
Grouping and Ordering User Interface Components

Mark H. Gray
College of Computing, Georgia Institute of Technology,

Atlanta, GA 30332-0280,email: mark.gray@cc.gatech.edu

James D. Foley
College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332-0280,email: foley@cc.gatech.edu

Kevin E. Mullet
Human Interface Technology Group, SunSoft Inc.,

2550 Garcia Ave. MS 1-07, Mountain View, CA 94043-1100,email:kevin.mullet@sun.eng.com

ABSTRACT

In automatically generating a user interface from a model of

the target application, many factors that affect the resulting

interface’s quality must be considered. Any available

semantic information that can improve the interface should

be used. Application actions or action parameters may be

related in ways that affect placement of their associated

controls in dialogue boxes. Two relationships considered

here are grouping and ordering. Grouped objects should

appear together, possibly visually separated from other

controls, and controls which have a logical sequential

ordering should appear in that order. We present an

algorithm for creating an ordering of controls which

correctly satisfies these constraints.

KEYWORDS: User Interface Software, Automatic User

Interface Design, Data Models, Dependencies, Grouping,

Ordering

1 INTRODUCTION

Automatically generating a user interface from an

application model can speed the user interface development

process. Using grouping and ordering information can allow

generation of better interfaces. For this to be possible,

grouping information must be either explicitly or implicitly

included in the model. The model designer may explicitly

group application objects by giving a group name to a

collection of objects or implicit grouping information may

be extracted from the hierarchy of the data model.

Interface controls frequently have a logical order which

comes from a logical order between the underlying applica-

tion actions. For example, when printing a document there is

usually a choice between printing directly to the printer or to

a temporary disk file, and there is a control that specifies

which file name to print to. It makes logical sense to choose

whether to print to a file before providing a file name, so the

model designer should create a logical order between these

two controls. Similarly, when doing a textual search and re-

place, most people expect to specify what to search for first,

then what to replace it with. This order supports searches

without replacement and makes verification of replacement

easier.

Consider how much better the layout in figure 1 looks using

grouping and ordering information than the randomly or-

dered layout in figure 2.

2 THE GRAPH ALGORITHM

Maintaining hierarchical grouping and logical ordering

simultaneously is a nontrivial task when ordering may occur

both within and across groups and an ordering dependency

may occur between objects at different levels in the



grouping hierarchy. The current algorithm is described

below with pseudocode following.

2.1 The Grouping Hierarchy

Interface objects are organized in a tree structure whose in-

ternal nodes are groups and whose leaves are controls. The

generated interface will have a one-column layout where

controls will be correctly ordered by a simple traversal of

this tree once it has been reordered by the algorithm pre-

sented in this paper. Each window contains the root of the

tree of objects in that window. Siblings in a tree are logically

in the same group. Logical ordering of controls is specified

by general preconditions and postconditions which may be

attached to objects in the application model. If one action

has a postcondition (something which becomes true after

the action is performed) and a second action has a matching

precondition (something which must be true before the ac-

tion can occur) then a logical ordering constrains the first

Figure 1: Layout using grouping and ordering information

action to come before the second. This ordering is recorded

in the grouping hierarchy as an additional non-tree edge

from one interface object to the other.

In the diagram above, black arrows are tree edges which go

from a group to members of that group and gray arrows are

ordering relationships. Node W is the window whose con-

trols are currently being arranged, so it is a group containing

all the other objects. Node A is a leaf node, so it is a control

Figure 2: Layout not using grouping or ordering information

W

A B C

D E F G

H I

Figure 3: Input graph after insertion
Solid arrows indicate hierarchical grouping
Gray arrows indicate ordering relationships



in the interface. The gray ordering arrow from A to D indi-

cates that A should appear before D in the final interface.

Nodes B and C are groups within the window and node D is

a subgroup of B.

2.2 Insertion

Interfaces are generated one window at a time. During the

generation of a window, controls are individually generated

and inserted in the window’s grouping hierarchy. New ob-

jects like A which belong to no group smaller than the entire

window are left at the top level of the hierarchy while those

belonging to a group are inserted in their group. If a group

or subgroup is not yet represented in the hierarchy, it is cre-

ated when one of its members is inserted. After all objects

are inserted, the grouping hierarchy contains all the intended

groups and subgroups of controls, but ordering of the tree

does not yet follow any logical ordering constraints given

by the data model.

When an object is inserted in the grouping hierarchy, it is

also checked against all other controls in the window to de-

termine whether any logical ordering exists between the

new control and those already present. If an ordering depen-

dency is found, it is recorded, but the hierarchy is not reor-

ganized to comply with these ordering constraints until all

controls have been added. Delaying reordering of the tree

means this potentially time-consuming step is performed

only once each time controls are added.

2.3 Dependency Propagation

The first step of putting the tree in a logical order is propa-

gating all ordering dependencies between objects that are

not siblings up to their ancestors that are. When those ances-

tors are later placed in logical order, the order between the

objects originating the ordering will be preserved by the

depth-first nature of a preorder traversal of the resulting tree.

Using the above graph as an example, the groups B and C

are siblings which contain the objects E and F respectively,

and the logical ordering “F precedes E” (denoted F > E) ex-

ists, so that dependency is propagated to the parent groups

to become C > B. Now a depth-first traversal will visit F be-

fore E after the tree is reordered so C does precede B. If de-

pendencies exist in both directions between two groups it is

not possible to both keep groups together and satisfy the

given orderings. Such a problem would occur in the above

example if D or E were constrained to precede F or G. This

type of problem as well as simple loops of ordering depen-

dencies are detected and warned about in the next stage of

this process. In addition to propagating F > E up to C > B,

the example requires two other dependency propagations: A

> D to A > B and E > I to E > D. These new edges are added

below.

2.4 Ordering Siblings

Once all groups contain all the information necessary to cre-

ate a correct logical order among siblings, the last step of

the algorithm is sorting siblings to satisfy all sibling-sibling

ordering arrows. The tree is in a logically correct order

when all ordering arrows point from left to right, indicating

that the relationships are satisfied. Other ordering informa-

tion that is not between siblings is redundant and is not

shown after figure 4. Each group of siblings is separately

sorted into a correct logical order by building a chain of sib-

lings whose links are ordering relationships. If a chain in-

cludes all siblings in a group exactly once, that chain

represents the only possible logical order of that group. If a

chain contains fewer elements than the group, other chains

are created starting with unattached members of the group

until the collection of chains covers the group. These chains

W

A B C

D E F G

H I

Figure 4: Graph after propagating
dependencies up to sibling ancestors



are then laid out end-to-end to form a correct logical order

for the group. If a chain tries to include the same object

more than once, either dependencies are present in both di-

rections between groups in the data model as discussed

above or a loop of dependencies exists like A > B and B > C

and C > A. In either case, it is not possible to satisfy all the

given restrictions so a warning is given that at least one con-

straint is not satisfied. Logical problems like this should not

be common, but since they may occur this system must de-

tect them.

In two steps the siblings in the example tree will be sorted.

First, siblings E and D under B form the chain E, D so they

are placed in that order in the tree. (figure 5).

Second, siblings A, B and C form the chain A, C, B and they

are placed in that order in the tree. (figure 6)

After this step, all siblings are sorted so all ordering arrows
point from left to right through the tree.

W

A B C

DE F G

H I

Figure 5: Graph after ordering E and D

W

A BC

DEF G

H I

Figure 6: Graph after ordering A, C, and B

Algorithm Pseudocode

Insertion:
for each new interface object

if object has no grouping information,
append object to list of top level objects.

else if object belongs in a group that exists,
insert it in that group or recursively in a

subgroup.
else object belongs in a group that doesn’t exist

so create that group and insert object in it.
if object has any preconditions or postconditions,

insert directed logical ordering edges to or from
objects already present with corresponding
pre- or postconditions.

Dependency Propagation:
for every group at every level

for every pair of objects in that group
if one object is reachable from the other by

following any combination of directed
ordering edges or tree edges,
insert a new ordering edge between this

pair of objects.

Ordering Siblings:
for every group at every level

while there are objects in the group not in a chain,
create a chain of objects not already chained by

following the logical ordering relationships
between siblings.

if a chain contains the same object more than
once,
break the loop in the chain and warn the

designer of the illogical input.
order the group from left to right in chain order

2.5 Layout

Controls are placed in their window in a preorder traversal

of the grouping hierarchy which both preserves the left-to-

right order created by logical orderings and keeps groups to-

gether. Layout of groups of controls depends on what inter-

face style is followed. Currently the OPEN LOOK style

guide is followed which specifies that groups be visually

separated by a small amount of space and an optional bold

and fully capitalized group name. Using another style,

groups might be shown by a thin bounding box or indenta-

tion. Figure 1 in the introduction is created from the group-



ing hierarchy of a simple print dialog pictured in figure 7.

When “Print All Pages” or “Print to Printer” are selected,

controls with associated preconditions (and resulting

ordering relationships) become disabled as illustrated in

figure 8.

3. CONCLUSION

Grouping and ordering dependencies have always existed

among user interface components, but usually they are not

represented explicitly by design tools during user interface

design. Instead, if a good designer is building the interface,

that person is manually laying out the controls. While

placing controls, the designer notices the most obvious

possible groups of controls and places them together, then

notices the most obvious logical orderings and moves

controls to satisfy the perceived orderings.

If the application designer builds an application data model

that could be used as input to an automatic user interface

generator, that model should contain the desired grouping

and ordering information. A good user interface generator

can use these relationships to make much better decisions

when placing controls in the interface. Hopefully, interfaces

Print

Pages Destina’n

PrinterAll Selected File

From To Filename

Figure 7: Graph of the print command
data model used to create figures 1 and 8

whose generation uses this additional semantic information

are easier to use because logical order and intuitive group-

ing from the mind of the application designer is carried

through to the eyes of the end user.

ACKNOWLEDGMENTS

We thank Amihood Amir, H. Venkateswaran and James
Burns of Georgia Tech for their algorithmic assistance.
Funding for this project was provided by SunSoft’s
Collaborative Research program.

Figure 8: Layout using precondition information both for
ordering controls and for disabling inappropriate controls


