
Rigid Partitioning Techniques for Efficiently Generating

Three Dimensional Reconstructions from Images

A Thesis
Presented to

The Academic Faculty

by

Drew Steedly

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

November 2004

Rigid Partitioning Techniques for Efficiently Generating

Three Dimensional Reconstructions from Images

Approved by:

Irfan Essa, Advisor
College of Computing

Aaron Bobick
College of Computing

Frank Dellaert
College of Computing

Rick Szeliski
Microsoft Research

Anthony Yezzi
School of Electrical and Computer Engi-
neering

Date Approved: November 2004

To my family

iii

ACKNOWLEDGEMENTS

There were many people along the way who I was fortunate enough to work with and learn

from. One of the first was John Harris, who introduced me to computer vision and research.

I am extremely grateful to Aaron Bobick and Arno Schödl for the many conversations which

helped give me an intuition for structure from motion. The discussions I had with David

Nistér were invaluable and taught me the tricks you never see in papers.

I have learned a great deal from my committee. I want to thank Anthony Yezzi for

teaching the most interesting course I have taken and introducing me to a world made up of

more than a sparse set of 3D points. I would like to thank Frank Dellaert for not letting me

give hand-waving justifications and insisting upon principled explanations. I learned the

right way to write code from him. Aside from great data sets, Rick Szeliski has given me

advice on how to describe difficult concepts more clearly. I would like to thank my adviser,

Irfan Essa, for allowing me the freedom to work on topics I found fascinating even though

he had to be very creative with funding. He fostered a wonderful atmosphere that made

my graduate experience very satisfying.

I would like to thank IDT for allowing me to work flexible hours and ensure spare

CPU cycles did not go to waste. I am very appreciative of the GVU staff for always being

cheerful and helping me navigate through Georgia Tech. The members of the CPL have

been wonderful assets and have provided many entertaining and enlightening lunchtime

conversations.

I am very grateful to my parents, my mom for always believing I was capable of anything,

and my dad for instilling in me the desire to know exactly how things work. Most of all, I

am grateful for the love and support of my wife and daughters.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . x

I INTRODUCTION . 1

II BACKGROUND AND RELATED WORK 5

2.1 Minimum Risk Reconstructions . 7

2.2 Practical Initialization Techniques . 8

2.3 Bundle Adjustment . 10

2.3.1 Gauge Freedoms . 12

2.3.2 Sparsity-Based Optimization . 14

2.4 Related Work . 16

III PROPAGATION OF INNOVATIVE INFORMATION 19

3.1 Information Propagation . 19

3.2 Stopping Criteria . 21

3.3 Discussion . 23

IV DIMENSIONALITY REDUCTION . 25

4.1 Minimum Risk Dimensionality Reductions 26

4.1.1 Choosing a State Parameterization 28

4.1.2 Linear Dimensionality Reduction 29

4.1.3 Rigid Dimensionality Reductions 32

4.2 Examples . 43

4.3 Discussion . 49

V HIERARCHICAL PARTITIONING . 56

5.1 Optimal Hierarchical Partitioning . 58

5.2 Results and Discussion . 61

v

VI COMPUTATIONAL COST . 63

6.1 Theoretical Computational Cost . 64

6.1.1 Overlapping Steps . 65

6.1.2 Steps Unique to Bundle Adjustment 68

6.1.3 Steps Unique to Partitioning . 69

6.2 Empirical Cost Analysis . 70

6.3 Discussion . 71

VII CONCLUSION . 75

7.1 Contributions . 75

7.2 Future Work . 76

7.3 Other Applications . 77

REFERENCES . 79

vi

LIST OF TABLES

1 The steps involved in both bundle adjustment and choosing partitions . . . 64

2 The computational cost of the optimization and partitioning stages. The
computational cost of factoring out the structure and performing the LU/Cholesky
decompositions dominate the computational cost for full bundle adjustment.
The computational cost for these steps drops by two orders of magnitude
when using 69 rigid partitions instead of all 1100 cameras. This data is
plotted in Figures 18 and 19. 71

3 The percent increase in residual error associated with closing the loop in
the pillar sequence with varying numbers of partitions was recorded. The in-
crease for 1 partition corresponds to the initial error increase (all the cameras
were locked together). Using all 1100 partitions corresponds to full bundle
adjustment, hence the 0 percent increase. The penalty for using 69 partitions
was only 0.1085%, while the computational cost decreased by approximately
two orders of magnitude. This data is plotted in Figure 20. 72

vii

LIST OF FIGURES

1 The bottom crosses represent frames f1 . . . f4, the top circles represent points
p1 . . . p6 and the lines between them represent projections of points into
frames. Note that only a few points are visible from each frame. 11

2 The occupancy of the Hessian corresponding to the camera network shown
in Figure 1. Entries affected by only camera parameters are in the upper
left (U) and entries affected by only structure parameters in the lower right
(V). The non-zero off-diagonal sub-blocks (W) correspond to projections of
a feature into a camera (edges in Figure 1). 12

3 (left) The bottom crosses represent frames f1 . . . f4, the top circles represent
points p1 . . . p6 and the lines between them represent projections of points
into frames. Note that only a few points are visible from each frame. (right)
This is an unraveled version of same structure as on the left with same
connections, but showing the different stages of processing as f4 is added.
Innovative information from a new frame is incorporated into the rest of the
system by propagating down to stage 5 from stage 1. 20

4 When calculating the stopping criteria, the off-diagonal blocks denoted by B
and BT are ignored . 22

5 The singular vectors corresponding to three lowest error modes are plotted
above. The markers represent camera centers, with the camera following a
square trajectory. A magnified view of the camera trajectory is shown in the
circle. Each camera is perturbed by the vector vij , which is the deformation
of camera j according to the ith singular vector. A full 3D reconstruction of
this synthetic sequence is shown in Figure 7. 41

6 Color coded 2-way and 4-way partitions of a synthetic sequence where all cam-
eras see all points. The top two were partitioned using the Hessian, while the
bottom two were partitioned using only the occupancy of the Hessian. Using
the Hessian produces tightly coupled partitions, while using only occupancy
produces random partitions. 44

7 Color coded 2-way and 4-way partitions of a synthetic sequence where the
camera travels in a square path. The top two were partitioned using the
Hessian, while the bottom two were partitioned using only the occupancy of
the Hessian. Since each feature is not observed in many frames, the occupancy
information is enough to generate tightly coupled partitions. As the camera
turns each corner, features are seen by more cameras. Therefore, the weakest
points to cut at are in the middle of each edge of the square. Note the 2-way
partitions generated by the Hessian and the occupancy of the Hessian are
equally valid since the sequence is symmetric. 46

8 Sparsity pattern of the Hessian from the synthetic square sequence used in
Figure 7. 47

viii

9 Color coded partitions of the model house (left) and corridor (right) sequences
using the Hessian-based partitioning. 47

10 A few images from the pillar sequence. 49

11 A few images from the high-end house sequence. Each row represents one
frame. The first (far left) image is from the forward facing camera and the
following four images were taken clockwise around the rig. The last (far
right) image was taken from an upward facing camera. The first row was
taken from a camera in the upper right corner of Figure 13. The second row
was taken from the turn on the center left side of the figure and the third row
was taken from a camera in the bottom right side of the figure. 50

12 Color coded 4, 14 and 56-way (top, middle, and bottom) partitions of the 225
high-end house sequence. The camera started in the upper right corner of the
figure, traveled to the middle left side and ends in the bottom right corner of
the figure. The second half of the trajectory included going down three steps,
which is visible in the reconstruction. 51

13 Color coded 2, 3 and 16-way (top, middle, and bottom) partitions of the 1106
image pillar sequence. The full Hessian was used to generate these partitions 52

14 Color coded 2, 3 and 16-way (top, middle, and bottom) partitions of the
1106 image pillar sequence. Only the occupancy of the Hessian was used to
generate these partitions . 53

15 Residual error after partitioning 2,4,8,16,32 and 64 ways using Hessian-based
and occupancy-based partitioning (solid red and dotted black, respectively).
The graph is normalized by the 64 partition residual. 54

16 Hierarchical partition assignments for frames 294 to 1400 of the pillar sequence. 62

17 Hierarchical partition assignments for frames 1600 to 2100 of the high-end
house sequence. The ladybug underwent a nearly pure rotation around frame
1850, causing several frames to be ignored. 62

18 The computational cost of the optimization and partitioning stages 72

19 The computational cost of the optimization and partitioning stages. The
cost of factoring out the structure and performing the LU decomposition
have been scaled by 0.5 to predict the cost of implementations that took
advantage of the problem’s symmetry . 73

20 The data from Table 3 is plotted here. The diminishing benefits of using
finer and finer partitionings when closing the loop for the pillar sequence is
clear from this plot. Approximately one decimal place of accuracy is gained
by quadrupling the number of partitions. The gain of using 17 partitions or
more is below 1% (10−2). 74

21 A horizontal cut through the partition hierarchy. 77

22 An uneven cut through the partition hierarchy. 78

ix

SUMMARY

This thesis explores efficient techniques for generating 3D reconstructions from im-

agery. Non-linear optimization is one of the core techniques used when computing a re-

construction and is a computational bottleneck for large sets of images. Since non-linear

optimization requires a good initialization to avoid getting stuck in local minima, robust

systems for generating reconstructions from images build up the reconstruction incremen-

tally. A hierarchical approach is to split up the images into small subsets, reconstruct each

subset independently and then hierarchically merge the subsets. Rigidly locking together

portions of the reconstructions reduces the number of parameters needed to represent them

when merging, thereby lowering the computational cost of the optimization.

We present two techniques that involve optimizing with parts of the reconstruction

rigidly locked together. In the first, we start by rigidly grouping the cameras and scene

features from each of the reconstructions being merged into separate groups. Cameras and

scene features are then incrementally unlocked and optimized until the reconstruction is

close to the minimum energy. This technique is most effective when the influence of the

new measurements is restricted to a small set of parameters.

Measurements that stitch together weakly coupled portions of the reconstruction, though,

tend to cause deformations in the low error modes of the reconstruction and cannot be ef-

ficiently incorporated with the previous technique. To address this, we present a spectral

technique for clustering the tightly coupled portions of a reconstruction into rigid groups.

Reconstructions partitioned in this manner can closely mimic the poorly conditioned, low

error modes, and therefore efficiently incorporate measurements that stitch together weakly

coupled portions of the reconstruction. We explain how this technique can be used to

scalably and efficiently generate reconstructions from large sets of images.

x

CHAPTER I

INTRODUCTION

Estimating a 3D reconstruction of a scene from a set of images is a common problem

in computer vision. The images could be from multiple cameras distributed throughout

the scene, from one or more video cameras moving through the scene, or from stationary

video cameras filming a rigidly moving scene. If the scene is static, these are equivalent

problems. Fundamentally, the objective is to compute a scene reconstruction and set of

camera orientations that are consistent with the images.

In feature-based reconstruction techniques, salient features are extracted from each im-

age, correspondences across images are established and a reconstruction consistent with

the feature correspondences is computed. The tasks of establishing correspondences and

estimating a reconstruction are not independent, which makes it necessary to alternate be-

tween extracting correspondences and refining the reconstruction. In general, refining the

reconstruction is a non-linear optimization process. This non-linear optimization problem,

or bundle adjustment as it is often called, is the focus of this thesis.

Since non-linear optimization requires a good initialization to avoid getting stuck in lo-

cal minima, systems for generating reconstructions from images build up the reconstruction

incrementally. For example, a hierarchical approach is to split up the images into small sub-

sets, reconstruct each subset independently and then hierarchically merge subsets, iterating

over the correspondence and non-linear optimization steps with each merging. Another

approach is to sequentially merge images into one ever-growing reconstruction. The basic

steps are the same: iterate over the correspondence search and non-linear optimization each

time the reconstruction is augmented.

Non-linear optimization becomes a computational bottleneck for large sets of images due

to the number of scene and camera parameters needed to represent the reconstruction. As

an example, if the images come from a video camera with known calibration (focal length,

1

pixel aspect ratio etc.), six parameters are needed to represent the location each image was

taken from (three rotation and three translation). At 30 images per second, this means over

10,000 parameters per minute of video are needed just to represent the image locations.

Naively optimizing the entire reconstruction every time it is augmented ignores the fact

that the reconstruction was already at a nearly optimal state. New information only occurs

at the boundary where the reconstruction is being augmented. In this thesis, we explore

ways in which to take advantage of this in order to lower the computational cost of the

non-linear refinement. We propose that rigid dimensionality reduction techniques enable

scalably and accurately refining a reconstruction as it is augmented.

A rigid dimensionality reduction consists of locking together sets of cameras and using

a single transformation to adjust their position. To understand this, it is useful to use

a spring-mass analogy. Each camera and scene feature represents a node and there is a

spring between cameras and scene features if the feature was observed in the image. Non-

linear minimization is the process of relaxing the spring-mass system to its rest state, and

merging two reconstructions can be viewed as attaching springs between two spring-mass

systems. A rigid dimensionality reduction is equivalent to locking nodes in the spring mass

system together so that the springs are not allowed to stretch or compress. Instead of many

individual nodes, a smaller number of rigid groups are optimized. This results in a lower

computational cost since fewer parameters are being optimized and only the springs that

span rigid groups get pulled on during the optimization.

In this thesis, we discuss two techniques that involve optimizing with cameras rigidly

locked together. The first technique, discussed in Chapter 3, starts by grouping the cameras

and scene features from each of the reconstructions being merged into separate groups.

Camera and scene feature parameters are then incrementally added to the optimization

until the reconstruction is close to the minimum energy. This technique is most effective

when the influence of the new measurements is restricted to a small set of parameters. The

second technique groups together parts of the reconstruction that are tightly coupled to each

other, which allows measurements that cause global deformations in the reconstruction to

be incorporated more efficiently.

2

The first technique incrementally propagates new information throughout the recon-

struction. In the spring-mass system analogy, this is equivalent to locking all of the nodes

together except for those directly connected to the new springs. After relaxing the sys-

tem, these nodes may pull on neighbors that are still locked down. Such neighbors are

released and relaxed. This procedure is repeated until the force being applied to any of the

locked-down nodes is below a threshold.

This results in a significant computational savings if incorporating the new information

only requires pulling a small subset of the nodes into the optimization. Reconstructions

where this is true occur when generating a reconstruction from a video sequence. To make

the correspondence problem tractable, the search for feature correspondences is typically

limited to pairs of images within a temporal window since they were probably taken from

spatially similar orientations. Scene features are acquired, tracked for a while and then lost,

which leads to reconstructions where cameras are tightly coupled to their neighbors but the

entire reconstruction has poorly conditioned modes. This is analogous to having a strip of

nodes that only have springs between nearby neighbors, making it easy to put a gentle bend

in the strip even though it is hard to put a “crease” in it. Attaching a new node to one end

of the strip only requires releasing a few neighbors to quickly approach the rest state.

In order to get a reconstruction that is as accurate as possible, though, it is desirable to

eliminate poorly conditioned modes. Correspondences that stitch together weakly coupled

parts of the reconstruction improve the conditioning of the reconstruction. Once an initial

reconstruction has been generated, the orientations of the cameras are roughly known.

Expanding the correspondence search to include image pairs that were taken from similar

spatial orientations but are not temporally close together adds measurements that stitch

together weakly coupled cameras. Converging to the new rest state after adding these

measurements tends to require deforming the reconstruction in the poorly conditioned global

modes.

We address this issue in Chapter 4, where we derive a spectral method for choosing a

rigid dimensionality reduction based on Bayesian risk minimization. The rigid partitions

generated by our approach preserve the low error modes of the reconstruction. Tightly

3

coupled parts of the reconstruction tend to undergo similar transformations in the low error

modes of the reconstruction. Since parts of the reconstruction in the same rigid group

must undergo the same transformation, we use the transformation each camera undergoes

in the low error modes as the feature space we cluster in. Reconstructions partitioned in

this manner can most closely mimic the poorly conditioned, low error modes, and therefore

efficiently incorporate measurements that stitch together weakly coupled portions of the

reconstruction.

The low error modes of the reconstruction are obtained by solving for the eigenvectors of

the Hessian corresponding to the smallest magnitude non-zero eigenvalues. Extracting these

eigenvectors is as computationally expensive as optimizing the reconstruction, so it does not

lead to a net reduction in computational cost if blindly used any time reconstructions are

merged. In Chapter 5 we extend our analysis to show how to coarsen a partitioning by

clustering tightly coupled rigid groups.

In order to hierarchically merge sets of images, each set of images is first reconstructed

independently and partitioned into rigid groups. Next, the partitioned reconstructions are

merged, and the new reconstruction is optimized by adjusting the rigid groups. Then the

rigid groups are clustered into a coarser representation, which, as we show in Chapter 6, has

the same computational cost as optimizing the rigid groups. In this manner, the number of

rigid groups stays roughly constant at each level of the hierarchy.

Although the discussions in this thesis focus on reconstructing scenes from images, the

techniques we discuss have a more general applicability. The problem we are addressing

can be described more abstractly by viewing the camera as a sensor that captures sparse

measurements of the scene. From this perspective, our techniques are useful in many sensor

trajectory estimation domains. For example, the correspondence problem and measurement

equations are different when aligning laser range scans, but the problem is still fundamen-

tally about simultaneously estimating the scene structure and sensor orientations.

4

CHAPTER II

BACKGROUND AND RELATED WORK

We want to generate a 3D reconstruction from a set of images of the scene and potentially

some prior information. The images of the scene are our measurements and the scene model

and camera orientations are our unknown state. The images can be predicted by projecting

the scene into the cameras. The reprojected scene model from a likely reconstruction

matches the images well. The quality of the reprojected scene defines the likelihood function

over the state space.

Ideally, we would like to extract a very rich scene model, potentially including all the

surfaces in the scene and their associated material properties (e.g.reflectance, transparency,

etc.). For the sake of simplicity and efficiency, though, we content ourselves with a much

simpler scene model. Instead of reconstructing surfaces, we only try to reconstruct a sparse

set of scene features. This significantly reduces the complexity of the scene model. There

are many local maxima in the likelihood function and using a sparse point model for the

scene enables searching the space of solutions more efficiently and robustly.

If the camera orientations are extracted with enough confidence, the problems of esti-

mating the camera orientations and scene model can be treated as independent. Given a

reconstruction with a sparse set of scene features, further processing can be performed to

generate a surface model for the scene [59] [12] [38] [46] or potentially refine the surface

model and camera orientations simultaneously [72].

In our implementation, we only reconstruct points, although more complicated prim-

itives such as lines, planes and curves have been used. Since we are only reconstructing

scene points, we extract image features that we hope correspond to points in the scene.

This changes our measurements from 2D images to a set of 2D points, their associated

appearance representations and the correspondences between features in different images.

Extracting features and correspondences has been the subject of much research and consists

5

of two main tasks, namely selecting features and matching features across images. There

are a number of techniques for selecting features, including Harris corners [31], KLT features

[61], affine invariant features [41] and SIFT features [47] . In general, they rely on finding

points in the image that are local maxima with respect to some measure such as intensity

curvature.

The likelihood of two features from different images corresponding to the same point in

the scene is evaluated by how similar the features are and the geometric likelihood of the

match. The feature similarity can be measured in a number of ways, from the normalized

cross-correlation of image patches to the Euclidean distance between the features in feature

space for SIFT features.

The geometric likelihood is a measure of the reconstruction quality for a set of correspon-

dences. A common theme in the literature is to iterate between establishing correspondences

based on the current reconstruction estimate and then refining the reconstruction [6] [23]

[42] [53]. A typical procedure might be to look for putative feature matches within some

disparity threshold. These putative correspondences are then used to robustly estimate a

two view reconstruction using RANSAC [22]. This throws out correspondences that are not

consistent with the hypothesized reconstruction. Then an epipolar constraint can be added

to the disparity constraint and more geometrically consistent correspondences can be ob-

tained. Going a step further, the problem can be addressed in an expectation-maximization

(EM) framework, with the expectation step encapsulating the correspondence search and

the maximization step encapsulating the reconstruction phase [14].

In this thesis, we are focusing on efficient techniques for generating a reconstruction from

a hypothesized set of correspondences. While we do not address the task of establishing

correspondences in detail, the work presented here fits naturally into any of the techniques

that iterate between the correspondence problem and reconstruction estimation problem.

The rest of this chapter steps through defining the non-linear objective function we

optimize, how to choose an initial state, non-linear minimization techniques, and, finally,

techniques for taking advantage of the problem sparsity when optimizing.

6

2.1 Minimum Risk Reconstructions

Given a state estimate, or reconstruction, we can generate measurement predictions by

simply rendering the sparse scene points in the images. Therefore, once a noise model is

assumed, the state likelihood function is also defined. Usually, a single reconstruction needs

to be picked, suggesting a Bayesian risk minimizing approach. We show below how a risk

minimization description of the problem leads to a maximum likelihood approach. While

the following discussion is straightforward and well known [17], it sets the stage for the risk

minimizing dimensionality reduction discussed in Chapter 4.

The minimum risk reconstruction, θ̂, is the one that minimizes the expected cost given

the measurements z and is obtained by integrating the cost times the likelihood over all

possible states, as follows:

θ̂ = argmin
θ

R(θ|z) (1)

= argmin
θ

E [C(θ, θ∗)|z] (2)

= argmin
θ

∫
θ∗

P (θ∗|z)C(θ, θ∗)dθ∗. (3)

It is common to explicitly or implicitly use the quadratic cost function, C(θ, θ∗) = ‖θ−θ∗‖2,

which allows for the following simplifications:

θ̂ = argmin
θ

E [C(θ, θ∗)|z] (4)

= argmin
θ

E
[
‖θ − θ∗‖2|z

]
(5)

= argmin
θ

{
‖θ‖2 − 2θE [θ∗|z] + E

[
‖θ∗‖2|z

]}
. (6)

The minimum is found by taking the derivative of (4) with respect to θ and setting to zero,

which yields

θ̂ = E [θ∗|z] (7)

=
∫

θ∗
θ∗P (θ∗|z)dθ∗, (8)

which means the minimum risk reconstruction is the distribution mean.

Feature-based structure from motion simplifies the measurements from full images to

point features in the image. It assumes that the 2D image points correspond to projections of

7

points in 3D space. Further, it assumes that these 2D measurements are corrupted by zero-

mean Gaussian noise. The projection function is defined by the camera model, with the state

vector, θ, being comprised of the 3D point locations, camera extrinsic parameters (rotational

and translational orientation) and possibly intrinsic parameters (e.g. focal length, principle

point, radial distortion, etc.). If the reprojection error is represented by the non-linear

function g(θ, z) and the measurement covariance is Σ, the distribution is

P (θ∗|z) =
e−

1
2
g(θ,z)T Λ−1g(θ,z)

(2π)
n
2 |Λ|

1
2

. (9)

Since finding the mean of this distribution is non-trivial, the Laplace approximation is

used and the distribution is modeled as a Gaussian whose mean and covariance are the

maximum likelihood (ML) point and the inverse of the Hessian of the error function at that

point, respectively. Therefore, the problem becomes one of finding the maximum likelihood,

or equivalently the minimum error, point in the state space.

2.2 Practical Initialization Techniques

A standard problem faced when minimizing a non-linear function is avoiding local minima.

The underlying assumption that is commonly made, and is reasonable in our case, is that

the error surface is nearly quadratic close to the ML point. This implies that while the

gradient of the surface will vary, the Hessian is locally constant. Using this idea, non-linear

minimization techniques based on Newton-Raphson iterations fit a quadratic function to the

error surface at the current state estimate. The minimum of this quadratic is used to predict

where the minimum of the underlying error surface is and to guide the update step choice.

It is important to note that we are only assuming that the error surface can be reasonably

well represented by a quadratic near the ML point. The iterative refinement must be started

near the ML point to reduce the likelihood of converging to a local minimum.

Most initialization techniques are composed of the same basic building blocks, solving

for the relative orientations of a few (usually two or three) cameras using image corre-

spondences, solving for the orientation of a camera given the position of scene features

(resectioning), solving for the position of scene features given camera orientations, and

solving for the relative orientations of sets of 3D scene features. The essential matrix [43]

8

[18] [54] encodes the relative orientations of two images and can be calculated with five

correspondences from cameras with known internal parameters. The essential matrix is de-

fined by geometric constraints inherent in projective geometry. For five points, the solution

is exact. For more than five points, the closed form solution minimizes an algebraic error

instead of the reprojection error. It is hoped that the camera positions that minimize this

algebraic error are close enough to the positions that minimize the reprojection error that

non-linear refinement will converge to the correct minimum.

When the camera internal parameters are unknown, a projective reconstruction is the

most that can be extracted. The fundamental matrix [19] [48] [69] describes the projective

two-view relationship and can be calculated with seven or more correspondences. The

trifocal tensor [33] encodes the geometric relationship between three views in a projective

reconstruction.

Once two or more camera orientations have been solved for, point positions can be

calculated [32]. Similarly, camera orientations can be calculated from three or more point

positions [22] [24] [30] [58] [55] in the calibrated case, or six or more point positions in the

projective case [32]. Finally, [36] provides a method for extracting the relative orientations

of two reconstructions of the same set of three or more points in the calibrated setting. For

the projective case, a technique for extracting the 3D homography relating two point sets

is provided in [32].

In sequential techniques [5] [42] [54], [56] the reconstruction is bootstrapped with a

multi-view method (essential, fundamental etc.). The reconstruction is extended either

by chaining together reconstructions or by alternating between adding new cameras using

the reconstructed points as a reference and adding in points using the the cameras as a

reference.

Subsequences are chained together by aligning the overlapping portions of the recon-

struction. This can be demonstrated with a metric reconstruction example. If none of the

cameras overlap but three or more points do, the similarity between the point sets defines

the transformation between the reconstructions. If there is a one camera overlap, there is

still a one DOF scale that needs to be estimated from an overlapping point correspondence.

9

Two or more overlapping cameras are sufficient to stitch together subsequences without the

use of point correspondences. Subsequence merging is the basis of hierarchical [23] [53] [56]

initialization techniques. Instead of sequentially chaining together the reconstructions, they

are hierarchically merged.

These closed-form initialization techniques are only optimal for the minimal number of

correspondences, at best. For more than the minimal number of correspondences, the solu-

tion minimizes some algebraic error and represents a sub-optimal solution. It is advisable,

therefore, to follow each step with a non-linear refinement stage.

As discussed previously, is is common to alternate between searching for correspondences

and updating the reconstruction. For example, if it was only known a priori that the images

came from a video camera, the correspondence search could be limited to a temporal win-

dow. This uses the assumption that temporally close images were taken from spatially close

locations. Once an initial reconstruction is generated, correspondences from cameras that

are not close temporally but are close spatially may be found. These correspondences can

be used to update the reconstruction and guide the search for even more correspondences.

Again, this calls for repeatedly applying non-linear refinement to the reconstruction.

2.3 Bundle Adjustment

Bundle adjustment is generally used to refer to the sparse, non-linear optimization used to

find the ML point in the state space [70]. As with most non-linear minimization problems, a

Newton-Raphson style approach is typically employed [57] [27] [70]. The non-linear objective

function is approximated as a quadratic using the curvature at the current state estimate.

The minimum of the quadratic is then solved for, and the state is updated. This procedure

is iterated until a stopping criteria is met. Each iteration, therefore, involves calculating

the Hessian and gradient of the error surface at the current state:

Hij (θ) =
∂2χ2 (θ)
∂θi∂θj

, Gi (θ) =
∂χ2 (θ)

∂θi
(10)

The Hessian is a sparse matrix, as can be seen by looking at the objective function:

χ2(θ) =
∑
c∈C

∑
p∈Pc

ET
cpEcp =

∑
c∈C

∑
p∈Pc

‖proj(θc, θp)− ucp‖2. (11)

10

f4f3f1 f2

p1 p2 p3 p4 p5 p6

Cameras

Features

Figure 1: The bottom crosses represent frames f1 . . . f4, the top circles represent points
p1 . . . p6 and the lines between them represent projections of points into frames. Note that
only a few points are visible from each frame.

Here, C is the set of all cameras and Pc is the set of features that were tracked in image

c. The tracked location is given by ucp and the projection prediction function, proj, has

the camera and feature parameters, θc and θp respectively, as arguments. From this, it is

clear that Hij only has non-zero entries when i and j correspond to parameters of the same

feature or camera or when they correspond to parameters of a camera and feature for which

there is a measurement. Figures 1 and 2 respectively demonstrate the network topology

and resulting Hessian sparsity graphically with a toy example.

The second order Taylor series expansion of the objective function is:

χ2 (θ + θ∆) ≈ χ2 (θ) + GT (θ) θ∆ +
1
2
θT
∆H (θ) θ∆. (12)

Using this quadratic approximation, the minimum occurs when

H (θ) θ∆min = −G (θ) (13)

θ∆min = −H (θ)+ G (θ) (14)

11

f1 p2 p3p1f2 f3 p4 p5 p6f4

f1

p1

p2

p3

f2

p4

p5

f3

p6

f4

U

V

W

TW

Figure 2: The occupancy of the Hessian corresponding to the camera network shown in
Figure 1. Entries affected by only camera parameters are in the upper left (U) and entries
affected by only structure parameters in the lower right (V). The non-zero off-diagonal
sub-blocks (W) correspond to projections of a feature into a camera (edges in Figure 1).

and the error at the minimum is

χ2 (θ + θ∆min) = χ2 (θ)− 1
2
G (θ)T H+ (θ) G (θ) . (15)

2.3.1 Gauge Freedoms

Using only image measurements, reconstructions are only determined up an unknown set

of gauge freedoms [50][70]. Reconstructions where the internal parameters of the camera

(e.g.focal length, skew, principle point, radial distortion) are known are referred to as met-

ric reconstructions and have a seven degree of freedom (DOF) gauge: unknown absolute

translation, rotation and scale. This can be shown by inserting an arbitrary similarity into

the projection function:

π (RX + t) = π

(
(R|t)

(
XT 1

)T
)

(16)

= π

(
(R|t) TT−1

(
XT 1

)T
)

(17)

Here, T is an arbitrary 3D similarity,

T =

 R t

0 s

 (18)

12

and π is the projection function π((x, y, z)T) = (x/z, y/z)T .

From this, it can be seen that applying the similarity T to the cameras and the inverse

transformation T−1 to the points has no effect on the locations of the reprojections in the

image. Consequently, transforming the reconstruction in the gauge has no effect on the

reprojection error. One way to visualize this is to pretend that there are steel rods going

through the camera center and point positions for each measurement and that the rods

pierce a hole through pieces of glass representing the image planes. For the rotational and

translational gauge freedoms, the positions of the points with respect to the camera centers

and image planes do not change; the entire reconstruction is just moved around rigidly. The

scale ambiguity can be visualized by just scaling up the entire reconstruction (including the

camera centers). This changes the depth of the points along the steel rods but does not

change the points at which they pass through the image plane.

Gauge freedoms can also be thought of as equi-potential manifolds through the state

space. Moving around on the manifold does not change the reprojection error or reconstruc-

tion likelihood. At each point in the state space there is a hyper-plane that is tangent to

the manifold. This hyper-plane manifests itself as singularities in the Hessian. The Hessian

has as many zero singular values as there are gauge freedoms. Therefore, instead of looking

for the minimum of a quadratic “bowl” that is fit to the error surface, we are looking for

any one of many points at the minimum of a “trough”.

This also means that care must be taken when solving for the update step in (13). There

are a number of ways discussed in [50] and [70] to address the gauge freedoms, including

using a pseudo-inverse, applying additional constraints to remove the gauge freedoms and

using Levenburg-Marquardt (LM) [57].

LM changes (13) to

(H (θ) + λI) θ∆min = −G (θ) , (19)

where λ is some small scalar. This effectively adds a “bowl” centered at the current state

to the “trough”. The new error function becomes an oblong “bowl”, but the minimum of

the new error function is no longer at the bottom of the “trough” (unless, of course, the

current state were already at the bottom of the “trough”). Therefore, even if the error

13

function were truly quadratic, an LM update would not step to the minimum. Another

way to visualize what LM is doing is to add “springs” that are at rest when the camera

centers and point positions are at their current state. The spring constants are adjusted by

changing the value of λ.

2.3.2 Sparsity-Based Optimization

Assuming the gauge freedoms have been addressed in some manner, the update step can

now be solved for iteratively. The sparsity of the network topology can be taken advantage

of to make each minimization iteration faster. If the optimization parameters are sorted

such that the camera and structure parameters are grouped separately, then the Hessian

can be decomposed as

H =

 U W

W T V

 , (20)

where U and V are the block diagonal portions of the Hessian corresponding to the cameras

and features respectively . W is the potentially full off-diagonal sub-block of the Hessian.

Applying a Gaussian elimination iteration allows us to cancel out the features from the

top row [9] [70] [32]. I −WV −1

0 I

 U W

W T V

 θc

θp

 =

 I −WV −1

0 I

 Gc

Gp

 (21)

 U −WV −1W T 0

W T V

 θc

θp

 =

 Gc −WV −1Gp

Gp

 (22)

This can be viewed as marginalizing out the structure parameters and allows us to solve

the following smaller system of equations for the update step of the camera parameters:

(
U −WV −1W T

)
θc = Gc −WV −1Gp (23)

The structure update can be subsequently extracted by solving the second row of (22):

W T θc + V θp = Gp (24)

V θp = Gp −W T θc (25)

14

Since V is block diagonal, this is relatively quick. The computational cost of each step of

the bundle adjustment process is discussed in more detail in Chapter 6.

The reduced matrix A = U −WV −1W T is a symmetric nd x nd matrix, where n is the

number of cameras and d is the dimension of the camera parameter vector (e.g.d = 11 for

projective reconstructions, d = 6 for metric). A d x d sub-block of A, Aij , contains nonzero

entries only if camera i and camera j have some of the same features projected in them.

Although for sequences in which most cameras have a few points in common A tends

to be nearly full, A is still sparse for sequences where most points are only seen by a few

cameras. The ordering of the matrix entries should be chosen to minimize fill-ins during

decomposition. This can be done during the decomposition using a bottom-up technique

such as minimum degree ordering, reverse Cuthill-McKee ordering or banker’s strategies.

Each of these attempts to find an ordering for A such that each successive elimination causes

as few fill-ins as possible [40] [45].

Domain knowledge can be used take advantage of sparsity in a top-down approach. For

example, in cartography, the method in which the images are captured is designed ahead of

time, so the rough reconstruction is known a priori. If the images are taken from a airplane

that sweeps a camera from side to side then the images are on a regular grid with each

image overlapping its nearest neighbors. This leads to A having three bands, the center

band corresponding to the current image and its neighbors on either side and the outer

bands corresponding to the connections between rows [25] [9]. This network structure lends

itself to nested dissection where the partitions are chosen by recursively bisecting the map.

By bisecting along the largest side of the grid, the number of connections spanning the two

sides is minimized. Therefore, if the middle column and row of
A B 0

BT C D

0 DT E

 (26)

15

are used as the separating set, then it would be permuted to
C BT DT

B A 0

D 0 E

 . (27)

This can be reduced just as when marginalizing out the structure by premultiplying by
I −BT A−1 −DT E−1

0 I 0

0 0 I

 . (28)

This means that the portions of the matrix corresponding to each side of the map, A and

E, can be decomposed independently, the update step for the variables in the separating

set can be calculated, and then the update step for each side of the map solved for. This

process can be repeated recursively, which leads to the nested dissection algorithm.

This works quite well for scenarios where the network topology is known a priori. When

the network topology is unknown, as is becoming more common when the images are ob-

tained from hand-held video cameras, the bisections need to be chosen automatically. This

is fundamentally a graph cut problem–partition the network graph into two sub-networks

with as few nodes in the separating set as possible. Many graph partitioning techniques

have been explored recently and spectral methods in particular continue to be a very active

area of research [35] [2] [28] [26] [39].

2.4 Related Work

In this thesis, we are focusing on ways to efficiently re-optimize a reconstruction as new

information becomes available. This can happen when subsequences are stitched together

or correspondences are added or refined. Often, however, the reconstructions are close to

optimal already, and the new information merely needs to be absorbed.

The work we present in Chapter 3 is most closely related to recursive estimation tech-

niques. There is a large body of work related to low order updates or downdates (adding

or subtracting measurements equations, respectively) to decompositions. In general, these

methods linearize all the measurements that have been added already. The updated Hessian

16

only changes if new measurements are added in or removed, not when the position in state

space changes. In non-linear problems, the Hessian is not constant across the entire state

space, but it is hoped that this is a reasonable approximation for small changes in the state.

General low order updates were used in an on-line setting in [29]. Recursive techniques are

an extension to the decomposition update methodology in that they drop variables from

the state space that no longer need updating [34]. Recursive techniques have been explored

extensively recently and have been used in numerous on-line systems [3] [51] [63] [49]. The

common theme in each of these is to marginalize out parameters that do not need to be

updated any more using the same technique described in 2.3.2.

The main benefit of these techniques is that they provide a constant computational cost

update to the reconstruction. There are two main penalties, however. First, measurement

equations are linearized about the state when they were first included in the optimization

so that non-linear effects are lost. Secondly, only a small portion of the state parameters

are updated on-line. The rest are marginalized out and dropped. This is tolerable if scene

features are only tracked over a moving window of images. Setting the portion of the state

vector being updated to a moving window of camera parameters and the scene features

affected by them can yield results that are close to optimal [49]. Scenarios in which the

camera trajectory has loops in it and scene features can periodically be reacquired, though,

cause problems for both the technique presented in Chapter 3 and recursive techniques.

In Chapter 4, we present a spectral technique for partitioning the reconstruction. As

we discuss, this is quite similar to the spectral graph partitioning techniques described in

Section 2.3.2 used to partition sparse matrices. There are numerous methods, including

nested dissection, to turn these into hierarchical partitioning techniques. The main differ-

ence between pure graph partitioning and our technique is that we take advantage of all

the information in the Hessian instead of just the sparsity.

Simultaneous Localization and Mapping (SLAM) is the robotics analog to structure

from motion. Not suprisingly, many of the same approaches have been taken in SLAM and

structure from motion. Kalman filtering approaches were explored in [16]. Sparse Extended

Information Filters (SEIF) use the sparsity of the network structure in a manner similar to

17

Chapter 3 [68]. Finally, the Atlas system uses a hierarchical representation to contain the

computational cost of estimating large maps [7].

18

CHAPTER III

PROPAGATION OF INNOVATIVE INFORMATION

As mentioned previously, the search for correspondences can be limited to a temporal win-

dow when generating an initial trajectory estimate. In this chapter, we argue that initial

estimates of this form can be generated both efficiently and causally. At the end of this

chapter, we discuss the impact of correspondences which are not limited to a temporal

window.

3.1 Information Propagation

The influence of new measurements can be propagated throughout the trajectory estimate

incrementally. This is enabled by the topology of the camera-feature network. Each camera

typically observes a few hundred features and each feature is tracked in at most a fixed set

of cameras defined by the temporal search window size. As shown in Figure 3, the influence

of perturbing a camera must be propagated through several “stages” of camera-feature and

feature-camera connections. Because of this network structure, neighboring cameras and

features are more tightly coupled than distant ones. This weak coupling of parameters can

be taken advantage of by only including a subset of camera parameters in the optimization

when a new camera and its accompanying measurements are added in.

If enough parameters are included in the optimization, the error introduced by the new

camera will be “diluted” enough that adding more parameters yields diminishing returns.

The main challenge of this approach is to decide which parameters to include in the op-

timization. We proceed by searching out from the newly added camera in stages. The

procedure can be summarized as:

1. Optimize the current set of parameters.

2. Check the stopping criteria of parameters one stage away.

19

f1

f2

p1 p2 p3

f3

f4f3

f4

p6p4 p5

Stage 3

Stage 2

Stage 4

Stage 5

Stage 1

f1 f2

p1 p2 p3 p4 p5 p6

Figure 3: (left) The bottom crosses represent frames f1 . . . f4, the top circles represent
points p1 . . . p6 and the lines between them represent projections of points into frames.
Note that only a few points are visible from each frame. (right) This is an unraveled
version of same structure as on the left with same connections, but showing the different
stages of processing as f4 is added. Innovative information from a new frame is incorporated
into the rest of the system by propagating down to stage 5 from stage 1.

3. Pull in parameters that do not meet the stopping criteria.

4. Repeat the procedure until all neighboring parameters meet the stopping criteria.

For example, in Figure 3, f4 represents the parameters of the camera that is being

incorporated into the reconstruction. Camera f4 influences the values of points p4, p5 and

p6, which, in turn, influence cameras f2 and f3. To incorporate the new information f4

provides into the reconstruction, first the parameters of f4 would be optimized with the rest

of the parameters remaining fixed. Next, the stopping criteria of p4, p5 and p6 would be

checked. Assuming that they do not meet the stopping criteria, they would be added to the

set of parameters being optimized along with those of f4. After optimizing, the stopping

criteria of the parameters of f2 and f3 would be checked.

If the stage-to-stage coupling is fairly uniform over the sequence, the number of stages

that get pulled into the optimization, and therefore the computational cost, should remain

20

constant. Empirical results in [65] showed that this was a reasonable assumption for the

case of features being acquired, tracked for a temporal window of frames and then lost.

3.2 Stopping Criteria

So far we have not discussed how to decide when to stop pulling stages of parameters into

the optimization, or what the stopping criteria should be. Here, we will look at common

stopping criteria for non-linear minimization problems and use them as a basis for deciding

when to stop pulling parameters into the optimization.

There are a number of different choices for stopping criteria. One of the most common is

to compare the error before and after taking a step. If the error goes down by less than some

threshold, say τ = 0.1%, the iterations are concluded. Using (12), this can be explicitly

stated as follows:

G (θ)T H−1 (θ) G (θ) = −θT
∆minG (θ) < 2τ χ2 (θ) . (29)

This stopping criteria still has the problem that it relies on θ∆min, the global minimum

of χ2 (θ). We will address this by making use of the network topology again. We will include

the parameters one stage out in the set of optimization parameters and calculate how much

error reduction would be gained by doing so.

This can be viewed as partitioning the Hessian and zeroing out the off-diagonal blocks.

Figure 4 shows the result of partitioning the Hessian using the boundary between stages

two and three in order to check the stopping criteria of stage two. The Hessian is then

approximated as

H (θ) ≈

 A 0

0 C

 . (30)

As documented in [70], this approximation underestimates the amount of error reduction

that can be obtained by stepping to the minimum since GA

GC

T A B

BT C

−1 GA

GC

 >

 GA

GC

T A−1 0

0 C−1

 GA

GC

 , (31)

where the gradient is (GT
A, GT

B)T .

21

f1 p2 p3p1 f2 f3 p4 p5 p6 f4

f1

p1

p2

p3

f2

p4

p5

f3

p6

f4

Stage 3

Stage 2

Stage 4

Stage 5

Stage 1

A B

TB C

Figure 4: When calculating the stopping criteria, the off-diagonal blocks denoted by B and
BT are ignored

Making this approximation, though, along with the assumption that the reconstruction

was at the maximum likelihood state before the new camera was added in, allows us to only

calculate

GT
c C−1Gc (32)

when checking the stopping criteria. Therefore, deciding whether or not to include another

stage in the optimization is only as computationally expensive as optimizing with that stage

included.

To see the consequences of making the block diagonal approximation described above,

consider carrying it to the extreme of only using the diagonal elements of the Hessian when

evaluating the stopping criteria. The problem is that it takes much longer for error to

propagate through the system, so the system might stop prematurely. For example, if the

system is only easy to “bend” many stages away from the stage where the new measurements

occurred but hard to “bend” nearer, the error reduction will die off before the distant stage

is reached. For problems where the error absorption ability of the system is uniform, though,

the stopping criteria should correlate well with the stopping criteria of (29), and the lower

predicted error reduction can be compensated for by lowering the threshold, τ .

22

3.3 Discussion

The incremental technique presented in this chapter allows for the estimation of a recon-

struction in approximately linear time for certain network topologies, specifically, when

features are acquired, tracked for a window of frames and then lost. Typical sequences

break this assumption in multiple ways. First, the window in which features can be tracked

is typically not a uniform temporal one. For non-uniform feature windows, the number of

cameras in each stage will vary from stage to stage causing varying numbers of parameters

to be pulled into the optimization.

Second, if features are only tracked for a window of frames, the reconstruction will tend

to have poorly conditioned global modes. This can be visualized by imagining a long, thin

steel rod. While the rod is very hard to bend locally (e.g. trying to create a crease), it

is much easier to create a smooth, gentle bend that goes the length of the rod. Similarly,

reconstructions with only locally tracked measurements are well conditioned locally but tend

to be poorly conditioned at a global level. Reacquiring features can significantly increase

the confidence of the estimate. This is similar to adding braces between distant parts of

the thin steel rod.

Because of this, features are typically reacquired by specifically trying to look for loop

closings. While these new measurements help remove poorly conditioned modes of the

reconstruction, they also tend to cause updates consisting of non-local deformations. This

can cause a significant number of parameters to be pulled into the optimization when using

the incremental technique presented in this chapter.

In the next chapter, we will look at dimensionality reduction techniques as a way of

addressing these limitations. Fundamentally, a dimensionality reduction defines a manifold

in the state space. Optimizing using a dimensionality reduction restricts the update steps to

lie on the manifold, but, since the manifold space can be represented with fewer parameters,

the update step can be faster. This illustrates the basic computational cost versus accuracy

trade off that must be addressed when choosing a dimensionality reduction. In general,

update steps on a smaller dimension manifold can be calculated faster but the maximum

likelihood spot on the manifold tends to be less likely.

23

Our incremental technique can be viewed as a rigid dimensionality reduction. We de-

scribe rigid dimensionality reductions in more detail in the following chapter, but the basic

idea is to lock together sets of cameras and points. The rigid groups of cameras can be

represented as a single transformation instead of each individual transformation, which is

how the state dimension is reduced. In our incremental technique, all the parameters that

have not been pulled into the optimization are rigidly locked together. Therefore, there is

one big rigid group with all the unoptimized parameters in it. All of the parameters being

optimized are just special cases of rigid groups–they only have one camera or point in the

group.

With this perspective, it is easy to see how to handle merging two subsequences with

our incremental technique. When just adding a handful of cameras to the optimization, we

immediately put them all into the optimization set. When merging two subsequences, a

few measurements are required to “stitch” them together. Therefore, a big rigid group can

be defined to include each subsequence with the cameras and point parameters involved in

stitching the sequences together pulled into the optimization set. This effectively puts a

“hinge” between the two subsequences and allows them to move around freely. It also helps

keep the parameters involved in the optimization close to the “hinge”.

Just as when stitching together two subsequences, camera trajectories that loop back

on themselves need to have the ends of the camera path stitched together. If the loop had

been broken up into a number of arcs that were reconstructed independently, as suggested

in [23], it could just be treated as a bunch of hinged together subsequences.

The question of where to insert the “hinges” still remains, though. Principled methods

for choosing the hinge locations, or, equivalently, for defining how to choose which cameras

and points get assigned to which rigid groups, are discussed in detail in the next chapter.

24

CHAPTER IV

DIMENSIONALITY REDUCTION

When estimating a reconstruction, it is common to apply non-linear refinement many times.

Optimizing all of the camera and scene parameters each time is computationally prohibitive.

In this chapter, we discuss dimensionality reduction techniques and show how to use them

to efficiently update a reconstruction.

A dimensionality reduction impacts the computational cost of updating the reconstruc-

tion by reducing the size of the system of equations used to calculate the state update step.

There are a number of other components to the computational cost that are impacted by

the choice of dimensionality reduction, such as the cost of initially calculating the system

of equations, the number of iterations required to converge and the overhead required to

choose the reduced dimensional space. This means the computational cost of updating a

reconstruction using equal dimensionality representations can vary significantly.

Unfortunately, this potential reduction in computational cost comes at a price. Because

dimensionality reductions define a manifold through the state space, the minimum risk state

of the augmented reconstruction, in general, does not lie on the manifold. Instead, the best

we can do is to chose the minimum risk point on the manifold. It is hoped that this point

is not significantly riskier than the minimum risk point of the entire state space.

In order to demonstrate some of these considerations, imagine our state space is three

dimensional and we want to chose a one dimensional representation. One choice would

be to select a straight line through the space. If the likelihood function in the full three

dimensional space is close to Gaussian, the likelihood function along the line would be as

well. Alternatively, one could chose the one dimensional curve such that it resembled a ball

of string. Suddenly, the one dimensional distribution no longer resembles a Gaussian but

instead has many local minimum. While points in 3D space that are close together are close

on the line as well, this is not the case in a ball of string curve. As can be seen, searching

25

for the minimum risk point on our ball of string curve is much harder than on a line even

though they are both one dimensional representations.

With this in mind, we discuss two types of dimensionality reductions in this chapter,

linear and rigid. A linear dimensionality reduction corresponds to choosing a hyperplane

as the manifold through the state space and is discussed in more detail in Section 4.1.2. In

a rigid dimensionality reduction, groups of cameras are rigidly locked together and a single

transformation is used to adjust the camera positions instead of the individual camera

parameters. Rigid dimensionality reductions are discussed in more detail in Section 4.1.3.

As we are using Newton-Raphson style iterations, we want to we chose a parameteri-

zation for our reconstruction such that the likelihood distribution is well approximated by

a Gaussian close to the ML state. Both linear and rigid dimensionality reductions tend

to preserve this behavior and do not fundamentally make the search problem significantly

harder. In other words, they do not correspond to a “ball of string” type of dimensionality

reduction.

We use a Bayesian risk minimization framework to derive a principled technique for

choosing linear dimensionality reductions and use it as a basis for choosing rigid dimension-

ality reductions. We show that dimensionality reductions should preserve the high variance

modes of the reconstruction since updates to the reconstruction tend to be concentrated

around them. We also show that linear dimensionality reductions have the undesirable

effect of destroying the sparsity of the Hessian whereas rigid dimensionality reductions pre-

serve the sparsity. This gives rigid dimensionality reductions a significant computational

cost advantage. In Chapter 6, we discuss the computational cost versus accuracy trade-off

inherent in any dimensionality reduction and evaluate the performance of rigid dimension-

ality reductions with respect to the trade-off.

4.1 Minimum Risk Dimensionality Reductions

Given that we are considering linear and rigid dimensionality reductions, we can ask what

the best dimensionality reduction would be for each one. For both classes of dimensionality

reduction, we assume the cost of updating the reconstruction using it is constant within

26

the class and the distinguishing factor is what the risk is at the minimum risk point on the

manifold.

We can express the minimum risk we can achieve while staying on a manifold as

min
θ̃

R(f(θ̃)|z). (33)

Here, f(θ̃) represents a manifold through the state space parameterized by the reduced

dimensional vector θ̃. We can express the minimum risk manifold, f̂ , we should optimize

on once some currently unknown new measurements become available as

f̂ = argmin
f

min
θ̃

R(f(θ̃)|z, z+). (34)

z and z+ represents our current and unknown, new measurements respectively. We assume

z and z+ are independent and drawn from the same stationary distribution (i.i.d.). In the

case of merging subsequences or closing the loop, z+ represents the new measurements that

stitch them together. We should be able to improve our dimensionality reduction choice if

at the time we choose the dimensionality reduction we knew more information about the

new measurements. For example, we might know our correspondence algorithm is likely to

stitch together subsequence near certain cameras. We discuss how this information could

be taken advantage of in Chapter 7, but keep the i.i.d. assumption here for the sake of

generality and simplicity. This means R(f(θ̃)|z, z+) = R(f(θ̃)|z) and leaves us with

f̂ = argmin
f

min
θ̃

R(f(θ̃)|z) (35)

= argmin
f

min
θ̃

E[‖f(θ̃)− θ‖2|z], (36)

once we substitute in the quadratic cost function used in the derivation from Chapter 2.

This is a more general problem than finding a single minimum risk point in the state

space. Here, instead of looking for a single point in state space, we are allowing our estimate

to lie anywhere on the manifold and looking for the minimum risk manifold. As we show

below, the minimum risk linear manifold is centered on the minimum risk point and lines

up with the highest variance directions in state space. In other words, we should make sure

the linear manifold captures our current best guess as well as the directions we are least

confident in.

27

4.1.1 Choosing a State Parameterization

It is important to note that while the ML point in state space is independent of the chosen

parametrization, the high variance modes of the reconstruction are not. The choice of

parameterizations can affect the rate of convergence when searching for the ML point, but

the ML point in state space maps to the same reconstruction, up to the gauge freedoms,

regardless of the parameterization choice. Conversely, if a manifold lines up with the high

variance modes of the reconstruction for some parameterization, it may map to a manifold

that does not for other parameterization choices.

The high variance modes of the reconstruction correspond to the low error modes. If the

reconstruction is viewed as a spring mass system, a low error mode defines how to “bend”

the entire reconstruction one unit distance in state space with little effort. Imagine the

spring mass system was laid out on a grid and it is easiest to compress or stretch it along

the x axis. By changing the x axis parameter scaling, we are deforming the state space, so

we can make it arbitrarily hard to deform the spring mass system one unit along the x axis

simply by re-parameterizing. Therefore, the choice of parameterization should be explicitly

considered when choosing a dimensionality reduction.

For metric reconstructions, the state space consists of the camera orientations and the

point positions. While it may be natural to scale the camera rotations all in radians and

the camera and point locations in equal distance units, there is no obviously natural scaling

between the camera rotational parameters and translational parameters. Also, it is common

to detect and reconstruct scene points at or near infinity, which probably makes a quadratic

cost function on their position unsuitable.

In robot localization applications, there may be a clear set of parameters, such as the

sensor (camera) position, that are important. This is the cost we used in our experiments

and is a reasonable choice for cases when there is not an explicitly obvious cost function.

More specifically, we first marginalized out the structure parameters from our state space

as in (22). This allows us to only adjust the camera positions and have the scene structure

implicitly optimized (up to a linear approximation). The optimal scene structure can be

explicitly solved for by back substituting in the camera parameters. After marginalizing

28

out the structure, our state space consists only of the cameras’ rotational and translational

parameters.

We found it hard to choose a good scaling between the rotation and translation pa-

rameters, possibly due to the objective function being a non-linear function of the rotation

parameters and numerical limitations when the rotational parameters were scaled differ-

ently than the translational parameters. A more sophisticated approach for relative scaling

between the rotational and translational parameters, such as using the individual variances

might have yielded more reliable results. The approach that we found worked well in prac-

tice, though, was to make the simplifying assumption that the rotation and translation

were independent and simply drop the rotational parameters from our cost function when

partitioning. For object centered parameterizations [67], this is a reasonable assumption

and we found it worked well in practice.

This leaves us with just the camera positions being considered in the quadratic cost

function as we are choosing our dimensionality reduction. Of course, as we discuss more

later, the scene and camera rotation parameters are still used in the optimization.

4.1.2 Linear Dimensionality Reduction

A linear dimensionality reduction corresponds to choosing the manifold to be a hyperplane

in state space and can be represented mathematically as f(θ̃) = θ0 + Aθ̃. This defines a

hyperplane passing through θ0 whose normal is defined by A. θ0 can be thought of as a

default reconstruction and the columns of A represent ways to deform the reconstruction.

Each entry of θ̃ controls how much each column of A contributes to the composite defor-

mation. A linear dimensionality reduction is defined once θ̃ and A have been chosen, and,

as we show below, the minimum risk choices are to have θ0 correspond to the ML state

estimate and have the columns of A span the highest variance modes of the reconstruction.

Minimum Risk Dimensionality Reduction The minimum risk linear dimensionality

reduction derivation is similar in many respects to the standard derivations of principle

component analysis (PCA). We assume the state vector is N -dimensional and we want to

reduce it to n-dimensional, so the problem amounts to choosing the N -dimensional vector

29

θ0 and the N by n matrix A.

We start by eliminating θ̃ from (36) by differentiating with respect to θ̃ and setting the

result to zero.

argmin
f

min
θ̃

E[‖f(θ̃)− θ‖2|z] (37)

= argmin
θ0,A

min
θ̃

E[‖θ0 + Aθ̃ − θ‖2|z] (38)

= argmin
θ0,A

E[(θ0 − θ)T (I −A(AT A)−1AT)(θ0 − θ)|z]. (39)

This is saying we are only interested in the minimum risk point on any hyperplane we

choose.

Using the compact singular value decomposition of A = USV T , we can simplify the

rank deficient matrix A(AT A)−1AT to UUT . From this, we see we are free to choose S and

V to be any diagonal and orthonormal matrices we want as long as they are not singular

because θ̃ compensates for our choice. This means we have only placed a constraint on the

subspace A spans, not the scaling or rotation in that subspace. For simplicity, we choose for

S and V to both be identity matrices. This leaves us with A = U , which is the orthonormal

basis our dimensionality reduction spans. Therefore, (39) can now be expressed as

argmin
θ0,U

E[(θ0 − θ)T (I − UUT)(θ0 − θ)|z]. (40)

Now we solve for θ0 by taking the derivative with respect to θ0 and setting it to zero.

This leaves us with

(I − UUT)θ0 = (I − UUT)E[θ|z]. (41)

Since UUT , and hence I − UUT , are rank deficient, there is a family of solutions we can

choose from. We choose the mean, µ = E[θ|z], which, using the Laplace approximation,

corresponds to the ML reconstruction.

Now, all that is left is to choose the optimal subspace for A to span, which is

argmax
U

E[(µ− θ)T UUT (µ− θ)] (42)

= argmax
U

trace(UT E[(µ− θ)(µ− θ)T]U) (43)

This maximization can be accomplished by setting the columns of U to the singular vectors

of the covariance, E[(µ− θ)(µ− θ)T] = Σ, corresponding to the largest singular values.

30

Therefore, the variance-minimizing linear dimensionality reduction contains the mean

of the state space spans the highest variance state subspace. This can be interpreted as

saying we expect to get the most benefit by updating the state estimate along subspaces

with which we are least confident in our estimate.

Since the reconstruction covariance is approximated by the inverse of the Hessian, we

would actually extract the lowest error modes of the Hessian when looking for the highest

variance modes of the reconstruction. Therefore, the procedure for calculating a linear di-

mensionality reduction would be to first find the ML state and then extract the eigenvectors

of the Hessian at that point corresponding to the smallest eigenvalues. The ML point is

used to define θ0 and the eigenvectors are used to fill in the columns of A.

As discussed in Chapter 2, the Hessian has as many singularities as there are gauge

freedoms, n. The eigenvectors which span the gauge of the reconstruction (corresponding to

eigenvalues of zero) can be dropped from A, which effectively constrains the reconstruction

to not move with respect to the gauge.

Computational Cost As discussed in at the beginning of this chapter, there are many

aspects to the computational cost aside from the cost of solving for the update step. While

a linear dimensionality reduction by definition lowers the size of the system of equations

needed to solve for the update step, it actually increases the computational cost of setting

up the system of equations. Additionally, the sparsity of the system of equations is removed,

which makes solving the system of equations slower.

This can be seen more clearly by considering each step of the non-linear refinement

when using a linear dimensionality reduction. In order to set up the system of equations,

which requires calculating the Hessian and gradient, the Jacobian and error need to be

calculated. The Jacobian has as twice as many rows as there are measurements, one for

each of the horizontal and vertical portions of the reprojection error. The Jacobian has as

many columns as there are parameters being estimated. The Hessian and gradient can be

expressed in terms of Jacobian and error as H = JT J and G = JT E respectively.

Additionally we can split the Jacobian up as J = [Jcr|Js], where Jcr is the portion

31

corresponding to the reduced dimension camera parameters, and Js is the full dimensional

scene parameters. Once the Jacobians and resulting Hessian have been calculated, the

parameters corresponding to the scene structure are marginalized out just as with full

bundle adjustment. This leaves a system of equations with as many variables as there are

reduced dimensional camera parameters (n instead of N).

The significant difference is that, while the both the Jacobian corresponding to the

camera and scene parameters, Jc and Js, are block diagonal and hence very sparse, Jcr

is full. The is because in full bundle adjustment each measurement only contributes the

to parameters corresponding to one camera or scene point. On the other hand, a single

parameter in the linear reduced dimensional space deforms the entire reconstruction and

therefore is affected by all measurements. This changes the Hessian from a block diagonal

matrix with sparse, off-diagonal sub-blocks into an arrowhead matrix, where only the struc-

ture sub-block remains block-diagonal. Additionally, the Hessian obtained after factoring

out the structure parameters are full.

The net effect is that the cost of calculating the Jacobians and Hessians is significantly

more expensive than full bundle adjustment and no sparsity can be taken advantage of

when solving the system of equations for the update step.

4.1.3 Rigid Dimensionality Reductions

An alternative to linear dimensionality reduction is to use a rigid dimensionality reduc-

tion. In rigid dimensionality reductions, cameras are clustered into several partitions and

the cameras in each partition only move along the gauge freedoms with respect to each

other. In the state vector, each cluster of cameras can then be represented by a single, 7

DOF similarity instead of a 6 DOF transformation for each camera. In addition, since the

cameras in each partition only move with respect to each other along the gauge freedoms,

only the measurements that span partitions need to be considered when optimizing. This

means the Jacobian is smaller since fewer measurements means fewer rows. Also, since each

measurement only contributes to the error of the partition and scene feature it corresponds

to, the sparsity of the Jacobian is maintained. Therefore, rigid dimensionality reductions

32

reduce the cost of calculating the Hessian and gradient as well as the cost of solving for the

update step.

Once we have chosen the partition assignments for the cameras, scene points are either

assigned to a partition or left as features in world space. A point is assigned to a partition if

all of the cameras it is observed by are grouped together in the same partition. By pulling

the point into the partition, all of the measurements associated with it can be ignored.

Assuming the point was at its rest state with respect to the cameras, pulling the point into

the partition or leaving it out both result in the same reconstruction. Pulling it into the

reconstruction allows us to ignore its measurements, hence speeding up the calculation of

the system of equations, and also reduces the amount of time needed to marginalize out the

structure.

Minimum Risk Dimensionality Reduction Choosing a rigid dimensionality reduction

amounts to specifying which sets of cameras are grouped together in a partition. We now

show how this set assignment problem can be cast as a variance minimizing clustering

problem with the appropriate choice of feature vectors. Just as with a linear dimensionality

reduction, we want to be able to deform the reconstruction in the low error modes using our

reduced dimensional representation of the reconstruction. We have constrained the cameras

to be in rigid groups, though, which limits us to a discrete set of manifolds through the

state space, one for each possible set assignment. In order to minimize the Bayesian risk,

we need to pick the manifold that lines up as much as possible with the minimum risk linear

manifold.

This can be visualized by returning to our thin metal strip analogy. Suppose we are

trying to simulate the deformations our thin metal strip undergoes when some unknown

force is applied using a discrete approximation of the metal strip for our simulations. In

order to get the most accurate simulation results, we want the discrete approximation of

the strip to capture as much of the low energy modes as possible. If the stiffness of the strip

varies over its length, the stiffer segments tend to move the same way relative to each other

in the low energy modes. Since our discrete approximation constrains segments to move

33

rigidly, the best way to approximate the low energy modes is to group together parts of the

strip that move nearly rigidly with respect to each other and create segment boundaries

near any weak points on the strip.

More explicitly, we want to minimize the squared distance (due to our variance mini-

mizing cost function) of each low energy mode to the best fit we can generate using our

discretized approximation. We weight the fitting error for each mode by the inverse of the

energy required to perturb the strip in that mode. This causes our approximation to assign

more importance to the lower energy modes than the high energy modes.

The best approximation the discretized metal strip can make of a mode is to split the

mode’s deformation up into segments that match our discretization and take the mean

deformation of each segment. Applying the mean deformation to each discrete element

gives us the best match. We can turn the problem around and cluster the deformations

of each point on the strip into groups to find the set assignments. If we use a variance

minimizing clustering technique, such as k-means, then the partition assignments that yield

the minimum variance clusters also give us the way to segment the strip that best fits the

mode.

We have just shown how to fit a single mode, but we want to match all of the modes.

When fitting a single mode, the feature vector for a point is the transformation the point

on the strip undergoes. To match all the modes, we need to expand the feature vector to

contain the deformation the point undergoes in each mode, weighted by the inverse of the

amount of energy required to deform the strip by the mode.

For a 3D reconstruction, we are trying to group cameras so that rigid deformations

matching the low error modes can be generated. Since we have factored out the structure

and camera rotational parameters, each mode is composed of a translation vector for each

camera. Just as in the metal strip analogy, we cluster these vectors. Intuitively, we expect

cameras that observe the same portions of the scene from similar vantage points are strongly

coupled together and undergo similar transformations in the low error modes. Conversely,

the transformations of very weakly coupled cameras tend to be uncorrelated in the low error

modes.

34

In order for the clustering to make sense, though, the cameras need to be parameterized

so that similar transformations are close together in the feature space. For example, if two

cameras observe the same portion of the scene from the same vantage point but one camera

is upside down, the transformation vectors corresponding to the low error mode, or even the

gauge freedoms, are quite different in camera space. Therefore, the transformation vectors

being clustered need to be expressed in the world coordinate system. This ensures each

camera has an identical transformation vector when transformed in the gauge and close

transformation vectors map to similar deformations.

This can be accomplished by parameterizing each camera as if it were in a partition, for

example

Eij(θi) = π (KiRi (T (θi, Xj)) + ti)− zij . (44)

This represents the reprojection error of point j in camera i. Xj is the position of point

j and Ki, Ri and ti are the current calibration matrix, rotation matrix and translation

for camera i. The camera translational parameters are given by θi and T (θi, Xj) represents

transforming a point by θi. Using the cost function we described above, T (θi, Xj) = θi+Xj ,

but T could be any transformation in the gauge, including a seven DOF transformation

representing rotation, translation and scale.

Using this parameterization, rigidly adjusting a set of cameras is accomplished by simply

applying the same θi to all of them. Effectively, we have put each camera in its own partition.

Cameras can be merged into the same partition simply by using the same value of θi for all

merged cameras. This allows us to borrow all of the derivation from the linear case as our

starting point. Using notation similar to the linear case, therefore, the rigid dimensionality

reduction is f(θ̃) = Arθ̃ + θ0r. As before, Ar is an N by n matrix where N and n are the

dimensions of the full state space and reduced state space respectively.

As we mentioned previously, though, limiting the dimensionality reduction to being rigid

imposes an additional constraint on our solution. This constraint shows up in the sparsity

pattern of Ar. Since only the parameters corresponding to cameras in the same partition

are affected by perturbing the partition’s parameters, Ar has the following sparse, block

35

structure:

Ar =

I
...

I

0 0

0

I
...

I

0

0 0

I
...

I

. (45)

In order to borrow from the linear derivation, we use Ur, the orthonormal basis Ar spans.

Since a camera only belongs to one partition, the columns of Ar are already orthogonal. The

columns can be normalized by scaling them by the number of cameras in the corresponding

partition. This yields

Ur =

I

|S1|
1
2

...

I

|S1|
1
2

0 0

0

I

|S2|
1
2

...

I

|S2|
1
2

0

0 0

I

|Sp|
1
2

...

I

|Sp|
1
2

, (46)

where |Si| represents the number of cameras in partition i.

Because Ur is orthonormal, Ar(AT
r Ar)−1AT

r = UrU
T
r . Therefore, as in the derivation

for the linear dimensionality reduction, the problem can be stated as:

argmin
θ0r,Ur

E[(θ0r − θ)T (I − UrU
T
r)(θ0r − θ) (47)

The choice of θ0 is unaffected by the sparsity constraints placed on Ur, so the result

36

θ0r = E[θ|z] from the linear derivation still applies. As before, this means our default

reconstruction is the ML reconstruction.

Our remaining problem is to find the orthonormal matrix Ur that satisfies

argmax
Ur

trace(Ur
T ΣrUr), (48)

or equivalently

argmin
Ur

trace(Ur
T Σ−1

r Ur), (49)

and is also composed of sub-blocks that are weighted identity matrices or the zero matrix.

If we did not have this constraint on Ur, then we would just set its columns to the singular

vectors of Σr corresponding to the largest singular values. Unfortunately, singular vectors

do not, in general, satisfy our constraint, so we have to take a different approach.

Spectral Graph Partitioning Luckily, this problem is nearly identical to the one faced

in graph partitioning [64] [10] [15] [60] [11] [20] [21] [52] [71]. In graph partitioning, the

minimum normalized cut partitioning is given by

argmin
X

trace(XT QX), (50)

where Q is the Laplacian matrix of the graph. The Laplacian is the degree minus the

adjacency, Q = D − A, where the degree is a diagonal matrix whose entries are the sum

of the edge weights connected to each vertex and the adjacency is a matrix where entry

ij is the edge weight between vertices i and j. For undirected graphs, the Laplacian is a

symmetric matrix whose rows and columns sum to 0. The number of rows and columns of

the Laplacian is equal to the number of vertices in the graph [11].

The set assignment matrix, X, is non-zero if the node corresponding to the ith row is

contained in the partition represented by the jth column. More specifically, xij = 1/|Sj |
1
2

if vertex i is a member of set Sj , with |Sj | denoting the number of vertices in set Sj , and 0

otherwise. The assignment matrix is analogous to Ur, the difference being the sub-blocks

in X are the scalar 1/|Sj |
1
2 instead of the matrix I/|Sj |

1
2 . In our problem, the Laplacian is

analogous to the Hessian, Σ−1
r .

37

In spectral graph partitioning, the eigenvectors of the Laplacian are re-arranged into

feature vectors in order to transform the problem into one of variance minimizing clustering.

The singular value decomposition of Q is V ΓV T , where Γ = diag(λ1, λ2, . . . , λn) is the

diagonal matrix of singular values and V = (v1, v2, . . . , vn) is the matrix of singular vectors:

V =

v11 v21 vN1

v12 v22 · · · vN2

...
...

...

v1C v2C vNC

(51)

As we show below, the feature vectors to be clustered are the rows of Γ+V . Denoting the

jth entry of the ith singular vector as vij , then the feature vector corresponding to vertex

j is

fv
j = (v2j/λ2, v3j/λ3, . . . , vnj/λN)T . (52)

If we only had one partition which contained all of the nodes, then X would a unit

vector in the direction specified by (1, 1, . . . , 1)T . Since the cut size for this partition is 0,

this means Q has at least one singular vector with an singular value of 0. This is analogous

to a gauge freedom which shows up as a singular vector of the Hessian with an singular

value of 0. As denoted by the pseudo-inverse in Γ+V , this singular vector is dropped when

generating the feature vectors.

Also, since the eigenvectors with small eigenvalues get weighted more when generating

the feature vectors being clustered, a common practice is to only use the eigenvector with

the second smallest eigenvalue (since the smallest corresponds to putting all the nodes

in one partition). This eigenvector is referred to as the Fiedler vector. As we described

above, the intuition behind the clustering is to try to find discrete approximations to the

eigenvectors. If there is a single good k-way separator for the graph and all other separators

are significantly worse, then the Fiedler vector tends to have entries clustered around k

discrete values. In this case, the Fiedler vector would also have an eigenvalue close to zero

and well separated from the other eigenvalues. For this case, only using the Fiedler vector is

a reasonable approximation and the clustering problem has been made into a 1D clustering

38

problem, which degenerates to picking scalar ranges for splitting up the Fiedler vector. For

example, a 2-way cut assignment amounts to thresholding the entries of the Fiedler vector,

{vi < τ, vi ≥ τ}. Many techniques for choosing τ have been tried, including 0 and the

median of v [11].

Hessian-Based Partitioning It is natural to ask, then, if we could extend this technique

to our problem. If we view the graph as a spring mass system, the edge weights determine

the spring constants and a good partitioning is one that cuts the weakest springs. After

marginalizing out the structure as well as the camera rotational parameters, our recon-

struction can also be viewed as a spring mass system where the spring constants are 3x3

matrices instead of scalars. There is a spring with this 3D spring constant between each

pair of cameras that observe the same scene point and the springs encode vantage point

information. For example, imagine there are three cameras that all see the same points. If

the first two cameras are located at the same spot while the third views the scene from the

side, it is expected that the first two have much more correlated motion in the low error

modes.

Instead of viewing each camera as a single node in the spring mass system, we could

have viewed each of the three translational parameters as a different node. Then, instead of

3x3 spring constants connecting two cameras, we would have had two pairs of three nodes

that are fully cross-connected using scalar spring constants. We would need to impose the

additional constraint that all the parameters of a camera belong to the same partition;

a camera cannot span a partition. This illustrates the main difference between spectral

graph partitioning and our problem. Either we need to impose an extra constraint that

nodes corresponding to parameters from the same camera always get grouped together or,

equivalently, we need to extend the derivation to handle multi-dimensional weights.

All that is needed to modify the normalized cut solution is to change the feature vector

slightly. Whereas each row of Γ+V corresponds to a node in the graph, each set of three

rows corresponds to a camera in our problem. The feature vector for our problem consists

of the concatenation of all rows of Γ+V corresponding to the same camera. As in the graph

39

cut solution, the singular vectors corresponding to the gauge freedoms are not included

when constructing the feature vectors. Therefore, the feature vector for camera j is

fs
j = (vT

1jλ1, v
T
2jλ2, . . . , v

T
njλN)T , (53)

where vij is the portion of eigenvector i corresponding to camera j and λi is the eigenvalue

associated with eigenvector i.

Figure 5 graphically shows perturbing a camera trajectory by a few of the singular

vectors and the effect it has on individual cameras. The graphical interpretation of (53) is

that we are taking each of the deformation vectors of a camera from each of the eigenvectors

and scaling it by the corresponding eigenvalue. These vectors are then concatenated into

one large feature vector.

Derivation We now show the variance minimizing clustering of the feature vectors we just

described is equivalent to the partitioning that minimizes (49) and is the risk minimizing

partitioning we seek. First, we expand (49) using the singular vectors and values of Σr =∑N
i=1 λiviv

T
i :

argmax
Ur

N∑
i=1

λitrace(UT
r viv

T
i Ur) (54)

= argmax
Ur

N∑
i=1

λi

P∑
j=1

trace(UT
rjviv

T
i Urj), (55)

where Urj is the block of columns of Ur corresponding to the jth partition and P is the

number of partitions.

Letting vij be the portion of the ith singular vector corresponding to camera j (as shown

in Figure 5) this can be further expanded to

argmax
Ur

N∑
i=1

λi

P∑
j=1

∥∥∥∥∥∥
∑
k∈Sj

vik

|Sj |
1
2

∥∥∥∥∥∥
2

. (56)

This is very similar to the max-sum vector partitioning formulation from [1] which, as we

show below, is equivalent to the problem of choosing variance minimizing clusters. A slightly

different derivation is also given in [4].

40

Figure 5: The singular vectors corresponding to three lowest error modes are plotted above.
The markers represent camera centers, with the camera following a square trajectory. A
magnified view of the camera trajectory is shown in the circle. Each camera is perturbed
by the vector vij , which is the deformation of camera j according to the ith singular vector.
A full 3D reconstruction of this synthetic sequence is shown in Figure 7.

41

To proceed, we define the centroid and variance for the components of singular vector i

and set j as

µij =
1
|Sj |

∑
k∈Sj

vik σ2
ij =

1
|Sj |

∑
k∈Sj

‖vik − µij‖2 . (57)

This centroid is the same one mentioned in the thin metal strip simulation example above

and corresponds to the deformation a rigid group must undergo to best match the eigenvec-

tor. The variance represents how well the rigid approximation fits the eigenvector. A high

variance means the rigid group was not able to approximate the deformation described by

the eigenvector very well while a low variance means it was.

Using the centroid, we can rewrite (56) as

argmax
Ur

N∑
i=1

λi

P∑
j=1

|Sj | ‖µij‖2 . (58)

Because the eigenvectors are normalized,

P∑
j=1

|Sj |‖µij‖2 +
P∑

j=1

|Sj |σ2
ij = ‖vi‖2 = 1. (59)

This allows us to express (56) in terms of the variance instead of the centroid, as follows:

argmax
Sj

N∑
i=1

λi

1−
P∑

j=1

|Sj |σ2
ij

 (60)

= argmin
Sj

N∑
i=1

λi

P∑
j=1

|Sj |σ2
ij (61)

= argmin
Sj

P∑
j=1

|Sj |
N∑

i=1

λiσ
2
ij . (62)

Since the variance of the features assigned to partition j is

N∑
i=1

λiσ
2
ij , (63)

the partition assignment that minimizes (62) also minimizes the intra-cluster variance of

the feature vectors from (53).

Therefore, once the singular values and singular vectors of Σr have been calculated,

they can simply be rearranged into feature vectors as described above and handed off to

a distortion minimizing clustering algorithm such a k-means clustering. If the clustering

algorithm finds the global minimum, the set assignments that are returned correspond to

42

the partition assignments that minimize the expected quadratic cost when the partitioned

system is used to update the reconstruction as new measurements are obtained.

In practice, we have found the feature vectors generated from camera trajectories were

relatively “easy” to cluster. To find our partition assignments, we ran k-means clustering

several times on the feature vectors with different random seeds each time and found the

solution was rarely improved after the first ten or so restarts.

Additionally, in [66], we proposed using a few of the singular vectors corresponding to

the smallest singular values of the Hessian, scaled by the inverse of the singular values,

as feature vectors. The above analysis shows the optimal solution is to use all the scaled

singular vectors, since the estimated covariance, Σr, is the inverse of the Hessian. Therefore,

if only Ñ singular vectors were used, we were effectively making the approximation

Σr =
N∑

i=1

λiviv
T
i ≈

Ñ∑
i=1

λiviv
T
i , (64)

where the singular values are sorted from largest to smallest. In practice, we found very

few singular vectors were necessary to achieve good results and that the singular values

quickly dropped by an order of magnitude. An analysis of how this approximation affects

traditional spectral graph partitioning is given in [8].

4.2 Examples

In this section, we show examples of applying the partitioning technique presented in this

chapter. For comparison, we also partition sequences using spectral graph partitioning,

with the network connectivity defining the graph being partitioned. The sparsity pattern

of the Hessian matches the sparsity pattern of the graph’s Laplacian with the exception

that the Hessian has non-zero blocks where the Laplacian has non-zero scalar entries. It is

trivial, then, to create the Laplacian of the graph just by looking at the sparsity pattern of

the Hessian. On the other hand, the Laplacian does not contain enough information for us

to regenerate the Hessian. As we described above, the additional information the Hessian

contains encodes additional vantage point information in the form of multidimensional spring

constants between nodes of the graph.

43

Figure 6: Color coded 2-way and 4-way partitions of a synthetic sequence where all cameras
see all points. The top two were partitioned using the Hessian, while the bottom two were
partitioned using only the occupancy of the Hessian. Using the Hessian produces tightly
coupled partitions, while using only occupancy produces random partitions.

To illustrate the difference between Hessian-based and Laplacian-based partitioning, we

generated a synthetic sequence consisting of two “clumps” of cameras that all see the same

set of points and partitioned it using both techniques (Figure 6). Clearly, the Laplacian-

based partitioning does not have enough information to separate the cameras into the two

“clumps” since each camera has identical connections to the scene. This results in purely

random partition choices. The Hessian, though, is able to take advantage of the fact that

cameras with similar vantage points are more tightly coupled than cameras from different

vantage points. This results in partitions where cameras with similar vantage points are

grouped together.

In general, though, the occupancy does contain some information about the rigidity of

the system. To demonstrate this, we created a synthetic sequence where the camera travels

44

in a square path, as if circumnavigating an object. Again, we partitioned it using both the

Hessian and the sparsity pattern of the Hessian, which is shown in Figure 8. Figure 7 shows

the results of the partitioning, which are nearly identical for both techniques.

Sequences generated from video usually exhibit a combination of these traits. Features

are acquired, tracked for a while and then lost. Adjacent images can all see the same

features but, over the length of the video, the sparsity can become more informative. To il-

lustrate this, we generated reconstructions from the well known “model house” and “Oxford

corridor” sequences as well as the “pillar” and “high-end house” sequences.

In the model house sequence, the front of the house is visible through most of the

sequence and the side of the house becomes visible in the last few images. This can clearly

be visualized in the Hessian-based partitioning (Figure 9) where the first seven frames are

grouped in one partition and the last three are grouped in the other. Similarly, in the

corridor sequence, the camera starts to turn slightly down a hall at the end, causing the

partitions to consist of the first seven cameras and the last four. While these are certainly

not sequences that require partitioning to optimize, the Hessian-based partitioning provides

an interesting method for visualizing the rigidity of the systems.

The pillar sequence was shot with a calibrated, hand-held video camera. The video, a

few frames of which are shown in Figure 10, was taken by walking in a loop around the

pillar, with the ending frames roughly in the same position as the starting ones.

The high-end house sequence was generated by Microsoft Research using Point Grey’s

Ladybug camera. The Ladybug is a rig of six calibrated cameras whose optical centers are

approximately collocated. Each frame consists of six images captured simultaneously which

can be stitched together to create a single panoramic image. The high-end house sequence

was obtained by walking in and around a house with this camera and a few frames are

shown in Figure 11.

For both the pillar and high-end house sequences, we generated a reconstruction using

techniques similar in spirit to [23], [42] and [53]. There is a seven degree of freedom gauge

for metric reconstructions, three rotational, three translational and a scale. For the pillar

45

Figure 7: Color coded 2-way and 4-way partitions of a synthetic sequence where the camera
travels in a square path. The top two were partitioned using the Hessian, while the bottom
two were partitioned using only the occupancy of the Hessian. Since each feature is not
observed in many frames, the occupancy information is enough to generate tightly coupled
partitions. As the camera turns each corner, features are seen by more cameras. Therefore,
the weakest points to cut at are in the middle of each edge of the square. Note the 2-way
partitions generated by the Hessian and the occupancy of the Hessian are equally valid since
the sequence is symmetric.

46

Figure 8: Sparsity pattern of the Hessian from the synthetic square sequence used in Figure
7.

Figure 9: Color coded partitions of the model house (left) and corridor (right) sequences
using the Hessian-based partitioning.

47

sequence, we selected KLT features [61] and tracked them in subsequent images using tem-

plate matching followed by a sub-pixel refinement of the match. This worked well since

the camera stayed vertical and roughly a constant distance from the pillar. The Ladybug

camera in the high-end house sequence, though, rotated in place at many spots and a more

affine invariant matching technique was necessary. Therefore, we changed strategies and

selected SIFT features [47] in all of the images. Correspondences between images were

obtained by selecting pairs of features whose best match was each other.

For both sequences we bootstrapped by generating a two-view reconstruction. For the

pillar sequence, this was done by using RANSAC [22] to calculate the fundamental matrix

[48] [69]. The known calibration was used to project down to a valid essential matrix [18]

and extract the relative orientations of the cameras. The point positions were triangulated

and the two-frame reconstruction was optimized. New cameras were added to the recon-

struction using RANSAC to estimate the projective pose of the camera. Again, the known

calibration was used to project the projective pose estimate to a metric one. New fea-

tures were periodically selected in an image and searched for in nearby images. The point

positions were triangulated and then the reconstruction was continued. The same basic

approach was used in for the high-end house sequence except we “upgraded” by directly

calculating the Essential matrix using [54] and directly calculating the camera pose using

the three-point calibrated technique [22] [55] [58].

We then created partitions using the technique described in this chapter, as shown

in Figures 12 and 13. For comparison, we also partitioned the pillar sequence using the

Laplacian-based technique. As can be seen in Figure 14, the partitioning at the coarse level

seems reasonable, but we see neighboring cameras randomly intermingling across partition

boundaries at the fine level. This is because all the cameras have nearly identical connec-

tivity over a small window of images since they all observe roughly the same portion of

the scene. The partition boundaries created using the Hessian-based partitioning are much

sharper, which is what we would expect.

Since we know that the images came from a video sequence, we could have added in a

prior, such as constant velocity, to the objective function. It should be noted, though, that

48

Figure 10: A few images from the pillar sequence.

the Hessian-based partitioning is not using the temporal ordering at all when choosing a

partition, so the sharp boundaries are simply because images from neighboring frames in a

video are taken from roughly the same vantage point.

So far, our assessment of the partition quality has been purely subjective. In order to

provide an objective method for evaluating the partitioning techniques, we revisit the pillar

sequence. The video was taken by walking in a loop around the pillar. The ending frames

are roughly in the same position as the starting ones, and we were able to reacquire features

once an initial reconstruction had been done. We partitioned the sequence using the Hessian

and also the occupancy of the Hessian and optimized, including the new tracks, using these

partition assignments. The residual error after optimizing the partitioned sequence is our

indicator of the partition quality. In Figure 15, we have plotted the residual after optimizing

the sequence with the newly acquired loop closing features using a variety of partition sizes.

The Hessian-based partitions yield lower residuals than the occupancy-based partitions in

each case.

Also, note that the residuals from the Hessian-based optimizations decrease smoothly,

while the sparsity-based residuals fluctuate. This is due to the sparsity-based partitioning

optimizing a metric that is not as correlated to the residual as the minimum error modes

of the Hessian.

4.3 Discussion

In this chapter, we have shown how rigidly grouping together cameras can be viewed as a

dimensionality reduction technique. By taking a Bayesian risk minimization approach to

the problem, we have shown that the problem of finding the optimal partition assignments is

equivalent to variance minimizing clustering where the points being clustered are extracted

49

Figure 11: A few images from the high-end house sequence. Each row represents one frame.
The first (far left) image is from the forward facing camera and the following four images
were taken clockwise around the rig. The last (far right) image was taken from an upward
facing camera. The first row was taken from a camera in the upper right corner of Figure
13. The second row was taken from the turn on the center left side of the figure and the
third row was taken from a camera in the bottom right side of the figure.

50

Figure 12: Color coded 4, 14 and 56-way (top, middle, and bottom) partitions of the 225
high-end house sequence. The camera started in the upper right corner of the figure, traveled
to the middle left side and ends in the bottom right corner of the figure. The second half of
the trajectory included going down three steps, which is visible in the reconstruction.

51

Figure 13: Color coded 2, 3 and 16-way (top, middle, and bottom) partitions of the 1106
image pillar sequence. The full Hessian was used to generate these partitions

52

Figure 14: Color coded 2, 3 and 16-way (top, middle, and bottom) partitions of the 1106
image pillar sequence. Only the occupancy of the Hessian was used to generate these parti-
tions

53

10 20 30 40 50 60
0.9

1

1.1

1.2

1.3

1.4

1.5

Number of Clusters

R
es

id
ua

l E
rr

or Hessian−based
Occupancy−based

Figure 15: Residual error after partitioning 2,4,8,16,32 and 64 ways using Hessian-based
and occupancy-based partitioning (solid red and dotted black, respectively). The graph is
normalized by the 64 partition residual.

from the scaled eigenvectors of the Hessian. The intuition behind this is that the best rigid

dimensionality reduction is the one that preserves as much of the low error modes of the

reconstruction as possible.

By using a rigid dimensionality reduction when optimizing the reconstruction, both the

cost of setting up and solving the system of equations for the update step is reduced. In

contrast, using a linear dimensionality reduction results in a significant increase in the ex-

pense associated with calculating the Hessian in addition to removing any potential sparsity

from the factored Hessian.

Calculating the rigid dimensionality reduction, though, still requires extracting some of

the eigenvectors of the Hessian of the full state space. As we discuss in detail in Chapter

6, this is as computationally expensive as full bundle adjustment. Our goal, however, is to

efficiently iterate over updating correspondences (either by stitching together subsequences

or looking for loop-closing measurements), re-optimizing the reconstruction and updating

54

the dimensionality reduction. In effect, we have merely pushed the computational burden

from the optimization step to the dimensionality reduction update step. In the next chapter,

we address this by showing how partitioning hierarchically allows us to both optimize the

reconstruction and refine the partition choices in an efficient manner.

55

CHAPTER V

HIERARCHICAL PARTITIONING

Generating the dimensionality reduction described in Chapter 4 requires extracting singu-

lar values and vectors from the Hessian, which is about as computationally expensive as

solving for an update step in the full state space. As mentioned previously, it is common

to refine the reconstruction multiple times using bundle adjustment. For example, non-

linear refinement is needed after stitching together subsequences or when new, loop-closing

features are acquired. This means we want to cycle over the steps of acquiring new measure-

ments, refining the reconstruction using the partitioned representation, and repartitioning

the resulting reconstruction. As we discuss in Chapter 6, partitioning the reconstruction

requires extracting a few small eigenvectors of the Hessian, which has a computational cost

comparable to updating the full reconstruction. By repartitioning the entire reconstruc-

tion, therefore, the efficiency gained by refining the reconstruction using the partitioned

reconstruction is negated by the cost of repartitioning the reconstruction.

For example, if we have built up both a reconstruction and partitioning of the full

scene, we might also want to refine the correspondences as was done for the pillar sequence.

Using the existing partition assignments, the reconstruction can be updated efficiently. The

correspondences may stitch together cameras that were only weakly coupled before, yielding

a much better conditioned reconstruction. This also means that the low error modes of the

reconstruction may change significantly since it is no longer easy to move the stitched

cameras relative to each other. What used to be a weak spot in the reconstruction and

have many partitions devoted to representing it may now be well estimated and only need

a few rigid partitions to represent it. Therefore, repartitioning would allow more partitions

to be allocated to the new weak spots in the reconstruction. This would generate a set

of partition assignments that better represents the new low error modes but would be as

computationally expensive as optimizing the unpartitioned reconstruction.

56

As another example, suppose we are hierarchically merging subsequences. First, we

would reconstruct each subsequence independently and partition the cameras in each sub-

sequence into rigid groups. This would allow us to efficiently estimate a reconstruction

representing the combination of each individual subsequence. After merging subsequences,

one approach would be to just use the partition assignments from each subsequence for the

merged reconstruction. This means, though, that the number of partitions, and hence the

dimensionality, for the new reconstruction is larger than the individual subsequences. An

alternative approach would be to re-cluster the cameras to generate a coarser partitioning

of the cameras into rigid groups. This would keep the number of partitions in the recon-

struction steady as subsequences are hierarchically merged but would be computational

expensive.

Instead of squandering all our efficiency gains, we explain how a new reduced dimen-

sional representation can be built by clustering the existing partitions instead of clustering

the individual cameras. In the next chapter, we show that the computational cost of cluster-

ing the partitions is comparable to the cost of non-linear optimization using the partitions.

Therefore, the cost of refining the reconstruction and updating the dimensionality reduction

are similar which allows us to hierarchically merge subsequences or refine the correspon-

dences in an efficient manner.

Hierarchically partitioning the reconstruction defines a tree structure with cameras as

the leaf nodes and larger and larger rigid groups defined by the nodes higher up the tree.

While using a tree structure allows us to efficiently update our dimensionality reduction, it

should be noted that it imposes a somewhat arbitrary constraint on the partition choices.

The partition assignments that we are coarsening represent a manifold through the state

space while the resulting coarser partition assignments represent a lower-dimensional mani-

fold. By clustering the partitions we already have, we are constraining this lower dimensional

manifold to be a subspace of the higher-dimensional manifold instead of the full state space.

Effectively, we are forcing all the cameras that were grouped together at a lower level to

remain grouped in the coarser partitioning. The hope is that the computational benefits of

using a hierarchical structure justify imposing the extra constraint.

57

5.1 Optimal Hierarchical Partitioning

In this section, we show that the constraints imposed by a tree structure change the problem

into a weighted clustering problem. At first blush, it may seem reasonable to cluster par-

titions just as we partitioned cameras: calculate the Hessian, extract eigenvectors, convert

them into feature vectors and cluster them. Partitions with many cameras in them, though,

need to have their features weighted more than partitions with fewer cameras. Intuitively,

this is because the Bayesian risk we are minimizing is the expected squared distance be-

tween the true state and our state estimate. Therefore, partitions with many cameras in

them are representing more state parameters than partitions with fewer cameras.

As a result, the eigenvalues and vectors of the partitioned system should be calculated

and converted to features just as for a flat system, but the features should be weighted

proportionally to the number of cameras in the corresponding partition during clustering.

We show this by going back to the derivation of the rigid dimensionality reduction

and manipulating the form of Ur in equation (49). The rigid dimensionality reduction

corresponding to a four-way partitioning, Ur = Ur4, is

Ur4 =

I
...

I

0 0 0

0

I
...

I

0 0

0 0

I
...

I

0

0 0 0

I
...

I

I

|S1|
1
2

0 0 0

0 I

|S2|
1
2

0 0

0 0 I

|S3|
1
2

0

0 0 0 I

|S4|
1
2

. (65)

The columns of Ur4 need to be orthonormal in the derivation from Chapter 4, and here

we have separated out the normalizing matrix on the right. The columns of the matrix on

58

the left are already orthogonal, and postmultiplying by the matrix on the right normalizes

them.

Further grouping this four-way partitioning into a two-way partitioning can be repre-

sented as:

Ur2 =

I
...

I

I
...

I

0

0

I
...

I

I
...

I

I

(|S1|+|S2|)
1
2

0

0 I

(|S3|+|S4|)
1
2

 (66)

Here, we have merged the columns corresponding to the partitions we are grouping and

updated the normalizing matrix. Alternatively, this can be further broken up as the four-

way partition assignment matrix, Ûr4, times the two-way partition assignment matrix, Ûr2,

59

times the column normalizing matrix, AN :

Ur2 = Ûr4Ûr2AN =

I
...

I

0 0 0

0

I
...

I

0 0

0 0

I
...

I

0

0 0 0

I
...

I

I

I
0

0
I

I

I

(|S1|+|S2|)
1
2

0

0 I

(|S3|+|S4|)
1
2

(67)

We can substitute this into (49), which yields

argmin
Ur2

trace(AT
N ÛT

r2Û
T
r4Σ

−1
r Ûr4Ûr2AN). (68)

The four-way assignment matrix, Ûr4, is also the derivative of the original state space with

respect to the partition assignments. Each column of Ûr4 represents how the cameras move

when the partitions are perturbed. The Hessian of the objective function parameterized

using the full state space, Σ−1
r , can be converted into the Hessian of the objective function

parameterized using the four-way partition assignments, Σr4, using the chain rule:

ÛT
r4Σ

−1
r Ûr4 = Σ−1

r4 . (69)

Since it is easier to calculate Σ−1
r4 directly than applying the chain rule to Σ−1

r , we can

rewrite (68) as

argmin
Ur2

trace(AT
N ÛT

r2Σ
−1
r4 Ûr2AN). (70)

From this point, the rest of the derivation follows almost identically. The main difference

is that AN represents the total number of cameras in a partition instead of the number

60

of sub-partitions. As we suggested earlier, this has the effect of changing the unweighted

k-means problem into a weighted one.

Therefore, in order to take a partitioning and generate a coarser partitioning, the Hessian

of the partitioned system should be calculated and the eigenvectors corresponding to the

smallest eigenvalues should be extracted. As before, feature vectors should be created

by rearranging the eigenvectors scaled by the inverse of their eigenvalue. The difference,

though, is that the feature vectors should be weighted by the total number of cameras in the

corresponding partition. The only system modification needed to implement this change

was to change the unweighted k-means clustering to a weighted version.

5.2 Results and Discussion

We have applied the techniques described above to both the pillar and high-end house

sequences. In both cases, we reduced the number of partitions (nodes) by approximately a

factor of four at each level of the tree. For the pillar sequence, this resulted in 1100 cameras

as leaf nodes followed by groups of 275, 69, 17 and 4 partitions. In the high-end house

sequence, there are 225 leaf cameras followed by groups of 56, 14 and 4 partitions. The

resulting trees for the pillar and high-end house sequences are shown in Figures 16 and 17

respectively.

In the following chapter, the computational cost benefit of partitioning hierarchically is

explored both theoretically and experimentally.

61

Figure 16: Hierarchical partition assignments for frames 294 to 1400 of the pillar sequence.

Figure 17: Hierarchical partition assignments for frames 1600 to 2100 of the high-end house
sequence. The ladybug underwent a nearly pure rotation around frame 1850, causing several
frames to be ignored.

62

CHAPTER VI

COMPUTATIONAL COST

The reconstruction estimate is commonly refined using bundle adjustment many times.

Each time subsequences are merged or new correspondences are obtained, the reconstruction

should be re-optimized. The computational cost of refining a reconstruction consists of

several factors other than the amount of time needed to solve the system of equations for an

update step in the non-linear minimization, which is the main cost a rigid dimensionality

reduction addresses. Additionally, the computational cost improvements enabled by any

dimensionality reduction come at the expense of accuracy. The minimum risk point in state

space does not, in general, lie on the manifold defined by the dimensionality reduction, so

the expected residual error after refining when using a dimensionality reduction is higher.

In this chapter, we explore the computational cost of each step in both the optimization

and rigid dimensionality reduction procedures, as well as empirically evaluate the compu-

tational cost versus accuracy trade-off. As an example, we show that by partitioning the

1100 cameras from the pillar sequence into 69 rigid partitions, a two order of magnitude

speedup in closing the loop is obtained at a cost of 0.1 percent error increase.

Additionally, the fact that both the steps involved in performing an update step and

updating a rigid dimensionality reduction are comparable justifies using the hierarchical

partitioning technique from Chapter 5. As shown in Table 6, the first three steps are

identical since both tasks require calculating the Hessian and marginalizing out the structure

parameters. The last two steps are different between optimizing and generating partition

assignments, although solving for the update step direction and extracting eigenvalues both

involve the same underlying back-substitution step.

63

Table 1: The steps involved in both bundle adjustment and choosing partitions

Bundle Adjustment Partitioning
Calculate error, Hessian and gradient

Factor out structure
Decompose factored Hessian

Solve for the update step direction Extract eigenvalues
Take a step by performing a line search Cluster features

6.1 Theoretical Computational Cost

For the bundle adjustment process, a given set of measurements, correspondences and

starting reconstruction are used to calculate the total reprojection error, the Hessian and

the gradient. The structure parameters are factored out of the Hessian and then a Cholesky

decomposition is performed to get the LU decomposition. The update step for the camera

parameters is obtained by back-substitution and is then used to solve for the structure

update. The step size is iteratively cut back until the error decreases when taking the step.

To partition a reconstruction, the total reprojection error, Hessian and gradient need

to be calculated. Depending on the cost function used in the Bayesian risk expression,

the Hessian and gradient may be different than the ones used in optimization. For the

translation only cost function we described in Chapter 4, we parameterize rigid partitions

the same way as we did when optimizing (using a seven DOF transformation). This yielded a

Hessian that was 7N × 7N . After optimizing, we drop the scale and rotational parameters

from the factored Hessian and gradient we calculated in the last optimization iteration,

which results in a 3N × 3N Hessian. Therefore, the first three steps used to calculated

the system of equations with the structure parameters marginalized out do not need to be

repeated.

At the lowest level of the hierarchy when we are optimizing cameras instead of partitions,

we directly use the camera parameters. Therefore, we perform the first three steps over with

a different parameterization to recalculate the Hessian and gradient for partitioning. In a

practical setting, we could use the chain rule to transform the parameterization of the

existing Hessian and gradient to save ourselves from regenerating them.

64

Once the Cholesky decomposition of the Hessian has been calculated, the eigenvectors

corresponding to the smallest eigenvalues need to be extracted. These can be extracted using

an implicitly restarted Lanczos technique [44] [37]. Lastly, the feature vectors determined

by re-arranging the eigenvectors need to be clustered, for which we used k-means clustering.

6.1.1 Overlapping Steps

The theoretical computational cost of the first three overlapping steps, calculating the error,

Hessian and gradient, factoring out the structure and performing a Cholesky decomposition,

is discussed in this section.

Calculate the error, Hessian and gradient The objective function being minimized

in bundle adjustment can be written as

χ2 =
∑
c∈C

∑
p∈Pc

Ecp(θc, θp, zcp)T Ecp(θc, θp, zcp). (71)

Here we are summing the reprojection error over all cameras, C, and all points that are

observed by that camera Pc. The reprojection error for measurement zcp when the camera

and point parameters are θc and θp is given by the 2D vector Ecp(θc, θp, zcp). Since the

reprojection error for a measurement is only affected by the parameters of one camera and

one point, the number of non-zero entries in the Jacobian is proportional to the number of

measurements.

This means that the costs of calculating the error, Hessian and gradient are all linear

in the number of measurements. For optimizing the entire state space, this is usually not

the bottle neck. The number of measurements, M , is the number of cameras, N , times the

measurements per camera, α, which is typically a constant and a function of the camera

resolution. Therefore, the cost of calculating the error is linear in the number of cameras.

For partitioned optimizations, the computational cost is proportional to the number

of measurements that span partitions. For sequences where features are acquired, tracked

for a while and lost, the number of measurements that contribute to the error tends to

be proportional to the number of partitions. This rule of thumb is not true for arbitrary

partition choices, though. For example, if the camera is traveling with constant velocity and

65

two partitions are chosen, one with the odd frames and one with the even frames, most of

the measurements span the two partitions. The partition assignment technique presented

in Chapter 4, though, can be viewed as a generalization of spectral graph partitioning. As

such, it inherits the tendency to minimize the number of measurements that span partitions

in addition to utilizing vantage point information.

Fixating sequences, where all of the cameras observe most of the points, tend to have all

measurements contributing to the error. In this case, each partition has many measurements

corresponding to each point and the computational cost of calculating the error does not

go down as we decrease the number of partitions. Ideally, the computational cost would be

purely a function of the number of partitions which would allow us to scalably handle very

large reconstructions.

One approach for dealing with this is to use a linearized approximation for each parti-

tion’s contribution to the error of a point. For example, if we have a number of cameras in

a partition that all see the same scene point, the error function rigidly transforms around

with the partition. If the point stays at the same position relative to the partition then

the contribution of that partition to the reprojection error does not change. Therefore,

we could use a quadratic approximation for the error function as a function of the point’s

position with respect to the partition. This means that, instead of summing up the repro-

jection error of each individual camera in a partition for a point, we only have to evaluate a

quadratic function that depends solely on the position of the point relative to the partition.

The standard assumption that the error surface is well approximated by a quadratic near

the minimum means that this approximation is valid as long as the point’s relative position

does not change much.

This can be viewed as marginalizing out all the camera parameters so that the error

is only a function of the point’s position relative to the partition. Another, slightly more

complex alternative is to use something similar to the approximation from [62]. The basic

idea is to marginalize out all of the cameras except for a few, which are dubbed “virtual

key frames”. This effectively alters the measurements of these key frames to account for all

the other cameras that were dropped.

66

The advantage of using the virtual key frame approach is that the approximation to the

error function might be valid over a larger range of point positions. For example, if a video

camera is stationary for a period of time, all of the cameras contribute roughly the same

“error cone”. A quadratic error approximation to the error surface would only be valid

for a small range of point depths, underestimating the error as the point gets closer to the

cameras and over estimating it as the point moves away from the cameras. Keeping a few

virtual key frames would preserve much more of the conical shape to the error surface and

would tend to be valid over a larger range of point depths.

With either of these techniques, though, the original measurements would be replaced

by a constant number of pseudo-measurements per partition. The number of pseudo-

measurements is proportional to the number of partitions times the number of points,

P . Therefore, the cost of calculating the error of a partitioned sequence is proportional to

the number of partitions and is independent of the number of cameras in each partition.

Factor out the structure The cost of marginalizing out the scene structure is dominated

by the the cost of calculating the second term in

U ′ = U −WV −1W T . (72)

Both U and V are block diagonal and W is a sparse matrix with the number of non-zero

entries being proportional to the number of measurements (or pseudo-measurements in the

partitioned optimization case). The block of W in row i and column j is non-zero if point

j was observed in camera i (or, for partitioned optimizations, any camera in partition i).

The cost of calculating V −1W T is proportional to the number of pseudo-measurements,

or αN . As V is block diagonal, the sparsity pattern of V −1W T is the same as W T . Also,

if points are observed in a window of β cameras, this means that W is a banded matrix

and the cost of premultiplying by W is αβN . Since β = αN
P , this can also be expressed as

(αN)2

P .

There are non-zero sub-blocks in U ′ for every pair of cameras that observe the same

scene feature. Therefore, U ′ is nearly full for sequences where the same scene features are

observed in all the cameras. On the other hand, if the camera trajectory moves through a

67

scene so that scene features are acquired, tracked for F frames on average and then lost,

then U ′ is a sparse banded matrix with a approximate bandwidth of F .

One could imagine a scenario where most of the scene is only observed in a few frames

but a few scene features are visible in all the cameras. For example, if some distant object

such as a mountain range or the sun is always visible then U ′ would be full. In this case,

it may make sense to not marginalize out the scene features that are visible in most the

cameras so that U ′ retained some sparsity. This would leave U ′ as an arrowhead matrix for

which a Cholesky decomposition is more efficient.

Decompose the factored Hessian There are two steps in solving a system of equations,

the LU-decomposition, or Cholesky in our symmetric, positive definite case, and the back-

substitution. The cost of an LU-decomposition is proportional to NF 2, with the Cholesky

decomposition being about a factor of two faster [57] since it takes advantage of the sym-

metry of U ′. If all of the cameras have some overlap in the scene that they observe, F = N

and the computational cost is proportional to N3.

6.1.2 Steps Unique to Bundle Adjustment

Solve for the update step direction Once the Cholesky decomposition of U ′ has been

calculated, the camera or partition update step directions are solved for using standard

back-substitution in time proportional to FN . Again, if all of the cameras have some

overlap in the scene that they observe, F = N and the computational cost is proportional

to N2

The structure update can be thought of as re-triangulating the point positions given

the updated camera positions. The structure update step is given by −V −1(Gp + W T δxc),

where Gp is the gradient of the structure parameters and δxc is the camera or partition

update step. It can be solved for in time proportional to the number of measurements.

Take a step by performing a line search The line search is performed by iteratively

checking the error change induced by the step and scaling it back until the error decreases.

Therefore, the cost of doing the line search is a fraction of the cost of the first step since the

68

Hessian and gradient are not needed and is proportional to the number of measurements

(or pseudo-measurements). Close to the minimum, where the second order Taylor series

approximation fits well, the error usually decreases within one or a handful of iterations.

6.1.3 Steps Unique to Partitioning

Extracting eigenvectors from the Hessian The eigenvectors corresponding to the

smallest eigenvalues can be extracted using an implicitly restarted Lanczos technique [44]

[37]. If we were only interested in the eigenvector corresponding to the single largest eigen-

value, we could have used the power method, which iteratively calculates v(n+1) = Hv(n)

until convergence. Similarly, the single smallest eigenvalue is found by iteratively calcu-

lating v(n + 1) = H−1v(n) until convergence. This is equivalent to iteratively solving

Hv(n + 1) = v(n), so the Cholesky decomposition of the Hessian is only performed once

followed by iterative back-substitution.

Since we need to have multiple eigenvectors instead of just one, we use an implicitly

restarted Lanczos method. This means that v is a matrix representing the subspace the

smallest eigenvectors span and they need to be orthogonalized after each iteration. Funda-

mentally, though, the underlying back-substitution iterations are the same. Since a basis

for the subspace spanned by v can be found quickly using the recursive Lanczos method,

the computational cost is dominated by the back-substitution step.

Cluster Features Finally, once the eigenvectors have been extracted and re-arranged into

feature vectors, they need to be clustered to find the partition assignments. We used k-

means clustering, which involves a two step iteration. First, given a clustering, the centroid

of each cluster is calculated. Second, a new clustering is obtained by assigning each feature

to the cluster with the closest centroid. These two steps are iterated until no set assignments

change. Since the algorithm might converge to a local minimum, several runs with different

randomly selected starting positions are performed to try to find the global minimum.

The cost of calculating k centroids of N , d-dimensional features requires time propor-

tional to Nd, and the cost of finding the nearest centroid requires time proportional to Nkd.

If, as suggested in the previous chapter, we are building up a tree, k is a fraction of N and

69

so the clustering takes approximately N2d time.

6.2 Empirical Cost Analysis

When merging a few subsequences, the theoretical computational cost of the non-linear

optimization is roughly a function of the number of partitions used to represent each sub-

sequence and the number of scene points that are seen by more than one partition. Also,

the cost of merging cameras or partitions from the subsequences into a coarser partitioning

has a similar computational cost.

An empirical evaluation of the computational cost was carried out by timing the various

stages using the pillar sequence. MATLAB was used as the development platform and was

run on an AMD K7-1900MP with 2Gb of memory. All the tests ran within the bounds of

the physical memory.

The functions to calculate the error and take a step in state space via a line search

were both coded in C and called from MATLAB. The Cholesky decomposition and back-

substitution were done using the built-in “chol” and “slash” functions respectively. The

structure was factored out using the built-in sparse matrix multiplication routines. This

ignored the symmetry of the problem and could have been made a factor of two faster by

writing a custom routine in C to factor out the structure. Also, a custom implementation

could pre-allocate the correct amount of memory and would likely see memory management

related speed improvements.

The results of these tests are enumerated in Table 2 as well as plotted in Figure 18. The

Lanczos iterations were timed while calculating the smallest 24 eigenvectors. The built-

in “eigs” function was used to calculate the smallest 24 eigenvectors (including the four

gauge freedoms, translation and scale). It uses a sparse LU decomposition to factor the

matrix. Though we have not tested it, a sparse Cholesky implementation [13] should yield

approximately half the computational cost of the LU decomposition. The “eigs” function

also calls functions from ARPACK and the built-in back-substitution functions. The LU

decomposition and back-substitution calls dominate the cost.

70

Table 2: The computational cost of the optimization and partitioning stages. The compu-
tational cost of factoring out the structure and performing the LU/Cholesky decompositions
dominate the computational cost for full bundle adjustment. The computational cost for
these steps drops by two orders of magnitude when using 69 rigid partitions instead of all
1100 cameras. This data is plotted in Figures 18 and 19.

Task 17 Partitions 69 Partitions 275 Partitions 1100 Frames
Error 0.38s 0.38s 0.48s 0.45s

Factor Structure 0.15s 0.90s 8.12s 66.2s
Cholesky Opt <0.01s 0.05s 2.01s 72.9s

Solve 0.01s 0.07s 0.87s 20.3s
Take Step 0.09s 0.11s 0.11s 0.12s
LU Eig 0.01s 0.04s 1.83s 90.3s

Lanczos (iterations) 0.04s (1) 0.05s (3) 0.48s (3) 5.29s (5)

6.3 Discussion

For large reconstructions, the computational expense is dominated by the cost of factoring

the structure out of the Hessian, calculating the LU decomposition and then solving for

the update steps. Using a rigid dimensionality reduction reduces the cost of all of these.

In our implementation, we did not use any of the techniques discussed in Section 6.1.1

for approximating measurements with pseudo-measurements. Therefore, the computational

cost of calculating the error was not significantly improved by partitioning the cameras. We

expect that the cost of calculating the error, taking a step and factoring out the structure

would decrease appreciably with the use of these techniques.

We have demonstrated the reduction in computational cost that a rigidly partitioned

representation affords. Also, choosing partition assignments using our risk minimization

approach results in a two order of magnitude speedup at the cost of a tenth of a percent

reprojection error increase.

Additionally, we have shown that the cost partitioning a reconstruction is comparable

to the cost of optimizing it, so the hierarchical partitioning technique presented in Chapter

5 can be used to generate very large reconstructions in a scalable manner.

71

Table 3: The percent increase in residual error associated with closing the loop in the pillar
sequence with varying numbers of partitions was recorded. The increase for 1 partition
corresponds to the initial error increase (all the cameras were locked together). Using all
1100 partitions corresponds to full bundle adjustment, hence the 0 percent increase. The
penalty for using 69 partitions was only 0.1085%, while the computational cost decreased
by approximately two orders of magnitude. This data is plotted in Figure 20.

Number of Partitions 1 4 17 69 275 1100
Percent Error Increase 126.1097 2.4170 0.8682 0.1085 0.0146 0

Figure 18: The computational cost of the optimization and partitioning stages

72

Figure 19: The computational cost of the optimization and partitioning stages. The cost
of factoring out the structure and performing the LU decomposition have been scaled by
0.5 to predict the cost of implementations that took advantage of the problem’s symmetry

73

100 101 102
10−4

10−3

10−2

10−1

100

Number of Partitions

P
er

ce
nt

 E
rr

or
 In

cr
ea

se

Figure 20: The data from Table 3 is plotted here. The diminishing benefits of using
finer and finer partitionings when closing the loop for the pillar sequence is clear from this
plot. Approximately one decimal place of accuracy is gained by quadrupling the number of
partitions. The gain of using 17 partitions or more is below 1% (10−2).

74

CHAPTER VII

CONCLUSION

7.1 Contributions

In this dissertation, I presented methods for efficiently building and updating reconstruc-

tions from a sequence of images. When sequentially adding new images to a reconstruction

in an online setting, image features are typically acquired, tracked for a while, and then lost.

In this situation, the new images have a limited temporal window of influence. This allows

us to only update the portion of the reconstruction most influenced by the new images by

incrementally expanding the set of optimization parameters. While these types of sequences

allow the reconstruction to be generated in linear time, they tend to be well conditioned

locally but poorly conditioned globally.

Using an initial reconstruction, we can search for more correspondences that stitch

together the reconstruction when it loops back upon itself. This yields a much better

estimate of the reconstruction, but these types of correspondences tend to cause changes in

the entire reconstruction. Therefore, the incremental bundle adjustment technique, which

is only efficient at incorporating local changes, is not sufficient.

We showed that partitioning the cameras into rigid groups was an alternate way of

reducing the number of parameters being estimated and could efficiently incorporate new

information that induced global changes in the reconstruction. Using this rigid dimension-

ality reduction technique, we can hierarchically generate large reconstructions in a scalable

manner. As an example system architecture, subsequences would be reconstructed inde-

pendently and then partitioned. The partitioned subsequences would be merged into larger

subsequences that were optimized and then re-clustered into a coarser partitioning. As the

subsequences are hierarchically merged, the number of parameters used to represent them

is a function of the number of partitions instead of the underlying number of cameras, as

is the cost of merging them and updating the partition assignments.

75

Additionally, the correspondences can be refined after an initial reconstructions is gen-

erated for a sequence. Using the reduced dimensional representation, the new information

provided by the updated correspondences can be incorporated efficiently as well.

In summary, there are four main contributions of this work:

1. Reconstructions with only temporally local correspondences can be generated in linear

time.

2. Grouping cameras into rigid partitions is fundamentally a dimensionality reduction

technique, and, as such, can be treated as a Bayesian risk minimization problem.

3. Choosing risk minimizing partition assignments is equivalent to the variance minimiz-

ing clustering problem.

4. Both refining the reconstruction and camera partition assignments can be done effi-

ciently by using a hierarchical approach.

7.2 Future Work

Non-uniform Measurement Priors There are still other avenues that can be pursued.

Figure 21 shows a horizontal cut through this tree which corresponds to the k-way parti-

tion assignments generated using the uniform measurement prior. The best dimensionality

reduction, however, may not simply be a horizontal slice through the partition hierarchy.

Once the incoming measurements become available, though, the best cut is not necessarily

horizontal any more. As shown in Figure 22, it may be better to have a “finer” partitioning

near the parameters that are directly affected by the new measurements (corresponding

to pushing the cut closer to the leaf nodes) and a “coarser” partitioning elsewhere (corre-

sponding to pushing the cut line closer to the root node).

The “best” slice through the hierarchy is the one that, when used in optimization, yields

the most likely reconstruction. Unfortunately, the amount of error reduction a slice would

yield is not available until after the optimization has been performed.

As we have shown in the previous chapter, though, calculating the error and gradient

of a slice is usually much faster than actually solving for the step. This points us to a

76

Figure 21: A horizontal cut through the partition hierarchy.

technique that we think holds promise: approach selecting the slice as a steepest descent

problem. Each slice represents a different manifold in the state space through the current

state. Therefore, each slice also has a gradient associated with it. The slice with the largest

gradient is a horizontal slice through the leaf nodes, but bounding the computational cost, or

number of partitions being optimized, adds a constraint on the slice choice and, in general,

precludes choosing this horizontal slice. Given this problem statement, a reasonable search

strategy, if not an exhaustive search, should be attainable. This would yield a three step

optimization procedure where the dimension of the problem get reduced after each step.

First choose the maximum gradient hierarchy slice, or manifold through the state space.

Next choose a step direction using a Newton-Raphson step. And finally perform a one-

dimensional search along that line.

7.3 Other Applications

Our fundamental goal is to enable reconstructing very large scenes. We feel that partitioning

is crucial to any scalable system. The usefulness of partitioning is not limited solely to the

optimization process. We feel that many tangentially related problems will benefit from a

hierarchical partitioning.

77

Figure 22: An uneven cut through the partition hierarchy.

For instance, establishing correspondences in large reconstructions is an open area of re-

search. One approach is to use EM, where the expectation step defines the correspondences

and the maximization step involves bundle adjustment [14]. Aside from the obvious com-

putational benefit for the maximization step, it is possible that the partition assignments

could be used in the expectation step to prune the search space.

In our work, we have focused on the camera trajectory, viewing the sparse structure

reconstruction as a byproduct. Surface models are necessary for many applications, however.

As the generation of surface models is fundamentally a generalization of the correspondence

problem, we would expect a hierarchically partitioned camera trajectory to be relevant to

that domain as well. In short, hierarchical techniques have almost universal applicability

and we anticipate that our technique will be useful in many applications other than just

bundle adjustment.

78

REFERENCES

[1] Alpert, C. J. and Yao, S. Z., “Spectral partitioning, the more eigenvectors, the
better,” in 32nd ACM/IEEE Design Automation Conference, (San Francisco), pp. 195–
200, June 1995.

[2] Ashcraft, C. and Liu, J. W. H., “Robust ordering of sparse matrices using multi-
section,” SIAM J. Matrix Anal. Appl., vol. 19, no. 3, pp. 816–832, 1998.

[3] Azarbayejani, A. and Pentland, A., “Recursive estimation of motion, structure,
and focal length,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 17, no. 6, pp. 562–575, 1995.

[4] Bach, F. R. and Jordan, M. I., “Learning spectral clustering,” in Advances in
Neural Information Processing Systems 16 (Thrun, S., Saul, L., and Schölkopf,
B., eds.), Cambridge, MA: MIT Press, 2004.

[5] Beardsley, P., Zisserman, A., and Murray, D., “Sequential updating of projec-
tive and affine structure from motion,” 1997.

[6] Beardsley, P. A., Torr, P. H. S., and Zisserman, A., “3d model acquisition from
extended image sequences,” in ECCV (2), pp. 683–695, 1996.

[7] Bosse, M. C., Atlas, A Framework for Scalable Mapping. PhD thesis, Massachusetts
Institute of Technology, 2004.

[8] Brand, M. and Huang, K., “A unifying theorem for spectral embedding and clus-
tering,” in Proceedings of the Ninth International Workshop on Artificial Intelligence
and Statistics (Bishop, C. M. and Frey, B. J., eds.), 2003.

[9] Brown, D. C., “The bundle adjustment–progress and prospects,” in International
Archives of Photogrammmetry, vol. 21, 1976.

[10] Chan, T. F., Gilbert, J. R., and Teng, S., “Geometric spectral partitioning,”
Tech. Rep. CSL-94-15, 1995.

[11] Chung, F. R. K., Spectral Graph Theory. American Mathematical Society, 1997.

[12] Culbertson, W. B., Malzbender, T., and Slabaugh, G. G., “Generalized voxel
coloring,” in Workshop on Vision Algorithms, pp. 100–115, 1999.

[13] Davis, T. A., “Algorithm 8xx: a concise sparse cholesky factorization package,” Tech.
Rep. TR-04-001, University of Florida Department of Computer and Information Sci-
ence and Engineering, 2004.

[14] Dellaert, F., Seitz, S., Thorpe, C., and Thrun, S., “EM, MCMC, and chain
flipping for structure from motion with unknown correspondence,” Machine Learning,
vol. 50, pp. 45–71, 2003.

79

[15] Dhillon, I., “Co-clustering documents and words using bipartite spectral graph par-
titioning,” in Knowledge Discovery and Data Mining, pp. 269–274, 2001.

[16] Dissanayake, G., P. Newman, S. C., Durrant-Whyte, H., and Csorba, M.,
“A solution to the simultaneous localization and map building (slam) problem,” IEEE
Transactions on Robotics and Automation, vol. 17, pp. 229–241, June 2001.

[17] Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification. Wiley-
Interscience Publication, 2000.

[18] Faugeras, O., Three-dimensional computer vision: a geometric viewpoint. MIT Press,
1993.

[19] Faugeras, O. D., “What can be seen in three dimensions with an uncalibrated stereo
rig,” in Proceedings of the Second European Conference on Computer Vision, pp. 563–
578, Springer-Verlag, 1992.

[20] Fiedler, M., “Algebraic connectivity of graphs,” Czech. Math. J., vol. 23, pp. 298–
305, 1973.

[21] Fiedler, M., “A property of eigenvectors of non-negative symmetric matrices and its
application to graph theory,” Czech. Math. J., vol. 25, pp. 619–633, 1975.

[22] Fischler, M. A. and Bolles, R. C., “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,” Com-
mun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[23] Fitzgibbon, A. and Zisserman, A., “Automatic camera recovery for closed or open
image sequences,” in ECCV (1), pp. 311–326, 1998.

[24] Förstner, W., “Reliability analysis of parameter estimation in linear models with ap-
plication to mensuration problems in computer vision,” Comput. Vision Graph. Image
Process., vol. 40, no. 3, pp. 273–310, 1987.

[25] Geyer, M. S., “The inversion of the normal equations of analytical aerotriangulation
by the method of recursive partitioning,” tech. rep., Rome Air Development Center,
Rome, New York, 1967.

[26] Gilbert, J. R., Miller, G. L., and Teng, S., “Geometric mesh partitioning: Im-
plementation and experiments,” SIAM Journal on Scientific Computing, vol. 19, no. 6,
pp. 2091–2110, 1998.

[27] Golub, G. H. and Van Loan, C. F., Matrix computations (3rd ed.). Johns Hopkins
University Press, 1996.

[28] Gremban, Miller, and Teng, “Moments of inertia and graph separators,” in SODA:
ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and
Experimental Analysis of Discrete Algorithms), 1994.

[29] Grün, A., “Algorithmic aspects of on-line triangulation,” Photogrammetric Engineer-
ing and Remote Sensing, vol. 4, pp. 419–436, 1985.

80

[30] Haralick, R., Lee, C., Ottenberg, K., and Nolle, M., “Analysis and solutions
of the three point perspective pose estimation problem,” in CVPR91, pp. 592–598,
1991.

[31] Harris, C. and Stephens, M., “A combined corner and edge detector,” in Proc. 4th
Alvey Vision Conf., pp. 189–192, 1988.

[32] Hartley, R. and Zisserman, A., Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[33] Hartley, R. I., “Lines and points in three views and the trifocal tensor,” Int. J.
Comput. Vision, vol. 22, no. 2, pp. 125–140, 1997.

[34] Haykin, S., Adaptive Filter Theory. Prentice-Hall, 2 ed., 1991.

[35] Holzrichter, M. and Oliveira, S., “New graph partitioning algorithms,” 1998.

[36] Horn, B. K. P., “Closed form solution of absolute orientation using unit quaternions,”
Journal of the Optical Society, pp. 629–642, 1987.

[37] Ipsen, I. C. F. and Meyer, C. D., “The idea behind Krylov methods,” American
Mathematical Monthly, vol. 105, no. 10, pp. 889–899, 1998.

[38] Jin, H., Yezzi, A. J., Tsai, Y.-H., Cheng, L.-T., and Soatto, S., “Estimation of
3d surface shape and smooth radiance from 2d images: A level set approach,” J. Sci.
Comput., vol. 19, no. 1-3, pp. 267–292, 2003.

[39] Karypis, G. and Kumar, V., “Multilevel k-way hypergraph partitioning,” in Pro-
ceedings of the 36th ACM/IEEE conference on Design automation, pp. 343–348, ACM
Press, 1999.

[40] King, J. P., “An automatic reordering scheme for simultaneous equations derived
from network systems,” International Journal for Numerical Methods in Engineering,
vol. 2, pp. 479–509, 1970.

[41] K.Mikolajczyk and C.Schmid., “An affine invariant interest point detector,” in
European Conference on Computer Vision, vol. 1, pp. 128–142, 2002.

[42] Koch, R., Pollefeys, M., Heigl, B., Gool, L. V., and Niemann, H., “Calibration
of hand-held camera sequences for plenoptic modeling,” in ICCV (1), pp. 585–591,
1999.

[43] Kruppa, E., “Zur ermittlung eines objektes aus zwei perspektiven mit innerer orien-
tierung,” Other, pp. 1939–1948, 1913.

[44] Lehoucq, R., Sorensen, D., and Yang, C., “Arpack users’ guide: Solution of large
scale eigenvalue problems with implicitly restarted arnoldi methods,” 1997.

[45] Levy, R., “Restructuring the structural stiffness matrix to improve computational
efficiency,” tech. rep., Jet Propulsion Lab, 1971.

[46] Lhuillier, M. and Quan, L., “Quasi-dense reconstruction from image sequence,” in
ECCV (2), pp. 125–139, 2002.

81

[47] Lowe, D. G., “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, 2004.

[48] Luong, Q.-T. and Faugeras, O. D., “The fundamental matrix: theory, algorithms,
and stability analysis,” International Journal of Computer Vision, vol. 17, no. 4,
pp. 43–76, 1996.

[49] McLauchlan, P., “A batch/recursive algorithm for 3D scene reconstruction,” in
CVPR, pp. 738–743, 2000.

[50] McLauchlan, P. F., “Gauge independence in optimization algorithms for 3d vision,”
in Workshop on Vision Algorithms, pp. 183–199, 1999.

[51] McLauchlan, P. F. and Murray, D. W., “A unifying framework for structure and
motion recovery from image sequences,” in ICCV, pp. 314–320, 1995.

[52] Ng, A., Jordan, M., and Weiss, Y., “On spectral clustering: Analysis and an
algorithm,” 2001.

[53] Nister, D., “Reconstruction from uncalibrated sequences with a hierarchy of trifocal
tensors,” in ECCV, pp. 649–663, 2000.

[54] Nister, D., “An efficient solution to the five-point relative pose problem,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756–
770, 2004.

[55] Nister, D., “A minimal solution to the generalised 3-point pose problem,” in CVPR
2004, June 2004.

[56] Nister, D., Automatic Dense Reconstruction from Uncalibrated Video Sequences. PhD
thesis, KTH, 2001.

[57] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.,
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
1992.

[58] Quan, L. and Lan, Z.-D., “Linear n-point camera pose determination,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 774–780, August
1999.

[59] Seitz, S. M. and Dyer, C. R., “Photorealistic scene reconstruction by voxel color-
ing,” Int. J. Computer Vision, vol. 35, no. 2, pp. 151–173, 1999.

[60] Shi, J. and Malik, J., “Normalized cuts and image segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[61] Shi, J. and Tomasi, C., “Good features to track,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’94), (Seattle), June 1994.

[62] Shum, H., Ke, Q., and Zhang, Z., “Efficient bundle adjustment with virtual key
frames: A hierarchical approach to multi-frame structure from motion,” in CVPR
1999, June 1999.

82

[63] Soatto, S. and Perona, P., “Reducing “structure from motion”: A general frame-
work for dynamic vision part 2: Implementation and experimental assessment,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 9, pp. 943–960,
1998.

[64] Spielman, D. and Teng, S., “Spectral partitioning works: Planar graphs and finite
element meshes,” in IEEE Symposium on Foundations of Computer Science, pp. 96–
105, 1996.

[65] Steedly, D. and Essa, I., “Propagation of innovative information in Non-Linear
Least-Squares structure from motion,” in ICCV 2001 (2), pp. 223–229, 2001.

[66] Steedly, D., Essa, I., and Dellaert, F., “Spectral partitioning for structure from
motion,” in ICCV 2003, (Nice, France), pp. 996–1003, 2003.

[67] Szeliski, R. and Kang, S. B., “Recovering 3D shape and motion from image streams
using non-linear least squares,” Journal of Visual Communication and Image Repre-
sentation, vol. 5, no. 1, pp. 10–28, 1994.

[68] Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., and Durrant-Whyte,
H., “Simultaneous localization and mapping with sparse extended information filters,”
International Journal of Robotics Research, 2004. To Appear.

[69] Torr, P. H. S. and Murray, D. W., “The development and comparison of robust
methods for estimating the fundamental matrix,” Int Journal of Computer Vision,
vol. 24, no. 3, pp. 271–300, 1997.

[70] Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A., “Bundle ad-
justment – A modern synthesis,” in Vision Algorithms: Theory and Practice (Triggs,
W., Zisserman, A., and Szeliski, R., eds.), LNCS, pp. 298–375, Springer Verlag,
2000.

[71] Weiss, Y., “Segmentation using eigenvectors: A unifying view,” in ICCV 1999 (2),
pp. 975–982, 1999.

[72] Yezzi, A. J. and Soatto, S., “Structure from motion for scenes without features,”
2003.

83

