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SUMMARY

The first part of this research work is based on Combined Objective Least Squares

(COLS). We took a deeper look at matrix decomposition algorithms that are the

dominating components in COLS algorithms, in terms of computational performance

and numerical stability. In addition to the traditional QR decomposition approaches,

this work studied other possible approaches, such as augmented system matrix and

normal equations.

This research work proposed a normal equations approach for COLS, which solves

linear programming problems efficiently. Even though this approach is only stable

under certain conditions according to numerical analysis, we found it stable in practice

and provided some possible explanations for such a phenomenon.

We also proposed a hybrid approach that could take advantage of the numerical

stability of QR decomposition and the efficiency of Cholesky factorization updates

so that linear programming problems could be solved reliably and efficiently. The

resulting problem becomes a system of semi-normal equations, which may be further

improved to achieve higher quality solutions through iterative refinement.

The second part of this research work is an improvement to the primal dual sub-

problem simplex method for set partitioning/packing/covering problems with con-

vexity constraints. Primal dual subproblem simplex methods are very successful in

solving large-scale set partitioning problems. In each step of the primal dual sub-

problem simplex method, dual feasibility is maintained and subsets of columns are

selected based on a threshold value to form the restricted master problem. The opti-

mal dual solution from the restricted master problem is used to update the current

ix



dual feasible solution and the step size used to update the dual feasible solution is

calculated.

For set partitioning/packing/covering problems with convexity constraints, we

discovered that longer step sizes could be selected because dual values corresponding

to convexity constraints could be adjusted to maintain dual feasibility. Additionally,

we found that the dual objective is a piecewise linear concave function of the step size

and subsequently worked out an algorithm to find the optimal step size to maximize

dual objective, so that the convergence rate could be improved. We used the long step

primal dual subproblem simplex method (LPD) to solve large-scale multicommodity

flow problems(MCF), and with this work, we achieved better performance than pri-

mal dual subproblem simplex methods (PD) and Dantzig-Wolfe (DW) decomposition

approaches.

x



CHAPTER I

INTRODUCTION

Since its discovery by George Dantzig in 1947, the simplex method is one of the most

widely used and successful algorithms for linear programming. Although the simplex

method is not polynomially bounded, it performs as well or better than polynomial

time interior point methods on a wide range of linear programming problems.

One type of linear programming problem, in which simplex methods do not per-

form well, is large-scale set partitioning/packing/covering problems, when the phe-

nomenon of degeneracy influences the efficiency and convergence. When simplex

methods encounter degeneracy, they might perform a number of iterations to change

the basis without improving the objective value. Various methods are proposed in

the literature to address the degeneracy problem.

Leichner, Dantzig and Davis [22] proposed a Nonnegative Least Squares (NNLS)

method, which is impervious to degeneracy and performs better than simplex methods

in solving linear programming phase I problems. Gopalakrishnan [15] and Kong [18]

extended the NNLS approach to a Combined Objective Least Squares (COLS) method

to solve general linear programming problems and reported improved performance for

COLS compared to simplex methods.

The first part of this research work is based on COLS. We took a deeper look at

matrix decomposition algorithms that are the dominating components in COLS algo-

rithms, in terms of computational performance and numerical stability. We proposed

a normal equations approach for COLS, which solves linear programming problems

efficiently. Even though this approach is only stable under certain conditions accord-

ing to numerical analysis, we found it stable in practice and provided some possible
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explanations for such a phenomenon. We also proposed a hybrid approach that could

take advantage of the numerical stability of QR decomposition and the efficiency of

Cholesky factorization updates so that linear programming problems could be solved

reliably and efficiently. The resulting problem becomes a system of semi-normal equa-

tions, which may be further improved to achieve higher quality solutions through

iterative refinement.

The second part of this research work is an improvement to the primal dual sub-

problem simplex method for set partitioning/packing/covering problems with con-

vexity constraints. For this type of problems, we discovered that longer step sizes

could be selected because dual values corresponding to convexity constraints could

be adjusted to maintain dual feasibility. Additionally, we found that the dual objec-

tive is a piecewise linear concave function of the step size and subsequently worked

out an algorithm to find the optimal step size to maximize dual objective, so that the

convergence rate could be improved. We used the long step primal dual subproblem

simplex method (LPD) to solve large-scale multicommodity flow problems(MCF),

and with this work, we achieved better performance than primal dual subproblem

simplex methods (PD) and Dantzig-Wolfe (DW) decomposition approaches.

1.1 Major Contributions

In this research work, we made multiple contributions to COLS and long step primal

dual subproblem simplex methods. In COLS, we discovered that the computational

bottleneck of QR decomposition approaches were steps to update and apply the Q ma-

trix and found that linear programming problems were typically well conditioned. As

a result, we concluded that the normal equations approach was suitable to solve linear

programming problems using COLS. Additionally, we proposed a hybrid approach to

solve least squares problems (LSQ) by taking advantage of the numerical stability of

QR decomposition and the efficiency of Cholesky factorization updates. We achieved

2



significant performance improvement over the QR decomposition approach.

The hybrid approach has its theoretical root as semi-normal equations, which

can be further improved through one-step of iterative refinement, if needed. We

implemented COLS variants using MATLAB and C++ and achieved improved com-

putational performance over Gurobi optimization solvers.

In LPD, we worked out the theory and algorithm for long step primal dual sub-

problem simplex methods for set partitioning/packing/covering problems with con-

vexity constraints and proved its correctness. We discovered that the dual objective

value was a piecewise linear concave function and worked out an efficient algorithm

to find the optimal step size for LPD. We solved the largest MCF cases Planar2500

and Chicago-Region to global optimality, which had not been solved to optimality

in the literature. Additionally, we worked out an approach to form restricted master

problems (RMP) using ε residual networks for large-scale MCF problems and then

applied it in both PD and LPD methods for MCF problems.

Because the threshold ε is positive, phase I LPD or phase I PD approaches may

end at a suboptimal solution. To find the global optimal solution, we proposed two-

phase PD and LPD methods. In the first phase, phase I type RMPs are solved

until a primal feasible solution or near optimal solution is found. Then we used

phase II PD and LPD methods to achieve global optimality. In order to solve large-

scale MCF cases, we applied column generation approaches to solve RMP problems

and calculate step sizes for both PD and LPD methods. In order to solve RMP

problems more efficiently, we applied row generation approaches for PD, LPD and

DW methods. We also conducted extensive computational experiments on large-

scale MCF problems using PD, LPD and DW methods. In these experiments, LPD

methods performed much better than PD methods, which illustrated the optimal step

size in LPD could significantly improve global convergence. We also demonstrated

that LPD outperformed DW approaches for large-scale MCF problems.

3



1.2 Thesis Outline

The overall structure of the thesis has two major parts. In the first part, we explored

the computational efficiency and numerical stability in solving linear programming

problems using COLS and proposed Cholesky factorization based approaches to solve

them efficiently. In the second part, we proposed a long step primal dual subprob-

lem simplex method for set partitioning/packing/covering problems with convexity

constrains and studied its computational performance. The thesis is organized as

follows:

In Chapter 2, we provided a brief survey of solution methods for the least squares

problem that was the core component for COLS. We reviewed definitions for numer-

ical stability and the stability of various famous matrix algorithms. Applications of

normal equations on linear programming and its stable performance in practice were

contrasted with its instability in theory.

In Chapter 3, we discussed NNLS that solves the linear programming phase I

problem using active set algorithms, in which a set of basic columns are selected at

each iteration, add one more column to the basis and (if necessary) remove one or

more columns from the basis across consecutive iterations. Columns in the basis are

automatically independent at all times. We explored different ways to solve NNLS,

such as QR decomposition, augmented systems, normal equations and compared their

computational performance and numerical stability. Algorithms to update factoriza-

tion were explored so that a column could be added to or removed from the basis

efficiently, which was critical in active set methods.

In Chapter 4, we discussed COLS as an extension of NNLS by adding a linear term

to the objective. The computation in each step of COLS closely resembles NNLS but

we need extra effort to maintain independence of columns in the basis. The COLS

approach solves the linear programming problems in a significantly fewer number of

iterations than normally in use with simplex methods because it moves outside of the

4



feasible region and avoids degeneracy. Computational results are provided to compare

the performance with different matrix factorization approaches as well as the simplex

method.

In Chapter 5, we proposed the long step primal dual subproblem simplex method

and the algorithm to calculate the optimal step size for set partitioning/packing/covering

problems with convexity constraints.

In Chapter 6, we used long step primal dual subproblem simplex method to solve

large-scale multicommodity flow problems, which are modeled as a set packing prob-

lem with convexity constraints. We solved two previous unsolved problems in the

literature to global optimality and compared its computational performance with

primal dual subproblem simplex methods and Dantzig-Wolfe decomposition.

In Chapter 7, we concluded this research work and provided suggestions for future

research.
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CHAPTER II

LEAST SQUARES PROBLEMS AND MATRIX

TECHNIQUES

In this chapter, we introduce classical solution methods for least squares problems,

such as normal equations, QR decomposition and singular value decomposition. We

compare the theoretical computational performance and numerical stability for least

squares and linear programming problems. Finally, we discuss the popularity and

computational performance of LU decomposition and normal equations in linear pro-

gramming problems in spite of their less desirable numerical stability in theory.

2.1 Least Squares Problems

The least squares problem was first introduced by Gauss in 1800’s and used widely

in many scientific areas including statistics and optimization.

Given a linear system Ax = b, it does not have a solution if b is not in the range

of matrix A. Least squares problems (LSQ) want to minimize the Euclidean length

of b− Ax.

Definition 1. Let A ∈ <m×n and b ∈ <m. The least squares problem finds a vector

x∗ ∈ <n such that

minx‖b− Ax‖2 = ‖b− Ax∗‖2

We assume that matrix A and vector b consist of real numbers and that matrix

A has full column rank, i.e. the rank of A is n, where n is the number of columns, m

is the number of rows of matrix A and m ≥ n.
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Least squares problems are solved through orthogonal projection as illustrated in

Figure 2.1, where r = b − Ax is the residual, P ∈ Rm×m is the orthogonal projector

and y = Pb = Ax is vector b’s orthogonal projection on range(A).

Figure 2.1: Least Squares and Orthogonal Projection [27].

2.2 Optimality Conditions and Solution Methods for LSQ

The least squares problem is to find the closest point Ax so that the norm of residual

r is minimized. Geometrically the optimal solution is found when r is orthogonal to

range(A), that is AT r = 0, or ATAx = AT b if we plug in r = b− Ax.

As ATA is a normal matrix, ATAx = AT b is known as the normal equation. The

optimal solution of LSQ must satisfy this equation.

Theorem 1. Let matrix A ∈ <m×n with full column rank and vector b ∈ <m, a vector

x ∈ <n solves the least squares problem min ‖b− Ax‖2, if

ATAx = AT b

Proof. As matrix A has full column rank, ATA is positive definite and ∇2f(x) � 0.

From ATAx = AT b, we have ∇f(x) = 0. Therefore, x is the optimal solution for

7



min ‖b − Ax‖2. Additionally, as ATA is nonsingular, the least squares solution is

unique.

2.2.1 Normal Equations

As matrix A is a real matrix with full column rank, matrix C = ATA is symmetric

positive definite (or Hermitian positive definite if A is complex ). The normal equation

ATAx = AT b has a unique solution x∗ that solves the least squares problem.

Numerical solution methods for normal equations date back to Gauss, who solved

for x using back substitution, while preserved symmetry of the normal matrix by

elimination. Gauss’ method is related closely to Cholesky factorization, which was

discovered by Andre-Louis Cholesky.

Theorem 2. (Cholesky factorization) If A ∈ <n×n is symmetric positive definite,

then there exists a unique lower triangular matrix L ∈ <n×n with positive diagonal

elements such that A = LLT .

Proof. See [25].

As C is symmetric, only the low triangular part needs to be stored. To find

Cholesky factorization, we first form the C = ATA ∈ Rn×n matrix and calculate the

entries of L using the following formulas:

Ljj =

√√√√(Cjj −
j−1∑
k=1

L2
jk) (2.2.1)

Lij =
1

Ljj
(Cij −

j−1∑
k=1

LikLjk),where i < j (2.2.2)

There is an alternative form for Cholesky factorization, C = LDLT , where L ∈

<n×n is a lower triangular matrix with diagonal elements as 1 and D ∈ <n×n is

8



a positive diagonal matrix. Entries of L and D are calculated using the following

formulas:

Dj = (Cjj −
j−1∑
k=1

L2
jk) (2.2.3)

Lij =
1

Dj

(Cij −
j−1∑
k=1

LikLjkDk),where i < j (2.2.4)

The LDLT factorization is slightly faster than the LLT factorization, because it

does not calculate square roots and as a result, it can avoid some possible rounding

errors. However, these factorizations are equivalent and it is easy to convert be-

tween them. In this thesis, we use LDLT and LLT factorizations interchangeably

for the Cholesky factorization. Many other algorithms for Cholesky factorization are

available and some of them can be found in the references [7][10].

After C = LLT factorization, two triangular systems are solved for the least

squares solution x:

LTy = AT b (2.2.5)

Lx = y (2.2.6)

2.2.2 QR Decomposition for Least Squares

The normal equations approach was the default method for least squares problems

until Golub [11] developed a stable method to use Householder QR factorization to

solve least squares problems in 1965.

Given a QR decomposition QR = A, where Q ∈ <m×m is an orthogonal matrix,

that is QQT = QTQ = I, where I is an identity matrix, R ∈ <m×n is upper diagonal

with 0 entries in row n+ 1 to m, the least squares problem is solved by:

9



y = QT b (2.2.7)

R1x = y1 (2.2.8)

where R =

 R1

R2

, R1 ∈ <n×n is upper triangular, R2 ∈ <(m−n)×n is a zero

matrix and y1 is the first m elements of vector y.

There are many algorithms to calculate QR factorization, such as Gram-Schmidt

decomposition, Modified Gram-Schmidt decomposition, Householder transformation

and Givens rotation. Details of these algorithms can be found in additional resources

[27].

2.2.3 Singular Value Decomposition for Least Squares

Theorem 3. (Singular Value Decomposition) If matrix A ∈ <m×n with rank k ≤

min(m,n), then there is an orthogonal matrix U ∈ <m×m, an orthogonal matrix

V ∈ <n×n and a diagonal matrix S ∈ <m×n such that

UTAV = S,A = USV T

Diagonal entries of S (called singular values of matrix A) are nonnegative and

non-increasing and exactly k of them are strictly positive.

Proof. See [21].

Singular value decomposition can be widely used for many applications, in addition

to solving least squares problems. However, its usage was limited until Golub and

Kahan [12] proposed the first stable approach for singular value decomposition in

1965.
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In Golub and Kahan’s approach, matrix A was first reduced to bi-diagonal form.

A bidiagonal matrix is a matrix with nonzero diagonal entries and either nonzero on

the diagonal above or the diagonal below.

Here is an example of an upper bidiagonal matrix:



× ×

× ×

× ×

×


and a lower bidiagonal matrix:



×

× ×

× ×

× ×


Then we compute the singular value decomposition from the bidiagonal matrix

using an iterative method.

The first step to reduce matrix A to the bidiagonal matrix can be achieved using

Householder transformation.

Given a singular value decomposition U

 S−1
r 0

0 0

V T = A, where U ∈ <m×m

is an orthogonal matrix, V ∈ <n×n is an orthogonal matrix and Sr ∈ <k×k is diagonal,

where k is the rank of matrix A.

Theorem 4. (Least squares problems by Singular Value Decomposition) If matrix

A ∈ <m×n with rank k ≤ min(m,n), then the least squares problem min ‖b − Ax‖2

has a unique solution
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x = V

 S−1
r 0

0 0

UT b

where Sr ∈ <k×k is a diagonal matrix, S =

 Sr 0

0 0

 and A = USV T is the singular

value decomposition for matrix A.

Proof. See [7].

If matrix A is rank-deficient or ill-conditioned, Cholesky factorization and QR

decomposition approaches may not be stable, then singular value decomposition will

be the best in solving these least squares problems.

2.3 Augmented System Approaches for LSQ

From the normal equation, we have ATAx = AT b and we let the residual be r = b−Ax,

then the optimal residual has Ar∗ = Ab− ATAx∗ = 0.

ATx∗ is the projection of b ∈ Rn onto the space of the columns of AT and the

residual lies in the null space of A. Rewrite the above equations in matrix notation,

we have the augmented system matrix:

M =

 I A

AT 0

, which is nonsingular if matrix A has full column rank. The

augmented system matrix M is a symmetric indefinite matrix, because M = MT and

its eigenvalues can be either positive or negative.

Given matrix A ∈ <m×n, b ∈ <m, we can use LU decomposition approach to solve

the least squares problem min ‖b− Ax‖2.

Let M ∈ <(m+n)×(m+n), where M =

 I A

AT 0

. The least square problem can
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be solved by

M

 s

x

 =

 I A

AT 0


 s

x

 =

 b

0


where x ∈ <m and s ∈ <n are the solution of the least squares problem and

s = b− Ax is the residual.

Theorem 5. The least squares problem min ‖b−Bx‖2 is solved by s

x

 =

 I A

AT 0


−1 b

0



Proof. We can rewrite the equation as

 Ax+ s = b

BT s = 0
. Rearrange it and we have

s = b−Ax and plug-in to the second equation, we have AT (b−Ax) = 0, which is the

normal equation for the least squares problem.

As M is nonsingular, we have M = LU , where L ∈ <(m+n)×(m+n) and lower

triangular, and U ∈ <(m+n)×(m+n) and upper triangular. We can solve for y using

back substitution on Ly =

 b

0

, where y = U

 s

x

. Then, we solve for

 s

x


using back substitution.

2.4 Numerical Stability

Numerical stability is one of the important criteria in use to evaluate algorithms. Let

a mathematical problem be a function f : X → Y from a vector space X of inputs

to a vector space Y of solutions and let an algorithm for the mathematical problem

as a function f : X → Y . εmachine is the machine epsilon, which is 2−24 and 2−53 for

IEEE single and double precision arithmetic [27].

Definition 2. The algorithm f for a problem f is stable if for each x ∈ X, we have

[27]:
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‖f(x)− f(x)‖
‖f(x)‖

= O(εmachine)

for some x such that

‖x− x‖
‖x‖

= O(εmachine)

Definition 3. The algorithm f for a problem f is backward stable if for each x ∈ X,

we have [27]:

f(x) = f(x)

for some x such that

‖x− x‖
‖x‖

= O(εmachine)

It is well known that back substitution, QR decomposition using Householder

transformation, Givens rotation, Modified Gram-Schmidt decomposition and Cholesky

factorization are backward stable [27]. However, normal equations approaches for

least squares problems are stable only under certain conditions that we will elaborate

on in Theorem 6.

Theorem 6. Stability of least squares problems

1. Least squares problem using QR decomposition is backward stable.

2. Least squares problem using singular value decomposition is backward stable.

3. Least squares problem using normal equations is stable only if κ(A) is uniformly

bounded above or tan θ
η

is uniformly bounded below, where κ(A) is the condition

number of matrix A, θ = cos−1 ‖Ax‖
‖b‖ is the closeness of the fit, η = ‖A‖‖x‖

‖Ax‖ .

Proof. See [27].
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2.4.1 An Illustrative Example

Trefethen and Bau [27] provided an illustrative example to show the stability of

various methods for least squares problems.

The A matrix is a 100 by 15 Vandermonde matrix, which is well known for its ill

conditioning. The following is an m× n Vandermonde matrix:

A =



1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

...
...

...
...

1 xm x2
m · · · xn−1

m


The right hand side is a function esin(4τ) on the interval [0, 1].

We setup the matrix as outlined in [27], the condition number of matrix A is

2.271777310158213 × 1010, θ = 3.746111084567305 × 10−6, η = 210355.9748332728

and tan θ
η

= 1.780843680600934× 10−11. This least squares problem is expected to be

challenging for normal equations according to Theorem 6 .

Five different methods were used to solve the least squares problem and their

results were illustrated in Table 2.1 by showing the value of the 15th element of the

solution vector x, i.e. x(15), together with the expected solution.

Table 2.1: Stability of least squares algorithms
Method Value
The expected solution 1.0
Householder transformation 1.00000031528723
Gram-Schmidt decomposition 1.02926594532672
Modified Gram-Schmidt decomposition 1.00000005653399
Singular value decomposition 0.99999998230471
Normal equations 0.39339069870283

From Table 2.1, Householder transformation, modified Gram-Schmidt and singu-

lar value decomposition achieved similar solution accuracy. The normal equations
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approach caused significant errors, while Gram-Schmidt decomposition was not ac-

curate either, though it was better than the normal equations approach.

2.4.2 Practical Performance of Normal Equations

Although the normal equations approach can be unstable under certain conditions,

it is in use in various areas such as linear programming (interior point methods).

It achieved good computational results and numerical problems are rare even for

ill-conditioned matrices.

We focused on interior point methods for linear programming because of its pop-

ularity and well-known success in practice. Interior point methods provide competi-

tive computational performance in linear programming problems in comparison with

classical simplex methods. An interior point method computes a series of direction

vectors and moves toward the optimal solution. In each iteration of the interior point

method, a linear system AΣ2ATx = b is solved, where the A matrix remains the same

throughout the algorithm and the matrix Σ is a diagonal matrix that changes in each

iteration. Primal, dual and primal dual variants of the interior point method differ by

the way matrix Σ is formed. This normal equation is typically solved using Cholesky

factorization LDLT = AΣ2AT [24].

It is known that the matrix AΣ2AT becomes ill conditioned when the algorithm

moves near the optimal solution. However, the impact of ill conditioning of the normal

matrix does not have the dramatic effect on solution accuracy [14].

An alternative approach for normal equations is the augmented system approach,

in which a symmetric indefinite augmented matrix

 Σ−2 AT

A 0


is factorized. The augmented system approach provides highly accurate results,

but is on average about 40% less efficient than normal equations approaches [14].
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2.4.3 Stability and Practical Performance of LU Decomposition

LU decomposition is the dominate part of simplex methods. An efficient and numer-

ical stabile LU solver is important given its success in solving linear programming

problems.

From numerical analysis, LU decomposition algorithm with Gaussian elimination

is not stable but Gaussian elimination with partial pivoting is backward stable [27].

However, being backward stable does not free it from numerical problems. Tre-

fethen and Bau [27] gave an illustrative example for Gaussian elimination with partial

pivoting:

A =



1 1

−1 1 1

−1 −1 1 1

−1 −1 −1 1 1

−1 −1 −1 −1 1


=



1

−1 1

−1 −1 1

−1 −1 −1 1

−1 −1 −1 −1 1





1 1

1 2

1 4

1 8

16


For this matrix, the growth factor is ρ = 16. For an m ×m matrix, the growth

factor is exponential, i.e. ρ = 2m−1, which corresponds to a loss of order m − 1 bits

of precision.

The above example illustrates that Gaussian elimination with partial pivoting is

backward stable in theory, but it can still produce catastrophic results in practice

[27].

It is interesting to note that Gaussian elimination with partial pivoting is very sta-

ble in practice, even though there are worst-case examples with exponential growth

factors. It seems that Gaussian elimination did not encounter such worst cases in

practice. Trefethen and Bau [27] claimed that no matrix problems that cause insta-

bility in Gaussian elimination are known under natural circumstances in 50 years of
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computing. Golub and Van Loan [13] also said Gaussian elimination with partial piv-

oting could be used with confidence and such exponential growth was highly unlikely

in practice.

Trefethen and Bau [27] gave an explanation based on statistical reasoning: matri-

ces encountered in practice were not random and matrices for which Gaussian elimi-

nation was unstable were so rare; therefore, statistically it was almost impossible to

encounter such a matrix in practice.

2.4.4 Summary

Normal equations approaches are significantly faster than QR decomposition ap-

proaches, especially when a series of least squares problems are solved. However QR

approaches are backward stable, which can reliably solve all types of least squares

problems with full column rank. Therefore, it is suitable to serve as a black box least

squares solver.

Normal equations approaches are only suitable for problems with certain features.

There are known problems that cannot be solved by normal equations such as Van-

dermonde matrices as we illustrated. However, normal equations approaches are

successful in solving linear programming problems, without encountering numerical

problems.

In this research work, we chose to use normal equations to solve least squares

problems as subproblems in solving linear programming, so that we could solve each

subproblem more efficiently. At the same time, we were fully aware of the risk asso-

ciated with normal equations and prepared approaches to address that if needed.
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CHAPTER III

NONNEGATIVE LEAST SQUARES

In this chapter, we introduce solution methods for nonnegative least squares prob-

lems. We first introduce the classical active set method and its implementation using

QR decomposition. We then compare the active set method with the phase I simplex

method and highlight the similarities and differences. Finally, we solve the nonnega-

tive least squares problem by solving a series least squares problem in each iteration.

3.1 Introduction

The Nonnegative Least Squares problem (NNLS) is defined as follows: given a real

m×n matrix A of rank min{m,n}, i.e.A ∈ <m×n, b ∈ <m, find 0 ≤ x ∈ <n minimizing

the square of the Euclidean length of Ax− b, i.e. ‖Ax− b‖2.

The Euclidean length or Euclidean norm of a vector v ∈ <m, denoted by ‖v‖, is

defined by ‖v‖ =
√
v′v =

√∑m
i=1 v

2
i .

The NNLS problem can be formulated as follows:

min ‖Ax− b‖2 (3.1.1)

Subject to:

x ≥ 0 (3.1.2)

Or equivalently

min{‖b− Ax‖2 : x ≥ 0} (3.1.3)

The NNLS problem is a special case of least squares problems with linear inequality
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constraints (LSI):

min{‖b− Ax‖2 : l ≤ Dx ≤ u} (3.1.4)

when l = 0, u = +∞ and D is an identity matrix.

If D is an identity matrix the LSI problem becomes the Bound-constrained least

squares problem(BLS):

min{‖b− Ax‖2 : l ≤ x ≤ u} (3.1.5)

If the matrix A has full column rank, BLS is a strictly convex optimization prob-

lem. Then BLS has a unique solution for any vector b and is known to be solvable in

polynomial time [7].

In general, problems with linear inequality constraints are often solved using active

set methods, based on the following observations: at the optimal solution for problem

LSI, a certain subset of constraints l ≤ Dx ≤ u will be active, i.e. with equality.

If this subset was known, the solution to original LSI would be the same as the LSI

problem with the active constraints only and these constraints can be replaced by

equality constraints(LSE):

min{‖b− Ax‖2 : Dx = d} (3.1.6)

There are many efficient solution methods available for least squares problem

with equality constraints including the methods of direct elimination and null space

method [7] [21].

As for the NNLS problem, if the subset of active constraints are known a pri-

ori, then it becomes a least squares problem with only the columns in matrix A to

correspond to the active constraints.

The least squares problem

min{‖b− Ax‖2} (3.1.7)
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can be solved using normal equations, QR decomposition or Singular Value Decom-

position as introduced in the previous chapter.

The active set method for the NNLS problem will be introduced as follows [21]:

index set P and Z will be defined and modified in the course of the active set al-

gorithm, where P denote the active set of columns. Variables indexed in set Z will

be set to zero. Variables indexed in set P will be determined using least squares

methods. If a variable indexed in set P takes a non-positive value, the algorithm will

move its index from set P to set Z.

On termination of the algorithm, the solution vector x is:

xi > 0 i ∈ P (3.1.8)

xi = 0 i ∈ Z (3.1.9)

where xi > 0, i ∈ P is the solution of the least square problem

Apxp = b (3.1.10)

where Ap is the set of columns with indices in P , xp > 0 is the solution vector with

indices in P , xz = 0 is the solution vector with indices in Z and xp ∪ xz = x.

The dual vector w satisfies

wi = 0 i ∈ P (3.1.11)

wi ≤ 0 i ∈ Z (3.1.12)

w = AT (b− Ax) (3.1.13)

The above conditions constitute the KKT conditions for NNLS, which is intro-

duced in the next section, and thus the active set method terminates with the optimal

solution for the NNLS problem.
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See additional reference [21] for details of the active set method, correctness proof

and finite termination of the algorithm.

3.1.1 KKT Conditions for NNLS

Theorem 11 specifies the optimality solution for Problem NNLS.

Theorem 7. A vector x̂ is a solution for the NNLS problem min{‖Ax− b‖2 : x ≥ 0}

if and only if there exists ŵ ∈ <m and a partitioning of the integers 1 through m into

subsets P and Z such that

1. ŵ = AT (Ax̂− b)

2. x̂i = 0, where i ∈ Z; x̂i > 0, where i ∈ P ;

3. ŵi ≥ 0, where i ∈ Z; ŵi = 0, where i ∈ P ;

Proof. See [15] and [18].

3.1.2 Properties of NNLS

Theorem 8. If Ap is a basis, x is the solution for min ‖b − Apx‖2, r = b − Bx and

As is the incoming column with rTAs > 0, there are following properties:

1. (ρ is orthogonal to columns of Ap) r
TAp = 0

2. (Strict Improvement) min ‖b− Apxp − Asxs‖2 < min ‖b− Apxp‖2

3. (Positive solution value for the incoming column) The problem min ‖b−Apxp−

Asxs‖2, has solution xs > 0

4. (Independent incoming column) [Ap, As] is an independent set of columns

5. (Independent columns in the set of non-basic columns) If rTAt 6= 0, t ∈ Z,

[Ap, At] is an independent set of columns
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Proof. See [15] and [18].

3.2 The Implementation

The least squares method being solved in the active set methods differ between con-

sequent iterations only by the addition of one more column or the deletion of one

or more columns. To solve least square problems more efficiently, efficient updating

techniques can be used to compute the updated matrix factorization for the new

problem based upon the matrix factorization from the previous iteration.

The ability to compute solutions to a sequence of least squares problems in an ef-

ficient manner is essential for successful NNLS algorithms. Well-known least squares

solution methods such as normal equations via Cholesky factorization and QR de-

composition have algorithms to accomplish these tasks efficiently.

3.2.1 Update Matrix factorization in QR decomposition

There are different algorithms to update matrix factorizations across iterations in QR

decomposition:

• Use Householder transformation to add a column and use Givens rotation to

remove columns.

• Use Householder transformation to add and remove columns.

• Use Givens rotation to add and remove columns

As the Givens rotation approach is better in handling sparse matrices, we chose

the last approach.
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3.2.1.1 Removing a Column

If the column to be removed is the last column, it will be easy to eliminate. Suppose

the active set is Ap = [Ap, As], where As is the column to be removed. We have

QTAp = QT [Ap, As] =


R11 r1s

0 rss

0 0

 (3.2.1)

The updated QR decomposition is

QTAp =

 R11

0

 (3.2.2)

that is, simply drop the last column in R matrix and keep matrix Q unchanged.

If the column to drop is not the last column, the resulting R matrix may not be

upper triangular, i.e.

QTAp =


R11 R̂12

0 R̂22

0 0

 (3.2.3)

The submatrix R11 is still upper triangular. The submatrix R̂22 is not upper

triangular, but it is upper triangular with non-zeros immediately below the diagonal

elements i.e. 

× × ×

× × ×

0 × ×

0 0 ×

0 0 0


(3.2.4)

A series of Givens rotations can be used to eliminate the nonzero elements below the

diagonal and make the submatrix R̂22 upper triangular.

The general approach to remove the sth column is as follows:
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1. Drop the sth column

2. Apply QR decomposition on submatrix R̂22 to make it upper triangular, where

Q̂ is the corresponding orthogonal matrix

3. The updated Q := Q̂Q

3.2.1.2 Adding a Column

Suppose the active set is Ap, its QR decomposition is QR = Ap and As is the column

to be added, the updated active set of columns will be Ap = [ApAs]. Multiple QT on

Ap, we have

QTAp = QT [Ap, As] =

 R r1s

0 r2s

 (3.2.5)

If As is independent of Ap, Q
TAs =

 r1s

r2s

, where r1s ∈ R|P | and r2s 6= 0.

The resulting matrix is of the form:

× × ×

0 × ×

0 0 ×

0 0 ×

0 0 ×


(3.2.6)

A series of Givens rotations can be used to eliminate the nonzero elements in r2s,

except the first row.

The general approach to add a column is as follows:

1. Add the sth column to the right of the existing columns.

2. Multiple QT on column As.

3. Apply QR decomposition on vector r2s to make it upper triangular, where Q̂ is

the corresponding orthogonal matrix.
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4. The updated Q := Q̂Q.

3.2.1.3 Re-factorization

As columns are added by iterations, the ordering of columns in set P may not be the

best to reduce fill-ins. Additionally, after multiple iterations, the number of Givens

rotation matrices can grow and it might be more time consuming to update than

to conduct the QR decomposition from scratch. Therefore, it is necessary to do

re-factorization.

By refactoring a matrix after certain number of iterations, we can reorder columns

to minimize fill-ins and reduce the Givens rotation matrix size, thus significantly

reducing consequent computational burdens.

3.2.2 Update Matrix factorization in Normal equations using Cholesky
factorization

In normal equations, we can update matrix factorizations using rank-1 updates.

3.2.2.1 Removing a Column

Davis and Hager [9] proposed a row modification algorithm to remove a row and

column simultaneously by making a rank-1 update of the Cholesky factorization. In

this section, we extend Davis and Hager’s algorithm to remove a column from the

basis and generate the updated Cholesky factorization without explicitly forming the

normal equation.

Given a basis B = {a1, ..., ak} in the combined objective least squares problem,

the Cholesky factorization is

LDLT = BTB =


aT1
...

aTk


(
a1 . . . ak

)
=


aT1 a1 . . . aTk a1

...
. . .

...

aT1 ak . . . aTk ak

 (3.2.7)

Suppose column r is dropped from the basis, we set ar = 0 and
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B̄ = {a1, ..., ar−1, 0, ar+1, ..., ak}.

Let BTB =


C11 c12 CT

31

cT12 c22 cT32

C31 c32 C33

 where cT12 = [a1, ..., ar−1]Tar, c22 = aTr ar, c
T
32 =

[ar+1, ..., ak]
Tar, then

B̄T B̄ =


C11 0 CT

31

0T 0 0T

C31 0 C33

 (3.2.8)

Let

L =


L11

lT12 1

L31 l32 L33

 (3.2.9)

and

D =


D1

d2

D3

 (3.2.10)

We have

BTB = LDLT =


L11

lT12 1

L31 l32 L33




D1

d2

D3




L11

lT12 1

L31 l32 L33


T

=


L11D1L

T
11 L11D1l12 L11D1L

T
31

lT12D1L
T
11 lT12D1l12 + d2 lT12D1L

T
31 + d2l

T
32

L31D1L
T
11 L13D1l12 + l32d2 L31D1L

T
31 + l32d2l

T
32 + L33D3L

T
33


After setting ar = 0, we have

B̄T B̄ = L̄D̄L̄T =


L11

0T 1

L31 0 L̄33




D1

0

D3




L11

0T 1

L31 0 L̄33


T
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=


L11D1L

T
11 0 L11D1L

T
31

0T 0 0T

L31D1L
T
11 0 L31D1L

T
31 + L̄33D̄3L̄

T
33


We have the following two equations from the original factorization and the new

factorization:

C33 = L31D1L
T
31 + l32d2l

T
32 + L33D3L

T
33 (3.2.11)

C33 = L31D1L
T
31 + L̄33D̄3L̄

T
33 (3.2.12)

Combine these two equations and we have

L̄33D̄3L̄
T
33 = L33D3L

T
33 + l32d2l

T
32 = L33D3L

T
33 + wwT (3.2.13)

where w = l32

√
d2.

The row deletion algorithm is very similar to Davis and Hager’s algorithm [9]:

Step 1. l̄12 = 0, d̄2 = 0, l̄32 = 0.

Step 2. w = l32

√
d2.

Step 3. Perform the rank-1 update L̄33D̄3L̄
T
33 = L33D3L

T
33 + wwT .

Rank-1 update of Cholesky factorization: The rank-1 update can be solved

efficiently using referenced algorithms [10].

3.2.2.2 Adding a Column

To add a column to the Cholesky factorization, we use a similar approach as a variant

of Cholesky factorization, namely up-looking Cholesky factorization [10]:

Suppose we have 2 by 2 block Cholesky factorization LLT = A where L = L11

lT12 l22

 and A =

 A11 a12

aT12 a22

, lower triangular matrix L11 ∈ <(n−1)×(n−1)

and A11 ∈ <(n−1)×(n−1).
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Suppose we know L11L
T
11 = A, the up-looking method calculates the current

Cholesky factorization by solving recursively the following two equations:

L11l12 = a12 (3.2.14)

lT12l12 + l222 = a22 (3.2.15)

We extend the up-looking Cholesky factorization to the row addition algorithm.

Suppose the active set is Ap, its Cholesky factorization is LDLT = ATpAp and As is

the column to be added, which is independent of Ap, the new active set is Āp = [ApAs]

and the normal equation is ĀTp Āp =

 ATp

ATs

 [ApAs] =

 ATpAp ATpAs

ATs Ap ATs As


Let the new Cholesky factorization be

L̄D̄L̄T =

 L

l21 l22


 D

d


 LT lT21

l22

 =

 LDLT LDlT21

l21DL
T l21Dl

T
21 + l22dl22


(3.2.16)

As ĀTp Āp = L̄D̄L̄T , we have the following equations:

ATpAs = LDlT21 (3.2.17)

ATs As = l21Dl
T
21 + l22dl22 (3.2.18)

Use back substitution on the first equation to solve for l21 and plug in to the

second equation to calculate l22.

The updated active set of columns will be Ap = [ApAs].

3.2.2.3 Re-factorization

As columns are added by multiple iterations, the ordering of columns in set P may

not be the best to reduce fill-ins similar to the QR approach. Additionally, the row

deletion algorithm might introduce additional rounding errors rather than starting

from scratch. Then, it is necessary to do re-factorization after a certain number of

iterations.
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3.2.3 A Hybrid Approach

In the previous sections, we introduced NNLS implementations using QR decomposi-

tion and Cholesky factorization. However both approaches have potential drawbacks.

For the QR approach, it can take a great deal of computer processing time and mem-

ory to update Q matrix when columns are added and removed from the basis. Kong

[18] stored the QT matrix as a product form of transpose with four elements cos, sin

and two row indices i, j based on Givens rotation.

The right hand side becomes QT b = GkGk−1...G2G1b. Because the right hand

side b is unchanged, we can accumulatively multiple it by Gi at each step i. However,

when a new column As is introduced into the basis, QTAs is calculated in forming the

products GkGk−1...G2G1As, where Gi, i = 1, ..., k are the Givens rotations formed in

each iteration. When k is large, this step can be time consuming and rounding errors

can accumulate. Therefore, the update step for QR decomposition can become more

time consuming, especially in iterations when a column is added to the basis.

The time complexity of updating a Cholesky factorization is not changing across

iterations. However, Cholesky factorization can encounter numerical difficulties due

to rounding errors. For example, suppose the basis is Ap =


1 1

1 1

1 1− 10−8

 and C =

ATpAp =

 3 2.99999999

2.99999999 2.99999998

 whose rank is 1, eigenvalues

 0

5.99999998

,

Cholesky factorization is not available because ATA is not positive definite. However,

the Cholesky factor

 1.732050807568877

1.732050801795375 0.000000008164966

 can still be calcu-

lated using QR decomposition on matrix A.

Theorem 9. If A ∈ <m×n has full column rank, QR = A is the QR decomposition

of matrix A, matrix R ∈ <m×n is a upper triangular matrix with positive diagonal
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entries, Rn×n
1 and R =

 R1

0

, then the Cholesky factorization of the normal matrix

C = ATA is C = LL′, where L = RT
1 .

Proof. We have A = QR = Q

 R1

0

. Then C = ATA = (QR)TQR = RTQTQR =

RTR =

(
RT

1 0

) R1

0

 = RT
1R1 = LLT

Because Cholesky factorization is unique and matrix L has positive diagonal en-

tries, LLT = ATA is a Cholesky factorization.

Therefore, we proposed a hybrid approach as follows:

Step 1. Find QR decomposition of matrix Ap, convert R to the Cholesky factor

L.

Step 2. When a column is added to matrix Ap, use the row addition approach for

Cholesky factorization to update L.

Step 3. When a column is removed from matrix Ap, use either the row deletion

approach for QR decomposition or Cholesky factorization approach to update.

When the Cholesky factor L is available, solve the semi-normal equation:

LLTx = AT b (3.2.19)

According to numerical analysis [25], solutions computed by semi-normal equation

are not better than these computed by the corresponding normal equation. However,

we can extend it to Corrected Normal Equations to achieve a higher quality solution,

if one-step of iterative refinement is added.

In the next chapter, we use the hybrid approach to solve linear programming

problems, but no correction is needed because these problems are well conditioned.
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We keep Corrected Normal Equations as our future work for ill-conditioned problems

if encountered in practice.
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CHAPTER IV

COMBINED OBJECTIVE LEAST SQUARES

Degeneracy is a phenomenon often encountered in solving linear programming prob-

lems using simplex methods. It can unfavorably influence its efficiency and conver-

gence. Various techniques have been proposed to avoid stalls due to degeneracy.

In this chapter, we focus on a simplex-like method based on least squares, i.e. the

combined objective least squares method (COLS) that is completely impervious to

degeneracy. The COLS method is an extension of the NNLS method introduced in

the previous chapter and they share many similar features.

In this chapter, we first introduce the basic theory for the combined objective least

squares problem (COLS) and its solution methods. The COLS problem is similar to

the NNLS problem and most of the technology we use for NNLS can be applied

directly to COLS, including use of active set methods, QR decomposition, Cholesky

factorization, adding and deleting columns and re-factorization. Then, we highlight

the difference between COLS and NNLS, their respective solution methods and the

challenges of COLS solution methods. Finally, we present some important properties

for the COLS method and numerical results.

4.1 Combined Objective Least Squares

The combined objective least squares problem (COLS) is an extension of the nonneg-

ative least squares problems (NNLS).

Suppose we have a feasible solution to the NNLS problem and the feasible solution

is not unique, we want to find a solution x∗, which satisfies the feasibility condition

and minimizes cTx, where c ∈ <n, then this problem is equivalent to the linear

programming formulation:
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min cTx (4.1.1)

Subject to:

Ax = b (4.1.2)

x ≥ 0 (4.1.3)

where A ∈ <m×n, b ∈ <m, c ∈ <n and x ∈ <n that are the decision variables.

We use the least squares approach for the above problem and we have the following

Combined Objective Least Squares problem:

min
M

2
‖b− Ax‖2 + cTx (4.1.4)

Subject to:

x ≥ 0 (4.1.5)

where A ∈ <m×n, b ∈ <m, c ∈ <n, M ∈ < and x ∈ <n which is the decision

variables.

If M < +∞ is sufficiently large and x∗ is the optimal solution for the problem

(4.1.4)-(4.1.5), then ‖b−Ax∗‖2 will be close to 0 and x∗ is sufficiently close to the feasi-

ble region, thus this can be a feasible and optimal solution for the linear programming

problem (4.1.1)-(4.1.3).

4.2 Solution Methods for COLS

In this section, we introduce the active set method for COLS. For the active set

of columns in matrix A, we relax the nonnegative constraints and solve it as an

unconstrained COLS problem. If the solution is nonnegative, we have the solution

to the active set of columns. Otherwise, negative columns will be removed from the

active set and the resulting unconstrained COLS problem will be solved. We repeat

the above procedure until a solution for the active set columns is found, which is the
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optimal solution for the COLS problem (4.1.4)-(4.1.5). This procedure is very similar

to the corresponding active set algorithm for NNLS introduced in the previous chapter

as well as in an additional reference [21]. The only difference between two algorithms

is that active set methods for COLS solves an unconstrained COLS problem as a

subproblem instead of a least square problem in active set methods for NNLS.

4.2.1 Unconstrained COLS

For the active set of columns in matrix A, we need to solve an Unconstrained Com-

bined Objective Least Squares problem, which is defined as follows:

min
M

2
‖b− ExE‖2 + cTExE (4.2.1)

where E ∈ <m×k, b ∈ <m, cE ∈ <k, M ∈ < and xE ∈ <k that are the decision

variables. Matrix E is a submatrix of matrix A with k active independent columns

in A. cE and xE are the corresponding sub-vectors of the vector c and x.

Let f(xE) = M
2
‖b−ExE‖2 + cTExE, its derivatives are ∇f(xE) = M ×ET (ExE −

b) + cTE and its second order derivatives are ∇2f(xE) = M × ETE.

f(xE) is a convex function, because the vector norm is convex, the linear function

is convex and positive weighted sum of convex functions is convex.

For convex functions, we have the following Necessary Conditions for Opti-

mality:

1. ∇f(x∗E) = 0.

2. ∇2f(x∗E) positive semi-definite.

The second condition will always be satisfied as∇2f(xE) = M×ETE � 0, because

M > 0 and ETE will always be positive definite for any matrix E with a full column

rank. For any vector xE ∈ <k, we have ∇2f(xE) as positive definite.
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For the first condition, we have

∇f(xE) = cTE +MET (ExE − b) = 0 (4.2.2)

Rearrange it and we have normal equations for COLS problems:

ETExE = ET b− cTE
M

(4.2.3)

Theorem 10. Let matrix A ∈ <m×n with full column rank and vector b ∈ <m,

a vector x ∈ <n solves the unconstrained combined objective least squares problem

min M
2
‖b− Ax‖2 + cTx, if

ATAx = AT b+
cT

M
(4.2.4)

Proof. As ATA is positive definite, ∇2f(x) � 0. From ATAx = AT b + cT

M
, we have

∇f(x) = 0. Therefore, x is the unique optimal solution for min M
2
‖b− Ax‖2 + cTx

The normal equation for unconstrained COLS can be solved using Cholesky fac-

torization, QR decomposition and singular value decomposition just as the case for

least squares problems.

4.2.1.1 Unconstrained COLS via QR decomposition

Replace E with its QR decomposition, E = QR, where Q is orthogonal matrix, i.e.

QQT = I and R is upper-triangular matrix. We have:

cTE +MRTQTQRxE −MRTQT b = 0 (4.2.5)

⇒ 1

M
cTE = RTQT b−RTRxE = RT (QT b−RxE) = RTy (4.2.6)

where y = QT b−RxE.

Solve the equations


1
M
cTE = RTy

y = QT b−RxE
using back substitution, we find the

optimal solution x∗E.
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The full algorithm for the unconstrained combined objective least squares problem

is as follows:

Algorithm 4.1 Unconstrained COLS via QR decomposition

Require: E,cE, b, M

Ensure: x

1: QR← qr(E)

2: Solve RTy = 1
M
cTE for y using back substitution.

3: Solve Rx = QT b− y for x using back substitution.

4.2.1.2 Unconstrained COLS via Cholesky factorization

Replace ETE with its Cholesky factorization LLT = ETE. We have:

LLTxE = Eb− c

M
⇒ Ly = ET b− c

M
(4.2.7)

where y = LTxE.

Solve the equations

 Ly = ET b− c
M

LTxE = y
using back substitution, we find the

optimal solution x∗E.

The full algorithm for the unconstrained combined objective least squares problem

is as follows:

Algorithm 4.2 Unconstrained COLS via Cholesky factorization

Require: E,cE, b, M

Ensure: x

1: LLT ← chol(ETE)

2: Solve Ly = ET b− c
M

for y using back substitution.

3: Solve LTx = y for x using back substitution.

4.2.2 KKT Conditions for COLS

Theorem 11 specifies the optimality solution for problem COLS.
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Theorem 11. A vector x̂ is a solution for the COLS problem min c′x+ M
2
‖Ax− f‖2

subject to x ≥ 0 if and only if there exists ŵ ∈ <m and a partitioning of the integers

1 through m into subsets P and Z such that

1. ŵ = AT (Ax̂− b) + c
M

2. x̂i = 0, where i ∈ Z; x̂i > 0, where i ∈ P ;

3. ŵi ≥ 0, where i ∈ Z; ŵi = 0, where i ∈ P ;

Proof. See [15] and [18].

4.2.3 Active Set Methods for COLS

Similar to the NNLS problem, we also use active set methods to solve the COLS

problem: partition the set of columns in matrix A into set P and set Z, where set P

is the active set, P
⋃
Z = A and P

⋂
Z = ∅. Form the unconstrained COLS problem

by matrix Ap which consists of columns in set P . If some variables do not satisfy

x∗p > 0, move the columns with non-positive values from set P to set N .

Otherwise, pick a column satisfying conditions (ŵi < 0) from set Z and move it

to P . If we cannot find such a column, then it is the optimal solution for the COLS

problem.

We are given A ∈ <m×n, c ∈ <n, b ∈ <m, M ∈ <+. P and Z are index sets.

Variables indexed in the set Z will be set to value zero.

On termination x will be the solution vector, w will be the dual vector and r will

be the residual multiplied by M . Note that r can be used in primal dual subproblem

approaches.
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Algorithm 4.3 Combined Objective Least Squares (COLS)

Require: A,c, b, M

Ensure: x, w, r

1: P = ∅, Z = {1, 2, ..., n}, x = 0

2: while TRUE do

3: w ← AT (b− Ax)− 1
M
c

4: if Z = ∅ or wj ≤ 0, ∀j ∈ Z then

5: r = M(b− Ax), stop, return x and r

6: end if

7: Find an index t ∈ Z such that wt = max{wj : j ∈ Z}.

8: Move the index t from set Z to set P .

9: while TRUE do

10: Let E denote the m2 × n matrix defined by

11: Column j of E ←

 column j of A, if j ∈ P ;

0, if j ∈ Z.
.

12: Define cE as the elements in c corresponds to E

13: Compute the n-vector z as a solution of the unconstrained least squares

problem min cTEx + M
2
‖Ex − b‖2. Note that only the components zj, j ∈ P

are determined. Define zj = 0 for j ∈ Z.

14: if zj > 0,∀j ∈ P then

15: x← z, Break; //break out of the inner loop

16: else

17: Find an index q ∈ P such that xq
xq−zq = min{ xj

xj−zj : zj ≤ 0, j ∈ P}

18: α← xq
xq−zq , x← x+ α(z − x)

19: Move from set P to set Z all indices j ∈ P for which xj = 0

20: end if

21: end while

22: end while
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4.2.4 The Correctness of Algorithm 4.3

After algorithm 4.3 terminates, we have a partition of set P and set Z, and matrix

E that consists of the columns in set P . xE ≥ 0 and xZ = 0. Therefore, condition 2

in the KKT condition is satisfied.

On termination, we have c
M
−AT r = AT (Ax̂−b)+ c

M
≥ 0 for columns in set Z. As

for columns in set P , we have ET (ExE− b)M + cTE = 0, which is the normal equation

to calculate xE in the last iteration. Conditions 1 and 3 in the KKT conditions are

satisfied.

4.2.5 Dynamic M in COLS.

The value of M plays an important role in the convergence and quality of the solution:

if M is relatively small, we can find the optimal solution in fewer number of iterations,

but the residual norm will be relatively large, i.e. the solution is feasible for the

original linear programming problem with relatively larger errors.

Here, we give a simple example. Suppose the linear program is as follows:

min{−100x1 − 100x2 : x1 ≤ 1, x2 ≤ 1, x1 ≥ 0, x2 ≥ 0} (4.2.8)

The optimal solution for the above problem is x∗1 = x∗2 = 1 and the objective value

is −200.

If we use COLS and set M = 1000, the optimal solution will be x1 = x2 = 1.01,

ρ =

 0.01

0.01

, ‖b − Ax‖2 = 0.0002 and the objective is −202 + 1000 ∗ 0.0002 =

−201.8 < Obj∗LP .

If M = 100, the optimal solution will be x1 = x2 = 1.1, ρ =

 0.1

0.1

, ‖b−Ax‖2 =

0.02 and the objective is −220 + 1000/2 ∗ 0.02 = −210 < Obj∗LP .

Clearly, if M is not large enough, the COLS solution is not a feasible solution for

the corresponding linear programming problem. However, M cannot be too big as
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well. Suppose M = +∞, the COLS solution will be the same as the NNLS solution,

which is a feasible solution for the corresponding LP, but may not necessarily be

optimal: limM→+∞{1
2
‖b− Ax‖2 + cT

M
x} = 1

2
‖b− Ax‖2.

Figure 4.1 shows the relationship between different values of the penalty M and

its relationship to the simplex method when M → +∞.

Figure 4.1: M values and the simplex method.

We found that the COLS methods with different penalty M always traversed

outside the feasible region and the larger the M , the closer the trajectory was to the

boundary of the feasible region.

4.3 An Augmented System Approach for COLS

In addition to QR decomposition and Cholesky factorization approaches, the uncon-

strained COLS min M
2
‖b−Bx‖2 + cBx, where B is the basis in the active set method,

can also be solved using the augmented system approach.

Let W =

 I B

BT 0

, which is nonsingular if matrix B has full column rank.

The augmented system matrix W is a symmetric indefinite matrix, as introduced in

the previous chapter.
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Given matrix B ∈ <m×n, b ∈ <m, we can use a LU decomposition approach to

solve the unconstrained COLS problem min M
2
‖b−Bx‖2 + cx.

Let W ∈ <(m+n)×(m+n), where W =

 I B

BT 0

. The unconstrained COLS

problem can be solved by

W

 r

x

 =

 I B

BT 0


 r

x

 =

 b

cB
M


where x ∈ <m and r ∈ <n are the solution of the unconstrained COLS problem

and r = b−Bx is the residual.

Theorem 12. The unconstrained COLS problem min M
2
‖b−Bx‖2 + cBx is solved by r

x

 =

 I B

BT 0


−1 b

cB
M


Proof. We can rewrite the equation as

 Bx+ r = b

BT r = cB
M

. When we rearrange it we have

r = b − Bx. When we plug it into the second equation, we have BT (b − Bx) = cB
M

,

which is the normal equation for the unconstrained COLS problem.

As W is nonsingular, we have W = LU , where L ∈ <(m+n)×(m+n) and lower

triangular, and U ∈ <(m+n)×(m+n) and upper triangular. We can solve for y using

back substitution on Ly =

 b

cB
M

, where y = U

 r

x

. Then, we can solve for

 r

x

 using back substitution.

4.4 Numerical Experiments

We implement a version of the COLS algorithm using Cholesky factorization and

have the following computational results.
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Table 4.1: Detailed computational results using COLS
Problem set partitioning
Rows 350
Columns 3,302,596
Big M 103 ∼ 1010

Total COLS Iterations 11432
Total CPU Time 74.13
CPU Time breakdown

Total Cholesky factorization time 59.225 seconds
Total back substitution time 1.417 seconds
Total Cholesky factorization time 59.225 seconds
Total time to calculate the reduced cost w = rTA− c

M
5.979 seconds

Total time to find max w 1.16 seconds
Total time to check dependent 0.871 seconds

4.5 Numerical Results for Combined Objective Least Squares

We implemented three variants of Combined Objective Least Squares (COLS) in

MATLAB, with Cholesky factorization and QR decomposition from the SuiteSparse

package developed by Tim Davis. The variants are QR decomposition, normal equa-

tions via Cholesky factorization and the hybrid approach, in which the Cholesky

factor is calculated by QR decomposition, column addition via Cholesky factoriza-

tion’s column addition algorithm and column deletion via QR decomposition. In

all COLS variants, matrix decompositions are updated using column addition and

column deletion approaches, with a partial pricing scheme based on the primal dual

simplex method.

Table 4.2 provides the comparison between COLS Gurobi Version 4.6.0 simplex

solvers. Note that Gurobi presolve took 67.38 seconds to reduce the problem size to

217 rows and 4,655,832 columns.

Table 4.3 provides computational details of three COLS variants. We found that

the convergence rate and majority of computational efforts are similar, except that

the QR decomposition approach spent significant time to multiply the orthogonal

matrix Q to the right hand side and the incoming column when a column is added
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Table 4.2: Computational results for set partitioning problem RJmax
RJmax with 219 rows Number of Final Residual Run Time
5,091,554 columns Iterations Objective Norm (sec)
COLS via QR 17898 2.2958e+04 3.0443e-010 323.8425
COLS via Cholesky 16428 2.2958e+04 3.0443e-010 207.3097
COLS hybrid 16950 2.2958e+04 3.0443e-010 216.7322
Gurobi with presolve 253442 2.2958e+04 N/A 307.56
Gurobi without presolve 60598 2.2958e+04 N/A 1710.00

into the basis. The Cholesky factorization approach and the hybrid approach do not

need this computational burden, thus it is much faster overall. The hybrid approach

is slightly slower than the Cholesky factorization approach, but it is more stable in

theory.

Table 4.3: Computational results for COLS variants
Problem with 219 rows COLS COLS via COLS
5,091,554 columns via QR Cholesky Hybrid
Total factorization time (sec) 15.8341 11.6377 13.4317
Total update time (sec) 87.2826 76.5341 79.5605
Total time to multiply QT (sec) 91.2606 N/A N/A
Total back substitution time (sec) 54.9280 56.6284 55.6924
Total time to calculate reduced costs (sec) 31.0130 30.7634 32.0270
Total time to find max reduced cost (sec) 4.3212 4.7268 4.3056
Total time to check dependence (sec) 20.7637 23.3689 23.4782
Total outer iterations 17898 16428 16950
Total inner iterations 4801 4380 4538
Total run time (sec) 323.8425 207.3097 216.7322

Because the MATLAB implementations is slower than the corresponding C/C++

versions, especially when matrices are copying between the MATLAB environment

and the SuiteSparse solvers, we also implement a variant of the Combined Objective

Least Squares (COLS) in C++, with Cholesky factorization and QR decomposition

from the SuiteSparse package developed by Tim Davis. The variant is the hybrid

approach, in which the Cholesky factor is calculated by QR decomposition, column

addition via Cholesky factorization’s column addition algorithm and column deletion

via QR decomposition. Similar to the MATLAB implementation, matrix decomposi-

tion is updated using column addition and column deletion approaches, with a partial
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pricing scheme based on the primal dual simplex method.

Additionally, we notice that dual simplex methods perform better than primal

simplex methods in Gurobi; therefore, we also include computational results using

different variants of Gurobi. Tables 4.4 and 4.5 compare the COLS performance

with Gurobi variants and outperforms all. We notice that the dual simplex method

without presolve performs better than the dual simplex method with presolve, but

the reverse is true for Gurobi primal simplex methods.

Table 4.4: COLS vs Gurobi variants for problem RJMax
Problem RJMax with 219 rows Objective Run Time
5,091,554 columns (sec)
COLS 22958 12.983
Gurobi Primal with Presolve 22958 307.56
Gurobi Primal without Presolve 22958 1710.0
Gurobi Dual with Presolve 22958 105.43
Gurobi Dual without Presolve 22958 35.92

Table 4.5: COLS vs Gurobi variants for problem RJMod
Problem RJMod with 212 rows Objective Run Time
5,052,622 columns (sec)
COLS 21090.9 11.172
Gurobi Primal with Presolve 21090.9 1499.10
Gurobi Primal without Presolve 21090.9 821.18
Gurobi Dual with Presolve 21090.9 95.38
Gurobi Dual without Presolve 21090.9 28.00
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CHAPTER V

THE LONG STEP PRIMAL DUAL SIMPLEX METHOD

In primal dual simplex methods, the step size is calculated deterministically as a

function of the dual feasible solution and the dual solution from the restricted master

problem to maintain dual feasibility. The resulting dual objective value is the previous

dual objective values plus the step size times the objective value of the restricted

master problem [23].

For linear programming problems with convexity constraints, it is possible to

manipulate the dual values so that the step size θ can be pushed to maximize the

dual objective value and still preserve dual feasibility. We can set the step size to

an arbitrary value and still maintain dual feasibility by adjusting the dual variables

associated with convexity constraints.

Convexity constraints occur very often in airline and transportation optimization

problems. For example, in multicommodity flow problems, we have a convexity con-

straint for each commodity. In airline rostering problems, we have crew convexity

constraints so that each crew will be assigned exactly one roster. In airline crew pair-

ing problems, we need convexity constraints for each crew base so that the pairings

assigned to each crew base do not exceed its flying capacity limit.

In this chapter, we introduce features essential to the long step primal dual simplex

method and some technical details. In section 5.1, linear programming problems with

convexity constraint will be defined. In section 5.2, the primal dual simplex method

tailored to the linear programming problem with convexity constraints is reinstated

and the formula to calculate the step size is presented. In section 5.3, we introduce the

primal dual simplex method phase II to find global optimal solutions. In section 5.4,
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we introduce the long step primal dual simplex method. We study the dual objective

value as a function of the step size and introduce a polynomial time algorithm to find

the optimal step size.

5.1 Linear Programming Problems with Convexity Constraints

Considering the linear programming problem in standard form:

min cTx (5.1.1)

Subject to:

Ax = b (5.1.2)

x ≥ 0 (5.1.3)

where A ∈ <m×n, c ∈ <n, b ∈ <m and x ∈ <n.

If we add a set of convexity constraints Dx = u to the standard form problem,

we will get the linear programming problem with convexity constraints. D ∈ <K×n,

u ∈ <K and u > 0. In each column of matrix D, there is exactly one nonnegative

element.

We give an example of a set of convexity constraints as follows:


× 0 0 × 0

0 × × 0 0

0 0 0 0 ×

x =


×

×

×

 (5.1.4)

Note that× represents nonzero elements. The convexity matrix in the example has

three rows: the first has two nonzero elements, the second has two nonzero elements

and the third has one nonzero element. Nonzero elements in each row are the same

and each column has exactly one nonzero element. We do not allow negative right

hand sides, because the dual objective value will not be a concave function if u < 0.
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If a right hand side is negative, we multiple both sides with -1 to make it positive. If

a right hand side is 0, then all columns in the corresponding block will not be allowed

in the final solution. We can preprocess the data to remove those columns and the

corresponding zero on the right hand side. For example, if the first element in the

right hand side is 0, it will prevent selection of columns 1 and 4, which is equivalent

to adding the constraints x1 = 0 and x4 = 0.

We rearrange the convexity matrix to make it a block-diagonal matrix with A, c, x

changing accordingly:


× × 0 0 0

0 0 × × 0

0 0 0 0 ×

x =


×

×

×

 (5.1.5)

We have the standard form problem with convexity constraints as follows:

min cTx (5.1.6)

Subject to:

Ax = b (5.1.7)

Dx = u (5.1.8)

x ≥ 0 (5.1.9)

where D is a |K| × n block diagonal matrix with exactly one nonzero element in

each column, u > 0 and u ∈ <K .

Convexity constraints divide the standard form problem into |K| blocks. We can

rewrite the standard form problem with convexity constraints as follows:
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min
∑
k∈K

ckxk (5.1.10)

Subject to: ∑
k∈K

Akxk = b (5.1.11)

Dkxk = uk,∀k ∈ K (5.1.12)

xk ≥ 0,∀k ∈ K (5.1.13)

where Ak ∈ <nk×m, Dk ∈ <nk matrix with all entries being nonzero elements,

xk ∈ <nk , b ∈ <m , u > 0 and u ∈ <K .

The number of rows in Equation (5.1.11) is m, the number of rows in Equation

(5.1.12) is |K| and the number of columns for block k is nk, where k ∈ K. The linear

programming problem with convexity constraints has m+ |K| rows and n =
∑

k∈K nk

columns.

5.1.1 The Dual Problem

The dual of the linear programming problem with convexity constraints (5.1.10) -

(5.1.13) is:

maxπb+ σu (5.1.14)

Subject to:

c− πA− σD ≥ 0 (5.1.15)

where π ∈ <m is the dual variables corresponds to Equation (5.1.11) and σ ∈ <K

is the dual variables corresponds to Equation (5.1.12).
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5.1.2 Optimality Conditions

We extend the complementary slackness conditions to linear programming problems

with convexity constraints.

Theorem 13. (Complementary Slackness) If x is feasible in the primal problem and

(π, σ) is feasible in the dual problem, a necessary and sufficient condition for both to

be optimal is:

πi(a
T
i x− bi) = 0,∀i (5.1.16)

σk(d
T
k x− uk) = 0,∀k (5.1.17)

(cj − πTAj − σkDj)xj = 0,∀j (5.1.18)

Proof. From the definition of the dual problem, πi has the same sign of aTi x− bi, σk

has the same sign as dTk x− uk and cj − πTAj − σkDj has the same sign of xj, thus

πi(a
T
i x− bi) ≥ 0,∀i (5.1.19)

σk(d
T
k x− uk) ≥ 0,∀k (5.1.20)

(cj − πTAj − σkDj)xj ≥ 0,∀j (5.1.21)

Adding the left hand side of all three equations together:

0 =
∑
∀i

πi(a
T
i x− bi) +

∑
∀k

σk(d
T
k x− uk) +

∑
∀j

(cj − πTAj − σkDj)xj (5.1.22)

= cTx− πb− σu (5.1.23)

Thus, cTx = πb+σu, where the left hand side cTx is the primal objective and the

right hand side πb+ σu is the dual objective. The dual objective equaling the primal

objective is the necessary and sufficient condition for optimality.
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5.2 The Primal Dual Simplex Method

The primal dual simplex method is a dual ascend method. We start with a dual

feasible solution and maintain dual feasibility throughout the algorithm until a cor-

responding primal feasible solution is found. In this section, we reiterate the primal

dual simplex method tailored to the linear programming problem with convexity con-

straints.

Given an initial dual feasible solution (π, σ), we can define the admissible set J ,

which is a set of all admissible columns. J = {i|ci−πAi−σk ≤ ε, ∀Ai ∈ Ak,∀k ∈ K},

where ε is the threshold for the admissible set J . If we set ε to 0, it is the classical

primal dual simplex method. Otherwise, it is called the primal dual subproblem

simplex method [17].

If we set all decision variables not in the admissible set to 0, we have a Restricted

Master Problem (RMP):

min
n∑
j=1

yj +
K∑
k=1

zk (5.2.1)

Subject to: ∑
k∈K

Akxk + y = b (5.2.2)

Dkxk + z = uk,∀k ∈ K (5.2.3)

xk ≥ 0,∀k ∈ K (5.2.4)

xi = 0,∀i /∈ J (5.2.5)

y ≥ 0, z ≥ 0 (5.2.6)

where:
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y ∈ <m: the slack variables for constraints (5.2.2);

z ∈ <K: the slack variables for constraints (5.2.3).

The RMP is a phase I type problem in linear programming with slack variables

y and z. All columns i /∈ J are eliminated because their corresponding decision

variables are zeros.

If the objective value of the RMP was 0, then we found a feasible primal solution

using only the admissible set J . According to the complementary slackness conditions,

a primal and dual feasible pair was found, thus it was optimal. This is applicable only

if the threshold for the admissible set is 0. Otherwise, some complementary slackness

conditions may still be violated if the threshold ε > 0.

If the objective of the RMP is positive, i.e. Z∗ > 0, then we will get the dual

values ρ and τ for constraints (5.2.2) and (5.2.3) in the restricted master problem.

We have Z∗ =
∑m

i=1 biρi +
∑K

k=1 ukτk > 0. For a positive θ, the dual objective will be

improved by θ × Z∗ > 0.

Figure 5.1 illustrates the relationship between the current dual solution (π, σ), the

dual solution (ρ, τ) from the restricted master problem and the updated dual feasible

solution (π, σ) + θ(ρ, τ).

We update the dual feasible solution by (π, σ) = (π, σ) + θ(ρ, τ), where θ is the

step size, which can be calculated as

θ = min
j /∈J,ρAj+τDj>0

cj − πAj − σDj

ρAj + τDj

(5.2.7)

This formula is derived to get the biggest possible θ while still maintaining dual

feasibility. Given the original dual solution (π, σ) and the dual solution from the RMP

(ρ, τ), for each column i /∈ J , we have ci − πAi − σDi > ε. Clearly, if ρAi + τDi ≤ 0,

then the step size θ is not constrained by column i, we can set θ arbitrarily large

while still maintaining dual feasibility.
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Figure 5.1: Primal Dual Simplex Method Step Size.

So we need only consider the case ρAi + τDi > 0. In order to maintain dual

feasibility, we must have ci − (π + θρ)Ai − (σ + θτ)Di ≥ 0. Rearrange it, we have:

θ ≤ ci − πAi − σDi

ρAi + τDi

(5.2.8)

Therefore, the step size θ can be derived by taking the minimum of all columns

not in the admissible set J and ρAj + τDj > 0. If all columns have ρAj + τDj ≤ 0,

we can set θ to +∞. As a result, the dual objective is +∞ and the primal problem

is infeasible.

Using the revised dual feasible solution, we update the admissible set J , construct

a new restricted master problem and repeat this procedure until a primal and dual

feasible pair is found. The full algorithm is illustrated in Algorithm 5.1.
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Algorithm 5.1 The Primal Dual Simplex Method

Require: A,D, b, u, π, σ, ε

Ensure: π∗, σ∗

1: while TRUE do

2: J ← {j : cj − πAj − σDj ≤ ε}

3: Setup and solve the Restricted Master Problem, get the objective value Z∗ and

dual solution (ρ, τ).

4: if Z∗ = 0 then

5: Optimal, STOP;

6: else

7: if ρA+ τD < 0 then

8: Infeasible, STOP.

9: else

10: θ = minj /∈J,ρAj+τDj>0
cj−πAj−σDj

ρAj+τDj

11: πθ ← π + θρ

12: end if

13: end if

14: end while

5.3 The Primal Dual Subproblem Simplex Phase II

If the threshold ε to define the admissible set J in primal dual simplex methods is

positive, the admissible set J may contain columns with positive reduced costs. If

such columns remain in the optimal basis of the final restricted master problem on

convergence, the resulting solution might not be global optimal, because some of the

complementary slackness conditions may still be violated, i.e. xj > 0, cj−πAj−σDj >

0 and (cj − πAj − σDj)xj 6= 0.

Hu [16] proposed a phase II primal dual subproblem simplex method starting

from feasible primal and dual solutions: given an initial dual feasible solution (π, σ),
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we can define the admissible set J , which is a set of all admissible columns. J =

{i|ci − πAi − σk ≤ ε,∀Ai ∈ Ak,∀k ∈ K}, where ε > 0 is the threshold for the

admissible set J .

Set all decision variables not in the admissible set to 0, we have a Restricted Master

Problem (RMP):

min
n∑
i=1

cixj (5.3.1)

Subject to: ∑
k∈K

Akxk = b (5.3.2)

Dkxk = uk,∀k ∈ K (5.3.3)

xk ≥ 0,∀k ∈ K (5.3.4)

xi = 0,∀i /∈ J (5.3.5)

The RMP is a phase II type problem in linear programming. All columns i /∈ J

can be eliminated from the problem because the corresponding decision variables are

zeros. Because no slack variables are presented in the formulation, we must start

from a solution that is both primal and dual feasible. The primal dual subproblem

simplex method introduced in the previous section provides such a solution on its

convergence.

We solve the restricted master problem and get the optimal dual solution (ρ, τ).

Because it is a phase II type problem, its objective might not be 0. To check global

optimality, we calculate the reduced cost for all columns, i.e. c̄(ρ,τ) = c− ρA− τD. If

c̄(ρ,τ) ≥ 0, we have achieved global optimality.
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Otherwise we update the dual feasible solution by (π, σ) = (1− θ)(π, σ) + θ(ρ, τ),

where 0 ≤ θ ≤ 1 is the step size, which can be calculated as

θ = min
j /∈J,ρ̄Aj+τ̄Dj>0

cj − πAj − σDj

ρ̄Aj + τ̄Dj

= min
j /∈J,ρAj+τDj−πAj−σDj>0

cj − πAj − σDj

ρAj + τDj − πAj − σDj

(5.3.6)

This formula is derived to get the biggest possible θ while still maintaining dual

feasibility. Figure 5.2 and 5.3 illustrate a geometrical view of above equivalent equa-

tions, i.e. π = (1−θ)(π, σ)+θ(ρ, τ) and π = (π, σ)+θ((ρ, τ)−(π, σ)), which produces

exactly the same step size, and updates the dual feasible solution (1−θ)(π, σ)+θ(ρ, τ).

Figure 5.2: Primal Dual Simplex Method Phase II Step Size.

Figure 5.3: Rearranged Step Size.

Using the updated dual feasible solution, we update the admissible set J , construct

a new restricted master problem and repeat this procedure until a dual solution for

the RMP that is dual feasible for all columns is found. The full algorithm is illustrated

in Algorithm 5.2. Note that this algorithm is slightly different from others that have
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been referenced[16] because of convexity constraints.

Algorithm 5.2 The Primal Dual Subproblem Simplex Method (Phase II)

Require: A,D, b, u, π, σ, ε

Ensure: π∗, σ∗

1: while TRUE do

2: J ← {j : cj − πAj − σDj ≤ ε}

3: Setup and solve the Restricted Master Problem, get the objective value Z∗ and

dual solution (ρ, τ).

4: if ρA+ τD − πA− σD ≤ 0 then

5: Infeasible, STOP.

6: else

7: θ = minj /∈J,ρAj+τDj−πA−σD>0
cj−πAj−σDj

ρAj+τDj−πA−σD

8: if θ = 1 then

9: Optimal, STOP.

10: end if

11: πθ ← (1− θ)π + θρ

12: σθ ← (1− θ)σ + θτ

13: end if

14: end while

5.4 The Long Step Primal Dual Simplex Method

In traditional primal dual simplex methods, all dual prices are used together to cal-

culate the step size as mentioned in the previous section. However, this approach

can be improved for problems with convexity constraints so that larger dual objective

improvements may be achieved.

The motivation to study the long step primal dual simplex method is to maximize
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the dual objective improvement given a RMP solution, because larger dual improve-

ment in each iteration may lead to a fewer number of total iterations to find the

optimal solution and thus improve the overall convergence rate.

Considering the block diagonal structure in the convexity constraints, for columns

in the same block k, we only have one dual variable σk which is associated with the

convexity constraint.

From the dual formulation (5.1.14)-(5.1.15), for any given π, we can find a corre-

sponding σk for each block k ∈ K to maintain dual feasibility. Unlike the primal dual

simplex approach, we can set π and σ separately as long as dual feasibility constraint

(5.1.15) is satisfied.

For example, we can pick any θ, the resulting dual is πθ = π+ θρ. For column i in

block k, we have ci = ci−πθAi−σk ≥ 0, as long as σk ≤ ci−πθAi = ci−πAi− θρAi.

For each block k, the dual variable for the convexity constraint can be determined

by:

σk = min
i∈Ak
{ci − πAi − θρAi} (5.4.1)

Note that the updated dual values σ for the convexity constraints are independent

of the original dual values σ and the dual variables τ from the restricted master

problem.

Different pairs (π, σ) may result in different dual objectives. In the next section,

we will investigate the relationship between the dual objective value and the step size

θ, and we will find an optimal step size θ∗ so that the dual objective is maximized.

5.4.1 The Dual Objective as a Function of the Step Size

Given a step size θ, we can find the corresponding dual solutions as follows: πθ =

π+ θρ. For each block k,we set σθk = mini∈Ak{ci−πθAi}. The resulting dual solution

(πθ, σθ) is still dual feasible.
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The dual objective Z is a function of θ:

Z(θ) = πθb+
∑
k∈K

σθkuk (5.4.2)

= πb+ θρb+
∑
k∈K

uk min(ck − πAk − θρAk) (5.4.3)

The first part of the function πb + θρb is a linear function of θ, while the second

part of the function
∑

k∈K uk min(ck − πAk − θρAk) may decrease as θ increases.

We study σk as a function of θ: it is a function of the form mini=nk
(ai − biθ),

where ai = ci − πAi and bi = ρAi, which is a piecewise linear concave function, as

illustrated in Figure 5.4. When the step size θ increases, ck − πAk − θρAk decreases

and eventually becomes negative. In order to maintain dual feasibility, we need to

set σk to a negative value to make the reduced cost be 0.

Figure 5.4: σk as a function of θ.

We have an alternative approach to derive the dual objective as a function of the

step size. For all active columns in the admissible set J , we have ci− ρAi− τDi ≥ 0,

thus the step size can be an arbitrary value. Therefore, we only need to consider

column j where j /∈ J and study the dual objective as a function of θ and j.

Suppose column j belongs to block k, we have σk = cj −πAj − θρAj and the dual
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objective Z(θ, j) = (π + θρ)b+ ukσk = πb+ θρb+ cj − πAj − θρAj = a1 + a2θ, where

a1 = πb + cj − πAj = cj + π(b − Aj) and a2 = ρb − ρAj = ρ(b − Aj). Therefore,

the dual objective is a linear function of θ. If a2 > 0, the dual objective increases

together with θ. If a2 < 0, the dual objective decreases if θ increases.

The dual objective Z of the step size θ is the minimum of Z(θ, j) where j /∈ J :

Z(θ) = min
j /∈J

Z(θ, j) (5.4.4)

As each of Z(θ, j) is linear, minj /∈J Z(θ, j) is a piecewise linear and concave func-

tion.

Theorem 14. The dual objective function Z(θ) is a piecewise concave linear function.

Proof. The dual objective function Z(θ) is the minimum of a set of linear functions;

therefore, it is piecewise linear.

Each linear function is both convex and concave and the minimum of a set of

concave function is concave.

From the above study, we found that the objective value Z as a function of the

step size θ is a 2-dimensional polyhedron, if one considers the shaded area under the

piecewise linear function together with the constraints θ ≥ 0 and Z ≥ 0, as illustrated

in Figure 5.5.

Z(0) is the dual objective value if θ = 0 that corresponds to the dual objective

value from the previous iteration. The optimal step size θ∗, as well as the correspond-

ing Z∗, is achieved at one of the intersection points of the piecewise linear function

as illustrated in Figure 5.5.
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Figure 5.5: The dual objective value Z as a function of θ.

5.4.2 Find the Optimal Step Size

As we know from the previous section, given a step size θ, each column j /∈ J has

a linear function associated with it and the dual objective is the minimum of all

linear functions for j /∈ J . We can find column i active at θ if Z(θ) = Z(θ, i). For

arbitrary θ, we have at least one active column. If the piecewise linear function has

an intersection point at θ and then we have at least two active columns (see Figure

5.6).

Figure 5.6: Active columns for step sizes.
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The optimal step size can be found as follows: let θmin = 0 and θmax be sufficiently

large so that the slope of its active column is negative. If the slope is positive, double

θmax, and try it again, until a negative slope is found. When θmin = 0, the slope of

the active column is always positive, otherwise it is not possible to improve the dual

feasible solution. Find the linear function Z(θmin, i) = ai + θminbi where column i is

the active function for step size θmin and Z(θmax, j) = aj + θmaxbj where column j is

the active function for step size θmax.

Solve a new step size θ using the formula, ai + θbi = aj + θbj, where θ is the point

when the above two linear functions intersect. We have

θ =
aj − ai
bi − bj

(5.4.5)

It is clear that θmin ≤ θ ≤ θmax. Suppose column k is active at θ and its correspond

linear function is Z(θ, k) = ak + bkθ; then θmin = θ if bk > 0 and θmax = θ if bk < 0.

Repeat above steps to update θ until the optimal step size is found.
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Figure 5.7: An illustrative example to find the optimal step size θ∗.
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Algorithm 5.3 Find optimal step size on a piecewise linear concave function

Require: θmin, θmin

Ensure: θ

1: while TRUE do

2: Find column i which is active at θmin, its linear function Z(θmin, i) = ai+θminbi,

where bi > 0.

3: Find column j which is active at θmax, its linear function Z(θmax, j) = aj +

θmaxbj, where bj < 0.

4: θ ← aj−ai
ai−aj

5: Find column k which is active at θ, its linear function Z(θ, k) = ak + θbk.

6: if θ = θmin OR θ = θmax OR bk = 0 then

7: STOP, OPTIMAL STEP SIZE IS FOUND

8: end if

9: if bk < 0 then

10: θmax ← θ

11: end if

12: if bk > 0 then

13: θmin ← θ

14: end if

15: end while

We give an illustrative example from Figure 5.7: given θmin = 0, we have θmax,

line 1 is active at θmin, line 3 is active at θmax. We set the intersection of lines 1 and

3 as θ, at which line 2 is active. As line 2 is decreasing, we set θmin = θ. Repeat the

above step and set the intersection of lines 1 and 2 as θ, at which both lines 1 and 2

are active. We select line 2 again and set θmax = θ. The intersection of lines 1 and 2

is at θmax thus θmax is the optimal step size. It is also clear that the dual objective as

a function of the step size is a piecewise linear concave function as illustrated.
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5.4.3 The Algorithm

We put all the elements introduced in the previous sections into a full algorithm:

Algorithm 5.4 The Long Step Primal Dual Simplex Method

Require: A,D, b, u, π, σ, ε

Ensure: π∗, σ∗

1: while TRUE do

2: J ← {j : cj − πAj − σDj ≤ ε}

3: Setup and solve the Restricted Master Problem, get the objective value Z∗ and

dual solution (ρ, τ).

4: if Z∗ = 0 in phase I, or c− ρA− τD ≥ 0 in phase II then

5: Optimal, STOP;

6: else

7: Find the optimal step size θ∗ using Algorithm 5.3

8: if θ∗ = +∞ then

9: Infeasible, STOP;

10: end if

11: π ← π + θ∗ρ

12: for k = 1 to K do

13: σk ← mini∈Ak(ci − πAi)

14: end for

15: end if

16: end while
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CHAPTER VI

LONG STEP PRIMAL DUAL SUBPROBLEM SIMPLEX

METHODS FOR MULTICOMMODITY FLOW

PROBLEMS

The Multicommodity Flow problem (MCF) simultaneously ships multiple commodi-

ties through a network so that the total amount of flow on each arc is no more than

its capacity. It is an extension of the single commodity network flow problem, which

can be solved polynomially. To share arcs among commodities makes the problem

much more difficult to solve.

In this chapter, we will focus on the Minimum Cost Multicommodity Flow prob-

lem, which finds the flow assignment satisfying the supplies and demands of all com-

modities with minimum cost without violating the capacity constraints.

We have following assumptions for the Minimum Cost Multicommodity Flow

Problem:

1. Homogeneous goods: each unit flow of each commodity uses 1 unit of capac-

ity of the arc.

2. No congestion: the cost on each arc is linear on the flow.

3. Rational arc costs: the arc costs are rational number.

4. Nonnegative arc costs: no arc costs can be less than 0.

5. Capacity on arcs: we assume that all capacities upper bounds are on arcs.

If there are capacity upper bounds on any node, we can make the network
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transformation to change it to capacity on the arc as indicated in some references

[1].

6. Each commodity ships from one node to another: we assume that each

commodity has exactly one source node and one sink node. If it is not the case,

we can apply the commodity split step to break down commodities into one

source and one sink node.

7. The Network is directed: if the network is undirected, we can convert it

into a directed one. [1]

The multicommodity flow problem has a wide variety of application areas, such

as telecommunication, logistics, transportation, production planning and scheduling,

VLSI design, graph partitioning and network design[28].

Many optimization approaches were developed for solving the multicommodity

flow problem. Those approaches can be classified as follows[1]:

• Price-directive decomposition

– Lagrangian relaxation: Lagrangian multipliers are placed on the bundle

constraints to bring them to the objective function. The resulting formu-

lation can be decomposed into a series of minimum cost flow problems for

the commodities, which can be solved efficiently. The Lagrangian relax-

ation method adjusts the multipliers until an optimal solution is found.

– Dantzig-Wolfe decomposition: by ignoring or imposing penalty on the bun-

dle constraints, the problem is decomposed into a series of minimum cost

flow problems. A subproblem and a price-setting linear program are solved

iteratively until the optimal solution is found.

– Column Generation: a path flow formulation is proposed. A subset of

columns was chosen to form the restricted master problem and delayed
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column generation approaches were used to obtain profitable columns.

• Resource-directive decomposition: arc capacities are allocated to each com-

modity k and a minimum cost flow problem is solved for each commodity. The

information from the solutions are used to update the capacity allocation to

improve the overall cost.

• Partitioning methods.

Barnhart [5] used the primal dual simplex method to solve the multicommodity

flow problem. A Flow Adjustment Algorithm was proposed to solve the restricted

master problem. Wang [28] compared the performance of the generic primal dual

simplex method to a primal dual key path method. Several new multiple pairs shortest

path algorithms were proposed to efficiently solve problems with many pairs.

In Lagrangian relaxation, Babonneau [2] modified and specialized an Analytic

Center Cutting Plane Method. Cutting plane methods and interior point methods

were used to solve the multicommodity flow problem.

The rest of the chapter will be organized as follows. Section 6.1 introduces the

node arc formulation, path formation and sub-network formulation for the Minimum

Cost Multicommodity Flow Problem. Section 6.2 introduces the pricing network and

solution methods for the pricing subproblems. Section 6.3 introduces Dantzig-Wolfe

decomposition, which is very efficient for MCF problems. Section 6.4 introduces row

generation, which generates arc capacity constraints to make subproblems easier to

solve. Section 6.5 introduces primal dual simplex methods for MCF and its major

components such as ε-residual network and step size calculations. Section 6.6 in-

troduces the long step primal dual simplex method and algorithms to calculate the

optimal step size. Section 6.7 reports computational experiments we conducted using

the long step primal dual subproblem method on minimum cost multicommodity flow

problems.

68



6.1 Multicommodity Flow Formulations

Given a directed graph G = (N,A), let N denote the set of all nodes, A denote the

set of all arcs in G, where (i, j) ∈ G, i ∈ N is the head node, j ∈ N is the tail node,

i 6= j. Let K denote the set of all commodities. For commodity k ∈ K with origin

sk ∈ N , destination tk ∈ N and demand bk > 0. The Minimum Cost Multicommodity

Flow Problem can be modeled as following three formulations:

6.1.1 The Node Arc Formulation

min
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij (6.1.1)

Subject to: ∑
k∈K

xkij ≤ uij, ∀(i, j) ∈ A (6.1.2)

∑
(i,j)∈A

xkij −
∑

(j,i)∈A

xkji = bki ,∀k ∈ K, ∀i ∈ N (6.1.3)

xkij ≥ 0,∀(i, j) ∈ A, ∀k = 1, 2, ..., K (6.1.4)

where:

N : is the set of nodes, indexed by i;

A: is the set of arcs, indexed by (i, j), where i is the tail node and j is the head node;

K: is the set of commodities in the problem, indexed by k;

xkij: is the flow variable on arc (i, j) for commodity k;

ckij: is the cost of per unit flow of commodity k on arc (i, j);

uij: is the capacity on arc (i, j);
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bki : is the demand or supply on node i for commodity k, if bki > 0, it is a supply; if

bki < 0, it is a demand. According to our assumptions, each commodity should

have exactly two non-zero elements in bki ,∀i ∈ N and the summation should be

zero.

Equation (6.1.1) is the objective function to minimize the total flow cost; equation

(6.1.3) is the flow conservation constraints for each commodity; equation (6.1.4) en-

sure that the flow variables are nonnegative on each arc; equation (6.1.2) is the bundle

constraint which make the Minimum Cost Mutlicommodity Problem difficult. With-

out equation (6.1.2), this problem can be decomposed into a series of |K| Minimum

Cost Flow Problems, which can be solved by polynomial algorithms.

6.1.2 The Path Formulation

The Multicommodity Flow Problem can be reformulated as a path formulation or

tree/sub-network formulation. It is known from the theory of network flows that

any network flow problems can be reformulated as a path or cycle flow formulation.

Based on assumptions introduced at the beginning of this chapter, each arc cost is

nonnegative, thus the cost of every cycle in the network is nonnegative. As a result,

the flow on every cycle, if any, in the optimal shortest path is zero; therefore, we can

eliminate the cycle flow variables and represent any shortest path optimal solutions

as the sum of path flows[1].

We have the following equivalent path flow formulation of the MCF problem.

min
∑
k∈K

∑
p∈Pk

cpfp (6.1.5)

Subject to: ∑
k∈K

∑
p∈Pk

bkδij(p)fp ≤ uij,∀(i, j) ∈ A (6.1.6)
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∑
p∈Pk

fp = 1,∀k ∈ K (6.1.7)

fp ≥ 0,∀k ∈ K, ∀p ∈ P k (6.1.8)

where:

A: is the set of arcs, indexed by (i, j), where i is the head node and j is the tail node;

K: is the set of commodities in the problem, indexed by k;

P k: is the set of all paths starting from the source node and ending at the sink node

for commodity k, indexed by p;

δij(p) : is the indicator whether arc (i, j) ∈ p, if (i, j) ∈ p, then δij(p) = 1, otherwise,

δij(p) = 0;

fp: is the flow variable on path p;

cp: is the cost of the path p;

uij: is the capacity on arc (i, j);

dk: is the demand/supply for commodity k.

Its dual formulation is:

max
∑

(i,j)∈A

πijuij +
∑

1≤k≤K

σkbk (6.1.9)

Subject to: ∑
(i,j)∈p

πijδij(p) + σk ≤ cp,∀k ∈ K, ∀p ∈ P k (6.1.10)

πij ≤ 0,∀(i, j) ∈ A (6.1.11)

where:
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πij: is the dual for arc (i, j);

σk: is the dual for commodity k.

We introduce complementary slackness conditions for the Multicommodity Flow

Problem:

Theorem 15. (Multicommodity Flow Complementary Slackness) A pair of feasible

primal and dual solutions f , (π, σ) is optimal if and only if

πij(
∑
k∈K

∑
p∈Pk

δij(p)fp − uij) = 0,∀(i, j) ∈ A (6.1.12)

σk(
∑
p∈Pk

fp − dk) = 0,∀k ∈ K (6.1.13)

cp −
∑

(i,j)∈p

πij − σk ≥ 0, ∀k ∈ K, ∀p ∈ P k (6.1.14)

(cp −
∑

(i,j)∈p

πij − σk)fp = 0,∀k ∈ K, ∀p ∈ P k (6.1.15)

Rewrite the path flow formulation in a compact form and we then have a set

packing problem with convexity constraints:

min cTx (6.1.16)

Subject to:

Ax ≤ b (6.1.17)

Dx = u (6.1.18)

x ≥ 0 (6.1.19)

where vector b is the capacity for each arc (i, j) ∈ A, vector u is the demand/supply

of commodities, matrix A is the set of paths and matrix D is a block diagonal matrix

with one non-zero entry in each column indicating a particular path’s commodity.
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6.1.3 The Sub-network Formulation

The path formulation can be extended to a sub-network formulation by defining super

commodities. Let S denote the set of origin nodes or super-commodities, i.e. S ⊆ N .

Super-commodity s ∈ S is the set of all commodities with source node s. Let the set

of commodities with the origin node s be Ks.

Sub-network g for super-commodity s ∈ S is the combination of paths, where one

path pk for each commodity k ∈ Ks.

Let ϕij(t) denote the flow on arc (i, j) for sub-network g for super-commodity

s ∈ S, we have ϕij(t) =
∑

k∈Ks

∑
p∈Pk ψp(g)bijδij(p), where ψp(g) is the indicator

that path p is in sub-network g.

The sub-network formulation is as follows:

min
∑
s∈S

∑
g∈Gs

cgfg (6.1.20)

Subject to: ∑
s∈S

∑
g∈Gs

ϕij(g)fg ≤ uij,∀(i, j) ∈ A (6.1.21)

∑
g∈Ss

fg = 1,∀s ∈ S (6.1.22)

fg ≥ 0, ∀s ∈ S,∀g ∈ Gs (6.1.23)

where:

A: is the set of arcs, indexed by (i, j), where i is the tail node and j is the head node;

S: is the set of super-commodities, indexed by s;

Gs: is the set of all sub-networks with the origin node s, indexed by g;

fg: is the flow variable on sub-network g;
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cg: is the cost of the sub-network g;

ψij(g): is the flow on arc (i, j) ∈ g, otherwise, ψij(g) = 0;

uij: is the capacity on arc (i, j);

6.1.4 Comparison of Formulations

We compare the LP matrix sizes for different formulations:

Table 6.1: LP matrix sizes of optimization formulations
Formulation Number of Constraints Number of Variables

Node-Arc |N | × |K|+ |A| |A| × |K|
Path |A|+ |K|

∑
k∈K |P k|

Sub-network |A|+ |S|
∑

s∈S |Gs|

where:

N : is the set of nodes, indexed by i;

A: is the set of arcs, indexed by (i, j), where i is the tail node and j is the head node;

K: is the set of commodities in the problem, indexed by k;

S: is the set of super-commodities or origins in the problem, indexed by s;

P k: is the set of all paths for commodity k, indexed by p;

Gs: is the set of all sub-networks for super-commodity s, indexed by g;

To compare the path and sub-network formulations, Barnhart [6] provided an

example in which the sub-network formulation outperforms the path formulation,

when the number of commodities is larger, i.e. in the order of O(|N |2).

Because the number of super-commodities |S| is limited by the number of nodes

|N |, while the number of commodities can be O(|N |2), the sub-network formulation

often has less rows compared to the path formulation. However, the number of
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variables can be significantly larger. We can illustrate this through a simple example

as follows:

Suppose a super-commodity s has 10 commodities and each commodity has 10

paths, i.e. |Ks| = 10 and |P k| = 10 for k ∈ Ks. The number of variables in the path

formulation is
∑

k∈Ks |P k| = 100 and the number of variables in the sub-network

formulation is
∏

k∈K |P k| = 10 billion.

6.2 The Pricing Network

We set up a pricing network G̃ = (N, Ã) with the same set of nodes, arcs and

commodities as the original multicommodity network. For each arc (i, j) ∈ A, the

arc capacity remains unchanged, but the arc cost is changed to c̃ij = cij − πij, where

cij is the arc cost of the original multicommodity network and πij is the dual value

associated with arc (i, j).

Figure 6.1 illustrates a multicommodity network and its corresponding pricing

network. The node set and arc set are the same for two networks, and the cost of two

capacitated arcs, (1, 2), (3, 4), are c(1,2)−π1,2 and c(3,4)−π3,4 for the pricing network,

and c(1,2) and c(3,4) for the multicommodity network. There are only two capacitated

arcs in the network, which have set packing type constraints in the optimization, thus

have associated dual values π(1,2) and π(3,4).

As the dual values π are associated with set packing type constraints, we have

π ≤ 0. The arc cost of the multicommodity network is always nonnegative, i.e.

c(i,j) ≥ 0, ∀(i, j) ∈ N . The arc costs in the pricing network are also nonnegative, i.e.

c̄(i,j) = c(i,j) − π(i,j) ≥ 0.

6.2.1 The Pricing Problem

Given a dual solution (π, σ), the reduced cost of a path p is c̄p =
∑

(i,j)∈p(c(i,j)−π(i,j))−

σk, if path p is for commodity k. The first part of the reduced cost
∑

(i,j)∈p(c(i,j)−π(i,j))

is the summation of arc costs in the pricing network. The second part is the dual
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Figure 6.1: A multicommodity network and its corresponding pricing network.

value associated with commodity k, which is not part of the network. We have the

shortest path formulation for subproblem k for commodity k ∈ K:

min
∑

(i,j)∈A

(cij − πij)xij (6.2.1)

Subject to:

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =


−1, i = s;

0, i 6= s, i 6= t;

1, i = t.

∀i ∈ N (6.2.2)

xij ≥ 0,∀(i, j) ∈ A (6.2.3)
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where:

A: is the set of arcs, indexed by (i, j), where i is the head node and j is the tail node;

sk: is the source node for commodity k;

tk: is the sink node for commodity k;

xij: is the flow variable on arc (i, j);

cij: is the cost of arc (i, j);

πij: is the dual price of arc (i, j);

Because the arc cost is nonnegative cij ≥ 0 and the dual price πij ≤ 0, the updated

cost for arc (i, j) is nonnegative, i.e. cij−πij ≥ 0, we can use Dijkstra’s algorithm for

each origin node s ∈ S to find the shortest path for all commodities with source node

s. The time complexity of Dijkstra’s algorithm is O(|A|), where |A| is the number of

arcs in the network, the total time to price out all commodities is O(|A||S|), which is

consistent with existing algorithms for all pairs or multi-pair shortest path algorithms.

Wang [28] provided a comprehensive review of related algorithms.

Figure 6.2 gives an example for shortest paths on the MCF network. The first

network ship commodity 2,3 from node 5 to node 2 and node 6. We find the shortest

paths from node 5 (or node s, which is equivalent) to nodes 2 and 6. The second

network ship commodity 1 from node 1 to node 2.

For the shortest path p5,2 from node 5 to node 2, we calculate its reduced cost by

c̄p−σ1, where c̄p is the summation of all arc cost on the path and σ1 is the dual value

associated with commodity 1.
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Figure 6.2: Forward Shortest Paths on Multicommodity Network.

6.3 Dantzig-Wolfe Decomposition

Dantzig-Wolfe (DW) decomposition is a common technique used to solve problems

with block-angular structure. It is a generalization of Tucker’s work on the multicom-

modity flow network and it is one of most efficient exact algorithms to solve MCF

problems.

Dantzig-Wolfe decomposition can be applied using path or sub-network formula-

tions. In the path formulation, the algorithm decomposes the problem into a RMP

and |K| subproblems, one for each commodity. The RMP is a path formulation of

the multicommodity flow problem with a subset of paths generated by subproblems.

Each subproblem is a shortest path problem on the pricing network as introduced in

section 6.2, with additional arc cost of πij on arc (i, j) ∈ A, where πij is the optimal

dual solution of RMP for arc (i, j).
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In the sub-network formulation, the algorithm decomposes the problem into a

RMP and |S| subproblems, one for each super-commodity. The RMP is a sub-network

formulation of the multicommodity flow problem with a subset of sub-networks gen-

erated by subproblems. Each subproblem is a shortest path problem on the original

pricing network as introduced in section 6.2, with additional arc cost of πij on arc

(i, j) ∈ A, where πij is the optimal dual solution of RMP for arc (i, j). For each

super-commodity s, a shortest path from each commodity s ∈ Ks is combined to

form the sub-network.

After receiving the latest dual optimal solution from the RMP, each subproblem

then either provides a new path/sub-network with negative reduced cost or reports no

such paths/sub-networks exist. The paths/sub-networks provided by the subproblems

are added to the RMP and then solved to optimality. The above steps will be repeated

until no subproblem can provide negative reduced cost paths/sub-networks. Then the

global optimal solution for the multicommodity flow problem is found.

The algorithm can discard any non-basic columns in each RMP iterations. How-

ever, it might be advantageous to keep old columns because their reduced costs may

become negative in later iterations. The algorithm is finite if we keep all generated

columns because we will eventually generate all columns in each subproblem that is

finite.

Because signs of constraints in the RMP associated with arcs (i, j) ∈ A are less

than or equal to, we have πij ≤ 0. As cij ≥ 0, cij − πij ≥ 0 for all (i, j) ∈ A, the

shortest path problem can be solved efficiently using Dijkstra’s algorithm.

6.4 Row Generation

For capacitated arcs in the multicommodity flow problems, the percentage of satu-

rated arcs in the final optimal solution is typically low. Therefore, if an arc capacity

is large enough, i.e. larger than its total flow upon the global optimal solution, it can
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be treated as an uncapacitated arc and eliminated from the LP formulation.

As it is impossible to know beforehand which arc will be saturated and the set of

saturated arcs can change across iterations, a row generation approach is proposed

to dynamically find saturated arcs and include them into the LP formulation. The

overall process is as follows:

Given a RMP , we first assume all arcs are uncapacitated and solve it to optimality.

Then we add total flow on each arc and compare it with arc capacity for violations.

Add all rows that correspond to violated arcs into the LP formulation and resolve.

Repeat the above process until no capacity constraints are violated.

6.5 The primal dual simplex method for MCF problems

The primal dual simplex method (phase I) is a dual ascent LP solution method

that starts with a feasible dual solution and then iteratively constructs a primal

feasible RMP based on the complementary slackness conditions. It uses the RMP

dual solution to improve the current dual solution if primal infeasibility still exists in

the RMP. The algorithm terminates when all primal infeasibility disappears.

For simplicity, we assume the sub-network formulation is used in the following

discussions.

6.5.1 Construct the RMP problem for primal dual simplex methods

In primal dual subproblem simplex methods, it is critical to include all columns with

reduced costs under threshold ε into the RMP, otherwise the algorithm may not be

able to converge. This requirement makes constructing RMP for the primal dual

simplex method more difficult than that for the Dantzig-Wolfe decomposition.

For smaller problems, we can enumerate all columns and calculate their reduced

costs, form the RMP using eligible columns and exclude all ineligible columns.

For large cases, it may not be possible to check all columns to form the RMP. We

use a filtering approach as follows to make sure all columns with reduced costs under
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threshold ε will be included in the RMP, but other columns with larger reduced costs

can be included as well. When threshold ε is set properly, many arcs can be excluded

and the resulting network will be much smaller.

6.5.1.1 ε-Residual Network

When the MCF problem is big and too time consuming to enumerate all columns,

we can define admissible columns by forming a ε-Residual Network:

For each commodity k ∈ K, we denote Rk
ij = SPsk,i + (cij − πij) +SPj,tk −SPsk,tk

for each arc (i, j) ∈ A, Rk
ij is the distance above the shortest path between sk and tk

if arc (i, j) is included.

Denote Rij = mink∈K R
k
ij, which is the distance above the shortest path for any

commodity k ∈ K and define the ε residual network Gε as the sub-network consists

of arcs with Rk
ij of at most ε, i.e. Gε ≤ ε.

The size of ε-Residual Network can be controlled by the ε value and the resulting

network is typically much smaller than the original network.

Let A+ = A|Rij ≤ ε be the set of arcs included in the restricted master problem.

We can eliminate arcs in (i, j) /∈ A+, because Rk
ij ≥ Rij > τ for all (i, j) /∈ A+ and

any path with arc (i, j) will have path cost greater than the shortest path plus ε, thus

should be excluded from the RMP problem.

As for columns remaining in A+, it is still possible to have paths with costs

greater than the threshold ε. If such columns are active in the final simplex basis

upon convergence, then the problem is not optimal. Such phenomenon can often

happen when ε is big, even if the RMP is exact.

For primal dual simplex method phase I, the RMP is still a multicommodity flow

problem with all nodes and commodities as the original MCF problem and a subset

of arcs with arc cost of 0. We denote it the RMP-MCF-I problem. It can be solved

using traditional MCF algorithms, where the arc set is smaller and arc costs are 0.
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The RMP-MCF-I problem is easier than the original problem.

If the optimal objective value of the RMP-MCF-I is positive, which means there

must exist primal infeasibility when using only the current column set in the RMP-

MCF-I, then the optimal dual solution of the RMP-MCF-I can be used as an improv-

ing direction for the current dual solution as we explained previously. On the other

hand, if the optimal objective value of the RMP-MCF-I is zero, we have achieved

primal feasibility while maintaining dual feasibility.

If all columns in the final basis have zero reduced costs, thus satisfied complemen-

tary slackness conditions, we have the optimal solution.

Otherwise, if some columns with positive reduced costs are active in the final

phase I problem, the solution is only a near optimal solution for the MCF problem

and a phase II approach is needed to make it optimal.

Many phase II approaches can be used, such as Dantzig-Wolfe decomposition/

columns generation. In this research work, we use primal dual subproblem simplex

method phase II for MCF to find the global optimal solution, starting from the given

near optimal solution from phase I.

For primal dual simplex method phase II, an initial near optimal solution is pro-

vided by RMP-MCF-I and the RMP is a multicommodity flow problem with all nodes

and commodities as the original MCF problem with a subset of arcs. We denote it

the RMP-MCF-II problem. Similarly, it can also be solved using traditional MCF

algorithms. It is also easier than the original problem because of the initial feasible

solution and a smaller arc set.

Upon the convergence of the primal dual subproblem simplex method phase II,

the optimal solution of the final RMP-MCF-II problem is the global optimal solution

for the original multicommodity flow problem.
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6.5.2 Solve the RMP problem

For the RMP-MCF-II problem, the solution method is exactly the same as methods

for the original MCF problem and will not be repeated here. In this section, we focus

on methods for the RMP-MCF-I problem.

After the filtering step was introduced in the previous section, a restricted mas-

ter multicommodity flow problem phase I(RMP-MCF-I) network resulted in G+ =

(N,G+). The node set is still the same, but the arc set is smaller. The RMP-MCF-I

problem is a special MCF problem with zero arc costs.

For large problems, it is impossible to enumerate all columns in the ε residual

network, thus we use column generation to solve the RMP-MCF-I, which is a phase

I problem with all zero arc costs.

Given a dual solution (ρ, τ), the pricing network for the RMP has arc cost of

0− πij ≥ 0, thus still can be solved using the Dijkstra’s algorithms.

After the RMP problem with generated columns is solved, the new dual solution is

used to solve subproblems for each super-commodity and sub-networks with negative

reduced costs are added to the RMP. Repeat the above steps until an optimal solution

is found and the optimal dual solution for RMP will be passed back to the primal

dual simplex method.

6.5.3 Calculate the Step Size θ

It is known from the previous chapter that the optimal dual solution of the RMP

problem, i.e. RMP-MCF-I or RMP-MCF-II, is an improving direction for the current

feasible dual solution (ρ, τ).

Suppose (ρ, τ) is an optimal dual solution for the RMP. For primal dual simplex

phase I, the feasible dual solution is updated using the formula (π, σ) := (π, σ) +

θ(ρ, τ).

For primal dual simplex phase II, the feasible dual solution is updated using the
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formula (π, σ) := (1− θ)(π, σ) + θ(ρ, τ).

Additionally, (ρ, τ) is a feasible direction, but the step size θ needs to be smaller

than a specific value to maintain dual feasibility. The step size θ must be positive,

otherwise the dual feasible solution will remain unchanged and the PD algorithm

will not converge. If all columns with reduced costs less than or equal to ε > 0 are

included in the RMP problem, we can find a positive step size θ.

For the primal dual simplex method phase I, if the step size θ can be increased

indefinitely while dual feasibility is always preserved, then the dual problem is un-

bounded and the primal problem is infeasible.

For the primal dual simplex method phase II, the step size θ is limited between

0 and 1. If it can be increased to 1 while the dual feasibility is preserved, then the

dual solution (ρ, τ) for the RMP is also a dual feasible solution for the original MCF

problem. Therefore, a global optimal solution is found and the algorithm can be

terminated.

For each capacitated arc, there is a corresponding constraint in equation 6.1.17 and

an associated dual value πi,j. The arc associated reduced cost is c̄(i,j) = c(i,j)−π(i,j) >

0, as c(i,j) > 0 and π(i,j) ≤ 0. For each commodity, there is an arc from the node with

demand to the super sink node, whose reduced cost is 0 for commodity k.

The reduced cost for a path p is the summation of reduced costs of arcs on the

path minus the dual value for the corresponding commodity σk:

c̄p =
∑

(i,j)∈p

c̄(i,j) − σk (6.5.1)

To use the long step primal dual subproblem simplex method, we fix a step size θ,

solve shortest path problems using Dijkstra’s algorithm for each commodity k ∈ K,

let c̄kp be the shortest path for commodity k and set σk = c̄kp. From shortest paths for

each commodity, we calculate the corresponding dual objectives and pick the path

with the smallest dual objective. This path is the active column for the step size θ
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and we calculate its slope.

With θmin = 0 and θmax, we calculate the optimal step size using an algorithm

similar to Algorithm 5.3 as introduced in the previous chapter.

Algorithm 6.1 Find the optimal step size on Multicommodity Flow Network

Require: θmin, θmin

Ensure: θ
1: while TRUE do
2: Set dual value using πθmin

= π + θminρ, find shortest path for each commodity
with c̄k. Set σk = c̄k and calculate dual objectives for each commodity.

3: Find column i which is active at θmin, its linear function Z(θmin, i) = ai+θminbi,
where bi > 0.

4: Set dual value using πθmax = π + θmaxρ, find shortest path for each commodity
with c̄k. Set σk = c̄k and calculate dual objectives for each commodity.

5: Find column j which is active at θmax, its linear function Z(θmax, j) = aj +
θmaxbj, where bj < 0.

6: θ ← aj−ai
ai−aj

7: Set dual value using πθ = π + θρ, find shortest path for each commodity with
c̄k. Set σk = c̄k and calculate dual objectives for each commodity.

8: Find column k which is active at θ, its linear function Z(θ, k) = ak + θbk.
9: if θ = θmin OR θ = θmax OR bk = 0 then
10: STOP, OPTIMAL STEP SIZE IS FOUND
11: end if
12: if bk < 0 then
13: θmax ← θ
14: end if
15: if bk > 0 then
16: θmin ← θ
17: end if
18: end while

6.6 The Long Step Primal Dual Simplex Method for Multi-
commodity Flow Problems

In the previous chapter, a long step primal dual simplex method for linear program-

ming problems with convexity constraints is introduced. In the section, we apply it

to solve multicommodity flow problems.

The long step primal dual simplex method is the same as the traditional primal

dual simplex method except for how the step size θ is calculated. In traditional primal
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dual simplex methods, θ is calculated deterministically, to ensure a dual feasible

solution. In long step primal dual simplex methods, the step size θ is calculated to

maximize the dual objective. Typically, we have a longer step size for the long step

primal dual simplex methods, i.e. θLPD ≥ θPD, as introduced in the previous chapter.

For multicommodity flow problems, columns are not explicitly listed due to the

problem size. Therefore, we introduce a column generation approach to find the

optimal step size θ∗.

6.6.1 Find the Optimal Step Size θ∗ to Maximize the Dual Objective

Given the initial step size θPD calculated by the traditional PD method, we denote

θmin = θPD and a maximum step size θmax >> θmin.

It is known from the previous chapter that each step size θ has a corresponding

line associated with it, i.e. a× θ+ b. It is descending, if a < 0, or ascending if a > 0.

The optimal step size is derived by combining ascending and descending lines.

We use long step primal dual simplex phase I to illustrate the steps to find the

optimal step size. Given a step size θ, a shortest path problem is solved for each

k ∈ K. Let SPk denote the shortest path for k ∈ K, its cost ĉsp =
∑

(i,j)∈SPk
ĉij and

the dual value corresponding to commodity k is set to σk =
∑

(i,j)∈SPk
ĉij, so that the

reduced cost become zero.

The dual objective is:

Zθ =
∑

(i,j)∈A

π′ijuij +
∑
k∈K

σ′k

=
∑

(i,j)∈A

π′ijuij +
∑
k∈K

∑
(i,j)∈SPk

ĉij

=
∑

(i,j)∈A

(πij + θρij)uij +
∑
k∈K

∑
(i,j)∈SPk

(cij − (πij + θρij))

=
∑

(i,j)∈A

πijuij +
∑
k∈K

∑
(i,j)∈SPk

(cij − πij) + θ(
∑

(i,j)∈A

ρijuij −
∑
k∈K

∑
(i,j)∈SPk

ρij)
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Therefore, the linear function for θ is Zθ = aθ + b, where a =
∑

(i,j)∈A ρijuij −∑
k∈K

∑
(i,j)∈SPk

ρij and b =
∑

(i,j)∈A πijuij +
∑

k∈K
∑

(i,j)∈SPk
(cij − πij).

Algorithm 6.2 Find the optimal step size for Long Step primal dual subproblem
simplex method

Require: θmin, N,A,K, π, σ, ρ
Ensure: θ∗

1: Let a =
∑

(i,j)∈A ρijuij −
∑

k∈K
∑

(i,j)∈SPk
ρij

2: Let b =
∑

(i,j)∈A πijuij +
∑

k∈K
∑

(i,j)∈SPk
(cij − πij)

3: Let θ = θmin, solve shortest path problems to get LINEmin, amin, bmin

4: if a < 0 then
5: θ∗ = θ, STOP, OPTIMAL STEP SIZE IS FOUND
6: end if
7: Find a big enough θmax such that amax > 0. Keep LINEmax, bmax

8: while TRUE do
9: Set dual value using πθmin

= π + θminρ, find shortest path for each commodity
with c̄k. Set σk = c̄k and calculate dual objectives for each commodity.

10: Find column i which is active at θmin, its linear function Z(θmin, i) = ai+θminbi,
where bi > 0.

11: Set dual value using πθmax = π + θmaxρ, find shortest path for each commodity
with c̄k. Set σk = c̄k and calculate dual objectives for each commodity.

12: Find column j which is active at θmax, its linear function Z(θmax, j) = aj +
θmaxbj, where bj < 0.

13: θ ← aj−ai
ai−aj

14: Set dual value using πθ = π + θρ, find shortest path for each commodity with
c̄k. Set σk = c̄k and calculate dual objectives for each commodity.

15: Find column k which is active at θ, its linear function Z(θ, k) = ak + θbk.
16: if θ = θmin OR θ = θmax OR bk = 0 then
17: STOP, OPTIMAL STEP SIZE IS FOUND
18: end if
19: if bk < 0 then
20: θmax ← θ
21: end if
22: if bk > 0 then
23: θmin ← θ
24: end if
25: end while
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Table 6.2: Three methods for solving Multicommodity Flow Problems
Algorithm Solution Method
PD primal dual simplex method phase I and phase II
LPD long step primal dual simplex method phase I and phase II
DW Dantzig-Wolfe decomposition

6.7 Computational Experiments for Multicommodity Flow
Problems

In this section, we share data from the computational experiments conducted that

used a collection of publicly available multicommodity flow problems. We imple-

ment the primal dual subproblem simplex method (PD), the long step primal dual

subproblem simplex method (LPD) and Dantzig-Wolfe decomposition (DW).

In order to solve large-scale problems with millions of commodities, the sub-

network formulation is selected and row generation is used whenever possible to solve

the resulting subproblems, before passing them to the simplex solver (Gurobi). All

algorithms are coded in Java and all experiments are conducted using Gurobi 5.6 on

an OpenSUSE Linux 13.2 desktop with Intel Core i7-3770 @ 3.40GHz CPU and 16

GB memory. Table 6.2 provides a list of algorithms used.

6.7.1 Test Problems

We conduct computational experiments using the Planar data set for multicommodity

flows, which are artificial problems that mimic telecommunication networks, gener-

ated by Larsson and Yuan [20]. Nodes are randomly chosen as points in the plane and

arcs link neighbor nodes in such a way that the resulting graph is planar. Arc costs are

Euclidean distances and arc capacities are uniformly distributed. Commodities are

pairs of random origin and destination nodes, with uniformly distributed demands.

Larsson and Yuan [20] solved problems up to Planar1000. Bompadre and Orlin

[8] solved the multicommodity flow problem as a sequence of subproblems, on very

sparse network and solved problems up to Planar800.
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Table 6.3: Problem characteristics for test problems
Problem |N | |A| |K| |N ||K|+ |A|
Planar300 300 1680 3584 1,076,880
Planar500 500 2,842 3,525 1,765,342
Planar800 800 4,388 12,756 10,209,188
Planar1000 1,000 5,200 20,026 20,031,200
Planar2500 2,500 12,990 81,430 203,587,990
Chicago-Region 12,982 39,018 2,297,945 29,831,961,008

The other test problem is a transportation problem, i.e. Chicago-Region that

can be downloaded from http://www.bgu.ac.il/bargera/tntp/. Just like Babonneau

[2], we divided all demands by a same coefficient until the problem became feasible.

We found a feasible solution using coefficient 4 that was used in our computational

experiments. In literature, Babonneau [2] used coefficient 6 to have lower demands.

The characteristics of the test problems are listed in Table 6.3.

6.7.2 Computational Experiments

6.7.2.1 Impact of the Optimal Step Size

In our computational experiments, we study the performance of the long step pri-

mal dual subproblem method and its improvement over the traditional primal dual

subproblem simplex method.

In Tables 6.4 and 6.5, we compared step sizes and dual objectives for LPD and PD

at iteration 1. Because LPD and PD started from the same initial point, the feasible

dual solution π and the RMP dual solution ρ were the same for both approaches and

LPD consistently achieved longer step sizes and better dual objectives compared to

PD.

As a result, the number of iterations is much smaller for the LPD approach; for

example, for the largest case Planar2500 LPD took 9 iterations for Phase I, PD took

35 iterations for Phase I and the total run time is 6 times more for PD than LPD.

See details in Tables 6.6 and 6.7.
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Table 6.4: Step Sizes for LPD and PD algorithms at Iteration 1 on MCF problems
Problem LPD Phase I Step Size PD Phase I Step Size
Planar300 550.0 88.3
Planar500 900.0 450.0
Planar800 254.0 34.3
Planar1000 248.0 18.1
Planar2500 132.5 9.3
Chicago-Region 0.0689 0.0081

Table 6.5: Dual Objectives for LPD and PD algorithms at Iteration 1 on MCF
problems

Problem LPD Phase I Dual Objective PD Phase I Dual Objective
Planar300 9,685,080.0 2,382,403.3
Planar500 1,313,268.0 945,724.0
Planar800 8,412,130.0 1,703,882.0
Planar1000 103,752,182.0 13,782,620.9
Planar2500 637,432,132.4 78,984,440.2
Chicago-Region 4,707,771.7 1,170,742.9

Table 6.6: Number of iterations of LPD and PD algorithms on MCF problems
Problem LPD Phase I Iterations PD Phase I Iterations
Planar300 4 14
Planar500 2 2
Planar800 4 12
Planar1000 6 25
Planar2500 9 35
Chicago-Region 7 20

Table 6.7: Total time (seconds/minutes) of LPD and PD algorithms on MCF problems
Problem LPD Phase I LPD Phase I/II PD Phase I PD Phase I/II
Planar300 7.721(s) 16.757(s) 21.889(s) 29.526(s)
Planar500 5.325(s) 13.198(s) 4.168(s) 11.695(s)
Planar800 50.328(s) 98.073(s) 101.438(s) 144.116(s)
Planar1000 253.172(s) 717.466(s) 1063.532(s) 1481.518(s)
Planar2500 128.4(m) 746.0(m) 890.9(m) 1551.1(m)
Chicago-Region 921.1(m) 4143(m) 3074.2(m) 7179.6(m)
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Table 6.8: Objective values and optimality gaps of LPD and PD algorithms on MCF
problems
Problem LPD Phase I (optimality gap) PD Phase I (optimality gap)
Planar300 705,664,745.0727462 (2.27%) 701,520.057.9439197 (1.67%)
Planar500 521,276,544.3932601 (8.15%) 521,322,075.0894 (8.16%)
Planar800 1,217,239,781.8000221 (4.27%) 1,210,163,565.91488 (3.67%)
Planar1000 3,597,762,275.6686816 (4.29%) 3,536,266,451.57915 (2.51%)
Planar2500 13,371,649,768.60141 (5.6%) 13,013,849,521.820404 (2.776%)
Chicago-Region 1,850,103,425.34 (0.67%) 1,847,077,784.38 (0.51%)

Table 6.9: Total time (seconds/minutes) of LPD and DW algorithms on MCF prob-
lems

Problem LPD Phase I LPD Phase I and II DW
Planar300 7.721(s) 16.757(s) 8.178(s)
Planar500 5.325(s) 13.198(s) 5.519(s)
Planar800 50.328(s) 98.073(s) 41.123(s)
Planar1000 253.172(s) 717.466(s) 599.104(s)
Planar2500 128.4(m) 746(m) 1075.5(m)
Chicago-Region 921.1(m) 4143(m) 4449(m)

6.7.2.2 Computational Performance: Primal Dual Subproblem Simplex Methods
vs Dantzig-Wolfe Decomposition

In the literature, Barnhart [5] reported that Dantzig-Wolfe decomposition method was

about 1.5 to 2 times faster than the PDN (Primal Dual Network) implementations

and about 3 times faster than the Primal Dual implementation. Wang [28] reported

similar results for multicommodity flow problems with 49 to 300 nodes and 323 to

811 commodities.

Table 6.9 provides computational experiments to compare the long step primal

dual subproblem simplex (LPD) with Dantzig-Wolfe decomposition (DW). For all

cases, LPD performs very similar to DW and the gap becomes smaller for larger

cases, i.e. for Planar1000, LPD phase I is 42% of DW run time and LPD is only 20%

more than DW in total run time; for Planar2500, LPD phase I is 23% of DW run

time and LPD is faster than DW in total run time.

Table 6.10 provides detailed major and minor iterations for PD, LPD and DW.
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Table 6.10: Comparisons on number of iterations
PD LPD DW

Problem major minor major minor iterations
iterations iterations iterations iterations

Planar300 Phase I 13 60 4 15 -
Planar300 Phase II 1 15 1 15 19
Planar500 Phase I 2 6 2 6 -
Planar500 Phase II 1 13 1 12 13
Planar800 Phase I 12 49 4 16 -
Planar800 Phase II 1 19 1 19 19
Planar1000 Phase I 24 169 6 36 -
Planar1000 Phase II 1 33 1 34 41

PD and LPD algorithms solve many more subproblems than DW, but each of the

subproblems are easier than DW’s.
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CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH

This chapter concludes this thesis by highlighting this research work’s contributions in

Section 7.1 and proposing some potential directions for future research in Combined

Objective Least Squares, the long step primal dual simplex method and Multicom-

modity Flow problems in Section 7.2.

7.1 Conclusions

The first part of this research work focuses on COLS and various matrix factorization

methods associated with it.

Simplex methods sometimes encounter the degeneracy problem when the objective

value remains unchanged across iterations. Various methods have been introduced to

avoid it, such as Bland’s rule or interior point methods. COLS methods guarantee

strict improvement between iterations, thus eliminate the possibility of degeneracy.

In each COLS iteration, a series of least squares problems are solved efficiently to

ensure the overall effectiveness of the COLS method. In previous research work, QR

decomposition approaches were used to solve least squares problems because of their

numerical stability and ability to be used as a black box solver for any least squares

problems.

However, QR decomposition approaches are not as efficient as LU decomposition

approaches used in simplex methods, especially when solving a series of least squares

problems. As a result, the COLS approach solves the linear program in fewer itera-

tions compared to the simplex method, but spends more time in each iteration thus

influences COLSs overall performance.

In this research work, we evaluated alternative approaches to solve a series of
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least squares problems, such as augmented matrix approaches, normal equations ap-

proaches, etc., to find a balance between numerical stability and computational per-

formance. In augmented matrix approaches, we formed the augmented matrix and

solved it using LU decomposition. While this approach can successfully solve indi-

vidual least squares problems efficiently, there is no efficient way to solve a series of

least squares problems when consecutive problems differ by only one or two columns.

The normal equations approach with Chelosky factorization solved a series of

least squares problems efficiently with computational performance comparable to LU

decomposition approaches in simplex methods. Although this approach has been

used successfully in interior point methods to solve linear programming problems for

years and has never encountered numerical difficulty, the normal equations approach

has only been stable under certain conditions according to numerical analysis.

After carefully analyzing the QR decompositions computational performance in

COLS, we identified the computational bottleneck as the step to add a new column

in solving a series of least squares problems, which may be avoided if we use Chelosky

factorization instead. Based on these observations, we proposed a hybrid approach

to combine QR decomposition and Chelosky factorization to solve a series of least

squares problems. We used QR decomposition in all steps except the one to add a

column when Chelosky factorization was in use. This hybrid approach can have the

theoretical background of a semi-normal equation whose numerical stability can be

further improved through iterative refinement if needed.

We conducted numerical experiments on different variants of COLS, such as COLS

with QR decomposition, COLS with Chelosky factorization and hybrid COLS. COLS

with Chelosky factorization and hybrid COLS achieved similar computational perfor-

mance and they are about 30% faster than COLS with QR decomposition. We also

compared the COLS with Gurobi Simplex solvers: COLS performs much better in

comparision with the Gurobi primal simplex solver and outperforms the Gurobi dual
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simplex solver.

The second part of this research work made contributions to primal dual simplex

methods in solving multicommodity flow problems.

Primal dual simplex methods are very successful in solving large-scale set par-

titioning problems, especially in the airline industry. Barnhart [5] used it to solve

multicommodity flow problems and Wang [28] explored variants of multi-pair short-

est path algorithms to improve Barnhart’s approach.

In primal dual simplex methods, a feasible dual solution is maintained throughout

iterations and a restricted master problem is formed in each iteration. A RMP is

solved to optimality and its dual optimal solution is used together with the feasible

dual solution to find a step size so that a new feasible dual solution can be calculated.

These steps are repeated in each iteration until a global optimal solution is found.

When we were solving the multicommodity flow problem, which was formulated as

a set packing problem with convexity constraints, we noticed that the dual variables

associated with the set packing constraints π and the dual variables associated with

the convexity constraints σ can be processed separately: given any π ≤ 0, we can find

a dual feasible solution (π, σ) if a corresponding σ is selected. For different pairs of

π and σ, we have different dual objective values.

Based on these observations, we proposed a long step primal dual simplex method,

in which the step size was determined as a function of the feasible dual solution and

the RMP optimal dual solution. We discovered that it was a piecewise linear concave

function and proposed an efficient way to find the optimal step size that maximizes

dual objective.

Because larger dual objective improvements may lead to less iterations in the

primal dual simplex method, we expect the long step primal dual simplex method

will converge faster than the corresponding primal dual simplex method, even though

we spent a little more time in calculating the optimal step size in each iteration.
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We conducted extensive computational experiments on long step primal dual simplex

methods and achieved significant improvement over primal dual simplex methods.

We used the long step primal dual simplex method to solve large-scale multicom-

modity flow problems and solved two previous unsolved largest cases, Planar2500

and a Chicago-Region problem, to global optimality for the first time. The Chicago-

Region problem has over two million commodities and we used a tree/sub-network

based formulation that reduced the number of rows but significantly increased the

number of columns in the formulation and this was solved successfully. In order to

improve computational performance, we used row generation to include only active

arcs in the multicommodity flow network and column generation in various steps of

the long step primal dual simplex method, such as optimal step size calculation.

Dantzig-Wolfe decomposition approaches are very efficient in solving multicom-

modity problems and consistently outperform primal dual simplex methods by a

factor of 1.5 to 3 in computational performance based on past studies. Our long step

primal dual simplex method, which is significantly faster than the corresponding pri-

mal dual simplex method, outperforms Dantzig-Wolfe decomposition on large-scale

cases.

7.2 Future Research

In this section, we propose some possible directions for future research.

In solving integer programming problems, cutting planes may be generated as

new constraints are added after the optimal solution is found. Dual simplex methods

are very suitable in such cases, but primal simplex methods have troubles. COLS

approaches resemble primal simplex methods with no straightforward ways to make

good use of the existing optimal solution. However, COLS approaches move outside

the feasible region until the last step and the new cutting plane will move the current

solution back into the infeasible region. It will be very interesting to explore an
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efficient way for COLS to return to the optimal solution so that it can be used

efficiently in cutting plane approaches.

In our proposed hybrid approach, iterative refinement steps can be used to improve

numerical stability. However, we did not use this approach because our matrices were

not ill-conditioned. Further research on iterative refinement steps for semi-normal

equations can help us understand better its impact on computational performance

and stability.

We applied the long step primal dual simplex method to solve large-scale multi-

commodity flow problems that have been formulated as a set packing problem with

convexity constraints. This approach can also be applied to other formations such as

set partitioning/covering problems with convexity constraints. It is possible to ap-

ply long step primal dual simplex methods to solve other challenging problems with

convexity constraints. Additionally, for problems with features similar to convexity

constraints, we may also be able to discover a variant of the long step primal dual

simplex approach to find optimal dual steps efficiently.

Currently, we set a positive threshold for primal dual simplex methods. The

resulting solution may not be optimal if some active columns have positive reduced

costs thus a phase II approach is necessary to bring it to global optimality. If we

set the threshold to 0, the phase I solution will be optimal and further research can

explore the impact of the optimal step size on overall convergence rates.

The MCF case Chicago-Region with 2 million commodities is the largest multi-

commodity flow problem we can find in the literature. In future, we may find or

create larger multicommodity flow problems with more commodities to solve so we

can further explore this work area. For larger cases, we can apply parallel and dis-

tributed computation to solve them more efficiently. All pair shortest path problems

are suitable candidates to be parallelized.
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