case. 

Moreover, the magmatic heat output is within the range between 107 to 109 Watts for all 
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replenishment periods. Figure 4.7 shows that convective heat output is longer-lived and 

more stable in the case of crystals settling than in the case of crystals suspended (Figure 

4.6). This is primarily a result of the relatively slow rate of change of magma viscosity in 

the crystals settling regime. Because the heat output is maintained above 107 W, the 

crystal settling model does not have a critical requirement for the period of magma 

replenishment.  

4.4.2 Exponential sinusoidal magma replenishment rate  

In the previous section we considered simple sinusoidal replenishment. Because 

gradual depletion of the underlying mush zone may result in a declining replenishment 

rate, we also consider a periodic rate of magma replenishment with an exponential decay 

envelope:  

 )sin()( 00 wteuutu bt−+=  (19)

In this case, substituting equation (19) into (10), the time dependent magma chamber 

thickness is given by  

 )()( 00 tutuDtD o β++=  (20)

Where 
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Figure 4.8 Total heat output as a function of time in the crystals suspended model with 
episodic magma replenishment for different periods of 1, 10, 20, and 50 years. The 
magma replenishment rate is exponential sinusoidal with initial rate u0 = 5×10-8 m/s, the 
exponential factor b = 3×10-10. Simulations are run until the thickness of magma chamber 
doubles. 
 

 

 Figure 4.8 and Figure 4.9 show the heat output of crystals suspended and crystals 

settling magma system, respectively. With different replenishment periods, an initial rate 

of replenishment u0 = 5×10-8 m/s, and constant value b of 3×10-10. The selection of the 

replenishment period is the same as in section 4.1. Comparing the exponential decaying 

sinusoid with simple sinusoid replenishment rate, we observed that in the crystals 

suspended system, even large replenishment period, for instance, 50 years, still maintains 

the system total heat output between 107 W to 109 W (see Figure 4.6 and Figure 4.8). 
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Similarly, in the crystals settling system, the total heat output with exponential sinusoid 

magma replenishment rate are higher than that with simple sinusoid magma 

replenishment for the same period (see Figure 4.7 and Figure 4.9). Based on the 

exponential decaying replenishment model, the magmatic heat transfer is also maintained 

steady for a long period. Thus, the conclusion in [Liu and Lowell, 2009] that quasi-steady 

magmatic heat output can be maintained for long periods of time by magma 

replenishment can be drawn in a broader sense.  
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Figure 4.9 Total heat output as a function of time in the crystals settling model with 
episodic magma replenishment for different periods at 1, 10, 50, and 100 years. The 
magma replenishment rate is exponential sinusoidal with initial rate u0 = 5×10-8 m/s, the 
exponential factor b = 3×10-10. Simulations are run until the thickness of magma chamber 
doubles. 
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4.5 Discussion  

This chapter has linked heat transfer from a vigorously convecting, crystallizing, 

and replenished sill-like magma chamber to an overlying hydrothermal system using a 

parameterized convection model to describe the dynamic behavior of the magma 

chamber. We have considered both crystals suspended and crystals settling models to 

describe the evolution of the magma body. We have assumed, for simplicity that the 

magma replenishment results only in increasing the thickness of the magma, while the 

surface area remains constant, though the latter case has been discussed by Liu and 

Lowell [2009]. We have investigated the effect of the initial magma chamber size by 

considering initial thickness ranging from 10 m to 1000 m.  We have also investigated the 

effects of a periodic replenishment rate on magmatic heat output, but for these models we 

have assumed an initial sill thickness of 100 m. Our simulations were not designed with 

any particular spreading center in mind, but in the discussion below we describe how the 

model might apply to the East Pacific Rise (EPR) near 9°50′ N, which has undergone a 

full eruptive cycle between 1991/1992 and 2005/2006. In the following subsections, we 

discuss the implications of the model in terms of internal properties of the magma 

chamber over time and the linkages between modeled magmatic heat output and 

hydrothermal venting. 

4.5.1 Implications for evolution of the AMC 

4.5.1.1 Magma temperature 

Figure 4.10 shows the effects of different magma replenishment rates on 

evolution of magma temperature for a sill initially 100 m thick; and Figure 4.11 shows 
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the effects of initial magma chamber thickness on the evolution of magma temperature 

for a fixed replenishment rate u0 = 10-8 m/s. In both cases mean magma temperature 

drops rapidly and then stabilizes as magma replenishment stabilizes the heat output. 

Figure 4.10 shows that the greater the replenishment rate and the higher the equilibrium 

heat flux, the higher the resulting magma temperature. This result follows directly from 

equation (2). Similarly Figure 4.11 shows that the smaller the initial thickness of the 

magma chamber the faster the magma temperature drops. This is consistent with the fact 

that because of their smaller Rayleigh number, the initial rate of decay of the magmatic 

heat flux is greater for thinner sills than for thicker sills. However, once replenishment 

stabilizes the heat flux, the steady magma temperature is nearly the same regardless of 

the initial thickness.  
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Figure 4.10 Magma temperatures as a function of time for the crystals settling case 
without and with magma replenishment. u0 denotes the initial magma replenishment 
velocity, and u0 = 0 denotes the case without magma replenishment. The initial thickness 
of magma sill is 100 m. 
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Figure 4.11 Magma temperatures as a function of time for the crystals settling case with 
magma replenishment at 10-8 m/s for different magma thicknesses. D0 denotes that the 
initial thickness of magma chamber.  

 
 
 
Figure 4.12 and Figure 4.13 depict the evolution of magma chamber temperatures 

for an initial 100 m thick sill and periodic magma replenishment for the crystals 

suspended and crystals settling cases, respectively. Figure 4.13 shows that with the 

exception of the periodic fluctuations the temperature evolution is similar to that in 

Figure 4.12. For the crystals settling cases, which are most appropriate for mid-ocean 

ridge settings, the results suggest that even with magma replenishment at a rate to 

eventually stabilize the heat flux, that magma temperature may drop or fluctuate as the 

heat balance between cooling and replenishment fluctuates.  
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Figure 4.12 Magma temperatures as a function of time for the crystals suspended case 
with magma replenishment at 5×10-8 m/s. Curves end when the thickness of magma 
chamber doubles. 
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Figure 4.13 Magma temperatures as a function of time for the crystals settling case with 
magma replenishment at 5×10-8 m/s.  

 
 
 
 The magma temperatures produced here are significantly less than is typically 

estimated for MORB lavas. This result may be partly a result of the viscosity models used 

in the simulations. The value νm0 = 0.1 m2/s chosen is for a crystal free basalt, however, 

the presence of micro-crystals in the lava may increase this value by orders of magnitude 

[Lejeune and Richet, 1995]. Even for crystals settling models, the effect of micro-

crystallinity on the viscosity within the cooling basalt may need to be considered to 

obtain more accurate magma temperatures. The assumption of instantaneous mixing with 

replenished magma is also somewhat simplistic. The overall trends of magma 

temperature evolution should remain unchanged, however.  
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4.5.1.2 Melt thickness 

 Along with the evolution of magma temperature, we also explore the evolution of 

liquid part of the magma chamber as replenishment occurs. The thickness represented by 

equation (10) is the thickness of original liquid magma chamber plus the thickness 

resulting from replenishment. For the crystal suspended case, the thickness of liquid 

magma chamber is the same as that of magma chamber since crystals are not separated. 

For the crystal settling case, the thickness of liquid magma chamber depends on both the 

magma chamber thickness and crystal content, which can be represented by  

 [ ] )()(1)( tDttDm χ−=  (22)

Where Dm(t) is the thickness of liquid magma, and χ(t) from equation (5) denotes the 

crystal content, which varies with time as the magma system evolves.  

Figure 4.14 and Figure 4.15 depict the liquid magma thickness growth with 

respect to time for the magma chamber with thickness of 100 m and 10 m, respectively, 

for a replenishment rate of 5×10-8 m/s and different periodic replenishment frequencies. 

Although magma replenishment is included, Figure 4.14 shows that the thickness of 

liquid magma layer decreases rapidly during the first decades of magma chamber cooling 

and crystallization because convective heat loss initially exceeds the rate of heat input 

from replenishment. After the heat flux from magma replenishment balances the 

convective heat loss, the thickness of liquid magma increases slowly with time. Figure 

4.15 shows that convective heat loss has a relatively greater effect on reducing the melt 

thickness of a thinner magma chamber in the early stages of cooling. Figure 4.15 shows 

that a 10 m thick melt lens will shrink to 4 m after 1 year (60%) whereas a 100 m thick 

melt lens thins to 85 m (15%) in the same time frame in Figure 4.14.  
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Figure 4.14 The time-varying of the thickness of liquid magma layers. The magma 
chamber with the initial thickness of 100 m grows with magma replenishment at 5×10-8 

m/s for the crystals settling case. Magma chambers doubles for different values of magma 
replenishment period. P = infinity denotes the constant magma replenishment case. 

 
 

Small essentially liquid-filled melt bodies, which are frequently present at the fast 

spreading ridges [Detrick et al., 1987; Detrick et al., 1993], are more sensitive to small 

frequent changes in thermal conditions because of the more tenuous balance between 

melt supply and convective heat loss. When replenishment balances convective loss at a 

given replenishment rate, the thickness of liquid magma layer increases relatively faster 

for a magma chamber with smaller initial thickness than for a thicker one. This occurs 

because at a given replenishment rate, the relative rate of volume increase is greater for a 
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thinner magma chamber than for a thicker one. Thus, one might anticipate that smaller 

melt lenses require lower replenishment rates to avoid freezing entirely.  
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Figure 4.15 The time-varying of the thickness of liquid magma layers. The magma 
chamber with the initial thickness of 10 m grows with magma replenishment at 5×10-8 

m/s for the crystals settling case. Magma chambers grow up to 10 times at different 
values of magma replenishment period. 

 
 
 
Different magma replenishment rates might have different effects on the liquid 

magma chamber thickness and heat flux. At the beginning phase, when magma cooling 

and crystallization outweighs the effect of magma replenishment, both the liquid magma 

thickness and the convective heat flux drop sharply. When cooling weakens and magma 

replenishment dominates the magma chamber heat output, whether the liquid magma 
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thickness and the heat flux increase or decrease depends on the replenishment rates. In 

our example, the replenishment rate is high enough to increase the liquid magma 

thickness (see Figure 4.14); however, it is not so high that the heat output increases with 

time (see Figure 4.7).  

In these simulations, even though the magma chamber may double or more in 

thickness, the thickness of the melt layer itself remains quite thin, and its position in 

space may not change dramatically. This result is consistent with recent 3-D seismic 

results from the EPR 9°50′N area, which suggest that the AMC is located in essentially 

the same place as in the 1985 survey of Detrick et al. [1987] [Carbotte et al., 2008].  

4.5.1.3 Effect of magma replenishment temperature  

Analysis of the lavas from the 2005/2006 eruptions at EPR suggests that the 

replenishment occurred, at least in part, with more evolved and cooler magma [Goss et 

al., 2010]. We assumed that the replenished magma at temperature of Tin which is less 

than the liquidus temperature TL, and there has already been a certain amount of latent 

heat removed from the incoming melts. Assuming the latent heat is released uniformly 

between the liquidus (with temperature of 1200°C) and solidus (with temperature of 

1030°C), the crystal content of the added magma is linearly proportional to its 

temperature, which can be obtained from equation (4) by replacing Tm with Tin. In 

addition, the latent heat left linearly depends on the liquid magma portion out of the 

refilled magma, i.e., L(1-χin), where χin is the crystal content for added magma. Therefore, 

the heat flux corresponds to the magma replenishment in equation (9) is rewritten as 

 [ ] )()1()( tuLTctF inminmmr χρρ −+= (23)
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Correspondingly, the magma temperature for the crystals suspended and crystals settling 

model are written as, respectively 

 [ ] ( )[ ]{ }
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 Figure 4.16 and Figure 4.17 show the effect of the replenished magma 

temperature Tin on total magmatic heat output for crystals suspended and crystals settling, 

respectively. We observed that the temperature of added magma Tin has slight effects on 

the total heat output at the earlier several years, i.e., it does not change the total heat 

output decay rate significantly, because during this period, the heat loss due to the 

convection dominates the total heat loss. When the replenishment process balances 

convection, added magma with higher temperature leads to greater heat transfer from the 

convecting magma chamber to the hydrothermal system.  
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Figure 4.16 Total heat output as a function of time for the crystals settling model with 
magma replenishment period of 10 years at a constant rate 5×10-8 m/s for different 
magma temperatures Tin. 
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Figure 4.17 Total heat output as a function of time for the crystals suspended model with 
magma replenishment period of 10 years at a constant rate 5×10-8 m/s for different 
magma temperatures Tin. 
 
 
 

4.5.2 Implications for hydrothermal systems 

4.5.2.1 Hydrothermal vent temperature 

Time-series observation and theoretical studies of hydrothermal vents along mid-

ocean ridges reveal a close coupling between magma supply and hydrothermal fluxes. 

The magmatic heat supply exerts a primary control on hydrothermal processes. Liu and 

Lowell [2009] discuss the link between magmatic and hydrothermal heat flux. Here we 

employ the same relationships to investigate this link as a function of the parameters 

explored in this chapter. We assume that the heat transfer between the magma and 
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hydrothermal fluid is instantaneous, and that the variation of hydrothermal temperature Th 

and heat flux Fh instantly reflect that in the magma chamber. Thus, assuming that no heat 

loss occurs during the heat transfer from the magma chamber to the overlying 

hydrothermal system, we have 

 )()()( tAtFAtF mmdh =  (28)

where Ad is the area of hydrothermal discharge zone. For a hydrothermal system venting 

at temperature Th(t), the heat flux of the hydrothermal venting is   

where ρf is the density of hydrothermal fluid, cf is the specific heat of the fluid, and ud(t) 

is the Darcian upflow velocity. Assuming that ud(t) results from the thermal buoyancy 

difference between the recharge and discharge limbs of the hydrothermal convection cell, 

and that the flow resistance occurs mainly in the discharge limb,  

where vf is the kinematic viscosity of thermal fluid, k is the permeability, αf  is the 

coefficient of the thermal expansion of thermal fluid in the discharge zone, respectively. 

Combining equations (28), (29), and (30), we obtain the temperature of hydrothermal 

venting as  
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Figure 4.18 The temperatures of hydrothermal venting in response to the magmatic heat 
flux for the crystals settling case without and with magma replenishment. The horizontal 
dash line at 250°C is the lower limit for observed black smoker vent temperatures. 

 
 

The hydrothermal temperatures of magmatic heat supply from a 100 m thick sill 

with different constant rates of replenishment are shown in Figure 4.18. The typical value 

of permeability k and the area of discharge zone Ad used to calculate the hydrothermal 

temperature are 10-13 m2 and 104 m2, respectively. Figure 4.18 shows that the temperature 

of hydrothermal system is controlled by the magmatic heat flux from below. 

Hydrothermal temperatures decrease significantly on decadal timescales during the initial 

cooling phase of magmatic heat transport but stabilize as the heat input from magma 

replenishment balances the convective heat loss.  In the initial stages of magmatic heat 

transport, hydrothermal temperatures are unrealistically high. This is a result of the 
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assumed initial conditions of the simulations. The quasi-steady equilibrium temperature 

differs as a function of replenishment rate. The curve for zero-replenishment rate drops 

quickly and is cut off when the magmatic heat output is below 107 W. In this case, the 

temperature drops below 250 °C, which we assume is the minimum temperature that 

characterizes a black smoker vent. Such a rapid decay of a hydrothermal system is not 

commonly observed among the long-lived seafloor systems. This result suggests that 

magma convection alone is not sufficient to maintain a high temperature hydrothermal 

system for decadal time scales and therefore supports the need for magma replenishment 

on relatively rapid timescales. The dot-dash curve corresponds to the case of magma 

replenishment with a moderate rate. It shows that the hydrothermal temperature maintains 

~ 300 °C for decadal times, which is consistent with the thermal measurement of high 

temperature of seafloor hydrothermal systems. The dot curve shows the estimated 

hydrothermal temperature resulting from a 100 m thick sill with higher magma 

replenishment rate. This relatively high temperature is not realistic but could be reduced 

by considering a thinner sill to begin with or changing the hydrothermal parameters used 

in equation (31). For example, Figure 4.19 shows the resulting hydrothermal temperature 

as a function of initial sill thickness for replenishment at the rate of 10-8 m/s and the same 

hydrothermal parameters as Figure 4.18. The results show that for a typical magma body 

thicknesses ranging from a few tens of meters to ~ 100 m hydrothermal temperatures are 

maintained at ~300 °C for decadal timescales following the initial decline. For a thinner 

initial magma lens, the hydrothermal temperature initially decays more rapidly than for a 

thicker initial magma lens because, as discussed previously, convective heat loss at early 

times has a greater effect on the smaller magma sills.  
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Figure 4.19 Hydrothermal temperatures as a function of time for the crystals settling case 
with magma replenishment at 10-8 m/s for different magma initial thicknesses.  

 
 

Figure 4.20 shows that permeability strongly affects the evolution of 

hydrothermal temperature. With high permeability, the hydrothermal temperature drops 

below 250°C within a few years after its initial rapid decline. As permeability decreases, 

the hydrothermal temperatures increase in both initial and the steady states. Note that 

both the initial thickness of magma chamber and the permeability affect the evolution of 

hydrothermal system; however, they influence temperature evolution in different ways. 

The initial thickness affects the decay rate of hydrothermal temperatures, while 

permeability affects the equilibrium hydrothermal temperatures. In general it appears that 

convecting, crystallizing thin magmatic sills with magma replenishment rates ranging 
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between ~10-7-10-8 m/s may maintain the hydrothermal heat output and high-temperature 

venting for decadal time scales in a manner that represents observed hydrothermal 

systems at oceanic spreading centers. 
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Figure 4.20 Hydrothermal temperatures as a function of time for a 100 m thick magma 
chamber with magma replenishment at 10-8 m/s with permabilities in the range 10-11 ~10-

13 m2. k denotes the permeability of discharge zone in equation (31).  
 

  
 

4.5.2.2 Hydrothermal response to episodic heat input 

 Simulations involving periodic magma replenishment show that the magmatic 

heat output will vary periodically, depending upon the replenishment period (see Figure 

4.6, Figure 4.7, Figure 4.8, and Figure 4.9). As we discussed before, the total magmatic 
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heat output exhibits different characteristics for crystals suspended and crystals settling 

cases. The relatively smaller magma viscosity in crystal settling case results in the more 

vigorous convection. Thus, with the same strength of cooling from the overlying 

hydrothermal system, the total heat output decays slower and maintains a relatively 

higher equilibrium level in crystals settling than that in the crystals suspended case. In 

this part, we focus on the hydrothermal response to the magma heat output and we 

consider only the crystal settling case, since the same mechanism plays the role in both of 

the cases.  

Hydrothermal vents on mid-ocean ridges reflect the rate of heat transfer from the 

convecting, cooling, replenished underlying AMC. One way to study the evolution of the 

AMC is by measurements of temperature and heat output as a function of time. Heat 

output measurements are relatively rare and time series measurements do not exist; 

however good temperature records exist for the hydrothermal vents near 9°50’N on EPR 

[Von Damm, 2000, 2004; Schierer et al., 2006] over a full eruption cycle between 

1991/1992  [Haymon et al., 1993] and 2005/2006 [Soule et al., 2007]. Several T 

excursions at Bio (both positive and negative) have been measured in later years 

[Schierer et al., 2006]. Some of the positive excursions [e.g., March 1995, November 

1997, and November 2003] have been correlated with seismic swarms [Sohn et al., 1998; 

Tolstoy et al., 2008] whereas the negative excursions may be associated with periods of 

declining heat flux. The seismic swarm hydrothermal temperature excursion in March 

1995 may have been associated with a non-eruptive diking event [Germanovich et al., 

2010], suggesting the magma chamber may have been gradually inflating and creating 

pressure at tip of magma lens. Similarly, the November 2003 events may also have been 



 160

linked with a non-eruptive diking event. Continued magma input then presumably led to 

the eruptions in 2005/2006. 

 

 

 
 

Figure 4.21 Temperature records from 1996 through 2001 at the four diffuse flow vent 
sites at the EPR near 9°50'N. Black, red, and blue lines display daily mean, maximum, 
and minimum temperatures, respectively. All of the vent temperatures vary significantly 
over timescales of 0.5-2.0 years [Scheirer et al., 2006]. 

 



 161

As an example of the hydrothermal response to the periodic magma 

replenishment with our numerical method, we consider the magma chamber at EPR, 

where positive T excursions occur every few years (see Figure 4.21). Based on the on-site 

measurement evidences, the overall heat flux is around 160 MW [Ramondenc et al., 

2006]. The temperature fluctuation in Bio82 from 1997-2000 is between 5 and 20°C 

[Sheirer et al., 2006]. Assuming that the magmatic replenishment period is 3 years, our 

model for the crystal settling case indicates the vent temperature variations of 10 °C and 

heat flux changing from 160 MW to 154 MW. It is seen that the simulation result is 

consistent with the observed T fluctuation magnitudes, but see the additional discussion 

below concerning the phase lags in the system.  

4.5.2.3 The magma-hydrothermal boundary layer and response of hydrothermal systems 

The response of the hydrothermal system to the changes of basal heat flux is 

assumed to be instantaneous in this chapter and [Liu and Lowell, 2009]; however, this 

assumption is not very realistic. There is a time lag as a result of finite time required for 

heat to be conducted across the thermal boundary layers between the convecting magma 

sill and the overlying hydrothermal system. The second lag time results from the finite 

residence time of the hydrothermal fluid circulation in the crust. In addition, in cases of 

periodic heat flux changes, the thermal perturbations are damped as they traverse the 

boundary layer and the upflow zone of the hydrothermal system.  

To determine to the lag time resulting from the conductive boundary layers, we 

first determine their thicknesses. The boundary layer thickness d(t) consists of two parts.  

 )()()( 21 tttd δδ +=  (32)
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where δ1(t) is the boundary layer between the convecting liquid magma and the solidus 

temperature at the top of the magma chamber and δ2(t) is the boundary layer between the 

solidus temperature Ts and the hydrothermal system at Th(t):  
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Equation (33) will give a unique solution for the evolution of δ1(t) by substituting 

equation (2) for Fm(t) and equation (7), (8), (11), or (12) for Tm(t) into equation (33). We 

also have a unique solution for δ2(t) by substituting equation (31) for Th(t)  and (2) into 

equation (34). Note that although Ts is a constant, the location of Ts is not fixed in space. 

We can determine the movement of Ts in space with respect to time during the magma 

cooling and replenishment. Assuming that the position of the bottom of magma chamber 

is the reference point, the position of Ts can be calculated by DTs(t) = D(t)+ δ1(t). 

Substitution of equation (2) into equation (33), we obtain the boundary layer thickness 

δ1(t) ~ (Tm(t) - Ts)-1/3. For both without and with magma replenishment cases, magma 

temperature always decreases with time during magma cooling and crystallizing. 

Therefore, δ1(t) increases with time for both cases.  

 Figure 4.22 illustrates the time-varying δ1(t) for both without and with magma 

replenishment with different replenishment rates in crystals settling case. The increasing 

rate of δ1(t) depends upon the decreasing rate of magma temperature. Without magma 

replenishment, the temperature of magma decreases more rapidly, resulting in a faster 

increase of δ1(t) with time. Combining equations (29) and (34), we obtain δ2(t) ~ (Ts -
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Th(t))/Th
2(t), i.e., δ2(t) increases with time as the hydrothermal temperature decreases. 

However, the hydrothermal temperatures at the early stages represent an "initial 

condition" that is not highly realistic (Figure 4.18, Figure 4.19, and Figure 4.20), since 

we assume that the heat transferred from magma to hydrothermal system is 

instantaneous. Thus, the negative δ2(t) results at the first decades, which means that the 

rock above the "supposed magma chamber" would actually undergo some partial melting 

(see Figure 4.23).   
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Figure 4.22 The boundary layers between the convecting liquid magma and the solidus 
temperature at the top of the magma chamber as a function of time for the crystals 
settling model without and with magma replenishment at 5×10-8 m/s.  
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Figure 4.23 The boundary layers between the solidus temperature and the hydrothermal 
system as a function of time for the crystals settling model with magma replenishment at 
5×10-8 m/s. 
 
 
 

The time scale for heat conduction is given by  

 

ma
dt

2

~=  (35)

For a replenishment rate of 5×10-8 m/s with frequency of 50 years, the thickness of 

boundary layer ranges between ≈ 3 to 10 m. Hence, the heat conduction time through the 

boundary layer ranges between ≈ 107 to 108 s.  In a system with continuously varying heat 

flux, the time to propagate the thermal perturbation across the boundary layer may not be 

an issue after an initial delay, but with periodic changes in heat flux, the rate of transport 

and amount of damping can be calculated. Based on the half space heat conduction 
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analysis in [Carslaw and Jaeger, 1959], the damping factor is (w/2am)1/2 and the 

amplitude of the heat flux oscillation diminishes as exp[-x(w/2am)1/2]. For x = 10 m, the 

amplitude of the heat flux oscillation is 0.6, for P = 50 year, and 0.15 for P = 3 years. 

Thus, the amplitude of the heat flux oscillations from the magma chamber is significantly 

attenuated after passing through the boundary layer with thickness of ~ 10m, particularly 

for relatively short periods.  

 The second lag time results from the residence time as the hydrothermal fluid 

rises to the seafloor through the upflow zone. The fluid residence time through the 

discharge zone is in the wide range from hours and days to months and years. The 

observation of thermal perturbations at Bio9 vent following a seismic swarm on the EPR 

at 9°50′ N has been used to argue that the fluid residence in the discharge zone is 

approximately four days [Fornari et al., 1998b; Sohn et al., 1998; Sohn et al., 1999].  On 

the other hands Pascoe and Cann [1995]; Lowell and Germanovich [2004], and 

Germanovich et al. [2010] argue that the fluid residence time within the hydrothermal 

system in the discharge zone is months to years. Based on the study of 228Ra/226Ra ratio 

of hydrothermal fluids on the Endeavour segment of the Juan de Fuca Ridge, [Kadko and 

Butterfield, 1998] suggests that the fluid residence time from the onset of high-

temperature reaction is less than 3 years.  Both the time lags delay the hydrothermal 

response to the periodic variations in the magmatic heat flux, and the hydrothermal 

temperature oscillation will be out of phase with the oscillating magmatic heat output. In 

addition, the damping diminishes the hydrothermal response to the periodic changes of 

heat flux. The higher the frequency of the heat flux variation, the greater the resultant 

damping of hydrothermal response.  
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4.6 Conclusions  

In this chapter, we have examined the time-varying heat flux transfer from a 

convecting, crystallizing, and replenished magma chamber to an overlying hydrothermal 

system. In particular we investigated the role of initial sill size and episodic magma 

replenishment on the heat output. We considered both crystals suspended and crystals 

settling scenarios and a constant area/increasing magma thickness model during 

replenishment. The initial heat flux from the magma chamber is independent of the 

thickness of magma chamber, but the decay rate of heat flux is inversely proportional to 

the initial thickness of magma chamber. When replenishment is included in the crystals 

settling model, we find that hydrothermal heat output and hydrothermal vent temperature 

are stabilized for replenishment rates of ~ 10-8 – 10-7 m/s, regardless of initial thickness. 

We further find that even though considerable magma replenishment occurs, up to ten 

times the initial thickness for an initially thin sill, the thickness of the liquid layer remains 

much less than 100 m thick. This result suggests that changes in the AMC resulting from 

magma replenishment may not be detectable by seismic reflection methods. With 

episodic magma replenishment rates, magmatic heat output remains relatively unchanged 

except for oscillations related to the frequency of replenishment; this result is especially 

true for crystals settling models. Assuming instantaneous hydrothermal responses, 

hydrothermal temperature oscillates in phase with the oscillating magmatic heat output. 

For a replenishment period of ~ 3 years as may occur at EPR 9°50′ [Scheirer et al., 

2006], the model predicts temperature fluctuation of a few °C. This is similar to 

observations; however, this result must be viewed with caution.  The assumption of 

instantaneous hydrothermal response essentially neglects the time for heat to be 
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conducted through the thin boundary layers at the top of the magma chamber and at the 

base of the hydrothermal system. The boundary layer at the top of the magma chamber is 

negligible, but the other one is ~ 10-20 m.  The thermal conduction time for this layer is 

weeks and months and one would expect significant damping of the oscillations as they 

cross this layer [Carlsaw and Jaeger, 1959]. Moreover, one must consider the time 

required for hydrothermal fluid to flow through the upflow zone. This time is few days to 

years, and additional damping will occur [e.g., Wilcock, 2004; Ramondenc et al., 

2008].These two factors introduce delay and damping to the hydrothermal system 

response, suggesting that hydrothermal responses resulting from periodic changes in 

magmatic supply might not be observed in the seafloor vents.  
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CHAPTER 5. MODELING MAGMA-HYDROTHERMAL HEAT TRANSFER 
FROM A CONVECTING, CRYSTALLIZING, REPLENISHED DIOPSIDE-

ANORTHITE MAGMA SILL3 
 

 
Abstract  

This work aims to determine the effect of magma chemical composition on the 

dynamic characteristics of convective heat transfer from a crystallizing, replenished, two-

component magma chamber at an oceanic spreading center overlain by a hydrothermal 

circulation system. We focus on the Di-An system as an analogue for basalt because most 

hydrothermal systems at mid-ocean ridges are driven by basalts. We assume that crystals 

settle rapidly to the floor of magma chambers and consider cases both without and with 

magma replenishment. We model melt temperature and viscosity as a function of Di 

concentration, and incorporate these relations in modeling of the heat flux. Simulations 

comparing the effects of different initial Di concentrations indicate that magmas with 

higher initial Di concentration convect more vigorously, which results in faster heat 

transfer, more rapid removal of Di from the melt, and growth of crystals on the floor. 

With magma replenishment, we assume that the magma chamber grows either 

horizontally or vertically. In either case magma replenishment at a constant rate of ~ 10-8 

m/s can maintain relatively stable heat output between ~ 107-109 Watts and reasonable 

hydrothermal vent temperatures for decades. The final stabilized heat flux increases with 

increasing Di contents of the added magma, and periodic replenishment with a 10 year 

period results in temperature perturbations within the magma that also increase as a 

                                                 
3 The material is essentially reproduced from Liu, L. and R.P. Lowell (2010). Modeling 
magma-hydrothermal heat transfer from a convecting, crystallizing, replenished Di-An 
magma sill (to be submitted). 
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function of increasing Di. With the simple magma model used here, one can not discern 

conclusively whether the decrease in magma temperature between the 1991/1992 and the 

2005/2006 eruptions at EPR 9°50′ involved replenishment with more or less evolved 

magmas.  
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5.1 Introduction 

When a fluid layer is cooled from above, thermal instabilities result in fluid 

motion in form of convection. The vigor of convection is determined by the Rayleigh 

number [Turner et al., 1986]. Such thermally driven convection is expected to occur 

when magma is emplaced into Earth’s crust. One of the earliest studies of convective heat 

transfer in magmatic systems was conducted by Shaw [1965]. Since then, heat transfer 

from a convecting magma chamber has been considered by numerous researchers [e.g., 

Spera, 1979; Brandeis and Jaupart, 1986; Huppert and Sparks, 1988; Marsh, 1989; Hort 

et al., 1999] who assumed that the magma could be described as a simple one-component 

convecting crystallizing body cooled from above by the surrounding rocks.  

In reality, magmas are multi-component fluids. Convection is complicated 

because magma convection with cooling and crystallization is a two-phase, multi-

component system consisting of both crystals and melt. The density difference between 

crystals and melt results in both their mechanical separation and in chemical fractionation 

as crystals and melt are typically of different composition [McBirney and Noyes 1979, 

Sparks et al., 1984, Turner and Campbell, 1986; Martin et al., 1987; Jellinek et al., 1999].  

Real magmas have a large number of chemical constituents, so considerable 

emphasis has been placed on more simplified binary systems such as albite-anorthite [e.g., 

Koyaguchi and Kaneko, 1999; Maaloe, 1984]; forsterite-fayalite [Bowen and Schairer, 

1935; Bradley, 1962; Wood and Kleppa, 1981]; dioside-anorthite [Bowen, 1915], or 

ternary systems such as diopside-anorthite-forserite [Yoder, 1976]. Among different 

binary systems, a particular example that is useful for studying basalt-like silicate melts is 

the system CaMgSi2O6 (diopside)- CaAl2Si2O8 (anorthite) (Di-An) system, which has 
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been extensively studied in the literature [e.g., Bowen, 1915; Osborn and Tait, 1952; 

Schairer and Yoder, 1960; Kushiro, 1973; Weill et al., 1980; Navrotsky et al., 1989]. For 

example, Ridgen et al. [1988] use the magma with a certain silicate liquid composition, 

which consists of 64 mol% diopside and 36mol% anorthite, as a simplified analogue to 

basalt.  

From the perspective of magma convection, experimental investigations 

addressed the influence of convection on solidification of binary systems cooled from 

above. A pioneering work of Turner et al. [1986] describes a number of laboratory 

experiments and theoretical analyses of a cooling eutectic melt. Since then, magma 

convection in a two-component melt have greatly been extended by [Kerr et al, 1990; 

Kerr et al, 1990; Kerr et al, 1990; Worster, 1990; Huppert and Worster, 1991; Huppert 

and Worster, 1992]. 

The studies on magma convection discussed above have been focused on sub-

continental magma chambers, where magma chambers are cooled predominantly from 

above by conduction through solid roof rocks [Worster, 1990; Huppert and Worster, 

1991]. In this paper, however, we focus on heat transfer from magma bodies beneath the 

axes of ocean spreading centers, where seismic reflection data reveals the presence of 

sills at depths of ~ 1-3 km beneath the seafloor that are ~ 10s to 100 m thick, ~ 1-3 km 

across the ridge axis, and at least several kilometers in extent along axis [Detrick et al., 

1987; Kent et al., 1990; Singh et al., 1999; Sinha 1995; Canales et al., 2006; Singh et al., 

2006]. In contrast to most sub-continental magma chambers, sub-axial magma chambers 

are closely linked to an overlying hydrothermal convection system [Haymon et al. 1996; 

Embley et al. 1995; Haymon and White, 2004; MacLennan, 2008]. It is well recognized 
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that seafloor hydrothermal venting is driven by heat transfer from the underlying melt 

lens at mid-ocean ridges [Cann and Strens, 1982; Lowell and Rona, 1985; Lowell, 2010].  

In this paper, we study how heat transfer from a convecting, crystallizing, 

replenished two-component Di-An magma chamber affects the evolution of hydrothermal 

systems on mid-ocean ridges. We characterize different dynamic features of the system, 

including heat flux, crystal content, etc., by connecting them to the time-varying Di 

concentration. The approach taken here differs from previous modeling of convection in 

Di-An magma bodies [Lowell, 1985; Worster et al., 1990] in three significant ways. In 

constrast to Lowell. [1985], we consider convection in a sill-like magma body and hence 

neglect vertical boundary layer flow near the side margins. Then, we assume that 

convective heat transfer from the magma is coupled to an overlying hydrothermal 

circulation system at mid-ocean ridges rather than to a conductive thermal regime in the 

surrounding continental rocks as in Worster et al. [1990]. As a result we focus on the 

evolution of heat flux and hydrothermal temperature as these are observables in the 

hydrothermal system. We focus on the Di rich side of the Di-An systems since it provides 

an analogue to basalt magma system, which drives most of hydrothermal systems in mid-

ocean ridges [Fornari and Embley, 1995; Langmuir et al. 1997]. Finally, we consider 

magma replenishment for the Di-An system as a mechanism to maintain the 

hydrothermal system active for a reasonable lifetime and include the affects of magma 

replenishment on the evolution of the convective heat flux and chemistry of the system. 

This work complements the previous paper of Liu and Lowell [2009], which considered a 

one-component magma system. By comparing the results in this paper with those for a 

one-component system we can better understand the effects of chemical fractionation on 
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heat transfer. Moreover, we will gain insight into the chemical evolution of a sub-axial 

magma chamber that might be useful for interpreting chemical heterogeneity in erupted 

lavas over time at mid-ocean ridges.  

The rest of the paper is organized as follows. In section 5.2, we review the Di-An 

phase diagram and the fundamentals of binary eutectic melts. In section 5.3, we model 

the dependence of physical properties of the systems on the chemical composition. The 

heat transfer model from Di-An chamber to the overlying hydrothermal system is 

developed in section 5.4. The magma replenishment effects on the heat transfer process 

are examined in section 5.5. Section 5.6 discusses the implications of the modeling 

results, and Section 5.7 concludes the paper.  

5.2 Diopside - Anorthite Binary System 

For multi-component magmas, the phase diagram is a well known tool for 

studying melt evolution and crystallization processes as a function of temperature and 

pressure. The temperature-composition (T-X) phase diagram describing the 

crystallization pathway in Di-An system at a pressure of 1 bar is shown in Figure 5.1(a), 

where CaMgSi2O6 represents the mineral diopside and CaAl2Si2O8 represents the mineral 

anorthite. If the temperature is high enough, a binary mixture melts completely produce a 

single melt phase. The pure anorthite melts to liquidus at 1553°C. The melting point for 

the pure diopside is 1391°C.  
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Figure 5.1 (a) Phase diagram for the diopside-anorthite system by assuming magma 
crystallize under constant pressure at atmospheric pressure (1bar). Diagram is modified 
from [Yoder, 1976]. Di = diopside, An = anorthite, L = liquid. The linear and polynomial 
relationship between magma temperature and Di concentration for Di-rich side are shown 
in blue and green line, respectively. 

 
 

For any rocks consisting of a mixture of diopside and anorthite with any 

proportions, the curves in Figure 5.1(a) define the liquidus temperature, below which 

crystals appear. The liquidus boundary temperature depends on the bulk composition. 

The intersection of the two liquidus curves, which is called the eutectic temperature, the 

mixture has the lowest melt temperature of 1275°C [Bowen, 1915; Scarfe et al., 1983; 

Richard, 1922]. At the eutectic composition with 58 wt.% diopside and 42 wt.% anorthite, 

the solidus and liquidus temperatures coincide and as further crystallization occurs, melt 

and crystals will both have this composition.   In addition, the phase diagram describes 

the evolution of chemical composition during the changes of the temperature for other 

bulk compositons. For example, the crystallization pathway for a Di-An system with 

composition of 90% Di and 10% An is shown in Figure 5.1(a) as temperature decreases 
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from around 1500°C (point A). Above the liquidus line at point B, the material is 

completely molten.. When the temperature drops further, Di starts to crystallize and 

correspondingly the chemical composition of the melt changes with respect to 

temperature along the liquidus boundary temperature curve until the temperature reaches 

the eutectic point U. At the eutectic point, An begins to crystallize, and Di and An 

crystallize out together at the eutectic composition until all melt is gone. C is in the liquid 

and Di crystal region. The chemical composition in a Di-An system varies with the 

different initial combination of Di and An components. Table 5.1 shows the chemical 

composition in a Di-An system with different compositions of Di and An, where DibAna 

denotes a Di-An system with the composition of b% Di and a% An, respectively. Table 

5.1 shows that the content of MgO increases as the increase of Di component. Thus, the 

Di-An system with Di content more than 58% represents more chemical analogues to 

basaltic melts. In the rest of the paper, we focus the Di-rich side, where the Di content is 

greater than 58% (see Figure 5.1(a)).  

 
 

Table 5.1 The chemical composition of magma with different compositions in 
CaMgSi2O6 (diopside) - CaAl2Si2O8 (anorthite) system [Knoche, 1992]  
 
Sample Di100 Di90An10 Di80An20 Di58An42 Di30An70 Di10An90 An100 
SiO2 (%) 56.2 55.6 52.3 49.60 46.3 44.60 43 
Al2O3 0.19 4.47 8.7 17.2 26.5 32.4 35.1 
MgO (%) 17.3 14.6 14.1 9.75 4.77 1.43 0.1 
CaO (%) 25.9 24.7 24.3 22.7 21.3 20.5 20.5 
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5.3 Modeling Physical Properties of Diopside-Anorthite System 

In order to model convective heat transfer from the Di-An binary melt system, a 

number of important physical properties are needed, among which the melt temperature 

and viscosity the most critical ones. In the following, we discuss modeling both of these 

parameters as a function of Di composition. 

6.3.1 Temperature of silicate melts 

As shown in the phase diagram in Figure 5.1(a), the liquidus temperature depends 

on the bulk magma composition in a Di-An system. We derive the expression between 

magma temperature and composition by fitting a curve to the graphical data of [Yoder, 

1976]. Focusing on the Di-rich side, we employ polynomial to model the relationship 

between the temperature and Di content. First, the temperature is modeled as a linear 

function of the Di composition for the Di-rich side up to the eutectic point. The least 

square based curve fitting results in   

 5.1111291)( +×= CCTm  (1)

where 58% < C <100% is the weight fraction of the Di in the system, and Tm denotes the 

temperature of the melt at its liquidus. Here we model the temperature as a function of Di 

concentration, since the melt composition is constrained by the liquidus temperature even 

though the mean temperature of the melt drops crystal-liquid region of the phase diagram. 

An alternative way to model the relationship between the temperature of melt and Di 

composition is using a higher-order polynomial function. With a quadratic function, the 

temperature and Di composition is related by 

 87.870930410)( 2 ++−= CCCTm (2)
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Figure 5.1(b) Zoom in the Di-rich side of diagram in Figure 5.1(a). The quadratic fitting 
curve is best matched with the original curve. 
 
 
 
 Figure 5.1(b) shows that the zoom-in part of the comparison of both fitting curves 

and the graphical data of [Yoder, 1976]. In addition both of the modeling results are 

shown in Figure 5.2. It is seen that the linear model tracks the trend of the temperature 

variation with respect to Di composition. In contrast, quadratic fitting provides a more 

accurate result in terms of curvature and smoothness.  
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Figure 5.2 Magma temperature as a function of diopside composition in Di-rich side of 
Di-An system. The range of diopside composition is from 100% to 58% wt.%. The range 
of temperature is from 1391 to 1275°C. The linear relationship is in green dash and the 
polynomial relationship is in blue line, respectively.  
 

 

5.3.2 Viscosity of silicate melts 

The viscosity is one of the most important physical properties of silicate melts 

because it controls magma transport and eruption styles [Sparks and Aspinall, 2004; 

Dingwell, 2006]. The studies of natural silicate magmas have shown that the viscosity 

can span many orders of magnitude from 10-1 to 1014 Pa s [Dingwell, 1996; Russell and 

Giordano, 2005; Giordano et al., 2006; Hui and Zhang, 2007]. Experimental studies 

together with theoretical analyses suggest that during convection in the crystallizing 

systems, crystals often separate from the liquid and fall to the floor because of their 
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negative buoyancy [e.g., Nilson and Baer, 1982]. As a result of fractionation, the 

chemical composition of the residual melt changes along with its temperature and its 

viscosity. During cooling and crystallization, magma viscosity always increases and 

crystallization leads to bulk composition variations of the residual liquid, which in turn 

affects magma viscosity. It has been shown that the viscosity of magma depends on both 

the magma's chemical composition and temperature. The prediction of viscosity in 

silicate melts remains a challenging task in earth sciences. The first model predicting the 

viscosity of silicate melts as a function of melt composition and temperature was 

developed in [Shaw, 1972] and [Bottinga and Weill, 1972]. To model the viscosity 

dependence on the chemical composition, assuming that all crystals instantly settle on the 

floor of magma chamber, we adopt the relationship between viscosity and magma 

temperature in [Liu and Lowell, 2009] that is derived from fitting the data in Spera [2000]:  

 5.8
0 )/( mLm TTv ×=ν  (3)

where v0 is the initial viscosity of magma, TL is the liquidus temperature of the two-

component system, Tm denotes the magma temperature. Substitution of equations (1) or 

(2) into equation (3) results in a relationship between viscosity and Di composition, 

respectively: 

 5.8
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Figure 5.3 The variation of the melts viscosity corresponds to diopside composition for 
linear and polynomial relationships in green dash and blue line, respectively. 

 
 

The relationship between magma viscosity and Di composition is depicted in 

Figure 5.3 for both linear and quadratic approximations of the liquidus temperature-Di 

composition relation. The viscosity order increases about 0.3 with Di composition 

changing from the pure Di (Di100) to the eutectic composition (Di58An42). In addition, 

based on the Di composition-magma viscosity relationship (Figure 5.3) and the Di 

component–temperature relationship (Figure 5.2), the melt temperature decreases as 

magma viscosity increases, and the viscosity has sharper variations at lower temperature 

than at higher temperature for the quadratic model. Thus, the melt composition variation 

during crystallization affects both the liquid viscosity and temperature. In a Di-An system, 
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melts with higher temperature and higher concentration of diopside have lower viscosity. 

At the temperature of 1391°C, the system is composed of 100% Di, and the viscosity of 

liquid diopside is 0.5 m2/s. With decreasing Di content, the viscosity increases. At the 

eutectic temperature of 1275°C, the Di content reaches its lower bound of 58%, and the 

corresponding viscosity of the Di-An eutectic liquid is 1 m2/s. Other properties of the Di-

An system, such as the coefficient of thermal expansion, the latent heat of crystallization 

of diopside and anorthite are defined in Table 5.2. In the rest of the chapter, we adopt the 

quadratic relationship between the liquidus temperature and the Di content due to its 

better fit to the phase boundary. 

5.4 Two-Component Magma Convection System without Replenishment 

5.4.1 Mathematical formulation  

Within the liquid magma body, thermal convection resulting from the temperature 

difference between hot magma and the cold upper boundary maintained by the overlying 

hydrothermal circulation is an efficient means of heat transfer.  The basic mechanisms 

governing the magma convection system, which are based on Huppert and Sparks [1988], 

are discussed in detail in [Liu and Lowell, 2009]. Conservation of energy in the binary 

system is similar to the single component system. Thus, some of the analysis from [Liu 

and Lowell, 2009] are adopted and some key results are reviewed (refer to Chapter 2 and 

3 for details).  

In a well-mixed sub-axial magma chamber, the heat content of magma chamber is 

expressed as 

 [ ])())(1()()()( tLttTctVtH mmmmm χρρ −+= (6)
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where ρm is the density of magma, Vm(t) is the volume of liquid magma, cm is the specific 

heat of magma, χ(t) is the crystal content, L(t) is the latent heat of magma crystallization. 

The first term on the right hand side of equation (6) is related to the specific heat capacity 

of magma, and the second term represents the latent heat released by crystallization. 

Energy conservation in a vigorously convecting magma body with magma replenishment 

is given by  

 )()()()()( tAtFtAtF
dt

tdH
mrmm +−= (7)

where Fm(t) is the convective heat transfer of the magma system, Fr(t) is the heat 

replenishment rate due to the magma replenishment, and Am(t) denotes the magma area. 

Substituting equation (6) into equation (7) yields 
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In the two-component Di-An eutectic system, it is convenient to replace the 

quantity Tm(t) with the concentration of diopside C(t) since they are related to each other 

through equation (1) or (2). In the following analysis, we first consider the cases without 

magma replenishment, i.e. Fr(t) = 0. We analyze the dependence of the heat flux Fm(t), 

latent heat L(t), crystal content χ(t), and the volume of liquid magma Vm(t) on the Di 

concentration C(t).  

To develop the relationship between Fm, L, χ, V and C, respectively, we ignore the 

time dependence for simplicity of expression. Then, the time-dependent nature of these 

quantities is added through the time-varying Di concentration C(t) when the heat 

conservation equation is solved. In addition, due to the closeness of diopside and 
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anorthite densities, we assume the magma density is constant, although its composition is 

time varying.    

5.4.1.1 Heat flux Fm 

Seismic imaging at oceanic spreading centers [e.g. Singh et al., 2006; Van Ark et 

al., 2007] and observations of high-temperature hydrothermal vents on the seafloor [e.g., 

Haymon et al., 1991; Fouquet et al., 1991; Baker et al., 1994] indicate a close correlation 

between hydrothermal systems and axial magma chambers. The heat flux transferred as a 

result of high Rayleigh and Nusselt number convection in the magma chamber is given 

by [Turner, 1973]: 

 3/43/12 ))(()/(1.0)( emmmmmmm TCTvgacCF −= αρ  (9)

where αm is the coefficient of thermal expansion, am is the thermal diffusivity, g is the 

acceleration due to the gravity, vm is the kinematic viscosity of the magma (given by 

equation (5)), and Te is the eutectic temperature of melts. Recall that the temperature Tm 

depends of Di concentration C in equation (1) or (2), thus, equation (9) indicates an 

indirect relation between the heat flux Fm and Di concentration C bridged by temperature 

Tm.   

5.4.1.2 Latent heat L 

In the Di-An system, latent heat is a function of the composition of the different 

components. Denote Ldi and Lan as the latent heat of crystallization of the liquid diopside 

and anorthite, respectively. Based on the assumption that the density difference between 

diopside and anorthite is negligible, the latent heat of the two-component magma is 
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linearly dependent on each component’s concentration. Thus, it is written as a linear 

combination of the latent heat of pure Di and An weighted by their concentrations: 

 )1()( CLCLCL andi −×+×= (10)

5.4.1.3 Crystal content χ 

Based on the assumption that the local composition of the solid does not change 

after it is formed, and the concentration of the liquid is uniform during the solidification 

process, the Scheil equation [Scheil, 1942] can be used to calculate the eutectic 

composition at the end of single-phase solidification. The formation of the multi-

component Scheil equation incorporates the composition of C(t) and fraction solid χ(t) 

through the conservation of mass in the melt [Petrakis et. al, 1981] 

 
dt
dC

dt
dC χχ )1()1( −=−  (11)

Solving equation (11) results in  

 constC =−− )1)(1( χ  (12)

where const denotes a constant. Define C0 to be the initial composition of liquid diopside 

in the magma system. With the boundary condition 0,1 CC ==  χ , the volume fraction of 

crystals χ(C) is related to the liquid diopside concentration by 

 
C
CCC

−
−

=
1

)( 0χ  (13)

The value C0 = 100% for a pure melt of diopside, and we consider C0 ranging between 

58% and 100%. In this paper, we consider four silicate melts with different initial 

composition of diopside: Di90An10, Di80An20, Di70An30, and Di60An40. 
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5.4.1.4 Liquid magma volume Vm 

In the process of magma crystallization, we assume that all the crystals are 

immediately removed or fractionated from the residual melts and settle on the floor of 

magma chamber so that no further reactions can occur within the magma chamber. In 

addition, we assume that any change in the horizontal area of magma chamber Am upon 

crystal solidification can be neglected, i.e., the area of magma remains constant Am=Am0. 

Thus, as the crystal layer grows on the magma chamber floor, the thickness of crystal and 

remaining melt layers are time variant and given by, respectively,  

 
))(1()(

)()(

0

0

CDCD
CDCD

m

s

χ
χ
−×=

×=
 (14)

where D0 is the initial thickness of magma chamber, Ds(C) denotes the depth of the 

crystals growing on the floor, and Dm(C) is the depth of the liquid magma. As crystals 

settle on the floor of the magma chamber, the thickness of melt in magma chamber 

decreases. Correspondingly, the liquid magma volume Vm(C) is  

 ))(1()( 00 CDACV mm χ−=  (15)

5.4.1.5 Dynamic characterization of Di-An systems 

With the expression (2), (10), (13), (14), and (15) we take the appropriate 

derivatives and substitute them into equations (8) and (9)  to obtain a differential equation 

for the concentration C(t).  Recall that the goal of this work is to model the dynamic heat 

flux Fm(t). Based on equation (9), the calculation Fm(t) is straightforward once the time-

varying C(t) is solved. In the following, we derive C(t) through the energy conservation 

as shown in equation (8). First, we rewrite the variables
dt

tdVm )( ,
dt

tdTm )( , 
dt

tdL )( , and 
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dt
tLtd )()(χ  in equation (8) in terms of the Di concentration C.  Taking derivative of 

equations (15), (2), and (10) with respect to time, respectively, results in  

 
dt

tdCtDA
dt

tdV
cm

m )()()(
00 χ′−= (16)

 
 

dt
tdCtC

dt
tdTm )()930)(820()(

+−= (17)

 
 

dt
tdCtL

dt
tdL

c
)()()( ′=  (18)

 
where the derivative of the crystal content and the latent heat with respect to Di 

concentration are calculated based on equations (13) and (10), respectively  

 
 

2
0

)1(
1
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−

==′
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d
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χχ  (19)

 
 

andic LL
dC
dLL −==′  (20)

 
In addition, it is straightforward to obtain 

 
dt

tdCCLLC
dt

tLtd
cc

)(])()([)()( χχχ ′+′= (21)

Substituting equations (16), (17), (18), and (21) into (8), we obtain the governing 

equation of the Di concentration as 

 ( )
)(

)(

1 C
CF

dt
tdC m

Γ
=  (22)

where the variable )(1 tΓ  is defined as 
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 (23)

Although the close-form solution of equation (22) is difficult to obtain, it is solved 

numerically. Once C(t)  is solved, the heat flux Fm(t) is straightforward to obtain using 

equation (9).   

5.4.2 Results 

In our simulations, we consider a magma chamber with the initial thickness D = 

100 m and area Am0 = 106 m2. Different initial chemical compositions of Di (C0) for the 

sample melts are used, including Di90An10, Di80An20, Di70An30, and Di60An40.   

Figure 5.4 shows the total heat output Fm(t)Am of the Di-An system with different 

initial Di compositions. Because we wish to connect magmatic heat output with observed 

seafloor hydrothermal systems, we show the horizontal line representing total heat output 

of 107 Watts. This value is the lower boundary of the measured heat output from seafloor 

hydrothermal systems which typically ranges between 107 and 109 Watts [Lowell and 

Germanovich, 2004; Ramondenc et al., 2006; Baker, 2007]. As expected, for the given Di 

concentration, the higher initial diopside composition gives rise to a larger the initial total 

heat output. Moreover, the larger the initial total heat output results in faster decay of the 

heat output. In addition, the life time of the overlying hydrothermal system (i.e., the time 

period for total heat output to reach 107 Watts) driven by four magmas is around 32, 50, 

60, and 30 years, respectively. The Di70An30 system has the longest lifetime because the 

lifetime is determined by both of the initial heat output and the decay rate.  
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Figure 5.4 Total heat output as a function of time for different initial compositions of 
diopside without magma replenishment. The horizontal dash line located at 107 Watts 
denotes the lower limit of total hydrothermal heat output measured at oceanic spreading 
centers. C0 denotes the initial diopside concentration. 

 
 

Figure 5.5 shows the thickness of crystal layer growing during magma cooling for 

magma chambers with different diopside composition. The larger initial diopside 

composition leads to faster growth of the crystal layer thickness, which is consistent with 

decay rate of the total heat output shown in Figure 5.4. That is, the rate of crystal layer 

grows depends on the rate of heat output from the magma chamber. The thickness of the 

crystal layer approaches a constant as there is less and less Di content left in the melt. 

Thus, the system with larger initial diopside composition creates a thicker layer of 

crystals.   
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Figure 5.5 The thickness of crystals layer as a function of time for different initial 
diopside compositions without magma replenishment. The crystals settle on the floor of 
magma chamber and grow with respect to time. 
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Figure 5.6 The time-varying composition of diopside for different initial diopside 
compositions without magma replenishment.  

 

 
Figure 5.6 shows the instantaneous diopside concentration with different initial 

diopside compositions. The system with Di90An10 demonstrates fast decay to the eutectic 

composition for the first decade and the rapid decrease in Di composition because of the 

high crystallization rate. For the Di composition close to the eutectic composition (Di58), 

the silicate melt with Di60An40 has lower liquidus temperature due to the lower Di 

concentration so that Di composition changes very slowly with respect to time, which 

results in a stable melt system for a relatively long time.  

 
 



 197

5.5 Two-Component Magma System with Replenishment 

In this section, we analyze the effect of magma replenishment on the Di-An 

system. There are a number of mechanisms by which melt might be extracted from its 

source host and added to the sub-axial magma chamber. One of them could be the 

decreasing internal pressure in magma chamber caused by the shrinking of magma 

volume during magma cooling and crystallization. The resulting pressure gradient would 

then drive new magma from the underlying mush zone into the magma chamber. Others 

could be buoyant porous flow through the mush zone as a result of compaction 

[McKenzie, 1984; McKenzie, 1985], buoyant crack propagation [Shaw, 1985; Lister, 1990; 

Lister and Kerr, 1991], or dike propagation from a deeper lying magma body [Sim, 2004]. 

Since we do not incorporate any physical mechanism in these models, we simply assume 

that the magma replenishment is controlled by a replenishment velocity. With additional 

magma added into the magma chamber, both magma mass and heat content increase. We 

incorporate magma replenishment and analyze the resulting heat flux in the similar 

manner described in section 5.4, except that now Fr(t) is included. 

5.5.1 Numerical modeling 

 The heat flux Fr(t) resulting from replenishment is given by [Liu and Lowell, 

2010]:  

   )())1)((()( tutLTctF ininmr ×−+= χρρ (24)

where u(t) denotes the rate of magma replenishment, Tin is the temperature of replenished 

magma, and χin is the crystal content of input magma. Here, we assume that the added 

magma is also Di-An magma, but it may have a composition other than the initial Di 
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composition in the magma chamber. Thus, the temperature Tin of the added magma 

depends on its Di concentration (see equation (2)) 

 87.870930410 2 ++−= ininin CCT (25)

where Cin denotes the Di concentration of the magma being added. The crystal content of 

input magma is modeled as 

 

e

in
in C

C
−
−

=
1
1χ  (26)

where Ce denotes the eutectic composition of Di (Ce = 58%).   

We assume that the added magma is rapidly mixed after it enters the magma 

chamber. The bulk composition Cb(t) is then given by 

 inb CtCttC )())(1()( 0 φφ +−= (27)

where φ (t) is determined by the ratio of the volumes between the added magma and the 

total magma in the magma chamber  

 
)(

)()(
tV

tVt
total

in=φ  (28)

With magma replenishment, the crystal content χ(t) in equation (13) is rewritten by 

considering the time-varying  bulk composition 

  
)(1

)()()(
tC

tCtCt b

−
−

=χ  (29)

Taking derivative of equation (29), we obtain 

 
)()()()()( tCtr

dt
tdCtw

dt
td

b′+=
χ

(30)

where the quantities r(t) are w(t) are defined as 
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 [ ] )(1)()( 2 trtCtw b −=  (32)

and )(tCb′  denotes the derivative of bulk composition with respect to time and is 

calculated from equation (27) as  

  
dt

tdCC
dt

tdCtC in
b

b
)()()()( 0

φ
−==′ (33)

 In the magma replenishment case, conservation of energy is still governed by equation 

(7); but in contrast to the case without replenishment, the heat flux Fr(t) corresponding to 

magma replenishment is incorporated. To solve the heat flux from the magma chamber, 

we start by solving the quantities in equation (8). Combining equations (10) and (29), we 

obtain 

 [ ] )()()()()()()()()()( trtCtL
dt

tdCtwtLtLt
dt

tLtd
bc ′++′= χχ  (34)

 To calculate the magmatic heat output with magma replenishment, we consider 

the magma chamber growth in two directions, both vertically and horizontally.  

5.5.1.1 Time-varying magma chamber thickness 

Assume that as the new magma enters the magma chamber, the thickness of 

magma chamber grows. Then the total magma chamber thickness is expressed by  

  )()( 0 tDDtD in+=  (35)

where Din(t) denotes the thickness contributed by the additional magma and can be 

calculated from the magma replenishment rate. That is,  
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and u(t) denotes the magma replenishment rate. Because the magma chamber area 

remains constant, equation (28) is reduced to  
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tD
tDt in=φ  (37)

Taking derivative of equation (37) and combining (36) results in  
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tuD

dt
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=

φ  (38)

With the time-varying magma chamber thickness, the thickness and volume of the liquid 

magma are given by, respectively  

 )())(1()( tDttDm χ−=  (39)
 
 )())(1()()( 00 tDtAtDAtV mmmm χ−== (40)
 
Taking derivative of equation (40) and combining equation (30) results in 
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bmm

m ′−−+−= χ  (41)

Substitution of equations (17), (18), (34), and (41) into equation (8) leads to the 

governing equation of Di content in the magma replenishment case 
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Eventually, given the magma replenishment rate u(t), the Di concentration C(t) can be 

solved numerically from equation (42). From this solution, other quantities such as heat 

flux Fm(t), temperature of magma chamber Tm(t), etc can be obtained..  

             In our computation, we employ two models for the magma replenishment rate. 

For simplicity, the magma replenishment rate u(t) is first modeled as constant, i.e.,   

 0)( utu =  (45)

Another way is to model the rate of magma replenishment as a sinusoid function, which 

is capable of modeling the periodic behavior of the replenishment. For simplicity we 

incorporate episodic magma replenishment as a simple sinusoid.  Hence 

 )sin()( 00 wtuutu +=  (46)

where w denotes the angular frequency. Correspondingly, the thicknesses of the 

replenished magma based on the two replenishment rate models are given by, 

respectively   

 tutDin 0)( =  (47)
 
 

))cos(1()( 0
0 wt

w
u

tutDin −+= (48)

5.5.1.2 Time-varying magma chamber area 

In this part, we assume that the magma chamber grows horizontally as new 

magma is added, i.e., the magma chamber area is time-varying while its thickness 

remains constant. Based on the analysis in [Liu and Lowell, 2009], the magma chamber 

area grows according to  
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Solving equation (49) results in 
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Thus, the volume of the added magma and total magma chamber can be written as, 

respectively 

 ))(()()()( 000 mm

t

min AtADdssusAtV −== ∫ (51)
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Substitution of equations (51) and (52) into equation (28) leads to 
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Taking derivative of equation (53) and combining equation (49), we obtain 
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Although the thickness of the magma chamber remains constant, the thickness of the 

liquid magma still varies with time as a result of crystal settling. The liquid magma 

chamber volume is expressed as 

 )())(1()( 0 tAtDtV mm χ−=  (55)

Combining equations (29), (49), and (55), we obtain the time dependence of the magma 

chamber volume as    

 [ ])()())(1)(()()()()()(
00 tCtrDttutA

dt
tdCtwtAD
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bmm
m ′−−+−= χ  (56)
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Substituting of equations (17), (18), (34), and (56) into (8), we obtain the governing 

equation of Di content for the time-varying area case in the same form as the time-

varying thickness case in equation (42), with D(t) replaced by D0, and )(tCb′ is computed 

using equation (54) instead of equation (38). Thus, the Di concentration C(t) can be 

solved numerically, along with the heat flux and temperature of the magma chamber. 

5.5.2 Results 

In this part, numerical results show how magmatic heat output evolves as a 

function of magma replenishment rate, initial Di composition, and the composition of the 

added magma.  We assume that the hydrothermal system is not active any more when 

either the total heat output is below the minimum observation value of 107 Watts or the 

magma chamber volume doubles.  

5.5.2.1 Time-varying magma thickness.  

First, the simulation results for the time-varying magma chamber thickness case 

are demonstrated. Figure 5.7 shows the total heat output from the magma chamber as a 

function of different constant magma replenishment rates of 10-7, 10-8, and 10-9 m/s, 

respectively. The initial Di concentration C0 in the magma chamber is set to be 90%. The 

added magma has Di concentration Cin of 80%. With the fast replenishment rate of 10-7 

m/s, the thickness of magma chamber doubles after 32 years. With the moderate 

replenishment rate of 10-8 m/s, the system reaches a quasi-steady heat output for several 

decades before the magma chamber doubles its size. For a replenishment rate of 10-9 m/s, 

replenishment has little effect on counteracting the intrinsic heat flux decay. The system 

heat output falls to 107 Watts in about 32 years.  
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Figure 5.7 Total heat output as a function of time for a variety of constant magma 
replenishment rates in Di-An system with the initial Di concentration of 90% and 
replenished Di concentration of 90%. u0 denotes the initial magma replenishment rate. 
Simulations run until magma thickness D doubles from its initial value of 100 m. Results 
show that u0 between 10-7 and 10-8 m/s tends to stabilize heat output on decadal 
timescales and keep them within the range of total hydrothermal heat output 
measurements from 107 to 109 W. 

 
 

Figure 5.8 shows the total heat output for different sets of initial and added Di 

compositions at the constant replenishment rate of 10-8 m/s. The Figure shows that the 

initial composition C0 determines the initial total heat output, i.e., the larger C0 results in 

larger total heat output initially. The composition Cin of the added magma affects heat 

flux decay rate of the magma chamber in the presence of cooling and replenishment. 

Magma replenishment with the higher Cin introduces more heat into the magma chamber 

and thus slows down the decay of total magma chamber heat output.  
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Figure 5.8 Total heat output as a function of time for different values of initial and input 
Di concentration with magma replenishment at a constant rate of 10-8 m/s. C0  and Cin 
denote the initial Di and replenished Di concentration, respectively. Results show that C0 
determine the initial total heat output from magma chambers and Cin control the decay 
rate of total heat output.  
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Figure 5.9 The thickness of crystal layer growing at the floor of magma chamber as a 
function of time with different sets of initial and input Di concentrations with magma 
replenishment at a constant rate of 10-8 m/s. The area of magma chamber keeps constant 
during magma replenishment. Results show that more crystals settle on the floor of 
magma chamber with increasing initial Di concentration in magma.  

 

 
 Figure 5.9 and Figure 5.10 depict the time-varying thickness of the crystal layer 

and Di composition during the magma chamber convection, respectively. We choose 

different sets of initial and input Di compositions and set the constant replenishment rate 

to be 10-8 m/s. In this case the crystal thickness grows in two stages that result from the 

combination effects of both the cooling and replenishment. In the first stage, the system 

cooling dominates the magma evolution. Thus, the thickness of the crystal layer has a 

sharp initial growth rate due to the crystallization. In the second stage, the magma cooling 

weakens and the magma replenishment becomes the dominant process. Correspondingly, 
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the crystal thickness either grows slowly (Cin = 90%) or extremely slow (Cin = 60%) 

depending on the Di composition of the replenished magma. In addition, replenishment 

makes the crystal layer thickness grow differently than in the case of without 

replenishment, where the crystal thickness remains nearly constant after the cooling 

process slows down. In a consistent manner, the time-varying Di concentration C(t) 

demonstrates similar dynamic trend (Figure 5.10), where the two-stage variation in Di 

content is more obvious when the magma chamber has the bigger initial Di content (90%).   
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Figure 5.10 The time-varying diopside composition of magma with different sets of 
initial and input Di concentrations with magma replenishment at a constant replenishment 
rate of 10-8 m/s. The variation of diopside composition is more obvious for the magma 
with high initial Di concentration during magma cooling and crystallization. 
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Figure 5.11 Total heat output as a function of time for a variety of initial and input Di 
concentrations with magma replenishment at a constant rate of 10-8 m/s. Results show the 
effect of different thicknesses of magma chambers (D = 100 and 10 m) on the total heat 
output. The thinner magma chambers have rapid decay rates of total heat output at first 
few years. However, with high initial and replenished Di concentration, a thinner magma 
chamber enables to stabilize heat output above 107 W on decadal timescales.  
 
  

 Seismic evidence suggests that the magma lens along the oceanic spreading 

centers ranges between a few tens meters to around one hundred meters [Kent et al. 1990; 

MacLeod and Yaoyancq, 2000]. To illustrate the effect of the magma chamber thickness 

on its heat output, Figure 5.11 plots the total heat output of two magma chambers with 

the thickness of 10 and 100 m, respectively. We choose different initial Di contents of 

90% and 60%. The replenished magma is at a constant rate of 10-8 m/s and with different 

Di contents of 90% and 60%. Figure 5.11 shows that for the given initial and added Di 
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concentration, magma with an initial thickness of 10 m has faster rate of heat output 

decline than the one with an initial thickness of 100 m. The reason is twofold. First, the 

thinner magma chamber has smaller Rayleigh number and less vigorous convection. 

Second, the rate of crystallization is faster for a smaller magma chamber than for a larger 

magma chamber although the initial heat flux is independent of magma chamber 

thickness. 
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Figure 5.12 Total heat output as a function of time for a variety of initial and input Di 
concentrations with a constant magma replenishment rate of 10-8 m/s for a different 
replenishment period (1 and 20 years). P denotes the period of magma replenishment. 
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Figure 5.12 shows the total heat output from the magma chamber with periodic 

magma replenishment. The initial Di concentration C0 in the magma chamber is set to be 

90%. The replenishment has period of 1 and 20 years, and the replenished magma has Di 

concentration Cin of either 90% or 60%. Similar to the case of constant replenishment rate, 

magma replenishment with a higher Cin introduces more heat into the magma chamber 

and thus keeps the magma heat output at a steady state for decadal time scales. In the first 

25 years, the heat flux decays rapidly because of strong heat transfer from magma 

convection. During this period, magma cooling and crystallization dominates magma 

chamber evolution, thus the periodic behavior cannot be observed. After the cooling 

weakens and magma replenishment dominates the rate of heat flux, heat output exhibits 

periodic behavior in accord with the periodic replenishment rate.   

5.5.2.2 Time-varying magma area  

Second, we show the simulation results for the case of the time-varying magma 

chamber area. Figure 5.13 shows the total heat outputs with different sets of initial and 

input Di compositions at the constant replenishment rate of 10-8 m/s. In this simulation, 

we choose the same parameters as in section 5.5.2.1. Similar to the variation of heat flux 

in the case in which the chamber thickness grows, the initial composition C0 determines 

the initial total heat output, and the composition Cin of the added magma dominates the 

heat flux decay rate of the magma chamber in the presence of cooling and replenishment. 

Although the replenishment velocities needed to maintain stable heat output for time-

varying thickness and area models are similar, the volumetric rate of magma 

replenishment are different in the area-growth model than that in the thickness-growth 

model.  
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Figure 5.13 Total heat output as a function of time for different initial and input 
compositions with magma replenishment at 10-8 m/s. The thickness of magma chamber is 
fixed and the area of magma grows during magma replenishment. 

 
 

Based on equations (35), (36), and (49), the volumetric rates of magma 

replenishment are obtained as  
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for thickness-growth and area-growth cases, respectively. Comparing equations (57) and 

(58), we can see that the area-growth case has larger volumetric rate of magma 

replenishment. Thus, the heat flux decays slightly slower in the area-growth model.  
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Figure 5.14 The thickness of crystal layer as a function of time for different initial and 
input compositions with magma replenishment at 10-8 m/s. The thickness of magma 
chamber is fixed and the area of magma grows during magma replenishment. 
 
 

 Figure 5.14 and Figure 5.15 depict the time-varying thickness of the crystal layer 

and Di composition during the magma chamber evolution, respectively. Similarly to the 

magma chamber thickness-growth case the crystal thickness grows in two stages that 

result from the combination effects of both the cooling and replenishment. In the first 

stage, the system cooling dominates the magma evolution. Thus, the thickness of the 

crystal layer has the sharp initial growth rate due to the crystallization. In the second 

stage, the magma cooling weakens and the magma replenishment becomes the dominant 

process. Different from the magma chamber thickness growth case, the crystal growth in 

the second stage exhibits different patterns, e.g., the growth in the thickness of the crystal 
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layer is not observable for the case with C0 = 60% and Cin = 60%, and the thickness of 

the crystal layer even decreases for the case C0 = 60% and Cin =  90%. This result occurs 

because as the volume of the crystals accumulates, the crystallization occurs over an 

increasing area. Figure 5.15 demonstrates the evolution of Di composition. The Di 

content with greater initial Di content (90%) has greater decay rate at the beginning due 

to the dominant cooling in the magma chamber. In addition, the steady-state Di 

composition is determined by the Di content of the added magma since after the original 

magma crystallizes, the added magma is the dominant crystal source. 
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Figure 5.15 The composition of diopside as a function of time for different initial and 
input compositions with magma replenishment at 10-8 m/s. The thickness of magma 
chamber is fixed and the area of magma grows during magma replenishment. 
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5.6 Discussion  

5.6.1 Rayleigh Number 

The vigor of convection in a magma chamber can be expressed by the Rayleigh 

number Ra, which is a dimensionless parameter defined as 

 

mm

m

va
TgDRa Δ

=
3

0α  (59)

where ΔT = Tm (t)-Te is the difference between the average temperature of the convecting 

magma Tm(t) and the eutectic temperature Te and other parameters have been defined 

previously. The larger the Rayleigh number, the more vigorous the convection and the 

greater the convective heat transfer from the magma chamber. The Rayleigh number will 

decrease as crystallization proceeds, as a result of the combined effects of the increasing 

viscosity, decreasing temperature and decreasing chamber size. Thus, the heat output 

results described in previous sections can be understood by plotting the evolution of the 

Rayleigh number with time as crystallization and cooling proceeds for different initial 

compositions.  The temporal evolution of Ra as a function of initial Di composition C0  is 

depicted in Figure 5.16. The initial value of C0 has a significant effect on the evolution of 

the Rayleigh number. Magmas with larger C0 have a larger initial value of Rayleigh 

number. Small differences in C0 (only a few tenths of mole) give rise to large differences 

in the initial value of Ra. Thus, because of the initially rapid rate of heat transfer from 

magma with higher C0, these magmas exhibit a more rapid decay rate of Ra, and 

correspondingly the higher the initial value of C0, the shorter convective life time before 

the temperature approaches eutectic temperature. The Rayleigh number decreases rapidly 

due to the vigorous convection at the beginning. Then, magma temperature and Rayleigh 
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number Ra drop very slowly as the magma system approaches the eutectic temperature Te. 

When Ra drops below the critical value, magma convection stops. In this paper, we do not 

consider the situation when the magma temperature reaches at the eutectic temperature 

because the Raleigh number based on ΔT will be zero at this point. [Worster et al., 1990] 

showed that anorthite begin crystallizing in addition to the diopside crystals already 

formed once magma temperature approaches the eutectic value. While the interior 

magma temperature remains fixed, the increased crystallization release appropriate latent 

heat maintain slight convection. The Rayleigh number decreases progressively and drop 

sharply to zero (fig6(c) in Worster et al. [1990]. 
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Figure 5.16 Raleigh number as a function of time for different initial diopside 
compositions. The horizontal dash line located at Raleigh number at 105 denotes the 
convection in magma chamber effectively stops. 
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5.6.2 Magma temperature 

Hydrothermal venting has shown remarkable stability in both composition and 

temperature at least on a decadal-scale [Bowers et al., 1988; Campbell et al., 1988; Von 

Damm et al., 2002]. The analysis in [Liu and Lowell, 2009] suggests that the magma 

replenishment rate plays an important role in the maintaining the heat flux and extending 

magma convective lifetime for a one-component magma system, and is also confirmed in 

this paper for two-component magmas. However, seismicity studies and observed 

changes in the temperature and chemistry of some hydrothermal vents [Sohn et al., 1998, 

Baker et al., 1999; Scheirer et al., 2006; Tolstoy et al., 2008] indicate the evidence of the 

interruption of the steady state of the hydrothermal venting due to magmatic activity. For 

example, magmatic eruptions on the East Pacific Rise near 9°50'N in 1991 and 1992 

[Haymon et al., 1993], again in 2005/2006 [Soule et al., 2007], and some non-eruptive 

magmatic events [Ramondenc et al., 2008; Germanovich et al., 2010] have disturbed the 

hydrothermal system.  

To show the fluctuation of magmatic activity, we model magma replenishment 

with period of 10 years. We consider the magma chamber thickness growth case and the 

initial Di composition is set to be 90 wt.%. Figure 5.17 shows the magma temperature 

with different replenished Di composition, i.e, Cin = 60%, 75%, 90%. It is seen that the 

period replenishment results in the fluctuation of the characteristics of magma 

temperature. The evolution of magma temperature varies depending upon the 

composition of replenished magmas. The higher replenished Di composition gives rise to 

larger fluctuations, because the richer crystal content generates stronger cooling and 

makes it difficult to cooling and replenishment. More significantly, when the composition 
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of the added magma is close to the eutectic, most of the chamber has a near-eutectic 

composition magma temperature exhibits insignificant fluctuations. The magma 

temperature shows greater fluctuations for primary magmas (high-Di) than evolved 

magmas (low-Di).  

 
 

0 10 20 30 40 50 60
1260

1280

1300

1320

1340

1360

1380

Time (years)

M
ag

m
a 

te
m

pe
ra

tu
re

 (o C
)

P = 10 years, Cin = 60%

P = 10 years, Cin = 75%

P = 10 years, Cin = 90%

 
 
Figure 5.17 The magma temperature as a function of time with different input Di 
compositions with the same magma replenishment period of 10 years at a constant rate 
10-8 m/s. Results show that the period replenishment results in the fluctuation of the 
characteristics of magma temperature. The higher initial Di composition gives rise to the 
larger fluctuation of magma temperature. 

 
 

Figure 5.18 depicts the corresponding evolution of diopside concentrations in the 

magma chamber. Its variation is consistent to the magma temperature, which is described 
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by equation (2). The Di composition drops rapidly at early years for magma 

replenishment due to the stronger cooling and crystallization. Then, it stabilizes as 

magma replenishment stabilizes the heat output.  The periodic fluctuations of 

composition are due to the periodic magma replenishment and are more significant for 

the magma replenishment with higher Di composition. 
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Figure 5.18 The composition of diopside as a function of time with different input Di 
compositions with the same magma replenishment period of 10 years at a constant rate 
10-8 m/s. Results show that the periodic fluctuations of composition are due to the 
periodic magma replenishment and are more significant for the magma replenishment 
with higher Di composition. 
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With episodic magma replenishment rates, magma temperature remains relatively 

unchanged except for oscillations related to the frequency of replenishment. 

Hydrothermal responses resulting from periodic changes in magmatic supply might not 

be observed in the seafloor vents because of two factors related to time delay: the time for 

heat to be conducted through the thin boundary layers at the top of the magma chamber 

and at the base of the hydrothermal system (see more details in Chapter 6). 

At the EPR at 9°50′ N, lava chemistry suggests both magma cooling and 

replenishment between the eruption episodes of 1991/1992 and 2005/2006 [Goss et al., 

2010]. The models shown here for Di-An analogues of basaltic magma with cooling and 

replenishment show secular cooling with slight temperature fluctuations that might result 

from periodic replenishment on a decadal time scale.  Although periodic replenishment 

with more primitive (i.e., higher Di) magmas give rise to greater thermal fluctuations than 

replenishment with more evolved magmas, the results shown here do not allow us to 

speculate on whether replenishment with more or less primitive magma might be 

representative of the magma replenishment patterns at EPR. 

5.7 Conclusion  

This paper investigates convective heat output for a two-component Di-An, 

crystallizing, replenished magma sill as an analogue to basaltic AMCs at oceanic 

spreading centers. In un-replenished magma chambers in which crystals are assumed to 

settle quickly to the floor, the results show that the higher initial Di concentration results 

in higher initial heat output and faster decay rate of heat output, leading to 

correspondingly shorter lifetimes of magma convection, based on a heat output cut-off of 

107 Watts for the hydrothermal system.  



 220

With magma replenishment, simulations with magma replenishment at a velocity 

of ~ 10-8 m/s stabilize heat output at a value greater than the cut-off cutoff of 107 Watts 

for decadal time scales. The stabilized heat output varies depending on both the Di 

concentration and the initial magma chamber thickness. Numerical simulations of 

convection and crystallization in a ~ 100 m thick sill show that a 90% Di content of 

added magma maintains a stable heat output of ~ 4 x 107 Watts whereas replenishment 

with 60% Di magma has a heat output ~ 1 x 107 Watts. In a thinner sill of ~ 10 m the 

initially high convective heat loss results in faster decay and a lower stable value of heat 

flux. Simulations with the periodic replenishment give rise to magma temperature 

fluctuations that increase as the Di concentration of the added magma increases. Whether 

this model can be used to discern episodic events at EPR over an eruption cycle requires 

further investigation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 221

Table 5.2 Values of the physical parameters for Di-An System 
 

 
 
 
 
 
 
 
 
 
 

Physical meaning Parameter Value Units 
Thermal diffusivity of magma   am 8×10-7 m2/s 
Horizontal magma area in chamber Am 106 m2 
Magma specific heat cm 1400 J/kg  ºC 
Diopside concentration C   
Eutectic concentration Ce 58%  
Di concentration of the added magma  Cin variable  
The total thickness of magma chamber D   
The initial thickness of magma chamber D0 100 m 
The thickness of added magma Din   
The thickness of liquid magma Dm   
The thickness of crystals layer Ds   
Magmatic heat flux Fm  W/m2 
Magma replenishment heat flux Fr  W/m2 
Acceleration due to gravity g 9.81 m/s2 
Latent heat of solid anorthite Lan 3.9×105 J/kg 
Latent heat of solid diopside Ldi 6.6×105 J/kg 
Mass of magma M  kg 
Rayleigh number Ra  - 
Anothrite liquidus temperature TanL 1553 ºC 
Diopside liquidus temperature TdiL 1391 ºC 
Eutectic temperature Te 1275 ºC 
The temperature of replenished magma Tin  ºC 
Replenishment rate u  m/s 
Initial replenishment rate u0  m/s 
Magma replenishment frequency w  year-1 
Thermal expansion coefficient  αm 5×10-5 ºC-1 
Density of magma ρm 2.7×103 kg/m3 
Magma kinematic viscosity νm variable m2/s 
Volume fraction of crystals χ  - 
The crystal content of input magma χin  - 
The ratio of magma volumes φ   - 
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CHAPTER 6. MODELING HEAT TRANSFER FROM A CONVECTING, 
CRYSTALLIZING, REPLENISHED SILICIC MAGMA CHAMBER AT AN 

OCEANIC SPREADING CENTER4 
 
 

Abstract 

 
 

 

Although most hydrothermal systems at oceanic spreading centers are driven by 

convective heat transport from axial magma chambers of basaltic composition, some are 

driven by magmas with higher silica composition such as andesite or dacite. The different 

viscosity of the latter magmas that results from their higher SiO2 content, lower liquidus 

and solidus temperatures, and water contents likely affects the rate of heat transport from 

these magmas, and hence affects the behavior of the overlying hydrothermal system.  We 

construct viscosity models for andesite and dacite melts as a function of temperature and 

water content and incorporate these expressions into a numerical model of thermal 

convective heat transport from a high Rayleigh number, well-mixed, crystallizing and 

replenished magma sill beneath a hydrothermal circulation system. Simulations 

comparing the time dependent heat flux from basalt, 0.1wt.% andesite, 3wt.% andesite, 

and 4wt.% dacite, indicate that higher viscosity magmas convect less vigorously, which 

results in lower heat transport, possibly lower vent temperatures, and in a slower decay 

rate of the heat flux.  Consequently, hydrothermal systems driven by unreplenished high-

silica melts tend to have a slightly longer lifetime than those driven by basalts; however, 

                                                 
4 The material is essentially reproduced from Liu, L. and R.P. Lowell (2010). Modeling 
heat transfer from a convecting, crystallizing, replenished silicic magma chamber at an 
oceanic spreading center (to be submitted) 
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vent temperatures and heat output decay on decadal time scales.  ,. As in the basaltic case, 

magma replenishment at a rate of ~ 10-8 – 10-7 m/s can maintain relatively stable heat 

output between ~ 107-109 Watts and hydrothermal vent temperatures for decades. Such a 

replenishment rate is not likely to result from buoyancy driven melt transport by porous 

flow through the lower crust, especially for high-viscosity magmas such as andesite and 

dacite. Long term stability of hydrothermal systems driven by these magmas requires an 

alternate means of magma replenishment. 
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6.1 Introduction 

Hydrothermal systems at oceanic spreading centers play an important role in the 

composition of seawater, the formation of ore deposits, the support of microbial and 

macrofaunal  ecosystems, and even for the development of life on early earth. As our 

understanding of hydrothermal processes at oceanic spreading centers has advanced over 

the last 30 years, the substrate composition, permeability of the oceanic crust, and the 

nature of the underlying heat source have become recognized as important factors 

influencing fluid-rock interactions [Hajash and Chandler, 1981; Fouquet et al., 1993a; 

Wetzel and Shock, 2000], hydrothermal vent chemistry [Von Damm et al., 1985; Von 

Damm, 1995], and the attendant microbial and macrofauna ecosystems [Tunnicliffe and 

Fowler, 1996; Juniper and Tunnicliffe, 1997; Kelley et al, 2002]. Axial magma chambers 

have now been found along the fast spreading East Pacific Rise [Detrick et al., 1987; 

1993], the intermediate-spreading Valu Fa Ridge [Collier and Sinha, 1990] and Juan de 

Fuca Ridge [Canales et al., 2006; Van Ark et al., 2007], the slow-spreading Mid-Atlantic 

Ridge [Singh et al., 2006], and the ultraslow-spreading Gakkel ridge in the Arctic Ocean 

[Jokat et al., 2003] and Southwest Indian Ridge [Sauter et al., 2004] in areas of active 

hydrothermal venting. Seismic reflection data thus reveals a close spatial association 

between hydrothermal venting and an underling relatively thin sub-axial magma chamber 

(AMC) at nearly all the high-temperature vent sites for which seismic imaging 

experiments exist. It is now generally accepted that the AMC represents the heat source 

that drives the hydrothermal circulation [e.g., Kelley et al., 2002; Maclennan, 2008; 

Lowell et al., 2008, 2010].  
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Since most vent fields are hosted by basalts, the detailed experimental, theoretical, 

and field studies have been carried out on the basaltic magma-hosted hydrothermal 

activity. However, vigorous hydrothermal systems are hosted by a broad range of rock 

types. For example, the Rainbow vent field and others on the Mid-Atlantic Ridge are 

hosted by peridotite [Kelley et al., 2001; Allan and Seyfried, 2003]. Pacmanus 

hydrothermal systems are hosted by dacitic volcanoes in the Eastern Manus back-arc 

basin [Binns and Scott, 1993; Binns, 2003]. Some vent fields on the Eastern Lau 

Spreading Center (ELSC) (e.g., Valu Fa Ridge [Fouquet et al., 1993]) and other back arc 

basins (e.g., Manus Basin) [Sinton et al., 2003] are hosted by andesitic rocks. Moreover, 

the occurrence of high-silica andesitic and dacitic rocks near the 9°03′ N over-lapper on 

the East Pacific rise and at other sites along the mid-ocean ridge system is reported in 

[Wanless et al., 2010].  

The characteristics of hydrothermal activity (alteration mineralogy, chemistry of 

fluid etc.) vary depending on the composition of host rocks. Thus, hydrothermal venting 

driven by andesite and dacite found in back arc basins is quite different from most mid-

ocean ridge vent fields which are hosted within basalts. The Lau Basin is a typical 

example of an active back-arc basin with active spreading ridges and seamount volcanoes 

associated with a wide variety of hydrothermal deposits, located between the active 

Tofua volcanic arc and a remnant Lau ridge (see Figure 6.1).  
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Figure 6.1 Location map of the Lau Basin showing the back-arc spreading centers (heavy 
lines), trench axis (dotted line) and contours of the subducted slab (dashed lines). [from 
Fernando and Taylor, 2002]  

 
 
 
It has been found that andesitic rocks prevail at the southern Lau Basin and the 

Valu Fa Ridge [Fouquet et al., 1993]. High-temperature hydrothermal fields were 

discovered and sampled by submersible in the Valu Fa Ridge of the Lau back-arc basin 

during the Nautilau cruise in 1989 [Fouquet et al., 1991]. Their characteristics contrast 

strongly with those of the hydrothermal fields found at normal mid-ocean ridges, which is 

mainly composed of basalts. The primary differences between the hydrothermal vents 

driven by andesites and basalts include the acidity, chemistry and temperature (up to 400 

°C) of the hydrothermal fluids, the composition of the ore deposits, and the volcanic and 

tectonic environments. For example, in some back-arc and arc systems where magma is 
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more siliceous and richer in H2O, very-low-PH fluids are observed [Gamo et al., 1997]. 

Also, it is found that the fluids sampled at vent fields hosted in andesite have very high 

concentrations of trace metals (e.g., Zn, Cd, Pb, As), and primary gold is present in the 

accompanying mineral deposits [Fouquet et al., 1993]. Recent detailed exploration of 

Eastern Lau Spreading Center has discovered a number of other sites (i.e., ABE, Tu'i 

Malila, and Mariner) hosted on andesite [Tivey et al., 2005; Lau Workshop Report, 2006; 

Resing et al., 2008], and underlain by a magma chamber [Jacobs et al. 2007]. 

The physical and geochemical properties of andesite and other high-silica 

magmas are different from those of basalt. For example, compared to basaltic magma, 

high-silica magmas have lower liquidus and solidus temperatures [Spera, 2000]. 

Moreover, high-silica magmas have greater viscosity and lower density due to their 

higher water and SiO2 content [Spera, 2000]. These features affect the convective 

properties of the magma and correspondingly influence the magma heat output into the 

overlaying hydrothermal system. 

Since few studies have been conducted regarding the high-silica substrates, an 

analysis of hydrothermal systems driven by high-silica magma chambers is needed. In 

this chapter, we investigate high silica andesite and dacite-hosted magma chambers and 

their effects on the hydrothermal activity. Specifically, both the andesitic and dacitic 

magma properties are parameterized and the convective heat output and the convective 

lifetime are quantitatively characterized based on these properties. In addition, we 

develop numerical models to describe hydrothermal activity that may be associated with 

the magma system. The rest of the chapter is organized as follows. In section 6.2, we 

discuss the different physical properties that affect the magma viscosity and propose new 
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magma viscosity models for both andesite and dacite magmas. In section 6.3, we develop 

the mathematical models of magmatic heat transfer based on the proposed magma 

viscosity model. In section 6.4, we extend the results in section 6.3 by considering the 

magmatic heat flux with magma replenishment. Section 6.5 discusses the evolution of the 

magma chamber, the temperature of hydrothermal and magma systems, and magma 

replenishment mechanisms. Section 6.6 concludes the paper.  

6.2 Magma Viscosity Modeling 

Magma viscosity can vary by many orders of magnitude within a single 

environment, and it is very sensitive to a variety of factors such as chemical composition 

[Liebske, 2003], temperature [Bottinga and Weill, 1972; Shaw, 1972], pressure [Kushiro 

et al., 1976; Scarfe et al., 1987], volatile content (mainly H2O) [Richet et al., 1995; 

Whittington et al., 2000], and crystal content [Marsh, 1981; Lejeune and Richet, 1995]. It 

has been shown that the viscosity of naturally-occurring silicate melts varies from 10-1 Pa 

s to 1014 Pa s in response to changes of magma temperature and melt composition 

[Dingwell, 1996; Giordano et al., 2004; Giordano et al., 2008]. Because the viscosity of 

magma exerts a fundamental control over many geological processes, including the 

segregation of melt from source regions, ascent and emplacement of magma, mixing in 

magma chambers, and eruption styles, magma chambers hosted by different magmas 

exhibit different rates of convective heat transfer and temporal evolution, and thus affect 

the overlying hydrothermal system in different ways. In the following, we quantify the 

effects of each of these factors on the viscosity and propose a new viscosity model for 

conducting the numerical analysis of magma convection and heat transfer. We incorporate 
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the dominant factors into the viscosity model and disregard those that have negligible 

effects.   

6.2.1 Pressure 

The studies of the viscosity of both anhydrous and hydrous andesitic melts using 

parallel plate viscometry in [Liebske, 2003] combined with the experimental results in 

[Richet et al., 1996] indicate that the viscosity of water-free andesitic melts are 

independent of pressure, whereas the viscosity of water-bearing melts slightly increases 

with the increasing pressure. The results in [Liebske, 2003] show that the viscosity 

increases by up to a factor of 5 for andesitic melts containing H2O (1-2 wt.%) with 

increasing pressure from 0.1 to 300 MPa. For more water-rich hydrous andesitic melts 

(2.3-5.6 wt%), it is found that the viscosity has a minor dependence on pressure ranging 

from 0.1 to 500 MPa [Vetere et al., 2006]. Thus, we consider the effect of pressure to be 

minor and neglect its effect on the magma viscosity in our analysis. In addition, the 

magma chambers being considered here are relatively thin and occur over a small range 

of pressure. Typically, the estimated ranges are between 53MPa and 110MPa for the 

magmas below the seafloor about 1-3 km.  

6.2.2 Water content 

Evidence shows that andesitic and dacitic magmas with high SiO2 content can 

have water content as high as 10 wt.%. For example, [Eggler, 1972] found that H2O 

contents of 2 wt.% - 10 wt.% is in the Paricutin Volcano andesite at the pressure of 1000 

MPa. The petrological data from Rutherford and Devine [1988] and Rutherford et al. 

[1985] indicate that the Mount St. Helens, Mount Unzen, and Soufriere Hills magmas 



 238

have water contents in the range of approximately 4 wt.% - 5 wt.%. The dacites in the 

eruptions of Mount St. Helens Volcano from 1980 to1986 have a wide range of water 

contents (3.5 wt.% - 5.7 wt.%) [Blundy and Cashman, 2001]. Water content has a 

significant effect on the high-silica magmas viscosity [Shaw, 1963, Kohn, 2000; 

Giordano et al., 2004]. Even a few percent of water may decrease the viscosity of high-

silica magmas by several orders of magnitude [Lejeune et al., 1994]. In contrast, the mid-

ocean ridge basalts are typically relatively dry with H2O contents ranging between 0.1 

and 0.5 wt.% [Johnson et al., 1994], and the small amount of water in basalts at mid-

ocean ridges makes its effect on viscosity small enough to be neglected.   

The dependence of viscosity on water content has been investigated through 

laboratory experiments for different high-silica magmas. Viscosity can be measured 

directly by experimental techniques. For example, the concentric cylinder viscometer 

[Dingwell, 1986] and the falling sphere technique [Shaw, 1963] can be used for the low 

viscosity range. The micropenetration method [Hummel and Arndt, 1985] and parallel 

plate viscometer [Liebske, 2003] can be employed over a high viscosity range. Based on 

the experimental data, Vetere [2006] proposed an empirical model to predict the viscosity 

of andesitic melts as a function of water content and magma temperature:  
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where va0 denotes the kinematic viscosity of andesite, w is the water content represented 

in the form of wt.%,  Tm is the magma temperature in °C, aρ  is the density of andesite 

(kg/m3). Similarly, the viscosity of dacite melts is connected to water content and magma 

temperature in Whittington [2009]: 
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Where vd0  and dρ  denote the kinematic viscosity and density of dacite, respectively.  

6.2.3 Chemical composition   

Equations (1) and (2), show that the viscosity depends not only on water content, 

but also on magma density and temperature. We will discuss these dependences in this 

and next subsections. The magma density is determined by its chemical composition, 

mainly the SiO2 or silica content. Because silica forms chains that link together and 

hinder the movement of magma [Kawaguchi et al., 1996], magma viscosity increases 

with silica content. The silica content in crustal igneous rocks exhibits a considerable 

range spanning from 45-55 % in basalt to 65-75 % in rhyolite. Typically, andesites have 

55-60 % and dacites have 60-65 % SiO2 contents, respectively. In this chapter, we 

consider andesite and dacite. Thus, the viscosity is between that of basalt and rhyolite. 

The effect of Si concentration on the viscosity has been implicitly considered in both 

equations (1) and (2).  

6.2.4 Magma temperature  

Viscosity is dependent on magma temperature in two different ways. First, as 

shown in equations (1) or (2), both Vetere [2006] and Whittington [2009] have captured 

the relationship between viscosity and magma temperature Tm. Generally, higher 

temperature results in lower viscosity based on the historical viscosity-temperature model 

[e.g., Vogel, 1921; Fulcher, 1992]. Second, an indirect connection between magma 

temperature and viscosity exists through their common relation to crystal content. In the 
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absence of a more precise formulation, we follow [Hort, 1997] and assume that the 

crystal content χ variation is linearly related to magma temperature, i.e.,  
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where TL and Ts denote the liquidus and solidus temperature, respectively. Note that the 

two effects of the temperature on viscosity are different. The relation in equations (1) or 

(2) is static, while the equation (3) captures the relation in a more dynamic way.   

6.2.5 Crystal content 

During magma convection, magma cools and crystallizes. When the magma 

temperature drops below the liquidus temperature, crystals nucleate and grow inside the 

magma chamber, potentially resulting in a significant increase of magma viscosity. The 

effective viscosity of crystal-rich magmas is often estimated from the Einstein-Roscoe 

equation [Roscoe, 1952]: 

 n
cmm vv −−= )/1(0 χχ     (4)

Where vm denotes the effective viscosity of mixture magma, χ denotes the volume 

fraction of crystals, cχ is critical fraction value at which crystals effectively solidify the 

suspension, resulting in νm approaching infinity, vm0 denotes the viscosity of the liquid 

magma, and n is an adjustable constant exponent, with the range from 1.5 to 5. Based on 

the experimental and empirical evidence in [Marsh, 1981], the parameters χc = 60% and n 

= 2.5 are widely adopted as typical values [Shaw, 1980, Marsh, 1981]. Correspondingly, 

the magma viscosity in equation (4) is reduced to 

 5.2
0 )67.11( −−= χmm vv  (5)  
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In this case, viscosity becomes infinite as χ approaches 60%. In this expression, the 

density difference between crystals and melts and variations in the chemical composition 

of the residual melts are neglected.  

6.2.6 Proposed magma viscosity model 

As discussed above, the viscosity of high-silica magma depends on water content, 

crystal content, and temperature. However, the existing models only capture partial 

dependence of all these factors. The models in equations (1) and (2) relate the viscosity to 

temperature and water content. The model in equation (5) links the viscosity and crystal 

content, which is indirectly related to the magma temperature through equation (3). The 

viscosity gradually increases as the temperature decreases due to the cooling and 

crystallization of the magma body. Therefore, it is necessary to have a universal viscosity 

model that can capture its dependence on the magma temperature, water content, and 

crystal content simultaneously. To achieve this, we propose a new viscosity model as a 

function of temperature, the crystal content and the water content by combining equations 

(1), (2), and (5) 

 5.2
0 ))((67.11())(( −−= tTvtTv mcmc χ  (6)

Where c is either “a” or “d”, denoting andesite or dacite.  

For demonstration purposes, we show the relationship between magma viscosity 

and crystal content, water content, and temperature, respectively. Four different magmas 

are taken into account based on their water content, including basaltic magma, 0.1 wt.% 

H2O andesitic magma, 3 wt.% H2O andesitic magma, and 4 wt.% dacitic magma. The 

solidus temperature TS and the liquidus temperature TL are selected to be 1030°C and 

1200 °C for basaltic magma, 970°C and 1100 °C for 0.1 wt.% H2O andesitic magma  (dry 
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andesitic magma), 900°C and 1010 °C for 3 wt.% H2O andesitic magma, and 800°C and 

950°C  for 3 wt.% dacitic magma, respectively. First, we show the relationship between 

magma viscosity and crystal content in Figure 6.2. 
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Figure 6.2 The relationship between magma viscosity and crystal content in crystals 
suspended case for different magmas. The vertical dashed line at 60% shows the viscosity 
becomes infinite. 
 
 

Figure 6.2 shows that the viscosity monotonically increases as a function of 

crystallinity for all types of magma. For the same crystal content, dacitic magma has the 

highest viscosity, and both andesitic and dacitic magmas have the higher viscosity than 

the basalts due to the higher silica content. Moreover, viscosity increases non-linearly 
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with increasing crystal content,especially when the crystal content approaches the critical 

value of 60 %. Magma convection stops when the crystal content approaches 60%. 

The viscosity dependence on water content is shown in Figure 6.3 for different 

andesite and dacite.  
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Figure 6.3 The effect of water content on the viscosity of andesitic and dacitic magma at 
a fixed magma temperature 970°C. Water content has a greater effect on the decrease of 
magma viscosity on higher silica magma, especially when water content less than 3 wt.% 
 
 
 

Figure 6.3 shows that water content has a significant effect on viscosity and that 

the higher the silica content, the greater the effect of small changes in water content on 

the viscosity, i.e., water decreases the viscosity of the dacitic magma more than for 
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andesites. Therefore, the determination of the water content of magma is vital to 

understanding the dynamic behavior of melts. In addition, Figure 6.3 shows that viscosity 

increases sharply for dacites when water content is below 3 wt. % and that a further 

increase in the amount of water above 3 wt.% has a little influence on the viscosity (see 

equations (1) and (2)).  
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Figure 6.4 Viscosity versus magma temperature with varying water content (wt.%) for 
basaltic, anhydrous and 3 wt.% andesitic, and 4 wt.% dacitic magmas in crystals 
suspended case. The temperature affects the melt viscosity significantly, especially at low 
temperatures.  
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Lastly, the relation between the magma viscosity and temperature is shown in 

Figure 6.4 for different magmas. Although different magmas have different temperature 

ranges during convection, the viscosity increases with a decrease of magma temperature 

between their respective liquidus and solidus temperatures, because cooling generates 

more and more crystals and correspondingly increases viscosity. Also, we observe that 

the range of viscosity of andesites and dacites are greater than that of basalts due to the 

high SiO2 content. In the following sections, we will discuss heat transfer from a magma 

chamber based on the proposed viscosity models.  

6.3 Heat Transfer from High-Silica Magmas without Magma Replenishment 

To better understand the evolution of heat flux from the convecting, crystallizing 

magma to hydrothermal system, Liu and Lowell [2009], adapted an approach by Huppert 

and Sparks [1988] and developed numerical models of magmatic heat flux for basaltic 

magma. In this section, we extend this work to the investigation of the hydrothermal 

system behavior driven by the high-silica magma. Moreover, we compare the 

characteristics of different hydrothermal systems driven by basalt, andesite and dacite 

with different water content.  

Despite the wide range in spreading rates, depths, substrate compositions, and 

geometries or even types of heat source along mid-ocean ridge and back-arc basin 

spreading center, there are strong similarities among all seafloor vent fields in terms of 

the processes of heat and mass transfer. Within the liquid magma body, thermal 

convection resulting from the temperature difference between the hot magma and the 

cold upper boundary maintained by the overlying hydrothermal circulation is an efficient 

mechanism of heat transfer. Considering a hydrothermal system circulation driven by the 
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underlying magma system, the heat flux transferred from a vigorously convecting magma 

chamber is expressed as [Turner, 1973]:  

 3/43/12 ))(())(/(1.0)( Smmmmmmm TtTtvgactF −= αρ (7)

where ρm is the magma density, cm is the magma specific heat, αm is the coefficient of 

thermal expansion, g is the gravity acceleration, am is the thermal diffusivity, and mν (t) is 

the kinematic viscosity. In our analysis, mν (t) is modeled in equation (6), representing 

either andesites or dacites. Correspondingly, the total magmatic heat output transferred 

cross the entire area of the magma chamber is obtained as: 

 mmm AtFtG )()( =  (8)

where Am is the surface area of magma chamber. According to [Liu and Lowell 2009], the 

heat content of the magma chamber is calculated by:  

 ]))((1()([)()( LtTtTcAtDtH mmmmmmm χρρ −+=  (9)

where Dm(t) is the thickness of liquidus magma, χ(Tm(t)) is the volume fraction of crystal 

content at the temperature Tm(t), and L is the latent heat of the crystallization of the 

magma. The first term on the right-hand side of equation (8) represents the sensible heat 

per unit volume of magma, and the second term represents the latent heat yet to be 

released as crystallization occurs. 

Energy conservation in the magma convection system is determined by equating 

the time derivative of the heat content in the magma body to the rate of heat loss through 

the top boundary 

 
mm AtF

dt
tdH )()(

−=  (10)
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To further solve equation (10), we consider two end-member scenarios depending 

on how the crystals reside in the magma chamber. One is crystals suspended [Sparks et 

al., 1984; Solomatov and Stevenson, 1993], where crystals remain suspended and well 

mixed with the liquid magma as they crystallize. The other is crystals settling, where 

crystals instantly settle down to the floor of the magma chamber during cooling [e.g., 

Martin, 1990; Martin and Nokes, 1988; Worster et al., 1990; Liu and Lowell, 2009].  

6.3.1 Crystals suspended 

In the crystal-suspended scenario, the crystals are well mixed with liquid magma 

during cooling and crystallization. The thickness of the liquidus magma remains invariant 

as the thickness of the magma chamber. Denote D0 to be the initial thickness of magma 

chamber. Thus, the liquidus magma thickness is Dm(t) = D0. Substitution of equation (9) 

into (10) leads to  

 ( ) )(
)(

)(
)(

00 tF
dt

tdT
tTLD

dt
tdT

Dc m
m

mm
m

mm −=′− χρρ (11)

By combining equations (7) and (11), both the magma temperature Tm(t) and heat flux 

Fm(t) can be solved numerically. Therefore, the total magmatic heat output for the 

crystals suspended scenario is obtained as  

 

00 )((
)()(

DctTLD
tF

dt
tdT

mmmm

mm

ρχρ −′
=  (12)

6.3.2 Crystals settling 

As the magma chamber cools and crystals settle to the chamber floor, the liquid 

magma thickness Dm(t) decreases as more and more magma crystallizes. The thickness of 

the liquidus magma depends on the crystal content as  
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 [ ]))((1)( 0 tTDtD mm χ−=  (13)

Combining equations (9) and (13), we rewire equation (10) for the crystals settling case: 

 [ ][ ]
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dt
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(14)

where χ΄(Tm(t)) denotes the derivative of χ with respect to Tm. Thus, Tm(t) and Fm(t) can 

be numerically solved by combining equations (7) and (14). Correspondingly, the total 

magmatic heat outputs for the crystals settling model is obtained as  
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−′−+−+′

=

χχρχχρ

(15)

As we have discussed previously, magma viscosity affects the heat flux from a 

convecting magma chamber and hence magma composition affects the evolution of the 

overlying hydrothermal system. To demonstrate this idea, we compare the heat flux from 

convecting, crystallizing dacitic, andesitic and basalt magmas. Here, we consider both the 

crystals suspended and crystals settling cases. The viscosity is modeled by equations (5) 

for basalts and (6) for andesites and dacites, respectively. For andesitic and dacitic 

magmas, we consider the range of initial water contents from 0.1 to 4 wt.%. The total 

heat flux of different magmas for crystals suspended and settling cases are shown in 

Figure 6.5 and Figure 6.6, respectively.  
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Figure 6.5 Comparison of the total heat output from basaltic, andesitic and dacitic magma 
without magma replenishment in crystals suspended case. 

 
 

We assume that the heat transferred from magma chamber is carried solely by 

hydrothermal convection, i.e., no heat loss through surrounding rock by conduction 

occurs. The estimated range of the integrated heat fluxes in hydrothermal vents at oceanic 

spreading centers is between 107 and 109 Watts [Baker, 2007; Ramondenc et al., 2008]. 

The horizontal line at 107 Watts denotes the minimum value of total hydrothermal heat 

output. We assume that the hydrothermal circulation effectively stops when the magmatic 

heat output drops below 107 Watts. Figure 6.5 shows that basaltic magma has the highest 

initial total heat output as a result of its low viscosity and high initial temperature (see 

equation (7)). In addition, the viscosity has a significant effect on both the decay rate of 
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total heat output and on the lifetime of hydrothermal system through the modeling 

dependence of the water content.  

Figure 6.5 shows that dacitic magmas have the lowest decay rate followed by 

andesites and basalts, because dacites have the highest SiO2 content and the 

correspondingly highest viscosity. For the same type of magma, for example andesite in 

Figure 6.5, the one with water content 3 wt.% has a faster decay rate than the one with 

water content 0.1 wt.%, since lower water content results in the higher viscosity. In terms 

of lifetime, a hydrothermal system driven by 0.1 wt.% andesitic magma lasts for 30 years 

before the total heat output drops below 107 watts. A hydrothermal system driven by 

dacitic magma lasts a litter longer. Although andesitic magma bodies have lower initial 

heat flux than basaltic ones as a result of their large viscosity, the heat output decays 

more slowly than the basaltic one. Therefore, for a given magma chamber geometry, with 

the same properties except for viscosity, and latent heat, the andesitic-driven 

hydrothermal systems have longer lifetimes than basaltic ones.  
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Figure 6.6 Comparison of the total heat output from basaltic, andesitic (anhydrous and 
with 3 wt.%), and dacitic (with 4 wt.%) magmas without magma replenishment in 
crystals settling case. 

 
 

Comparing Figure 6.6 and Figure 6.5, it is observed that under similar conditions, 

the total heat output for all types of magmas have longer lifetime for crystals settling than 

crystals suspended model. This occurs because of the rapid increase in viscosity and 

decrease in Rayleigh number when crystals are suspended. Even for the basaltic magma, 

the lifetime lasts for about 20 years before the total heat output drops below 107 watts. On 

the other hand, systems with higher initial viscosity and lower initial heat output such as 

the 4 wt.% dacitic magma it has the longest lifetime and lowest decay rate of the total 

heat output. Thus occurs because the lower the initial heat output, the lower the overall 
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rate of decay. For the crystal-suspended case, an alternative way to determine the 

termination of the hydrothermal activity is based on crystal content. As discussed in 

equations (5) and (6), the crystal content can not exceed 60%. Figure 6.7 depicts the 

crystal content variation with respect to time for different magmas. It is seen that basalt 

has the shortest magma convection time, followed by the 3 wt.% andesite and 0.1 wt.% 

andesite, and 4 wt.% dacite takes almost 200 years till convection stops. Magmas with 

higher viscosity have longer convectiive lifetime due to their slower heat flux, and 

correspondingly have longer lifetimes in terms of the crystal content approaching 60%.   
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Figure 6.7 The growth of crystals as a function of time for different magmas when the 
crystal content approaches to 60% in crystals suspended case. 
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6.4 Heat Transfer from High-Silica Magmas with Magma Replenishment 

Liu and Lowell [2009] show that heat transfer from a convecting, cooling, 

replenished basaltic magma chamber can maintain seafloor hydrothermal systems on 

decadal timescales. The results in the previous section show that for high-silica magmas 

heat output decays on decadal timescales in both cases of crystals settling and suspended. 

Thus, by adopting the methodology in Liu and Lowell [2009], we investigate whether 

heat transfer from high-silica magmas can also sustain themselves with reasonable rates 

of replenishment from the underlying mush zone.  

Denote u(t) to be the velocity of magma replenishment. Then the rate of heat 

replenishment Fr(t) is expressed by  

 )()1(()( tuLTctF inminmmr χρρ −+=  (16)

where Tin denotes the replenished magma temperature, and χin is the corresponding 

crystal content which can be obtained from equation (3) with Tm(t) replaced by Tin. In 

addition, the latent heat remaining in the newly added magma depends linearly on the 

fraction of liquid magma being added, i.e., L(1-χin).  

In contrast with the no-replenishment case, the magma chamber size grows with 

added magma. We assume, for simplicity that the andesitic and dacitic magma chambers 

grow vertically rather than laterally during the intrusion of new magma, i.e., the area of 

the magma chamber remains constant, while its thickness grows with time [see Liu and 

Lowell 2009 for discussion of the case in which area grows and thickness remains 

constant]. To model the time-varying thickness of magma chamber, we neglect any 

density difference between the replenished magma and the crystal-melts mixture in the 

magma chamber. Mass conservation of the magma then requires  
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)()( tu

dt
tdD
=  (17)

To solve the thickness of the magma chamber, we consider two models of the 

magma replenishment rate, constant velocity and exponentially decay rate, which are 

given by, respectively 

 
bteutu

utu
−=

=

0

0
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 (18)

where u0 is the initial rate of the replenishment; b is a constant determining the 

exponential decay rate. Substitution of equation (17) into equation (18) results in the 

expression of time-varying magma chamber thickness for different replenishment rates, 

respectively 
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With the magma replenishment, the magma volume changes with time, so the heat 

content in equation (9) is rewritten as  

 ]))((1()([)()( LtTtTcAtDtH mmmmmmm χρρ −+=  (20)

With new heat flux into the hydrothermal system, the energy conservation in equation (10) 

is extended to  

 
mrmm AtFAtF

dt
tdH )()()(

+−=  (21)

In the following, we develop the heat flux model for a magma chamber with 

replenishment. Both magma cooling and crystallizing models of crystals suspended and 

crystals settling are considered.  
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6.4.1 Crystals suspended 

In the crystals suspended case, we assume that the crystals are well mixed in the 

magma. Thus, the liquidus magma thickness is the same as the magma chamber thickness, 

i.e., Dm(t) = D(t). Combining equations (16), (17), (20), and (21), we obtain 

 ( ) ( )( )( )
( )( )mmm

inmminmmmm

cLtTtD
LtTtTTctutF

dt
tdT

−′
−+−−

=
)()(

)()()()()(
χρ

χχρ  (22)

Thus, by combining equations (7), (19) and (22) both the magma temperature Tm(t) and 

heat flux Fm(t) can be solved numerically. The total magmatic heat output can then be 

obtained from equation (8). Comparing equations (12) and (22) for systems with and 

without magma replenishment, respectively, the second term in the numerator of equation 

(22) is generated by the addition of new magma into the chamber. For the special case of 

zero-rate replenishment, equation (22) is reduced to equation (12), with D(t) = D0, which 

shows the consistency of our analysis.   

6.4.2 Crystals settling 

For the crystals settling model with replenishment, assuming that during the 

crystallization, crystals form on or instantly settle to the floor of the magma chamber, the 

thickness of the liquid magma can be expressed as 

Correspondingly, the rate of magma chamber growth is  

Combining equations (16), (20), (21), and (24), the magma temperature Tm(t) can be 

expressed as 

 [ ] )()((1)( tDtTtD mm χ−=  (23)
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With equations (7), (19), and (25), both the magma temperature Tm(t) and heat flux Fm(t) 

can be solved numerically, and the magmatic heat output is obtained from equation (8). 
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Figure 6.8 Total heat output as a function of time for four types of magma convection 
systems with a constant magma replenishment rate at 5×10-8 m/s when the thickness of 
magma chamber doubles in crystals suspended case. 
 
 

In the following, we provide some simulation results to demonstrate our analysis. 
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In the simulations, the initial thickness of magma is set to 100 meters, and the magma 

thickness grows during replenishment as in equation (19). Based on seismic evidence, the 

thickness of magma lens in mid-ocean ridges is less than a few hundred meters. Thus, we 

run the simulations until the thickness of the magma chamber doubles. Figure 6.8 shows 

the total magmatic heat output in crystals suspended case with the constant replenishment 

rate of 5×10-8 m/s for four different magmas, including basalt, 0.1 wt.% and 3 wt.% 

andesite, and 4 wt.% dacitic magma.  Figure 6.8 shows that with magma replenishment, 

the magma chamber size doubles after 65 years and the total heat output reaches a quasi-

steady state between 107 and 109 W. With the same initial chamber size and constant rate 

of replenishment, the high-silica magmas have slower decay rate of heat output compared 

to the basaltic magma. As in the case of without replenishment, this occurs because the 

high-silica magmas have higher viscosity (see Figure 6.9), which results in the lower 

Rayleigh numbers. Thus, convection in high-silica magmas is less vigorous, and provides 

less heat output than in basaltic magma. In addition, the steady-state magmatic heat 

outputs of high-silica magmas drop below that of basaltic magma. Because the faster 

decay heat flux of basalts results in faster rate of crystallization which makes 

replenishment significant in the balance between magma convection and replenishment. 

The basaltic magmas reach equilibrium earlier than high-silica magmas. In contrast, high-

silica magma heat flux decays slowly and the long period of decay leads the steady-stage 

heat flux below that of the basalts. 
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Figure 6.9 Magma viscosity as a function of time for different magma in crystal 
suspended case with magma replenishment at 5×10-8 m/s. 
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Figure 6.10 Total heat output as a function of time for three types of magma convection 
systems with a constant magma replenishment rate at 5×10-8 m/s when the thickness of 
magma chamber doubles in crystals settling case. 
 
 
 

With the same simulation setups as in Figure 6.8 and Figure 6.9, Figure 6.10 and 

Figure 6.11 show the total heat outputs and the corresponding viscosities for different 

magmas in the crystals settling case. Similar to the crystals suspended case, the thickness 

of all the magma chambers doubles after 65 years, because the growth of magma 

thickness depends only on the magma replenishment rate. Also, each type of magma has 

slower heat flux decay rate compared to the counterpart in the crystals suspended case 

(see Figure 6.8 and Figure 6.10), because the viscosity in the crystals settling case is 

lower than that in the crystals suspended case (see Figure 6.9 and Figure 6.11). With 
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crystals settling, the magma temperature decreases more slowly than in the crystals 

suspended case. As a result, in conjunction with the absences of crystals in the magma, 

the viscosity increases more slowly than in the crystals suspended case.  
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Figure 6.11 Magma viscosity for different magmas in crystals settling case with magma 
replenishment at 5×10-8 m/s.  
 

 
 

In addition, we investigated magma replenishment with an exponential decay rate 

(equation (18)). As an example, Figure 6.12 shows the heat output of different magmas in 

crystals settling model with the magma replenishment at an exponentially decay rate. 

Magma supply is slower in this replenishment rate model than the constant rate (see 
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Figure 6.10). Thus, it takes longer time for the magma chamber to double its size, and 

correspondingly the effective lifetime increases to 100 years for all magmas.  
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Figure 6.12 The total heat output as a function of time for four types of magma with 
magma replenishment at a certain exponential decay rate, u0 at 5×10-8 m/s and b at 10-9. 

 

 
Finally, to investigate the effect of replenishment rate, Figure 6.13 shows the 

magmatic heat output of 0.1 wt.% andesitic magma chamber in crystals settling model 

with the magma chamber being refilled with different initial replenishment rates (u0) and 

exponential decay rates (b). Figure 6.13 shows that the magma replenishment parameters 

(u0 and b) affects both the lifetime of the magma chamber and steady-state heat output. 
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For all the different values of u0 and b, the heat outputs can maintain the steady state for 

decades. The initial replenishment rate u0 has a significant control on the decay rate of 

heat output, and the replenishment decay rate b has a significant control on the 

convective lifetime. For instance, when b changes from 10-9 to 10-10, the life time of 

convection changes from 60 years to 100 years with the initial replenishment rate of 

5x10-8 m/s.  
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Figure 6.13 Total heat output as a function of time for anhydrous andesites with magma 
replenishment at various exponential decay rates in crystals settling model. 
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6.5 Discussion 

The mechanism of heat extraction by hydrothermal circulation along mid-ocean 

ridges is fundamentally the same among fast-, intermediate-, slow, and back-arc basins. 

Thus, the variations in AMC properties implicate the magmatic processes. In this part, we 

discuss the effects of liquid magma thickness and replenished magma temperature on the 

magmatic processes.  

6.5.1 Liquid magma thickness in crystals settling model 

In this part, we discuss the implication of liquid magma thickness on the total heat 

flux. For demonstration purpose, we only consider the crystal settling case. Figure 6.14 

and Figure 6.15 show the time-varying liquid magma thickness during convection for 

different magmas with and without magma replenishment, respectively. For the case 

without replenishment, and an initial magma chamber thickness of 100 m, the thickness 

of liquid basalt drops to 40 m quickly; indicating rapid decrease in heat output and the 

end of the convection (see Figure 6.6). In contrast, the thickness of liquid high-silica 

magma decreases more slowly due to the slow decay of the heat flux (see Figure 6.6), 

which is induced by the high viscosity. In the magma replenishment case, all the magma 

chambers grow for 65 years when the initial thickness of magma doubles with the magma 

replenishment rate of 5×10-8 m/s. The liquid magma thickness is greater than 40 m at 

steady-state for all types of magmas. The thickness of basaltic liquid magma layer 

decreases rapidly during the first decades of magma chamber cooling and crystallization. 

A 100 m thick melt lens thins to 45m (55%), because there is more vigorous convection 

in basaltic magma so that the convective heat loss exceeds the rate of heat input from 

replenishment. After the heat flux from magma replenishment balances the convective 
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heat loss, the thickness of liquid magma remains stable over time. Even though the 

thickness of liquid basaltic magma is less than that of liquid high-silica magmas, the total 

heat output of basalt system is higher than that of high-silica magma systems (see Figure 

6.10).  
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Figure 6.14 The thickness of liquid magma as a function of time for different magmas 
initially 100 m thick for crystals settling cases without magma replenishment. 
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Figure 6.15 The thickness of liquid magma as a function of time for different magmas in 
crystals settling model with magma replenishment at 5x10-8 m/s and an initial magma 
thickness of 100 m. 

 
 

6.5.2 Evolution of magma and hydrothermal temperature  

Based on the magma replenishment equation (16), different magma intrusion 

temperature may lead to different magma chamber evolution. Assuming that the latent 

heat is released uniformly between the liquidus and solidus temperatures, magmatic heat 

is linearly proportional to its temperature, which can be obtained from equation (5) by 

replacing Tm with Tin. In addition, the latent heat is linearly dependent on the liquid 

fractionation of the added magma, i.e., L(1-χin). We assumed two scenarios of the 

replenished magma at temperature of Tin. One is that Tin is less than liquidus temperature 
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TL. In this case, there has already been a certain amount of latent heat loss from the 

incoming melt. The other is that the original magma has less initial latent heat, i.e., its 

initial temperature Tm(0) is less than TL. In this case, we set Tin to be TL, which is larger 

than Tm(0). Figure 6.16 and Figure 6.17 shows the total heat output of the magma chamber 

for these two cases, respectively. For both cases, we observe that the lower the intrusion 

temperature, the faster the decay of the heat flux. However, the effect of the temperature 

of added magma on the total heat output behavior of the magma chamber is slight.  
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Figure 6.16 Total heat output as a function of time for different magmas in crystals 
settling case with magma replenishment rate at 5x10-8 m/s when Tin is less than TL which 
means replenished magma with less latent and sensible heat. 
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Figure 6.17 Total heat output as a function of time for different magmas in crystals 
settling case with magma replenishment rate at 5x10-8 m/s when we assume replenished 
magma with liquidus temperature TL, and original magma in magma chamber with 
temperature lower than TL which mean the original magma with a certain amount of 
crystal content.  

 

 
[Liu and Lowell, 2009] assume that magmatic heat supply is directly coupled to 

hydrothermal heat flux and vent temperature. Here we employ the same relationships to 

investigate this link for different host rocks. We assume that no heat loss occurs during 

the heat transfer between the magma and hydrothermal fluid, and that the variation of 

hydrothermal temperature Th and heat flux Fh instantly reflect that in the magma chamber. 

Thus, we have 
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where Ad is the area of hydrothermal discharge zone. For a hydrothermal system venting 

at temperature Th(t), the heat flux of the hydrothermal venting is   

where ρf is the density of hydrothermal fluid, cf is the specific heat of the fluid, and ud(t) 

is the Darcian upflow velocity. Combining equations (26) and (27), we obtain the 

temperature of hydrothermal venting as 
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Figure 6.18 shows hydrothermal temperatures resulting from magmatic heat 

supply for different magma systems with a constant replenishment rate of 10-8 m/s. The 

typical value of permeability k and the area of discharge zone Ad used to calculate the 

hydrothermal temperature are 10-13 m2 and 104 m2, respectively. Hydrous high-silica 

magmas have lower initial hydrothermal temperatures because the hydrothermal 

temperature is proportional to the magmatic heat output as shown in equation (28). In 

addition, the hydrothermal temperature has a correspondingly slow decay rate, which is 

consistent with the slow decay rate of magmatic heat output in Figure 6.10. Nevertheless, 

hydrothermal temperatures of basaltic and anhydrous andesitic magma decrease 

significantly on decadal timescales during the initial cooling phase of magmatic heat 

transport but stabilize as the heat input from magma replenishment balances the 

convective heat loss. Hydrothermal temperatures resulting from convection in the more 

viscous dacitic and wet andesitic magmas are relatively more stable.  

 

 )()()( tTtuctF hdffh ρ=  (27)
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Figure 6.18 The evolution of hydrothermal temperatures for different magma system in 
the crystals settling case with magma replenishment at 10-8 m/s. The typical value of 
permeability k and the area of discharge zone Ad used to calculate the hydrothermal 
temperature are 10-13 m2 and 104 m2, respectively. The horizontal line of temperature of 
250 °C denotes the lower limit for observed black smoker vent temperatures. The result is 
for illustration purposes and the basalt hydrothermal T is too high,but it can lowered by 
using a higher k 

 

 

6.5.3 Physics of magma replenishment.  

In the paper, we have shown that a convecting AMC requires magma 

replenishment for the stable heat flux. Based on our analysis, the replenishment rate 

between 10-7 and 10-8 m/s tends to stabilize the heat output on the decadal timescale for 

high silica magma chambers. Also, in our comparison of different magma systems, the 

replenishment rates are assumed to be the same in different magma systems. In reality, 
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however, magma replenishment rates may depend on the physical processes in the lower 

crust and upper mantle that depend upon the properties of magma. Several different 

mechanisms may be involved in magma transport in the lower crust. 

As magma initially at its liquidus beneath a colder upper boundary represented by 

the hydrothermal system begins to crystallize, its volume shrinks. As the internal pressure 

in magma chamber declines new magma may be driven upward from the reservoir of 

relatively crystal-rich partial melt that occupies the lower crust [e.g., Mainprice, 1997; 

Dunn et al., 2000]. Magmas from the mushy zone may also ascend because of the 

buoyancy force resulting from the density difference between the melt and crystals in the 

mush zone as a combination of buoyant porous flow through the mush zone and 

compaction [Turcotte and Ahern, 1978; McKenzie, 1984; McKenzie, 1985b], or as 

buoyant crack propagation [Shaw, 1980; Lister, 1990; Lister and Kerr, 1991]. Melt may 

also be transported by dike propagation from a deeper lying magma body [Sim, 2004; 

Kelemen et al., 1997]. 

Porous flow models of upward magma migration assume that after pressure 

release melting in the mantle, interconnected melt along solid grain boundaries generates 

permeability such that the melt  rises at a constant velocity J through the residual solid 

[Turcotte and Ahern, 1978]. The differential buoyancy of the liquid and solid is 

responsible for the pressure drop with drives the liquid flow out of the solid [Frank, 

1968]. The velocity of melt in the permeable-porous matrix is given by [Turcotte and 

Ahern, 1978] 
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)( ρρ
ρ
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where kØ is the permeability, θ is porosity, ρs is the density of solid, respectively.  There 

are many ways to relate the matrix permeability to the porosity, but most formulations 

suggest that kØ ∝ θ 3b2, where b is related to an effective grain size. For example, for a set 

of planar thin vertical cracks of width d and spacing b, θ = d/(b+d) and  

The permeability is proportional to the cube of the volume fraction of liquid magma. For 

simplicity, we neglect compaction [McKenzie, 1984] and apply this model to the lower 

partially molten zone of the oceanic crust. Figure 6.19 shows the relationship between 

magma viscosity and magma replenishment rate for porosity θ = 1% or 10% and grain 

size b = 1 or 10 mm. Porosity has more effect on magma replenishment rate than grain 

size, since it enters the permeability equation (30) as a cubic rather than a square. The 

vertical lines in Figure 6.19 show the initial values of viscosity for different crystal free 

magmas at their liquidus. The figure shows that the higher the viscosity, the lower the 

velocity of melt through the interconnected porosity. In addition, the magma 

replenishment rate in almost all cases is much less than the replenishment rate of ~ 10-8 

m/s needed to stabilize  convective heat output between ~107 -109 Watts.  For the highest 

porosity and grain size, the velocity is within the needed range only for basaltic magma. 

These results are generally consistent with the conclusions of Korenaga and Kelemen 

[1998], and suggest that some other mechanism is needed to replenish the AMC on 

decadal time scales.  

 

 
12

23bk θ
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Figure 6.19 The relationship between magma viscosity and magma replenishment rate for 
basaltic, andesitic and dacitic magma with different values of porosity. θ and b denote the 
porosity and an effective grain size, respectively . 
 

6.6 Conclusions   

Heat transfer from a vigorously convecting crystallizing and replenished magma 

chamber overlain by a hydrothermal circulation system depends upon magma viscosity, 

which is a strong function of temperature, chemical composition and water content. In 

un-replenished magma chambers in which crystals are assumed to settle quickly to the 

floor, numerical simulations of convection and crystallization in a ~ 100 m thick sill, 

corresponding to an AMC beneath an oceanic spreading center suggest that the maximum 

rate of heat transfer and its rate of decay both decrease significantly as the magma 
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viscosity increases. Assuming a heat output cut-off of 107 Watts for the hydrothermal 

system, the results suggest that higher viscosity magmas such as andesite or dacite may 

drive longer-lived but lower heat output hydrothermal systems than their basaltic 

counterparts. Heat output and vent temperature would still decay on decadal time scales, 

suggesting the need for magma replenishment on these time scales. 

Simulations with magma replenishment at a velocity of ~ 5 x 10-8 m/s, stabilize 

heat output and corresponding hydrothermal vent temperatures independent of magma 

viscosity, though as in the case without replenishment, the resulting heat outputs and 

hydrothermal temperatures tend to decrease as the viscosity increases.  Idealized models 

of magma flux as buoyancy driven porous flow in the lower crust show that the rate of 

replenishment depends inversely on magma viscosity. In this model, the magma flux is 

not sufficient to maintain stable hydrothermal heat output of ~ 107-109 Watt except 

possibly for basaltic magmas. Then the porosity (i.e., melt fraction) must be ~ 10% and 

the grain size (or crack spacing) must be ~ 10 mm. 
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Table 6.1 Values of the physical parameters for high-silica magma system 
 

Physical meaning Parameter Value Units 
Thermal diffusivity of magma   am 8×10-7 m2/s 
Vent field discharge area Ad 104 m2 
Horizontal magma area in chamber Am 106 m2 
Grain size b 1/10 Mm 
Andesitic magma specific heat 1000 J/kg  ºC 
Basaltic magma specific heat 

cm 
1400 J /kg  ºC 

The total thickness of magma chamber  D  M 
The initial thickness of magma chamber D0 100 M 
The thickness of liquid magma Dm  M 
Magmatic heat flux Fm  W/m2 
Magma replenishment heat flux Fr  W/m2 
Acceleration due to gravity g 9.81 m/s2 
The velocity of melt migration  J  m/s 
Permeability of matrix kØ  m2 
Latent heat of crystallization of andesite 3×105 J/kg 
Latent heat of crystallization of basalt L 4.2×105 J/kg 
Rayleigh number Ra  - 
Basalt liquidus temperature TbL 1200 ºC 
Basalt solidus temperature TbS 1030 ºC 
Dry Andesite liquidus temperature TaL 1100 ºC 
3 wt.% Andesite liquidus temperature TawL 1010 ºC 
Dry Andesite solidus temperature TaS 970 ºC 
3 wt.% Andesite solidus temperature TawS 900 ºC 
4% dacite liquidus temperature TdwL 950 ºC 
4% dacite solidus temperature TdwS 800 ºC 
Replenishment rate u  m/s 
Initial replenishment rate u0  m/s 
Thermal expansion coefficient of basalt αm 5×10-5 ºC-1 
Thermal diffusivity κ 8×10-7 m2/s 
Thermal conductivity λm 2 Wm/ ºC 
Density of dry andesite ρa 2.5×103 kg/m3 
Density of 3wt.% andesite ρaw 2.4×103 kg/m3 
Density of basalt ρb 2.7×103 kg/m3 
Density of dacite ρd 2.2×103 kg/m3 
Density of solid ρs 2.9×103 kg/m3 
Porosity θ 1% /10% - 
Magma kinematic viscosity νm variable m2/s 
Volume fraction of crystals χ  - 
Critical crystal fraction χc 60% - 
The crystal content of input magma χin  - 



 275

6.7 References 
 
Allen, D.E. and W.E. Seyfried (2003). Compositional controls on vent fluids from 
ultramafic hosted hydrothermal systems at mid-ocean ridges: An experimental study at 
400°C, 500 bars. Geochim. Cosmochim. Acta 67, 1531-1542. 
 
Anderson A.T.Jr., S. Newman, S.N. Williams, T.H. Druitt, C. Skirius, and E. Stolper 
(1989). H2O, CO2, Ci, and gas in Plinian and ash-flow Bishop rhyolite. Geology 17:221-
25. 
 
Baker, E.T. and G.J. Massoth, (1987). Characteristics of hydrothermal plumes from two 
vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth Planet. Sci. Lett. 85: 
59-73. 
 
Bemis, K.G., R.P. von Herzen, and M.J. Mottl (1993). Geothermal heat flux from 
hydrothermal plumes on the Juan de Fuca Ridge. J. Geophys. Res. 98: 6351-6369. 
 
Binns, R.A. and S.D. Scott (1993). Actively forming polymetallic sulfide deposits 
associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New 
Guinea. Econ. Geol., 88:2226–2236. 
 
Binns, R.A. (2003). Drilling at Pacmanus; anatomy of a dacite-hosted, active 
hydrothermal system in a rifted back-arc basin, Abstracts with Programs - Geological 
Society of America, 35, no.6, pp.13 
 
Blundy, J. and K. Cashman (2001).  Ascent-driven crystallisation of dacite magmas at 
Mount St. Helens, 1980-1986, Contributions to Mineralogy and Petrology, 140, no.6, 
pp.631-650 
 
Bowen, N.L. (1922). The reaction principle in petrogenesis, J. Geology, 30, 177-198. 
 
Bottinga, Y. and D.F. Weill (1972). Viscosity of magmatic silicate liquids — model for 
calculation. Am. J. Sci. 272, 438–475. 
 
Canales, J.P., S.C. Singh, R.S. Detrick, S.M. Carbotte, A. Harding, G.M. Kent, J.B. 
Diebold, J. Babcock, and M.R. Nedimovic (2006). Seismic evidence for variations in 
axial magma chamber properties along the southern Juan de Fuca Ridge, Earth. Planet. 
Sci. Lett., 246, 353-366. 
 
Collier, J.S. and M.C. Sinha (1990). Seismic images of a magma chamber beneath the 
Lau Basin back-arc spreading centre, Nature, 346, 646-648.   
 
Collier, J.S. and M.C. Sinha (1992). Seismic mapping of a magma chamber beneath the 
Valu Fa Ridge, Lau Basin, J. Geophys.  Res., 97, no. B10, pp.14,031-14,053 
 



 276

Detrick, R.S., P. Buhl, E. Vera, J. Mutter, J. Orcutt, J. Madsen, and T. Brocher (1987). 
Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise, 
Nature, 326, 35-41. 
 
Detrick, R.S., A.J. Harding, G.M. Kent, J.A. Orcutt, J.C. Mutter, P. Buhl (1993). Seismic 
structure of the southern East Pacific Rise, Science, 259, no.5094, pp.499-503. 
 
Dingwell, D.B. (1986), Viscosity–temperature relationships in the system Na2Si2O5–
Na4Al2O5. Geochim. Cosmochim. Acta 50, 1261–1265. 
 
Dingwell, D.B. (1996). Volcanic dilemma: Flow or blow? Science 273, 1054–1055. 

 
Dunn, R.A, D.R. Toomey, and S.C. Solomon (2000). Three-dimensional seismic 
structure and physical properties of the crust and shallow mantle beneath the East Pacific 
Rise. J. Geophys. Res. 105. 23537-23556. 
 
Eggler, D.H. (1972). Amphibole stability in H2O-undersaturated calc-alkaline melts, 
Earth. Planet. Sci. Lett., 15, no.1, pp.28-34 
 
Eichelberger, J.C., C.R. Carrigan, H.R. Westrich, and R.H. Price (1986). Non-explosive 
silica volcanism, Nature (London), 323, no.6089, pp.598-602 
 
Embley, R.W., S. Hammond, K.M. Murphy, C.G. Fox, B. Appelgate, G.J. Massoth, R.A. 
Feely, E.T. Baker, J. Gendron, G. Lebon, D.A. Butterfield, B. Coughlin, J.E. Lupton, I. 
Jonnason, M.R. Perfit, J.P. Cowen, V. Tunnicliffe, and D.A. Trivett (1988), Submersible 
observation of the "megaplume" areas; southern Juan de Fuca Ridge, Eos, Transactions, 
AGU, 69, no.44, pp.1497 
 
Fouquet, Y., U. Von Stackelberg, J.L. Charlou, J.P. Donval, J. Erzinger, J.P. Foucher, P. 
Herzig, R.K. Muehe, S. Soakai, M. Wiedicke, and H. Whitechurch (1991). Hydrothermal 
activity and metallogenesis in the Lau back-arc basin, Nature, 349, 778-781. 
 
Fouquet, Y., U. Von Stackelberg, J.L. Charlou, J. Erzinger, P.M. Herzig, R. Muehe, and M. 
Wiedicke (1993). Mettallogenesis in back-arc environments: The Lau Basin example, 
Econ. Geol., 88, 2154-2181. 
 
Fornari, D.J. and M.R. Perfit, (1982): Sulfide fractionation: its role in the evolution of 
massive sulfide deposits along the mid-ocean ridge crest. Eos, Trans. AGU 63, 1135. 
 
Francis, P., L. Horrocks, and C. Oppenheimer (2000). Monitoring gases from andesite 
volcanoes, Philosophical Transactions - Royal Society. Mathematical, Physical and 
Engineering Sciences, 358, no. 1770, pp.1567-1584 

 
Frank, F.C. (1968). Two-component flow model for convection in the earth’s upper 
mantle, Nature, 220, 350-352. 
 



 277

Fulcher, G.S. (1925). Analysis of recent measurements of the viscosity of glasses. J. Am. 
Ceram Soc. 8(6) 339.  
 
Gamo, T., K. Okamura, J.L. Charlou, T. Urabe, J.M. Auzende, Shipboard Scientific Party 
of the ManusFlux Cruise, J. Ishibashi, K. Shitashima, and Y. Kodama (1997b). Acidic 
and sulfate-rich hydrothermal fluid from the Manus basin, Papua New Guinea. Geology 
25, 139–142. 
 
Ginster, U., M.J. Mottl, and R.P. Von Herzen (1994) Heat flux from black smokers on 
the Endeavor and Cleft segments, Juan de Fuca Ridge. J. G.eophys. Res. 99: 4937-4950. 

 
Giordano, D., C. Romano, B. Poe, D.B. Dingwell, H. Behrens, (2004b). The combined 
effects of water and fluorine on the viscosity of silicic magmas. Geochim. Cosmochim. 
Acta 68, 5159–5168. 
 
Giordano, D., J.K. Russell, and D.B. Dingwell (2008). Viscosity of magmatic liquids; a 
model, Earth. Planet. Sci. Lett., 271, no. 1-4, pp.123-134 
 
Hajash, A., and G.W. Chandler (1981). An experimental investigation of high- 
temperature interactions between seawater and rhyolite, andesite, basalt, and peridotite. 
Contributions to Mineralogy and Petrology 78:240–254. 
 
Heiken, G., K. Wohletz, and J. Eichelberger (1988). Fracture fillings and intrusive 
pyroclasts, Inyo Domes, California, J. Geophys. Res. 93, no. B5, pp.4335-4350 
 
Hort, M. (1997). Cooling and crystallization in sheet-like magma bodies revisited, J. 
Volcanol. Geotherm. Res., 76, 297-317. 
 
Huppert, H.E., and R.S.J. Sparks (1988). The generation of granitic magmas by intrusion 
of basalt into continental crust, J. Petrol., 29, 599-624.  
 
Hummel W. and J. Arndt (1985). Variation of viscosity with temperature and 
composition in the plagioclase system. Contrib. Mineral. Petrol. 90, 83–92. 
 
Jacobs, A.M, A.J. Harding, and G.M. Kent (2007). Axial crustal structure of the Lau 
back-arc basin from velocity modeling of multichannel seismic data, Earth. Planet. Sci. 
Lett., 259, no. 3-4, pp.239-255 
 
Johnson, M.C., A.T. Anderson, and M.J. Rutherford (1994). Pre-eruptive volatile contents 
of magmas: Mineralogical Society of America, Reviews in Mineralogy, 30. P. 281-330. 
 
Jokat, W., O. Ritzmann, M.C. Schmidt-Aursch, S. Drachev, S. Gauger, and J. Snow 
(2003). Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel 
mid-ocean ridge, Nature, 423, no.6943, pp.962-965 
 



 278

Juniper, S.K. and V. Tunnicliffe (1997). Crustal accretion and the hot vent ecosystem, 
Phil. Trans. R. Soc. London, 355: 459-474. 
 
Kawaguchi, M., T. Yamamoto, and T. Kato (1996). Rheological Studies of Hydrophilic 
and Hydrophobic Silica Suspensions in the Presence of Adsorbed Poly(N-
isopropylacrylamide), Langmuir, 12 (26), pp 6184–6187. DOI: 10.1021/la960147x 
 
Kelemen, P.B., K. Koga, and N. Shimizu (1997). Geochemistry of gabbro sills in the 
crust-mantle transition zone of the Oman Ophiolite: implications for the origin of the 
oceanic lower crust, Earth and Planetary Science Letters 146, pp. 475–488. 
 
Kelley, D.S., J.A. Baross, and J.R. Delaney (2002). Volcanoes, fluids, and life at mid-
ocean ridge spreading centers, Annual Review of Earth and Planetary Sciences, 30, 
pp.385-491 
 
Kelley, D.S., J.A. Karson, D.K. Blackman, G.L. Frueh-Green, D.A. Butterfield, M.D. 
Lilley, E.J. Olson, M.O. Schrenk, K.K. Roe, G.T. Lebon, and P. Rivizzigno (2001).  An 
off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N, Nature 
(London), 412, no. 6843, pp.145-149. 
 
Kent, G.M., A.J. Harding, and J.A. Orcutt (1990). Evidence for a smaller magma chamber 
beneath the East Pacific Rise at 9º30΄N, Nature, 344, 650-652. 
 
Korenaga, J. and P.B. Kelemen (1998), Melt migration though the oceanic lower crust: a 
constraint from melt percolation modeling with finite solid diffusion, Earth Planet. Sci. 
Lett. 156. pp. 1-11. 
 
Kushiro, I., H.S. Yoder, and B.O. Mysen (1976). Viscosities of basalt and andesite melts 
at high pressures. J. Geophys. Res. 81, 6351–6356. 
 
Lejeune, A.M. and P. Richet (1995). Rheology of crystal-bearing silicate melts - an 
experimental study at high viscosities. J. Geophys. Res. 100, 4215–4229. 
 
Lejeune, A.M., F. Holtz, J. Roux, and P. Richet (1994). Rheology of an hydrous andesite; 
an experimental study at high viscosities, Eos, Transactions, AGU, 75, no.44, Suppl., 
pp.724 
 
Liebske, C., H. Behrens, F. Holtz, and R. Lange (2003). The influence of pressure and 
composition on the viscosity of andesitic melts, Geochim. Cosmochim. Acta. 67 pp. 473–
485. 
 
Lister, J.R. (1990). Buoyancy-driven fluid fracture: the effects of material toughness and 
of low-viscosity precursors, J. Fluid Mech., 210, 263–280. 
 
Lister, J.R. and R.C. Kerr (1991). Fluid-mechanical models of crack propagation and 
their application to magma transport in dikes, J. Geophys. Res., 96, 10,049–10,077. 



 279

 
Liu, L. and R.P. Lowell (2009). Models of hydrothermal heat output from a convecting, 
crystallizing, replenished magma chamber beneath an oceanic spreading center. J. 
Geophys. Res., 114, no. B02102 
 
Lowell, R.P., B.W. Crowell, K.C. Lewis, and L. Liu (2008). Modeling multiphase, 
multicomponent processes at oceanic spreading centers, Geophys.  Monogr. Ser., 178, 
pp.15-44 AGU, Washington, DC. 
 
Mainprice, D. (1997). Modeling the anisotropic seismic properties of partially molten 
rocks found at mid-ocean ridges, Tectonophysics 2791, pp. 161–179. 
 
McKenzie, D.P. (1984). The generation and compation of partially molten rock. J. Petrol., 
25: 713-765. 
 
McKenzie, D.P. (1985b). The extraction of magma from the crust and mantle. Earth 
Planet. Sci. Lett., 74:81-91. 
 
Marsh, B.D. (1981). On the crystallinity, probability of occurrence, and rheology of lava 
and magma, Contrib. Mineral. Petrol., 78, 85-98. 
 
Martin, D. (1990). Crystal settling and in situ crystallization in aqueous solutions and 
magma chambers, Earth Planet. Sci. Lett., 96, 336-348. 
 
Martin, D. and R. Nokes (1988). Crystal settling in a vigorously convecting magma 
chamber. Nature 332, 534-536. 
 
Martinez, F. and B. Taylor (2002), Mantle wedge control on back-arc crustal accretion, 
Nature, 416, no. 6879, pp.417-420 
 
McGee, K. A. and A.J. Sutton (1994). Eruptive activity at Mount St Helens, Washington, 
USA 
1984-1988: a gas geochemistry perspective. Bull. Volcanol. 56, 435-446. 
 
Patrick, M., D. Wilson, D. Fee, T. Orr, D. Swanson, A. Sutton, and T. Elias (2008). Gas-
pistoning associated with the 2008 summit eruption of Kilauea Volcano, Hawaii, Eos, 
Transactions, AGU, 89, no. 53, Suppl., Abstract V51E-2082 
 
Pinkerton, H., L. Wilson, and R. MacDonald (2002). The transport and eruption of 
magma from volcanoes: a review, Contemporary Physics, 43, Issue 3, p.197-210 
 
Ramondenc, P., L.N. Germanovich, K.L. Von Damm, and R.P. Lowell (2006). The first 
measurements of hydrothermal heat out at 9°50΄N, East Pacific Rise, Earth Planet. Sci. 
Lett., 245, 487-497. 

 



 280

Resing, J.A., E. Baker, F. Martinez, N. Buck, S. Walker, J. Seewald, G. Proskurowski, J. 
Lupton, G. Wheat (2008). Hydrothermal Plume Geochemistry along the East Lau 
Spreading Center. Eos Trans. AGU, abstractV53D-07 
 
Richet, P., A.M. Lejeune, F. Holtz, and J. Roux (1996). Water and the viscosity of 
andesite melts, Chem. Geol. 128  pp. 185–197.  

 
Rona, P.A. and S.D. Scott (1993). A special issue on sea-floor hydrothermal 
mineralization: new perspectives, Econ. Geol., 88, 8, 1935-1975. 
 
Rosenberg, N.D., J.E. Lupton, D. Kadko, R. Collier, M.D. Lilley, and H. Pak (1988). 
Estimation of heat and chemical fluxes from a seafoor hydrothermal vent field using 
Radon measurements. Nature. 334: 604-607. 
 
Roscoe, R. (1952). The viscosity of suspensions of rigid spheres. British Journal of 
Applied Phys., 3, 267-269. 
 
Rudnicki, M.D. and C.R. German (2002). Temporal variability of the hydrothermal 
plume above the Kairei vent field, 25°S, Central Indian Ridge, Geochem. Geophys. 
Geosyst., 3(2), 1010, doi:10.1029/2001GC000240. 
 
Rutherford, M.J., H. Sigurdsson, S. Carey, and A. Davis. (1985). The May 18, 1980, 
eruption of Mount St. Helens; 1, Melt composition and experimental phase equilibria, J. 
Geophys. Res., 90, no. B4, pp.2929-2947 
 
Rutherford, M.J. and J.D. Devine (1988). The May 18, 1980, eruption of Mount St. 
Helens, 3: Stability and chemistry of amphibole in the magma chamber, J. Geophys. Res., 
93, no. B10, pp.11, 949-11,959 
 
Sauter, D., V. Mendel, C. Rommevaux-Jestin, L.M. Parson, H. Fujimoto, C. Mevel, M. 
Cannat, and K. Tamaki (2004). Focused magmatism versus amagmatic spreading along 
the ultra-slow spreading Southwest Indian Ridge; evidence from TOBI side scan sonar 
imagery, Geochemistry, Geophysics, Geosystems, 5, no.10, 20 pp. 
 
Scarfe, C.M., B.O. Mysen, and D. Virgo (1987). Pressure dependence of the viscosity of 
silicate melts. In: Mysen, B.O. (Ed.), Magmatic processes: physicochemical principles. 
Spec. Publ. Geochem. Soc., 1, pp. 504–511. 
 
Schultz, A., J.R. Delaney, and R.E. McDuff (1992). On the partitioning of heat flux 
between diffuse and point source seafloor venting. J. Geophys. Res. 97: 12299-12314. 
 
Shaw, H.R. (1963). Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature 
range 700° to 900°C. J. Geophys. Res. 68: 6337-6343. 
 
Shaw H.R. (1972). Viscosities of magmatic silicate liquids: an empirical method of 
prediction. Am. J. Sci. 272, 870–893. 



 281

 
Shaw, H.R. (1980). The fracture mechanisms of magma transport from the mantle to the 
surface. In: Physics of Magmatic Processes, ed. by Hargraves, R. B., Princeton 
University Press, 201-264. 
 
Silantyev, S.A., M.V. Mironenko, and A.A. Novoselov (2009). Hydrothermal systems 
hosted in peridotites at slow-spreading ridges. Modeling phase 
transformations and material balance: Upwelling limb of the hydrothermal cell, Petrology. 
17, no. 6, pp. 523-536. 
 
Singh, S.C., G. Kent, M. Sinha, A. Harding, C.H. Tong, P. Barton, R. Hobbs, J. Orcutt, B. 
White, S. Bazin (1998). 3D nature of the axial magma chamber beneath 9 degrees 03' N 
overlapping spreading center, East Pacific Rise, Eos, Transactions, AGU, 79, no.45, 
Suppl., pp.798  
 
Singh, S.C., W.C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J.P. Canales, D. 
Dusunur, J. Escartin, and J.M. Miranda (2006). Discovery of a magma chamber and 
faults beneath a Mid-Atlantic Ridge hydrothermal field, Nature, 442, 1029-1032. 
 
Sinton, J.M., L.L. Ford, B. Chappell, M.T. McCulloch (2003). Magma genesis and 
mantle heterogeneity in the Manus back-arc basin, Papua New Guinea, Journal of 
Petrology, 44, no.1, pp.159-195. 
 
Sim, Y. (2004). Mechanics of complex hydraulic fractures in the Earth’s crust, Ph. D. 
Thesis, 324 p. Georgia Institute of Technology, Atlanta. 

 
Solomatov, V.S. and D.J. Stevenson (1993). Suspension in convective layers and style of 
differentiation of a terrestrial magma ocean Journal of Geophysical Research, 98, no. E3, 
pp.5375-5390 
 
Sparks, R.S.J., H.E. Huppert, and J.S. Turner (1984). The fluid dynamics of evolving 
magma chambers, Philosophical Transactions of the Royal Society of London, Series A: 
Mathematical and Physical Sciences, 310, no.1514, pp.511-534 
 
Sparks, R.S.J. (2003). Dynamics of magma degassing, Geological Society Special 
Publications, 213, pp.5-22. 
  
Speer, K.G. and P.A. Rona (1989). A Model of an Atlantic and Pacific hydrothermal 
plume. J. Geophys. Res. 94: 6213-6220. 
 
Spera, F.J. (2000). Physical properties of magma, in Encyclopedia of Volcanoes, 
Academic Press, 171-190. 
 
Thomson, R.E., J.R. Delaney, R.E. McDuff, D.R. Janecky, and J.S. McClain (1992). 
Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988. 
Earth Planet. Sci. Lett. 111: 141-154. 



 282

 
Tivey, M.K., P. Craddock, J. Seewald, V. Ferrini, S. Kim, M. Mottl, A. Sterling, A-L. 
Reysenbach, C. G. Wheat, and the Scientific Party of TUIM05MV (2005). 
Characterization of six vent fields within the Lau Basin, Eos Trans. AGU, 86, Abstract 
T31A-0477. 
 
Tunnicliffe, V. and C.M.R. Fowler (1996). Influence of sea-floor spreading on the global 
hydrothermal vent fauna, Nature, 379, no.6565, pp.531-533 
 
Turcotte, D.L. and J.L. Ahern (1978). A porous flow model for magma migration in the 
asthenosphere. J. Geophys. Res., 83: 767-772. 
 
Turner, J.S. (1973). Buoyancy effects in fluids, Cambridge University Press, London.  
 
Van Ark, E.M., R.S. Detrick, J.P. Canales, S.M. Carbotte, A.J. Harding, G.M. Kent, M.R. 
Nedimovic, W.S.D. Wilcock, J.B. Diebold, J.M. Babcock (2007). Seismic structure of the 
Endeavour Segment, Juan de Fuca Ridge; correlations with seismicity and hydrothermal 
activity, J. Geophys. Res., 112, B02401, doi: 10.1029/2005JB004210. 
 
Vetere, F., H. Behrens, F. Holtz, D. Neuville, (2006). Viscosity of andesitic melts — new 
experimental data and a revised calculation model. Chem. Geol. 228, 233–245. 

 
Vogel, H. (1921). The temperature dependence law of the viscosity of fluids, 
Physikalische Zeitschrift,  22: 645 (1921). 
 
Von Damm K.L., J.M. Edmond, B. Grant, C.I. Measures, B. Walden, and R.F. Weiss 
(1985). Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. 
Geochimica et Cosmochimica, Acta 49:2,197–2,220. 
 
Von Damm, K.L. (1995). Controls on the chemistry and temporal variability of seafloor 
hydrothermal fluids. In : Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, 
R.E. (Eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and 
Geological Interactions.  Monograph Series, 91, AGU, Washington, D.C. 
 
Wanless, D., M. Perfit, W. Ridley, and E. Klein (2010). Dacite petrogenesis on mid-
ocean ridges: Evidence for oceanic crustal melting and assimilation, J. Petrology 
(submitted) 
 
Wetzel, L.R. and E.L. Shock (2000). Distinguishing ultra-mafic from basalt-hosted 
submarine hydrothermal systems by comparing calculated vent fluid compositions. J. 
Geophys. Res 105:8,319–8,340. 
 
Westrich, H.R., H.W. Stockman, and J.C. Eichelberger (1988). Degassing of rhyolitic 
magma during ascent and emplacement, J. Geophys. Res. 93, no. B6, pp.6503-6511 
 



 283

Whittington, A., P. Richet, F. Holtz (2000). Water and the viscosity of depolymerized 
aluminosilicate melts. Geochim. Cosmochim. Acta 64, 3725–3736. 
 
Whittington, A.G., B.M. Hellwig, H. Behrens, B. Joachim, A. Stechern, and F. Vetere 
(2009). The viscosity of hydrous dacitic liquids: implications for the rheology of evolving 
silicic magmas, Bulletin of Volcanology. 71, no. 2, pp. 185-199. 
 
Wiens, D., D. Blackman, C. Fisher (2006). Lau ISS Workshop Report, 
www.ridge2000.org/science/meetings. 
 
Worster, M.G., H.E. Huppert, and R.S.J. Sparks (1990). Convection and crystallization in 
magma cooled from above, Earth Planet. Sci. Lett., 101, 78-89. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 284

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 

 
 
 

 This dissertation developed a mathematical framework and corresponding 

numerical simulations using MATLAB to characterize the coupling between the 

hydrothermal systems and magma chamber. Based on this framework, I investigated 

convective heat transfer to an overlying hydrothermal system from three different types 

of crystallizing, cooling, replenished magma chambers: basalts, high-silica melts, and Di-

An systems. For each scenario, I considered two scenarios of magma convection and 

crystallization models. One assumes the convective motions in the magma chamber are 

sufficiently vigorous to keep crystals in suspension and well mixed within the interior of 

the magma. The other assumed that as crystallization occurs, crystals rapidly settle and 

accumulate on the floor. In addition, I discussed magma replenishment as a mechanism to 

maintain the steady state heat output and hydrothermal vent temperatures on time scales 

of decades.  

7.1 Contributions 

I summarize below primary contributions of this dissertation: 

• Developed general framework to perform numerical analysis of magmatic-

hydrothermal systems 

• Developed dynamic heat flux and temperature model for both the magma 

chamber and overlying hydrothermal systems  
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• Performed parametric analysis of heat output from a convecting, crystallizing, 

replenished basalt magma chamber beneath an oceanic spreading center, 

investigating the effects of initial sill size and periodic replenishment 

• Proposed a numerical model of viscosity for high-silica magmas capturing its 

dependence on different physical properties 

• Developed dynamic model of the Di concentration in a Di-An systems 

• Investigated the effects of convection of a Di-An system on the hydrothermal 

circulation system through the dynamic modeling of both temperature and heat 

output 

The most important results of this research are:  

• Magma replenishment between ~10-8-10-7 m/s (i.e., ~ 5x105 and 5x106m3/yr) is 

required to maintain stable heat output of 107-109 Watts and hydrothermal 

temperature for decadal time scales. 

• The initial heat flux from magma chamber is independent of the thickness of 

magma chamber, but the decay rate of heat flux is inversely proportional to the 

initial thickness of magma chamber.  

• With episodic magma replenishment rates, magma temperature remains relatively 

unchanged except for oscillations related to the frequency of replenishment. 

Hydrothermal responses resulting from periodic changes in magmatic supply 

might not be observed in the seafloor vents because of two factors related to time 

delay: the time for heat to be conducted through the thin boundary layers at the 

top of the magma chamber and at the base of the hydrothermal system 



 286

• For two-component Di-An magma chambers, higher initial Di concentration gives 

rise to more vigorous magma convection, which results in faster heat transfer, 

more rapid removal of Di from the melt and growth of crystals on the floor. 

Increasing Di contents of the added magma results in greater stabilized heat flux 

and hydrothermal temperatures. 

• High-viscosity, high silica magmas such as andesite and dacite convect less 

vigorously basalts, which results not only in lower heat transport and 

hydrothermal vent temperatures, but also a lower decay rate of the vent 

temperature. 

• Porous flow models of magma replenishment are not likely to provide the 

necessary replenishment rates, particularly in the case of high viscosity magmas. 

7.2 Suggestions for Future Work 
The following is a list of interesting research topics that can be pursued as extensions of 

this dissertation: 

• Magma dynamics and transport. The current work assumes parametric model of 

magma replenishment rate. The modeling of magma transport can be improved 

upon by linking magma replenishment with physical models describing (1) 

internal pressure in magma chamber together with the stress field and elastic 

response of the surrounding rocks, (2) deformation and eruption processes, (3) 

seismicity, etc. Combined with my current heat transfer model, the new magma 

dynamic model should simulate the migration of magma, dike propagation, 

magma eruption along fractures, ground deformation, and seismic distribution 

associated with magma intrusion.   
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• Numerical modeling of two-phase flow. FISHES can be employed to examine 

two-phase flow magma-hydrothermal systems. Both time-invariant and time-

varying heat flux boundary conditions can be implemented using FISHES in 

combination with my heat flux model. However, there are many challenging 

problems about the temporal evolution of seafloor hydrothermal systems in the 

presence of phase separation. My current dynamic models of hydrothermal flow 

can be generalized to describe fluid flow in transient porous media and fluid 

phase separation within hydrothermal systems. In addition, more work can be 

done with FISHES by itself, for instance, the role of heterogeneous permeability, 

effect of high-porosity extrusive, circulation near dikes, etc.  

• Complex magma systems. The current work assumed a chemically and thermally 

homogeneous magma chamber. To model the magma system in a more realistic 

way, chemistry-real magma fractionation, magma density evolution and effects 

of replenishment on melt composition can be taken into account. Investigating a 

two component magma chamber using a Di-An model is a good starting point. A 

better petrological model of magma fractionation and replenishment using a 

program like MELTS and linking this to the current convection model can be 

further developed. The new complex magma models should quantitatively model 

the dynamic processes of magma mixing process and be consistent with the 

petrology of lavas erupting on the seafloor.  

• Temporal variability of melt injection. A related temporal variability in the 

seafloor hydrothermal systems can be investigated by extending the existing 

time-dependent periodic melt injection models.  
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• Melts transport through the mantle: To better understand the variable mid-ocean 

ridge melts that extract from each specific depth of mantle, the linking model 

between melt transport in the crustal regime and melt generation and transport in 

the mantle could be investigated.  
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APPENDIX A: MATLAB CODE 
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%% Basltic magma with magma replenishment in crystal settling case 
 
%PARAMETERS DECLEARATION: 
lamd = 5E-5 ;                % coefficient of thermal expansion of the Andesite 
K = 8E-7;                      % Thermal diffusivity of Andesite 
depth = 100;                  % Initial thickness of magma 
g = 9.81;                        % Acceleration due to gravity 
Ad = 1E4;                     % Discharge zone 
Am = 1E6;                    % Horizontal basalt area of magma chamber 
rhof = 1E6;                   % Fluid density 
Cf = 6;                          % specific heat of fluid 
lamdf = 1E-3;               % Thermal expansion coefficient of fluid  
Permf = 1E-12;             % Permeability of fluid 
Vf = 1E-7;                    % Kinematic viscosity of fluid 
 
param.deltat = 30*24*3600;     % delta time/internal time---one month 
param.year = 70;                       % simulation time in year 
param.u = 0 ;                            % u = 0 is without replenishment 
 
rho = 2.7E6;     
C = 0.33;                         % specific heat of basalt 
L = 100;                          % Latent heat     
Tl = 1200; 
Ts = 1030; 
 
  
% initialization 
T(1)=Tl;                           % Basalt magma Temperature 
Xin = (Tl-Tin)/(Tl-Ts);    % Crystal content of added magma 
  
% Main code 
for n = 1:1:year*12; 
     
    %%%%%%%The crystal content and derivative 
    X(n)=7200/T(n)-6; 
    X_deriv(n)=(-7200)/T(n)^2; 
 
    %%%%%%%The heat flux 
    V(n)=1E-1*(Tl/T(n))^(8.5); 
    J(n)=0.1*(lamd*g*K^2/V(n))^(1/3); 
    tem(n)=rho*C*J(n); 
    F(n)=tem(n)*(T(n)-Ts)^(4/3); 
  
    %%%%%%%% The thickness of crystals in mamga chamber 
    Ds(n) = depth*X(n); 
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    Dm(n) = depth*(1-X(n)); 
    Fc = lamd*(Tl-T(n))/(Ds(n)+eps); 
  
    %%%%%%%% The heat of magma replenishment 
    Fr = - X(n)*rho*L*u-rho*C*(Tl-T(n))*u; 
  
    %%%%%%%% The depth of mamga chamber 
    D(n) = u * (n)*deltat + depth; 
  
    %%%%%%% Rayleigh Number 
    Ra(n) = lamd*g*depth^3*(T(n)-Ts)/(K*V(n)); 
     
    %%%%%%% Magma temperature 
    temp1(n) = rho*u*((1-X(n))*(C*T(n)+(1-X(n))*L)-(C*Tin+L*(1-Xin))); 

temp2(n) = rho*D(n)*X_deriv(n)*(C*T(n)+L*(1-X(n)))+D(n)*rho*(1-            
X(n))*(X_deriv(n)*L-C); 

    T(n+1)=T(n)+(F(n)-Fc+temp1(n))/temp2(n)*deltat; 
     if D(n) > 2 *depth 
       break; 
   end 
end 
    T = T(1:end-1); 
  
%%%%%%%%%%%%%%% total heat output %%%%%%%%%%%% 
% change unit from 1cal/s = 4.184watts 
% Multiply the results of Fb for 4.184 times; 
F=4.184*F; 
F=F.*Am; 
  
% Hydrothermal Temperature Coefficient 
a = rhof*Cf*lamdf*g*Permf*Ad/Vf;  
 
% hydrothermal temperature 
Th = sqrt(F./a); 
 
 


